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Chapter 1 
General introduction 

 

 

 

 

 



 

 

1.1. Olive oil 

Olives are a typical crop of the Mediterranean region. According to Eurostat data 
(Eurostat, 2019), olive tree farms are found in eight EU Member States: Spain (2.5 million 
hectares), Italy (1.1 million hectares), Greece (671 thousand hectares), Portugal (300 thousand 
hectares), Croatia (17 thousand hectares), France (15 thousand hectares), Cyprus (10 thousand 
hectares) and Slovakia (1 thousand hectares). In total, the European olive tree farms are slightly 
under 5 million hectares, more than half of which are in Spain and most of which are devoted 
to growing olives for olive oil production (Rossi, 2017). The International Olive Council (IOC) 
reported that world olive oil production is 2.9 million tonnes (t) in the 2017-2018 crop year. 
The joint production of four European countries (Spain, Italy, Greece and Portugal) takes the 
lead, which is approximately 1.8 million t (IOC, 2018a). The European Union is the main 
economy of the consumption of olive oil, which accounts for 53% of the world market, followed 
by the United States, which accounts for 10% (IOC, 2018b). Furthermore, a rapid increase in 
the demand for olive oil has been noticed in India, China and Japan.  

Olive oil is extracted from olive fruit via a mechanical or chemical process (Ou et al., 
2015). It consists mainly of oleic acid and small amounts of other fatty acids (FAs). Furthermore, 
olive oil is an important constituent of the diet in the Mediterranean countries. It has also been 
reported to prevent some pathologies, e.g. cardiovascular disease, neurodegeneration, obesity, 
metabolic syndrome, diabetes and diverse types of cancer (Battino et al., 2019; Borzi et al., 
2019; Escrich et al., 2006; Gill et al., 2005; Owen et al., 2004). Therefore, the perceived 
nutritional value and health benefits of olive oil have also increased its market demand.  

 

1.2. Olive oil regulations  

The olive oil quality is affected by the planting environment (temperature, location and 
soil quality), the irrigation practice, the quality of olive fruit (ripeness, cultivar, storage time 
and mechanical damage) and the processing methods (traditional cold press and refining 
process) (Boselli et al., 2009). Therefore, Codex (2015) and IOC (2016) have released standards 
to identify different quality grades of olive oils. In Figure 1.1, olive oils and olive pomace oils 
are classified into six and three grades, respectively. Due to the differences of the acidity values, 
other physico-chemical and organoleptic characteristics (Table 1.1 and 1.2), virgin olive oils, 
obtained by mechanical means, are classified into four types, including extra virgin olive oil 
(EVOO), virgin olive oil (VOO), ordinary virgin olive oil (OVOO) and lampante virgin olive 
oil (LVOO) (Codex, 2015; IOC, 2016). However, LVOO is unfit for consumption (Figure 1.1) 
due to the high levels of acidity, unpleasant flavour and sometimes an unnatural colour. 
Therefore, to be qualified for consumption, it must be submitted to a series of refining processes 
(chemical or physical methods). This processed oil is called refined olive oil (ROO). Olive 
pomace oils are the oils obtained from the olive pomace by chemical or physical treatments 
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(IOC, 2016). It can be classified into three categories according to the physico-chemical 
characteristics (Table 1.1 and 1.2), including crude olive pomace oil (COPO), refined olive 
pomace oil (ROPO) and olive pomace oil (OPO).  

 

Figure 1.1. Categories of olive oils and olive pomace oils based on the level of quality according to Codex and 
IOC standards. 

Concerning the purity and quality criteria of olive oils and olive pomace oils, the 
national and international standards, including CODEX STAN 33-1981 (Codex, 2015) and 
those from the IOC (COI/T.15/No3) (IOC, 2016), European Commission (Reg (EEC) 2568/91) 
(European Commission, 2013), USA Standards (75 FR 22363) (United States Department of 
Agriculture, 2010), China (ICS 67.200.10) (General Administration of Quality Supervision 
Inspection and Quarantine, 2009) and Australia (AS 5264-2011) (Australian Standard 
Committee FT-034, 2011), appear to be slightly different (Table 1.1 and 1.2). Generally, the 
criteria of national standards are stricter than those of the international standards. To take the 
organoleptic detection of the defect as an example (Table 1.1), the threshold values for the 
median of the defect in olive oils and olive pomace oils of the Australian standard are lower 
than those of the IOC and Codex standards. Moreover, the threshold peroxide values in olive 
oils and olive pomace oils of the Chinese standard are half of those of the IOC and EU standards. 
The K270 value provides useful information on the degree of oxidation of the oil. The higher 
the K270 value, the higher the oxidation of the oil. In Table 1.1, the K270 threshold values of 
olive pomace oils (≤ 2.00) are higher than those of ROO (1.25), OO (≤ 1.15) and virgin olive 
oils (≤ 0.30) according to the IOC standard. In Table 1.2, the wax values of (E)VOO (≤ 150 
mg/kg) is lower than those of OVOO (≤ 250 mg/kg), ROO (≤ 350 mg/kg) and OO (≤ 350 
mg/kg). Furthermore, olive pomace oils show the highest values of wax, which is higher than 
350 mg/kg. Therefore, in decreasing order of quality and purity according to the six national 
and international standards referred to above, olive oils can be ranked as follows: EVOO, VOO, 
OVOO, ROO, OO, ROPO, OPO, COPO and LVOO.  
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1.3. Olive oil processing 

The major difference between EVOO and lower grade olive oils (ROO and POO, 
including COPO, ROPO and OPO in this study) is mainly due to the extraction process. The 
extraction process can be divided into three typical extraction methods, including mechanical 
extraction, olive pomace extraction and refining process (Gunstone, 2011; Peri, 2014). The 
effect of the different extraction methods on the quality and stability of olive oils has been 
investigated.   

1.3.1. Mechanical extraction  

Figure 1.2 shows the four main steps of the mechanical extraction process, including 
washing, crushing, malaxation and pressing/centrifugation, which is a slight modification of 
the extraction method of Gunstone (2011).  

 

Figure 1.2. Flow chart for olive oil mechanical extraction (adapted from Gunstone (2011)). 

Previous studies have reported that the olive oil extraction affects the quality of virgin 
olive oils, especially the organoleptic characteristics (Gunstone, 2011; Ranalli & Serraiocco, 
1996). To provide hygienic oils, the washing operation removes all the contaminants, including 
dust, soil, sand, stone fragments and any mineral or metallic contaminants (Di Giovacchino et 
al., 2002b). Crushing increases the breakage of olives, which in turn improves the extraction 
yield of olive oil. It can be done using granite millstones or metallic crushers. However, these 
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two methods result in different quality of oils. The content of total phenolic compound in the 
oil obtained by a metallic crusher is higher than that obtained by the granite millstones (Di 
Giovacchino et al., 2002b). Whereas the application of the granite millstones contributes to a 
high concentration of total volatile compounds (Angerosa & Di Giacinto, 1995).  

With regard to the malaxation treatment (slowly churning milled oil crops), the 
temperature and time of malaxation will affect the final quality of oils. High temperature 
generally increases phenol contents (Fregapane & Salvador, 2013) and decreases volatile 
content (Ranalli et al., 2001). On the other hand, a longer malaxation time results in relatively 
low phenol contents and high contents of oil volatiles (Angerosa et al., 2001; Di Giovacchino 
et al., 2002a). Furthermore, the increasing of the malaxation temperature or time contributes to 
the oil yield and the effect of temperature is larger than that of time (Inarejos-Garcia et al., 
2009). In addition, oils obtained by a two-phase continuous centrifugation system exhibited a 
higher content of total volatile compounds (Ranalli & Serraiocco, 1996).  

Overall, the above indicate that the crushing, malaxation and separation methods of the 
mechanical extraction can affect the quality of virgin olive oils and especially the organoleptic 
properties. 

1.3.2. Olive pomace extraction 

 

Figure 1.3. Flow chart for crude olive pomace oil extraction (adapted from Peri (2014)). 
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Generally, olive pomace contains on average 5-8% of residual oil after mechanical 
extraction (Gogus & Maskan, 2006). The major extraction operations to obtain COPO are 
shown in Figure 1.3 (Peri, 2014), but the extraction operations were slightly modified. 

Peri (2014) reported that about half of the residual oil in olive pomace can be extracted 
by malaxation and three-phase decanter separation, another half of the residual oil can be 
obtained by solvent extraction. Drying of pomace and pelleting/flaking of dried pomace are 
operated to increase the efficiency of the solvent extraction. Subsequently, the crude olive 
pomace oil is obtained using n-hexane, which is generally used as a good extraction solvent for 
oil. Ultimately, COPO has higher contents of unsaponifiable substances and free FAs due to 
the drying and the application of the solvent in comparison to other olive oils (Gogus & Maskan, 
2006). 

1.3.3. Refining process 

The COPO contains higher levels of unsaponifiable substances and free FAs than other 
olive oils, due to the treatments of drying and the application of the solvent (Gogus & Maskan, 
2006). Moreover, COPO is not an edible vegetable oil and can only be used for soap production 
or other industrial application. Therefore, both COPO and LVOO must be refined to become 
edible. In fact, EVOO is only a minority part of olive oil production and olive oil refining is a 
very important sector of the food industry for economic gain (Antonopoulos et al., 2006). 
Figure 1.4 presents the refined olive oil extraction process. Five major operations (settling, 
neutralisation, winterisation, bleaching and deodorisation) and their removed substances of 
each step are listed.  

Settling. Generally, the filtering treatment of the solvent extraction makes the COPO 
clear. Therefore, only LVOO needs settling to get rid of cloudiness and sediment (Peri, 2014). 
After settling for a minimum of four weeks at a constant temperature (20-25 °C), phosphatides, 
moisture, impurities and some waxes can be removed (Antonopoulos et al., 2006). 

Neutralisation. This operation aims to eliminate the free FAs, phosphatides, 
chlorophyll pigments, pesticides, aromatic hydrocarbons and metals (Antonopoulos et al., 
2006). To achieve this goal, more than 10-20 % of the solvents need to be added to the oil at a 
suitable temperature (65-90 °C). These solvents include sodium hydroxide, potassium 
hydroxide or calcium hydroxide (Antonopoulos et al., 2006; Peri, 2014).  

Winterisation. The objective of this treatment is to remove any compound that might 
cause a cloudy or murky oil, it mainly eliminates waxes and saturated triacylglycerols (Ruiz-
Méndez et al., 2013). It is carried out by cooling down the oil at 5-8 °C and it results in 
crystallisation in 24-48 h.  
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Figure 1.4. Flow chart for refined olive oil extraction (adapted from Peri (2014)). 

Bleaching. This operation mainly aims to remove natural pigments such as carotene, 
xanthophyll and chlorophyll. In addition, soaps, pesticides and any other organic contaminants 
are eliminated as well (Antonopoulos et al., 2006). To achieve this goal, 0.5-1.5% of bleaching 
earth is added to the oil, at a temperature of 90-110 °C for about half an hour, (Peri, 2014).  

Deodorisation. Deodorisation allows for removing undesirable odours and free FAs. It 
is carried out by distilling under vacuum with stripping gas at a temperature of 180-270 °C. 
Subsequently, the oil is cooled down under vacuum to prevent it from deterioration (Ruiz-
Méndez et al., 2013).  

The refining process aims to eliminate the undesirable components and to extend the 
shelf life of oils (Fragaki et al., 2005). This operation produces an edible oil with bland flavour 
and odour, light colour, stability to oxidation and is suitable for frying. However, the refining 
procedure not only eliminates the unpleasant flavour, but also removes the substances that 
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contribute to the healthy properties of olive oils. Furthermore, some special compounds will 
still exist after the refining process. For instance, the absence of cis-phytol after the refining 
process can be used as a marker for non-refined edible oils (Vetter et al., 2012). The 
concentration of fatty acid alkyl esters has been used to distinguish EVOO from mildly refined 
low quality olive oil (Caponio et al., 2011). Furthermore, the content of stigmasta-3,5-diene 
(formed from β-sitosterol) is strongly dependent on the temperature used during the 
deodorisation operation (Leon-Camacho et al., 2004). Therefore, studies have proposed 
stigmasta-3,5-diene, which does not exist in EVOO, as a potential marker of EVOO/ROO 
blending (Leon-Camacho et al., 2004).  

 

1.4. Olive oil fraud incidents  

Food fraud has gained tremendous recognition and concern in recent years. Since the 
beginning of the new millennium, many food fraud scandals have emerged, such as the addition 
of Sudan I, which is a genotoxic and carcinogenic compound, to chilli products to enhance the 
colour and improve the appearance of the product (EU, 2003); the addition of melamine to 
infant formula, which resulted in illness and death (China Daily, 2008); the addition of 
horsemeat in beef, which resulted in a crisis of consumer trust, reduction of red meat 
consumption and boycotting of beef products (O'Mahony, 2013; Stanciu, 2015); and the 
contamination of eggs by fipronil, which resulted in a serious economic shock to the poultry 
industry in Europe and heightened both public concern regarding the use of fipronil (van der 
Merwe et al., 2019). These scandals caused a large number of problems, such as damage to the 
reputation of food companies, the collapse of food markets, erosion of consumer confidence, 
management and/or employees being fired, prosecutions and imprisonments (Silvis et al., 2017). 
Furthermore, due to the globalisation of the production and distribution of food, food fraud 
incidents have a global impact (Spink & Moyer, 2011; Spink et al., 2017).  

Olive oil has particular organoleptic and nutritional properties, which allows olive oil 
access to a relatively high price market compared with other vegetable oils (European 
Commission, 2012). Therefore, it is considered as one of the most frequently reported 
fraudulent commodities based on the three global food fraud databases over the period 2008-
2013 (Weesepoel & van Ruth, 2015). In some cases, besides economic fraud, olive oil fraud 
shows a direct link to public health problems and even deaths. In Morocco in 1959, the 
adulteration of olive oil with lubricating oil resulted in 10,000 people ill (Travers, 1962). In 
Spain in 1981, over 20,000 people were poisoned by the consumption of denatured rapeseed 
oil labelled as olive oil (Lipp, 2012; Mueller, 2011; Wood et al., 1994).  

EVOO has recently gained in popularity due to its premium quality (section 1.2) and 
reputation as a healthy and delectable oil, which makes EVOO prone to adulterations. There 
are three typical methods of EVOO fraud (Yan et al., 2018): 1) the blending with less costly 
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vegetable oils; 2) the replacement with vegetable oil with addition of chemical compounds (e.g. 
chlorophyll); 3) the replacement with lower olive oil grades, which are ROO and POO. EVOO 
fraud incidents happened frequently in recent years, especially in Mediterranean countries, 
which are the leading producers of olive oil. Furthermore, the adulteration of EVOO with lower 
grade olive oils is one of the most common adulteration practices. For instance, several 
mislabelled EVOO were reported as blended with ROO or POO to increase profits (Aguilera et 
al., 2005). In 2007, an Italian operation led to the arrest of 33 suspects who labelled olive 
pomace oil as EVOO and exported it to the US (Smith, 2017). In 2015, Italian police 
investigated top Italian olive oil producers for allegedly passing off lower-quality products as 
“100% extra virgin” (Squires, 2015). 

 

1.5. Olive oil fraud prevention 

In order to control the risk of food fraud and prevent food fraud incidents, food fraud 
prevention must be a prioritised enterprise risk control method (Spink et al., 2016a). To build 
an optimal food fraud prevention system, a focus on prevention based on a review of the fraud 
opportunity is needed (Spink et al., 2016a). Therefore, food fraud vulnerability assessments 
(FFVA) are an essential activity to prevent food fraud. FFVA can be employed to identify the 
systems’ weaknesses or flaws that create opportunities for undesirable incidents (Spink et al., 
2017).  

Several FFVA tools, including Vulnerability Assessment and Critical Control Point, 
NSF Fraud Protection Model (NSF, 2014), USP Food Fraud Mitigation Guidance (USP, 2016), 
Food Fraud Initial Screening (FFIS) model (Spink et al., 2016b), CARVER + Shock tool (FDA, 
2009) and SSAFE FFVA tool (SSAFE, 2016), have been established to help companies and 
regulators anticipate the fraud vulnerability in the food supply chain. Table 1.3 shows the 
comparison of these six FFVA tools. Specific vulnerability assessment tools were developed to 
meet specific needs in terms of the aim of each tool. Some of the tools intended to think like a 
criminal and to characterise the most attractive or vulnerable targets for food fraud. Specifically, 
FFIS as an early-stage model could give a quick fraud vulnerability assessment, but only broad 
vulnerabilities can be identified (Spink et al., 2016b). Therefore, this initial screening model 
will be followed by another FFVA tool to identify the specific vulnerabilities, such as the 
SSAFE or USP FFVA. With regard to the mechanisms, compared to other tools, the SSAFE 
tool gives more details of the target by using 50 indicators and it is the only science-based tool 
(based on the study of criminal behaviour and criminal decision-making (PwC, 2015)). 
Moreover, the scope of the application of these FFVA tools are different. Therefore, it is 
important to choose an appropriate tool for FFVA, which will affect the ability to quantify the 
likelihood of a vulnerability in a given situation.  
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The free online SSAFE FFVA tool aims to strengthen internal controls of companies 
and reduce opportunities and motivations to adulterate food (Food Safety Magazine, 2016). It 
provides guidance on how to use this tool. Therefore, people who may not have specific 
knowledge on food fraud and vulnerability could also use it smoothly (Manning & Soon, 2019). 
So far, it has been successfully applied to assess the fraud vulnerability in the spices supply 
chain (Silvis et al., 2017), the Dutch milk supply chain (Yang et al., 2019) and five other food 
supply chains (van Ruth et al., 2018).  

 

1.6. Olive oil fraud detection methods 

A food fraud prevention system and mitigation strategies can be applied to prevent food 
fraud, whereas, potential detection techniques are applied to find/discover food fraud and to 
limit its impact. As mentioned in section 1.4, there are three typical types of EVOO fraud. For 
each of these variants, analytical detection methods have been developed. The analytical tools 
can be divided into three groups, which are (a) confirmatory techniques, (b) laboratory-based 
screening techniques and (c) handheld screening techniques (Table 1.4).  

1.6.1. Confirmatory techniques  

EVOO authentication is mainly based on chemical properties by using chromatography 
techniques, including high-resolution gas chromatography (GC) and high-performance liquid 
chromatography (HPLC), which are also classical approaches to identify EVOO adulteration. 
For the chemical characterisation, major and minor components in oils are analysed using 
appropriate analysis techniques.  

Triacylglycerols (TAGs), as the most abundant group of compounds (Velasco & 
Dobarganes, 2002), have been applied for the discrimination of EVOO from other vegetable 
oils using HPLC. For instance, HPLC-atmospheric pressure chemical ionisation-tandem mass 
spectrometry was applied to analyse the TAGs for the detection of olive oil adulteration with 
soybean oil (Fasciotti & Netto, 2010). Furthermore, it was found that the more saturated TAGs 
(OOO, POO and SOO. Where P, palmitoyl; S, stearoyl; O, oleoyl) are predominant in olive oil 
and less saturated TAGs (LLnLn, LLLn, LLL+OLLn and OLL+OOLn. Where O, oleoyl; L, 
linoleoyl; Ln, linonenoyl) mainly originate from soybean oil (Fasciotti & Netto, 2010). 
Elhamdy and Elfizga (1995) also reported that the addition of less than 1% of linoleic-rich 
vegetable oils to olive oil was detected qualitatively and quantitatively by reversed-phase HPLC.  

Apart from the major compounds, minor compounds (phospholipids, phenolic, wax, 
squalene, sterols, chlorophylls, carotenoids and metals) can also be used as effective biomarkers 
to evaluate the authenticity of EVOO. For instance, liquid chromatography-mass spectrometry 
(LC-MS) has been used for the quantification of squalene in oils, the amount of squalene in 
hazelnut oil is around 20 times lower than in olive oil (Benitez-Sanchez et al., 2003). Carbon 
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stable isotopes analysed by high resolution GC were used to identify olive oil adulteration with 
the cheaper pomace olive oil at a concentration lower than 5% (Angerosa et al., 1997). 
Furthermore, GC-MS was applied to analyse 4,4-dimethylsterols for the detection of EVOO 
adulteration with hazelnut oil at a concentration less than 4% (Damirchi et al., 2005).  

In total, chemical analysis has been considered as a powerful and useful tool to conduct 
qualitative and quantitative analyses of complex and plant-derived biomarker compounds 
(Aparicio & Aparicio-Ruiz, 2000; Flores et al., 2006). Generally, the methods of conventional 
analysis are complex (tedious chemical treatment), time-consuming and expensive. Therefore, 
there is a trend to develop rapid and non-destructive methods for EVOO authentication. 

1.6.2. Laboratory based screening techniques  

To increase efficiency and to save time, a variety of screening techniques and 
chemometric procedures have emerged as powerful tools for the authentication of EVOO with 
the advantages of non-destructive, rapidness, high-throughput and sensitivity test. Among these 
rapid, non-destructive screening techniques, infrared (IR) techniques could be considered as 
widely used tools for EVOO authentication. Table 1.4 shows that near infrared spectroscopy 
(NIR) (Kasemsumran et al., 2005), Fourier transform-NIR (FT-NIR) (Azizian et al., 2015), 
mid-IR (MIR) (Gurdeniz & Ozen, 2009) and FT-MIR (Rohman et al., 2017) have been 
successfully applied to discriminate EVOO from other vegetable oils. Moreover, they can detect 
EVOO adulteration with other vegetable oils at levels above 10%. Raman spectroscopy is 
another widely used screening technique which could distinguish EVOO from lower grade olive 
oils (Yang & Irudayaraj, 2001; Zou et al., 2009). Except for these two techniques, there are 
several screening techniques that can also be used for EVOO authentication, including nuclear 
magnetic resonance (Fragaki et al., 2005), ultraviolet-visible spectroscopy (Torrecilla et al., 
2010), synchronous fluorescence spectroscopic (Kunz et al., 2011), electrospray ionisation-MS 
(Alves et al., 2014), direct analysis in real time-time of flight-MS (Vaclavik et al., 2009), 
differential scanning calorimetry (Karbasian et al., 2015), real-time polymerase chain reaction 
(Kumar et al., 2011), headspace-MS (Pena et al., 2005), proton transfer reaction-MS 
(Araghipour et al., 2008), proton transfer reaction-time of flight-MS (Taiti & Marone, 2017), 
electronic-nose systems (Oliveros et al., 2002) and electronic-tongue systems (Apetrei & 
Apetrei, 2014).  
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Dielectric spectroscopy as a rapid, low cost and non-destructive technique has been 
considered as a promising analysis method for food authentication too. The relationship 
between the dielectric properties and chemical properties has been investigated. Researchers 
found that the dielectric properties of oils were affected by the degree of unsaturation or the 
type of oils (Berardinelli et al., 2013; Hu et al., 2008). Moreover, Hu et al. (2010) found that 
olive oil adulterated with different types of vegetable oils at levels of adulteration below 5% 
could be identified based on dielectric spectroscopy.  

Ultrasound as a fast and inexpensive technique has been widely applied in food industry 
(Awad et al., 2012): 1) to accelerate the reaction (Ince et al., 2001); 2) to decontaminate (Jose 
et al., 2014); 3) and to extract compounds (Jerman et al., 2010). Generally, it is possible to apply 
ultrasonic techniques to predict density, viscosity, degree of homogenization of a mixture and 
concentration of solid particles in a liquid (Dukhin & Goetz, 2009; McIntosh et al., 2016). 
However, only a few ultrasound applications have focused on the characterisation of food 
products, such as for determining the fat content of dairy products (Dukhin et al., 2005). Kumari 
et al. (2017) determined links between chemical changes (polymerisation) and ultrasonic 
properties (e.g. velocity, acoustic impedance). Hence ultrasonic technique may have potential 
to measure certain changes in properties after mixing of different oils.  

1.6.3. Handheld screening techniques 

Except for the conventional laboratory analysis, some portable, palm-size devices have 
appeared and may have potential for EVOO authentication. The most important advantage of 
these rapid analyses is that they can provide analytical results at the sampling location and select 
a small number of suspect samples to be sent to the laboratory for confirmatory analysis. 
Therefore, these techniques have received much attention in food quality control, especially in 
regard to in-situ applications. For instance, 473 nm laser-induced fluorescence spectroscopy 
with the help of multivariate analysis was applied to detect and quantify adulteration of EVOO 
(Mu et al., 2016). Except for this method, a portable electronic-nose system (Wojnowski et al., 
2017), handheld MicroNIR (Karunathilaka et al., 2017) and portable Raman spectroscopy 
(Tiryaki & Ayvaz, 2017) have been applied to discriminate EVOO from other vegetable oils 
(Table 1.4).  

1.6.4. Statistical methods 

Many of the methods described in the previous sections result in analytical fingerprints. 
After these fingerprint analyses, a large dataset of test samples is generated. Because of the 
many chemical or physical features included in a fingerprint, it is challenging to elucidate 
information directly. In order to explore such a large dataset for its ability to discriminate EVOO 
from all other vegetable oils, multivariate analysis tools have been widely used (Table 1.4). 
Furthermore, the combination of chemical/physical analysis and multivariate data analysis 
leads to methods that are harder to circumvent by fraudsters. The multivariate analysis methods 
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include principal component analysis (Zou et al., 2009), discriminant analysis, linear 
discriminant analysis, hierarchical cluster analysis, support vector machine, artificial neural 
network, principal components regression (Rohman et al., 2017), soft independent modelling 
of class analogy, partial least square regression (Rohman et al., 2017), partial least square 
discriminant analysis (Torrecilla et al., 2010) and many more.  

 

1.7. Knowledge gap 

EVOO fraud comes in many forms. Fraud detection methods have received 
considerable attention. However, when a shift of thinking from fraud detection to fraud 
prevention is required, we need to learn to think as a criminal to combat fraud. By determining 
criminals’ most likely courses of action, fraud vulnerabilities could be addressed and the 
weakest spots in the EVOO supply chain could be pinpointed out. In addition, it could also 
provide guidance on how to apply the latest detection methods efficiently to mitigate 
vulnerabilities and ensure EVOO authenticity. Nevertheless, to date, the mapping or 
identification of fraud vulnerabilities in the EVOO supply chain has not received any attention 
yet. 

The literature review study in the previous sections highlighted that the majority of the 
studies conducted in the area of EVOO fraud aim to discriminate EVOO from other botanical 
vegetable oils with various analytical procedures. There are also some studies available on the 
identification of the botanical, geographical and production system origin of EVOO. However, 
only a few studies attempted to discriminate EVOO from its lower grade counterparts (Cecchi 
et al., 2017; Karbasian et al., 2015; Torrecilla et al., 2010). That is, because it is one of the more 
difficult EVOO adulteration issues due to the highly similar gross composition of these oils. 
Therefore, it is important to test more techniques in order to enrich the strategies to combat 
EVOO fraud.  

Fraudsters try to catch up and circumvent the analytical methods (van Ruth & Granato, 
2017). This has led to an increase in the use of fingerprint methods (complex data + advanced 
statistical techniques) to avoid the risk of being circumvented by fraudsters. The application of 
screening methods on-site could further support the detection of EVOO frauds. With this, large 
numbers of oil samples can be scanned on-site when a quick response is required. So far, the 
application of on-site screening methods to discriminate EVOO from its lower grade 
counterparts has received little attention.  

Considering the identified gaps above, in this study, we focus on EVOO adulteration 
with lower olive oil grades and address (a) the vulnerabilities in the EVOO supply chain 
network and (b) fraud detection methods. These methods include (b1) confirmatory methods in 
which a search was carried out for new markers and (b2) rapid laboratory-based and on-site 
screening methods. 
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1.8. Research aim 

The main objectives of this thesis are to develop strategies to combat fraud in the EVOO 
supply chains through knowledge about weak spots and underlying risk factors and the 
development of novel detection methods.  

The detailed objectives are: 

(a) To understand the differences and similarities in fraud vulnerability between actors 
in the EVOO supply chain; to elucidate the characteristics of high vulnerability actors and to 
identify risk factors contributing to fraud vulnerability (Chapter 2).  

(b) To develop confirmatory and rapid screening fraud detection methods to assess the 
authenticity of EVOO based on its chemical and physical properties and to evaluate the 
performance of these techniques (Chapters 3-6).  

 

1.9. Outline of this thesis 

The outline of this thesis is presented in Figure 1.5. Chapter 1 provides a general 
introduction on the theoretical information on the topics covered in this study.  

