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RESEARCH ARTICLE

The potential of highly nutritious frozen stages of Tyrophagus
putrescentiae as a supplemental food source for the predatory
mite Amblyseius swirskii
Fatemeh Pirayeshfara,b, Seyed Ali Safavib, Hamid Reza Sarraf Moayeric

and Gerben J. Messelinka

aBusiness Unit Greenhouse Horticulture, Wageningen University & Research, Bleiswijk, The Netherlands;
bFaculty of Agriculture, Department of Plant Protection, Urmia University, Urmia, Iran; cFaculty of Agriculture,
Department of Plant Protection, University of Zanjan, Zanjan, Iran

ABSTRACT
Astigmatid mites have potential as supplementary prey items to
support generalist predator populations in crops. However,
applying living prey mites has some disadvantages; if not predated
they have the potential to cause crop damage and allergies. In this
study, we evaluated various diets based on the astigmatid mite
Tyrophagous putrescentiae (Schrank) as a supplemental food source
for the predatory mite Amblyseius swirskii Ahias-Henriot. Eggs and
larvae of T. putrescentiae were reared on a diet of dog food (rich in
proteins and fat) or bran (rich in carbohydrate); they were offered
either frozen or alive, and either with or without cattail pollen
(Typha angustifolia L.). Oviposition rate of A. swirskii fed with frozen
mite larvae reared on dog food was similar to the rate observed
when they were fed with cattail pollen or living prey mites, but
developmental time of A. swirskii was longer on this frozen diet
than on a diet of living prey mites or pollen. Both living and frozen
prey mites were, in contrast with cattail pollen, not suitable for
oviposition by western flower thrips, Frankliniella occidentalis
Pergande. In a greenhouse study, the use of frozen prey mite
stages as supplemental food on chrysanthemum plants allowed
populations of A. swirskii to establish, but not increase; in contrast,
provision of living prey mites and pollen increased A. swirskii
populations on plants. Hence, our study shows that living prey
mites, but not frozen prey mites, had the greatest potential as a
supplemental food source for A. swirskii.
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1. Introduction

Phytoseiid predatory mites are one of the most important groups of natural enemies used
for biological control in greenhouse crops (Gerson & Weintraub, 2007; McMurtry &
Croft, 1997; van Lenteren, Bolckmans, Köhl, Ravensberg, & Urbaneja, 2018). Within
this family, Amblyseius swirskii Ahias-Henriot is currently the most economically
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important species which is commercially produced and applied in several countries as an
effective predator against key greenhouse pests, including whiteflies, thrips, spider mites
and tarsonemid mites (Calvo, Bolckmans, & Belda, 2011; Messelink, Van Maanen, van
Holstein-Saj, Sabelis, & Janssen, 2010; Messelink, van Maanen, van Steenpaal, &
Janssen, 2008; Nomikou, Janssen, Schraag, & Sabelis, 2002; van Maanen, Vila, Sabelis,
& Janssen, 2010). Amblyseius swirskii originates from the Mediterranean area and is con-
sidered a type III generalist predatory mite (McMurtry, De Moraes, & Sourassou, 2013),
meaning it not only feeds on different natural prey, but also on other non-prey food
sources like pollen, nectar, plant exudates, honeydew and pycnial fluid from fungi
(Goleva & Zebitz, 2013; Nomikou, Janssen, & Sabelis, 2003; Swirski, 1967). The ability
of A. swirskii to develop and reproduce on non-pest prey species and/or alternative
food sources is a huge benefit in establishing mass-rearing systems (Barbosa & de
Moraes, 2015; Massaro, Martin, & de Moraes, 2016; Nguyen, Vangansbeke, & de
Clercq, 2014). Furthermore, supplemental feeding also ensures that augmentative releases
of A. swirskii are more likely to retain and increase populations in cropping systems (Hoo-
gerbrugge, van Houten, van Baal, & Bolckmans, 2008; Huang et al., 2011; Messelink et al.,
2014). One of the most commonly applied supplemental diets is pollen (Broufas & Koveos,
2000; Goleva & Zebitz, 2013; Ragusa & Swirski, 1975; van Rijn & Tanigoshi, 1999). A com-
mercial product based on pollen from narrow-leaved cattail (Typha angustifolia L.) is cur-
rently used for maintenance and establishment of phytoseiid predatory mite populations
following augmentation in greenhouses (Adar, Inbar, Gal, Gan-Mor, & Palevsky, 2014;
Pijnakker, Arijs, de Souza, Cellier, & Wäckers, 2016; Vangansbeke et al., 2016).

