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BTO Executive summary 

Data mining techniques ready for water utility applications 

Author(s) Peter van Thienen PhD, Henk-Jan van Alphen MSc, Andrea Brunner PhD, Yuki Fujita PhD, Bram 

Hillebrand MSc, Rosa Sjerps MSc, Joost van Summeren PhD, Anthony Verschoor PhD, Bart Wullings MSc.  

 

Techniques for extracting knowledge from (combinations of) databases, often presented under the flags 

of data mining and big data, have shown significant development over recent years. However, attempts 

at their implementation in the water sector have produced interesting but not yet ‘revolutionary’ results. 

Identifying and resolving barriers towards deploying already mature data mining methods and tools for 

the benefit of the water sector, related to data ownership and access; availability and quality of data; 

organizational dynamics and culture, will allow the sector to take advantage of past work and recent 

developments in the field – capitalizing on a vast array of mathematical methods to address both current 

and emerging challenges.   

 

 

Four main objectives of data mining: association rules,  clustering, classification, and regression. From Vonk and Vries (2016)  

 

Relevance: data mining techniques provide 

opportunities for insight 

Techniques for extracting knowledge from 

(combinations of) databases, often presented under 

the flags of data mining and big data, have shown 

significant development over recent years. Many 

techniques are already being used every day in all 

kinds of contexts (often without our being aware of 

it). Also, more and more data is being collected, 

both in general and specifically by the water 

companies. This is expected to only increase in the 

future (developments in sensors, robotics). Initial 

attempts have been made at applying these 

techniques in the water sector with the objective of 

'obtaining more insight from the available data'. 

However, these attempts have not yet produced 

‘revolutionary’ results. That is not to say that 

results to date have not been interesting. These 
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results make clear that there are significant 

opportunities for the application of data mining 

techniques in many areas in the drinking water 

chain, from source to tap. The aim of this research 

is to provide an overview of opportunities for the 

water companies, to offer a perspective on the 

successful implementation of these techniques and 

to support the water companies in their choices in 

this respect.  

Approach: current state of affairs from the 

literature and practitioners 

Existing approaches and applications have been 

scouted in the literature and practitioners have 

been interviewed. From the information we 

gathered, we have identified opportunities for the 

application of data mining techniques in the water 

sector, both from a domain perspective and from a 

data perspective. 

Results: methods and data are there, but some 

barriers need to be addressed 

In the methodological sense, data mining or more 

precisely knowledge discovery from databases is a 

mature field which offers many fully developed 

methods with a plethora of reference applications. 

In the specific water cycle management domain, 

numerous applications in both an academic and 

operational context are available internationally.  

From this perspective, there is no immediate need 

for KWR and the BTO utilities to put more effort in 

the development of (completely) new methods, but 

rather in the implementation, or customization of 

existing methods. Both the datasets and the 

applications are readily identifiable, presenting 

opportunities. A number of successful applications 

have been reported also by Dutch utilities, such as 

the prediction of pipe failures by Oasen. However, 

practitioners indicate a number of obstacles, 

including data ownership and access, availability of 

good data analysts, availability and quality of data, 

and organizational dynamics/culture. 

Implementation: collaborative effort to set up the 

data to decision chain 

This report has been written as a deliverable of the 

first phase of the BTO exploratory research project 

VO datamining. Based on the conclusions of the 

first phase, as described above, we recommend 

that the following phases of the project focus on 

the actual implementation of a number of data 

mining cases with BTO utilities. In doing so, we no 

longer aim for methodological exploration and 

innovation, but rather for innovation in the 

application. Important research questions to be 

answered include practical issues related to the 

streamlining of the complete chain from data 

acquisition through quality assurance and data 

mining to decision(s) (support). At a higher 

abstraction level, they also include questions on 

how to organize a successful implementation of 

data mining techniques – ideally a template 

approach can be defined. We have seen that the 

methods, the data and the potentially fruitful 

applications are there. For the water utilities, our 

recommendations focus on resolving the barriers 

which have been identified and which are within 

their sphere of influence. These include data 

ownership and access, availability and quality of 

data, and organizational dynamics/culture. In this 

study, the root causes of these barriers have not 

been considered, but this would be a first step in 

resolving them. Organizations outside the water 

sector have taken steps and set up frameworks that 

address all of these issues. A good example is 

Rijkswaterstaat, which presented its framework in 

one of the meeting of the Hydroinformatics 

Platform. We recommend that their approach be 

considered as a starting point. 

Report 

This research is described in the report 

Explorations in Data Mining for the Water Sector 

(BTO 2018.085). 
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1 Introduction  

1.1 Context 

Techniques for extracting knowledge from (combinations of) databases, often presented 

under the flags of data mining and big data, have shown significant development over recent 

years. Many techniques are already being used every day in all kinds of contexts (often 

without our being aware of it). Also, more and more data is being collected, both in general 

and specifically by the water companies. This is expected to only increase in the future 

(developments in sensors, robotics). Initial attempts have been made at applying these 

techniques in the water sector with the objective of 'obtaining more insight from the 

available data'. However, these attempts have not yet produced ‘revolutionary’ results. That 

is not to say that results to date have not been interesting. These results make clear that 

there are significant opportunities for the application of data mining techniques in many 

areas in the drinking water chain, from source to tap.  

This exploratory study makes a wide inventory of existing data mining techniques (such as 

clustering, classification, regression, deep learning) and their applications in other fields 

(outside the water sector), as well as a broad inventory of internal and external data sources 

available within the water sector (now and in the near future). Subsequently, the project 

identifies which current and emerging applications (combination of techniques and one or 

more data sources) are promising, on technical grounds, but also on the basis of the 

expected information yield to support decision processes at water companies. This report 

covers the results of both of these activities.  

1.2 Aim and approach 

The aim of the exploratory research VO datamining, for which this report is the first 

deliverable, is to provide an overview of opportunities for the water companies, to offer a 

perspective on the successful implementation of these techniques and to support the water 

companies in their choices in this respect. More concretely, this entails 1) scouting 

approaches in the water sector and other sectors, 2) identifying a number of approaches 

with the most potential for fruitful application in the water sector, and 3) create three 

applications/demonstrations within the water sector.  

A priori, the latter point was envisioned to involve the development and deployment of an 

innovative data mining technique. However, progressing insights gained during the 

execution of the project, both from the first phases of the project itself and from the 

knowledge exchange meetings of the Hydroinformatics Platform, have led to a shift in the 

approach. Innovation is sought in the application rather than the technique, and attention is 

given to the entire data chain from gathering to decision making in an explicit collaboration 

between KWR and water utilities. 

This report describes the results of the first two activities and provides and overview of 

available data mining techniques and applications within and outside the water sector. It also 

identifies promising applications for the water sector.  

Because of the enormous number of fields in which data mining techniques can be and are 

applied, the overview provided here cannot be complete. It is not meant to be. It is meant to 
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provide an impression of the current state of affairs, as a starting point for concrete new 

developments in a water sector context.  

1.3 Scope 

For this report, we have elected to use a broad definition of data mining. In fact, when we 

say data mining, we mean knowledge discovery from databases (Vonk and Vries 2016). This 

includes all generic statistical and heuristic techniques which are included in a narrower, 

more formal definition, but we also include less generic, more ad hoc or case specific 

approaches which serve the same purpose of discovering knowledge in datasets (such as 

QSAR and QMRA). A more elaborate overview of the considered methods is given in Chapter 

2. 

The structure and classification of problem types applied in this report reflects the 

organization of research fields within KWR. An overview is given in Table 1, which also 

describes the scope in terms of topics.  

1.4 Guide to this report 

We start by giving an overview of data mining methods in Chapter 2. Chapter 3 gives an 

overview of data mining applications, both within the water sector and outside. Also, 

interviews on the topic with practitioners, again within and outside the water sector, are 

presented. The potential for new applications in the water sector is discussed in Chapter 5. 

Finally, we present our conclusions and recommendations from the material in the previous 

chapters in Chapter 6.  
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TABLE 1: CLASSIFICATION OF PROBLEM TYPES. SUBFIELDS CORRESPOND TO KWR TEAMS, WHICH ARE 

ORGANIZATIONAL CORES OF EXPERTISE.  

Field  subfield  topics for application of data mining techniques 

Hydrology Ecohydrology - Advanced and sustainable water management for nature 

conservation; 

- freshwater provision to agriculture, industry, drinking water; 

- blue-green solutions (i.e. smart combinations of water 

technology and ecology) to address the consequences of 

climate change in urban environments. 

 Geohydrology - Quality and supply of groundwater; 

- subsurface techniques for the provision of water and heat; 

- well technology and management. 

(Waste) water 

treatment and 

distribution 

Water treatment - Assessment of water treatment performance; 

- real-time prediction of coagulant type and dosage. 

Water    

 Water 

distribution 

- Water demand forecasting; 

- leak localization; 

- water quality event detection; 

- drinking water discoloration; 

- pipe integrity risk assessment; 

- customer behavior analysis; 

- decision support to manage water quality incidents. 

 Wastewater 

treatment 

- Prediction of influent flow rate; 

- prediction of solids in effluent; 

- energy optimization of pumps; 

- optimization of treatment plants. 

Water Quality Chemical water 

quality
1

 

- Design of risk based monitoring programs for drinking water 

(sources); 

-  wastewater based epidemiology; 

- interpretation of high-resolution mass spectrometry (HRMS) 

data based non-target screening (NTS) analyses; 

- interpretation of micro- and nanoplastics analysis coupled to 

Fourier-transform infrared (FTIR) spectra, thermogravimetric 

(TGA) spectra; 

-  prediction of relevant transformation products; 

- evaluation and prediction of a chemical’s human health 

effects, using toxicological in vivo and in vitro data, in silico 

methods, adverse outcome pathways (AOPs) and bioassays; 

-  evaluation, prediction and modelling of a chemical’s 

exposure in drinking water sources; 

- evaluation and prediction of a chemicals removal in 

treatment systems. 

 Biological water 

quality
2

 

- biological water quality analysis 

1

 The methods by which these topics are addressed are often grouped under the term cheminformatics.  

2

 In a similar vein, methods by which these topics are addressed are often grouped under the term 

bioinformatics. 

 



BTO 2018.085 | October 2018 7 

 

 

Explorations in Data Mining for the Water Sector 

 

2 Big data and data mining 

2.1 Introduction 

Data mining, in the sense of knowledge discovery from databases, is often linked (and 

applied) to big data. Big data is characterized by the 5 V's (Zhai, Ong et al. 2014): 

 Volume: large amounts of data; 

 Velocity: high rate of generation; 

 Variety: combinations of different data types and sources; 

 Veracity: varying levels of quality; 

 Value: to be extracted from the data. 

It is clear that this definition applies, at least to some degree, to datasets gathered by water 

utilities. Take for example the ensemble of flow and pressure data gathered at all water 

production locations in a supply area. The amount of data generated and the rate of data 

generation are large by human standards, but not really when compared to many other 

datasets (e.g. radio astronomy). Flow and pressure data are different in nature, and different 

types of measuring devices or sensors (brands, models, measuring principles, dimensioning) 

may be combined, which will also result in different levels of data quality. These data contain 

information on leakage and the state of the network, which can be converted to financial 

value.  

Data mining is sometimes considered a subfield of machine learning:  

Definition of machine learning 

An application of artificial intelligence aiming at (i) learning from historical datasets and (ii) 

generalizing this knowledge to analyse new datasets. Machine learning procedures typically consists of 

3 steps using independent subsets of data: training (the step in which the model parameters are 

fitted), validation (the step to evaluate the fit of the trained model to a validation dataset while tuning 

the model’s hyperparameters), and testing (the step that evaluates the final model’s performance 

against an independent test dataset).   

 

However, in the broad definition of data mining which is applied here (see §1.3), there are 

also data mining techniques that do not qualify as machine learning. We start our treatment 

of the subject in this chapter using the machine learning perspective, and then broaden the 

scope to include other approaches.  

2.2 Basics of data mining from a machine learning perspective 

With data mining, different goals can be aimed for. Common goals are association rules 

creation (i.e. identifying cause and effect), clustering, classification, and regression (Figure 

1). To achieve those goals, there are thousands of machine learning algorithms available. 

Each machine learning problem consists of three basic components (Domingos 2012): 

representation model (a model which represents the data in a certain way), evaluation 

criteria (a measure to evaluate the representation model), and an optimization algorithm (a 

method to improve the score of the representation model against the evaluation criteria). 

Depending on the data mining goals and type of dataset, specific combinations of 

algorithms of the three elements should be chosen.  
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Note that the choice of the representation model, which is often overrated in the whole 

process of data mining, is not the decisive element for successful data mining. Many other 

elements (e.g. data preparation such as feature engineering, algorithms of evaluation criteria 

and optimization) are equally or sometime more important (Zhang et al., 2003, Domingos 

2012). In this light, the goal of the data mining task and identification of available datasets 

should be the starting point, not the available techniques of data mining.  