 

Figure 1.5.  Schematic presentation of the PhD project. NIR, near infrared spectroscopy; PTR-QiToF-MS, proton-
transfer-reaction quadrupole ion guide time-of-flight mass spectrometry. 
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In Chapter 2, the weak spots and underlying risk factors of various places in the EVOO 
supply chain are investigated. The fraud vulnerability of 28 companies across the EVOO supply 
chain is examined using the SSAFE FFVA tool. Amongst these companies, seven are olive oil 
producers, seven are business-to-business companies, seven are food manufacturers and seven 
are retailers. Moreover, the similarities and differences in fraud vulnerabilities according to 
group characteristics (the role, the scale and the location of the company) are evaluated. 

Chapter 3 aims to explore the processing derived contaminants 2- and 3-
monochloropropanediol esters and glycidyl esters for the discrimination of processing grades 
of olive oils as potential discriminatory markers. A confirmatory method to differentiate 
different grade olive oils by the processing derived contaminants is developed. Oil samples are 
analysed using GC coupled to tandem MS. These processing derived contaminants are 
evaluated as potential markers to distinguish EVOO from lower grade olive oils, as well as 
other vegetable oils. Moreover, the sensitivity and the detection efficiency of this method is 
evaluated.  

Subsequently, three rapid and non-destructive techniques are introduced. Chapter 4 
deals with the development of a simple, rapid but robust analytical and chemometric procedure 
based on proton-transfer-reaction quadrupole ion guide time-of-flight mass spectrometry (PTR-
QiToF-MS) fingerprints to distinguish EVOO from other olive oil grades (ROO and POO). The 
volatile organic compounds (VOCs) of the olive oil grades and other vegetable oils are analysed 
using an advanced laboratory-based screening technique, PTR-QiToF-MS. A robust one-class 
classification approach is applied to distinguish EVOO from other olive oil grades, as well as 
other vegetable oils. The performance of this approach is evaluated and some distinct VOCs 
associated with the identity of EVOO are pinpointed.  

Chapter 5 explores a rapid and non-destructive handheld NIR technique to distinguish 
EVOO from lower grade olive oils and examines the underlying causes for the spectral 
differences of the oils. The spectral features of olive oil grades are examined by handheld NIR. 
The performance of classification models for sorting the olive oil grades is evaluated. 
Furthermore, compositional analyses, including analysis of FAs, chlorophylls, carotenoids and 
moisture contents as well as chromatic coordinates, are conducted to explore the underlying 
causes for the spectral differences of the olive oils. 

Chapter 6 focuses on physical properties of the oils and aims to develop a novel, rapid 
and non-destructive method for the discrimination of the oils. The ultrasonic properties of the 
oils are analysed by a developed ultrasonic pulse echo system. To understand the underlying 
causes for the differences in the ultrasonic properties of the oils, viscosities, densities and FA 
compositions are measured. In addition, the correlations between sound properties and physical 
traits (such as their viscosity and density) are investigated, as well as the correlation between 
physical traits and FA compositions.  
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Finally, the findings of Chapters 2-6 are integrated in the General discussion (Chapter 
7). This chapter presents the vulnerable points in the EVOO supply chain and evaluates the 
confirmatory and screening methods. In addition, fraud prevention strategies for the EVOO 
supply chain and the limitation of this thesis are proposed in this final chapter.  
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Abstract 

As a high value commodity on the market, extra virgin olive oil (EVOO) is a suitable target for 
fraudsters. To understand differences in perceived fraud vulnerability between tier groups 
across the EVOO supply chain and to disclose underlying factors, the perceived fraud 
vulnerability of 28 companies was examined using the SSAFE food fraud vulnerability 
assessment tool. Amongst these companies were seven olive oil producers, seven business-to-
business companies, seven food manufacturers and seven retailers. The similarities and 
differences in perceived fraud vulnerabilities according to group characteristics (the role, the 
scale and the location of the company) were evaluated. Non-parametric tests and multiple 
correspondence analysis were applied for data exploration. An in-depth fraud vulnerability 
assessment of the EVOO supply chain was provided. Eight fraud factors related to opportunities 
and motivations scored high in the supply chain indicating their importance as fraud drivers and 
enablers. Four factors related to control measures are perceived as greatest vulnerability in the 
EVOO supply chain. Then, the vulnerability to fraud in the EVOO supply chain across all actors 
is perceived as high level on average. In decreasing contribution to the overall perceived fraud 
vulnerability, the fraud factor categories were ranked as follow: technical opportunities, a lack 
of managerial controls, a lack of technical controls, economic drivers, cultural and behavioural 
drivers and opportunities in time and place. Among the tier groups, the retailers and B2B 
companies experienced higher levels of perceived vulnerability than olive oil producers and 
food manufacturers due to the additional vulnerability related to the opportunities in time and 
place and greatest lack of control measures. Furthermore, the perceived fraud vulnerability of 
the company was not only determined by the tier group, but also impacted by the scale and 
location of the company.  

Keywords: B2B company; FFVA tool; food fraud; food manufacturer; olive oil producer; 
retailer. 
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2.1. Introduction 

Olive oil is the oil obtained from olive fruit after appropriate processing. The nutritional 
value and health benefits of olive oil make it a valuable commodity and consequently it is sold 
at a high price on the market. Increasing prices and relatively low consumer capabilities to 
detect inauthentic olive oil create an appealing crime opportunity for fraudsters (Food Standards 
Agency, 2016). Its liquid state also permits easy blending and mixing with inferior or cheaper 
oils (NSF, 2014). Therefore, olive oil is considered as one of the most frequently reported 
fraudulent commodities based on the three global food fraud databases from 2008 to 2013 
(Weesepoel & van Ruth, 2015). Obviously, olive oil fraud is not a new threat as its adulteration 
has been reported since earlier years. In Morocco, olive oil was adulterated with lubricating oil 
used in jet engines, which left 10,000 people ill (Travers, 1962). While in 1981, over 20,000 
people were poisoned from toxic oil syndrome that resulted from the sale of denatured rapeseed 
oil labelled as olive oil in Spain (Lipp, 2012; Mueller, 2011). These olive oil fraud incidents 
have resulted in actual public health risks. 

Extra virgin olive oil (EVOO), as the premium quality olive oil, is particularly 
susceptible to be adulterated with cheaper vegetable oils (Jabeur et al., 2014), or lower quality 
olive oils (Karbasian et al., 2015). Moreover, Forbes stressed that probably 80% of the Italian 
EVOO on the market is fraudulent commodities (Rodriguez, 2016). In recent years, many 
EVOO fraud incidents have been exposed (Lord et al., 2017). An Italian operation led to the 
arrest of 33 suspects who exported fake EVOO to the USA (Smith, 2017). In 2019, the Europol-
coordinated operation arrested 20 fraudsters and seized 150,000 litres of low-quality oils that 
had been adulterated with colorants to make them appear like EVOO (Taylor, 2019). Moreover, 
the risks of fraud may only be increasing due to the growing globalisation (Manning & Smith, 
2015) and more competitive markets. To discern the EVOO fraud, laboratory-based analytical 
techniques on both targeted and non-targeted methods have been developed (Bajoub et al., 
2018). These techniques are applied to identify the EVOO fraud incidents that have occurred 
and may reduce their impact, but they do not contribute much to prevention of further incidents. 
This actually requires a shift in thinking from “identification” and “mitigation” to “risk 
assessment” and “prevention” to prevent future food fraud. 

For preventing EVOO fraud, Lord et al. (2017) proposed a conceptual and analytical 
framework informed by a situational understanding of the nature of the activities and 
behaviours involved in the fraud in the EVOO supply chain. Additionally, the Global Food 
Safety Initiative (GFSI, 2017) defined food fraud vulnerability as a “susceptibility or exposure 
to a food fraud risk, which is regarded as a gap or deficiency that could place consumer health 
at risk if not addressed”. Food fraud vulnerability assessment (FFVA) is employed to identify 
the weaknesses or flaws that creates opportunities for undesirable events (Spink et al., 2017). 
Several FFVA tools, including Vulnerability Assessment and Critical Control Points, NSF 
Fraud Protection Model (NSF, 2014), Food Fraud Mitigation Guidance (USP, 2016), Food 
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Fraud Initial Screening Model (Spink et al., 2016), CARVER + Shock tool (FDA, 2009) and 
SSAFE FFVA tool (SSAFE, 2016), have been established to help companies and regulators 
anticipate fraud vulnerability in the food supply chain. 

The free online FFVA tool, developed by the non-profit SSAFE organisation in 
partnership with Wageningen University, VU University Amsterdam, PricewaterhouseCoopers, 
and food industry leaders around the world, aims to help strengthen internal controls of 
companies while reducing opportunities and motivations to adulterate food for economic gain 
(Food Safety Magazine, 2016). It has been successfully applied to assess the perceived fraud 
vulnerability in the spices chain (Silvis et al., 2017), the Dutch milk supply chain (Yang et al., 
2019) and five other supply chains (van Ruth et al., 2018).  

EVOO fraud incidents were frequently reported (Rodriguez, 2016; Smith, 2017; Taylor, 
2019). However, it is currently unknown which factors contribute to the vulnerability of this 
chain and whether the differences in fraud vulnerability between actors exist, if so, what the 
characteristics of these company are. Therefore, the aims of this study are to evaluate the 
perceived fraud vulnerability of tier groups (olive oil producers, business-to-business (B2B) 
companies, food manufacturers and retailers) in the EVOO supply chain using the SSAFE 
FFVA tool and to identify risk factors contributing to the perceived vulnerability. Furthermore, 
the relationship between the perceived fraud vulnerability and particular fraud factors on the 
one hand, and company characteristics on the other hand will also be examined to pinpoint 
weaker groups. 

 

2.2. Materials and methods 

2.2.1. Interviewed companies 

Twenty-eight European companies were interviewed, seventeen of which were located 
in the Netherlands and eleven in Mediterranean countries. Based on their obligation on the 
market, the companies were divided into four tier groups, including seven olive oil producers, 
seven B2B companies, seven food manufacturers and seven retailers. Among the seven food 
manufacturers, EVOO is added as ingredient to tomato sauces (3), pastries (3) and crackers (1). 
With regard to the scale of the companies, sixteen were small scale companies (< 50 staff), five 
were medium scale companies (< 250 staff) and seven were large scale companies (> 250 staff). 
Table 2.1 shows the characteristics of the 28 companies. The typical roadmap of the EVOO 
supply chain from farm to table is presented in Supplementary Figure S2.1. 

2.2.2. Adaptation of the FFVA tool to the EVOO supply chain 

Before onset of the interview, slight changes were made to the FFVA tool 
(Supplementary Table S2.1) to make it suitable for the EVOO supply chain investigation. For 
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example, the questions related to “food counterfeiting” (Q6/7) were not considered since 
counterfeiting is not typical EVOO fraud type. Because B2B companies and retailers only act 
as an intermediary to transfer EVOO to their consumers, all the questions about the raw material 
and processing lines (Q2/3/8/32/33) were eliminated. Two olive oil producers produced also 
the olives themselves, their questions about suppliers were changed to customers. In total, there 
were 48 questions for olive oil producers and food manufacturers, but there were only 43 
questions for B2B companies and retailers. For group comparison, only the 43 questions were 
considered. Furthermore, the numbering of the questions was kept the same as the SSAFE 
FFVA tool to facilitate comparability between the obtained results and other studies that used 
the same tool. 

 
Table 2.1. Characteristics of the 28 companies assessed in the study.  

Tiers Company scale  Company location a Product  

Olive oil producers 

Small Mediterranean (Spain) EVOO (Organic) b 
Small Mediterranean (Portugal) EVOO (Organic) 
Small Mediterranean (Portugal) EVOO (Conventional) 
Small Mediterranean (Greece) EVOO (Organic) 
Small Mediterranean (Greece) EVOO (Conventional) 
Small Mediterranean (France) EVOO (Organic) 
Large Mediterranean (Spain) EVOO (Conventional) 

B2B c companies 

Small The Netherlands EVOO (Organic) 
Small The Netherlands EVOO (Organic) 
Small The Netherlands EVOO (Conventional) 
Small The Netherlands EVOO (Conventional) 
Small The Netherlands EVOO (Conventional) 
Small The Netherlands EVOO (Conventional) 
Small The Netherlands EVOO (Conventional) 

Food manufacturers 

Medium The Netherlands Crackers d 
Medium The Netherlands Tomato sauce 
Medium The Netherlands Pastry 
Medium Mediterranean (Italy) Tomato sauce 
Medium Mediterranean (Spain) Pastry 
Large Mediterranean (Spain) Pastry 
Large Mediterranean (Spain) Tomato sauce 

Retailers 

Small The Netherlands EVOO (Organic) 
Small The Netherlands EVOO (Organic) 
Small The Netherlands EVOO (Organic) 
Large The Netherlands EVOO (Organic) 
Large The Netherlands EVOO (Conventional) 
Large The Netherlands EVOO (Conventional) 
Large The Netherlands EVOO (Conventional) 

a Eleven Mediterranean countries consist of five Spain, two Greece, two Portugal, one Italy and one France; b EVOO refers to 
extra virgin olive oil, the 21 EVOO products consist of 10 organic EVOO and 11 conventional EVOO products; c B2B refers 
to business-to-business; d EVOO was used as an ingredient in the products of food manufacturers (tomato sauce, pastry and 
crackers).  
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2.2.3. Data collection 

Twenty-eight companies carried out the same food fraud vulnerability assessment using 
the SSAFE FFVA tool (SSAFE, 2016). The adapted questionnaires were sent to the 
interviewees in advance to prepare the respondents for the face-to-face interviews (11 
participants), skype interviews (2 participants) and telephone interviews (5 participants). The 
duration of these interviews was between 1 to 1.5 h each. During the interview, the interviewer 
asked the questions, explained the questions if necessary and recorded answers and extra 
explanations given by interviewees. For the other ten interviews, the questionnaire and an 
explanation of the questionnaire were sent to the interviewees through email and a 10-minute 
telephone interview was conducted for cases where the interviewee requested additional 
explanations for certain questions. 

2.2.4. Statistical analyses 

2.2.4.1. Frequency calculation 

Three descriptions are provided to each question (SSAFE, 2016). These three 
descriptions are converted into low, medium and high vulnerability level, and are represented 
by a score of 1, 2 and 3, respectively. Therefore, the low-medium-high vulnerability frequencies 
were calculated from the answers of interviewees for 48 fraud factors/questions (Q) (43 factors 
were answered by 28 interviewees and 5 factors were answered by 14 interviewees), for the 
three key elements (opportunities, Q1-11; motivations, Q12-31; control measures, Q32-50) and 
for the six fraud factor categories (technical opportunities, Q1-5; opportunities in time and place, 
Q8-11; economic drivers, Q12-14, Q19-20,Q26, Q30-31; cultural and behavioural drivers, 
Q15-18, Q21-25, Q28-29; technical controls, Q32-37, Q42-44, Q50; managerial controls, Q38-
41, Q45-49). Afterwards, these three types of frequencies were calculated for the four tier 
groups (olive oil producers, B2B companies, food manufacturers and retailers).  

The frequency of perceived vulnerability levels for each fraud factor/key element/fraud 
factor category (Fi) was determined by Eq. (1): 

Fi = Sij
Gj                 ,        (1) 

where Fi is the frequency of score i (i = 1, 2, 3), Sij is the number of observations which get 
score i in group j (j = 43 or 48 individual questions, three individual key elements and six 
individual fraud factor categories) and Gj is the total number of observations in group j. 

2.2.4.2. Univariate analysis 

Non-parametric Kruskal-Wallis tests were applied for group comparisons due to the 
ordinal data in this study. The pairwise comparisons were carried out using the Mann-Whitney 
U tests. Mean ranks were applied to compare the perceived fraud vulnerability of the factors 
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between groups. The higher the mean rank value, the higher the perceived fraud vulnerability. 
These data analysis methods were performed using SPSS statistic 23 software (IBM, Chicago, 
IL, USA). 

2.2.4.3. Cluster analysis 

The score data were subjected to multiple correspondence analysis (MCA) to investigate 
the association between groups. This was performed using R 3.4.3 software (R Foundation for 
Statistical Computing, Vienna, Austria). 

 

2.3. Results and discussion 

2.3.1. Descriptive exploration  

2.3.1.1. Degree of perceived fraud vulnerability of the EVOO supply chain 

 

Figure 2.1. Low-medium-high vulnerability frequencies of the answers of 28 interviewees for the three key 
elements and the six fraud factor categories. Green, orange and red describe low, medium and high vulnerability 
frequency, respectively.  

Perceived fraud vulnerability is dependent on the opportunities and motivations of 
fraudsters to commit fraud, as well as the presence or lack of suitable food fraud control 
measures (van Ruth et al., 2017). Therefore, these three key elements were assessed to identify 
the perceived fraud vulnerability of the EVOO supply chain. The frequencies of the different 
answering options cumulated for the key elements and reflecting low, medium and high 
perceived vulnerability are presented as green, orange and red bars, respectively, in Figure 2.1. 
The frequencies of individual questions are presented in Figure 2.2. The more prevalent the red 
(high vulnerability) and orange colour (medium vulnerability), the higher the perceived 
vulnerability. Only 35% of all questions were rated low vulnerability (Figure 2.1). The orange-
red (medium-high vulnerability) colour dominates in the upper and lower parts of Figure 2.2, 
whereas green (low vulnerability) is the predominant colour in the middle part. The results 
indicate that most of the factors related to the opportunities and control measures were assigned 
high vulnerability. 
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Figure 2.2. Overview of low-medium-high vulnerability frequencies of the answers for 48 fraud factors. Amongst 
these fraud factors, 43 were answered by 28 interviewees and 5 were answered by 14 interviewees. Green, orange 
and red refer to low, medium and high level of vulnerability, respectively.  

Opportunities. All factors related to the technical opportunities (Q1-5) were rated high 
vulnerability (orange-red > 80%). This indicates that it is perceived as easy to adulterate the 
EVOO. It supports the fact that liquid adulteration with another liquid is common and 
physically the easiest to perform (NSF, 2014). Additionally, the detection and confirmation of 
the EVOO fraud are difficult and require advanced laboratory analysis. The European 
Commission (2013) and International Olive Council (IOC, 2016) have established both 
laboratory analytical methods and organoleptic criteria for the EVOO characterisation. 
Organoleptic evaluation is particularly precise and not replaceable with laboratory analysis, but 
it seems to lack reproducibility for commercial EVOO, which is likely due to differences in 
sensory sensibility between the different IOC panel labs (Circi et al., 2017). Moreover, food 
fraud as an intentional act is difficult to be determined, because potential adulterants are 
unconventional, where the current conventional detection systems are not testing food for these 
contaminants as they simply do not know what to test for (Djekic et al., 2018). Therefore, 
technical opportunities are perceived as important drivers to commit fraud (high vulnerability), 
demonstrated with high frequencies of answering options reflecting medium (orange, 36%) and 
high (red, 53%) vulnerability (Figure 2.1). On the contrary, the fraud vulnerability of 
opportunities in time and place is perceived as relatively low level (orange-red = 53%). 
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Motivations. Forty-five percent of the factors related to motivations are perceived as 
low vulnerability based on the green colour in Figure 2.1 and 2.2. However, three factors 
(Q12/13/30) were assessed as high vulnerability. When the participants were asked about the 
supplying and pricing of raw materials (Q12), the majority (82%) commented that the price of 
raw materials varied depending on the harvest quantity and quality of olive fruit, as well as the 
geographical origin. This is in agreement with Santini et al. (2018), who reported that the 
average price of EVOO in Italy grew by 74% from 2011 to 2016. The Food Standards Agency 
(2016) also showed that the average price of EVOO increased by nearly 10% between 
December 2014 and June 2015 as olive harvests in Spain and Italy suffered due to a widespread 
infestation of the olive tree stock by the Xylella fastidiosa bacteria. Moreover, 96% of those 
who were interviewed indicated that special attributes or components mainly determine the 
value of EVOO (Q13), such as organic characteristic, high level of antioxidants and special 
organoleptic properties. These findings are in accordance with a previous study which found 
Dutch consumers willing to pay for organic olive oil due to its production system (Kalogeras et 
al., 2009). Another study also reported that nutrition and taste of EVOO were some of the top 
reasons for most American consumers’ purchasing decisions (Wang et al., 2013). Furthermore, 
96% of the respondents reported that there is a growing competition across the EVOO supply 
chain (Q30). This is in line with Santini et al. (2018) who stated that the olive oil business is 
highly competitive in Italy due to internal (competition between companies: price difference 
and oil quality) and external (the international competition: new producing countries emerging) 
impacts. As such, small scale companies have no competitive pricing advantage compared to 
other companies. Therefore, they must understand the typical features of their olive oil and 
establish a strong marketing strategy to promote them as unique and distinctive traits of the 
product to gain market share (Santini et al., 2018). These three factors are all associated with 
economic drivers, which supports the fact that the economically motivated adulteration is one 
of the major types of food fraud (Moore et al., 2012). Consequently, economic drivers (orange-
red = 66%) contributed more than cultural and behavioural drivers (orange-red = 47%) to the 
perceived fraud vulnerability. 

Control measures. Adequate control measures were merely lacking, considering the 
27% of low vulnerability answers to this group of questions (Figure 2.1). Control measures can 
be divided into technical (hard) controls and managerial (soft) controls. Hard controls refer to 
those aimed at the detection of fraud by generating data and actual information on the 
prevalence of adulterated products, while soft controls are more preventive in nature and aim 
at reducing opportunities and or motivations in the management system and the chain 
environment (van Ruth et al., 2017).  In terms of the technical (hard) controls, the fraud factor 
related to “fraud control system of suppliers” (Q42, red-orange = 82%) was assigned to high 
vulnerability (Figure 2.2). It indicates that most of the suppliers of the interviewed companies 
lacked a well-established fraud control system. More than half of the participants (16 out of 28) 
are small scale companies, it is reported that small companies lack any resources to implement 
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a fraud mitigation plan (Levitt, 2016; Silvis et al., 2017). Furthermore, three factors related to 
the managerial (soft) controls were assigned to high vulnerability (Figure 2.2). Over 80% of 
the participants and their suppliers lacked a specific whistle blowing system (Q40) and 
guidelines for fraud mitigation (Q46). A possible explanation for this might be that there exist 
barriers to whistleblowing. For instance, whistleblowing was viewed as treason or betrayal in 
Italy (Dungan et al., 2015; Osterhaus & Fagan, 2007). Another possible explanation is that 
countries have limited or no legal frameworks to protect whistleblowers (Transparency 
International’s Secretariat, 2013), therefore, the whistleblowers may run the risk of being 
pursued and sanctioned (Motarjemi, 2018). On the other hand, this result is contrary to Soon 
and Manning (2017) who reported that small and medium scale companies (21 out of 28 in this 
study) can more readily implement a whistle blowing protocol within their organisation and 
with their suppliers. In addition, 89% of the interviewees stated that fraud-related enforcement 
practices are not aligned across the international EVOO supply chain (Q49). This is in 
accordance with a previous study (Corini & van der Meulen, 2018), which indicated that the 
enforcement of food fraud in the EU member states are different. The EU food law for the 
prevention of food fraud, Article 19 (European Parliament & European Union Council, 2019), 
requires food business operators to withdraw and recall food products when they consider food 
products not to be in compliance with food safety requirements. Greece, the Netherlands and 
Portugal considered Article 19 applicable to the horsemeat scandal, while Ireland and Italy 
argued that Article 19 requirements had not been met, so they did not recall the involved food 
products (van der Meulen, 2015a). Taking all the above into consideration, we can conclude 
that there is a great lack of food fraud control measures in the EVOO supply chain. It is likely 
to be related to the implementation of regulations (Havinga, 2014; van der Meulen, 2015b) and 
the food regulatory arrangements by companies (Havinga, 2012).  

Overall, the EVOO supply chain is perceived as high vulnerable to food fraud (orange-
red = 64%, Figure 2.1), compared with the other food supply chains (Silvis et al., 2017; van 
Ruth et al., 2018; Yang et al., 2019). Eight fraud factors related to opportunities (Q1-5) and 
motivations (Q12/13/30) scored high in the supply chain indicating their importance as fraud 
drivers and enablers. Four factors (Q40/42/46/49) related to control measures are perceived as 
greatest lacking in the EVOO supply chain. Technical opportunities were rated the most 
vulnerable to fraud, followed by the lack of managerial (soft) controls, the lack of technical 
(hard) controls, economic drivers, cultural and behavioural drivers and opportunities in time 
and place. 

2.3.1.2. Exploring clusters in perceived fraud vulnerability patterns for all companies 

The FFVA data were subjected to MCA to explore the similarities in perceived fraud 
vulnerability patterns across the 28 companies. The first two dimensions of the MCA are shown 
in Figure 2.3. They explained 29% of the total variance. The scores appear to be considerably 
influenced by the role of the company (Figure 2.3a) in the supply chain, as well as the scale 
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(Figure 2.3b) and location (Figure 2.3c) of the company. In order to illustrate the association 
between groupings and the fraud factors, the loadings plot is shown in Figure 2.4.  

 
Figure 2.3. Scores plots of multiple correspondence analysis on the responses of 28 interviewees a) four tier groups: 
olive oil producers, business-to-business (B2B) companies, food manufacturers, retailers; b) three groups 
according to the scale of the companies: small, medium and large; c) two groups according to the location of the 
companies: the Netherlands and Mediterranean countries.  

The retailers and B2B companies (left side along F1) are separated from the olive oil 
producers and food manufacturers (right side along F1) in Figure 2.3a. The retailers and B2B 
groups show relatively high scores for opportunities, motivations and control measures (Figure 
2.4). In contrast, the olive oil producers and food manufacturers are widely spread and overlap 
with each other in Figure 2.3a. They show relatively low scores for opportunities, motivations 
and control measures (Figure 2.4). The results indicate that B2B companies and retailers are 
generally more vulnerable to fraud than the other two tier groups, which means that they are 
perceived as more likely to be victims of fraud. For food manufacturers, the companies that 
produce tomato sauce are separated from the other two types of businesses (pastry and crackers) 
(Supplementary Figure S2.2). Furthermore, the tomato sauce companies present high scores 
for opportunities, motivations and control measures (Supplementary Figure S2.2 and S2.3), 
indicating that EVOO as an ingredient of the semi-solid product (tomato sauce) is perceived as 
more susceptible to be adulterated than that of the other two solid products (pastry and crackers).  

Three groups of companies of different scales (size) widely spread and overlap with 
each other in Figure 2.3b. The small scale companies grouped in the left lower quadrant and 
presented relatively high scores for the three key elements, large scale companies mainly 
grouped in the left quadrants and mainly showed medium scores. Whereas the medium scale 
companies grouped in the left quadrants and they appeared to be less vulnerable to fraud than 
the other companies (Figure 2.4). The results is in line with the previous study reporting that 
small businesses suffer fraud more frequently than large organisations (Doody, 2009). 

With regard to the location of the companies, the Netherlands group overlaps with a 
certain number of the Mediterranean group in Figure 2.3c. Moreover, the Netherlands group 
show relatively high scores for the three key elements (Figure 2.4). This means that companies 
in the Netherlands perceives themselves as more vulnerable to fraud. This higher perceived 
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vulnerability could be due to the fact that the Dutch companies are primarily B2B companies 
and retailers and they are also primarily small scale companies (Table 2.1). Another possible 
reason is that the level of food safety in the Netherlands is high, but the opportunities to commit 
food fraud have increased, because fraudsters are trying their utmost to remain out of the line 
of sight of the supervisory authority (NVWA, 2018a). furthermore, olive oil is always imported 
from the south of Europe, which results in a longer chain and more opportunity to commit fraud.  

 
Figure 2.4. Loadings plot of multiple correspondence analysis on the responses of 28 interviewees. Higher, 
intermediate and lower vulnerability scores are coloured red, blue and green, respectively. O refers to opportunities; 
M refers to motivations; C refers to control measures; numbers after the letter refer to question 
number_vulnerability level.  

Additionally, the differences and similarities between the conventional and organic 
EVOO supply chains were investigated. It is interesting to notice that these two supply chains 
are widely spread and overlap with each other in Supplementary Figure S2.4, which means that 
there is no big difference between these two supply chains. It reveals that the organic property 
did not contribute to additional perceived fraud vulnerability. This finding is consistent with 
that of Barbieri et al. (2015) who found that organic farming information did not affect 
consumers’ preferences for EVOO, which means that the organic property did not trigger fraud.   

These findings indicate that the assignment to the clusters is not only due to the role of 
the company in the supply chain, but it is also determined by the scale and location of the 
company. Retailers and B2B companies have a similar perceived fraud vulnerability pattern. 
And they are also more vulnerable to food fraud than the other two tier groups. 

2.3.1.3. Exploring perceived fraud vulnerability patterns according to the role of the companies 

The low-medium-high vulnerability frequencies of answering options across the four 
tier groups (olive oil producers, B2B companies, food manufacturers and retailers) are 
presented in Figure 2.5. The perceived fraud vulnerability patterns of individual tier groups 
(Supplementary Figure S2.5) are broadly similar to the overall perceived fraud vulnerability of 
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the EVOO supply chain (Figure 2.2). The upper and lower parts (opportunities and control 
measures) are dominated by the orange-red colour, whereas in the middle part (motivations), 
green is the predominant colour. 