Astigmatid mites are novel supplemental prey candidates to aid establishment of general-
ist predator populations in crops; they are easily mass-produced on inexpensive substrates
(bran, yeast, flour), and their use as factitious prey in the mass production of predatory
mites, is well studied (Barbosa & de Moraes, 2015; Castagnoli, 1989; Massaro et al., 2016;
Ramakers & van Lieburg, 1988; Simoni, Nannelli, Goggioli, Guidi, & Castagnoli, 2006; Van-
gansbeke et al., 2014). To date a number of astigmatid mite species are used in the commer-
cial mass production of several species of phytoseiid predators; these include Carpoglyphus
lactis (L.), Thyreophagus entomophagus (Laboulbene) and Tyrophagus putrescentiae
(Schrank) (Bolckmans & van Houten, 2006; Fidgett & Stinson, 2008). Several astigmatid
mite species are used to rear A. swirskii, including C. lactis (Nguyen, Vangansbeke, Lü, &
de Clercq, 2013), Suidasia medanensis Oudemans (Midthassel, Leather, & Baxter, 2013)
and T. putrescentiae (Riahi, Fathipour, Talebi, & Mehrabadi, 2017).

The use of astigmatid mites in greenhouses, as a supplemental food source for preda-
tors, has been explored in a few studies (Hoogerbrugge et al., 2008; Messelink et al., 2014).
However, there are some risks associated with this approach and it should be done with
caution. It is known that some species of astigmatid mites, including T. putrescentiae,
can feed on soft plant tissues and damage them (Czaikowska, van de Vrie, & Kropczynska,
1988; Oliveira, Návia, & Frizzas, 2007). Also, some astigmatid mites are a source of aller-
gens that can persist and accumulate in the environment, and may cause respiratory pro-
blems in workers (Arlian, Vyszenski-Moher, Johansson, & van Hage-Hamsten, 1997;
Green & Woolcock, 1978; Johansson, Johansson, & van Hage-Hamsten, 1994). Moreover,
living astigmatid mites secrete defensive oils and are mobile, which can limit successful
prey capture by predatory mites, particularly young predators (Midthassel et al., 2013;
Midthassel et al., 2016; Rifà & Griffiths, 2018). Supplementing the diet of predatory
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mites with frozen stages of astigmatid mites in crops might, therefore, be an interesting
approach to increase the likelihood of retaining released predatory mites. This has been
suggested in two recent patents (Guichou, Kreiter, Ferrero, & Maignet, 2015; Rifà &
Griffiths, 2018). In this study, we evaluated the potential of living and frozen stages of
T. putrescentiae as supplementary foods for the predatory mite A. swirskii in laboratory
and greenhouse trials. The patent of Guichou et al. (2015) suggests that, once frozen,
the egg stages of astigmatid mites have longer shelf life (ca. 4–6 weeks) than the other
stages (ca. 3 weeks). Based on this, we evaluated the performance of predatory mites on
different stages of frozen astigmatid mites.

Not only can the life stage of the prey mite affect predator performance, but also the
nutritional quality of the prey, as influenced by the prey’s diet (Erban, Rybanska, &
Hubert, 2015; Mayntz & Toft, 2001; Sarwar, Xu, &Wu, 2010). For this reason, we included
two different prey mite diets: one with a high fat, high protein and low carbohydrate
content (dog food); and one with a low fat, low protein and high carbohydrate content
(bran). Furthermore, several studies have shown that generalist predatory mites have a sig-
nificantly faster developmental time and higher reproductive output on mixed diets com-
pared with single prey diets (Evans, Stevenson, & Richards, 1999; Messelink et al., 2008;
Muñoz-Cárdenas et al., 2014). Whether positive effects of a mixed diet also occurs
when using frozen prey mites as a food source was evaluated in this study by including
mixtures of prey mites and cattail pollen as a treatment.