 

 

 

Figure 1. Graphical representation of main goals of data mining. (A) association rules, (B) 

clustering, (C) classification, (D) regression. Source: Vonk and Vries (2016). 

 

 

2.3 Overview of formal generic approaches 

In Table 1, commonly used algorithms of representation models are listed. For more details 

about different processes and types of machine learning, see Vonk and Vries (2016). 

Furthermore, we also listed some of the data mining techniques which are mainly used in the 

phase of data preparation (e.g. dimensionality reduction) rather than to achieve the ultimate 

goal of the data mining. 
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TABLE 1. LIST OF COMMONLY-USED ALGORITHMS OF REPRESENTATION MODELS, GROUPED PER GOAL OF 

DATA MINING (OR DATA PREPARATION). THE REPRESENTATION MODEL IS CATEGORIZED INTO ONE OF 

THE CLASSES LOGICAL/GEOMETRIC/PROBABILISTIC/ENSEMBLE (SENSU  FLACH 2012), WHICH ARE 

DESCRIBED IN TABLE 2. THE INTERPRETABILITY COLUMN GIVES AN EXPERT JUDGMENT BY THE AUTHORS 

OF HOW EASILY/STRAIGHTFORWARDLY THE OBTAINED MODEL CAN BE INTERPRETED. 

 

Class Goal of data 

mining (or data 

preparation) 

Type of data (for 

each observation i) 

Algorithms of 

representation  

model 

Type of 

model 

Machine 

learning

? 

Interpre-

tability 

U
n
s
u
p

e
r
v
i
s
e
d
 

Association rules A set of categorical 

variables 

A priori Logical Y moderate 

Clustering A set of numerical 

variables 

K-means Geometric Y moderate 

(Dimensionality 

reduction) 

A set of numerical 

variables 

Principal 

Component 

Analysis 

Geometric N good 

 Two sets of 

numerical variables 

Canonical 

correspondence 

analysis 

Geometric N moderate 

(Anomaly 

detection) 

A set of numerical 

variables 

Local outlier 

factor 

Geometric Y moderate 

(Density 

Estimation) 

A numerical variable kernel density 

estimation 

Probabilistic Y moderate 

S
u
p

e
r
v
is

e
d
 

Classification A categorical 

variable + A set of 

numerical variables 

Decision trees Logical Y good 

ANN (Artificial 

neural networks) 

Geometric Y poor 

Support vector 

machine 

Geometric Y moderate 

Naïve Bayes Probabilistic Y poor 

Random forests Ensemble Y moderate 

Regression/class

ification 

A 

categorical/numeric

al variable + A set of 

numerical variables  

Feedforward 

ANN 

Logical/ 

geometric 

Y poor 

Regression A set of categorical 

variables 

Linear 

regression 

Geometric N good 

generalized 

linear (mixed) 

model 

Geometric N good 

Regression trees Logical Y good 

Support vector 

regression 

Geometric Y moderate 

Gradient 

boosting 

regression 

Ensemble Y moderate 
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TABLE 2: DIFFERENT TYPES OF REPRESENTATION MODELS OF MACHINE LEARNING (SENSU  FLACH 2012). 

Type of representation model Description
 

Logical Logical models describe the features with logical formulas. They 

are most commonly represented in the form of rules or decision 

trees. 
 

Geometric Geometric models are based on concepts from geometry (such as 

distance, lines, or planes) and interpret data as points in a 

multidimensional space. The advantage of geometric models is 

that the results can be (relatively) easily visualized. The model 

fitting is often strongly influenced by data distribution, and 

therefore data standardization and outlier removal is often 

recommended.
 

Probabilistic Probabilistic models assume a certain probability that attributes in 

data are related to each other. Probabilistic models are commonly 

based on the Bayes theorem.  
 

 

 

2.4 Deep learning 

Some cases require a more complex approach, such as deep learning. This approach is 

defined as follows (Deng and Yu, 2014):  

 

Definition of deep learning 

A class of machine learning techniques, where many layers of information processing stages in 

hierarchical supervised architectures are exploited for unsupervised feature learning and for pattern 

analysis/classification. The essence of deep learning is to compute hierarchical features or 

representations of the observational data, where the higher-level features or factors are defined from 

lower-level ones. The family of deep learning methods have been growing increasingly richer, 

encompassing those of neural networks, hierarchical probabilistic models, and a variety of 

unsupervised and supervised feature learning algorithms. 

 

This means that data are transformed in a number of steps into successively more abstract 

representations for classification or pattern recognition. A good example of a concrete 

algorithm is an artificial neural network with multiple hidden layers. 

2.5 Ad hoc approaches in cheminformatics and bioinformatics 

An overview of more domain specific approaches is given for the subfield of chemical and 

microbiological water quality in Table 3. Note that many of these methods (contain steps 

that) are based on methods listed in Table 1. These methods are commonly grouped under 

the terms chem(o)informatics, which was defined by Brown (1998), and bioinformatics, as 

defined by Luscombe et al. (2001). We mix, modify and broaden their definitions here to 

better cover the applications of both fields in the water sector: 

 

 

Definition of cheminformatics 

Chem(o)informatics is the application of "informatics" techniques (derived from disciplines such as 

applied maths, computer science, and statistics) to the field of chemistry, for inter alia the 

identification of chemical compounds, understanding of their interactions, and organization of 

information regarding these, in order to transform (large volume, multi-source) data into information 

and information into knowledge. 
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Definition of bioinformatics 

Bioinformatics is the application of "informatics" techniques (derived from disciplines such as applied 

maths, computer science, and statistics) to the field of biology, for inter alia the identification of 

organisms, their genetic information, and/or organic compounds, understanding of their 

interactions, and organization of information regarding these, in order to transform (large volume, 

multi-source) data into information and information into knowledge. 

 

TABLE 3: SPECIFIC APPROACHES FOR CHEMICAL AND MICROBIOLOGICAL APPLICATIONS 

label technique/ 

description 

method class type of data state of 

development 

reference 

QSAR=quantitative 

structure-activity 

relationship for 

effect prediction 

Statistical link 

between 

chemical 

structure and 

chemical 

activity 

Correlation 

and 

classification 

Chemical 

structure, 

HRMS 

fragmentation 

spectra, 

toxicity data 

Different 

models 

developed 

(Altenburger, 

Nendza et al. 

2003, 

Bhatia, 

Schultz et al. 

2015, 

Dimitrov, 

Diderich et 

al. 2016) 

QSAR=quantitative 

structure-activity 

relationship for 

removal efficiency 

prediction 

Statistical link 

between 

chemical 

structure and 

removal 

efficiency with 

different 

treatment 

technologies 

Correlation 

and 

classification 

Chemical 

structure, 

removal rates 

Different 

models 

developed 

(Wols and 

Vries 2012, 

Vries, Wols 

et al. 2013, 

Vries, 

Bertelkamp 

et al. 2017) 

QSAR=quantitative 

structure-activity 

relationship for 

environmental 

fate prediction 

Statistical link 

between 

chemical 

structure and 

environmental 

fate 

Correlation 

and 

classification 

Chemical 

structure and 

chemical fate 

properties 

Different 

models 

developed 

(Mackay and 

Paterson 

1991, 

Mackay, Shiu 

et al. 1992, 

Sabljić, 

Güsten et al. 

1995, 

Scheringer 

2009, 

Scheringer, 

Jones et al. 

2009, Zarfl, 

Scheringer et 

al. 2011) 

Read across Relevant 

information 

from 

analogous 

substances to 

predict 

Correlation 

and 

classification 

Chemical 

structure and 

chemical 

properties 

Standard 

method for 

substances 

registration 

(REACH) 

(Escher and 

Fenner 

2011, Shah, 

Liu et al. 

2016) 
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label technique/ 

description 

method class type of data state of 

development 

reference 

chemical  

properties 

Chemical graph 

theory 

Molecular 

representation 

by a graph: 

atoms as 

vertices and 

molecular 

bonds as 

edges. 

Graph theory Chemical 

structure 

Developed since 

1980. Used in 

cheminformatics 

(Bonchev 

and Rouvray 

1992, 

Ivanciuc 

2013) 

QMRA: 

quantitative 

microbial risk 

assessment of 

exposure 

Statistical link 

between 

reference 

pathogens, 

exposure 

pathways and 

hazardous 

events 

Regression & 

classification 

Quantitative 

data or 

assumptions 

on pathogen 

occurrence 

and exposure, 

data on 

frequency of 

hazardous 

events and 

severity of 

hazards, data 

on pathogen 

removal rates 

by relevant 

treatment 

processes 

Different 

models 

developed 

WHO, 2016 

QMRA: 

quantitative 

microbial risk 

assessment of 

health effects 

Statistical link 

between 

reference 

pathogens 

and health 

effects 

Regression & 

classification 

 

Quantitative 

data on dose 

of reference 

pathogens 

and infection 

response, risk 

of illness per 

infection, 

disease 

burden and 

susceptible 

population 

Different 

models 

developed 

WHO, 2016 

QMRA: 

quantitative 

microbial risk 

assessment: risk 

characterization 

Statistical link 

between 

exposure and 

health effects 

within 

relevant 

scenarios  

Regression & 

classification 

Exposure & 

health effects, 

scenarios 

accounting 

for variability 

and 

uncertainty 

Different 

models 

developed 

WHO, 2016 

Large-scale 

genomic data 

mining 

Combination 

of different 

algorithms 

Association, 

classification 

& regression 

Sequence 

data 

(genomic), 

microarray 

Different 

models 

developed 

Huttenhower 

& Hofmann 

(2010); Ju & 

Zhang 



BTO 2018.085 | October 2018 13 

 

 

Explorations in Data Mining for the Water Sector 

 

label technique/ 

description 

method class type of data state of 

development 

reference 

data (DNA 

expression), 

interaction 

variable data 

(chemical/ 

physical, 

regulatory, 

protein 

modifications, 

etc.) 

(2015a,b); 

Kennedy et 

al. (2010); 

Lee et al. 

(2008) 

Coliform 

monitoring 

Machine 

learning 

Gradient tree 

boosting, 

decision 

trees, 

distance 

weight 

Water quality Several models 

developen 

Dawsey & 

Minsker 

(2007) 

Cyanotoxin 

monitoring 

Multivariate 

adaptive 

splines 

Classification, 

regression 

Water quality Model 

developed 

Garcia Nieto 

et al. (2010) 

Public response 

analysis 

Mining social 

media 

Association 

rules 

Social media 

(keywords) 

Developed 

(social science) 

Cha & Stow 

(2015) 

Modelling 

eutrophication 

Deep learning PCA, self-

organizing 

feature map 

(SOFM), fuzzy 

logic 

modelling 

Water quality Several models 

developed 

Chen & 

Mynett 

(2003) 

Assessing 

microcystin 

concentrations 

Deep learning Association, 

path analysis, 

clustering, 

classification, 

forecasting 

(genetic 

algorithms) 

Water quality 

(incl. 

microcystin), 

remote 

sensing 

(satellite) 

Developed 

(geoscience) 

Chang et al. 

(2014) 
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3 Current applications of data 

mining: the state of play 

3.1 Introduction 

This chapter provides an overview of current applications of data mining. The first part of 

this chapter is based on a literature study and focusses on the water sector and water 

applications. The second part describes a number of interviews of practitioners from inside 

and outside the water sector.  

3.2 Overview from the literature 

Table 4 provides an overview of data mining applications in the water sector that have been 

realized and presented in the scientific literature. The table clearly illustrates that a vast 

number of applications have already been realized, using many of the methods described in 

the previous chapter on a wide range of datasets. Because of the wide range of applications 

described in the table, it is difficult to extract a common denominator or conclusion, other 

than the following: 

- the applications of data mining themselves also conform to the 5 V’s of data mining 

(see §2.1); 

- a focus on application rather than method development seems appropriate for the 

Dutch water sector.  
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TABLE 4: OVERVIEW OF DATA MINING APPLICATIONS IN THE WATER SECTOR FROM THE LITERATURE. 

                                                        
1

 algorithms or representation models 

2

 A relevé is a quadrat that encloses the minimal area that can be expected to contain e.g. 95% of all species present in a community.  

Field label application + 

purpose 

Temporal/ 

spatial scale 

type of data Goal of data mining
1

 quality/usability of results reference 

h
y
d
r
o
lo

g
y
 

Classification of 

drone/satellite 

images into 

vegetation type 

Converting satellite 

image into a 

vegetation map based 

on ground survey 

data, both with pixel-

based and  

Patched-based 

approach 

8 x 10 km 

image from 5 

different 

timings of a 

year 

Raster data of satellite images 

(Sentinel 2A) 

 

Ground survey data of vegetation 

class 

Classification (Random 

forest, with texture 

statistics to account 

for spatial 

information) 

Accuracy of prediction ca. 