 
Figure 2.5. Low-medium-high vulnerability frequencies of answers for the three key elements (opportunities, 
motivations and control measures) and the six fraud factor categories (technical opportunities, opportunities in 
time & place, economic drivers, cultural & behavioural drivers, technical controls and managerial controls) of the 
fraud vulnerability assessments for the four tier groups. Green, orange and red refer to low, medium and high level 
of vulnerability, respectively. B2B refers to business-to-business.   

Opportunities. Technical opportunities (orange-red > 80%) were assigned to high 
vulnerability by the four tier groups. The B2B companies and retailers assigned opportunities 
in time and place (Q9/10/11) to high vulnerability (orange-red = 71%), whereas the olive oil 
producers and food manufacturers rated them with a low vulnerability (orange-red = 39%). The 
EVOO supply chain was described by the B2B companies and retailers as a complex supply 
chain that lacks transparency, with short-term relationships and no information exchange (Q9). 
According to Soon et al. (2019), several sources could help companies increase the information 
exchange in the supply chain, including their own internal experts, guidelines provided by the 
different assessment methods, food safety certification bodies, professional memberships and 
networking with their suppliers and consumers. Furthermore, to solve traceability issues and 
enhance transparency, RFID and blockchain technologies (Galvez et al., 2018) could be applied 
in the supply chain. Moreover, when questioned about the historical fraud incidents (Q10/11), 
the olive oil producers (small scale companies) lack of access to the food fraud databases, which 
may result in a difficulty understand of the historic incidents (Manning & Soon, 2019). In 
addition, with regard to food manufacturers, compared with the frequently reported EVOO 
fraud incidents (Smith, 2017; Taylor, 2019), an EVOO fraud incident seldom reported for food 
that use EVOO as an ingredient. Consequently, B2B companies and retailers are generally more 
vulnerable to commit fraud. Furthermore, they are perceived more likely to be victims of fraud 
due to the increased opportunities in time and place.  

Motivations. The factors related to economic drivers are perceived as medium-high 
vulnerability level by the olive oil producers, B2B companies and retailers. This is in agreement 
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with Moore et al. (2012) who found that fraud conducted for economic gain by food producers, 
processors, distributors, or retailers is gaining attention and the economic motivation is the main 
reason for food fraud. However, food manufacturers assigned the economic drivers to the 
lowest vulnerability compared to the other three tier groups. A possible reason is that the 
addition of a small amount of EVOO as a flavour additive does not lead to large price difference. 
This, in turn, seems to be less motivated to commit fraud. With regard to the cultural and 
behavioural drivers, the retailers (orange-red = 61%) assigned these drivers to be more 
vulnerable to commit fraud than the other three tier groups (orange-red < 50%). This is mainly 
due to a lack of confidence in their suppliers (Supplementary Figure S2.5). Similarly, the lack 
of confidence in their suppliers also appeared in the milk supply chain (Yang et al., 2019). The 
result reveals a weak interaction between the companies and their suppliers. Furthermore, a lack 
of information and knowledge sharing with other tier groups (including their suppliers) may 
increase food vulnerability (Soon et al., 2019). Consequently, the retailers (orange-red = 64%) 
assigned high vulnerability scores to fraud factors associated with motivations, followed by 
olive oil producers (orange-red = 57%), B2B companies (orange-red = 54%) and eventually the 
food manufacturers (orange-red = 44%). 

Control measures. Most of the retailers and B2B companies (orange-red > 80%) stated 
that they predominantly lack technical controls (i.e. a fraud monitoring system, tracking and 
tracing system and contingency plan). Only ~60% of the responses coming from the olive oil 
producers and food manufacturers are in line with this statement. It is possible that the 
specialised trained counter-fraud staff is rarely employed within the food industry (Soon et al., 
2019), which results in a weak fraud control system. Moreover, B2B companies (orange-red = 
87%) were more vulnerable to commit fraud due to a lack of managerial controls. All the B2B 
companies in this study were small scale companies, while small businesses do not have the 
resources to map out the dangers of food fraud in their supply chain (Levitt, 2016; Silvis et al., 
2017). Hence, a lack of resources may lead to companies being more vulnerable to fraud. 
Therefore, the food manufacturers (green = 39%) and olive oil producers (green = 37%) have 
more adequate control measures in place, followed by the retailers (green = 17%) and the B2B 
companies (green = 13%). This result is in line with the perceived fraud vulnerability 
assessment of the other supply chains (van Ruth et al., 2018). 

Overall, the perceived fraud vulnerability varied between tier groups. Since B2B 
companies are in the middle part of the supply chain (Supplementary Figure S2.1), they are 
also more likely to pass the potential fraud on to their customers (food manufacturers and 
retailers) (van Ruth et al., 2018). With regard to the medium-high vulnerability frequencies of 
responses of each tier group (Figure 2.5), the decreasing order in perceived fraud vulnerability 
is retailers (orange-red = 73%), B2B companies (orange-red = 69%), olive oil producers 
(orange-red = 61%) and food manufacturers (orange-red = 55%). Similar to the other food 
supply chain (Silvis et al., 2017; van Ruth et al., 2018; Yang et al., 2019), the companies in the 
middle and end of the supply chain (B2B companies and retailers) are more vulnerable to fraud 
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than the companies at the beginning of the supply chain (producers). There are two possible 
reasons. Firstly, because of the increased complexity of the food supply chain, when more 
members (the intermediaries between producers and consumers: wholesalers, distributors and 
retailers) involve in the supply chain, more uncertainties accrue (Lamarre & Pergler, 2009; Ting 
et al., 2014) and the likelihood of food fraud increases (Manning & Smith, 2015). Thus, B2B 
companies and retailers are more vulnerable to fraud. Secondly, considering their reputation 
and that they are easily traced through the origin place on the package, the olive oil producers 
and food manufacturers are more likely to present a positive outlook. Therefore, when 
questioned about the likelihood of being affected by food fraud, they possibly say that “It won’t 
happen to us” (Soon et al., 2019; Weinstein, 1984).   

2.3.2. Statistical evaluation: Effect of group characteristics on perceived fraud vulnerability 

2.3.2.1. The role of the companies 

Table 2.2. Fraud factors of the FFVA demonstrating significantly different perceived fraud vulnerability 
between tier groups. 

Question 
number Fraud factor 

Food 
manufacturers 

(n = 7) 

Olive oil 
producers 

(n = 7) 

B2B companies 
(n = 7) 

Retailers 
(n = 7) 

Q22 Ethical business culture 
(supplier) 10 c 14 b 12 bc 22 a 

Q24 Victimisation (supplier) 9 b 17 a 14 ab 19 a 

Q36 Information system (own 
company) 7 a 12 a 20 b 20 b 

Q37 Tracking and tracing system 
(own company) 9 a 13 a 16 ab 21 b 

Q39 Ethical code of conduct 
(own company) 9 a 12 ab 20 b 16 ab 

Different superscript letters (a, b, c) in a row indicate significant differences from each other (Kruskal-Wallis tests and Mann-
Whitney U tests, p < 0.05). Higher, intermediate and lower vulnerability scores are coloured red, orange and green, respectively. 
FFVA refers to food fraud vulnerability assessment; B2B refers to business-to-business. 

Five factors revealing significant differences (Mann-Whitney U test, p < 0.05) between 
tier groups are shown in Table 2.2, including two motivation related fraud factors (Q22, the 
ethical business culture of suppliers; Q24, victimisation of suppliers) and three internal control 
measures related fraud factors (Q36, information system; Q37, tracking and tracing system; 
Q39, ethical code of conduct). Specifically, retailers show less confidence in their suppliers 
than other three tier groups (Q22/24). This is in line with previous research, which showed that 
external frauds occurred at their suppliers were reported more frequently than internal frauds 
occurred at the companies themselves due to less stringent control and preventive measures 
(Manning, 2016) and increased awareness of food fraud in the supply chain (Soon et al., 2019). 
In addition, all retailers and B2B companies showed a significantly greater lack of internal 
control measures (Q36/37/39) than the other two tier groups. This is in line with van Ruth et al. 
(2018) who reported that B2B companies (wholesalers) and retailers also lacked these internal 
control measures in the other food supply chains.   
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2.3.2.2. The scale of the companies  

Table 2.3. Fraud factors of the FFVA demonstrating significantly different perceived fraud vulnerability 
between groups according to the scale of the company. 

Question 
number Fraud factor Medium 

(n = 5) 
Small 

(n = 16) 
Large 
(n = 7) 

Q22 Ethical business culture (supplier) 8 b 14 ab 20 a 

Q36 Information system (own company) 7 a 17 b 14 ab 
Q47 National food policy 10 a 13 a 22 b 

Different superscript letters (a, b) in a row indicate significant differences from each other (Kruskal-Wallis tests and Mann-
Whitney U tests, p < 0.05). Higher, intermediate and lower vulnerability scores are coloured red, orange and green, respectively. 
FFVA refers to food fraud vulnerability assessment.  

Three fraud factors showed statistically significantly different perceived vulnerability 
(Mann-Whitney U test, p < 0.05) between companies due to the different scale of the companies 
(Table 2.3). Small and large scale companies are perceived to be more vulnerable to fraud based 
on these three factors. Large scale companies (mean rank = 20) show significantly higher 
perceived vulnerability in the factor related to motivation (Q22, the ethical business culture of 
the suppliers) than medium scale companies (mean rank = 8). Since the significant difference 
in this factor was also found between tier groups (Table 2.2), both the role of the companies in 
the supply chain and the scale of the companies contributed to the score of this factor. While 
small scale companies showed greatest lack of information system on mass balance flow (Q36, 
mean rank = 17). Most of them stated that they only have a basic administrative system with 
limited information or no specific information on mass balances of incoming materials and final 
products. Moreover, there is no systematic analysis of mass flow data throughout the companies. 
In addition, large scale companies stated that there only exists a general national food policy 
without specific legislative requirements for food fraud mitigation (Q47, mean rank = 22). 
These large scale companies are primarily located in the Netherlands and the result is in 
agreement with the facts. The food policy of the Netherlands provides details on food safety 
control system (NVWA, 2017, 2018b). Furthermore, the Food Confidence Task Force (The 
Dutch Minister for Agriculture & The Dutch Minister of Health Welfare and Sport, 2013) 
defined a set of criteria for quality schemes that strengthen the private safeguarding of food 
safety and integrity. Although some general requirements are included in the EU General Food 
Law, there is no explicit framework in place to target food fraud (mitigation) in Dutch food 
policy. There is even no consensus on a uniform definition of food fraud in EU legislations 
(European Parliament, 2016; Manning & Soon, 2019).  

2.3.2.3. The location of the companies  

The significant differences (Mann-Whitney U test, p < 0.05) between the companies in 
the Netherlands and Mediterranean countries are presented in Table 2.4. The corruption level 
of the Netherlands (mean rank = 12) is significantly lower than that of the Mediterranean 
countries (mean rank = 19) resulting from the motivation related fraud factor Q18. This is in 
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agreement with the Transparency International (2018) reporting that the corruption perception 
index of the Netherlands (index value = 82) is higher than that of the Mediterranean countries 
(index value < 50). The lower the index value, the higher the corruption level. On the other 
hand, the corruption perception at the country level may activate the corruption perception at 
the industry level (Gounev & Bezlov, 2010), which in turn results in food fraud, e.g. horsemeat 
scandal. However, the fraud vulnerability of the Dutch companies is perceived as higher level 
than that of the companies in Mediterranean countries due to greatest lack of internal controls 
(Q36/39). Since Dutch companies are primarily B2B companies and retailers and they are also 
primarily small scale companies (Table 2.1), the significant differences in these two fraud 
factors were also found between the tier groups (Table 2.2).  

Table 2.4. Fraud factors of the FFVA demonstrating significantly different perceived fraud vulnerability between 
groups according to the location of the company. 

Question 
number Fraud factor Mediterranean countries 

(n = 11) 
The Netherlands 

(n = 17) 
Q18 Corruption level country (own company) 19 a 12 b 
Q36 Information system (own company) 9 a 18 b 

Q39 Ethical code of conduct (own company) 10 a 17 b 
Different superscript letters (a, b) in a row indicate significant differences from each other (Mann-Whitney U tests, p < 0.05). 
Higher and lower vulnerability scores are coloured red and green, respectively. FFVA refers to food fraud vulnerability 
assessment.  

Taken together, it is evident that there are differences in perceived fraud vulnerability 
due to the scale and location of the companies, and those two are intertwined. Therefore, the 
perceived fraud vulnerability is affected by the role, the scale and the location of the companies. 
In addition, B2B companies and retailers are all located in the Netherlands, whereas the olive 
oil producers are located in Mediterranean countries. This intertwining affects the results but 
are factual when it comes to olive oil producers. There are simply no olive trees growing in the 
Netherlands. However, in future research, B2B companies and retailers in the south of Europe 
could be examined as well.  

 

2.4. Conclusions and outlook 

An in-depth perceived fraud vulnerability assessment of the EVOO supply chain was 
provided to understand the differences in perceived fraud vulnerability between tier groups. 
Eight fraud factors related to opportunities (Q1-5) and motivations (Q12/13/30) scored high in 
the supply chain indicating their importance as fraud drivers and enablers. Four fraud factors 
(Q40/42/46/49) related to control measures are perceived as greatest lacking in the EVOO 
supply chain. Furthermore, the perceived fraud vulnerability varied between tier groups. The 
decreasing order in perceived fraud vulnerability is: retailers, B2B companies, olive oil 
producers and food manufacturers. The retailers and B2B companies are accompanied by 
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additional vulnerability due to opportunities in time and place and greatest lack of control 
measures. In addition, the variations of the perceived fraud vulnerability across the EVOO 
supply chain were determined not only by the role of the company, but also by the scale and 
the location of the company.  

The knowledge from the current study can be used to pinpoint the weaker spots in the 
chain in order to develop and implement data-driven control measures. For instance, once the 
weaker spots were identified, then the potential situational mechanisms for reducing and 
preventing food fraud in the EVOO supply chain could be generated (Lord et al., 2017). For 
individual actors, it is recommended to select suppliers with care, be part of a transparent chain 
and implement adequate control measures in order to reduce fraud vulnerability. Future 
research could focus on an extension of actors. This could concern a larger diversity of countries 
including those from outside the EU, but also a greater variety of nodes in the chain, e.g. olive 
growers and food service industry actors. 
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Supplementary materials 

Table S2.1. The questionnaire of the SSAFE food fraud vulnerability assessment tool. 

No. Question  
1 In your opinion and experience, is it simple or complex to adulterate EVOO a? 
2 Is the technology and knowledge to adulterate raw material (EVOO) generally available? (Only for 

producers and food manufacturers) 
3 How easily can adulteration of raw material (EVOO) be detected and with what kind of methods? 

(Only for producers and food manufacturers) 
4 How available is the technology and knowledge to enable the adulteration of your final product? 
5 How easily would adulteration of your final products be detected and what kind of methods are 

available? 
8 How would you describe the production lines / processing activities of your company? (Only for 

producers and food manufacturers) 
9 How would you describe your part of the food supply chain? 

10 Have fraudulent incidents of EVOO been reported? 
11 Have fraudulent incidents of similar final products been reported? 
12 How would you define the supply and pricing of EVOO? 
13 Do special attributes or components determine the value of EVOO? 
14 How would you describe the economic condition of your company? 
15 What are the characteristics of the business strategy of your company? 
16 How would you describe the ethical business culture of your company? 
17 Has your company been involved in criminal offences previously? 
18 How would you rate the corruption level (according to the Transparency International Corruption 

Perception Index) in the countries where your company is active? (www.transparency.org/cpi) 
19 How would you describe the financial strains imposed by your company on your direct supplier(s)? 
20 How would you describe the economic health of your direct supplier(s)? 
21 What are the characteristics of the business strategy of your direct supplier(s)? 
22 How would you describe the ethical business culture of your direct supplier(s)? 
23 Has your direct supplier(s) been involved in criminal offences previously? 
24 Has your direct supplier(s) been a victim of food fraud committed by their suppliers, customers or 

other parties? 
25 How would you rate the corruption level (according to the Transparency International Corruption 

Perception Index) in the countries where your direct supplier(s) and customers are active? 
26 How would you describe the economic health across your sector of the food supply chain (i.e. your 

company and your direct competitors)? 
27 Has your customer(s) been involved in criminal offences previously? 
28 How would you describe the ethical business culture across your sector of the food supply chain (i.e. 

your company and your direct competitors)? 
29 How common are criminal offences across your sector of the food supply chain? (i.e. your company 

and your direct competitors)? 
30 How would you rate the level of competition across your sector of the food supply chain (i.e. your 

company and your direct competitors)? 
31 Are there price differences as a result of regulatory differences across countries? 
32 How would you rate your company's raw material (EVOO) monitoring control systems' ability to 

detect fraud? (Only for producers and food manufacturers) 
33 Are the fraud monitoring tasks of raw material (EVOO) control system verified in your company? 

(Only for producers and food manufacturers) 
34 How would you describe the fraud related parts of your final product monitoring control system of 

your company? 
35 Are the fraud monitoring tasks of your final product control system verified in your company? 
36 How extensive is the information system for internal control of mass balance flows in your company? 
37 How extensive is the tracking & tracing system of your company? 
38 Is integrity screening of employees’ common procedure in your company? 
39 Is there an ethical code of conduct or guideline in place and embedded in your company? 
40 Is there a whistle blowing system (system for reporting assumed fraudulent activities) in place in your 

company?  
41 Do contractual requirements with your direct suppliers include elements that limit opportunities for 

fraud?  

56   |   Chapter 2



 
 

 

No. Question  
42 What features the fraud control system of your direct supplier(s)?  
43 How extensive is the information system for control of mass balance flows of your direct supplier(s)?  
44 How extensive is the traceability system of your direct supplier(s)?  
45 How would you describe the social control and transparency of actions across your supply chain? 
46 How well established is guidance for fraud prevention and control across your sector of the food 

supply chain? (i.e. your company and your direct competitors) 
47 How would you describe your national food policy? (i.e. country-level)  
48 How well are fraud prevention laws enforced locally? 
49 How well are fraud related laws enforced across your international supply chain? 
50 Does your company have fraud contingency measures in place? 

a EVOO, extra virgin olive oil.  

 

 

 

Figure S2.1. Roadmap of the extra virgin olive oil supply chain from farm to table. B2B refers to business-to-
business.    
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Figure S2.2. Scores plot of multiple correspondence analysis on the responses of seven food manufacturers.  

 

 

Figure S2.3. Loadings plot of multiple correspondence analysis on the responses of seven food manufacturers. 
Higher, intermediate and lower vulnerability scores are coloured red, blue and green, respectively. O refers to 
opportunities; M refers to motivations; C refers to control measures; numbers after the letter refer to question 
number_vulnerability level.  

 

Figure S2.4. Scores plot of multiple correspondence analysis on the responses of 10 organic EVOO companies 
and 18 conventional EVOO companies.  EVOO refers to extra virgin olive oil. 
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Abstract 

In this study, the processing derived contaminants 2- and 3-monochloropropanediol (2- and 3-
MCPD) esters and glycidyl esters (GEs) were analysed in 84 oil samples by gas 
chromatography-tandem mass spectrometry for the discrimination of processing grades of olive 
oils as a potential authentication tool. Concentrations of 2- and 3-MCPD esters and GEs varied 
in the ranges 0-6 mg/kg, 0-1.5 mg/kg, and 0-1 mg/kg oil, respectively. The concentrations of 
the three compounds in lower grade olive oils were significantly higher (p < 0.05) than that in 
EVOO. A similar difference was observed for other refined and cold-pressed vegetable oils. 
The limit of fraud detection of lower grade oils in EVOO was 2% when using 3-MCPD esters, 
5% for 2-MCPD esters and 13-14% for GEs based on calculations of virtual mixtures of the 
current sample set. Especially the MCPD esters appear very specific and promising for the 
detection of lower processing grade oils in EVOO. 

Keywords: Authenticity; fraud; GC-MS/MS; processing contaminants.  
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3.1. Introduction 

In recent decades, the popularity of olive oil has seen a rise worldwide due to its 
perceived health benefits. This holds especially for extra virgin olive oil (EVOO). The easiness 
to adulterate EVOO, the difficulty of detection, discrepancy between supply and demand, 
economic drivers, as well as cultural and behavioural risk factors and lack of control measures 
contribute to the susceptibility of EVOO to fraud. Three typical olive oil frauds have been 
reported: (a) the most common way is to blend with other vegetable oils (Jabeur et al., 2014), 
(b) replacement with vegetable oil with addition of chemical compounds to disguise the 
adulteration (Roca et al., 2010) and (c) the replacement of EVOO with lower olive oil grades. 
The latter may include refined olive oil (ROO) (Karbasian et al., 2015) and pomace olive oil 
(POO) (Škevin et al., 2011), as well as soft deodorised oils (Aparicio-Ruiz et al., 2017). 

Since EVOO adulteration is a serious issue, it is desirable to explore innovative and 
reliable methods to reveal EVOO fraud. In order to guarantee food quality and expose olive oil 
fraud issues, many analytical strategies have been reported over the last few decades (Luykx & 
Van Ruth, 2008). The chemical methods are widely used to identify olive oil adulteration and 
are based on single or multiple markers (Tres & van Ruth, 2011). Those markers can be divided 
into two groups. The first one comprises the major components of olive oils, such as 
triglycerides (Jabeur et al., 2014), fatty acids (Škevin et al., 2011), waxes and sterols (Aparicio 
& Aparicio-Ruiz, 2000). The second group consists of minor components of olive oils, which 
includes chlorophylls (Roca et al., 2010), carotenoids (Moyano et al., 2008), phenolic 
compounds (Lerma-Garcia et al., 2008) and squalene (Ben Mansour et al., 2015).  

The detection of ROO in EVOO remains a challenge though. Although one would 
usually look for the reduction of the desirable EVOO compounds, the naturally present variation 
of those compounds would still result in a relatively wide acceptable range. Since many 
compounds are removed during the refining process, very few unique characteristics are left. 
The only ones to be considered are compounds that are formed in the refining process and are 
persistent throughout all the steps in the refining process. Monochloropropanediol (MCPD) 
esters and glycidyl esters (GEs) may be that kind of compounds, but few studies have looked 
into these compounds in olive oils so far. 

MCPD esters are minor compounds derived from diacylglycerols and are chlorinated 
through refining processes and special treatments. Free 3-MCPD was reported first in acid-
hydrolysed vegetable proteins (Velisek et al., 1980). It was also detected at an early stage in 
rapeseed oil adulterated with aniline and refined with hydrochloric acid (Gardner et al., 1983). 
GEs are minor compounds formed from monoacylglycerols in the refining process. Although 
many studies looked into the formation of MCPD esters and GEs, a definite and generally 
accepted mechanism has not been established yet (Zhao et al., 2016). Some studies have 
focused on factors that influence the formation of those compounds. According to Weißhaar 
(2008), temperature, pressure, water activity and other technical parameters during the refining 
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process trigger the formation of 3-MCPD esters. Deodorisation, a process which requires 
usually high temperatures, result in considerable formation of 3-MCPD esters and GEs 
especially when the temperature reaches up to 230 ºC (Hrncirik & van Duijn, 2011). Zelinkova 
et al. (2006) reported also an increase during prolonged heating of rapeseed oils at 230˚C, but 
in contrary a reduction under the same conditions for olive oils.  

MCPD and glycidol are not harmless compounds. Various toxicological studies 
revealed their toxicity. The International Agency for Research on Cancer (IARC) characterises 
3-MCPD as possibly carcinogenic to humans, based on cancer incidents caused by 3-MCPD in 
laboratory animals (IARC, 2012). The European Food Safety Authority (EFSA, 2016) 
concluded that the critical effect of 3-MCPD is kidney toxicity and glycidol has potential 
genotoxic and carcinogenic effects. Meanwhile, the Joint FAO/WHO Expert Committee on 
Food Additives (JECFA, 2016) concluded that glycidol is a genotoxic compound. Based on 
those research data, the EFSA (2016) established a tolerable daily intake (TDI) of 0.8 μg/kg 
body weight (bw) per day for the sum of free 3-MCPD and 3-MCPD esters. More recently the 
JECFA (2016) announced a regulatory maximum TDI of 4 μg/kg bw per day for free 3-MCPD 
and 3-MCPD esters. In view of insufficient toxicokinetic data, no health-based guidance value 
could be established for 2-MCPD. Due to genotoxicity and carcinogenicity, it is not appropriate 
to establish a health-based guidance value for glycidol. Therefore, the margin of exposure (MoE) 
approach was applied, MoE estimates were calculated by dividing the reference point of T25 
10.2 mg/kg bw per day by the exposure levels (EFSA, 2016; JECFA, 2016). MCPD and 
glycidol may be useful for discrimination of processing grades of oils, but we have to consider 
that there is also an unusual dark side to this group of markers. 

In the current study, we aim to explore the processing derived contaminants MCPD 
esters and GEs for the discrimination of processing grades of olive oils as potential 
authentication tool. The results will be compared to the levels of these compounds in some other 
vegetable oils.  

 

3.2. Materials and Methods 

3.2.1. Samples 

Eighty-four oil samples, the authenticity of which was confirmed in various preliminary 
tests, which are based on fatty acid compositional fingerprinting, volatile organic compound 
fingerprinting and spectroscopic tests measuring K232, K268 and ΔK values (IOC, 2015), were 
selected from a pool of 400 oil samples. The large oil set was supplied by many olive oil 
producers, traders and retailers in the EU. For the current study, the selected set of 84 samples 
comprised 30 EVOO samples (Origin: 6 Greece, 14 Italy, 6 Spain, 4 EU), 18 ROO samples 
(Origin: 4 Italy, 5 Spain, 9 EU), 16 POO samples (Origin: 6 Italy, 6 Spain, 4 EU), 8 cold pressed 
vegetable oil samples (C-VEGE) (Origin: 8 EU) and 12 refined vegetable oil samples (R-VEGE) 
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(Origin: 1 South America, 1 Africa, 10 EU). C-VEGE consisted of 7 cold-pressed rapeseed oils 
and 1 sunflower oil. R-VEGE consisted of 3 refined rapeseed oils, 4 peanut oils and 5 sunflower 
oils.  

Blends of one EVOO and one ROO sample, as well as one EVOO and one POO sample 
were manually prepared (mix1 and mix2) and comprised 10%, 20%, 30%, 40% and 50% of 
ROO or POO in EVOO. 

Prior to analysis, samples were stored in capped bottles, which were kept in the dark at 
room temperature until analysis. 

3.2.2. Reagents and standards 

Reagents: tetrahydrofuran, anhydrous; methanol, analytical grade; n-heptane, 
analytical grade; acetone, analytical grade; toluene, analytical grade; sulfuric acid (purity ≥ 
95%); sodium hydrogen carbonate (purity≥ 99%); sodium sulphate (purity ≥ 99%); 
phenylboronic acid (PBA) (purity ≥ 97%); sodium bromide (purity ≥ 99.5%), all reagents upon 
were purchased from Sigma-Aldrich. Ultra-pure water obtained from a Millipore Milli-Q 
purification system (Millipore Co., Bedford, MA, USA). 1,2,3,4-tetrachloronaphthalene 
(1,2,3,4-TCN) 10 μg/mL in iso-octane were obtained from Agilent.  

Standards: 1,2-bis-palmitoyl-3-chloropropanediol [PP-3-MCPD] (98%, CAS: 51930-
97-3), 1,3-dipalmitoyl-2-chloropropanediol [PP-2-MCPD] (98%, CAS: 169471-41-4) and 
glycidyl palmitate [Gly-P] (98%, CAS: 7501-44-2) were all purchased from Toronto Research 
Chemicals (Toronto, Canada). The stock solutions of 1 mg/mL in toluene were prepared for 
those three-native standards PP-3-MCPD, PP-2-MCPD and Gly-P. 

1,2-dipalmitoyl-3-chloropropanediol-d5 [PP-3-MCPD-d5] (1.0 mg/mL in Toluene) 
(99.5%, CAS: 1185057-55-9), 1,3-dipalmitoyl-2-chloropropanediol-d5 [PP-2-MCPD-d5] (1.0 
mg/mL in Toluene) (97.4%, CAS: 1426395-62-1) and glycidyl palmitate-d5 [Gly-P-d5] (1.0 
mg/mL in Toluene) (99.5%, CAS: 1794941-80-2) were purchased from Chiron AS (Trondheim, 
Norway), supplied by Campro Scientific (Veenendaal, The Netherlands). 

For preparation of the working solutions for the calibration curve, a modified method 
of the AOCS Cd29a_13 method (AOCS, 2013) was followed, the changes are listed in Table 
3.1. 
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Table 3.1. Information on the nine working solutions. 