Previous studies evaluating alternative food sources for predatory mites have shown
that some food sources, such as pollen, also benefit pests such as the western flower
thrips, Frankliniella occidentalis Pergande (Hulshof, Ketoja, & Vänninen, 2003; Leman
& Messelink, 2015; Vangansbeke et al., 2016). Therefore, it could be important when
choosing alternative foods to select those that support the generalist predators more
than omnivorous pests. For this reason, we also assessed the effects of the factitious
diets on oviposition rates of F. occidentalis.

2. Materials and methods

2.1. Cultures of mites and thrips

The predatory mite A. swirskii was obtained from Koppert Biological Systems (Berkel en
Rodenrijs, The Netherlands) and subsequently reared on the leaves of sweet pepper, Capsi-
cum annuum L. cv. Spider (Enza Zaden, Enkhuizen, The Netherlands), which were placed
abaxial side uppermost on water-saturated cotton wool in plastic containers (18×12×5 cm).
The edges of the leaves were covered with wet tissue paper to provide sufficient moisture and
also prevent the A. swirskii from escaping (van Rijn & Tanigoshi, 1999). A small piece of
cotton thread was placed at the centre of the arena to serve as an oviposition substrate. Colo-
nies were maintained under long day illumination (16L: 8D) in a climate chamber at 25°C
and 70% RH. Every two days, the predators were fed with cattail pollen (Typha angustifolia)
as a standard rearing diet (Nguyen et al., 2013). Cattail pollen was supplied by Biobest N.V.,
(Nutrimite TM) (Westerlo, Belgium) and stored at −20 °C. All laboratory trials were done
with 4–5 d-old female A. swirskii collected from this laboratory culture, but for the green-
house trial, the predatory mites were collected directly from the commercial product
obtained from Koppert (reared on the storage mite, C. lactis with bran as a food substrate).

BIOCONTROL SCIENCE AND TECHNOLOGY 3



A stock colony of the storage mite, T. putrescentiae, was provided by Koppert Biological
Systems (Berkel en Rodenrijs, The Netherlands). Two colonies of these mites were estab-
lished andmaintained on two different food sources to obtain prey mites of different nutri-
tional values. The prey mites were reared either on crushed dry dog food (Royal Canin,
Veghel, The Netherlands), which represented a high fat, high protein and low carbo-
hydrate diet (Erban et al., 2015), or on wheat bran (Havens, Maashees, The Netherlands),
which represented a low fat, low protein and high carbohydrate diet (Erban et al., 2015).
Both diets were supplemented with instant dry bakers’ yeast (Mauripan, Hampton, United
Kingdom) (50/50 by weight), known to improve the reproduction of predatory mites
(Huang et al., 2013). Tyrophagus putrescentiae was reared for several generations in a
plastic box (10 cm in diameter, 6 cm in high) that was embedded in a larger glass container
(14 cm diameter, 8 cm high) filled with a 1 cm layer of a saturated KNO3 solution (pre-
venting the escape and also providing the necessary humidity) and covered with a lid
(Kuwahara, Ishii, & Fukami, 1975). Both the colonies of A. swirskii and T. putrescentiae
were maintained in a growth chamber at 25°C and 70% RH and 16 L: 8 D. Western
flower thrips, F. occidentalis were maintained for many generations on flowering chry-
santhemum plants (Dendranthema grandiflora Tzvelev cv. Tapas Time), in a separate
greenhouse compartment, provided with artificial light and heating during winter. The
plants were kept in cages to avoid contamination by other herbivores and replaced
frequently.

2.2. Factitious foods

Ten factitious diets based on the storage mite T. putrescentiae and cattail pollen
(T. angustifolia) were prepared (Table 1). The ratio of pollen to frozen diet was 1:1 (by
weight). Eggs of T. putrescentiae were isolated from other life stages by sieving colonies
through a 100 µm mesh screen. Eggs were stored at −20 °C for at least 4 h before use
in the trials. A proportion of sieved eggs were not frozen but instead incubated for 48 h
under the conditions described previously, until they hatched (more than 80%) and devel-
oped into larvae; these larvae were stored at −20 °C for at least 24 h before using in the
trials. The frozen diets (eggs and larvae) were thawed at ambient laboratory temperatures
(20 ± 2°C) for ca. 30 min before using in the trials. For all laboratory and greenhouse
assays, cattail (T. angustifolia) pollen was used as a reference (Table 1).

