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A B S T R A C T   

The kinetics of mass transfer and vitamin C loss in mango during osmotic dehydration (OD) were described by 
mathematical models. Water loss (WL) and weight reduction (WR) was modelled by Weibull’s model, soluble 
solid gain (SSG) was better described by Peleg’s model. Vitamin C loss was described by a multiresponse model 
incorporating both degradation and leaching processes into the OD-solution. Effects of vacuum impregnation 
(VI) and pectin methylesterase (PME) addition on the model parameters were evaluated. VI increases SSG 
indicated by a 55% lower value of k2 in the Peleg model (P < 0.05). PME addition showed no significant effect on 
the mass transfer kinetics. The major mechanism of vitamin C loss during OD was degradation. The pre-
treatments have no significant effect on degradation and leaching rate constants of vitamin C. The combination 
of modelling the mass transfer and vitamin C retention was shown to be valuable in optimizing the OD process 
design to enhance the health-promoting value of OD mango (sugar content, vitamin C) and processing time.   

1. Introduction 

Mango (Mangifera indica L.) ranks second among tropical fruits in 
global market after banana (Altendorf, 2017). The fruit is an important 
source of vitamin C (between 9.79 and 186 mg/100 g edible portion due 
to different varieties, and growing conditions) and it is rich in various 
phytochemicals, including carotenoids and phenolic compounds 
(Ribeiro et al., 2010). Along with fresh mango’s trade expansion, the 
global demand for minimally processed mango products has been 
increasing (Hanemann et al., 2017). These mild treated products feature 
an extended shelf-life with fresh-like characteristics, while maintain a 
high nutritional and health-promoting value (Ciurzy�nska et al., 2016). 

New product design of dehydrated fruit range from the direct con-
sumption as snacks to its use as ingredients in various foods such as 
dairy, breakfast cereals and confectionery products, e.g., Betoret et al. 
(2003); Talens et al. (2012); Threlfall et al. (2007). Different dehydra-
tion technologies like vacuum impregnation and osmotic dehydration 
(OD) can be tailored to obtain these products. Over recent years, OD has 
received much appraisal from researchers as a minimal processing 
operation (Ahmed et al., 2016; Ciurzy�nska et al., 2016; Ramya and Jain, 
2017). OD is a mass transfer process involving immersion of fruit pieces 
in an OD-solution, which is a hyperosmotic solution inducing partial 

water removal from the tissue and soluble solid uptake in the tissue 
(Torreggiani, 1993), as illustrated in Fig. 1. Its application can precede 
drying or freezing and contributes to creating new and less perishable 
fruit products with health-promoting, nutritional and sensory properties 
(Ciurzy�nska et al., 2016). Therefore, OD application should aim for a 
healthier OD fruit with a low soluble solid uptake and a high retention of 
nutrients. However, with a given fruit material, health quality of the 
products can be affected by the setting of OD process variables, e.g., 
pretreatments, temperature, additives, and time (Ahmed et al., 2016). 

Due to a complex microstructure of a plant tissue, the OD should be 
explained as a process where several other mechanisms influence mass 
transfer (Chiralt and Fito, 2003). Right after a fruit tissue is immersed in 
OD-solution, the initial capillary pressure induced a flux of OD-solution 
into voids in the tissue (Seguí et al., 2012). During OD, three other 
mechanisms simultaneously occur: (i) cell dehydration caused by aw 
gradients; both (ii) soluble solid diffusion and (iii) deformed cell 
impregnation caused by cellular volume changes. In addition to the mass 
transfer, due to the viscoelastic properties of the cells, a structural 
shrinkage and relaxation also occur simultaneously; however, they have 
different rates (Oliver et al., 2012). Application of vacuum impregnation 
(VI) prior to OD, hereafter called OD-VI shows mass transfer kinetics 
(Fito and Chiralt, 1995; Fito et al., 2001). During OD-VI, the capillary 
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impregnation and vacuum-induced impregnation concurrently occur. 
Both impregnations expand internal gas in pores triggering the gas 
partially flowing out of the pores (when vacuum is applied) and fol-
lowed by compression sucking in the OD-solution into the pores (Chiralt 
and Fito, 2003). 