Standards Preparing methods 
Calibration I (PP-3-MCPD, 55 
μg/mL) 

Pipette 550μL of the stock solution (Solutions: Standard, PP-3-MCPD) into 
a 10 mL volumetric flask and fill up to the mark with the solvent. 

Calibration II (PP-3-MCPD, 
5.5μg/mL) 

Pipette 1 mL of the Calibration I solution into a 10 mL volumetric flask and 
fill up to the mark with the solvent 

Calibration III (PP-2-MCPD, 
55 μg/mL) 

Pipette 550μL of the stock solution (Solutions: Standard, PP-2-MCPD) into 
a 10 mL volumetric flask and fill up to the mark with the solvent. 

Calibration IV (PP-2-MCPD, 
5.5 μg/mL) 

Pipette 1 mL of the Calibration III solution into a 10 mL volumetric flask 
and fill up to the mark with the solvent 

Calibration V (Gly-P, 100 
μg/mL) 

Pipette 1 mL of the stock solution (Solutions: Standard, Gly-P) into a 10 mL 
volumetric flask and fill up to the mark with the solvent 

Calibration VI (Gly-P, 10 
μg/mL) 

Pipette 1 mL of the Calibration V solution into a 10 mL volumetric flask and 
fill up to the mark with the solvent 

Internal standard I (PP-3-
MCPD-d5, 40 μg/mL) 

Pipette 400 μL of the stock solution (Solutions: Standard, PP-3-MCPD-d5) 
into a 10 mL volumetric flask and fill up to the mark with the solvent. 

Internal standard II (PP-2-
MCPD-d5, 40 μg/mL) 

Pipette 400 μL of the stock solution (Solutions: Standard, PP-2-MCPD-d5) 
into a 10 mL volumetric flask and fill up to the mark with the solvent. 

Internal standard III (Gly-P-
d5, 40 μg/mL) 

Pipette 400 μL of the stock solution (Solutions: Standard, Gly-P-d5) into a 
10 mL volumetric flask and fill up to the mark with the solvent 

PP-3-MCPD, 1,2-bis-palmitoyl-3-chloropropanediol; PP-2-MCPD, 1,3-dipalmitoyl-2-chloropropanediol; Gly-P, glycidyl 
palmitate. 

3.2.3. Sample preparation  

The general principle of this method is the conversion of glycidyl esters into 3-
monobrompropanediol esters with sodium bromide and diluted sulphuric acid up front, which 
is then followed by an acid catalysed hydrolysis of all esters (16h, 40°C, with sulphuric acid in 
methanol) in order to release the bound contaminants (2-MCPD, 3-MCPD and glycidol). 
Finally, the free contaminants are derivatised with phenylboronic acid prior to gas 
chromatography-tandem mass spectrometry (GC-MS/MS) analysis.  

The extraction method of the 2-, 3-MCPD esters and GEs, which was used in this 
experiment, followed basically the AOCS official method Cd29a_13 (AOCS, 2013) with some 
slight modifications. Firstly, GC-MS/MS was used for the measurement instead of GC-MS, for 
additional selectivity. Secondly, an extra internal standard PP-2-MCPD-d5 were applied, so 
that 2-MCPD could be quantified on its own internal standard, which improves the accuracy of 
2-MCPD results. The third modification concerns the reconstitution of the dry residue in the 
final step in iso-octane instead of n-heptane. Fourthly, before transferring the supernatant to the 
GC vial, 50 μL 1,2,3,4-TCN solution was added to each sample as a syringe standard. This 
syringe standard was used to monitor the GC injection reproducibility and sensitivity drift of 
the MS/MS instrument over time. 

3.2.4. GC-MS/MS 

The instrumental measurement was performed according to the AOCS official method 
Cd29a_13 (AOCS, 2013), but with a modification of using GC-MS/MS instead of GC-MS. 
GC-MS/MS analyses were carried out using a Varian CP-3800 GC and a Varian CP-8400 
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autosampler, combined with Varian 1200L Quadrupole MS/MS system from Varian (USA), 
equipped with an DB-35ms fused-silica column (30m x 0.25 mm ID x 0.25µm film thickness), 
purchased from Agilent (USA).  

Gas chromatographic settings: The injector was set at 250°C on pulsed splitless mode 
with a pulse pressure of 30.0 psi and a pulse duration of 1.20 min (Varian type 1079 EFC). 2 
μL samples were injected and carried by 1 mL/min He. The transfer line temperature was set at 
300°C. The GC oven temperature program started at 100˚C for 1 min, ramped to 160°C at 
20°C/min, hold for 1 min at 160°C, ramped to 180°C at 4°C/min, from 180°C to 340°C at 
30°C/min, hold for 4.70 min at 340°C. The total run duration is 20.03 min.  

Mass spectrometer settings: The ionisation was set at 70 eV. The monitored mass 
transitions are described in Table 3.2. 

Table 3.2. The optimised MS/MS settings for the PBA derivative of each compound. 

Compound  Qualifier ion transition Quantifier ion transition Collision energy (eV) 

2-MCPD 196>91, 
196>134 196.3>104.3 16 

2-MCPD-d5 201>93.3, 
201>136.3 201.3>104.3 25 

3-MCPD 196>91 196.4>147.3 8 

3-MCPD-d5 201>93, 
201>106 201.4>150.3 8 

3-MBPD 240>91, 
240>105 240.0>147.0 12 

3-MBPD-d5 245>93 245.0>150.0 10 
MCPD, monochloropropanediol; MBPD, monobrompropanediol, PBA, phenylboronic acid. 

All oil samples were analysed in duplicate. Data used in this study were the average 
value of the two replicates of each oil sample.  

3.2.5. Collision Energy Optimisation 

The most abundant daughter ions were identified by infusion of standard solutions of 
the PBA derivative of the target analytes. The transitions are mentioned in Table 3.2. 
Afterwards, the optimal collision energies were determined, and these values are mentioned in 
Table 3.2. These mass transitions correspond to the PBA derivatives of the unbound native 
target compounds and their internal standards. 

Quality Assurance and Quality Control: The chemical analysis of the samples is 
performed according to the AOCS official method Cd29a_13 (AOCS, 2013). This method is 
implemented in our laboratory and experiments demonstrated that the method (with slight 
modifications as mentioned earlier) meets the method performance requirements as specified 
in Cd29a_13. Quality is controlled by analysis of blank samples, the use of deuterated internal 
standards, duplicate analysis of every individual sample and spiking experiments.   
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3.2.6. Statistical Analysis 

One-way analysis of variance (ANOVA) was performed to assess the differences in 
concentrations of the compounds between types of oils. Subsequently, Tamhane’s T2 post hoc 
tests were applied for pairwise comparisons. p < 0.05 was used throughout the study. The 
statistical analyses resulting in the figures were performed using MATLAB (R2015b, The 
MathWorks Inc., Natick, MA, USA). The ANOVA and post-hoc tests were carried out in 
XLstat (Addinsoft, New York, NY, USA). 

 

3.3. Results and discussion 

3.3.1. The QA of the measurements 

Seven compounds (3-MCPD-d5, 3-MCPD, 2-MCPD-d5, 2-MCPD, Glycidol-d5, 
Glycidol, 1,2,3,4-TCN) were, after sample preparation, analysed by GC-MS/MS. The Total Ion 
Current (TIC) chromatograms of a standard solution, an EVOO sample and a ROO sample, 
which were selected randomly from the large sample set, are presented in Figure 3.1. 1,2,3,4-
TCN is added to every sample prior to injection as an internal standard to monitor the injector 
and detector performance throughout the sample sequence. 

The internal standards (e.g. 3-MCPD-d5), eluted prior to the native compounds (e.g. 3-
MCPD). This is in agreement with previous reports (Abd Razak et al., 2012). From Figure 3.1, 
it is clear that traces of 2-MCPD, 3-MCPD and glycidol could be detected in ROO, whereas 
they were below the limit of quantification in EVOO.   

To illustrate assay accuracy, the standard curves were established using the optimised 
parameters in Table 3.2. The results in Figure 3.2 show the relationship between the ratio of 
the amount of 3-MCPD to the amount of 3-MCPD-d5 and the ratio of corresponding peak areas. 
In accordance with the AOCS method Cd 29a-13, 100 ± 10 mg of blank oil (containing no 2-
MCPD/3-MCPD esters and GEs) were added to the calibration samples to improve the 
robustness of the method, since the oil matrix helps to retain the analytes during the evaporation 
step. The calibration curves of 3-MCPD were determined in triplicate between and after the 
whole sample series. The values of a and b of those three curves are quite similar only with 
small differences and all the values of R2 are more than 0.999. According to the AOCS method 
criteria, the values of b and R2 of the three calibration curves meet the requirements, which are 
│b│<0.02, R2 > 0.99. It demonstrates the stability of the measurement system, as well as a 
good repeatability and linearity of this method. The calibration curves were used to calculate 
the concentrations of the target compounds in the oil samples in the remainder of the study. 
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Figure 3.1. Chromatograms of the PBA derivatives of the target compounds in a standard solution, an EVOO 
sample and a ROO sample. EVOO, extra virgin olive oil; PBA, phenylboronic acid; ROO, refined olive oil. 

 

Figure 3.2. Three calibration curves of 3-MCPD. X-axis is ratio of the amount of standard (3-MCPD) to the 
amount of internal standard (3-MCPD-d5). Y-axis is the ratio of corresponding peak areas. MCPD, 
monochloropropanediol. 

3.3.2. MCPD esters and GEs contents in relation to vegetable oil type 

The 94 samples, including 30 EVOO, 18 ROO, 16 POO, 8 C-VEGE, 12 R-VEGE and 
10 blends, were subjected to GC-MS/MS analysis. The results of the measurements of the 3-
MCPD esters, 2-MCPD esters and GEs in the five pure types of oils are presented in box plots 
(Figure 3.3).  
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Figure 3.3. Box plots of the measurements of the 3-MCPD esters, 2-MCPD esters and glycidyl esters in the five 
types of oils. The central mark represents the median value, the edges of the line are the minimum and maximum 
values, the edges of the box are first quartile and third quartile values for the five types of oil. MCPD, 
monochloropropanediol. 

As shown in Figure 3.3, the concentrations of the 2- and 3-MCPD esters and the GEs 
vary in the ranges 0-6 mg/kg, 0-1.5 mg/kg and 0-1 mg/kg, respectively. The concentrations of 
3-MCPD esters in samples are at least twice the concentrations of 2-MCPD esters. This may be 
due to the two positions (1- and 3-) of glycerol available to be chlorinated and resulting in 3-
MCPD esters, compared with only one position (2-) resulting in 2-MCPD ester formation. 
There seems hardly any correlation between MCPD esters and GEs concentrations in the oil 
samples. It is generally believed that GEs formation to be independent from MCPD ester 
formation (EFSA, 2016).  

Table 3.3. Mean concentrations of the 3-MCPD esters, 2-MCPD esters and GEs in the five types of oils and 
statistical comparisons (ANOVA and Tamhane’s T2 post hoc tests, p < 0.05). 

 3-MCPD esters (mg/kg) 2-MCPD esters (mg/kg) GEs (mg/kg) 
POO 2.896 a 1.031 a 0.694 a 
ROO 1.210 a 0.558 a 0.516 a 
R-VEGE 0.427 b 0.176 b 0.426 ab 
EVOO 0.026 c 0.021 c 0.059 b 
C-VEGE 0.022 c 0.015 c 0.049 b 
    
p value < 0.0001 < 0.0001 0.012 

Different superscript letters (a, b, c) in a column indicate significant differences from each other. C-VEGE, cold pressed 
vegetable oil; EVOO, extra virgin olive oil; GEs, glycidyl esters; MCPD, monochloropropanediol; POO, pomace olive oil; 
ROO, refined olive oil; R-VEGE, refined vegetable oil. 
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The mean concentrations of the three compounds and significant differences between 
oil types are presented in Table 3.3. Clearly, the concentrations of the three compounds in the 
cold-pressed oils (EVOO, C-VEGE) are significantly lower than in POO and ROO. R-VEGE 
shows values between these two groups. The differences between the olive oil grades and the 
vegetable oil grades are discussed in the following paragraphs. 

3.3.2.1. Comparison of cold pressed olive oil and lower grades of olive oils 

The concentrations of the three compounds in all individual oil samples are presented 
in Figure 3.4. The data have been sorted according to the measured concentration of 3-MCPD 
esters. The 3-MCPD concentrations measured in the ROO and POO samples are considerable 
and significantly higher than in EVOO (Table 3.3). Experiments with EVOO carried out by 
Matthäus and Pudel (2013) revealed that in EVOO approx. 1 mg/kg 3-MCPD esters could be 
generated after 2 hours of high temperature heating. On the other hand, Ozdikicierler et al. 
(2016) detected no 3-MCPD esters and GEs in POO during steam distillation. These 
discrepancies with our current results are likely to be due to the fact that in our study samples 
of commercial origin were used and industrial processes had been applied to those samples. 
Moreover, it may be due to the degradation of the esters after a long time of heating (Ermacora 
& Hrncirik, 2014). 

According to previous studies, several factors significantly promote the formation of 3-
MCPD esters, such as temperature, heating time, pH value, moisture content, pressure and oil 
types (Hamlet et al., 2015; Ozdikicierler et al., 2016). High temperature is the main factor that 
can cause 3-MCPD esters and GEs formation (Abd Razak et al., 2012; Hrncirik & van Duijn, 
2011). Previous studies also indicated that high temperature is employed in both ROO (Li et al., 
2016) and POO (Moral & Mendez, 2006). Addition of a large amount of water in the 
degumming process and the use of high temperatures in the deodorisation process could also 
attribute to the higher formation of glycidol in refined oil (Wang et al., 2017). Furthermore, the 
results of the current study reveal that the contents of 3-MCPD esters and GEs in POO are 
higher than in most of the ROO samples. Because the refining process takes place in both ROO 
and POO, the differences originate most probably from the phase before refining. There are 
three possibly reasons for the high concentrations, 1) an additional high temperature drying 
treatment happened before the refining process (Moral & Mendez, 2006; Ozdikicierler et al., 
2016), 2) the extra exposed time of olive pomace to water, which results in the increased chance 
of monoacylglycerols and diacylglycerols (DAG) formation which are precursors of bound 3-
MCPD and glycidyl esters (Shahidi, 2005), 3) presence of more precursors in the oil (because 
of its lower quality) prior to refining. 

3.3.2.2. Comparison of cold pressed and refined vegetable oils 

In order to be able to compare the results of the olive oils, a small set of other cold 
pressed and refined vegetable oils were analysed as well (C-VEGE and R-VEGE). C-VEGE 
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consisted of seven rapeseed oils and one sunflower oil, the latter of which is number four in 
Figure 3.4. R-VEGE comprised three types of oils: the first three samples are rapeseed oils, 
number 4-6 and 12 are the peanut oils, number 7 to 11 are the sunflower oils.  

It can be seen from Figure 3.4 that the concentrations of C-VEGE are considerably 
lower than those of the R-VEGE samples, which is in agreement with the olive oil samples. 
The most likely explanation is, in line with the olive oils, the high temperature treatment during 
refining process (Abd Razak et al., 2012; Hrncirik & van Duijn, 2011). It also appears that the 
concentrations of those three compounds in the refined peanut oil samples have the tendency to 
be higher than in the other two types of seed oils (particularly the MCPD esters in sample 12 
and GEs in sample 6), although the number of peanut samples was limited. The results may be 
due to the peanut ripeness level result in high DAG levels in peanut oils which are the precursors 
of the esters (Akhtar et al., 2014; Ayres, 1983). 

3.3.2.3. Comparison of olive oils and other vegetable oils 

Both EVOO and C-VEGE are cold pressed oils, which means that during the whole 
processing, the extraction temperatures are controlled not exceeding 27 °C for EVOO (Boselli 
et al., 2009),  75-80°C for rapeseed oil (Cvengros, 1995) and 38–40°C for sunflower oil 
(Bendini et al., 2011). As shown in Figure 3.4, there is no large difference between EVOO and 
C-VEGE: the value ranges of 3-MCPD esters, 2-MCPD esters and GEs are 0-0.08 mg/kg, 0-
0.08 mg/kg and 0-0.15 mg/kg, respectively.  

In general, the values of the 3-MCPD esters in ROO and POO are larger than in the 
other refined vegetable oils. Similar results were found in previous studies, which has already 
mentioned above, indicating that olive oil and peanut oil generate higher levels of 3-MCPD 
esters than seed oils (rapeseed oil, sunflower oils) due to elevated DAG levels (Franke et al., 
2009; Hamlet et al., 2015; Ramli et al., 2015; Zelinkova et al., 2006).  
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3.3.3. Authentication considerations 

In order to evaluate the values of the three compounds for authentication practices, all 
data are presented together in Figure 3.5a. This is a three dimension scatter plot based on the 
measurement data of the 3-MCPD esters, 2-MCPD esters and GEs. In the plot, one outlier 
sample showing the highest concentrations for all three compounds is lacking for legibility 
reasons. The EVOO samples, which are located in the origin point, are completely separated 
from ROO and POO in the three dimensions, see Figure 3.5c and Figure 3.5d. The plot also 
shows that 2-MCPD and 3-MCPD concentrations are fairly correlated for ROO but not so much 
for POO, which shows a more scattered pattern. 

 

Figure 3.5. Three dimension scatter plots of the three compounds in (a) EVOO, ROO and POO; (b) the EVOO 
samples and mixtures of EVOO/ROO (mix1) and EVOO/POO (mix2); (c) zoomed in section of plot a; (d) zoomed 
in section of plot b (mix 1 refers to samples comprised 10%, 20%, 30%, 40% and 50% of ROO in EVOO. mix 2 
refers to samples comprised 10%, 20%, 30%, 40% and 50% of POO in EVOO). EVOO, extra virgin olive oil; 
MCPD, monochloropropanediol; POO, pomace olive oil; ROO, refined olive oil. 

In order to examine potential matrix effects when examining mixtures, mixtures of 
EVOO and ROO or POO samples were analysed. These samples, with increasing lower grade 
oil concentrations show a gradual, linear change in MCPD esters and GEs concentrations 
(Figure 3.5b: mix1 and mix2): R2 = 0.98 for ROO and R2 = 0.97 for POO. Obviously, when 
mixing EVOO with lower grade olive oils, the concentrations of MCPD esters and GEs is fully 
determined by the fractions of the two types of oil. 

In view of fraud detection, the 95% upper bounds of the EVOO sample set were 
subsequently calculated in order to set upper limits for real EVOO. This resulted in the 
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following values: 0.036 mg 3-MPCD/kg oil, 0.028 mg 2-MCPD/kg oil and 0.078 mg GE/kg oil. 
It is obvious that all 100% ROO or POO would be easily discriminated from the real EVOO, 
they are all exceeding these values considerably. However, the smarter fraudster will mix oils. 
The most difficult scenario would be the admixture of an EVOO with relatively low levels of 
the three compounds for the EVOO population with an ROO or POO with also low levels of 
the three compounds for their populations. Therefore, for this worst case scenario mixtures of 
EVOO at the 95% lower bound level and ROO or POO also at their 95% lower bound level 
were considered. The concentrations in EVOO at 95% lower bound are 0.016 mg 3-MPCD/kg 
oil, 0.014 mg 2-MCPD/kg oil and 0.041 mg GE/kg oil; for ROO 0.804 mg 3-MPCD/kg oil, 
0.365 mg 2-MCPD/kg oil and 0.369 mg GE/kg oil; for POO 1.804 mg 3-MPCD/kg oil, 0.479 
mg 2-MCPD/kg oil and 0.328 mg GE/kg oil. For calculation of the ‘virtual’ concentrations in 
the worst case scenario mixtures, a linear relationship was considered based on the results of 
the mixture analysis above. An example for the calculation of the 3-MCPD concentration in a 
mixture of EVOO and POO is shown below. 

[3– MCPD (mix)] = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑃𝑃𝐸𝐸𝐸𝐸) × [3– MCPD (EVOO)] + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (𝑃𝑃𝐸𝐸𝐸𝐸)

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑃𝑃𝐸𝐸𝐸𝐸) × [3– MCPD (POO)] 

The resulting values for the mixtures were compared to the set upper limits, i.e. 0.036 
mg 3-MPCD/kg oil, 0.028 mg 2-MCPD/kg oil and 0.078 mg GE/kg oil (see above) in order to 
determine the lowest levels at which ROO or POO mixed into EVOO could be detected. ROO 
and POO admixtures to EVOO would be detectable at 2% w/w levels based on 3-MCPD esters, 
at 5% based on 2-MCPD esters, as well as at 13% (ROO) and 14% (POO) based on GEs. 

These results are very promising. MCPD esters seem a very sensitive marker group for 
detection of ROO or POO in EVOO. The methodology is robust, an internationally accepted 
method is applied, and the marker itself is robust from a fraud perspective too. It is hard to 
remove these compounds from ROO or POO. Certainly, a wider set of olive oils, including soft 
deodorised oils, as well as other vegetable oils will be required for further confirmation. 
Furthermore, it has to be kept in mind that the manual sample preparation method is fairly 
labour intensive, although nowadays fully automated sample preparation robots, coupled to 
GC-MS(/MS) are available for quick and routinely analysis of oil samples allowing a wide 
application of such oil authenticity testing approach (Jacq et al., 2008; Parkinson et al., 2004). 

3.3.4. Safety considerations 

As already mentioned MCPD esters have toxic effects, but what about the 
concentrations measured in the oils? Considering the TDI for 3-MCPD esters (0.8 µg/kg bw 
per day) (EFSA, 2016), the intake for an adult person (60 kg) would amount 48 µg 3-MCPD 
esters per day. For the mean olive oil concentrations (Table 1), this intake would be theoretically 
reached by consumption of olive oil only with an intake of 1845.6 g EVOO/day, 39.6 g 
ROO/day (ca. 3 table spoons) or 16.8 g POO/day (ca. 1 table spoon). One can imagine that 
these ROO or POO volumes can be met in practice. For a full evaluation larger sets and more 
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kinds of oils would need to be examined and compared to consumption data to understand the 
potential relevance of the 3-MCPD ester contamination in this kind of oils. In addition, 3-
MCPD esters may be ingested through other foods, adding up to the total exposure. 
Nevertheless, it is obvious that the refined oils in the current study may contribute to the daily 
intake of 3-MCPD esters for users of these oils and most likely to the intake of 2-MCPD esters 
and GEs as well. 

 

3.4. Conclusions 

The present study was designed to evaluate the value of MCPD esters and GEs for 
authentication of the premium processing grades of olive oils and other vegetable oils. Cold-
pressed oils showed significantly lower levels of MCPD esters and GEs than their refined 
counterparts. Calculations revealed that 3-MCPD esters, 2-MCPD esters and GEs would allow 
detection of adulteration of EVOO with 2%, 5% and 13-14% ROO or POO (95% confidence) 
based on the current set. Therefore, this approach appears very promising and sensitive to 
detection of EVOO fraud with lower processing grade oils. 
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Abstract 

To develop a simple, rapid but robust analytical and chemometric procedure to distinguish 
premium quality extra virgin olive oil (EVOO) from the lower grades of olive oils, proton-
transfer-reaction quadrupole ion guide time-of-flight mass spectrometry (PTR-QiToF-MS) was 
applied. The volatile organic compounds (VOCs) of 390 edible oils were analysed: EVOO (255 
samples), refined olive oil (57 samples), pomace olive oil (18 samples) and some other edible 
oils that could serve as potential adulterants (60 samples). A robust one-class classification 
approach was applied and four different algorithms were compared. The models’ performance 
was estimated by a training set, additional test sets and validation sets. Principal component 
analysis indicated a good visual separation between EVOO and non-EVOO samples, and 
pinpointed the distinct VOCs related to the EVOO identity. In the one class classification 
evaluation, the k-nearest neighbours model presented best results: the training set and the 
validation set showed 100% (140 out of 140) and 96% (24 out of 25) correct prediction for the 
EVOO, the additional test set and the validation set present 95% (104 out of 110) and 96% (24 
out of 25) for non-EVOO groups, respectively. For this most successful model, formic acid 
(m/z 47.012), dimethyl sulphide (m/z 63.026) and hexenal (m/z 99.081) are key compounds for 
the distinction of EVOO from the other oils. Application of the newly developed and validated 
method showed that 10% of the 90 retail olive oil samples were highly suspicious. This work 
indicates that PTR-QiToF-MS combined with the one class classification approach allows rapid 
and robust discrimination between EVOO and non-EVOO.   

Keywords: authentication; extra virgin olive oil; food fraud; one-class classification; volatile 
organic compounds. 
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4.1. Introduction   

Analytical fingerprinting combined with multivariate classification is an approach that 
allows non-targeted discrimination between groups of products and is applied for more complex 
food authentication questions. This also makes it more difficult for fraudsters to circumvent. 
Most studies result in chemical or physical profiles which are combined with multivariate 
classification methods to establish a class discrimination based on product characteristics. 
Usually a large or smaller database of samples is generated and a model developed (Acierno et 
al., 2016; Taiti et al., 2015), which can be used to predict class membership of future samples 
based on their fingerprints. Although many methods have been published, robust validation of 
these methods are less common (Alewijn et al., 2016). 

Two main categories of classification models can be distinguished: multi-class and one-
class classification (OCC). Multi-class classification is mostly applied when at least two classes 
can be meaningfully defined, whereas OCC is a better choice for broad anomaly testing. This 
means that if the authentication issue is aimed at the characterisation of a single interest category 
(a positive/target object) and the nature of “the negative class” is diverse and not really one 
group, then OCC is the best choice. Furthermore, OCC is used in cases when the number of 
negative class samples are few as well (Oliveri & Downey, 2012; Zhang et al., 2015). Several 
OCC methods, such as one-class k-nearest neighbours (OCkNN) (Khan & Madden, 2014; 
Munroe & Madden, 2005), one-class support vector machine (OCSVM) (Krawczyk et al., 2014; 
Manevitz & Yousef, 2002), principal component analysis residue-based one-class classification 
(PCAROCC) (Gemperline, 2006), soft independent modelling of class analogies (SIMCA) 
(Branden & Hubert, 2005; Xu et al., 2011) and OCSVM can be applied for authenticity 
classification of a single class versus all others.  

Extra virgin olive oil (EVOO), extracted by a traditional cold pressing method, is a well-
known target for fraudsters. It is more expensive than other vegetable oils, not only because of 
its nutritional components but also because of its perceived premium organoleptic qualities. 
Although various kinds of olive oil adulteration exists, unauthorised blending of EVOO with 
refined olive oil (ROO), pomace olive oil (POO) or lower priced vegetable oils (VEG) has 
become a big issue in Mediterranean countries (Aparicio & Harwood, 2013), such as Italy, 
Spain and Greece, the major olive oil producers. Various control methods or detection methods 
are applied to limit the impact of premium olive oil fraud. However, educated fraudsters will 
try to circumvent tests all the time. Therefore, the exploration of innovative and reliable 
analytical methods is helpful to protect the market from EVOO fraud. 

Many chemical analytical methodologies have been reported to verify olive oil 
authenticity based on volatile and non-volatile compounds. Besides the large number of 
analytical methods based on non-volatile compounds of olive oil (Christopoulou et al., 2004; 
Yan et al., 2018), it is considered as a promising strategy to assess the volatile organic 
compounds (VOCs) for high quality olive oil certification (Angerosa et al., 2004). Previous 
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studies have established that enzymatic reactions are mainly responsible for the formation of 
the aroma components of olive oil. Furthermore, the aroma also relies on the maturity of the 
olive fruit, storage time of the olives and extraction technological conditions, such as 
malaxation time and temperature (Angerosa et al., 1999; Salas et al., 1999). It has also been 
reported that main VOCs that contribute to a fragrant and delicate flavour are removed during 
the oil refining process (Morales et al., 1999). Thus, it seems promising to distinguish different 
processing grades of olive oils by their VOCs.  

Proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS), as a high 
resolution and high sensitivity analytical tool, has been used for real-time analysis of VOCs. It 
is established on the implementation of chemical ionisation by proton transfer from hydronium 
ions (Fabris et al., 2010; Taiti et al., 2015). Published studies on PTR-ToF-MS concerned olive 
fruits (Masi et al., 2015), coffee (Yener et al., 2014), honey (Schuhfried et al., 2016), peppers 
(Taiti et al., 2015), ham (del Pulgar et al., 2011), milk (Fabris et al., 2010; Liu et al., 2018), 
chocolate (Acierno et al., 2016) and so on. Moreover, the application of PTR-ToF-MS in olive 
oil authentication (Sabbatini et al., 2018) and some attempts to link spectral data from PTR-
ToF-MS to sensory characteristics (Marone et al., 2017; Taiti & Marone, 2017) were recently 
carried out. Usually a limited number of samples were considered in these studies. PTR-ToF-
MS has not been used so far to distinguish between olive oils of different processing grades in 
a robust way. Moreover, PTR-ToF-MS coupled with a quadrupole ion guide (PTR-QiToF-MS), 
as an improved instrument in the market, has been applied in some topics, but not yet for EVOO. 
Since large quantities of mass data are generated by the PTR-QiToF-MS technique, which adds 
to the difficulty to evade this kind of tests, chemometric tools are needed to process and 
eventually interpret the information.  