Table 1. Different diets based on the prey mite, Tyrophagus putrescentiae and cattail pollen (Typha
angustifolia).
No. Foods treatments Food substrates

1 cattail pollen -
2 Mixed life stages of T. putrescentiae wheat bran + dry yeast
3 Mixed life stages of T. putrescentiae dog food + dry yeast
4 frozen eggs of T. putrescentiae wheat bran + dry yeast
5 frozen larvae of T. putrescentiae wheat bran + dry yeast
6 frozen eggs of T. putrescentiae dog food + dry yeast
7 frozen larvae of T. putrescentiae dog food + dry yeast
8 frozen eggs of T. putrescentiae + cattail pollen wheat bran + dry yeast
9 frozen larvae of T. putrescentiae + cattail pollen wheat bran + dry yeast
10 frozen eggs of T. putrescentiae + cattail pollen dog food + dry yeast
11 frozen larvae of T. putrescentiae + cattail pollen dog food + dry yeast
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2.3. Oviposition of the predatory mite and thrips

Oviposition rates of the predatory mite, A. swirskii, on the 11 selected diets (Table 1) were
measured over three consecutive days. Peak oviposition rates of phytoseiid mites (the first
days after the pre-oviposition period) are known to be a good stand-in parameter for
population growth rates (Janssen & Sabelis, 1992) and we therefore decided to limit the
time for measuring oviposition to only 3 days. We developed a ‘floating leaf disk
method’ for measuring oviposition rate of the predator. Same age gravid female
A. swirskii (4-5 days since adult emergence) were placed individually on 2.5 cm sweet
pepper (C. annuum) leaf discs in 5 cm diameter Petri dishes (the experimental unit).
Each leaf disc was floating abaxial side uppermost on water (1 cm depth in the Petri
dish) supported by a stand made from a modified paper clip. The stand had been glued
to the base of the Petri dish before filling with water. Dishes were closed with a fine-
mesh lid to allow ventilation. In this way, the leaf disc was completely surrounded by
water, which prevented escape of the predatory mites. Each disc had a leaf axil as a doma-
tium for A. swirskii oviposition (Faraji, Janssen, & Sabelis, 2002). Food was introduced
into each experimental unit in the following quantities according to treatment: 0.01 g of
pollen; 0.01 g frozen diets or 40–50 living prey life stages (predominantly eggs and
larvae). Offered diets were replaced every other day and the old food was removed. For
each food treatment there were 20 replicate experimental units. As eggs were laid by
the predatory mites they were counted and removed daily to prevent cannibalism.
Based on these oviposition trials, we determined the optimal numbers of living and
frozen prey for subsequent trials.

Oviposition rates of female western flower thrips, F. occidentalis were measured over 4
consecutive days using a modification of the double parafilm method described by Teulon
and Penman (1991). An experimental unit consisted of a perspex cylinder (30 mm high
and 25 mm diameter) that was closed at one end with a mesh (size 80 µm) to allow ven-
tilation and at the other end by two layers of stretched parafilm. After adding a food treat-
ment, three female F. occidentalis of unknown age were placed in each unit and the first
layer of parafilm immediately put in place to retain the thrips inside the cylinder. Then
small droplets of water (about 0.05 ml), were placed on the surface of the first layer of
parafilm and then covered with the second layer of parafilm. The water layer between
the two layers of parafilm was used for thrips oviposition. Three diets were tested: 1)
cattail pollen (0.02 gr/unit), 2) Mixed living life stages of T. putrescentiae (about 100
mites, predominantly eggs and larvae) and 3) frozen larvae of T. putrescentiae (0.02 gr/
unit) (i.e. diets 1, 3 and 7; respectively, Table 1). There were 50 replicate experimental
units for each treatment. For both oviposition trials, we omitted from the analysis the
data from the first day, because those eggs had been produced on pre-experimental
diets (Sabelis, 1990).