A mild temperature (30–50 �C) applied during OD result in tissue 
modification without damaging the fruit structure (Shi and Xue, 2009) 
and low thermal degradation of nutrients (Ciurzy�nska et al., 2016). 
Previous studies has been reported that application of texturizing agents 
during OD can enhance product firmness, e.g. calcium salts (Silva et al., 
2014) or pectin methylesterase (PME) (Guillemin et al., 2008), or both 
agents (Sirijariyawat et al., 2012). The firmness enhancement by these 
agents can be augmented by OD-VI (Sirijariyawat et al., 2012). Never-
theless, during immersion of the fruit in OD-solution, water-soluble 
nutrients will partially leach from the tissue, such as vitamin C, and 
phenolic compounds (Nowacka et al., 2018; Peir�o et al., 2006). 

Retention of nutrients in dehydrated plant material, e.g., by OD is 
generally inferred from the extent of vitamin C retention (Nowacka et al. 
(2018); Nu~nez-Mancilla et al. (2013); Oladejo et al. (2017)). In literature 
conflicting results on leaching of vitamin C into the OD-solution have 
been reported; it has been considered as not relevant since some authors 
found it as a minor cause of vitamin C loss (Alam et al., 2010). Mean-
while other studies report significant amounts of vitamin C appear in the 
reuse of OD-solutions, e.g., Germer et al. (2016); Moraga et al. (2011); 
Peir�o et al. (2006)). Most OD studies addressed vitamin C degradation 
kinetics without including the leaching mechanism, e.g., Alam et al. 
(2010); Dermesonlouoglou et al. (2016). This study aims to model the 
kinetics of mass transfer and vitamin C loss during osmotic dehydration 
of mango and the effect of vacuum impregnation as pre-treatment and 
addition of PME on the model parameters, to contribute to optimizing 
process design towards maintaining health-promoting value of OD 
mango (i.e., optimum sugar content and vitamin C). 

2. Materials and methods 

2.1. Fruit material 

Ripe mango (Mangifera indica L. cv. Kent) fruit originated from Brazil 
was purchased from Bakker Barendrecht B.V. (Ridderkerk, The 
Netherlands), stored at 11 �C - to prolong mango’s shelf life (Thar-
anathan et al., 2006) - and used within four days after arrival. Mango 
was selected based on firmness (Table 1), then cut into cubes approxi-
mately 1.2 cm � 1.2 cm x 1.2 cm (Sulistyawati et al., 2018), mixed and 
kept on ice prior to treatment. 

Pectin methylesterase (PME) from a recombinant Aspergillus oryzae 
(Novoshape® Novozymes, Denmark) and calcium-L-lactate pentahy-
drate (Merck KGaA, Darmstadt, Germany) were used. OD-solutions were 
prepared with commercial sucrose in demineralized water. 

2.2. Pretreatment and osmotic dehydration 

Osmotic dehydration (OD) was carried out at atmospheric pressure 
and in combination with a vacuum impregnation (OD-VI) according to 
Sulistyawati et al. (2018). Mango cubes (250 g) were immersed in 1 L 
OD-solution of 60 �Brix sucrose, 2% calcium lactate and 0 or 0.48% PME 
at 50 �C for 0–29 h under continuous stirring. 

VI was carried out at 30 �C in a vacuum chamber at 5 kPa for 15 min 
and 10 min pressure recovery (Fito and Chiralt, 1995). Samples for 
water and soluble solid analyses were kept at 4 �C, and samples for 
vitamin C analysis were frozen into liquid nitrogen and kept at � 20 �C 
prior to analysis (Olivares-Tenorio et al., 2017). The experimental setup 
of this study is shown in Fig. 2, in which each treatment was done with 
two independent batches. 