74 % 

 

The method can be applied 

for drone images, and for 

prediction of other categories 

(e.g. soil pH) 

On-going VO research 

(400695/060, 2017-

2018) 

Predicting 

vegetation types 

from 

environmental 

variables (PROBE) 

Predict vegetation 

association types from 

habitat variables via 

indicator values of 

species 

Training 

dataset from 

whole 

Netherlands 

35 000 vegetation relevé data
2

 

(species identification and abundance) 

with known vegetation type 

 

Indicator values for environmental 

gradients (soil acidity, soil moisture, 

and nutrient availability) for all 

vascular and moss species in the 

Netherlands 

 

Habitat variables (e.g. soil type, 

(modeled) soil moisture)  

Classification 

(Bayesian 

classification) 

 

Density estimation 

(Gaussian Mixture 

Model) 

 

Regression (Structural 

equation modeling, 

linear mixed model, 

variation partitioning) 

Accuracy of prediction 85 % 

 

Software PROBE-2 is readily 

available, enabling area-

covering prediction of 

vegetation types 

 

The PROBE model is applied in 

a number of projects 

concerning nature restoration 

and climate adaptation 

BTO-2010.024 (Witte, 

Bartholomeus et al. 

2010), BTO-2016.011 

(Cirkel, Fujita et al. 

2016), BTO-2016.071 

(Fujita, Bartholomeus et 

al. 2016) 

 

(Witte, Wójcik et al. 

2007, Ordoñez, Van 

Bodegom et al. 2010, 

Ordonez, van Bodegom 

et al. 2010, Fujita, van 

Bodegom et al. 2013, 



BTO 2018.085 | October 2018 16 

 

 

Explorations in Data Mining for the Water Sector 

 

Witte, Bartholomeus et 

al. 2015) 

 

Translating 

Vegetation relevé 

data to ecological 

information 

(ESTER) 

Translation of 

vegetation relevé data 

into ecological 

information (soil 

acidity, soil moisture, 

nutrient availability, 

salinity) 

Input point 

data from 

whole 

Netherlands 

Vegetation relevé data (i.e. species 

identity and abundance) 

 

Indicator values of species (IV) 

 

Habitat variables (soil pH, nutrient 

mineralization, groundwater level) 

Regression (linear 

regression) 

Explained variance of IV-

habitat variable relations: 45 – 

79 % 

 

Software ESTER v.01 is readily 

available 

 

Prediction can be used for 

calibration/validation of 

(hydrological) models in a 

cost-efficient manner 

 

 

KWR 2014.054 (Witte, 

Bartholomeus et al. 

2014) 

Exploring causes 

of well clogging 

Find factors which 

influence clogging of 

wells and quantify 

their influence 

For each 

study,  ca. 15 

wells x  time 

series of 

height (30 

seconds 

interval)  for 

multiple years 

Aggregated data (to a monthly 

interval) of groundwater quality (e.g. 

Cl), utilization factors, frequency of 

switching on/off, geometry of wells 

Regression (Gradient 

boosting regression) 

Explained variance ca. 65% 

 

Main factors causing clogging 

were identified, which gives 

knowledge base to build 

decision support system for 

well field operation 

3 on-going BTO research 

(401826/001, 

400554/191, 

401827/001)  

virus removal 

during soil 

passage  

Quantifying 

importance of soil 

(hydro)geochemical 

factors  on efficiency 

of virus removal 

during soil passage 

Meta-dataset 

of 4 regions in 

the 

Netherlands 

Dataset of virus stacking efficiency 

(SE)  and a number of 

hydrogeochemical variables from 4 

existing studies 

Dimensionality 

reduction (PCA) 

 

Regression (linear 

mixed model) 

Explained variance of SE:  56% On-going BTO project 

(BTO 2018.014) 
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Evaluation of 

restoration 

measures 

Evaluation of 

effectiveness of 

restoration measures 

via analysis of  soil 

and vegetation  

variables 

Meta-dataset 

of 4 Dutch 

coastal dunes 

Dataset of soil variables (e.g. pH, 

organic matter content) and 

vegetation composition from 4 Dutch 

coastal dunes 

Dimensionality 

reduction 

(Canonical 

Correspondence 

Analysis) 

 

Regression (ANOVA, 

linear regression, log-

response ratio) 

Effectiveness of different 

restoration measures was 

quantitatively evaluated, 

which helps to make robust 

suggestions for future 

management strategies 

DPWE grey dunes (Fujita 

and Aggenbach 2015), 

TKI ijzerslib (Dorland, 

Fujita et al. 2017) 

Water demand 

analysis 

Prediction of water 

demand based on 

meteorological and 

holiday statistics  

8 water supply 

areas, 20 years 

of time-series 

data 

Holiday statistics, daily data of 

meteorological measurement, water 

daily volume 

Regression (Support 

vector regression) 

Explained variance ca. 60-95% 

 

Prediction of water demand 

under different scenarios 

(including climate change) 

BTO 2017.043 (Vonk, 

Cirkel et al. 2017) 

 Flood prediction Detection of flooded 

area (1), prediction of 

flooding event (2) 

using machine 

learning techniques 

Temporal and 

spatial data 

e.g. Satellite image, topography, 

distance to rivers, dike morphology, 

weather data, river water levels 

1 Classification (e.g. 

Support Vector 

Machine, Random 

forest) 2) Regression 

(e.g. Bayesian Linear, 

Boosted Decision Tree) 

3) Classification / 

Anomaly detection 

(Neural Cloud) 

1) Accuracy >80% 

2) RMSE up to ca.0.1-0.2  

1) Lamovec P., Matjaž M. 

et al. (2013) 

2) Noymanee, Nikitin et 

al. (2017) 

3) Pyayt, Mokhov et al. 

(2011)  

 

w
a
t
e
r
 
t
r
e
a
t
m

e
n
t
 

a
n
d
 
d

i
s
t
r
ib

u
t
i
o
n
 

Demand 

Forecasting 

Urban Water demand 

forecasting on 

monthly, weekly, daily 

and hourly scales 

Time data 

different time 

scales 

Time series data of water demand and 

weather information (AMR data) or 

DMA inlet data 

Prediction: 

1) DAN2, dynamic 

artificial neural 

network 

2) support vector 

machine regression 

1) >90% accuracy for monthly, 

weekly, daily and hourly 

demands 

2) MAPE (Mean Absolute 

Percentage Error) < 30% for 

50% of AMRs 

1) (Ghiassi, Zimbra et al. 

2008) 

2) (Candelieri, Soldi et 

al. 2015) 

3) (Adamowski and 

Karapataki 2010) 
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3) linear regression 

and artificial neural 

network 

4) Deep learning 

modeling: DBN, deep 

belief network 

3) Best results with the 

Levenberg-Marquardt Artificial 

Neural Network 

4) Prediction errors of 2% for 

daily demand, 5.5% for 15 

minute demand 

4) (Wu and Rahman 

2017) 

(Wu and Rahman 2017) 

Leak Localization Leak localization in 

water distribution 

networks 

Spatial data Residuals, obtained by comparing 

pressure measurements with 

estimations provided by models, 

pressure data from sensors 

Classification: 

1) kNN, 2) Support 

vector machine 

 

Regression: 

2) support vector 

machine 

1) Depends on network size / 

requires epanet model of the 

investigated network 

2) 100% of the cases was the 

predicted leak node within 

500m of the actual leaking 

node and 35% exact location 

success rate. 

1) (Soldevila, Blesa et al. 

2016) 

2) (Mashford, Silva et al. 

2009) 

Anomaly/ 

contamination 

detection 

Contamination 

(intrusion) location 

and timing 

determination 

Time and 

spatial data 

Sensor data (every 5 minutes) total of 

30 minutes 

Anomaly detection 

(Maximum Likelihood 

method) 

7 out of 285 nodes found as 

possible with the correct node 

as the most likely (SIE) 

 

18 out of 285 nodes found as 

possible with the correct 2 

among the 6
th

 most likely 

(clustered) 

(Huang and McBean 

2009) 

Asset 

management (Risk 

models) 

Risk assessment 

models of pipe 

networks 

Asset data and 

repair data 

Asset data and repair/broken asset 

data 

1) Classification, 

Scoring model 

 

2) Regression, 

Evolutionary 

Polynomial Regression 

2) Correctly describes 95.7% 

of all bursts 

 

 

1) (Babovic, Drécourt et 

al. 2002) 

2) (Giustolisi, Savic et al. 

2004) 

(Berardi, Kapelan et al. 

2008) 
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Estimation 

drinking water 

discoloration  

Use data mining to 

find a relation 

between regeneration 

and pipe factors 

Field data 

during 

flushing 

events (U.K. 

and Dutch 

DWDNs) 

Turbidity time series and flushing 

flow rates,  pipe specs., hydraulic 

andiron content, treatment type, etc. 

Self-Organising Maps, 

SOMs + Evolutionary 

Polynomial Regression 

(EPR).  (EPR combines 

Genetic Algorithms 

with numerical 

regression) 

Confirms key factors to higher 

material accumulation rate. 

Predicts daily regeneration 

rates (R
2

=0.930  (for cases 

with regular and repeated 

flushing). 

(Mounce, Husband et al. 

2014, Mounce, Blokker 

et al. 2016) 

Assessment of 

Water Treatment 

performance 

The assessment of 

water treatment 

performance (OM 

removal) 

 Water samples and fluorescence 

excitation-emission wavelengths 

Regression (stepwise 

regression, partial 

least squares, multiple 

linear regression and 

neural network with 

back-propagation 

algorithm) 

 

Decomposition 

(principal components 

analysis, parallel 

factor analysis and 

self-organizing map) 

Best results with combining 

parallel factor analysis with 

partial least squares or self 

organizing maps with neural 

network with back 

propagation algorithm 

(Bieroza, Baker et al. 

2012) 

Decision support Decision support to 

manage water quality 

incidents  in 

distribution systems 

Incident 

reports of 3-

year period. 

Incident reports of water companies 

(2009-2011);  expert subjective 

scoring  

Knowledge-based 

problem-solving 

(memory based): Case 

Based Reasoning 

(CBR). 

Supports decision –making by 

providing guidance for water 

utilities in managing drinking 

water incidents. 

(Mounce, Mounce et al. 

2015) 

Customer Behavior 

Analysis 

Assess public 

response to 

environmental event 

(shutdown of drinking 

water supply) 

Social media 

data of ~500k 

residents 

Web-based data (Twitter, Google 

Trends) in response to supply   

 Offers perspective on public 

response, the associated 

collective knowledge, and 

public perception. 

(Cha and Stow 2015) 
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Water treatment 

(coagulant type) 

Determining the 

coagulant type 

Real time data Water parameters (pH, temperature, 

alkalinity) which change over time 

Classification 

(Decision tree for type 

of coagulant) 

 

 

Overall good but prone to 

over fitting (50/50 train/test 

better results than 70/30) 

(Bae, Kim et al. 2006) 

Water treatment 

(real time) 

coagulant dosage) 

Prediction model for 

real time PAC dosage 

especially for extreme 

cases (such as storms) 

Real time data Water parameters (pH, temperature 

color…) 

Prediction 

1) Neural network 2)  

ANN and ANFIS 

ANFIS outperforms ANN 1) (Bae, Kim et al. 2006) 

2) 

(Wu and Lo 2008) 

 Prediction of alum 

dosage in drinking 

water treatment 

processes 

9 year period Coagulation-related parameters, 

collected from water works authority 

in Thailand, period 2006-2015. 

Comparison of WEKA 

classifiers (M5P, 

M5Rules and REPTree) 

to a feedforward ANN 

(multilayer perceptron, 

MLP)  

 

Highest accuracy yielded by 

M5Rules method.  

(Chawakitchareon, 

Boonnao et al. 2017) 

Optimization of 

water distribution 

systems 

 

Analyzing WDS 

solutions (obtained by 

evolutionary 

algorithms) to 

generate rules or 

relations between 

variables to obtain 

better solutions 

 

Solution space WDS solutions obtained from 

evolutionary algorithms 

(SOM) and Bayesian 

Network 

Significant reduction in search 

space 

(Izquierdo, Montalvo et 

al. 2014) 

Optimization of 

wastewater 

treatment pumps 

Energy optimization of 

wastewater pumps in 

a treatment plant to 

conserve energy 

Real time data Speed of pumps elevation of wet well Regression 

1) Several among 

which kNN, decision 

(regression) trees, MLP 

Incorporation of time series is 

important for accuracy 

1) (Kusiak, Zeng et al. 