2.4. Juvenile development and survival of A. swirskii

Based on the observed predatory mite oviposition rates for the different diets, we selected 3
diets to assess in addition juvenile developmental time and survival of A. swirskii (i.e. diets
1, 3 and 7; Table 1). To obtain synchronised predatory mite eggs, 100 gravid females were
transferred from the rearing cultures to a new rearing unit (similar to the oviposition

BIOCONTROL SCIENCE AND TECHNOLOGY 5



experimental unit, but bigger) with cattail pollen and left for 24 h. Then their eggs were
individually transferred to the experimental units (floating leaf disk method), as described
for the oviposition trials. Diets were added to each unit (0.01 g) after the emergence of
larvae; the old diet was removed every 48 h and replaced with a fresh diet. The duration
of each life stage was determined by recording the presence of exuvia as evidence of moult-
ing. Survival and development of individuals were recorded daily until mites reached
adulthood. There were 20 replicate experimental units for each diet. All laboratory exper-
iments were done in a climate chamber under the conditions described previously.

2.5. Greenhouse trial

Based on the laboratory trial results, four different supplementary food treatments were
selected to assess the effects of on establishment and population growth of the predatory
mite, A. swirskii in a greenhouse compartment 24 m2 in area. Young chrysanthemum
plants (Dendranthema X grandiflorum cv. Baltica) were supplied by Deliflor (Maasdijk,
The Netherlands) and were planted in 12 cm diameter pots filled with peat. Each exper-
imental unit (serving as a replicate) contained four pots, each with one plant bearing
between four and six leaves at the beginning of the trial. All plants were placed on
water-saturated irrigation mats to prevent predatory mite migration and minimise con-
tamination amongst treatments. Each treatment had four replicates, thus a total of 16
pots per food diet were used. The plants were irrigated with a standard nutrient solution
using an ebb-and-flow irrigation system for 10 min per day. The four food treatments
were: 1) cattail pollen, 2) mixed living life stages of T. putrescentiae, 3) frozen larvae of
T. putrescentiae and 4) frozen larvae of T. putrescentiae + cattail pollen. The prey mites
in all treatments were reared on dog food. Before releasing the predatory mites, they
were collected using a fine brush and placed in groups of ten per sweet pepper leaf disc
(4 cm diameter) and then transferred to the chrysanthemum plants. We released five
adults of A. swirskii per plant. Food treatments (0.05 g/plant) were added shortly after
the predator releases by dusting with a fine brush to achieve an even distribution. For
the treatment containing a mixture of living life stages of T. putrescentiae, approximately
500 different mobile stages were released per plant (counted based on weight). Population
growth was monitored weekly for 5 consecutive weeks (before flowering began) by count-
ing all stages of A. swirskii on eight randomly picked leaves per replicate (two leaves per
plant). The experiment was set-up as a completely randomised design and all units were
distributed over one big table (7 m2) with similar conditions for all replicates. Temperature
and relative humidity were monitored every 5 min with a climate recorder (Hoogendoorn
Growth Management, Vlaardingen, the Netherlands) during the experiments. The average
temperature was 23.1°C (range 17.1–27.5°C) and the average relative humidity 72% (range
46–87%).

2.6. Statistical analysis

Daily oviposition rates of A. swirskii and F. occidentalis and also duration of immature
stages of the predatory mite were analysed using a generalised linear model (GLM)
with a Poisson error distribution of the data. Differences amongst treatments were
tested using Fisher’s LSD (Least Significant Difference) method at the 5% level of
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significance. For the greenhouse trial we used a generalised linear mixed model (GLMM)
with time as a random factor in order to analyze overall treatment effects through time.
A Poisson error distribution was applied for the predator densities (total numbers of
all stages). Differences amongst treatments were also determined using an LSD test
(p < 0.05). All statistical analyses were done using the statistical package GenStat
(Release 19.1).