Weight reduction (WR), water loss (WL) and soluble solids gain at 
time t (SSG) were determined according to Sulistyawati et al. (2018) and 
were described using the equations: 

ΔMt ¼
ðMt � M0Þ

M0
(1) 

Fig. 1. Mass transfer of fruit during osmotic dehydration, e.g., mango cubes. 
TAAM – Total Ascorbic Acid content in mango, TAAS – Total Ascorbic Acid 
content in the OD-solution, kD - degradation rate constant, kL - leaching 
rate constant. 

Table 1 
Characteristics of mango samples.  

Characteristics Ripe mango batch 1 Ripe mango batch 2 

Average weight (g)a 678.2 � 71.3 482 � 25.2 
Firmness (kg)a 2.9 � 0.6 2.6 � 0.5 
Total soluble solid (�Brix)b 13.0 � 0.9 12.4 � 3.9 
Titratable acidity (% citric acid)b 0.69 � 0.08 0.69 � 0.08 
Moisture (%)b 85.8 � 1.8 83.6 � 1.82 
pH 4.67 � 0.7 3.97 � 0.1 
Number of mangoes used 88 95 

All physicochemical analyses were carried out based on Sulistyawati et al. 
(2018). 

a Values represent mean � SD of all selected mango within the same ripeness. 
b Values represent mean � SD of two batches per pretreatment that were each 

analyzed in duplicate. 

Fig. 2. Experimental setup for osmotic dehydration treatment (OD) of mango 
cubes treated with vacuum impregnation (VI) and pectin methylesterase (PME) 
(Sulistyawati et al., 2018). 
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ΔMW
t ¼
ðMtÞ

�
xW

t

�
� ðM0Þ

�
xW

0

�

M0
(2)  

ΔMSSG
t ¼

ðMtÞ
�
xSSG

t

�
� ðM0Þ

�
xSSG

0

�

M0
(3)  

where Δ is the weight difference of component at time t, M is the weight 
of sample (g) and x is the initial mass fraction of component (g/g), 
subscript t refers to time and 0 to t ¼ 0 and superscript W to water and 
SSG to soluble solids. 

2.3. Vitamin C analysis 

2.3.1. Sample preparation 
Frozen mango and OD-solution samples were freeze dried (GRI 

Vriesdroger, GR Instruments B⋅V., Wijk bij Duurstede, the Netherlands) 
connected to a two-stages vacuum pump (E2M18, Edward®, Crawley, 
UK) to a constant weight. Thereafter, samples were milled in liquid ni-
trogen (IKA A11 basic; IKA-Werke GmbH, Staufen, Germany) and kept 
at � 20 �C for vitamin C analysis. 

2.3.2. Measurement of vitamin C 
Vitamin C was expressed as the Total Ascorbic Acid (TAA) content - 

includes two biologically active forms, which are ascorbic acid and its 
oxidized form, dehydroascorbic acid - and was determined according to 
Hern�andez et al. (2006) with modifications, using an HPLC system (a 
thermo separation products model with P-2000 Binary Gradient Pump 
and UV, 2000 detector), see Supplementary data 1. Each sample was 
measured in duplicate – for mango and OD-solution samples - and then 
was averaged to get one data set per batch (Olivares-Tenorio et al., 
2017). Results were expressed in mg total ascorbic acid 100 g� 1 fresh 
weight (FW). 

2.4. Kinetics modelling 

2.4.1. Modelling of mass transfer 
In literature mainly empirical models have been applied on model-

ling the mass transfer in OD, the most widely applied models are the 
Peleg, Azuara, Page and Weibull model (Assis et al., 2017). These 
existing models are briefly described as the following. 