In order to develop a simple, rapid but robust analytical and chemometric procedure, 
PTR-QiToF-MS fingerprints are used to distinguish EVOO from its lower grades counterparts. 
This study is sub-divided into three parts: 1) broad discrimination between EVOO and lower 
grade olive oils, as well as other botanical vegetable oils suitable for EVOO adulteration by 
VOC patterns; 2) evaluation of four OCC models based on different algorithms and selection 
of the most solid and robust OCC model; 3) elucidation of the important discriminating VOCs. 

  

4.2. Materials and methods  

4.2.1. Materials 

A total of 390 edible vegetable oils of different varieties, harvested and processed in 
2016, were gathered from producers, traders and retailers across Europe in 2016 and 2017. They 
included a training set (140 EVOO), an additional test set (110 non-EVOO), a validation set 
(25 EVOO and 25 non-EVOO) and a market survey set (90 EVOO labelled samples).  
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Table 4.1. Sample types and numbers of sample sets used in the study. The training set was used to build one class 
classification models; the additional test set (T) was measured at the same time as the training set and was used 
for testing and choosing the final model; the validation set (V) was measured three months after the training set 
and was used to test performance of the models; the market survey set (M) were commercial retail samples. 

 

a EVOO, extra virgin olive oil; ROO, refined olive oil; POO, pomace olive oil; VEG, other botanical vegetable oils. 

The training set comprised 140 authentic EVOO samples (from reputable sources and 
additionally verified by fatty acid fingerprints combined with chemometrics, ultraviolet-visible 
spectra analysis (IOC, 2017)) and 2/3-monochloropropanediol and glycidyl esters analysis (Yan 
et al., 2018). The 140 samples included 50 EVOO originating from Italy, 33 from Spain, 16 
from the EU (not specified), 12 from Greece, 10 from Portugal, 7 from Australia, 4 from the 
USA, 3 from Turkey, 2 from Uruguay, 1 from Peru, 1 from Morocco and 1 from Tunisia. For 
internal cross validation samples, 30% of the samples were randomly selected from the 140 
authentic EVOO. The additional test set (non-EVOO samples, measured at the same time as 
the training set) consisted of 45 ROO, 15 POO and 50 other botanical VEG. The latter included 
18 rapeseed, 13 sunflower, 7 peanut, 3 walnut, 3 hazelnut, 2 avocado, 2 sesame and 2 grapeseed 
oils. The validation set was measured completely independent of the training and additional test 
set, i.e. three months after the analysis of the training set comprised 25 EVOO, 12 ROO, 3 POO 
and 10 VEG (3 rapeseed, 2 walnut, 1 sunflower, 1 avocado, 1 almond, 1 linseed and 1 sesame). 
The market survey set included 90 commercial retail EVOO labelled samples, which were 
produced in Italy (32), Spain (27), EU (18), Greece (8), Tunisia (3) and Portugal (2).  

Table 4.1 summarises the information of all the analysed samples. Prior to analysis, all 
the samples were stored in capped bottles and were kept in the dark at room temperature until 
analysis. 

4.2.2. PTR-QiToF-MS analysis 

For each oil sample, 5 mL of oil was transferred into a 250 mL flask which was capped 
with a silicone septum. The closed flask was immersed in a water bath at 30 ºC for 30 min to 

Sample set Type a Number 

Training set EVOO 140 

Additional test set   

T-ROO 45 

T-POO 15 

T-VEG 50 

Validation set  

V-EVOO 25 

V-ROO 12 

V-POO 3 

V-VEG 10 

Market survey set M-EVOO 90 

Total  390 4
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let the headspace air and the sample equilibrate before analysis. Two replicates of each sample 
were measured with the same method on different days.  

The headspace measurements of all oil samples were performed by using a PTR-QiToF-
MS instrument (Ionicon Analytik GmbH, Innsbruck, Austria). The instrumental conditions for 
the proton transfer reaction were as follow: drift voltage 999 V, drift temperature 61 ± 1 °C, 
drift pressure 3.803 mbar affording an E/N value of 133.7 ± 1 Townsend (1 Td = 10−17 cm2 V−1 
s−1).  

The laboratory air was measured for the first 10 s as a blank before each sample, after 
that, the flask was delivered directly to the inlet of the PTR-QiToF-MS system. The headspace 
VOCs were transferred to the PTR-QiToF-MS via a heated (60 ± 0.5 °C) peek inlet tube at an 
air flow rate of 61 ± 2 mL/min for 1 min. Each sample was measured for 30 s at an acquisition 
rate of 1 spectrum per second. The random sequence was used to avoid possible systematic 
memory effects. Results were stored in the system automatically.  

4.2.3. VOCs data pre-processing 

All the raw data obtained from the PTR-QiToF-MS machine were integrated by PTRwid 
software (Holzinger, 2015). The unified mass list with the ion count per second (cps) of each 
sample were provided after the autonomous mass scale calibration, as described by Holzinger 
(2015). The average of the thirty sample scans and the average of the ten blank scans were 
calculated separately. The VOCs concentrations in ppbv (parts per billion by volume) were 
calculated from cps according to equation (1), which is shown below (Cappellin et al., 2012b), 
using a constant reaction rate coefficient (k = 2 × 10-9cm3/s), [H3O+]measured indicates the 
measured concentration (cps) of isotopic of protonated water, at m/z 21.022. Subsequently, the 
unit of cm-3 was converted to ppbv, on the basis of ideal gas equation (2).  

 [𝑉𝑉𝑉𝑉𝑉𝑉] = 1
𝑘𝑘𝑘𝑘 ×

[𝑉𝑉𝑉𝑉𝑉𝑉∙𝐻𝐻+]𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
[𝐻𝐻3𝑉𝑉+]𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚×487

×
√(𝑚𝑚 𝑧𝑧⁄ )𝐻𝐻3𝑂𝑂+

√(𝑚𝑚 𝑧𝑧⁄ )𝑉𝑉𝑂𝑂𝑉𝑉∙𝐻𝐻+
                          (1) 

 𝑃𝑃𝑉𝑉 = 𝑛𝑛𝑛𝑛𝑛𝑛                                                                                    (2) 

After unit conversion, the blank corrected results of each sample were calculated by 
subtracting the average of each sample’s 10 blank cycles. The replicates of each sample were 
checked by using autocorrelation (Box & Jenkins, 1976) and the sample was removed when the 
correlation value was below 0.9. Averages were calculated based on the data of two replicate 
measurements.  

Ions not related to the sample, such as N2
+, NO+, O2

+ and water clusters [H2O+, H3
[18]O+, 

(H2O)2∙H+, H2O∙H2
[18]O∙H+, (H2O)3∙H+] signals at m/z 28.005, 29.997, 31.989, 18.010, 21.022, 

37.028, 39.032 and 55.039, respectively, were removed. After the data pre-processing, 295 
mass peaks in the range from m/z 18.033 to m/z 207.204 remained. The data matrix of the 
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training set consisted of 295 (mass peaks) × 140 (samples) data points, the data matrix of the 
additional test set of 295 (mass peaks) × 110 (samples) points, the data matrix of the validation 
set of 295 (mass peaks) × 50 (samples) points and the data matrix of the market survey of 295 
(mass peaks) × 90 (samples) points, which were all subjected to further statistical analysis. 

4.2.4. Statistical analysis 

In this study, the model evaluation sticks to the steps in Figure 4.1. The full mass 
spectral data matrices were subjected to PCA for a preliminary inspection. PCA was carried out 
by Pirouette 4.5 (Infometrix Inc., Woodville, WA, USA). Then OCC was applied to distinguish 
between EVOO and three groups of non-EVOO samples comparing several algorithms, i.e. 
OCkNN, OCSVM, PCAROCC and SIMCA. All those calculations were performed by scripts 
developed in R 3.3.3 (R Foundation for Statistical Computing, Vienna, Austria). The method 
on how to predict the authenticity of a sample based on each algorithm can be found in our 
previous work (Yan et al., 2019). Then, the percentages of samples predicted as EVOO in each 
sample set were calculated. The 1-10 consecutive factors and four data pre-processing methods 
(mean-centring, log10 scaling, auto-scaling and row-wise normalisation) were applied in 
conjunction with those four algorithms (OCkNN, OCSVM, PCAROCC and SIMCA) to build 
various models. Any model was built with the training set (140 EVOO) with application of 25 
times repeated leave-30%-out random cross validation. The best model was assigned to be the 
model performing best for each algorithm with the best setting of number of factors and pre-
processing methods. Afterwards, the additional test set was subjected to the corresponding 
classification models for testing and the best model was selected in terms of minimum false 
EVOO assignments. Subsequently, the model with best performance was verified based on the 
results of validation set.  

Afterwards, the VOCs contributing to the separation with the best model were examined 
using a receiver operating characteristic (ROC, or area under the ROC curve, AUC) curve based 
approach. A ROC curve is a graphical plot illustrating the performance of a binary classifier by 
varying its discrimination threshold parameter (Yenigun et al., 2017), moreover, the AUC value 
was commonly applied to represent expected performance of the classification. The higher the 
value, the better the performance of the discrimination. This value was applied to solve a binary 
comparison problem previously, which shows similarities with the one-class classification 
method (EVOO versus all other oils) in the current study. In order to specify the possible 
adulterants to EVOO, three sub-groups of adulterants (ROO, POO and VEG) were used to 
compare with EVOO individually to test the performance of this binary comparison technique. 

4

Rapid discrimination of processing grades by PTR-QiToF-MS   |   87   



 

 
 

 

Figure 4.1. Roadmap for the evaluation of one class classification methods. EVOO, extra virgin olive oil; OCC, 
one-class classification; OCkNN, one-class k-nearest neighbours; OCSVM, one-class support vector machine; 
PCA, principal component analysis; PCAROCC, principal component analysis residue-based one-class 
classification; SIMCA, soft independent modelling of class analogies. 

In order to find important VOCs for discrimination, the ROC curves were created using 
leave-one-mass-out spectral data for binary classifier (EVOO versus ROO, EVOO versus POO, 
EVOO versus VEG). Afterwards, the AUC values of each curve were calculated. All those 
calculations were performed by scripts developed in R 3.3.3. Since there are 295 VOCs, 295 
AUC values were collected for each binary classification. Therefore, the important VOCs were 
verified based on the following rule: the lower the AUC value, the worse the discrimination 
performance and the more the important the removed VOC.  

Subsequently, the significant difference of concentrations of those key VOCs in 
different processing grades of olive oils and other vegetable oils was assessed using analysis of 
variance (ANOVA, 95% confidence level, p < 0.05) and pairwise comparison was performed 
with least significant difference tests (LSD). ANOVA was performed by SPSS statistic software 
version 23 (IBM, Chicago, IL, USA).  

 

4.3. Results and discussion   

4.3.1. PTR-QiToF-MS profiles of VOCs 

The 390 oil samples were subjected to PTR-QiToF-MS analysis and 295 masses in the 
range of m/z 18.033 to 207.204 were acquired for each sample. The log10 transformed mass 
spectra for four groups from the training set and the additional test set, i.e. EVOO (n = 140), T-
ROO (n = 45), T-POO (n = 15), T-VEG (50), are presented in Figure 4.2.  
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Figure 4.2. Log10 transformed average spectral profiles of VOCs of four sample groups (a EVOO, b T-ROO, c T-
POO and d T-VEG). VOCs, volatile organic compounds. For sample group codes, see Table 4.1. 

According to the PTR-QiToF-MS spectral profiles, the mass intensities of the first half 
range from m/z 18.033 to m/z 113.059 are higher than those in the second half mass range in 
each sample group, which is ranging from m/z 113.096 to m/z 207.204. The total sums of 
masses ranging from 18.033 to 113.059 in EVOO, T-ROO, T-POO and T-VEG are 780 ppmv, 
276 ppmv, 127 ppmv and 217 ppmv, respectively. This indicates that the concentration of 
VOCs  in EVOO in general is considerably higher than for the other three groups. Meanwhile, 
the total sums of masses ranging from m/z 113.096 to m/z 207.204 are 2 ppmv, 0.4 ppmv, 0.4 
ppmv and 3 ppmv, respectively. These results suggest that the distinct differences between the 
groups are promising for further investigations of the ability to separate the EVOO from the 
non-EVOO samples.  

4.3.2. Unsupervised statistical comparison of VOCs: PCA 

In order to explore the data and to obtain a preliminary indication of the differences 
between the training set (EVOO) and the additional test set (T-ROO, T-POO and T-VEG), all 
295 mass spectra obtained from PTR-QiToF-MS were subjected to PCA. 

Four pre-processing methods (mean-centring, log10 scaling, auto-scaling and row-wise 
normalisation) and combinations thereof were applied to perform the PCA analysis. After 
comparison of those methods, mean-centring and log10 scaling is the best combination of the 
pre-processing methods. The PCA scores of the four oil groups show that the first 10 principal 
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components (PCs) explained 91% of the total variance. The first three dimensions of scores plot 
and loadings plot are presented in Figure 4.3.  

 

Figure 4.3. Scores plot (a) and loadings plot (b) of the first three dimensions of the PCA (data pre-processing = 
mean-centring and log10 scaling) of the mass spectral data of the olive oil training set (E refers to EVOO) and 
additional test set (R refers to T-ROO; P refers to T-POO; V refers to T-VEG). For sample group codes, see Table 
4.1. 

As can be seen in Figure 4.3a, a distinct separation between EVOO and the other three 
groups appears: EVOO is located in the bottom right corner, while the other three groups are 
located in the top and bottom left sides, with some overlap among the other three groups. T-
ROO samples are located closer to the EVOO sample group than the other two groups, which 
indicates greater similarity. T-VEG is stretching along PC2, with those located at the lower end 
of the plot showing overlap with T-ROO and T-POO, and they are primarily sunflower oils.  

Furthermore, the loadings plot shows the importance of each variable to the 
corresponding samples in scores plot. In Figure 4.3b, the loadings plot shows that all masses 
are scattered in the plot and make a contribution to the discrimination. And it is obvious that 
masses m/z 47.012, 47.049, 48.051, 49.016, 49.027, 51.043, 65.059, 66.062, 75.044, 81.07, 
85.064, 98.072, 99.081, 100.083 contribute to the EVOO discrimination. Mass m/z 47.012 is 
the one associated with high concentration in the non-EVOO sample group. All other masses 
show higher concentrations in the EVOO sample group.  

The separation of the EVOO and other samples observed in this exploratory multivariate 
statistical analysis indicates the presence of underlying features which allows distinction of 
EVOO. Further dedicated classification and validation statistics help to develop a solid method 
which can be applied in practice and which will be presented in the following section.  
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4.3.3. Supervised statistical comparison of VOCs: OCC 

4.3.3.1. Classification models based on four algorithms 

To evaluate the ability to discriminate EVOO from lower grade counterparts and other 
vegetable oils, four algorithms (SIMCA, PCAROCC, OCkNN and OCSVM) were applied to 
estimate OCC models for EVOO authentication. These models were constructed on the basis 
of the training set (EVOO) using various data pre-processing methods and considering various 
model parameters. The best performing model for each algorithm is presented in Table 4.2. 
Their prediction ability is further detailed by their classification rates for the additional test set 
(T-ROO, T-POO and T-VEG). Their performances are specified by the results of the 
independent validation set (V-EVOO, V-ROO, V-POO and V-VEG). 

Table 4.2. Percentages of samples predicted as EVOO in the four OCC models a.  

Classification algorithm OCkNN OCSVM PCAROCC SIMCA 
Parameters b 2 0.002 4 3 
Mean-centring c √ √ √ √ 
Log10 scaling √ √ √ √ 
Auto-scaling × × √ √ 
EVOO d (n = 140) (%) 100 100 99 99 

Additional test set (%) 
T-ROO (n = 45) 9 9 9 4 
T-POO (n = 15) 0 0 0 0 
T-VEG (n = 50) 4 6 2 10 

Validation set (%) 

V-EVOO (n = 25) 96 92 88 84 
V-ROO (n = 12) 8 8 8 0 
V-POO (n = 3) 0 0 0 0 
V-VEG (n = 10) 0 0 0 10 

a The percentage values are the average values from 25 times repeated leave-30%-out cross validation partial models; b The 
best number of factors for SIMCA and PCAROCC or k nearest neighbours for OCkNN or kernel coefficient for OCSVM; c 
mark “√” / “×” indicates that this data pre-processing method was or was not used in the model; d cross validation for the EVOO 
model is leave-30%-out. For sample group codes see Table 4.1. For classification algorithm codes see Figure 4.1.  

All four types of models assigned the EVOO samples well to the EVOO class (99-
100%), which is not surprisingly considering the approach. Only one EVOO sample was 
misclassified using the SIMCA and PCAROCC algorithms. Thus, OCkNN and OCSVM 
models presented slightly better classification ability. In terms of the comparison of OCkNN 
and OCSVM, the additional test set resulted in ≥ 94% correct predictions. More specifically, 
both algorithms resulted in 4 ROO misclassified samples. Furthermore, application of the 
OCkNN and OCSVM models resulted also in 2 and 3 VEG incorrectly classified samples, 
respectively. All together the OCkNN revealed a fairly good and the best prediction ability of 
the four models.  

Subsequently the validation sets were measured three months after the training set. 
SIMCA and PCAROCC models show < 90% correct EVOO prediction rates. On the contrary, 
OCkNN and OCSVM present > 90% correct EVOO prediction rates. Regarding the non-EVOO 
prediction in the validation set, the rates of successful prediction are all > 90%. Moreover, the 
incorrectly predicted V-EVOO sample of the OCkNN model was also incorrectly predicted by 
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the other models. Therefore, both OCkNN and OCSVM models performed better than the 
others when considering the validation results.  

When we take all results into account, the OCkNN model demonstrates best prediction 
performance, the training set and the validation set showed 100% (140 out of 140) and 96% (24 
out of 25) correct prediction for the EVOO and the additional test set and the validation set  
present 95% (104 out of 110) and 96% (24 out of 25) for non-EVOO groups, respectively. 

4.3.3.2. OCkNN model 

 

Figure 4.4. Stripplots of a) training set (EVOO) (circle marks) versus additional test sets (T-ROO, T-POO and T-
VEG) (triangle marks) and b) training set (EVOO) (circle marks) versus and validation sets (V-ROO, V-POO and 
V-VEG) based on Euclidean distance. For sample group codes, see Table 4.1. 

Given the prediction performance, OCkNN is examined in greater detail below. OCkNN 
relies on the Euclidean distance from the evaluated object to its k nearest neighbours, the 
stripplots of which are presented in Figure 4.4 for EVOO (training set) versus additional test 
set samples (T-ROO, T-POO and T-VEG) and external validation samples (V-ROO, V-POO 
and V-VEG).   

A clear difference between EVOO and other oil samples is visible with the Euclidean 
values of the EVOO group being much lower than those of the other sample sets. It is evident 
that the EVOO group shows a narrow distribution in comparison to the others. The T-VEG 
group shows the largest range of values (16.09-77.35), which is likely to be due to the variety 
of botanical origins of the vegetable oil samples in this group.  

More precisely, a threshold value of the OCkNN model for EVOO authentication was 
set at 18.50 based on the values of all EVOO samples. Test samples with scores below the 
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threshold value are classified as EVOO, while samples with scores higher than the threshold 
value are classified as non-EVOO. Figure 4.4 shows same results as Table 4.2, although T-
POO, V-POO and V-VEG are completely separated from the EVOO population, the 
distributions of EVOO with T-ROO, T-VEG and V-ROO have small overlapping zone.  

Considering all, the results show solid and robust performance of the OCkNN model of 
the VOC data.  

4.3.4. Distinct VOCs  

 

Figure 4.5. The AUC values of 295 VOCs for a) EVOO versus ROO, b) EVOO versus POO, c) EVOO versus 
VEG. AUC, the area under the ROC curve; ROC, receiver operating characteristic. For sample group codes, see 
Table 4.1. 

The important VOCs, that contributed to the separation between EVOO and all other 
oils in OCkNN model, were examined by their AUC values. As shown in Figure 4.5, eight 
(m/z 47.012, 57.033, 63.026, 81.070, 85.064, 99.081, 113.059 and 113.096), four (m/z 47.012, 
57.033, 63.026 and 99.081) and five (m/z 47.012, 47.049, 63.026, 99.081 and 205.194) 
compounds contribute to the EVOO/ROO, EVOO/POO and EVOO/VEG separation, 
respectively. The compounds were tentatively identified based on their masses and likely 
chemical formulas (Fabris et al., 2010) as well as based on information from literature (Table 
4.3). All ten tentatively identified masses show significantly differences (ANOVA, p < 0.05) 
across the four groups. Furthermore, post-hoc tests show individual differences between the 
groups tested. Seven out of those 10 masses showing significant differences between groups 
reveal a significant difference in VOCs concentrations between the EVOO group and all other 
oil groups. To illustrate the characteristic of VOCs in different oil groups, all the 51 tentatively 
identified masses information were established in supplementary material.   

Three VOCs appear key to the three separations m/z 47.012, 63.026 and 99.081. VOC 
m/z 47.012 is most likely formic acid. According to previous studies (Paradiso et al., 2018), 
formic acid is derived as a secondary product from oxidative pathways or from decomposition 
of 2,4-(E-E)-decadienal. Most remarkable is that its concentration is lower for EVOO than for 
the lower grade olive oils. Dimethyl sulphide (m/z 63.026) is a sulphur compound that is 
associated with the unpleasant odour of “beetroot” and “organic” (Angerosa et al., 2004; 
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Vezzaro et al., 2011). It was found in a higher concentration for EVOO than for ROO and POO. 
This is due to the refining process which removes most of the odour, including dimethyl 
sulphide. (E)-3-hexenal/(Z)-3-hexenal (m/z 99.081) contribute to the “green” aroma of products 
and is present at higher concentrations in EVOO compared to the other oils. This finding is 
consistent with the results of Angerosa et al. (2004). This group found that the aroma of high 
quality olive oil generally attributed to a “green” sensation, such as cut grass, leaf, apple or 
other fruits like aroma. All three VOCs deserve special attention as they are being important 
VOCs for the distinction of EVOO from lower grade oils. 

4.3.5. Application of the model in practice: a market survey  

Considering the successful validation of the methodology, the combined VOC – 
OCkNN model approach was applied in practice. A survey of 90 retail M-EVOO samples was 
conducted with the newly developed and validated approach. The 90 samples were analysed by 
PTR-QiToF-MS and their identity predicted by the OCkNN model presented in the previous 
sections. Nine of the 90 retail EVOO samples were classified as non-EVOO (10%). Considering 
the performance of the model during validation, these samples are highly suspicious. Future 
confirmatory/additional analyses will provide insights in the cause and type of adulterations.  

 

4.4. Conclusions 

This new approach using the spectral fingerprints obtained with rapid and non-
destructive PTR-QiToF-MS in combination with robust OCC is a promising screening 
methodology for the distinction of EVOO from other olive oil grades as well as other vegetable 
oils that are potential adulterants. The robust OCC model has the ability to discriminate EVOO 
samples from lower grades counterparts as well as from other vegetable oils with ≥ 90% correct 
prediction ability. Key compounds for distinction are formic acid (m/z 47.012), dimethyl 
sulphide (m/z 63.026) and hexenal (m/z 99.081). In practice 10% of the 90 retail EVOO samples 
appeared not to be beyond doubt.  
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Abstract 

Miniaturisation of analytical technology has paved the way for in-situ screening of foods. In 
the current study, the spectral features of olive oils were examined by handheld near-infrared 
spectroscopy to explore the technology’s capabilities to distinguish extra virgin olive oil 
(EVOO) from lower grade oils. 80 EVOO, 40 refined olive oil and 10 pomace olive oil (POO) 
samples were analysed for their spectral and compositional features. The latter included 
analysis of the fatty acids (FAs), the pigments chlorophylls and carotenoids, chromatic 
coordinates and moisture contents. The 1350-1570 nm wavelength range appeared most 
suitable for distinction of the oils. One-class classification models with three different 
classifiers were subsequently estimated using this range, and their quantitative performance was 
assessed from probabilistic data. Soft independent modelling of class analogies models 
appeared to predict the identity of the oils best and with a high success rate. Compared to the 
other oils, POO comprised a significantly higher and lower proportion of polyunsaturated and 
monounsaturated FAs, respectively. Higher contents of chlorophylls, carotenoids and moisture 
were noted for EVOO. The relevant spectral information for distinction of the oils correlated 
strongly with the degree of unsaturation of the oils as well as their levels of chlorophylls, 
carotenoids and moisture.  

Keywords: Food fraud; in-situ; one-class classification; pigments; portable.   
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5.1. Introduction 

The European Commission (2013) and the International Olive Council (IOC) (2016) 
released regulations and standards which define various olive oil grades. Three main common 
commercial grades are: extra virgin olive oil (EVOO), refined olive oil (ROO) and pomace 
olive oil (POO). EVOO, which is extracted from good quality olive fruits by mechanical or 
other physical treatments, is considered the best quality olive oil. All grades have to meet 
particular compositional requirements, but for EVOO the strictest apply. Due to the premium 
quality, the price of EVOO is higher than those of ROO and POO. As a result, EVOO is also 
the olive oil most vulnerable to adulteration (van Ruth et al., 2018). Lower grade olive oils, such 
as ROO (Karbasian et al., 2015) and POO (Yang & Irudayaraj, 2001), are considered perfect 
adulterants given their similar gross compositions. Hence, blending of EVOO with these oils is 
relatively harder to be detected than the presence of oils of other botanical origins (rapeseed oil, 
peanut oil, (high oleic) sunflower oil, etc.) in EVOO. However, EVOO, ROO and POO differ 
in their minor compound contents, since numerous compounds such as free fatty acids (FAs), 
volatile compounds, metals, pigments, moisture, etc. are eliminated from olive oil during (mild) 
refining treatments (Antonopoulos et al., 2006; Bendini et al., 2009). Furthermore, some 
compounds are formed during the (mild) refining process and these are sufficiently persistent 
to appear in the final product. These compounds are stigmastadienes (IOC, 2017a), fatty acid 
alkyl esters (Perez-Camino et al., 2008), monochloropropanediol (MCPD) esters and glycidyl 
esters (GEs) (Yan et al., 2018). Their presence in olive oil has been proven markers of the (mild) 
refining process and allows distinction of retail ROO and POO from EVOO. These methods 
are generally suitable as confirmatory methods but labour-intensive at the same time.  

Simple, rapid and in-situ analyses for food quality control have the great advantage of 
delivering analytical results immediately at the sampling location, rather than days later in a 
laboratory where a small selection of samples have been analysed. It allows very early 
intervention, in case anomalies are detected. It can also be used for screening purposes to 
efficiently select samples to be sent to the laboratory for confirmatory analysis. With the 
miniaturisation of analytical devices over the last decade, these measurement techniques have 
received more and more attention. For instance near-infrared spectroscopy (NIR), which is a 
rapid, non-destructive, cost-efficient and easy-to-use technique, has led to a boost in the number 
of in-situ applications in diverse academic and industrial fields (Casale & Simonetti, 2014; 
Porep et al., 2015; Vanstone et al., 2018). Apart from in-line applications, more and more small, 
portable and handheld devices have become available. 

Handheld NIR has been applied in lipid analysis for quantitation of vegetable oil in 
diesel (Paiva et al., 2015), for quantitation of trans fat in edible oils (Birkel & Rodriguez-Saona, 
2011), for purity determination of copaiba oils (Moreira et al., 2018) and for detection of lard 
adulteration in palm oil (Basri et al., 2017). Furthermore, specific olive (oil) applications 
concern the on-line evaluation of the oil content of olives during olive processing (Giovenzana 
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et al., 2018) and the measurement of olive oil acidity (Grossi et al., 2019). However, the 
application of handheld NIR for distinction of EVOO from lower grade counterparts has not 
been done before. Considering those all, this kind of technology may also be promising as a 
rapid screening technique for distinction of olive oil grades. 

In this study, we explored rapid and non-destructive handheld NIR technology for its 
capabilities to distinguish EVOO from other olive oil grades. One-class classification models 
for sorting the olive oil grades were estimated using three types of classifiers and various data 
pre-treatments. Model performance was compared by evaluation of the probability distributions 
based on kernel density estimates (KDE). To examine the underlying causes for the spectral 
differences of the oils, compositional analyses were conducted and the resulting data correlated 
with the spectral data. The analyses involved the FAs, chlorophylls, carotenoids and moisture 
contents as well as chromatic coordinates of all samples. 