2013) 

2) (Torregrossa, Hansen 

et al. 2017) 
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2) Signal 

decomposition 

 

Water treatment 

plant optimization 

Water treatment plant 

optimization by 

developing software 

sensors 

Real time data Data from the SCADA of the treatment 

plant 

Regression 

1)  generalized least 

squares regression, 

artificial neural 

networks, self-

organizing maps and 

random forests 

 

Classification 

2) various methods 

Expert knowledge inclusion is 

still important 

1)  (Dürrenmatt and 

Gujer 2012) 

2) (Comas, Dzeroski et 

al. 2001) 

Prediction of 

solids in 

wastewater 

Using CBOD and 

influent flow rate time 

series to create a day 

ahead prediction of 

TSS (Total suspended 

Solids) 

Time series 

data 

Influent flow rate and influent CBOD 

(carbonaceous bio-chemical oxygen 

demand) 

Prediction: 

Multi-layered 

perceptron, k nearest 

neighbor, multivariate 

adaptive regression 

spline, support vector 

machine and random 

forest 

 

Around 70% accuracy for a 7 

day ahead prediction 

(Verma, Wei et al. 2013) 

Prediction of 

influent flow rate 

Short term prediction 

of influent flow rate in 

a wastewater 

treatment plant 

 

 

Time series 

data 

Influent flow rate, rainfall data radar 

reflectivity data 

Prediction: 

Multilayer perceptron 

neural network 

Well up to 150 min, after that 

a lag develops 

(Wei, Kusiak et al. 2013) 
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c
h
e
m

i
c
a
l 
w

a
t
e
r
 
q

u
a
l
i
t
y
 

Risk based 

monitoring 

Design of risk-based 

monitoring program 

to efficiently monitor 

water quality  

Spatial time 

series data 

Target and non-target monitoring 

data, effect studies, chemical property 

and toxicity data 

Prioritization, 

correlation, pattern 

recognition, PCA, 

hierarchical clustering, 

k-means clustering 

The design of a risk-based 

monitoring program is 

requested by drinking water 

law 

(von der Ohe, Dulio et 

al. 2011, Sjerps, ter Laak 

et al. 2014, Sjerps, 

Vughs et al. 2016) 

Sjerps et al, in prep. 

Occurrence 

surveys 

Temporal and spatial 

analysis of available 

monitoring data 

Spatial time 

series data 

Target monitoring data Temporal or spatial 

profiles, prioritization 

and ranking 

techniques 

Large scale reliable exposure 

data 

(Loos, Gawlik et al. 

2009, Loos, Locoro et al. 

2010, Loos, Carvalho et 

al. 2013, van Loon, 

Sjerps et al. 2017) 

Non-target data 

interpretation 

(including suspect 

screening) 

 

Identification of 

formerly unknown 

features detected in 

non-target screening 

analyses 

Lab-scale, 

environmental 

data  

Non-target screening data Cheminformatics, 

PCA, clustering 

techniques, temporal 

or spatial profiles, 

chemical patterns: 

isotopic  patterns, 

mass defects, 

homologous series, 

functional groups 

Identification of formerly 

unknown or non-detectable 

chemicals in environmental 

samples 

(Hoh, Dodder et al. 

2012, Moschet, Piazzoli 

et al. 2013, Chiaia-

Hernandez, Schymanski 

et al. 2014, Schymanski, 

Singer et al. 2014, 

Thurman, Ferrer et al. 

2014, Gago-Ferrero, 

Schymanski et al. 2015, 

Ruff, Mueller et al. 2015, 

Zonja, Delgado et al. 

2015, Sjerps, Vughs et 

al. 2016, Hollender, 

Schymanski et al. 2017, 

Merel, Lege et al. 2017, 

Muz, Ost et al. 2017) 

 

Identification of 

nano- and 

microplastics 

Identification of nano- 

and microplastics is 

time-consuming and 

Lab-scale, 

environmental 

data from 

Fourier-transform infrared (FTIR) 

spectra and Thermogravimetric (TGA) 

spectra 

Comparison, 

correlation and 

clustering of IR 

Nano- and microfibers are 

identified manually and has 

(Mintenig, Int-Veen et al. 

2017) 



BTO 2018.085 | October 2018 23 

 

 

Explorations in Data Mining for the Water Sector 

 

not yet high 

throughput    

spatial time 

series 

spectra, distance and 

similarity analyses 

the potential to be mined with 

data mining techniques 

Identification of 

transformation 

products (TPs) 

TPs present in the 

environment often 

unknown, can be 

detected in non-target 

screening, but rarely 

identified. In silico 

prediction can 

facilitate identification 

Lab-scale, 

environmental 

data from 

spatial time 

series 

Non-target screening data, chemical 

structure data and known 

biotransformation rules. 

Volcano plots, 

statistical tests, fold 

changes, PCA, 

clustering, similarity 

searches. Prediction 

tools: enviPATH 

Database of TPs that are 

formed in drinking sources 

and during drinking water 

treatment 

(Fenner 2016, Schollée, 

Schymanski et al. 2016, 

Wicker, Lorsbach et al. 

2016, Schollee, 

Schymanski et al. 2017) 

EDA=Effect 

Directed Analysis 

Identifying toxicants 

from environmental 

samples by linking 

effects to hazardous 

chemicals with 

fractionation 

Lab-scale, 

environmental 

data 

In vitro effect tests of samples 

combined with chemical analysis 

Correlation  EDA is a promising tool for 

identifying predominant 

toxicants in complex 

environmental mixtures  

(Brack, Ait-Aissa et al. 

2016) 

Environmental fate 

and exposure 

modeling  

Predictive modeling 

for chemicals in water 

systems 

Spatial model 

scale 

Chemical structure and properties, 

customer data, climate data, 

catchment-based land use activities 

and soil characteristic. Validation with 

water quality data 

QSAR model, 

correlation, SML, GIS 

model 

Chemical exposure prediction 

supports decision making 

(Mackay and Paterson 

1991, Mackay, Shiu et 

al. 1992, Scheringer 

2009, Scheringer, Jones 

et al. 2009, Zarfl, 

Scheringer et al. 2011, 

Wambaugh, Setzer et al. 

2013, Judson, Houck et 

al. 2014, Zijp, Posthuma 

et al. 2014, Comber, 

Smith et al. 2018, 

Schulze, Sättler et al. 

2018). 

TRANSATOMIC.xlsx 
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Removal 

prediction 

Study and predict 

chemicals removal in 

treatment systems 

 

Model scale Chemical structures and available 

removal data 

QSAR model, SML Predicted removal efficiencies 

supports decision making 

(Wols and Vries 2012, 

Vries, Wols et al. 2013, 

Vries, Bertelkamp et al. 

2017) 

Human health 

effects prediction 

Study and predict 

chemical human 

health effects 

 

Model scale Toxicological and effect data, in vitro 

toxicity data, chemical structures 

Toxicity databases, 

bioassays results, 

QSAR models, read 

across, AOPs -

informed 

computational models 

Reliable toxicological 

experimental data is sparse, 

high throughput human 

health risk evaluation is 

valuable  

 

(Judson, Richard et al. 

2009, Wambaugh, 

Setzer et al. 2013, 

Judson, Houck et al. 

2014, Blackwell, Ankley 

et al. 2017, Wittwehr, 

Aladjov et al. 2017, 

Zang, Mansouri et al. 

2017, Baken 2018, 

Brunner, Dingemans et 

al. submitted) 

Waste-water based 

epidemiology 

Population 

characterization: 

deriving public health 

and (illicit) drug use 

from wastewater 

analyses 

Spatial time 

series 

combined with 

real-time data 

Target, and non-target screening data, 

pH, conductivity, rain fall, flow, 

mobile phone data 

Correlation, PCA, 

temporal and spatial 

trend profiles 

Wastewater contains 

information of human health 

characteristics that are not yet 

fully explored 

(Bade, Causanilles et al. 

2016, Causanilles, Baz-

Lomba et al. 2017, 

Causanilles, Kinyua et al. 

2017, Causanilles, 

Ruepert et al. 2017, 

Causanilles, Nordmann 

et al. 2018) 

b
i
o
lo

g
i
c
a
l
 
w

a
t
e
r
 

q
u
a
l
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Large-scale 

genomic data 

mining 

Species identification, 

community 

characterisation, 

assessing genomic 

diversity, finding 

patterns of gene 

expression, gene 

global 

databases 

Sequence data (genomic), microarray 

data (DNA expression), interaction 

variable data (chemical/ physical, 

regulatory, protein modifications, etc.) 

Combination of 

different algorithms 

Moderate-good (fair amount 

of user expertise required for 

correct data treatment and 

interpretation) 

Huttenhower & Hofmann 

(2010); Ju & Zhang 

(2015a,b); Kennedy et 

al. (2010); Lee et al. 

(2008); McPerson 

(2009), Romano et al. 

(2017); Segata et al. 
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discovery, drug 

discovery, enzyme 

discovery, community 

functioning, toxic 

potential, disease 

potential 

(2011); Wassenaar 

(2004) 

 Risk management       

 Quantitative 

microbial risk 

assessment 

(QMRA) 

Water safety 

management (water 

safety plans, 

sanitation safety 

plans) 

Several years, 

water system-

dependent 

Quantitative data or assumptions on 

pathogen occurrence and exposure, 

frequency of hazardous events and 

severity of hazards, pathogen removal 

rates by relevant treatment processes, 

dose of reference pathogens and 

infection response, risk of illness per 

infection, disease burden and 

susceptible population, scenarios 

accounting for variability and 

uncertainty 

Classification, 

regression 

Good WHO (2016) 

 Predicting 

cyanobacteria 

toxins 

Remote monitoring 

(predicting) of 

cyanotoxins, early 

warning system 

Near real-time 

(daily), global 

(1); 

Multi-year, 

reservoir (2) 

Remote sensing (satellite) (1); water 

quality (including microcystins) (1,2) 

Deep learning (1); 

multivariate adaptive 

splines (2) 

Good 1: Chang et al. (2014); 

2: Garcia Nieto et al. 

(2010) 

 Assessing risk of 

faecal infection 

Exposure risk 

assessment, tracking 

faecal contamination 

Years, water 

(distribution) 

system 

Hydrology, hydrometric (1); water 

quality and faecal indicator species 

(1,2) 

Classification trees (1); 

machine learning (2) 

Poor-moderate (1); good (2) 1: Bichler et al. (2014); 

2: Dawsey & Minsker 

(2007) 

 Infection and 

disease 

management 

Discovery of infections 

and antimicrobial 

resistance patterns 

Months, 

hospital 

Public health surveillance data, 

hospital infection control data 

Association rules Moderate, dependent on 

expert evaluation 

Brossette et al. (1998) 
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 Infection and 

disease 

management 

Assessment of climate 

change effects on 

disease occurrence 

(decision support 

system) 

12 years, 

global 

literature 

Literature data (key facts), 

environmental data, data on food and 

waterborne disease occurrence 

Network maps 

(classification) 

Good Semenza et al. (2012) 

 Management of 

species invasions 

Assessment of factors 

contributing to 

species invasions 

Decades, 

global 

shipping 

network 

Vessel movement, ballast discharge, 

various ecological & environmental 

data 

Graph clustering Good Xu et al. (2014) 

 Ecosystem 

response 

monitoring 

      

 Coastal 

management 

Discovery of 

ecological thresholds 

Weeks, coastal 

area 

Flow cytometry data, water quality Artificial neural 

networks 

Good Pereira et al. (2009) 

 Multiple stressor 

effects on 

community 

functioning 

Predict response of 

macro-invertebrate 

community to multiple 

stressors 

Years, river 

basin 

Water quality, hydrology, 

hydromorphology, macrofauna & 

macrofauna traits 

A priori association, 

boosted regression 

tree 

Good Mondy et al. (2016) 

 Predicting fish 

communities 

Predicting fish 

community 

composition and 

species richness 

River sections Land cover data (GIS), hydrologic data, 

topographic data, data on fish 

communities 

Classification and 

regression tree 

(CART), random 

forests (RF) 

Moderate-good He et al (2010) 

 Modelling 

eutrophication 

Predicting (harmful) 

algal biomass 

Multi-year, 

lake 

Water quality Deep learning Moderate-good Chen & Mynett (2003) 
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4 Current applications of data 

mining: interviews with 

practitioners 

4.1 Interviewees 

A number of practitioners of data mining within and outside the water sector (see Table 5) 

have been interviewed by Henk-Jan van Alphen (KWR) with respect to current applications, 

technologies, drivers, opportunities and challenges. This chapter provides an integrated 

summary of these interviews.  

TABLE 5: OVERVIEW OF INTERVIEWEES. 