Peleg Model. Peleg (1988) proposed a two-parameter sorption 
equation that can describe water loss (WL) and soluble solid gain (SSG) 
kinetics during OD: 

xW
t � xW

0 ¼ �
t

kW
1 þ kW

2 ⋅t
(4)  

xSSG
t � xSSG

0 ¼ þ
t

kSSG
1 þ kSSG

2 :t
(5)  

with xW
0 is the initial mass fraction of water (g/g), xW

t is the mass fraction 
of water at time t (g/g), xSSG

0 is the initial mass fraction of soluble solids 
(g/g) and xSSG

t is the mass fraction of soluble solids at time t (g/g). 
The water reduction (WR) kinetics was rewritten from the same 

Peleg’s equation in the form: 

Mt � M0 ¼ �
t

k1 þ k2⋅t
(6)  

where M0 is the initial weight of sample (g), Mtis the weight of sample at 
time t (g). 

The constant k1 relates to the reciprocal of the rate of mass transfer 
and constant k2 relates to the reciprocal of the equilibrium composition. 

Azuara Model. Azuara et al. (1992) proposed a two-parameter 
model to estimate mass transfer coefficients and the equilibrium values: 

Y ¼
s:t:Y∞

1 þ s:t
(7)  

where Y could be respectively: WL or SSG or WR. Y∞ indicates the 
respective Y at equilibrium. s is the rate parameter of the respective Y. 

Weibull Model. The Weibull’s model has been used to describe mass 
transfer coefficients and equilibrium values during OD (Cunha et al., 
2001) by three parameters: 

Y ¼ Y∞

�
1 � exp

h
�
�t

τ

�βi�
(8)  

where Y could be respectively: WL or SSG or WR. Y∞ indicates the 
respective Y at equilibrium. τ is the scale parameter related to the pro-
cess rate, and β is the shape parameter. 

Page Model. Page (1949) proposed an empirical three-parameter 
model based on an exponential equation for mass transfer: 

Y ¼ Y∞
�
1 � exp

�
� A:tB�� (9)  

A (h� 1) and B are the Page’s constants. 
Although in literature these four models have been used to model 

OD, it is important to realize that the Peleg and Azuara model and the 
Page and Weibull model are mathematically identical. Therefore, the 
parameters of these models can be transformed into one another. In the 
Azuara model the Peleg’s parameters can be expressed as: k1 ¼ 1 =ðs:Y∞Þ

and k2 ¼ ð1 =Y∞Þ: While in the Page’s model the Weibull’s parameters 
can be expressed as: τ ¼ 1=A� β and β ¼ B. Therefore, in this study, only 
the Peleg and Weibull models were considered for mass transfer. 

2.4.2. Modelling of vitamin C loss 
Vitamin C concentrations during OD was described by two mecha-

nisms (1) leaching from mango cubes into the OD-solution; and (2) 
degradation of vitamin C (see Fig. 1). 

In this study it was assumed that the leaching rate rL is proportional 
to the vitamin C concentration difference between mango TAAM and the 
OD-solution TAAS (Sarvan et al., 2012): 

rL¼ kL⋅ðTAAM � TAASÞ (10) 

The degradation rate of vitamin C in mango and in the OS rD is 
described by a first order reaction (Dermesonlouoglou et al., 2016; 
Katsoufi et al., 2017): 

rD¼ kD⋅TAA (11) 

Vitamin C concentrations in time are described by combining the 
rate of leaching and that of degradation: 

dTAAM

dt
¼ � rL � rD (12)  

dTAAS

dt
¼ þ rL⋅

MM

MS
� rD (13) 

Euler’s method was used for the numerical integration of the two 
differential equations (12) and (13) (Butcher, 2016). 

For all models the parameters were estimated by minimizing the 
weighted residual sum of squares SSres between the data and model 
predictions (GRG Nonlinear algorithm) using Microsoft Excel 2010 
Solver®. 