 

5.2. Materials and methods 

5.2.1. Materials  

A set of 130 commercial olive oil samples was selected from a pool of 400 oil samples 
from European sources in 2016-2017 and comprised 80 EVOO, 40 ROO and 10 POO samples. 
All samples complied with EU olive oil grade legislative requirements in regard to FA 
compositional requirements and spectroscopic tests (extinction coefficient K232, K268 and ∆K 
values) (IOC, 2017b). They were also evaluated for their MCPD esters and GEs contents (Yan 
et al., 2018) prior to the study. All samples were stored in capped bottles and were kept in the 
dark in a basement (18 °C) for six months before analysis. 

5.2.2. Handheld NIR analysis 

A handheld NIR Pro 1700ES spectrometer (JDSU, Milpitas, CA, USA), palm-sized (45 
× 42 mm), weighing 60 g and with a working wavelength range of 908-1676 nm (Correia et al., 
2018), was applied. The spectrometer employs a linear variable filter as the light dispersing 
element which results in high signal-to-noise ratio (Correia et al., 2018). The absorption spectra 
of the olive oil samples were acquired at room temperature (21 ± 1 °C). The transmittance mode 
was applied with a measurement time of 0.25-0.50 s, an integration time of 11 ms and 100 scan 
counts. Signal intensity was recorded every 6.2 nm for the wavelength range of 908-1676 nm, 
resulting in a spectrum of 125 points. Four mL of olive oil was transferred into a disposable 
plastic cuvette, then the cuvette was placed in the sample chamber of the device and analysed. 
Samples were measured in random order to avoid possible systematic memory effects and 
measurements of each sample were carried out in duplicate on day one. On day two, all samples 
were measured again in duplicate in random order. Hence, in total four replicates of each oil 
sample were collected, and the average spectral intensities of each sample were used for further 
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data analysis. The handheld NIR data matrix consisted eventually of 130 samples × 125 
wavelengths. 

5.2.3. Fatty acid analysis 

The sample preparation and gas chromatographic (GC) analysis was conducted 
according to the official methods (International Organization for Standardization, 2015, 2017). 
For the GC analysis, an Agilent HP7890A GC (Agilent Technologies, Inc., Wilmington, DE, 
USA) was equipped with a 100 m × 0.25 mm × 0.2 μm film thickness fused silica capillary 
column (Varian, Palo Alto, CA) coupled to a flame ionisation detector. The following working 
conditions were applied: initial column temperature, 120 °C; final column temperature, 240 °C; 
heating ramp, 4.0 °C min-1; hold time, 7 min 240 °C; run time, 37 min; carrier gas, hydrogen; 
constant flow, 1.0 mL min-1; injection, 1 μL; split, 1 : 100; injector temperature, 250 °C; 
detector temperature, 250 °C. Duplicate measurements of all samples were conducted. The 
average was calculated and used for further analysis. In total, 15 FAs were measured and the 
sum of (un)saturated FAs (saturated FA, SFA; monounsaturated FA, MUFA; polyunsaturated 
FA, PUFA) were calculated. The iodine values (IV, g 100 g-1) and saponification numbers (SN, 
mg KOH g-1) of each sample were calculated from their FA compositions as described by 
Kalayasiri et al. (1996). The FA data matrix consisted of 130 samples × 20 variables. 

5.2.4. Chlorophylls and carotenoids analysis 

The total chlorophylls and carotenoids contents of all oil samples were measured by 
ultraviolet-visible (UV-VIS) absorption spectroscopy using a Cary 100 UV-VIS 
spectrophotometer (Varian Inc., Palo Alto, CA, USA). The measurement was carried out 
according to the method described by Minguezmosquera et al. (1991). All samples were 
measured in duplicate. 

5.2.5. Chromatic coordinates CIELAB analysis 

Chromatic coordinates L*, a* and b* (referred to as CIELAB) were measured using the 
mobile application Colour Grab 3.6.1 (Loomatix Ltd., München, Germany) at room 
temperature. This system expresses colour as three values: L* for the lightness from black (0) 
to white (100), a* from green (-) to red (+) and b* from blue (-) to yellow (+). The analysis was 
replicated six times for each sample. The averaged values of L*, a* and b* of each sample were 
used for further data analysis. 

5.2.6. Moisture content analysis 

Approximately 5 g of test sample was weighed for analysis. The moisture content was 
determined according to ISO standard 662 (International Organization for Standardization, 
1998), method B. 
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5.2.7. Statistical analysis 

5.2.7.1. Univariate analysis 

Non-parametric Kruskal-Wallis tests were applied for group comparisons due to non-
normality of the various data. The latter was determined with the Shapiro-Wilk method. 
Subsequent pairwise comparisons were carried out using Mann-Whitney U-tests. These data 
analyses were performed using SPSS statistic 23 software (IBM, Chicago, IL, USA). A 
significance level of p < 0.05 was used throughout the study.  

Area under the spectral curve (AUC) is calculated according to equation (1): 

AUC =∑ (𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛+𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛−1)
2 × (𝑊𝑊𝑊𝑊𝑊𝑊𝑛𝑛 −𝑊𝑊𝑊𝑊𝑊𝑊𝑛𝑛−1)

125

𝑛𝑛=2
              ,           (1) 

where Abs is the absorbance of the wavelength, Wav is the value of the wavelength and n is the 
number of the wavelength.  

5.2.7.2. Exploring the spectral data: unsupervised analysis 

Principal component analysis (PCA) was carried out to explore the spectral data set 
using several pre-processing methods, such as 1st derivative, 2nd derivative (Paiva et al., 2015; 
Panford & Deman, 1990), standard normal variate (SNV), multiplicative scatter correction 
(MSC) (Amigo et al., 2015), mean-centring, auto-scaling and log10 scaling. The best pre-
processing combination was selected to obtain the best separated PCA distribution. Analyses 
were carried out using Pirouette 4.5 software (Infometrix, WA, USA). 

5.2.7.3. Classification of olive oils by their spectral data: Supervised analysis 

For the development of one-class classification models, the spectral data of the 80 
EVOO samples were divided into a training set of 50 samples and an external validation set of 
30 samples. The training set was used to develop one-class classification models and was 
subjected to 25 times repeated leave-30%-out random cross-validation for a first impression of 
the performance of the models. The performance of the models was also evaluated by 
independent samples: by the external validation EVOO set of 30 samples and the non-EVOO 
challenge set which consisted of 40 ROO and 10 POO samples. 

Three classifiers, namely one-class k-nearest neighbours (OCkNN) (Khan & Madden, 
2014; Munroe & Madden, 2005), one-class support vector machine (OCSVM) (Manevitz & 
Yousef, 2002) and soft independent modelling of class analogies (SIMCA) (Branden & Hubert, 
2005), were applied for classification of the samples. Specifically, OCkNN considered the 
Euclidean distance from the evaluated object to its k nearest neighbours, OCSVM determined 
the distance from the evaluated object to the boundary enclosing the target class (model), 
SIMCA calculated the distance from the evaluated object to the model centre. Subsequently, 

104   |   Chapter 5



 
 

 
 

the distance value of each sample was compared with the threshold value (95% confidence 
intervals of all the training samples’ values). When the sample value was below the threshold 
value, this sample was considered to be within normal range and thus predicted as target sample 
(EVOO). Consecutive factors 1-10 and five data pre-processing methods (i.e. 1st derivative, 2nd 
derivative, SNV, MSC, mean-centring, auto-scaling and log10 scaling) were applied in 
conjunction with the mentioned three classifiers to estimate various models. The model 
performing best for each algorithm with the best setting of number of factors and pre-processing 
methods was selected for validation. The performance of the models was evaluated using the 
external EVOO validation set, the ROO and POO challenge sets. The model resulting in fewest 
false assignments was considered the best. KDE was applied to generate a non-parametric 
distribution for class probability based on the distance data of each model. All calculations were 
performed by scripts developed in R 3.3.3 (R Foundation for Statistical Computing, Vienna, 
Austria). 

Prediction performance was assessed using the following indicators: sensitivity (the 
proportion of actual positive cases that were correctly identified), specificity (the proportion of 
actual negative cases that were correctly identified) and accuracy (the proportion of the total 
number of predictions that were correct). These indicators are defined according to equations 
(2-4): 

Sensitivity = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹                            ,                         (2) 

Specificity = 𝑇𝑇𝐹𝐹
𝑇𝑇𝐹𝐹 + 𝐹𝐹𝑇𝑇                             ,                         (3) 

Accuracy = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝐹𝐹
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝐹𝐹 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝐹𝐹                 ,                         (4) 

where TP, TN, FP and FN denote the true positive, the true negative, the false positive and the 
false negative number of samples, respectively.  

5.2.7.4. Correlation analysis 

The correlations between the spectral data and all other parameters were assessed by 
computing Pearson correlation coefficients (r). Paired samples t-tests were applied to assess 
significance of the correlation coefficients (p < 0.05). All calculations were performed by 
scripts developed in R 3.3.3. 
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5.3. Results and discussion 

5.3.1. Handheld NIR analysis  

5.3.1.1. Spectral profiles  

All olive oil samples were subjected to handheld NIR analysis. The average absorbance 
spectra of the three olive oil grades are presented in Figure 5.1. The spectral profiles exhibit 
four characteristic bands rich in molecular information (Zone A-D). In Table 5.1, formerly 
reported molecular characteristics are assigned to these major spectral bands and wavelengths. 

 

Figure 5.1. Average absorbance spectra of extra virgin olive oils (EVOO), refined olive oils (ROO) and pomace 
olive oils (POO) acquired by handheld near-infrared spectroscopy. Brackets identify the four main spectral bands 
(Zones A, B, C and D) and dots the special wavelengths to which is referred in Table 5.1 (930 nm, 982 nm, 1038 
nm, 1162 nm, 1181 nm, 1212 nm, 1348 nm, 1391 nm, 1416 nm, 1453 nm and 1664 nm). 

For Zone A (908-1090 nm), wavelengths 930 nm and 1038 nm have been reported to 
relate to the vibration of methylene groups (Fernandez-Cabanas et al., 2011; Picouet et al., 2018; 
2001), which is characteristic for fats in general. Wavelength 982 nm is related to the second 
overtone of O-H stretching, and this is associated with the water content of oil samples 
(Fernandez-Cabanas et al., 2011). Table 5.1 shows that the absorption intensity for the three 
wavelengths varied for the grades, with EVOO differing significantly from POO, but not from 
ROO (Mann-Whitney U-tests, p < 0.05).  

In Zone B (1090-1330 nm), multiple molecular groups (methylene group, methyl group 
and cis double bond) are associated with this spectral band. In addition, the fourth overtone of 
the C-O stretching is expected to be reflected in the spectral range around 1162 nm as well 
(Workman, 2008). The band centred at 1212 nm corresponds to the second overtone of C-H 
stretching (Yang & Irudayaraj, 2001). Furthermore, the bands near 1181 nm have been 
associated with the second overtone of the fundamental C-H absorption of pure FAs containing 
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cis double bonds, such as oleic acid (Hourant et al., 2000). It is known that oils rich in 
unsaturated FAs present high absorption in the vicinity of 1164 nm (Hourant et al., 2000). The 
absorbance intensity at wavelength 1181 nm differed significantly between POO (0.364 ± 
0.013), on the one hand, and EVOO (0.353 ± 0.003) and ROO (0.352 ± 0.002) on the other 
hand (Mann-Whitney U-tests, p < 0.05). Results may imply that POO comprises a higher 
unsaturated FAs fraction than the other grades.  

Table 5.1. Average absorbance intensities and standard deviations of the four spectral bands and special 
wavelengths for three olive oil grades and tentative assignment of related molecular structures.  

Zone 

Band 
location 

Wavelength 
(nm) 

Molecule Functional 
group Vibration 

Absorbance intensity  

EVOO 
(n = 80) 

ROO 
(n = 40) 

POO 
(n = 10) 

Reference *  

A 

908-930 -CH2- C-H 3rd overtone    [1] 
930 -CH2- C-H 3rd overtone 0.095 ± 0.004 b 0.095 ± 0.002 b 0.107 ± 0.014 a [2] 
982 H2O O-H 2nd overtone 0.017 ± 0.004 b 0.017 ± 0.002 b 0.030 ± 0.014 a [3] 
1038 -CH2- C-H Combination  0.024 ± 0.004 b 0.024 ± 0.002 b 0.036 ± 0.014 a [2] 

B 
 

1090-1180 -CH2-  C-H 2nd overtone    [4] 
1100-1200 -CH3  C-H 2nd overtone    [1,4] 
1150-1260 -CH=CH- C-H 2nd overtone    [4] 
1162 -C=O C-O 4th overtone 0.230 ± 0.003 b 0.229 ± 0.002 b 0.242 ± 0.013 a [1,4] 
1181 -CH=CH- C-H 2nd overtone 0.353 ± 0.003 b 0.352 ± 0.002 b 0.364 ± 0.013 a [4] 
1212 -CH2-  C-H 2nd overtone 0.620 ± 0.004 b 0.621 ± 0.002 ab 0.628 ± 0.012 a [2] 

C 
 

1350-1430 -CH2- C-H Combination      [1,4] 
1360-1420 -CH3 C-H Combination     [4] 
1390-1450  H2O O-H 1st overtone    [4] 
1390-1450 -CH2- C-H 1st overtone    [4] 
1350 -C=O C-O 3rd overtone 0.038 ± 0.003 b 0.036 ± 0.002 b 0.047 ± 0.011 a [1] 
1391 -CH2- C-H Combination  0.404 ± 0.003 a 0.399 ± 0.003 b 0.409 ± 0.011 a [2,4] 
1416 -CH2- C-H 1st overtone 0.430 ± 0.004 b 0.426 ± 0.004 c 0.445 ± 0.012 a [2,4] 
1453 H20 O-H 1st overtone 0.252 ±0.004 b 0.252 ± 0.004 b 0.271 ± 0.012 a [3] 

D 1650-1670  -CH2- C-H 1st overtone    [4] 
1664 -CH=CH- C-H 1st overtone 0.187 ± 0.004 b 0.186 ± 0.004 b 0.194 ± 0.008 a [5] 

AUC      101 ± 2 b 100 ± 2 b 107 ± 4 a  
* [1] Paiva et al. (2015); [2] Yang and Irudayaraj (2001); [3] Fernandez-Cabanas et al. (2011); [4] Hourant et al. (2000); [5] Christy et al. 
(2004). Different superscript letters (a, b, c) in a row indicate significant differences from each other (Kruskal-Wallis tests and Mann-Whitney 
U-tests, p < 0.05). EVOO, extra virgin olive oil; ROO, refined olive oil; POO, pomace olive oil; AUC, area under the spectral curve.  

For Zone C (1350-1570 nm), the band from 1350 nm to 1450 nm is resulting from a 
combination of C-H stretching and deformation of the concerned molecule (methylene group 
and methyl group) (Hourant et al., 2000; 2015). The band ranging from 1390 nm to 1450 nm 
corresponds to the first overtone of methylene group and water (Hourant et al., 2000). The 
wavelengths 1391 nm and 1416 nm relate to the combination of C-H stretching and deformation 
and the first overtone of C-H stretching vibration, respectively (2000; Yang & Irudayaraj, 2001). 
The absorption intensity at both wavelengths is significantly higher for EVOO than for ROO 
(Mann-Whitney U-tests, p < 0.05). 

For Zone D (a narrow spectral band from 1650 nm to 1676 nm), the band most likely 
relates to the first overtone of C-H stretching. The wavelength 1664 nm corresponds to the first 
overtone of cis double bonds (Christy et al., 2004; Sato et al., 1991). Remarkably, the 
absorbance of POO at this wavelength (0.194 ± 0.008) is significantly higher than the 
absorbance of EVOO (0.187 ± 0.004) and ROO (0.186 ± 0.004) (Mann-Whitney U-tests, p < 
0.05).  
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Furthermore, Table 5.1 shows that the AUC of EVOO (101 ± 2) is significantly lower 
than that of POO (107 ± 4) (Mann-Whitney U-tests, p < 0.05). This indicates that EVOO has a 
lower absorption intensity than POO, which is in agreement with previous research (Yang & 
Irudayaraj, 2001). On the other hand, the AUC value of EVOO (101 ± 2) does not differ 
significantly from that of ROO (100 ± 2) which indicates the similarity of the two grades.  

Summarising the above, the absorbance of the olive oil grades at various spectral bands 
showed considerable overlap. Since it appears difficult to distinguish the three olive oil grades 
simultaneously by a single wavelength absorbance, we proceeded with a multivariate approach. 

5.3.1.2. Exploring the spectral data 

In order to explore the data, the handheld NIR spectral data were subjected to PCA 
(Figure 5.2). The combination of 2nd derivative and auto-scaling appeared the most suitable 
pre-processing method since it resulted in a good separation between EVOO and the other two 
olive oil grades.  

A distinct separation between EVOO and the lower grade olive oils appears along factor 
1 in Figure 5.2a. The EVOO samples cluster in the right hand side quadrants, whereas ROO 
and POO are located at the left. This indicates that the separation is mainly driven by the 
variables loading on factor 1. Therefore, the loadings of the wavelengths on factor 1 are shown 
in Figure 5.2c. The spectral data in the range of 1348-1571 nm in Zone C present high positive 
and negative loadings. The high positive loadings indicate an association with EVOO, whereas 
a high negative loading is associated with ROO and POO. This is fairly promising for further 
distinction of the oils; therefore, this wavelength range was selected for further data processing. 
In Figure 5.2b, the absorbance in the selected wavelength range show sufficient differences 
between the samples of the three olive oil grades. Previous studies reported that this band is 
mainly dominated by the vibration of -CH2- and H2O (Hourant et al., 2000; Paiva et al., 2015; 
Yang & Irudayaraj, 2001). Moreover, the absorption band of the first overtone of H2O highly 
perturbs the absorption at these wavelengths (Hourant et al., 2000). This may imply that the 
moisture contents of the olive oils contribute to the differences in absorbance in this range. On 
the other hand, the wavelength 982 nm (loading factor 1 = 0.12), 1181 nm (0.14), 1350 nm 
(0.16), 1391 nm (-0.17) and 1453 nm (0.16) in Figure 5.2c present the highest absolute loading 
values. Table 5.1 shows that 982 nm and 1453 nm correspond to the overtone of water and 
1181 nm is associated with the second overtone of the fundamental C-H absorption of FAs 
containing cis double bonds (Hourant et al., 2000). Furthermore wavelength 1391 nm 
corresponds to a combination of C-H vibrations that characterise oils. These results reveal that 
moisture content and abundance of double bonds in the FAs may contribute to the distinction 
of the olive oil grades. 
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Figure 5.2. Results of principal component analysis of the handheld near-infrared spectral data of three olive oil 
grades (data pre-processing: 2nd derivative and auto-scaling): a) scores plot; b) absorbance in the range of 1347-
1571 nm; c) factor 1 loadings of wavelengths; d) factor 2 loadings of wavelengths. E in grey, extra virgin olive oil; 
R in red, refined olive oil; P in green, pomace olive oil. 

ROO samples mainly grouped in the lower quadrants and POO samples in the upper 
quadrants. The separate groupings of the grades are mainly associated with the 1100-1317 nm 
wavelength range in Zone B (Figure 5.2d). The wavelengths 1038 nm (loading factor 2 = 0.13), 
1162 nm (-0.15), 1212 nm (0.15) and 1416 nm (-0.15) showed highest absolute loadings and 
they are more associated with ROO and POO.  

Summarising the results of the exploratory analyses, wavelength range Zone C shows 
largest differences between EVOO and lower grade olive oils, whereas Zone B reflects 
differences between ROO and POO.  

5.3.1.3. Classification of olive oils by their spectral data  

One-class classification models were estimated using the absorbance data of the 
wavelength range of 1348-1571 nm and three classifiers (OCkNN, OCSVM, SIMCA) in order 
to distinguish between EVOO and other olive oil grades. The performance of each model in 
terms of their sensitivity, specificity and accuracy values is presented in Table 5.2 for the 
internal validation, external validation, ROO and POO challenge sets, respectively. For OCkNN 
and OCSVM 98% correct classification rates were noted for EVOO (sensitivity score) for 
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internal and external validation, which means only one EVOO was misclassified in both cases. 
SIMCA resulted in a 100% sensitivity score, i.e. all individual EVOO samples were correctly 
identified as authentic EVOO. Specificity of the models followed the same ranking of the 
classifiers. Consequently, also the accuracy of SIMCA (100%) was higher than those of the 
other two models. The application of the challenge ROO and POO sets using SIMCA showed 
that POO samples were efficiently discriminated from EVOO (specificity of 100%) and 35 out 
of 40 ROO samples were classified correctly (specificity of 88%). OCkNN and SIMCA showed 
better performance than OCSVM, with SIMCA performing slightly better than OCkNN.  

Table 5.2. One-class classification models and their internal/external/challenge sets validation results.  

    Sensitivity Specificity  Accuracy  

EVOO vs InVal set 
OCkNN a 98% 98% 98% 

OCSVM b 98% 98% 98% 

SIMCA c 100% 100% 100% 

EVOO vs ExVal set 
OCkNN 98% 100% 99% 

OCSVM 98% 100% 99% 

SIMCA 100% 100% 100% 

EVOO vs ROO challenge set 
OCkNN 98% 90% 94% 

OCSVM 98% 85% 92% 

SIMCA 100% 88% 94% 

EVOO vs POO challenge set 
OCkNN 98% 100% 98% 

OCSVM 98% 100% 98% 
SIMCA 100% 100% 100% 

a OCKNN refers to one-class k-nearest neighbours, the best model was estimated with 2nd derivative pre-processing and 3 
factors; b OCSVM refers to one-class support vector machine, the best model was estimated with 2nd derivative and auto-scaling 
pre-processing and 2 factors; c SIMCA refers to soft independent modelling of class analogies, the best model was estimated 
with 2nd derivative pre-processing and 2 factors. EVOO, extra virgin olive oil; ROO, refined olive oil; POO, pomace olive oil; 
InVal, internal validation; ExVal, external validation. 

KDE was used to estimate the probability density function of the spectral data. 
Probability distributions for each olive oil grade and classifier applied are presented in Figure 
5.3. Samples were classified based on a threshold value predicted from the training and 
validation sets. Samples with a calculated distance smaller than the threshold value were 
classified in the positive group (authentic EVOO), whereas samples with a calculated distance 
larger than the threshold value were classified in the negative group (non-authentic EVOO). 
The threshold values are 0.0024 for OCkNN, 1.5 for OCSVM and 1.0 for SIMCA. In Figure 
5.3, the modelling set presented normal distributions for all three models. However, ROO and 
POO in combination with OCSVM and SIMCA show non-normal distributions. For ROO, a 
small tail exists at the right hand side, i.e. three ROO samples showed larger distance values 
than others. Furthermore, the distribution of POO shows two peaks, which may be due to the 
limited size of this sample group. As expected, distributions for the training and cross-validation 
sets are similar, as well as the distributions of the training and external EVOO validation sets. 
Regarding distributions of the EVOO and the two challenge sets, a full separation would be the 
most desirable. EVOO and ROO distributions show some overlap, whereas EVOO and POO 
overlap hardly. These results are in alignment with the accuracy scores in Table 5.2. 
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Figure 5.3. Comparison of kernel density estimate based probability distributions for classification models of three 
classifiers. Distributions are shown for the extra virgin olive oil training set (EVOO in green) versus (a) the internal 
EVOO validation set, (b) the external EVOO validation set, (c) the refined olive oil (ROO) challenge set and (d) 
the pomace olive oil (POO) challenge set (all in red). InVal, internal validation; ExVal, external validation. 
OCkNN, one-class k-nearest neighbours; OCSVM, one-class support vector machines; SIMCA, soft independent 
modelling of class analogies. 

5.3.2. Compositional analysis  

5.3.2.1. Fatty acids 

The relative abundance of 15 FAs, the sum of the relative abundance of (un)saturated 
FAs (SFA, MUFA and PUFA), IV and SN are listed in Table 5.3. The three olive oil grades 
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present considerable overlap in regard to the range of relative abundance of the FAs. However, 
the EVOO samples differed significantly from ROO and POO samples for 8 out of 15 and 5 
out of 15 FAs, respectively (Mann-Whitney U-tests, p < 0.05). The three most abundant FAs in 
the olive oils are C16:0, C18:1n9 and C18:2n6; they account for over 85 % of total FAs. The 
average concentration of C16:0 of EVOO (12.5 ± 1.7 %) was higher than that of ROO (11.5 ± 
0.8 %) and POO (11.7 ± 0.5 %). EVOO (71.5 ± 3.6 %) showed significantly higher 
concentrations of C18:1n9 than POO (69.6 ± 1.1 %) (Mann-Whitney U-tests, p < 0.05), but did 
not differ significantly from ROO (72.1 ± 1.6 %). On the other hand, the concentration of 
C18:2n6 in EVOO (7.8 ± 1.7 %) was significantly lower than in POO (9.8 ± 0.9 %) (Mann-
Whitney U-tests, p < 0.05). These results are in alignment with previous studies (Ambrosewicz 
et al., 2012; Chiavaro et al., 2008). Moreover, the sum of unsaturated FAs of EVOO, both 
MUFA and PUFA, differed significantly from POO (Mann-Whitney U-tests, p < 0.05), which 
is also in agreement with one of the previous studies (Chiavaro et al., 2008). 

Table 5.3. Average value (Mean), standard deviations (SD), minimum (Min), maximum (Max) and significance 
of differences (p value) of fatty acids (C16:0, etc., g 100 g-1), iodine values (IV, g 100 g-1) and saponification 
numbers (SN, mg KOH g-1) determined in three olive oil grades.  

Different superscript letters (a, b, c) in a row indicate significant differences from each other (Kruskal-Wallis tests and Mann-
Whitney U-tests, p < 0.05). SFA, sum of saturated fatty acids; MUFA, sum of monounsaturated fatty acids; PUFA, sum of 
polyunsaturated fatty acids; EVOO, extra virgin olive oil; ROO, refined olive oil; POO, pomace olive oil. 

A higher IV corresponds to a higher degree of unsaturation (Kalayasiri et al., 1996). In 
Table 5.3, IV of EVOO (83.7 ± 1.3 g 100 g-1) was significantly lower than that of POO (85.7 
± 1.0 g 100 g-1) (Mann-Whitney U-tests, p < 0.05), but was similar to the IV of ROO (83.8 ± 
1.1 g 100 g-1). This result confirms the assumptions in section 3.1.1. that POO presents a higher 
level of unsaturation than the other two olive oil grades. A higher SN implies a short carbon 
chain length (Pham et al., 2013). The SN value of EVOO (200.2 ± 0.6 mg KOH g-1) was 
significantly higher than the SN value of POO (199.4 ± 0.4 mg KOH g-1) (Mann-Whitney U-

Parameter EVOO (n = 80) ROO (n = 40) POO (n = 10) p value Mean ± SD Min Max Mean ± SD Min Max Mean ± SD Min Max 
C16:0 12.5 ± 1.7a 8.5 17.5 11.5 ± 0.8b 10.3 13.7 11.7 ± 0.5ab 10.8 12.3 <0.05 
C17:0 0.1 ± 0.0 0.0 0.2 0.1 ± 0.0 0.1 0.1 0.1 ± 0.0 0.1 0.1 0.90 
C18:0 2.8 ± 0.6b 1.8 4.3 3.4 ± 0.5a 1.9 4.1 2.8 ± 0.2b 2.3 3.1 <0.05 
C20:0 0.5 ± 0.1a 0.4 0.7 0.4 ± 0.0b 0.3 0.5 0.5 ± 0.0a 0.5 0.5 <0.05 
C22:0 0.1 ± 0.0b 0.1 0.2 0.1 ± 0.0c 0.1 0.2 0.2 ± 0.0a 0.2 0.2 <0.05 
C24:0 0.1 ± 0.0b 0.0 0.2 0.1 ± 0.0b 0.0 0.1 0.1 ± 0.0a 0.1 0.1 <0.05 
SFA 16.0 ± 1.6 13.0 20.9 15.6 ± 0.5 14.6 16.4 15.4 ± 0.5 14.7 16.0 0.46 
C16:1n9 0.1 ± 0.0 0.1 0.2 0.1 ± 0.0 0.1 0.2 0.1 ± 0.0 0.1 0.1 0.27 
C16:1n7 0.9 ± 0.3 0.4 1.9 0.9 ± 0.2 0.4 1.7 0.8 ± 0.1 0.8 0.9 0.75 
C17:1n7 0.1 ± 0.1 0.1 0.3 0.1 ± 0.0 0.1 0.2 0.1 ± 0.0 0.1 0.2 0.88 
C18:1n9 71.5 ± 3.6a 60.0 76.0 72.1 ± 1.6a 67.4 74.4 69.9 ± 1.1b 68.1 72.1 <0.05 
C18:1n7 2.1 ± 0.5b 1.1 4.1 2.3 ± 0.4a 1.4 3.0 2.4 ± 0.2a 2.0 2.6 <0.05 
C20:1n9 0.3 ± 0.1a 0.2 0.5 0.3 ± 0.0b 0.3 0.4 0.4 ± 0.0a 0.3 0.4 <0.05 
MUFA 75.1 ± 2.9a 65.5 78.8 75.8 ± 1.3a 71.7 77.5 73.5 ± 1.0b 72.2 75.9 <0.05 
C18:2n6 7.8 ± 1.7b 5.6 13.0 7.6 ± 1.1b 6.0 11.2 9.8 ± 0.9a 7.8 10.8 <0.05 
C18:3n3 0.8 ± 0.1a 0.6 1.0 0.6 ± 0.0b 0.5 0.7 0.6 ± 0.1a 0.5 0.7 <0.05 
C22:6n3 0.0 ± 0.0a 0.0 0.1 0.0 ± 0.0b 0.0 0.0 0.0 ± 0.0ab 0.0 0.0 <0.05 
PUFA 8.5 ± 1.7b 6.3 13.56 8.3 ± 1.1b 6.6 11.9 10.5 ± 1.0a 8.4 11.5 <0.05 
IV 83.7 ± 1.3b 80.2 86.8 83.8 ± 1.1b 81.8 86.6 85.7 ± 1.01a 84.0 87.2 <0.05 
SN 200.2 ± 0.6a 198.4 201.7 200.0 ± 0.5a 199.1 201.1 199.4 ± 0.37b 198.6 199.9 <0.05 
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tests, p < 0.05). Although the absolute difference is small, its significance implies a consistent 
slightly smaller FA chain length in EVOO in comparison to POO.  