3. Results

3.1. Oviposition of predatory mite and thrips

Oviposition rates of A. swirskii were significantly different amongst diet treatments
(F10,209 = 29.94, p < 0.001, Figure 1). Amongst the four frozen factitious diets (without
pollen) the provision of frozen larvae of T. putrescentiae reared on dog food achieved a
significantly higher oviposition rate in A. swirskii than the other frozen diets, all of
which resulted in very low oviposition rates (Figure 1). Provision of frozen larvae of
T. putrescentiae achieved significantly higher oviposition rates in A. swirskii than frozen
eggs, especially when dog food was the food source for the prey mite rearing (Figure 1).
Adding cattail pollen to the frozen mites did not increase oviposition rates compared
with the treatment with only cattail pollen (Figure 1). Two treatments including frozen

Figure 1. Oviposition rates of the predatory mite Amblyseius swirskii on different diets based on the
prey mite Tyrophagus putrescentiae in comparison with cattail pollen (Typha angustifolia). Dog food
and bran indicate the food substrates on which the prey mite had been reared. Yeast was also part
of these diets in all the prey mite treatments (see Table 1 for details). Shown are the mean
numbers of eggs (± SE) per female per 2 consecutive days (combined data of day 2 and day 3),
since the predators were allowed to feed on the different diets. Different letters beside the bars indicate
significant differences amongst treatments (LSD test: p < 0.005).
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larvae of T. putrescentiae (reared on both bran and dog food) + cattail pollen even resulted
in a significant decrease in oviposition rates compared with cattail pollen alone (Figure 1).
In contrast, significantly higher oviposition rates were achieved by A. swirskii when sup-
plemental living prey mites were reared on bran compared with when they were reared on
dog food (Figure 1).

Food treatments also had a significant effect on the oviposition rates of F. occidentalis
over four consecutive days (F3,196 = 561,0 p < 0.001, Figure 2). The highest oviposition rate
was achieved when cattail pollen was the supplementary diet (Figure 2); mixed living life
stages and frozen larvae of T. putrescentiae (both reared on dog food) were unsuitable for
F. occidentalis resulting in oviposition rates that were similar to those in the treatment
without food (Figure 2).

3.2. Juvenile development and survival of A. swirskii

The predatory mite, A. swirskii, was able to develop and survive of on all three diets eval-
uated. Significant differences amongst treatments were observed for the duration of the
egg stage (F2,57 = 12.57, p < 0.001), the deutonymph stage (F2,57 = 5.39, p = 0.007) and
the total juvenile development time (F2,57 = 15.07, p < 0.001) (Table 2). The shortest and
longest juvenile development times for A. swirskii were observed on diets of cattail
pollen and frozen prey larvae, respectively. The percent survival of juvenile stages was
>95% on all diets evaluated (Table 2).

Figure 2. Mean (±SE) number of eggs per female western flower thrips, Frankliniella occidentalis, when
feeding on three different food sources over 4 consecutive days. The food diets were cattail pollen
(Typha angustifolia), living Tp (mixed life stages of Tyrophagus putrescentiae reared on dog food +
yeast), frozen Tp (frozen larvae of T. putrescentiae reared on dog food + yeast). Different letters rep-
resent significant differences amongst treatments (LSD test: p <0.05), based on the total number of
eggs produced in 3 days (data first day omitted).
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3.3. Greenhouse trial

Population dynamics of the predatory mite, A. swirskii, on chrysanthemum plants were
affected significantly by the type of diet provided (F3,72 = 8.87, p < 0.001; Figure 3).
Overall predatory mite densities were not significantly different between the two treat-
ments containing pollen and living stages of T. putrescentiae (Figure 3). Predator densities
in all treatments increased over time, except in the frozen prey mite treatment where they

Table 2. Mean developmental time (days ± SE) of immature stages of the predatory mite Amblyseius
swirskii when fed on different food sources; cattail pollen (Typha angustifolia), living Tp (mixed life
stages of T. putrescentiae reared on dog food + yeast) and frozen Tp (frozen larvae of
T. putrescentiae reared on dog food + yeast).

Food
source

Immature stages

Survival
percentEgg Larva Protonymph Deutonymph

Total juvenile developmental
time

cattail
pollen

2.2 ± 0.09 a 1 ± 0 a 1.95 ± 0.13 a 1.4 ± 0.15 a 6.6 ± 0.22 a > 95%

living Tp 2 ± 0.10 a 1 ± 0 a 2.4 ± 0.18 a 1.5 ± 0.15 a 6.9 ± 0.16 a > 95%
frozen Tp 2.7 ± 0.10 b 1.05 ± 0.5 a 2.3 ± 0.16 a 2 ± 0.10 b 8.05 ± 0.19 b > 95%

Different letters within the same column indicate significant differences among treatments (LSD test: p < 0.05).