2.5. Statistical analysis 

Differences between the model parameters for the four OD treat-
ments were evaluated using a two-way ANOVA (IBM SPSS Statistics 
version 23, Chicago, USA) with a confidence level of 95%. Effects of VI 
and PME were evaluated by independent sample T-test. Statistical 
analysis of the model fits (SD values and correlation matrices of the 
parameter estimates) was done by using the ‘SolverAid’ macro (De 
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Levie, 2004). Model discrimination was done by the corrected Akaike 
Information Criterion (AICC) value (Hurvich and Tsai, 1995): 

AICC ¼ nln
�
bσ2�
þ 2ðpþ 1Þ

n
n � p

(14)  

where n ¼ the number of data, p ¼ the number of parameters, bσ2 
¼

ðSSres =nÞwith SSres the residual sum of squares. 

3. Results and discussion 

3.1. Mass transfer kinetics 

The observed WL, SSG, and WR for all treatments increased along 
with the osmotic dehydration time (Fig. 3). The Peleg and Weibull 
model showed a good fit of the data. Parameter standard deviations and 
parameter correlation coefficients were acceptable (<0.9). Since the two 
models had similar good fitting performances on mass transfer variables, 
a quantitative comparison using the Akaike Information Criterion (AICC) 
was done (Table 2). The Weibull model was superior for WL and WR 
data while the Peleg model was better for the SSG. 

Table 3 presents parameter values of the selected models for the OD 
mass transfer variables. A two-way ANOVA on the parameters of the 
mass transfer resulted in a significant effect of VI on k2 values for SSG (P 
< 0.05) but no effect of PME or the interaction between VI and PME. The 
lacking effect of PME might be due to low pectin concentration of ripe 
mango – because of progressive depolymerization of pectin during 
ripening causing a significant decrease of pectin concentration (Pra-
sanna et al., 2003; Yashoda et al., 2006) - which did not create sufficient 
calcium-pectin gels to affect the mass transfer kinetics. This result 
differed from Van Buggenhout et al. (2008) for OD strawberries who 
found that PME addition slightly decreased WR, which was correlated to 
a small increase of the SSG, although they did not model their data. 

For WL and WR, applying VI resulted in an increase of shape- 
parameter β – associated with the mechanism of OD mass transfer -, 
but this increase was not significant (P > 0.05). In this study, the 
increasing β-values for WL by VI is in line with Assis et al. (2017) for OD 
of apple. However, Deng and Zhao (2008) found that pulse vacuum 
treatment reduced the β-value of WL for apple (0.46 vs 0.57). β-values 
for WL of OD-treated mango are in agreement with what was found by 
Khan et al. (2008). VI application did not change τ values for WL and WR 
(P > 0.05). For WL, the estimated τ-values - associated with the process 
rate - are similar to the values found in other OD studies, e.g., for mango 
and apple (Assis et al., 2017; Khan et al., 2008). 

The equilibrium water loss ðWL∞Þ and weight reduction 
ðWR∞Þvalues were similar in all treatments. The WL∞ of this study are in 
between those of Ganjloo et al. (2012) for OD of guava (0.40–0.49 g g� 1) 
and that of Mokhtarian et al. (2014) for pumpkin (0.71–0.86 g g� 1). 

The k1 values for SSG tends to increase by VI although they were not 
significantly different (P > 0.05) (Table 3), so VI did not significantly 
affect the initial mass transfer rate. These results could be explained by 
the fact that ripe mango has both a small pore size, porosity and number 
of pores (Cantre et al., 2014) which may cause no distinct effect of the 
imposed vacuum pressure in modifying the pore characteristics 
impregnating OD-solution into the tissue. The observed OD-VI results on 
SSG in this study differed from Lin et al. (2016) and Assis et al. (2017) 
who both found that VI significantly increased the initial rate of SSG in 
ripe mango and apple. 