Name Organization 

Rob van Putten Waternet 

Jurjen den Besten Oasen 

Jan Urbanus Evides 

Stijn Heemskerk ABN AMRO 

Dumky de Wilde Professional on data-analytics 

Laurens Koppenol ProRail 

 

4.2 Regarding specific applications 

The interviewees do not have an exhaustive list of applications, but gave some examples in 

the interviews for which data analytics have been used so far at their respective companies. 

4.2.1 Waternet 

Waternet has used gradient boosting to determine the best location of monitoring wells. Mr 

Van Putten was involved in the application of Deep Learning (DL). With this method, he 

gained knowledge in IJkdijk project 4 years ago. They equipped a dike with sensors, to 

measure its state. Mr Van Putten then applied DL to a case of industrial water use. Data was 

fed from images from video taken from water meters, and the goal was to read numbers. 

Waternet has also used DL to identify deer on video images of drones. 

4.2.2 Oasen 

The issues for application of DM at Oasen are related to asset management. Examples of 

applications are pipe break forecasts and optimizing the replacement of water meters. The 

core principle is that applications contribute to an improved Oasen’s customer satisfaction. 

No studies are done based on correlations in the data (without prior hypothesis). These 

correlations are not so easy to find, because the data is complex and often not so well 

structured. 

4.2.3 Evides 

Data analysis at Evides is relatively new. There is currently a data team of about 13 people 

(not fte) that focuses on the subject. Evides wants to focus more on statistical analysis, 

because internally there is a sense that a better performance can be achieved. As a 
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development standard the team uses a SCRUM Agile method, which involves a SCRUM master 

and a product owner. 

Evides, together with external data analysts, has made an analysis of water quality data from 

the Biesbosch storage areas (time series of 30-40 years length). In it, four different trends in 

water quality were identified, three of which were already known by Evides. Although the 

analysis did not yield any real new insights, it did confirm existing insights.  

Currently, data analysis is also used to detect leakages and background losses by comparing 

the inflow and outflow of a district metered area (DMA). Such analysis is carried out by the 

Israeli company Takadu. In the current projects, most attention is paid to data validation. 

Evides used data visualization to investigate the relatively high percentage of Non-Revenue 

Water (NRW). One hypothesis is that this is partly due to invoicing. The invoice data was 

combined with the municipal administration (BAG) and visualized with ArcGIS. In that way, it 

was clear which addresses do and do not receive an invoice. GIS visualizations provided 

immediate insights and lead to follow-up questions. Individual questions are then addressed 

by a combination of (in-house) specialists with support from ESRI specialists, which Evides 

hires for this purpose. 

4.2.4 ABN 

The retail department of ABN mainly uses customer data, with the purpose of enhancing its 

marketing strategy. Most data mining issues involve optimizing the communication with 

existing customers. For example, which messages are sent to which customers at which 

time. This can be done from a commercial purpose, such that customers will increase the 

volume of savings or investments, or from a customer satisfaction perspective, in which the 

goal is to facilitate procedures such as the application for a debit/credit card. Specific 

applications are chosen on the basis of the strategic objectives of the bank and strongly 

driven by the perspective of the retail marketing professionals. 

A good example is attracting new investors. The bank has a lot of data about the current 

investors: when they signed in with the bank; what they invested in, which quantities are 

involved per transaction and all other transaction data and personal data. By means of data 

analytics, it can be determined which customers should receive notifications about new 

forms of investment and at which time. This can be done, for example, with the use of 

Decision Trees (DT). The analyst chooses (i.e. on the basis of correlations) a number of 

variables that relate to the likelihood that someone will invest or not. A computer can 

generate a decision tree of customer data, which classifies the customers into groups with 

an higher likelihood to invest in a certain number of iterations. The system then issues a 

group with the highest likelihood to invest, which is reported to the bank analysts. Then 

based on this information, a marketing or communication action is executed. A feedback 

loop is generated to the system, such that this action is subsequently analyzed in order to 

improve the model.  

4.2.5 De Wilde 

Much of what Mr. De Wilde did is related to data visualization. He has worked making 

scientific insights accessible to policy staff at the immigration policy department of the IND 

(Dutch immigration and naturalization service). In his case, data mining for migration data 

was the main task. To make data accessible to stakeholders, in this case IND, the essential 

part is that it has to be visible at a glance. But to give meaning to data, many choices have to 

be made in which dimensionality issues appear. Every choice for a selection of a scope on a 

data subset is also a choice to make it more relevant than the other. If the scope is unclear, 
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the more likely that information is lost with the stakeholder. This in fact is related to the use 

of color and representation. 

Mr. De Wilde has also done research into the frequency of elevator confinements for the fire 

brigade. After collection, a number of peaks were visible in the data. Analysis of the data 

from the fire brigade itself did not produce anything relevant. However, a combination of 

data with cross analysis of news reports showed that it was correlated with power failures. 

4.2.6 ProRail 

The initial scope of DM activities at ProRail was predicting failure of infrastructure. An 

assessment has been done of the most common causes of disruption of the trains and they 

were analyzed using data analytics. One notable success was identifying the likelihood and 

location of people walking on or along the train tracks, one of the main causes of 

disruptions in train traffic. They also looked into the decision being made in guiding trains 

through the network. The question there is whether it is possible to simulate human decision 

making.  

ProRail has a datalab of 10 fte which was founded by the innovation department and 

financed by the IT-department. Formally it is not part of a specific department which gives 

more freedom to experiment. Data scientist are being ‘lent’ by other department and around 

the 10 fte core is a layer of trainees and external analysts.  

4.3 Regarding tools and methods used 

During the interviews a number of tools were mentioned which are widely used for data 

analytics: 

 SQL  

 SAS  

 R  

 Python  

 ArcGIS (data visualization)  

 Microsoft Azure Machine Learning Studio 

 Microsoft Excel 

 Google Search 

During the interviews a number of machine learning methods were mentioned which are 

widely used for data analytics: 

 Gradient Boosting  

 Decision Trees / Random Forest  

 Artificial Neural Networks (ANN)  

 Support Vector Machines (SVM) 

The interviewees agreed that the application of analytical methods is not the biggest 

challenge during the whole process. Obtaining and adjusting the data is considerably more 

complex and time-consuming than the actual analysis. Mr. De Wilde estimates that 75% of 

the time is spent preparing the data, 10% on the analysis and visualizing 15%. 

According to Mr. Den Besten, the majority of scientific research in data analysis focuses on 

the development of analytical methods. It is relatively easy to apply that knowledge to your 

own issues, for example with packages such as Microsoft Azure Machine Learning Studio. 
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For low-level issues, Mr. Van Putten uses Google to search for suitable methods or existing 

solutions. As an example, he mentions recognizing deer on videos of drones. For more 

complex methods such as ANN and DL, he follows the (very) recent (and dynamic) scientific 

publications.  

Since Mr. Heemskerk predominantly deals with very large, well-structured databases, SQL is 

the basic tool for him. Knowledge of the specific way in which the databases are organized is 

also necessary in order to find the right fields. Excel, R, SAS, or Python is usually used for 

further analysis. Mr. Heemskerk has also experimented with DL, but in his specific field, it 

performs with a lower performance than Random Forest, which is now the benchmark at 

ABN. 

Mr Koppenol notes that there is a sense of urgency in applying a model to the data. He 

distinguishes roughly two issues: classification and regression, the latter just providing you 

with a number that needs to be interpreted. He also uses ML. 

Both Mr. De Wilde and Mr. Urbanus underlined the importance of data visualization. The 

clear visualization of data often provides many insights without actual analysis or 

transformation being applied to data. 

4.4 On the relationship with the need to domain knowledge for data mining 

All interviewees indicate that data analysis without specific subject knowledge does not lead 

to meaningful results. Mr. Urbanus experienced this when a number of data analysts from 

outside the water sector started using the quality data from the Biesbosch storage areas. In 

doing so, they were not able to produce any new real insight. 

According to Mr. Den Besten, there are three types of skills required for a data analyst in an 

organization such as Oasen.  

(1) Hacking skills, such as modeling and programming;  

(2) statistics skills and  

(3) domain knowledge.  

Mr. De Wilde also indicated that if those three types of skills can’t be united in a person, 

then there must be a bridge closing the gap between the domain knowledge and the other 

two areas.  

Mr. Den Besten adds that the relationship with domain knowledge at Oasen is 'unconsciously 

skilled'. In their case, data analysts work (and are often trained) as asset managers.  

Subject knowledge is also leading in the field where Mr. Heemskerk is active. The marketeers 

make a proposition and must also be able to provide evidence that the proposition has been 

delivered. This is also reflected in the type of data analysts that ABN recruits. They must 

have good social and communication skills, while also being able to translate their results 

into the practice of the marketing professionals. Mr. Heemskerk explains that he thinks 

marketeers will not be able to work without elementary data skills in the future, whereas 

nowadays data analysts are the ones who bridge the gap.  

Mr. Van Putten also agrees that the combination between data analysis and specific 

knowledge is particularly interesting. Only data analysis focused on methods can lead to 

strange results, if the subject knowledge is not taken into account. On the other hand, data 
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knowledge may make current practices obsolete. The combination between data and specific 

knowledge is the most powerful. 

Mr. Koppenol also does not use data analytics without subject knowledge, but mostly out of 

data and time constraints. With enough data and enough time, pure data analytics may lead 

to useful results. 

4.5 Regarding data management 

The interviewees agree that data management is the weakest link in the chain of data 

analytics. According to Mr. Den Besten, in the water sector this is the bottleneck of data 

analytics. The quality of the results can’t be better than the quality of the data you use. As 

such the largest gain to be made by his water company is in data management. He also 

notes that the development of methods and tools is mainly taking place outside of the water 

sector and that water companies can profit from that instead of developing their own tools. 

Data generation and the collection of good data is instead a very specific problem for water 

companies in which water companies can innovate themselves.  

At the moment most of Oasen's data comes from sensors and observations from operators. 

The latter category is crucial because it often concerns data about anomalies. At this 

moment it depends on the expertise and assumptions of the operator which data is collected 

in the event of a pipe break. All employees should be aware that data could be the key to the 

solution of many issues, and that properly recording data is therefore a high priority of the 

company.  

Mr. De Wilde indicates that if you want to use data for problem solving, you also have to look 

at how the organization is structured to deal with data. In fact, in most cases everything 

revolves around digitalization/automatization of existing processes, so that a constant data 

flow is available. Then it is also a concern who has access to the data, which external data 

you need and which external tools are useful to use.  

According to Mr. Urbanus, the use of external tools is a problem at Evides. The IT 

department is struggling to keep up with the rapidly developing needs of the data analysts. 

It is already difficult for IT to meet the needs of the business practices and needs. Data 

analysts often want to use new programs, libraries, software which in many cases must then 

be adapted to existing security protocols by its IT department. That has shown to be a 

demotivating force for data analysts.  

Errors in the data, according to Mr. van Putten, can be an important factor in the quality of 

the results. Especially for anomaly detection, uncertainty and reliability of forecasts, data 

validation plays a major role. His advice: be open about the methods you use, use metadata 

and be very open about the error margins used. Mr. Van Putten often adds a column with a 

reliability indicator, based on his own criteria for his track. The recording of metadata is also 

of great importance for him.  

Mr. Urbanus wonders how clean the data should be before reliable analyses can be made. 

And second, whether you can keep a data analysis team happy for a long time if you steadily 

put them in charge of long data validation processes. Mr. Koppenol estimates that about 50% 

of the data preparation process can be skipped while still getting reliable results from the 

data. 

In the past, Mr. Heemskerk has experienced few obstacles on data management and data 

quality. A lot of data (especially transactions data) is available at his organization and due to 
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its nature (personal financial data) it is well maintained and updated. In contrast, in his case, 

the vast amount of data makes it somewhat difficult to focus on the research questions of 

interest and not the data itself.  

Mr. Koppenol also considers data quality the bottleneck of the process. He gets most of his 

data from the system logs from infrastructure, but also there it is not always clear what the 

data actually represents. ProRails data is often matched with public data sets, such as geo 

data or weather data. Some sensors have been put in place but according to Mr. Koppenol 

they need to be in place for a longer period (2 to 3 years) to be useful. 

4.6 Regarding current data infrastructure  

Waternet has a data point where data is collected and made available (about 18 FTE) and a 

datalab for analysis (as of now only Mr. Van Putten). There is cooperation with universities 

on the subject. The datalab focuses in particular (and at this moment) on sensoring and 

automatization (robots). Waternet's datalab is now only intended for Waternet’s people, but 

cooperation is sought with the municipality of Amsterdam.  