Figure 3. Population dynamics of the predatory mite Amblyseius swirskii on chrysanthemum plants in
the presence of four types of food sources: pollen (cattail pollen, Typha angustifolia), living Tp: (mixed
life stages of Tyrophagus putrescentiae reared on dog food + yeast), frozen Tp: (frozen larvae of
T. putrescentiae reared on dog food + yeast) and frozen Tp + pollen: ([frozen larvae of
T. putrescentiae reared on dog food + yeast] + cattail pollen). Different letters indicate significant differ-
ences amongst treatments through time (LSD test: p < 0.05).
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remained very low throughout (Figure 3). Adding cattail pollen to the frozen mites did not
increase overall predatory mite densities compared to the treatment with only cattail
pollen (Figure 3).

4. Discussion

The laboratory trials in this study demonstrated that there was potential to use frozen
stages of astigmatid mites (T. putrescentiae) as food sources for generalist predatory
mites. Interestingly, both the stage and the diet of the prey mite strongly affected their suit-
ability as factitious diets for the predatory mite. Only provision of larval stages of
T. putrescentiae reared on a protein-rich and fat-rich diet (dog food) resulted in high ovi-
position rates of the predatory mite, A. swirskii (Figure 1). Erban et al. (2015) showed that
population growth of T. putrescentiae was much higher on a diet with high-protein and
high-fat content than on a diet with low-protein and low-fat content. The prey mite popu-
lation growth rate may be an indication for the nutritional value of prey mites for pred-
atory mites. Sarwar et al. (2010) compared the effects of different flour diets (wheat,
soybean and maize) as food substrates firstly for T. putrescentiae, but also indirectly for
the predatory mite, Neoseiulus pseudolongispinosus (Xin, Liang and Ke) when it fed
on the prey mites that had been fed different flours. In their study, wheat flour resulted
in the highest population growth of the prey mite, which also resulted in the fastest juven-
ile development of the predatory mite.

In our study, provision of the diet based on frozen larvae of T. putrescentiae reared on
dog food and living stages of the prey mite reared on bran achieved the same oviposition
rate in A. swirskii as provision of cattail pollen. This is in contrast with the study of Riahi
et al. (2017) who reported that living immature stages of T. putrescentiae reared on fungi
and Gaeumannomyces graminis var. tritici was an inferior diet for A. swirskii leading to a
significant reduction in fecundity and intrinsic rate of increase compared with maize and
almond pollens. Possible reasons for this discrepancy are the use of different diets for the
prey mite rearing and the use of different stages of prey mites. Based on capture success
rate, Midthassel et al. (2013) claimed that A. swirskii preferred eggs and immature
stages of the prey mite, Suidasia medanensis Oudemans compared with adults. Stronger
defense behaviour and higher mobility of the adult prey mites were suggested as the
main reason for this preference. Also the nutritional value of the prey mite stage might
play a role. The type and quantity of proteins is different between egg and larval stages
of arthropods. During pre-imaginal development, yolk protein (vitellin) changes to
larval protein (Sloggett & Lorenz, 2008). This change may explain the significantly
higher oviposition rates of A. swirskii on frozen larvae of T. putrescentiae (reared on
both bran and dog food) compared with frozen eggs (Figure 1).

The oviposition rates of A. swirskii fed with frozen prey mite larvae reared on dog food
were similar to those fed on pollen of living prey mites fed on bran. However, the juvenile
developmental time of A. swirskii was significantly longer on this diet compared with
living stages of prey mites or pollen, showing the frozen diet was of inferior quality.
The freezing process probably has adverse effects on nutritional quality of factitious
foods. During freezing and even long-time cold storage, the activity of proteases and
other metabolic enzymes is not entirely prevented, leading to cell and tissue breakdown
and nutrient loss; this explains the decrease in quality of frozen diets (Léger, Bengtson,
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Simpson, & Sorgeloos, 1986). Midthassel et al. (2013) also showed that freeze-killed
S. medanensis, had thicker cuticle than living S. medanensis; this prevented A. swirskii
from easy penetration of the idiosoma and restricted feeding to the coxae and gnathosoma.