VI significantly increased the equilibrium of SSG (1/k2) two-fold, P 
> 0.05 (Fig. 4). In the case of VI-treated mango, upon removal of some 
water the protoplast shrinks. This shrinkage causes retraction of proto-
plasm from the peripheral layers of the cell and/or detachment from the 
cell wall. Yet, deformation of the cell wall is scarce due to weaker 
interaction between cell wall and protoplast than that of OD-treated 
sample (Oliver et al., 2012). Consequently, cell filling (SSG) due to 
relaxation of cells and subsequent increase in total volume occurs at 
longer times throughout the equilibration time (Barat et al., 1999; Lin 
et al., 2016). This effect of VI on k2 is also reported by Assis et al. (2017) 
for OD of apple. 

Fig. 3. Mass transfer of mango with different pretreatments during osmotic 
dehydration: (a) water loss, (b) soluble solid gain; (c) weight reduction. 
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3.2. Kinetics of vitamin C loss 

Applying Eqs. (10) and (11) for degradation and leaching of vitamin 
C results in a continuous decrease of vitamin C in mango and an initial 
increase in OD-solution followed by a decrease when degradation be-
comes more dominant than leaching (Fig. 5). 

For all treatments, the multiresponse model fitted the observed data 
of mango and the OD-solution well (Fig. 5). Parameter standard de-
viations for some of the estimates were quite high, but parameter cor-
relation coefficients were acceptable (<0.9). See Table 4. 

Two way ANOVA showed no significant effects of VI, PME and their 
interaction on bothkL and kD (P > 0.05). Although an effect of VI on OD 
during processing was not investigated, an OD study on frozen lotus root 
reported that applying VI gave higher vitamin C retention during storage 
at � 18 �C (Song et al., 2017). Insignificant effect of adding PME in the 
presence of calcium on vitamin C loss was also found in an OD study on 
papaya (Germer et al., 2014). 

The average leaching rate constants (54.9 � 15.7) are significantly 
higher than the degradation rate constants (30.1 � 10.6), P ¼ 0.04, tcrit 
¼ 2.617. However the degradation mechanism is causing a higher loss of 

Table 2 
Model discrimination of Peleg and Weibull models fitted to mass transfer (n ¼ 14 for each data set).  

Model Sum of squares of residuals ðSSresÞ AICC  

Water Loss Soluble Solid Gain Weight Reduction Water Loss Soluble Solid Gain Weight Reduction 

Peleg (p ¼ 2)  0.004 0.001 0.003 � 91.51 � 107.43 � 95.26 
Weibull (p ¼ 3)  0.001 0.001 0.001 � 94.49 � 105.07 � 102.86 
Δ AICC  – – – 2.98 2.36 7.60 

Better AICC values for each mass transfer variable are presented in bold. 

Table 3 
Parameter values of the mass transfer kinetic models during osmotic dehydration of mango.  

Pretreatment Water Lossb Soluble Solid Gainc Weight Reductionb,a 

τ(h)  β  WL∞(g.g� 1)  k1(h.g.g� 1)  k2(g.g� 1)  τ(h)  β  WR∞(g.g� 1)>

OD No PME 2.29 � 0.07 0.74 � 0.09 � 0.65 � 0.04 9.11 � 0.62 4.95 � 0.51a 2.50 � 0.26 0.85 � 0.18 � 0.51 � 0.05 
PME 1.96 � 0.32 0.78 � 0.22 � 0.64 � 0.08 7.97 � 3.07 7.36 � 2.63a 2.04 � 0.37 0.84 � 0.26 � 0.55 � 0.05 

OD-VI No PME 2.18 � 0.80 0.87 � 0.07 � 0.54 � 0.02 11.77 � 2.99 2.99 � 0.24b 1.39a 0.99a � 0.35a 

PME 2.54 � 0.96 1.04 � 0.23 � 0.62 � 0.05 10.54 � 4.89 2.60 � 1.05b 2.53 � 1.32 1.11 � 0.38 � 0.49 � 0.09 

Values represent means � SD of two batches that was each analyzed in duplicate. Means with the same lower case did not differ significantly at P < 0.05. 
a One batch analyzed in duplicate. 
b For Weibull model. 
c For Peleg model. 