For the data warehousing, Waternet is currently under negotiation with Microsoft for the use 

of their Azure cloud computing service. Data storage and availability is a big challenge for 

the company. Due to the network restrictions it is difficult for employees to store large 

amounts of data or to access different data sets directly from Waternet’s intranet. The result 

is that people often use their own laptops, USB sticks or other forms of storage (less 

reliable). This makes it difficult to manage and share data. The data from the treatment 

plants (77.000 sensors) is distributed over two databases (i.e. drinking water and sewer), but 

these are difficult to access due to additional protocols for cyber security. No use is currently 

made of data compression.  

Mr. De Wilde notes that if you really want to work with Big Data (> 10 million documents) 

organizations like drinking water companies do not want to store and manage that 

themselves. The data centers of Microsoft, Google and Amazon are cheaper and more 

reliable for such tasks.  

ProRail's data is stored in a private cloud hosted by KPN, but negotiations about a new 

environment are taking place, Mr. Koppenol uses a Hadoop environment to do the actual 

analytics. Storing data with a third party poses no issues for ProRail and neither does using 

third party systems to run analyses. The data is generally not accessible for the public, 

although there are a few API in place with map layers of the infrastructure. 

4.7 Regarding obstacles and driving forces 

4.7.1 Obstacles  

Mr. Van Putten mentioned issues of ownership and opening up data as a major obstacle. 

Being able to produce data could yield a lot, but it can also lead to conflicts about the 

interpretation during, for example, lawsuits. Everyone wants access to data, but no one 

wants to be responsible for managing and cleaning data.  

Another obstacle that has been mentioned by all entries was the fact of bringing to the 

organizations sufficiently qualified data analysts. That is mainly a matter of money. The price 

for good data analysts is so high that for example, a bank like ABN with their existing salary 

structure can’t afford to hire good people. This also applies to water companies. 

Additionally, to be of use as a data analyst in the water sector, you also need some 

knowledge of the relevant processes in the water cycle.  
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The question is whether public organizations can let the right people know what their digital 

ambitions are. Think of interim data scientists in companies such as: VODW, Xomnia and 

Anchormen. In most cases, data analyst rates are higher than 100 €/hr. The advantage in the 

case of public organizations is that data scientists can publish about their results and that 

the issues that they are working on have much relevance to society.  Mr. Koppenol argues 

that public organizations can also be attractive because the wide application of data 

analytics is still in its infancy and as a young data analyst you can really make a difference, 

instead of being one of the many at a tech company. 

A third obstacle is the availability and quality of data, which has been described before. 

Organizational dynamics can also work as an obstacle. Mr. De Wilde mentions the 

Immigration and Naturalization Service (IND) as an example, where due to a culture of 

‘security concern’ within the organization, it is very difficult to use new digital tools. 

Something that Mr. Urbanus also signals at Evides. Mr. De Wilde also found out that when 

there is not a high ranking manager(of IND and other cases) in charge of the development of 

data analytics, the implementation of such practices becomes unsuccessful or unlikely to 

develop in short time.  

According to Mr. De Wilde, the value of a data team is determined either by their peers 

within the organization or the service which they provide to customers. This is only possible 

if people within an organization start asking the questions for which data analysis is needed. 

You have to train people to know that they can ask certain questions and ask the 

proper/right ones. Only then, data analysts teams can show what you can do with the data.  

According to Mr. Van Putten, the islands that exist in the water sector are frequently seen as 

obstacle. People are afraid to lose their jobs to people with other competences and skills. 

Traditional knowledge sometimes conflicts with (results from) data science. This was 

evidenced from the IJkdijk project (previously mentioned).  

4.7.2 Strengths and driving forces 

Mr. Van Putten cites better cooperation between water boards and water companies as a 

main driving force in making data, methods and results public.  

Mr. De Wilde also sees the collection and availability of data as an important driving force. 

Especially, when it means that all kinds of data can be combined. For example, the 

municipality of Amsterdam has shared a lot of geographical data via web services such as 

maps.amsterdam.nl.  

Mr. Urbanus sees a growing awareness of the value of data at Evides. The importance of 

collecting more and new types of data is also seen. This certainly also applies to Evides 

Industrial Water (IW), where data has a lot of economic value for the company. 

The fact that at Waternet the datalab is so highly regarded on the strategic agenda has given  

momentum to the awareness of employees of data. Data science is just beyond the hype. 

Many employees from various departments have taken or are taking Python courses. 

Internships on subjects such as robotics and drones are being executed and the possibilities 

for permanent employment are being looked into. In a way, self-managing teams reduce the 

number of middle management positions available and all kinds of employees search for 

ways to do something with data. 
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Mr Koppenol sees a shift in how organizations deal with ICT. What would really boost results 

is when data is freely available in the cloud with a lot of freedom for analysts to do their 

analyses. There is some cooperation with the Dutch Railways in equipping trains with 

sensors. This also stimulates cooperation and integration between the two organizations. 

4.8 Regarding data and decision making 

The decision-makers at Oasen’s asset management are positive about the results obtained 

so far, but they keep some reserve in making decisions on the results. Usually when the 

system generates a prediction (of a pipe break), one does not immediately make a decision, 

but rather first looks at whether the prediction becomes true. There is a fundamental 

problem with predictive/forecast algorithms. If you act proactively on the basis of a forecast 

algorithm (for asset management), you will never be able to evaluate whether the system 

estimate was right or wrong, and then it is impossible to validate the forecast algorithm.  

At Evides, the increased use of data means that it is now also expected that certain 

statements are substantiated with data or statistics. The processing of data into information 

(for example through visualization) also leads to new insights that can support decision 

making. Mr. Urbanus recognizes that much in the water sector is done out of habit. Results 

from data analysis can offer a different perspective for different issues. As an example, at 

Evides, there is the issue of condition-dependent maintenance. Until recently, fire hydrants 

and valves were checked annually or biennially. That was a matter of habit. Perhaps data 

analysis can substantiate this choice or suggest a different maintenance regime. Perhaps 

these checks are not necessary at all, or one/some fire hydrant(s) must be checked more 

often than the other(s). 

According to Mr. Van Putten, it is not true that decision-makers need to judge data science 

and traditional knowledge separately. Policy recommendations are being formulated bottom-

up, i.e. consisting of insights from both areas. Ideally, subject knowledge and experiential 

knowledge will be integrated with data science models in the future.  

Mr. Koppenol stresses the importance of showing the added value of data analytics and 

finding the right person in the organization to show it to. It also helps to let decision makers 

join in the process and show which choices are being made and why. There is sufficient 

goodwill in the organization to try this out, but it needs to prove itself. 

4.9 Regarding opportunities for the future 

Mr. van Putten does not mention any specific application for data mining in the water sector, 

but considers all engineering issues to have a relevant link with data analysis. He suggests 

that each engineer within a water company should have a minimum knowledge of data 

science competences. He gives a Python course every year, and he sees that more people 

from diverse backgrounds register.  

Mr. Den Besten sees that in the future there are plenty of opportunities for applications 

which may improve customer satisfaction. For example, by improving the service level to 

customers by reducing the contact and delivery times or better planning of system 

maintenance. Also, simple information can be transmitted to customers through the use of 

chatbots. In another organization, the chatbots work so well that even the own employees 

use them to find data in their systems.  

According to Mr. Den Besten, the water sector should start focusing now on the collection of 

data which may be of relevance for future issues. Business cases have to be formulated for 

data collection or a valorization model that shows the potential revenue of systematic data 
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collection and management. Based on current methods of data analysis and available 

information, an analysis can be made of the gap between the analytical potential and the 

availability of data. 

Mr. Urbanus expects more applications of machine learning in the coming years in the water 

sector. Vitens and Evides currently perform their billing process through Facturatie BV. In 

general, data which is available from that process is insufficiently used at the moment. That 

offers interesting possibilities for the future, to make the customer satisfaction more 

efficient and effective.  

Mr. Urbanus indicates that there is still little understanding of what exactly happens in the 

water distribution network. The combination of hydraulic data and water quality data can 

lead to more insights. The need to collect this data from their system is great, but 

implementing new sensor locations is expensive in terms of time and money. Currently, 

there is a great need for cheap, easy-to-install sensors (for both quantity and quality). The 

autonomous inspection robot AIR can also yield a lot of data which will be of relevance. The 

challenge is to turn that data into useful information. 

At Evides IW, there is a need for good forecast of incidents. At IW, the redundancy of the 

pump system is much smaller than that of the drinking water. A lot of demineralized water is 

also supplied, which means a heavy load on infrastructure. Interruption of supply can lead to 

contractual fines with IW customers. Therefore, there is a great need for good forecast to 

avoid such issues. The software used for the pumps already has all kinds of data available 

and the additional measurements could be done with sensors. These sensors are 

considerably cheaper and easier to install than those in the distribution network. 

Within ABN, much thought is given to the role of banks in the long term. The expectation is 

that ICT companies will take on many tasks from banks. In that regard, as a result of the 

Payment Service Directive 2 (PSD2), banks have to share their transaction data with third 

parties at the request of their customers (under certain conditions). This means that other 

parties (such as Google or Amazon) can also use this data. The strongest position of the 

banks (in relation to their customers) is then in the field of automated financial advice.  

Within ABN, many ideas are being currently developed at the moment, such as using data 

from sensors of ATMs, converting speech to text at call centers or using DL for risk (security 

of asset positions). 

Mr Koppenol sees a future in which much more is being measured. Not by the data scientist 

but by everybody in society. This will lead to much more data and to much more impact of 

data analytics. 
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5 Potential for new applications 

5.1 From a domain perspective 

An overview of potential new applications, driven by emerging interest in different domains 

within the water sector is given in Table 6. This list was compiled by the authors of this 

report from their reading of the literature, knowledge of their fields and current initiatives in 

their professional networks.  

5.2 From a data perspective 

An overview of potential new applications in the water sector driven by the emerging 

availability of new and upcoming data sources is given in Table 7. This list was compiled also 

by the authors of this report from their reading of the literature, knowledge of their fields 

and current initiatives in their professional networks. 

 

5.3 Discussion and outlook 

5.3.1 Surface and subsurface water 

For many fields of ecohydrology and geohydrology, the underlying processes are well 

understood and therefore physical models are predominantly used to 

understand/assess/predict the phenomena of interest. Examples of such fields are 

groundwater dynamics, soil water dynamics in unsaturated zones and evapotranspiration, 

transport of heat and water regarding ASR (Aquifer storage and recovery) and ATES (aquifer 

thermal energy storage).  

 

However, there are opportunities for data mining techniques to be of help by adding new 

knowledge, especially where ‘fuzzy’ variables are involved and therefore a physical model 

alone is not sufficient to reveal causal relationships. These ‘fuzzy’ variables, which can also 

be described as imprecise or linguistic variables, include those related to human behavior 

(e.g. operational conditions of wells, management types of nature restoration) or variables 

which represent multiple (functional) properties that cannot be attributed to a simple 

physical metric (e.g. spectrum information of satellite images, species composition).  

 

One of the difficulties in applying data mining techniques in the field of 

Ecohydrology/Geohydrology lies in the fact that the existing datasets usually cover a certain 

limited spatial extent, whereas the area of interest is typically large (e.g. the area where 

infiltration water passes through, the area nature restoration measures are implemented). 

The mismatch of spatial scale probably continues to be an issue in future due to the labor-

intensive nature of data acquisition methods in this field. A promising way forward is to 

combine small-scale datasets with area-covering databases (which are available from other 

data sources, e.g. RIVM, KNMI, RIWA), or with process-based models, in order to extrapolate 

the insight gained from the small scale dataset. Analysis of satellite or drone image, which 

combines area-covering images and intensive ground survey points, is a good example of 

such an approach. 
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TABLE 6: OVERVIEW OF DATA MINING OPPORTUNITIES FROM A DOMAIN PERSPECTIVE. 

 label technique/ description  method class type of data state of development reference 

h
y
d
r
o
lo

g
y
 

Manure control 

for minimizing 

leaching & 

maximizing 

yield 

Seeking for optimal 

manure application to 

agricultural land to 

maximize yield and 

minimize environmental 

impacts (e.g. nutrient 

leaching to ground water) 

Regression Soil map, land use map, 

hydrological data (soil water 

flows), meteorological data, 

manure policy, behavior of 

farmers, groundwater quality data 

‘Precision agriculture / smart farming’ 

(mainly for the purpose of maximizing 

yield) is already taking place in many 

regions in the world (Wolfert, Ge et al. 

2017) . Dutch government invested in 

making satellite image available for 

promotion of precision agriculture 

(www.spaceoffice.nl/nl/satellietdataport

aal). 