5.3.2.2. Chlorophylls, carotenoids, chromatic coordinates CIELAB and moisture 

All samples were subjected to total chlorophylls analysis, total carotenoids analysis, 
chromatic coordinates CIELAB determinations and moisture content measurements. Average 
values are listed in Table 5.4.  

The chlorophylls and carotenoids are considered the two main pigment groups in olive 
oil. They determine the characteristics and commercial quality of olive oil, especially EVOO 
(Marquez, 2003). Table 5.4 shows that the concentration of total chlorophylls in EVOO varied 
from 0.2 to 6.3 mg kg-1 and total carotenoids from 0.4 to 2.9 mg kg-1, respectively. The large 
variation in concentrations within the EVOO group is due to the fact that pigments in EVOO 
vary with fruit ripeness and oil freshness (Marquez, 2003; Minguezmosquera et al., 1991). 
Nevertheless, the chlorophylls content in EVOO (3.6 ± 1.6 mg kg-1) was significantly higher 
than in ROO (0.5 ± 0.3 mg kg-1) and POO (0.8 ± 0.4 mg kg-1) (Mann-Whitney U-tests, p < 
0.05). Similarly, the carotenoids content of EVOO (1.7 ± 0.5 mg kg-1) was significantly higher 
than those of ROO (0.3 ± 0.2 mg kg-1) and POO (0.6 ± 0.2 mg kg-1) (Mann-Whitney U-tests, p 
< 0.05). This is primarily due to removal of a large fraction of the pigments in the latter oils 
during the refining process (Antonopoulos et al., 2006).  

The chromatic coordinates L*, a* and b* were determined to investigate the colour of 
the olive oils. The L* value of the EVOO group (81.3 ± 5.9) was significantly lower than that 
of ROO (91.3 ± 3.0) and POO (91.7 ± 3.2) groups (Mann-Whitney U-tests, p < 0.05). This 
indicates that EVOO is darker in colour than the other grades. The mean values of a* for the 
EVOO (-2.1 ± 1.2) and POO (-1.9 ± 1.6) groups were significantly lower than the value for the 
ROO group (1.2 ± 1.2) (Mann-Whitney U-tests, p < 0.05). This means that EVOO and POO 
possessed a stronger green colour than ROO, while ROO exhibited also some red colour. 
Furthermore, the b* value for the EVOO group (58.1 ± 12.4) differed significantly from that of 
the ROO (14.4 ± 6.3) and POO (24.9 ± 6.5) groups (Mann-Whitney U-tests, p < 0.05). These 
results indicate that EVOO exhibited the strongest yellow colour intensity of the three olive oil 
grades. Regarding this aspect, EVOO was followed by POO and ROO, respectively. It is 
interesting that with this simple smartphone application one is able to roughly distinguish 
EVOO from the other olive oil grades by their colours. 

The moisture contents of EVOO ranged from 0.1 to 0.2 g 100 g-1, which shows a small 
overlap with ROO (0.0-0.1 g 100 g-1) and POO (0.0-0.1 g 100 g-1). The difference between the 
olive oil grades was, however, significant (Mann-Whitney U-tests, p < 0.05). Multiple filtering 
treatments of the refining process eliminate water in olive oil (Bakhouche et al., 2014). 
Therefore, also moisture content limits are higher for EVOO (≤ 0.2 g 100 g-1) than for lower 
grade olive oils (≤ 0.1 g 100 g-1) in IOC standards (IOC, 2016).   
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Table 5.4. Average values (Mean), standard deviations (SD), minimum (Min), maximum (Max) and significance 
of differences (p value) of chlorophylls (mg kg-1), carotenoids (mg kg-1), chromatic coordinates CIELAB (L*, a* 
and b*) and moisture content (g 100 g-1) determined in three olive oil grades.  

Parameter EVOO (n = 80) ROO (n = 40) POO (n = 10) p value Mean ± SD Min Max Mean ± SD Min Max Mean ± SD Min Max 
Chlorophylls 3.6 ± 1.6 a 0.2 6.3 0.5 ± 0.3 b 0.0 1.6 0.8 ± 0.4 b 0.3 0.2 <0.05 
Carotenoids 1.7 ± 0.5 a 0.4 2.9 0.6 ± 0.2 b 0.1 1.2 0.6 ± 0.2 b 0.4 0.8 <0.05 
L* 81.3 ± 5.9 b 65.8 91.5 91.7 ± 3.2 a 82.9 96.8 91.7 ± 3.2 a 83.6 95.0 <0.05 
a* -2.1 ± 1.2 b -5.2 0.3 1.2 ± 1.2 a -0.8 3.1 -1.9 ± 1.6 b -4.4 0.4 <0.05 
b* 58.1 ± 12.4 a 14.1 77.7 14.4 ± 6.3 b 6.3 36.5 24.9 ± 6.5 b 17.4 36.9 <0.05 
Moisture 0.1 ± 0.0 a 0.1 0.2 0.1 ± 0.0 b 0.0 0.1 0.1 ± 0.0 b 0.0 0.1 <0.05 

Different superscript letters (a, b) in a row indicate significant differences from each other (Kruskal-Wallis tests and Mann-
Whitney U-tests, p < 0.05). EVOO, extra virgin olive oil; ROO, refined olive oil; POO, pomace olive oil.   

5.3.3. Correlation of spectral and compositional data 

 

Figure 5.4. Pearson correlation coefficients for spectral data (horizontal axis) versus compositional data (vertical 
axis). Positive and negative coefficients are coloured red and blue, respectively. Larger absolute values of the 
coefficient (r) are presented as darker colours; coefficients < -0.17 and > + 0.17 indicate significant correlations 
(Paired samples t-test, p < 0.05). 

The correlation coefficients (r) of the spectral and compositional data were calculated 
and are presented in Figure 5.4. Initially, the spectral data and FA data were correlated. The 
entire spectrum and the compositional characteristics C18:2n6, C22:0, PUFA and IV correlated 
significantly (r > 0.17, p < 0.05). Three of these characteristics, C18:2n6, PUFA and IV, have 
a relationship with the degree of unsaturation. The higher their values, the higher the absorption. 
Many correlations between compositional characteristics and the wavelength range selected for 
the classification models (1348-1571 nm) were observed. For instance, for C18:3n3, C20:0, 
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C20:1n9, C22:0, PUFA and IV, significant positive correlations were noted (r > 0.17, p < 0.05), 
whereas C18:0 and C18:1n9 were significantly negatively correlated with absorbance in this 
wavelength range (r < -0.17, p < 0.05). These results align with previous studies which also 
reported the impact of FAs on the absorption in the NIR range (Christy et al., 2004). Absorption 
behaviour of NIR spectra can be particularly explained by the degree of unsaturation of the fats 
and oils (Hourant et al., 2000; Sato, 2002).  

The other compositional features were also correlated with the spectral data. L* and 
moisture content present a statistically significant correlation (r > 0.17, p < 0.05) with the 
spectral region of 908-1350 nm (Zone A and Zone B). Lightness of the oil and its moisture 
content seem to be related to the absorption intensity in this spectral range. Furthermore, 
wavelength 1391 nm in the selected wavelength range, which corresponds to the combination 
of C-H stretching and deformation, showed significant correlation (p < 0.05) with chlorophylls 
(r = 0.36), carotenoids (r = 0.43), L* (r = -0.30), a* (r = -0.52), b* (r = 0.44) and moisture 
content (r = 0.31). Wavelength 1453 nm, which results from the first overtone of O-H, is 
significantly correlated with chlorophylls (r = -0.17), carotenoids (r = -0.19), L* (r = 0.21), b* 
(r = -0.19) and moisture content (r = -0.27) (p < 0.05). These correlations are interesting because 
1391 nm and 1453 nm contributed highly to the EVOO distinction. These results indicate that 
chlorophylls, carotenoids and moisture contents might played an important role in the 
absorption intensity of the oils at wavelength 1391 nm and 1453 nm in addition to the 
unsaturation degree of the oils. Pigments apparently also affected the chromatic coordinates 
CIELAB of the oils. Moreover, moisture content presents a significant correlation (p < 0.05) 
with two spectral bands in the selected wavelength range, i.e. in the range of 1391-1404 nm and 
1435-1460 nm. This is in agreement with previous studies, in which the range of 1390-1453 
nm was assigned to the first overtone of H2O (Fernandez-Cabanas et al., 2011; Hourant et al., 
2000).  

 

5.4. Conclusions and considerations 

Based on the 130 commercial olive oil samples used in this study, the handheld NIR 
appeared promising for distinction of pure olive oil grades. This new methodology is especially 
of interest because of its potential in situ use and application by non-scientists. The degree of 
unsaturation of the FAs as well as chlorophylls, carotenoids and moisture contents appear to be 
related to the spectral differences between the olive oil grades. This study is a good first step 
towards a useful practical application. The latter will require, however, expansion of the olive 
oil database to cover more compositional variation in practice. It is also imperative to look into 
blends of grades in future studies, since most fraud in practice are admixtures rather than full 
replacements. Another point for future consideration is, like for any authentication method, the 
robustness of the methodology against attempts of fraudsters to outfox the scientists. 
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Abstract 

A rapid and non-destructive ultrasonic pulse echo system was developed for vegetable oils 
characterisation. To understand the differences in the ultrasonic properties of the oils, physical 
traits, such as their viscosity and density, were related to the ultrasonic data. In turn, these 
physical traits were correlated with the fatty acid (FA) compositions of the oils. Eighty oil 
samples, including 30 extra virgin olive oil (EVOO), 15 refined olive oil (ROO), 15 pomace 
olive oil (POO), 10 rapeseed oil, 5 sunflower oil and 5 peanut oil samples, were analysed for 
their sound properties, viscosities, densities and FA compositions. It was observed that the 
ultrasonic velocity of EVOO decreased linearly with increase in temperature, the temperature 
coefficient of ultrasonic velocity in EVOO was -2.92 m∙s-1∙°C-1. The ultrasonic velocity of 
EVOO (1453 ± 2 m/s) differed significantly from those of POO and the oils of other botanical 
origin, but not from the velocity of ROO. Ultrasonic velocity was strongly positively correlated 
with the density and negatively correlated with the viscosity of the oils. The higher density and 
lower viscosity of the oils were in turn related to a higher unsaturation degree of the oils. Hence, 
oils with a higher proportion of unsaturated fat present higher densities and lower viscosities, 
which resulted in higher ultrasonic velocity values. Ultrasonic measurements allow rapid, non-
destructive analysis. This first application for characterisation of these oils is promising.  

Keywords: Density; fatty acids; rheology; ultrasonic velocity.  
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6.1. Introduction 

Extra virgin olive oil (EVOO) extracted from fresh olive fruits using traditional cold 
pressing methods is the highest quality olive oil available commercially. Because of its high 
nutritional value, premium organoleptic quality and high price, it turns out to be an attractive 
target for food fraud. EVOO adulteration is considered a common fraudulent practice in the 
olive oil industry and these adulterations include the addition of lower grade olive oils (refined 
olive oil (ROO) and pomace olive oil (POO)) and other vegetable oils (rapeseed oil (RSO), 
sunflower oil (SFO) and peanut oil (PNO)) (De Oliveira & Catharino, 2015).  

In order to ensure food safety and assess EVOO characterisation, the European 
Commission (2013) and IOC (2016) released official methods on the characteristics of olive oil 
and on the relevant methods of analysis. Moreover, a large number of potential techniques for 
EVOO characterisation have been reported (Bajoub et al., 2018), which can be divided into 
chromatography (Yan et al., 2018), mass spectrometry (Marone et al., 2017), vibrational 
spectroscopy (Wang et al., 2016), nuclear magnetic resonance (Fragaki et al., 2005), DNA-
based techniques (Pasqualone et al., 2016) and other techniques (Chiavaro et al., 2008). Rapid, 
inexpensive and non-invasive analytical approaches for EVOO characterisation are continually 
being sought (Persuric et al., 2018; Squeo et al., 2019), whereas the sound properties, which 
could be interesting markers for rapid and non-destructive analysis, have hardly received any 
attention to date. Sound (0-20 kHz) measurements have been applied as an effective approach 
for salt profiling and identification (van Ruth et al., 2019). Analyses using the ultrasound (> 20 
kHz) range could also be promising for food characterisation. Ultrasonic spectroscopy is a 
development of the pulse-echo technique which uses broadband (0.5-10 MHz) ultrasound and 
analyses the spectra of the echo pulses (Brown, 1973). It is a promising technique for rapid and 
non-destructive analyses. The ultrasonic waves generated from an ultrasonic transducer, 
propagate through the oil samples. Thus, measurement of the characteristics of these ultrasonic 
waves may then show differences which relate to properties of vegetable oils.  

Measurement of the ultrasonic velocity (speed of sound) is the basis of most ultrasonic 
techniques used to evaluate the properties of foods (McClements, 1997). Furthermore, 
ultrasonic velocity has been correlated to the rheological properties of vegetable oils (Gladwell 
et al., 1985) and the density of oils (Sankarappa et al., 2005). Measurements of ultrasonic 
velocity have been employed to characterise edible oils (Alouache et al., 2015; Alouache et al., 
2018), such as for solid fat content analysis (Singh et al., 2004), recycled edible oils evaluation 
(Ali & Ahmad, 2018) and frying oil degradation assessments (Benedito et al., 2007; Benedito 
et al., 2002). Moreover, researchers have previously reported a potential correlation between 
ultrasonic velocities of olive oil and their chemical composition (Kumari et al., 2017; 
McClements & Povey, 1988), which has been proposed as an alternative method for 
compositional analyses. Therefore, ultrasonic measurements could be an alternative and 
promising approach for rapid and non-destructive assessment of the integrity of oils. 
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Considering the vulnerability of olive oil to fraud, olive oil would be an interesting target to 
explore this type of approach.  

In this study, a pulse-echo ultrasonic system was employed to explore the 
characterisation of the vegetable oils and to examine the underlying causes for the ultrasonic 
velocity differences between the oils. The detailed objectives of this study are 1) to evaluate a 
developed ultrasonic velocimetry measurement system for the vegetable oils characterisation; 
2) to investigate the correlation between ultrasonic measurements and the viscosity and density 
of the oils; 3) to relate the viscosity and density of the oils to their FA compositions.  

 

6.2. Materials and methods 

6.2.1. Samples  

Eighty vegetable oil samples were collected, and their authenticity was confirmed by 
official methods, including FA compositional fingerprinting and spectrophotometric tests 
measuring extinction coefficients (K232, K268 and ΔK) (IOC, 2017). They were also evaluated 
for their monochloropropanediol esters contents (Yan et al., 2018). They included olive oil 
samples: 30 EVOO, 15 ROO and 15 POO samples, as well as oils of other botanical origins 
which are often found as adulterants: 10 RSO, 5 SFO and 5 PNO samples. Prior to analysis, 
samples were stored in capped bottles, which were kept in the dark at room temperature until 
analysis. 

6.2.2. Ultrasonic velocity analysis 

The ultrasonic measurements were carried out using a purpose-built pulse-echo system. 
This pulse-echo system, shown schematically in Figure 6.1a, is composed of a sample platform 
(Figure 6.1b), an immersion transducer (diameter 12.54 mm, Panametrics-NDT, Olympus 
NDT U.K. Ltd., Rotherham, South Yorkshire, UK) with a central frequency of 5 MHz, a 
computer controlled pulse generator/receiver (Panametrics-NDT Model 5800, Olympus NDT 
U.K. Ltd., Rotherham, South Yorkshire, UK), an oscilloscope (Tektronix TDS 210, Tektronix 
UK Ltd., Bracknell, UK) and a computer (Dell, Texas, US).  

As can be seen in Figure 6.1b, a special sample platform which is fixed on a stainless-
steel base plate was custom fabricated and consisted of a transparent plastic tube (2), a solid 
stainless-steel cylinder (3) and a micrometre (4) (fixed on one side of a vertical stainless-steel 
bracket). A good seal between the plastic cylinder and the solid stainless-steel cylinder is 
managed by rubber rings to avoid leakage, and the generated volume is used as a sample cell 
(63 mm internal diameter). The transducer (1) is placed in a holder fixed to the micrometre. 
The distance between the transducer surface and the bottom of the sample cell can be measured 
with the micrometre (0.01 mm), with an integrated spring in the micrometre maintaining a 
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constant position force. The sample platform was placed into a temperature-controlled water 
bath to maintain the sample temperature (23.5 °C ± 0.1 °C). When recording a measurement, 
the face of the transducer had to be placed below the oil surface as shown in Figure 6.1b. Any 
air bubbles trapped in the oil on the transducer face were manually removed prior to testing by 
swiping over the surface of the transducer with finger.  

 

Figure 6.1 a Schematic diagram of ultrasonic pulse-echo system. L, length of the half-way wave path in oil samples. 
b Sample platform of the pulse-echo system. (1) transducer; (2) transparent plastic cylinder; (3) solid stainless-
steel cylinder; (4) micrometre.  

The principle of the pulse echo system is similar to that reported by other researchers 
(Alouache et al., 2016; Awad et al., 2012) but presents some differences. The computer 
controlled pulse generator/receiver is used to produce/generate monopolar electrical pulses, 
which are converted to ultrasonic pulses by the transducer. The pulse generator/receiver was 
operated in pulse echo mode with a pulse repetition frequency of 1 kHz, 25 μJ pulse energy 
with 20 dB of input attenuation and 20 dB of receiver amplification. The generated ultrasonic 
pulse propagates through the vegetable oils from the transducer until it reflects from the 
stainless-steel cylinder face (solid reflector), back to the same transducer, which acts as a 
receiver and converts the returned ultrasonic pulses into electrical signals that are displayed on 
the oscilloscope. Subsequently, the ultrasonic signal from each sample was transferred to the 
computer via a general-purpose interface bus interface with the oscilloscope. The signal 
acquisition was repeated with different separations between the transducer face and the 
stainless-steel base using a MATLAB (R2015b, The MathWorks Inc., Natick, MA, USA) 
program.  

The ultrasonic velocity can be calculated by analysing the times of the echoes received 
at the oscilloscope. As shown in Figure 6.1a, the distance between the transducer and the 
bottom of the sample cell (L) is equal to half the distance propagated by the ultrasonic pulse. 
Six measurements were carried out under six consecutive distances (10, 12, 14, 16, 18 and 20 
mm) for each sample. The amount of the oils used under each measurement distance are 31.17, 
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37.41, 43.64, 49.88, 56.11 and 62.34 mL, respectively. The ultrasonic velocity (V) can be thus 
calculated by two measurements under two consecutive distances using equation (1): 

𝑉𝑉 = 2(𝐿𝐿2−𝐿𝐿1)
𝑇𝑇2−𝑇𝑇1

       ,         (1) 

where L1 is the lower distance of one-way echo path (m); L2 is the consecutive next distance of 
one-way echo path (m), which is larger than L1; T1 is the time of receiving the first reflected 
signal (s) under the distance of L1; T2 is the time of receiving the first reflected signal (s) under 
the distance of L2; V is the propagation velocity of the ultrasound in samples (m/s).  

Since six distances were measured for each sample, five velocity values were calculated. 
The final velocity of each sample was the average of the five velocity values. This device was 
calibrated by measuring the ultrasonic velocity of water (1499 ± 3 m/s at 26 °C) (Engineering 
ToolBox, 2004).  

6.2.3. Viscosity analysis 

The apparent viscosity of the oils was measured using a Haake Roto Visco 1 rotational 
viscometer (Thermo Fisher Scientific, GmbH, Karlsruhe, Germany), equipped with a Z41 
concentric cylinder and Z43 cup. Each sample (10 mL) was loaded into the gap between the 
cylinder and the cup, before being allowed to equilibrate at 20 °C for 1 min before analysis. In 
the first step, the sample was subjected to a shear rate ramp from 0 to 200 s-1 over 2 min, then 
held at 200 s-1 for 2 min before returning shear rate from 200 to 0 s-1 over 2 min. The test was 
carried out at 20.0 ± 0.1 °C, and the temperature was controlled by a digital recirculating water 
bath. The average viscosity was taken at a shear rate of 200 s-1. The equation of the viscosity 
(see Equation (2)) was used to describe the rheological properties of the samples: 

𝜂𝜂 = 𝜏𝜏
𝛾𝛾              ,              (2) 

where 𝜂𝜂 is the viscosity (Pa.s), 𝜏𝜏 is the shear stress (Pa), 𝛾𝛾 is the shear rate (s-1). Duplicate 
measurements of all samples were conducted. 

6.2.4. Density analysis 

The density values were calculated using a gravimetric method. The flask and the 25 
mL glass pipette were weighed together (m1) by electronic lab balance (± 0.001 g), then the 25 
mL (𝑣𝑣) oil sample was pipetted into the flask by the glass pipette. Subsequently, the flask, the 
glass pipette and the oil were weighed together (m2). The density of the oil was obtained by 
using equation (3): 

𝜌𝜌 = 𝑚𝑚2−𝑚𝑚1
𝑣𝑣 × 1000           ,               (3) 
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where 𝜌𝜌 is the density of the sample (kg/m3), m1 is the total weight of the empty flask and the 
glass pipette (g), m2 is the total weight of the oil sample, the flask and the glass pipette (g), and 
𝑣𝑣 is the accurate volume of the sample (mL). The tests were carried out at room temperature 
(20.0 ± 0.1 °C). Duplicate measurements were conducted for all samples. 

6.2.5. Measurement of fatty acids 

6.2.5.1. Fatty acid methyl esters preparation 

The 100 μL of the internal standard solution (50 mg tritridecanoin (C13:0) and 50 mg 
methyl undecanoate (C11:0) dissolved by 10 mL pentane) was pipetted into a gas 
chromatography (GC) vial and the solution was evaporated to dry under a stream of nitrogen. 
Then, one droplet of each oil sample (approximately 10-20 mg) was transferred into the 
prepared GC vial and the vial was closed with a magnetic cap. Then, the samples were placed 
in the autosampler (Gerstell MPS, GmbH, Germany). Subsequently, an automatic boron 
trifluoride transmethylation procedure was conducted for the sample preparation as reported in 
ISO 12966-2 (2017).  

6.2.5.2. Fatty acid methyl ester analysis 

The gas chromatographic analysis of fatty acids (FAs) was carried out according to ISO 
12966-4 (2015). The Agilent HP7890A GC (Agilent Technologies, Inc., Wilmington, DE, USA) 
was equipped with a 100 m × 0.25 mm × 0.2 μm film thickness fused silica capillary column 
(Varian, Palo Alto, CA) coupled to a flame ionisation detector. Working condition: initial 
column temperature, 120 °C; final column temperature, 240 °C; heating ramp, 4.0 °C/min; hold 
time, 7 min at 240 °C; run time, 37 min; carrier, hydrogen; constant flow, 1.0 mL/min; injection, 
1 μL; split, 1:100; injector temperature, 250 °C; detector temperature, 250°C. 

Individual fatty acid methyl esters (FAMEs) were identified by comparison with 
external standards. The internal standard C13:0 was employed for the quantification of 
individual FAMEs. In addition, the performance of transesterification was evaluated by internal 
standards C13:0 and C11:0. Blanks were performed prior to analysing each batch of samples 
for the stability test of the machine.  

Iodine values (IV, g I/100g) and Saponification numbers (SN, mg KOH/g) of 80 
vegetable oils were calculated from their FA compositions as described by Kalayasiri et al. 
(1996). Duplicate measurements of all samples were conducted. 

6.2.6. Statistical analysis 

Means and standard deviations were calculated for each sample and oil group. Non-
parametric Kruskal-Wallis tests were applied for group comparisons due to non-normality 
nature of the data. The pairwise comparisons were carried out by Mann-Whitney U-tests (p < 
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0.05). All of the above data analysis methods were performed by SPSS statistic 23 (IBM, 
Chicago, IL, USA).  

The correlations between the ultrasonic velocity, viscosity and density, as well as 
between these physical characteristics and the FAs compositional data were assessed by 
computing Pearson correlation coefficients (r). Paired samples t-tests were applied to assess 
significance of the correlation coefficients. All calculations were performed by scripts 
developed in R 3.3.3 (R Foundation for Statistical Computing, Vienna, Austria). 

Partial least squares (PLS) regressions with leave-one-out cross validation were carried 
out, using Pirouette 4.5 (Infometrix, USA) to create predictive models based on FAs data. The 
FAs dataset was pre-processed in three ways, including auto-scaling, mean-centring and range-
scaling. The performance of models was evaluated by coefficient of determination for cross-
validation (r2) and standard error of cross-validation (SEV), since SEV is the best single 
estimate of the prediction capability of these kinds of models (Fernandez-Cabanas et al., 2011).  

 

6.3. Results and discussion  

6.3.1. Pulse echo system - ultrasonic velocity measurements 

6.3.1.1. Development of the measurement system 

In terms of the sample platform, oil was placed in a sample cell of 63 mm internal 
diameter with adjustable height from 0 to 50 mm, which illustrate the maximum amount of oil 
required for the measurement is less than 150 mL. The amount of the oils used under each 
measurement distance are 31.17 mL (10 mm), 37.41 mL (12 mm), 43.64 mL (14 mm), 49.88 
mL (16 mm), 56.11 mL (18 mm) and 62.34 mL (20 mm). Moreover, the measurement time for 
each sample at a certain distance from generating signal to receiving and recording the signal 
is less than 30 s, and this could be reduced with automation of the transducer positioning.  

 
Figure 6.2. Plot of the first propagation signal of extra virgin olive oil analysed at four distances. a refers to the 
transmitter pulse; b, c, d, e refer to the first propagation signal at the distance of 10, 12, 14, 16 mm, respectively. 
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Figure 6.2 shows the variation in ultrasonic propagation delay of EVOO under four 
different distances (10 mm, 12 mm, 14 mm and 16 mm). The first signal (a) in Figure 6.2 is 
the transmitter pulse without propagating through the oil sample and is electronic cross-talk 
between the pulser and the amplifier. Thus, the first propagation signal is the second one (b), 
the time delay of receiving the first propagation signal (the time when the signal reaches its 
peak) increases when the distance increases, i.e., from 11.862 μs (b) to 14.614 μs (c), 17.364 μs 
(d) and 20.116 μs (e). Because of the difficulty of picking out the peak of the first signal, the 
velocity of ultrasound cannot be calculated using the time and distance directly, but applying 
the relative time between two distances is an alternative way for velocity calculation. In this 
case, the mean value of velocity of EVOO is 1453.84 ± 0.47 m/s. 

6.3.1.2. Initial evaluation of the measurement system 

Previous studies reported that the ultrasonic properties may vary when the measurement 
temperature is changed (Benedito et al., 2002; Sankarappa et al., 2005). The variation of the 
ultrasonic velocity with temperature in EVOO was measured over a temperature range from 18 
to 36 °C, using an ultrasonic frequency of 5 MHz. The signal was recorded at 2 °C intervals 
and the temperature was controlled by a water bath. As shown in Figure 6.3, the velocity was 
observed to be decreasing with the increase of temperature in the applied temperature range, 
which results in a velocity decrease from 1470 to 1416 m/s. Sankarappa et al. (2005) explained 
that velocity changes with temperature are attributed to changes in intermolecular distance with 
temperature.  