Fig. 4. Peleg parameters of soluble solid gain of mango during osmotic dehy-
dration (different letters indicate significant differences (P < 0.05) for the 
parameter between pretreatments). Fig. 5. Multiresponse modelling results of the total ascorbic acid loss in mango 

and OD-solution during osmotic dehydration: illustrated for OD with PME and 
OD-VI with PME. 

Table 4 
Parameter values of vitamin C loss during osmotic dehydration of mango with 
different treatments.  

Pretreatment Vitamin C (h� 1.10� 3) 

kL kD 

OD No PME 77.5 � 2.9 16.0 � 9.1  
PME 48.2 � 37.9 30.3 � 13.6 

OD-VI No PME 41.6 � 24.7 41.4 � 12.8  
PME 52.2 � 5.0 32.8 � 13.2 

Values represent means � SD of two batches. 
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vitamin C (81.7 � 7.2%) compared to leaching (5.1 � 2.8%) at the end 
of the process. The decreasing difference of vitamin C concentration 
between mango and OD-solution results in a lower rL compared to rD. 
This main role of degradation on vitamin C loss during OD was consis-
tent with those of previous studies on papaya and kiwi fruits (Cao et al., 
2006; Heng et al., 1990; Vial et al., 1991). Nevertheless, the OD solution 
still has significant amounts of vitamin C (around 1.5 mg/100 g). Also 
previous studies report significant amounts of vitamin C in the 
OD-solutions especially after repeated cycles among others, for OD 
guava, reaching 95 mg/100 g in 15 cycles (Germer et al., 2016); for 
grapefruit, up to 4 mg/100 mL in 5 cycles (Moraga et al., 2011) and up to 
2 mg/100 g in 8 cycles (Peir�o et al., 2006). Based on this study, use of 
longer OD times might have a practical interest if the OD-solutions were 
used repeatedly. 

The ascribed first-order kinetic model for vitamin C degradation of 
this study supports evidence from previous OD observations (Dhakal 
et al., 2018; Marfil et al., 2008). Marfil et al. (2008) found that ascorbic 
acids degradation fitted by a first order reaction during drying of OD 
peeled whole tomatoes at 50, 60 and 70 �C with similar kD values be-
tween 15.10� 3 h� 1 - 48.10� 3 h� 1. Thermal processing of pineapple juice 
at 75 �C resulted in higher kD values of 252.10� 3 h� 1 (Dhakal et al., 
2018). This value is approximately ten times higher than the degrada-
tion rate constant found in this study, which can be explained by the 25 
�C higher temperature. 

3.3. Scenario simulations 

To demonstrate the value of the models, the quality attributes (WR, 
WL, SSG and vitamin C contents) and processing time were predicted for 
two target settings based on practical applications (Table 5). Scenario 1: 
target value is 35% WR of initial mango weight; Scenario 2: the target 
value is 50% WL of initial mango weight. Based on these scenarios, the 
treatment time was calculated by the Weibull equation of the target 
variable WR for scenario 1 and WL for scenario 2, using the estimated 
mass transfer parameters (Table 3). Based on this treatment time the 
other mass transfer variables were calculated by Eqs. (5) and (8). The 
vitamin C contents was calculated by Eqs. (12) and (13) with the esti-
mated kL and kD (Table 4). 

Both scenarios resulted in the lowest vitamin C concentration in 
mango treated with OD-VI/No PME, which is mainly a consequence of 
the longest process time needed to achieve the WL/WR targets. The 
other three treatments result in quite similar vitamin C values, with OD/ 
PME giving the highest retention for both scenarios (Table 5). For both 
scenarios the lowest SSG was obtained for OD/PME, while OD-VI/No 

PME gave the highest SSG (P > 0.05). Hence, depending on the 
desired quality attributes of OD mango (e.g., high vitamin C and high/ 
low sugar content) different optimal process conditions can be recom-
mended in a quantitative way based on the predictive models. 