 

Precision nature 

restoration 

Taking spatial and 

temporal information into 

account to make effective 

planning of nature 

restoration measures 

Regression? Soil map, climate data, 

hydrological (modeled) data, 

topographical data, plant 

characteristics (e.g. N content) 

predicted by drones 

‘Precision conservation’ has been 

implemented in the States since early 

2000’s,  mainly for reducing erosion 

risks (Berry, Detgado et al. 2003) 

 

Automatic 

quality control 

of groundwater 

chemistry data 

Testing quality of 

groundwater chemistry 

data for chemical 

consistency and outliers, 

as pre-treatment needed 

for obligatory data 

delivery to BRO 

Anomaly 

detection 

 

Classification 

Chemical variables in groundwater 

(on each filter of wells, with 

different sampling time) 

Manual quality control has been done 

for Province Zeeland 

 

Predicting forest 

fire 

Predicting fire hazard level 

of a day or burned area  

Regression, 

Classification 

Meteorological data 

Soil and vegetation data 

Prediction method of forest fire using 

machine learning has been developed 

for arid forest systems   (Cortez and 

Morais 2007, Sakr, Elhajj et al. 2010). 

Process-based model might serve as a 
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 label technique/ description  method class type of data state of development reference 

better method for the ecosystems in the 

Netherlands. 

w
a
t
e
r
 
t
r
e
a
t
m

e
n
t
 
a
n
d
 
d

i
s
t
r
ib

u
t
i
o
n
 

Leak 

Localization 

Test EPANET trained 

algorithms for leak 

localization with real 

leakage events and sensor 

data from around its 

occurrence to asses 

validity for real world 

examples 

 Sensor data and leak location Possible implementation of multiple 

leak localization algorithms 

(Soldevila, Blesa et al. 2016) 

(Mashford, Silva et al. 2009) 

Water treatment 

plants 

optimization 

There is much data being 

recorded in a water 

treatment plant which can 

be analyzed using data 

mining techniques for 

optimal performance and 

asset management 

purposes 

 SCADA data Several researches have been performed 

on parts of the water treatment process 

with a main focus on energy efficiency 

(Comas, Dzeroski et al. 2001) 

(Kusiak, Zeng et al. 2013, 

Torregrossa, Hansen et al. 

2017) 

(Dürrenmatt and Gujer 2012) 

 
c
h
e
m

i
c
a
l
 
w

a
t
e
r
 
q

u
a
l
i
t
y
 

Risk based 

monitoring 

Temporal and spatial 

trend profiles, correlation 

and clustering 

 

Combination 

of methods 

Target and non-target monitoring 

data, land use data, hydrological 

data 

Pilot study performed at Vitens. 

Potentials for other drinking water 

companies 

(Sjerps, Brunner et al. in 

preparation) 

Wastewater 

based 

epidemiology 

Correlation, PCA, temporal 

and spatial trend profiles 

Combination 

of methods 

Target, and non-target screening 

data, pH, conductivity, rain fall, 

flow, mobile phone data 

Pilot study TKI and WATCH. Potential to 

expand the broad range of health 

indicators. Data mining needed for 

integration of different data (formats), 

not yet implemented 

(Causanilles, Baz-Lomba et al. 

2017), TKI, WATCH 
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 label technique/ description  method class type of data state of development reference 

Identification of 

unknowns, 

including 

transformation-

products 

Correlation, PCA, temporal 

and spatial trend profiles, 

Cheminformatics - QSARs, 

machine learning 

Prediction tools 

Combination 

of methods 

HRMS target and NTS data 

Chemical structure data, 

biotransformation rules 

Current analysis includes manual steps, 

however potential to mine data with 

data mining techniques 

Ongoing projects target 

automation/data mining 

- BTO 2018 high throughput 

identification 

- BTO 2018 VO Integration 

- DPWE robustness treatment trains 

- AquaNES 

- UVPD  

However: machine learning not part of 

these efforts yet, yet highly relevant! 

(Krauss, Singer et al. 2010, 

Hug, Ulrich et al. 2014, 

Schymanski, Jeon et al. 2014, 

Bletsou, Jeon et al. 2015) 

Identification of 

nano- and 

microplastics 

Spatial comparison of 

detected spectra  

Spatial 

comparison 

Fourier-transform infrared (FTIR) 

spectra and Thermogravimetric 

(TGA) spectra 

Currently manual analysis, potential to 

mine data with data mining techniques 

(Mintenig, Int-Veen et al. 

2017) 

Chemical 

exposure 

modeling 

 

 

 

 

 

 

 

 

 

 

QSAR model, GIS model, 

correlation  

Combination 

of methods 

Chemical use and property data, 

spatial data (rainfall, soil type, 

hydrology)  

TRANSATOMIC.xlsx Pilot VO 

Waterkwaliteitskaart 

(Mackay and Paterson 1991, 

Mackay, Shiu et al. 1992, 

Scheringer 2009, Scheringer, 

Jones et al. 2009, Zarfl, 

Scheringer et al. 2011, 

Wambaugh, Setzer et al. 2013, 

Judson, Houck et al. 2014, 

Zijp, Posthuma et al. 2014, 

Schulze, Sättler et al. 2018). 

TRANSATOMIC.xlsx 
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 label technique/ description  method class type of data state of development reference 

b
i
i
o
lo

g
i
c
a
l
 
w

a
t
e
r
 
q

u
a
l
it

y
 

Geohydrology Predicting hydrology from 

DNA material  

Machine 

learning 

Genomic sequences, hydrology Early Good et al. (2018) 

Infection and 

disease 

management 

Assessment of climate 

change effects on disease 

occurrence (decision 

support system) 

Network maps 

(classification) 

Literature data (key facts), 

environmental data, data on food 

and waterborne disease 

occurrence 

Intermediate Semenza et al. (2012) 

 Management of 

species 

invasions 

Assessment of factors 

contributing to species 

invasions 

Graph 

clustering 

Vessel movement, ballast 

discharge, various ecological & 

environmental data 

Early Xu et al. (2014) 

 Predicting fish 

communities 

Predicting fish community 

composition and species 

richness 

Classification 

and regression 

tree (CART), 

random 

forests (RF) 

Land cover data (GIS), hydrologic 

data, topographic data, data on 

fish communities 

Early He et al (2010) 

 Predicting 

cyanobacteria 

toxins 

Remote monitoring 

(predicting) of 

cyanotoxins, early warning 

system 

Deep learning Remote sensing (satellite); water 

quality (including microcystins)  

Intermediate Chang et al. (2014) 

 Understanding 

drinking water 

advisories 

(DWAs) 

Identification of factors 

contributing to DWAs 

Decision tree Data on likelihood of DWAs, water 

system characteristics 

Early Harvey et al. (2015) 

 Public response 

analysis 

Assessment societal 

relevance of 

environmental events 

Association 

rules 

Social media mentions of specific 

terms (Twitter, Google Trends) 

Early Cha & Stow (2015) 
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 label technique/ description  method class type of data state of development reference 

 Disease and 

infection 

management 

Connecting disease and 

infection data on 

pathogen occurrence 

outside hospitals 

 Disease surveillance data, 

infection management data, 

genomic data 

Idea  

 Quantitative 

ecological risk 

assessment 

(QERA) 

Stepwise approach to 

quantify ecological risks 

and evaluate suitable 

management scenarios 

 Environmental data, data on 

management effectivity, data on 

disturbance events 

Idea  

 

TABLE 7: OVERVIEW OF DATA MINING OPPORTUNITIES FROM A DATA PERSPECTIVE. 

 label Description scale of data state of development Possible application 

h
y
d
r
o
lo

g
y
 

Nitrate sensor in 

soils 

Nitrate concentrations in 

soil water and in leaching 

water, measured directly 

or indirectly with sensors 

Point data 

Real-time, continuous measurement 

is possible (when equipped with 

wireless data-logger) 

Direct and continuous measurements of nitrates 

in soil are at this moment not operational. 

Indirect measurement via EC has the highest 

potential to be applied in field conditions. 

Methods of nitrate sensors were reviewed upon 

request of Vitens (SPO bodemsensor (Cirkel, 

Fujita et al. 2017)) 

Monitoring/prediction of nitrate 

leaching 

Optimizing manure application (on 

both temporal and spatial scales) 

Distributed 

Temperature 

Sensing 

Distributed sensoring with 

glass fiber cable for 

temperature measurement 

Continuous, real-time measurements 

along the entire length 

The sensor has been used in on-goind TKI 

project Koppert Cress to monitor temperature 

around geothermal energy storage. 

Real-time monitoring of geothermal 

energy 

Drone images Drone image with 

different types of sensor 

data 

Area-covering, up to ca. 1x1 km / 

flight 

KWR purchased a drone (with multispectral 

sensor, thermal sensor). A certified pilot will be 

available soon. 

 

TKI proposal (on change detection in vegetation 

using drone) is in preparation 

Mapping of vegetation patterns, 

assessment of evapotranspiration, 

detection of drought damage to 

agricultural crops, signaling of pipe 

leakages and illegal discharges, 

counting of animals in nature areas. 
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 label Description scale of data state of development Possible application 

Detailed soil 

map 

Soil maps with detailed 

categories (i.e. much more 

than current  

Area-covering for whole Netherlands Provinces are taking initiatives to aggregate 

detailed maps 

Replace current rough soil maps 

(which is used as model input for 

PROBE and hydrological models), 

leading to better model predictions 

Hydro-geo-eco 

database 

Integrated database of 

hydro, geochemical, and 

ecological variables 

obtained in the past 

projects of KWR. 

Point data, scattered all over the 

Netherlands 

No initiative (yet). Data and knowledge is 

scattered in a number of colleagues of team 

GEO/ECO. Need lots of efforts to integrate and 

standardize. LIMS (Laboratory information 

management system) may help promoting 

integrated use of existing data within KWR. 

Analysis of factors influencing 

removal efficiency of 

virus/nitrate/other unwanted 

substances in infiltration water. 

Identifying factors to determine 

successful establishment of specific 

vegetation groups 

Standardized 

groundwater 

quality data 

Standardized monitoring 

data of groundwater 

quality by BRO (Basis 

Registratie voor de 

Ondergrond), which will 

be ready by 2020 

Point data of well (with multiple 

filters on different depths) from all 

over the Netherlands 

Yearly measurement  

Provinces (which are responsible for the 

monitoring) have delivered groundwater data to 

IHW as a temporary database (which proceeds to 

the BRO database). 

Assessment of groundwater quality 

change (in relation to, e.g. well 

clogging, manure policy, etc.) 

w
a
t
e
r
 
t
r
e
a
t
m

e
n
t
 
+
 
 
d

i
s
t
r
i
b

u
t
io

n
 

Sensor data in 

treatment plants 

Continuous, real-time 

measurements of water 

quality & quantity 

parameters     

Measurements inside treatment 

plants 

- Electrical conductivity sensor data and 

software sensors have been used to predict 

the chemical water quality in a small-scale 

groundwater treatment plant (Hoenderloo, 

Netherlands) 

- KWR & WLN are discussing ideas to 

optimize treatment processes (DW, 

industrial, and WW) with data mining of 

sensor data and meta-data.  

- Optimization of drinking water 

treatment  

- Understand and optimize 

treatment processes and extract 

operational rules 

Sensor data in 

water 

Continuous, real-time 

measurements of water 

Throughout a drinking water 

distribution network - for now mostly 

at supply area inflows, but 

- anomaly detection on flow and pressure data is 

becoming common practice; 

- anomaly detection in 

infrastructure 
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 label Description scale of data state of development Possible application 

distribution 

networks 

quality & quantity 

parameters     

increasingly also at other locations in 

the networks 

- water quality anomaly detection is still in its 

infancy; 

- combined analysis of multiple signals in early 

research stage 

- anomaly detection in water 

quality 

- event identification 

- improved understanding of the 

functioning of the system 

Smart meter 

data in 

distribution 

systems 

Continuous (real-time) 

measurements of water 

quantity and quality at 

households or in the 

distribution network 

Throughout a drinking water 

distribution network 

Implemented at several demonstration sites, 

mostly as pilot projects (e.g. 

SmartWater4Europe; PUB, Singapore; Aguas de 

Valencia)   

- Leak detection  

-  Water quality and temperature 

monitoring 

- Automated invoicing 

- Improve hydraulic models 

- Social alarm system (e.g. in case of 

absence of demand at elderly homes)  

Asset data Registration of asset 

properties, measurements 

of asset condition and 

environment data.   

At the level of individual assets or 

components.   

In the Netherlands: Ongoing uniform 

registration of pipe failures (USTORE); KWR 

develops an automated inspection robot in 

collaboration with tech partners and water 

companies. A new initiative has been piloted 

and is being discusses for a data platform to 

register assets at the level of components 

(Citadel).  

- Optimize asset management 

(replacement of pipes). 

Social media & 

customer data 

Customer information 

(statements, opinions, 

alerts) on Twitter, 

Facebook, Google Trends, 

etc.  

Data from customers in a distribution 

network or for a certain customer 

profile. 