Despite these limitations, the ability of A. swirskii to complete development on the
frozen larval prey mites reared on protein-rich food and their high oviposition rates,
suggests this diet has potential to support predatory mites in crops. However, providing
this frozen supplemental diet did not successfully support A. swirskii on chrysanthemum
plants in the greenhouse. Although populations established, they did not increase in den-
sities. The possible reasons for this failure may be related to several factors. Firstly, fluctu-
ations in greenhouse temperature and relative humidity may change the nutritional
quality of the diets and affect the ability of predators to extract sufficient nutrients
(Vangansbeke et al., 2016). For example, high variation in temperature and relative
humidity had adverse effects on hydration of decapsulated brine shrimp cysts (Artemia
spp.) (Artefeed) and decreased their suitability as food for A. swirskii; subsequently this
reduced establishment of the predatory mite (El-Magsodi, Bossier, Sorgeloos, & van
Stappen, 2014; Vangansbeke et al., 2016). Secondly, the delayed juvenile developmental
time of A. swirskii feeding on the frozen diet would ultimately lead to slower population
growth in the greenhouse.

The fact that A. swirskii was able to reproduce in the laboratory and greenhouse on
living stages of T. putrescentiae is interesting, knowing that several attempts for mass pro-
duction of the predator on this prey mite have failed (Riahi et al., 2017; personal experi-
ence of authors). Currently, Carpoglyphus lactis L. is used for commercial mass production
of A. swirskii (Calvo, Knapp, van Houten, Hoogerbrugge, & Belda, 2015; Nguyen et al.,
2014). Tyrophagus putrescentiae excretes alarm pheromones such as neryl formate as a
defense mechanism that induces escape behaviours and reduces successful capture by
predatory mites (Howard, Kuwahara, Suzuki, & Suzuki, 1988; Kuwahara et al., 1975; Mid-
thassel et al., 2013; Rifà & Griffiths, 2018). A possible explanation for the differences we
observed between our results and mass rearing systems is that these oil secretions have
a greater impact at high densities of the astigmatid mite in rearing systems, but not in
small arenas on in the laboratory experiments or on plants.

Adding cattail pollen to the frozen diets did not significantly enhance oviposition rates
and population densities of A. swirskii in either the laboratory or the greenhouse trials.
This is similar to the observations of others. Addition of castor pollen to two factitious
prey diets (Suidasia pontifica Oudemans and T. putrescentiae), and also to two natural
prey (Tetranychus truncatus Ehara and T. kanzawai [Kishida]), did not significantly
improve survival, development or oviposition rates of the predatory mite Amblyseius long-
ispinosus (Evans) (De Leon-Facundo & Corpuz-Raros, 2005). In contrast, Sarwar (2016)
found that when maize and mung bean pollens were provided in combination with
different life stages of T. putrescentiae, biological parameters such as development and
reproduction of the predatory mite, Neoseiulus cucumeris (Oudemans), significantly
improved compared with each diet alone. This inconsistency amongst studies may be
due to differences in the type of pollen, species of prey, species of predatory mite, exper-
imental conditions, and/ or methods.

Our study, for the first time, assessed the nutritional quality of living and frozen facti-
tious prey mites for F. occidentalis in comparison with pollen. Our results confirm pre-
vious studies showing that cattail pollen is a very suitable food source for western
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flower thrips, F. occidentalis, which may in some cases be a risk for using it as a sup-
plemental food source for predatory mites (Hulshof et al., 2003; Leman & Messelink,
2015; Vangansbeke et al., 2016). In contrast, we observed very low oviposition rates of
thrips on the prey mite diets, which may be an important advantage when using them
as supplemental food in biological control systems compared to food sources that also
support thrips.

Summarising, we showed that stage (mixed living, frozen eggs or frozen larvae) and
food substrate (dog food or bran) of T. putrescentiae affected the reproduction of
A. swirskii. The laboratory results indicated that frozen larvae reared on a protein-rich
diet might be promising to use as a supplemental food source for A. swirskii, but when
applied in the greenhouse, only living prey mites and not frozen stages could increase
predatory mite densities. Yet, our study may stimulate further studies to develop alterna-
tive food sources based on frozen mites, for example to improve the shelf life and nutri-
tional quality of the frozen diets or to assess the potential of frozen stages of other
astigmatid mite species.
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