4. Conclusions 

The soluble solid gain kinetics of osmo-dehydrated mango was 
described well by the Peleg model, while the Weibull model described 
the water loss and weight reduction better. Vacuum impregnation prior 
to osmotic dehydration of mango increased the soluble solid gain, re-
flected in the lower value of k2Peleg-parameter. For pectin methyl-
esterase addition no effect on mass transfer parameters was found. 

Vitamin C loss during osmotic dehydration of mango was well 
described by a multiresponse model including two mechanisms: leach-
ing and degradation (in both mango and in the OD-solution). For all 
treatments, the major cause of vitamin C loss was degradation. The 
treatments have no significant effect on the degradation and leaching 
rate constants of vitamin C in mango. 

This study indicates that applying VI and adding PME with calcium 
affected especially the SSG kinetics but did not affect the kinetics of 
vitamin C loss of osmo-dehydrated mango. The observed effects of VI 
applied to mango are valuable to modify OD mass transfer and therefore 
the required processing time. The predictive modelling of two scenarios 
suggested that OD with PME is favorable to produce OD mango with 
lowest sugar uptake, highest vitamin C retention and shortest treatment 
time. OD-VI with PME is favorable to produce sweeter OD mango with 
moderate vitamin C retention. Adding vitamin C to the OD-solution 
could further increase the vitamin C content of the OD mango. The 
combination of modelling the mass transfer and vitamin C loss is a 
valuable tool to design OD processes for a specific product quality. 
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Table 5 
Scenario analysis of osmo-dehydrated mango and its effect to the mass transfer variables and vitamin C content.  

Pretreatment Weight reductionb Water lossb Soluble solid gainb Timec Vitamin Cb 

(g.100 g-1) (g.100 g-1) (g.100 g-1) (h) (mg.100 g-1) 

in mango (TAAM)  in OD-solution (TAAM)  

Scenario (1): target is 35% WR of initial mango weight 
OD No PME � 35.00a � 45.31 � 4.32 12.33 � 0.84a 2.9 20.2 � 0.8 1.5 � 0.1a  

PME � 41.38 � 8.99 9.10 � 2.40a 2.1 23.1 � 2.3 0.7 � 0.5ab 

OD-VI No PME � 50.74 � 3.20 24.19 � 2.24b 6.9 11.8 � 5.3 2.0 � 1.2ab  

PME � 41.72 � 7.40 17.97 � 4.48ab 2.6 21.5 � 1.0 0.9 � 0.1b 

Scenario (2): 50% WL of initial mango weight 
OD No PME � 39.29 � 7.10 � 50.00a 13.61 � 0.99a 3.8 17.8 � 1.0 2.0 � 0.1a  

PME � 42.95 � 9.14 10.29 � 2.95a 3.4 20.3 � 3.8 1.1 � 0.9ab 

OD-VI No PME � 34.86 20.55 � 2.24b 6.3 13.2 � 4.8 1.8 � 1.1ab  

PME � 41.59 � 11.04 18.64 � 5.76ab 3.8 18.7 � 1.5 1.4 � 0.1b  

a Target setting for each scenario. 
b Values present calculated value � SD, the calculation was based on averaged values of the experimental data of fresh mango: 85.79 g.100 g-1 water, 12.97 g.100 g-1 

sucrose and 27.6 mg.100 g-1. SD was calculated by the error propagation using the SD values of all parameters (as given in Table 3). Statistical significance between two 
means is based on the square root of the sum of squares of the SD using an α of 5%. Different letters within the same column and scenario indicate significant differences 
(P < 0.05). 

c Calculated by the Weibull equation for the target variable with parameters estimated from the experimental data (Table 3). 
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