The use of social media platforms is widespread 

and increasing. Data is partly free & accessible. 

In a KWR study (BTO 2015.024) a correlation 

between customer data, water quality incidents 

and causes has been demonstrated. 

- Improve customer demand 

profiles 

- Improve customer information 

service 

- Early warning for water quality 

and quantity anomalies 
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 label Description scale of data state of development Possible application 

w
a
t
e
r
 
q
u
a
l
it

y
 

Substance 

structures and  

properties 

databases 

Databases of compounds 

including physicochemical 

properties and/or 

toxicological information  

Chemical space. Meta data 

increasingly included. 

Steadily growing with the goal to cover the 

entire chemical space. Integration of various 

data sources and datatypes. Inclusion of 

transformation products. 

U.S EPA CompTox Chemistry dashboard: well 

curated, 761000 chemicals (Williams, Grulke et 

al. 2017); PubChem 94 million chemicals; 

ChemSpider 64 million compounds, 243 data 

sources; StoffIDENT: database of water-relevant 

chemicals  

Use of cheminformatics and QSARs to 

predict chemical and toxicological 

properties. 

Use of databases as suspect lists in 

suspects screening.  

Identification of chemicals, including 

transformation products in non-

target screenings.  

Use of toxicological information for 

prioritization and risk based 

monitoring.  

Mass spectral 

library 

databases 

Databases of MS2 

fragmentation spectra, 

required for structural 

identification of 

compounds in HRMS 

screenings. 

MS2 fragmentation spectra. Meta 

data. 

Commercial (mzcloud) and non-commercial 

databases (Massbank.eu, Mass Bank of North 

America (MoNA)). Varying curation levels. Need 

for more high quality spectra, acquired with 

different parameters and instruments.   

MS2 based identification of chemicals 

in non-target screening data. 

Substructure searches for 

transformation products. 

Contribute own spectra to existing 

databases.  

Predict fragmentation patterns 

through mining of existing 

databases.  

Chemical water 

quality 

monitoring 

databases  

Chemical water quality 

databases including 

REWAB, RIWA and BRO 

(basisregistratie 

ondergrond) and 

bestrijdingsmiddelen atlas 

Monitoring data in source and 

drinking water 

Monitoring data is collected for authorization 

and extra-legal purposes. Chemical water quality 

databases are present and under construction, 

quality assurance is often under development   

Development of risk based water 

quality monitoring programs, 

decision support for drinking water 

companies to produce safe drinking 

water, decision support for the 

authorization and/or licensing of 

chemicals 
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5.3.2 Treatment and transport infrastructure 

Looking at infrastructure, including treatment, distribution and wastewater infrastructure, 

many utilities and water boards are moving from a reactive towards a pro-active and, 

ultimately, a forecasting style of water system management. This perspective requires real 

time monitoring, complemented with real-time forecasting and real time control – which 

suggests a progressive focus on available data resources and the development of data-

analysis tools. Another important ingredient of effective data management is data 

visualization (algorithms, analytics and platforms) to improve the ability of operators to 

understand multi-dimensional data.  

 

This process will give rise to smart water distribution grids, with data collected through 

automated meter reading (AMR) and sensors for water quantity and quality placed 

throughout networks. The present focus in the application of the data which is collected 

from these sensors is on event or anomaly detection. Future potential includes a more acute 

comprehension of water demand patterns, water quality, customer profiles, and the 

functioning and deterioration of the system through a combination of data sources, e.g. to 

enhance network efficiency, improve water planning, manage billing and propose new 

customer services (Cheifetz, Noumir et al. 2017, March, Morote et al. 2017, Stewart et al. 

2018 ). 

 

Apart from these direct and (near) real time measurements, additional data sources are 

helping to improve asset management of water transport and distribution and wastewater 

transport infrastructures. Up till now, detailed information of components of assets is 

lacking, but this turns out to be an essential component of life predictions with an 

acceptable accuracy. A new collaborative initiative in the Dutch sector the data platform 

Citadel could help to improve subsurface asset information. Citadel is aimed at the 

registration of batch and serial numbers at component level will be registered. The 

structured and comprehensive registration holds a potential to increase the quality of the 

entire chain, improve delivery security and reduce costs over the entire lifespan. The 

collaborative pipe failure registration platform USTORE (Moerman and Beuken 2015) and 

information architecture UKNOW (Moerman, Van Vossen et al. 2016) are examples of 

registering pipe failures and asset information that allow for detailed statistical analysis with 

the aim of optimized pipe replacement. It can be expected that environmental data 

availability and quality will continue to grow and become more fine-grained, for example 

through high-resolution data from satellites and drones. The use of environmental data 

could further improve asset management strategies, e.g. by using soil, weather and traffic 

data for improved pipe stress calculations and degradation predictions. (The use of 

environmental data is however not limited to asset management.) 

 

Analysis of social media content (such as Twitter, Facebook, and Google Trends) aggregated 

through mining approaches can broaden the types of information available to water utilities 

and water boards, including sentiments among their customers that indicate issues that are 

important to them. 

 

Finally, graph databases may be useful for water distribution networks because of the 

similarity of the spatial nature of the data with the setup of such databases. Topological 

relations between sensor measurements can be easily reflected in the structure of such 

databases. Graph databases excel in many-to-many, network-type of problems and large 

volume, large variety data sets. With the addition of smart meters and the subsequent 

amount of data, graph databases need to be considered in more detail as a basis for 

combining data from multiple sensors in a meaningful way (Rose 2015, Creaco et al., 2016). 
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5.3.3 Chemical water quality 

Through the continuous exploration of existing and new datasets and their integration, 

chemical water quality data can be used not only to analyze the status quo but also predict 

the future impact of chemicals on drinking water quality, human and environmental health. 

This will help identify vulnerabilities and data gaps that need additional attention or 

protection, and ultimately be more predictive and responsive. In the field of chemical water 

quality, data mining should focus on its application to the fields of risk-based monitoring, 

wastewater based epidemiology and identification of unknowns from non-target screening 

data, including transformation products, identification of nano- and microplastics, and the 

modeling of chemical exposure. 

5.3.4 Biological water quality 

Biological water quality management is increasingly benefiting from the opportunities 

offered by data mining. A rapidly expanding field is that of genomics (analysis of genome 

structure and expression), where high-throughput technologies such as Next Generation 

Sequencing (NGS) have accelerated the availability of DNA sequence information and 

methods to process and analyse this genetic information. In biotechnology it has become 

common practice to apply data mining to relate information present in genomic databases 

worldwide to functional properties (Huttenhower et al., 2008, Kennedy et al., 2010, Ju and 

Zhang, 2015a,b) such as the production of desirable chemicals (pharmaceuticals, Lee et al., 

2008), to find novel pollutant degradation pathways or to relate identified genes to desired 

or undesired functions (e.g., antibiotic resistance genes, Liu). Current applications within 

biological water quality management are mainly on species identification based on small 

(amplified) DNA sequences (amplicon sequencing/metabarcoding) and on the genes and 

their expression (metagenomics and metatranscriptomics). For a review of NGS applications 

for biological water quality assessment we refer to Tan et al. (2015), with examples on 

identification of specific micro-organisms and their genes for e.g. disease risk estimation, 

presence of potentially toxic micro-organisms  or antibiotic resistance. In genomics, the 

increase in analytical capacity exceeds that of Moore’s law, meaning that the genome 

sequencing capacity increases at a faster rate than that of microprocessor computing 

capacity. This has already been addressed as a challenge for the coming years, otherwise the 

costs of data analysis will significantly exceed the costs of analysis. New (decentralized) 

computing solutions also have their drawbacks, and in the end the users should always be 

able to make informed decisions on analysis tools and understanding the analytical results 

(McPherson, 2009). This urges for novel approaches to handle these data in terms of 

hardware, but also in data mining tools that are able to combine and extract relevant 

information from multiple sources in an efficient manner.  

Biological water quality has traditionally relied on data mining approaches for risk 

management. One of the most widely applied data mining frameworks is that of quantitative 

microbial risk assessment (QMRA), a preventive, risk-based approach to water quality 

management. QMRA uses a single assessment of the risk of waterborne infectious disease 

transmission and has developed as a scientific discipline over the last two decades. QMRA 

has become embedded in the water-related guidelines of the World Health Organization 

(WHO, 2016), and is at the basis of many water safety plans (WSPs) and sanitation safety 

plans (SSPs) worldwide. Specific biological risks are also being managed using data mining, 

for example to predict the occurrence of cyanobacterial toxins or the risk of faecal infection. 
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Another class of applications is where data mining is used to monitor or predict the 

response of the ecosystem or parts thereof to environmental changes. This application is not 

widely applied yet, but has good potential since it gives insight in the typically complex and 

nonlinear response of these systems. 

Novel applications often arise at the intersection of scientific disciplines, and this also holds 

for biological water quality. In a multidisciplinary approach, often novel data mining 

techniques are adopted or combined, and/or different types of data are being related. This 

may lead to unexpected results, requiring careful interpretation and judgement. 

Nevertheless, this approach may identify patterns otherwise undetected. Examples of these 

are the prediction of river flow rates from genomics data (Good et al., 2018), understanding 

climate change effects by combining measured data and literature data (Semenza et al., 

2012), management of invasions by combining traffic (ship movements) with species data 

(Xu et al., 2014), predicting fish communities from combining species data with data on land 

use and hydrology (He et al., 2010) or predicting cyanotoxin risks from near-real time 

remote sensing data and biological data (Chang et al., 2014). From social sciences, another 

type of analysis is possible, namely monitoring the response of the human system to 

changes in biological water quality, which can give more insight into the response of both 

water managers (Harvey et al., 2015) as well as the end user/general pubic (Cha & Stow, 

2015). Examples of such cross-disciplinary approaches are rare, but have great potential. 

One obvious application is infection and disease management outside of hospitals: data 

from disease surveillance systems and hospital infection control data can be linked to 

(genomic) data on pathogen occurrence in drinking water distribution and sewage systems, 

and analyzed using spatiotemporal analysis techniques. This might give better insight in 

infection dynamics, disease spreading or hotspots of antimicrobial resistance. Another area 

is in ecological risks, where managers often have to deal with the response of a very 

complex ecosystem to disturbance events. Here, a stepwise approach analogous to the 

QMRA framework (termed QERA, see e.g. Bayliss et al., 2012) might help in managing these 

risks. 
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6 Conclusions and 

recommendations 

6.1 Conclusions 

In the methodological sense, data mining or more precisely knowledge discovery from 

databases is a mature field which offers many fully developed methods with a plethora of 

reference applications. In the specific water cycle management domain, numerous 

applications in both an academic and operational context are available internationally. From 

this perspective, there is no immediate need for KWR and the BTO utilities to put more effort 

in the development of (completely) new methods, but rather in the implementation and 

customization of existing methods. Both the datasets and the applications are readily 

identifiable, presenting opportunities.  

A number of successful applications have been reported also by Dutch utilities. However, 

practitioners indicate a number of obstacles:  

- data ownership and access; 

- availability of good data analysts; 

- availability and quality of data; 

- organizational dynamics/culture. 

They also stress the importance of knowledge both on data analytics methods and the 

application domain. No meaningful additional insights are to be expected if one is lacking.   

6.2 Recommendations to the water sector 

We have seen that methods, data and domain questions are there – with more emerging 

constantly. For the water utilities, our recommendations focus on resolving the barriers 

which have been identified and which are within their sphere of influence. These include data 

ownership and access, availability and quality of data, and organizational dynamics/culture. 

In this study, the root causes of these barriers have not been considered, but this would be a 

first step in resolving them. Organizations outside the water sector have taken steps and set 

up frameworks that address similar issues. A good example is Rijkswaterstaat, which 

presented its framework in one of the meetings of the Hydroinformatics Platform(e.g. Kisjes, 

2016). We recommend that their approach be considered as a starting point for data 

consolidation, quality control and data sharing across the water distribution industry. 

6.3 Recommendations to KWR 

This report has been written as a deliverable of the first phase of the BTO exploratory 

research project VO datamining. Based on the conclusions of the first phase, as described 

above, we recommend that the following phases of the project focus on the actual 

implementation of a number of data mining cases with BTO utilities. In doing so, we no 

longer aim for methodological exploration and innovation, but rather for innovation in the 

application. Important research questions to be answered include practical issues related to 

streamlining of the complete chain from data acquisition through quality assurance and data 

mining to decision (support). At a higher abstraction level, they also include questions on 

how to organize a successful implementation of data mining techniques – ideally also 

defining a ‘template’ approach. In order to identify the barriers and success factors, we 

recommend that social scientists also be included in the second phase of the project to 
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identify broader organizational root causes for barriers to and success factors in the 

implementation of data mining techniques within water utilities. 
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