 

Figure 6.3. Variation of ultrasonic velocity with temperature for extra virgin olive oil at the ultrasonic frequency 
of 5 MHz.  

Figure 6.3 reveals that the correlation coefficient is more than 0.99, therefore, ultrasonic 
velocity is linearly related to the temperature of the olive oil over the temperature range studied. 
This is in agreement with other observations made in olive oil (Benedito et al., 2002) and other 
oils (sunflower oil and refined groundnut oil) (Sankarappa et al., 2005). However, a previous 
study also reported that velocity decreased nonlinearly with increasing temperature in coconut 
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oil, castor oil and unrefined Kardi (safflower) oil (Sankarappa et al., 2005). Moreover, the 
temperature coefficient for ultrasonic velocity in EVOO is -2.93 m∙s-1∙°C1. This slope is close 
to the value reported by Benedito et al. (2002) for olive oil (ranges from -3.37 to -3.54 m∙s-1∙°C-

1) and McClements and Povey (1988) (-3.28 m∙s-1∙°C-1). This illustrates that the assay accuracy 
of this pulse echo system is high. Since the ultrasonic measurements are temperature dependent, 
all 80 samples were measured at a constant temperature (23.5 °C ± 0.1°C) in the subsequent 
study to obtain repetitive and reliable results.  

6.3.2. Ultrasonic velocity of the different oils 

The 80 vegetable oils, including 30 EVOO, 15 ROO, 15 POO, 10 RSO, 5 SFO and 5 
PNO, were subjected to ultrasonic velocity measurements using the developed pulse echo 
system, and the results are presented in Table 6.1. As can be seen in Table 6.1, the ultrasonic 
velocities of the six categories are in the range of 1450 to 1462 m/s and significant differences 
between groups were observed (Kruskal-Wallis test, p < 0.05). Specifically, a significant 
difference exists between EVOO (1453 ± 2 m/s) and the other vegetable oils (RSO (1460 ± 1 
m/s), SFO (1461 ± 1 m/s) and PNO (1458 ± 1 m/s)), which also can be noticed in Table 6.1. 
Furthermore, a significant difference in mean values between EVOO (1453 ± 2 m/s) and POO 
(1456 ± 1 m/s) was established. This result may be explained by the fact that POO is extracted 
from olive residue with the help of chemicals and/or high temperatures, which results in a lower 
quality oil compared with EVOO, with different characteristics (Gunstone, 2011). However, 
there is no significant difference between EVOO (1453 ± 2 m/s) and ROO (1455 ± 1 m/s). This 
may due to the fact that EVOO and ROO are primarily a mixture of triacylglycerols with a 
similar pattern, with only 0.5-1.5% FAs, mono- and diacylglycerols and non-glyceridic 
constituents (Gunstone, 2011). Thus, differences in composition are relatively small. 

Three vegetable oils (RSO, SFO and PNO) present higher velocity values compared 
with the olive oils with average values of 1460 ± 1 m/s, 1461 ± 1 m/s and 1458 ± 1 m/s, 
respectively. Meanwhile, the velocities of SFO and RSO are higher than the velocity of PNO, 
this trend is in accordance with earlier observations reported by Coupland and McClements 
(1997). 

In the following sections we explore underlying causes for the differences established.  

6.3.3. Viscosity and density of the different oils 

All samples were subjected to viscosity and density measurements, the results of which 
are presented in Table 6.1, along with the significant differences between oil groups. The 
viscosity of EVOO (83.3 ± 1.2 mPa.s) is significantly higher than that of RSO (73.1 ± 3.9 mPa.s) 
and SFO (67.3 ± 2.9 mPa.s) and is significantly lower than that of PNO (86.7 ± 1.5 mPa.s). 
Furthermore, the viscosity of EVOO (83.3 ± 1.2 mPa.s) is significantly lower than ROO (86.3 
± 0.8 mPa.s) and POO (86.4 ± 1.4 mPa.s). This may be due to the high temperature during the 
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refining process, which leads to the formation of long-chain FAs (polymers), which results in 
the increase of viscosity (Kreps et al., 2017). 

Table 6.1. Averages and standard deviations of ultrasonic velocity, viscosity and density of 80 oil samples, 
including 30 extra virgin olive oil samples (EVOO), 15 refined olive oils (ROO), 15 pomace oils (POO), 10 
rapeseed oils (RSO), 5 sunflower oils (SFO) and 5 peanut oils (PNO).  

Different letters (a, b, c) indicate significant differences between oil groups (Kruskal-Wallis and Mann-Whitney U tests, p < 
0.05).   

As shown in Table 6.1, the three olive oils (EVOO, ROO, POO), with viscosities 
ranging from 81-88 mPa.s, are more viscous than RSO (73.1 ± 3.9 mPa.s) and SFO (67.3 ± 2.9 

Type 
Ultrasonic 
velocity 

(m/s) 

Viscosity 
(mPa.s) 

Density 
(kg/m3)  Type 

Ultrasonic 
velocity 

(m/s) 

Viscosity 
(mPa.s) 

Density 
(kg/m3) 

EVOO 
(n = 30) 

1455 ± 2 83.6 ± 0.4 913 ± 0  

POO 
(n = 15) 

1457 ± 1 88.0 ± 0.2 911 ± 0 
1456 ± 1 82.9 ± 0.3 911 ± 0  1456 ± 1 85.8 ± 0.2 912 ± 1 
1455 ± 0 83.4 ± 0.2 912 ± 0  1457 ± 2 85.8 ± 0.3 911 ± 1 
1454 ± 2 85.5 ± 0.1 911 ± 1  1456 ± 3 86.1 ± 0.3 915 ± 0 
1454 ± 2 82.5 ± 0.2 912 ± 0  1456 ± 2 90.4 ± 0.3 914 ± 1 
1455 ± 3 82.8 ± 0.1 909 ± 0  1455 ± 2 87.4 ± 0.3 913 ± 0 
1452 ± 1 83.4 ± 0.2 911 ± 0  1457 ± 8 87.6 ± 0.3 916 ± 0 
1456 ± 3 84.2 ± 0.2 909 ± 0  1455 ± 3 84.7 ± 0.3 915 ± 1 
1453 ± 2 84.5 ± 0.3 912 ± 1  1457 ± 1 85.5 ± 0.3 916 ± 0 
1452 ± 0 81.4 ± 0.2 911 ± 1  1457 ± 2 86.2 ± 0.3 917 ± 1 
1455 ± 0 84.1 ± 0.2 912 ± 0  1455 ± 1 86.2 ± 0.3 917 ± 1 
1453 ± 2 82.1 ± 0.4 913 ± 1  1454 ± 1 85.7 ± 0.2 914 ± 0 
1453 ± 3 83.8 ± 0.2 913 ± 1  1456 ± 2 86.7 ± 0.2 916 ± 0 
1454 ± 1 83.0 ± 0.3 914 ± 1  1458 ± 2 85.7 ± 0.2 914 ± 1 
1456 ± 3 86.4 ± 0.4 913 ± 1  1457 ± 2 84.9 ± 0.1 918 ± 1 
1454 ± 1 82.8 ± 0.2 909 ± 1  Mean ± SD 1456 ± 1 b 86.4 ± 1.4 a 915 ± 2 bc 
1453 ± 2 83.5 ± 0.3 911 ± 0  

RSO 
(n = 10) 

1461 ± 3 72.1 ± 0.2 920 ± 1 
1452 ± 1 85.5 ± 0.2 911 ± 1  1461 ± 1 72.2 ± 0.3 921 ± 4 
1452 ± 1 82.7 ± 0.4 913 ± 0  1460 ± 2 73.4 ± 0.2 922 ± 3 
1452 ± 2 84.3 ± 0.2 909 ± 0  1459 ± 2 70.6 ± 0.1 915 ± 1 
1452 ± 2 83.3 ± 0.4 912 ± 1  1460 ± 3 71.9 ± 0.2 919 ± 1 
1450 ± 1 82.0 ± 0.2 912 ± 0  1462 ± 2 65.1 ± 0.3 920 ± 1 
1455 ± 3 81.9 ± 0.3 911 ± 0  1462 ± 3 75.5 ± 0.2 917 ± 1 
1453 ± 4 83.6 ± 0.4 916 ± 1  1461 ± 3 74.9 ± 0.2 918 ± 1 
1453 ± 2 84.3 ± 0.2 912 ± 1  1459 ± 2 74.8 ± 0.2 917 ± 1 
1452 ± 2 83.0 ± 0.3 913 ± 0  1459 ± 3 80.2 ± 0.3 915 ± 0 
1454 ± 1 82.6 ± 0.2 911 ± 0  Mean ± SD 1460 ± 1 a 73.1 ± 3.9 c 919 ± 3 a 
1452 ± 0 82.2 ± 0.4 914 ± 1  

SFO 
(n = 5) 

1461 ± 1 64.8 ± 0.1 921 ± 1 
1448 ± 1 82.4 ± 0.3 914 ± 0  1460 ± 2 67.1 ± 0.2 922 ± 0 
1454 ± 3 83.3 ± 0.2 912 ± 0  1461 ± 5 65.8 ± 0.2 921 ± 1 

Mean ± SD* 1453 ± 2 c 83.3 ± 1.2 b 912 ± 2 d  1462 ± 4 66.5 ± 0.2 921 ± 1 

ROO 
(n = 15) 

1455 ± 2 87.1 ± 0.2 913 ± 0  1460 ± 4 72.2 ± 0.2 920 ± 0 
1453 ± 2 86.6 ± 0.2 912 ± 1  Mean ± SD 1461 ± 1 a 67.3 ± 2.9 d 921 ± 1 a 
1454 ± 1 87.0 ± 0.3 913 ± 1  

PNO 
(n = 5) 

1458 ± 5 87.6 ± 0.2 916 ± 1 
1454 ± 4 86.4 ± 0.4 913 ± 0  1457 ± 3 87.5 ± 0.2 916 ± 0 
1455 ± 2 84.7 ± 0.4 913 ± 1  1458 ± 2 86.8 ± 0.2 916 ± 0 
1456 ± 0 85.6 ± 0.3 914 ± 1  1457 ± 4 84.2 ± 0.2 915 ± 0 
1457 ± 3 85.5 ± 0.2 913 ± 1  1458 ± 5 87.6 ± 0.3 915 ± 0 
1454 ± 3 86.1 ± 0.3 913 ± 0  Mean ± SD 1458 ± 1 b 86.7 ± 1.5 a 915 ± 1 b 
1454 ± 2 88.0 ± 0.3 913 ± 0      
1455 ± 1 86.0 ± 0.1 912 ± 0      
1456 ± 4 86.0 ± 0.2 913 ± 0      
1455 ± 3 86.9 ± 0.1 913 ± 0      
1454 ± 2 86.5 ± 0.2 913 ± 1      
1456 ± 4 85.8 ± 0.2 910 ± 0      
1453 ± 2 85.7 ± 0.2 912 ± 0      

Mean ± SD 1455 ± 1 bc 86.3 ± 0.8 a 913 ± 1 cd      
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mPa.s). This may be due to the fact that the majority of bonds in olive oil are single bonds with 
a “zig-zag” configuration, which cause higher viscosities than other bonds (Schaschke et al., 
2006). However, the viscosity of PNO (86.7 ± 1.5 mPa.s) does not significantly differ from 
ROO (86.3 ± 0.8 mPa.s) and POO (86.4 ± 1.4 mPa.s), which is possibly due to the broad 
similarity in composition. 

The density values of EVOO (912 ± 2 kg/m3) differ significantly from those of the other 
three vegetable oils (RSO, SFO and PNO; Table 6.1). These differences are mainly due to 
differences in chemical composition (Kalogianni et al., 2011). Furthermore, a significant 
difference between density values of EVOO (912 ± 2 kg/m3) and POO (915 ± 2 kg/m3) is 
observed, but no significant difference between EVOO (912 ± 2 kg/m3) and ROO (913 ± 1 
kg/m3). It is evident that the density of EVOO is lowest for all olive oils. And this is in 
agreement with the previous study reported that unrefined oils have lower densities than their 
refined counterparts (Sankarappa et al., 2005).  

6.3.4. Correlation of the ultrasonic velocity, viscosity and density of the oils 

In order to explore the correlation of the ultrasonic velocity, viscosity and density in 
vegetable oils, the relationship between velocity data and the viscosity and density data are 
shown in Figure 6.4a and 6.4b, respectively. The EVOO is located in the lower right hand 
corner of the velocity/viscosity plot (Figure 6.4a) and fully separated from the oils of other 
botanical origins (RSO, SFO and PNO). EVOO presents somewhat lower viscosity and velocity 
values than the lower grade olive oils (ROO and POO). Subsequently, the correlation 
coefficient (r) was calculated for the ultrasonic velocity and viscosity. A significant negative 
correlation between the velocity and the viscosity (r = -0.64, p < 0.05) was observed, which is 
in agreement with previous research (Alouache et al., 2016; Alouache et al., 2015).   

 

Figure 6.4. Scatter plots of ultrasonic velocity versus a) viscosity and b) density data of 30 extra virgin olive oils 
(EVOO), 30 other olive oil grade samples (15 refined olive oils (ROO) and 15 pomace oils (POO)) and 20 oils of 
other botanical origins (10 rapeseed oils (RSO), 5 sunflower oils (SFO) and 5 peanut oils (PNO)). 
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Comparing the velocity and density values, it appears that the EVOO is located in the 
lower left side corner of the corresponding plot (Figure 6.4b). EVOO can be discriminated 
from RSO, SFO and PNO using velocity and density values, but EVOO has a slight overlap 
with POO and presents considerable overlap with ROO. A significant positive correlation (r = 
0.75, p < 0.05) between the velocity and density was observed.  

The results above reveal that the intermolecular structure may be responsible for the 
velocity differences. Further exploration of correlation of ultrasonic velocity, viscosity, density 
and intermolecular composition would be useful.  

6.3.5. Fatty acid composition of the oils 

The 80 oils were analysed for their FA compositions, the results of which are listed in 
Table 6.2. The raw data of the FAME analysis are shown in supplementary material (Table S2). 
All 17 FAs showed significant differences (p < 0.05) between the six oil categories, as well as 
for the sum of (un)saturated FAs (SFA, MUFA and PUFA). The three most abundant FAs in 
the six oil categories are C16:0, C18:1n9 and C18:2n6, which account for more than 85% of 
total FAs.  

Table 6.2. Averages and standard deviations of relative fatty acid composition (FA), iodine values (IV) and 
saponification numbers (SN) of six types of edible oils.  

Chemical 
properties 
(g/100g) 

EVOO 
(n = 30) 

ROO 
(n = 15) 

POO 
(n = 15) 

RSO 
(n = 10) 

SFO 
(n = 5) 

PNO 
(n = 5) p value 

C14:0 0.05 ± 0.00 e 0.02 ± 0.00 e 0.02 ± 0.00 d 0.05 ± 0.00 b 0.08 ± 0.05 a 0.03 ± 0.00 c <0.05 
C15:0 0.05 ± 0.00 d 0.05 ± 0.00 d 0.00 ± 0.00 e 0.02 ± 0.00 a 0.02 ± 0.00 b 0.05 ± 0.00 c <0.05 
C16:0 12.64 ± 1.58 a 11.97 ± 1.02 ab 11.60 ± 0.46 b 4.51 ± 0.36 d 6.96 ± 0.71 c 8.48 ± 1.29 c <0.05 
C17:0 0.08 ± 0.04 a 0.08 ± 0.02 a 0.08 ± 0.05 a 0.07 ± 0.05 a 0.04 ± 0.05 b 0.08 ± 0.05 a <0.05 
C18:0 2.63 ± 0.43 b 3.20 ± 0.56 a 2.86 ± 0.21 b 1.56 ± 0.06 c 3.26 ± 0.05 a 2.61 ± 0.55 b <0.05 
C20:0 0.50 ± 0.04 b 0.43 ± 0.04 d 0.47 ± 0.02 c 0.18 ± 0.04 f 0.27 ± 0.06 e 1.56 ± 0.20 a <0.05 
C22:0 0.15 ± 0.02 e 0.14 ± 0.03 e 0.20 ± 0.05 d 0.36 ± 0.05 c 0.76 ± 0.06 b 3.12 ± 0.33 a <0.05 
C24:0 0.05 ± 0.03 e 0.04 ± 0.03 e 0.09 ± 0.00 d 0.12 ± 0.05 c 0.26 ± 0.045 a 2.07 ± 0.17 b <0.05 
SFA 16.07 ± 1.49 ab 15.88 ± 0.70 ab 15.34 ± 0.40 b 6.94 ± 0.39 d 11.64 ± 0.60 c 17.96 ± 1.94 a <0.05 
C16:1n9 0.13 ± 0.09 a 0.12 ± 0.05 a 0.12 ± 0.05 a 0.04 ± 0.00 c 0.03 ± 0.05 d 0.05 ± 0.00 b <0.05 
C16:1n7 0.88 ± 0.32 a 0.99 ± 0.26 a 0.82 ± 0.06 a 0.20 ± 0.05 b 0.16 ± 0.08 bc 0.09 ± 0.02 c <0.05 
C17:1n7 0.14 ± 0.07 a 0.12 ± 0.02 a 0.13 ± 0.02 a 0.06 ± 0.05 b 0.04 ± 0.05 c 0.06 ± 0.05 b <0.05 
C18:1n9 71.68 ± 3.47 a 71.44 ± 2.57 a 69.45 ± 1.06 b 59.92 ± 4.72 c 27.95 ± 2.69 d 62.61 ± 4.35 c <0.05 
C18:1n7 2.01 ± 0.57 c 2.11 ± 0.39 c 2.42 ± 0.17 b 2.68 ± 0.20 a 0.80 ± 0.13 d 0.72 ± 0.11 d <0.05 
C20:1n9 0.36 ± 0.06 b 0.30 ± 0.04 c 0.35 ± 0.02 b 1.36 ± 0.04 a 0.23 ± 0.02 d 1.84 ± 0.42 a <0.05 
C22:1n9 0.00 ± 0.00 c 0.00 ± 0.00 c 0.00 ± 0.00 b 0.20 ± 0.14 a 0.00 ± 0.00 c 0.12 ± 0.13 ab <0.05 
MUFA 75.20 ± 2.80 a 75.07 ± 2.15 a 73.29 ± 1.02 b 64.45 ± 4.67 c 29.20 ± 2.88 d 65.50 ± 4.58 c <0.05 
C18:2n6 7.71 ± 1.72 d 8.26 ± 1.65 d 10.09 ± 0.98 c 18.67 ± 2.34 b 58.56 ± 3.29 a 16.09 ± 3.22 b <0.05 
C18:3n3 0.66 ± 0.05 b 0.58 ± 0.05 c 0.64 ± 0.04 b 9.05 ± 1.20 a 0.18 ± 0.04 d 0.00 ± 0.00 e <0.05 
PUFA 8.38 ± 1.73 e 8.84 ± 1.65 e 10.73 ± 1.01 d 27.72 ± 4.29 b 58.73 ± 3.29 a 16.09 ± 3.22 c <0.05 
IV 
(g I/100g) 83.5 ± 1.5 d 84.1 ± 1.2 d 86.0 ± 1.1 c 116.4 ± 5.5 b 132.8 ± 3.4 a 87.9 ± 2.5 c <0.05 

SN 
(mg KOH/g) 200.2 ± 0.5 a 200.4 ± 0.4 a 199.4 ± 0.3 b 197.3 ± 0.9 c 199.2 ± 0.3 b 196.7 ± 0.3 d <0.05 

The significant differences between oil groups are indicated by superscript letters (a, b, c, d, e, f) in a row (Kruskal-Wallis and Mann-
Whitney U tests, p < 0.05). EVOO, extra virgin olive oil; ROO, refined olive oil; POO, pomace olive oil; RSO, rapeseed oil; SFO, sunflower 
oil; PNO, peanut oil; SFA, sum of saturated fatty acids; MUFA, sum of monounsaturated fatty acids; PUFA, sum of polyunsaturated fatty 
acids. 

In terms of a comparison of EVOO with all other oils, EVOO differed significantly from 
the other three vegetable oils (RSO, SFO and PNO) for 14 out of 17 FAs. Since lower grade 
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olive oils are also extracted from olive fruit, they present smaller differences compared to 
EVOO regarding the FAs composition than compared to other vegetable oils. Nevertheless, 
EVOO differed significantly from the two lower grade olive oils (ROO and POO) for 4 out of 
17 and 10 out of 17 FAs, respectively. Moreover, the three olive oils present significantly higher 
concentrations of MUFA and lower concentrations of PUFA than the other botanical origin oils.  

Since FAs vary in terms of chain length as well as number of double bonds, the values 
of IV and SN were calculated based on FAs data and are presented in Table 6.2. The IV 
expresses the degree of unsaturation (Stavarache et al., 2007). The IVs of EVOO and ROO do 
not differ significantly, but they do differ significantly with those of all other oils. The IVs of 
RSO (116.4 ± 5.5 g I/100g) and SFO (132.8 ± 3.4 g I/100g) are significantly higher than those 
of the other oils (in the range of 81-92 g I/100g), which indicates a higher unsaturation degree 
of those two oils. In contrast, the IV of PNO (87.9 ± 2.5 g I/100g) does not differ significantly 
from the IV of POO (86.0 ± 1.1 g I/100g).  

 

Figure 6.5. Scatter plot of IV (iodine values) versus SN (saponification numbers) data of 30 EVOO (extra virgin 
olive oils), 30 other olive oil grade samples (15 ROO (refined olive oils) and 15 POO (pomace olive oils)) and 20 
oils of other botanical origins (10 RSO (rapeseed oils), 5 SFO (sunflower oils) and 5 PNO (peanut oils)). 

The value of SN is related to the chain length of FAs, a higher SN implies a short carbon 
chain length (Stavarache et al., 2007). No significant differences were determined between the 
SN values of EVOO (200.2 ± 0.5 mg KOH/g) and ROO (200.4 ± 0.4 mg KOH/g), but the SN 
value of POO (199.4 ± 0.3 mg KOH/g) is significantly lower than that of the other two olive 
oils. This result is generally consistent with a previous study (Kreps et al., 2017), which reported 
that high temperature treatment of oils may contribute to polymerisation and formation of long-
chain FAs, and this results in decreased SN values. Another possible reason is that POO 
contains more waxes (long chain FA ester with long chain alcohol, C40-C46) than EVOO as 
mentioned in the IOC standard (IOC, 2016). The SN values of the three olive oils are 
significantly higher (in the range of 198.6-201.3 mg KOH/g) than those of RSO (197.3 ± 0.9 
mg KOH/g) and PNO (196.7 ± 0.3 mg KOH/g), which implies that olive oils contain shorter 
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chain length FAs than RSO and PNO. EVOO can be separated from nearly all other types of 
oil studied here, except ROO, whereas an overlap can be noticed between EVOO and POO at 
a lower extent, based on IV and SN values in Figure 6.5.  

Taken together, these results provide important insights into the FAs characteristics of 
six oil categories. 

6.3.6. Relationships between ultrasonic velocity, viscosity, density and fatty acid composition 

Figure 6.6 presents the correlation between velocity, viscosity and density on the one 
hand and FAs, IV and SN on the other hand. It can be seen that viscosity correlated significantly 
(p < 0.05) with the accumulated saturated and unsaturated FA contents (SFA, MUFA and 
PUFA). The r values of viscosity and PUFA, viscosity and MUFA are -0.87 and 0.78, 
respectively. This is in agreement with studies of Santos et al. (2005), which indicated that the 
viscosity of vegetable oils is more related to the presence of polyunsaturated chains than to 
monounsaturated chains in an oil/fat mixture. Moreover, viscosity readings correlate more 
strongly with C18:1n9 and C18:2n6 (r = 0.79 and -0.78, respectively) than with C16:0 (r = 0.69). 
Results also indicate that the long-chain compounds correlate more strongly with the viscosity. 
In addition, the position of FAs in triacylglycerol may also influence oil viscosity according to 
the previous study (Snouber et al., 2019). It is reported that thermal triggered oxidation induces 
the formation of polar triglyceride oligopolymers, which results in an increase in viscosity.  

 

Figure 6.6. Pearson correlation coefficients for the correlation of the compositions of the oils and their physical 
properties. Orange refers to positive correlation; blue refers to negative correlation. The correlation coefficients in 
each spot, described the strength of the correlation between two variables. The larger the absolute value of 
correlation coefficient, the darker the colour. Correlation coefficients < -0.22 and > +0.22 are significant (Paired 
samples t-test, p < 0.05). 

According to a previous study (Rodenbush et al., 1999), the relationship between 
viscosity (η) and the ratio of IV over SN can be expressed by equation (4): 

log 𝜂𝜂 = (−1.4+ 1.25(IV/SN)) + (500− 375(IV/SN))/((T+ 140)− 85(IV/SN))            ,                (4) 

Where T is the temperature. 

A significant negative correlation (r = -0.93, p < 0.05) between viscosity and IV is 
presented in Figure 6.6, which confirms that a higher unsaturation degree results in a lower 
viscosity (Rodenbush et al., 1999; Santos et al., 2005; Schaschke et al., 2006). The presence of 
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double bonds prevents the same level of intermolecular contact, resulting in an increased 
capability of the fluid to flow (Abramovic & Klofutar, 1998; Schaschke et al., 2006). 
Furthermore, viscosity and SN show a weak but significant positive correlation (r = 0.36, p < 
0.05). This result indicates that the long-chain FAs result in a lower viscosity. However, the 
result is in contradiction with previous studies (Geller & Goodrum, 2000; Rodenbush et al., 
1999). In some studies, scientists worked with pure triglycerides (Eiteman & Goodrum, 1993; 
Geller & Goodrum, 2000). However, natural vegetable oils are complex mixtures of many 
triglycerides with different chain lengths.  

Density correlates significantly (p < 0.05) with three abundant FAs (Figure 6.6). It 
correlates also significantly with the sum of (un)saturated FAs: density/SFA (r = -0.61), 
density/MUFA (r = -0.72) and density/ PUFA (r = 0.78). Generally, the density is expected to 
correlate with both IV and SN (Rodenbush et al., 1999), according to the Lund equation (5): 

sg (15/15°C)  = 0.8475 +  0.00030 SN +  0.00014 IV          ,         (5) 

where sg is the specific gravity of the vegetable oil at 15°C.  

The significant strong positive correlation between density and IV (r = 0.81, p < 0.05; 
Figure 6.6) confirms that density increases with increasing degree of unsaturation. A significant 
negative correlation (r = -0.56, p < 0.05) between density and SN was determined, which means 
that density increases with the decreasing saponification number, as well as with increasing 
chain length of FAs.  

Those results demonstrate that the FA composition plays an important role when it 
comes to the viscosity and density of oils. Moreover, the differences in viscosity and density 
are more strongly related to the unsaturation degree than to the chain length of FAs. According 
to the correlation results in section 3.6, a higher unsaturation degree of oils results in a lower 
viscosity and higher density. Moreover, a higher ultrasonic velocity is related to a lower 
viscosity and a higher density of oils (section 3.4). Consequently, a higher unsaturation degree 
of oils indirectly results in a higher ultrasonic velocity. This is also supported by the significant 
positive correlation between velocity and IV (r = 0.80, p < 0.05; Figure 6.6).  

6.3.7. Prediction of the velocity from the oils’ compositions 

PLS regression was applied to determine the capability of FAs for prediction of the 
ultrasonic velocities. The data were pre-processed involving auto-scaling, mean-centring and 
range-scaling, and models with the three types of pre-processing were compared. The prediction 
capabilities of the three corresponding regression models are presented in Table 6.3.  

In general, a low SEV and high r2 present better prediction ability of a model 
(Fernandez-Cabanas et al., 2011). For these three variants of PLS regression, best prediction 
ability is observed with mean-centring pre-processing, although the prediction ability of the 
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three models varies only to a limited extent. The best model presents an r2 of 0.93 and SEV of 
1.01. This regression model is shown in Figure 6.7. Therefore, this model allows a reasonable 
estimation and an indication of the expected velocity for various vegetable oils from their FA 
compositions.  

Table 6.3. Performance characteristics of PLS regression models predicting the ultrasonic velocity by fatty acid 
compositions of 80 vegetable oil samples with leave-one-out cross validation and different pre-processing methods. 

Pre-processing Factor  SEC R2 SEV r2 
Mean-centring  1 1.00 0.93 1.01 0.93 
Auto-scaling  3 1.01 0.93 1.07 0.92 
Range-scaling  4 1.10 0.92 1.20 0.90 

Factor, optimal factor of each model; SEC, standard error of calibration; R2, correlation coefficient of calibration; SEV, standard 
error of cross-validation; r2, correlation coefficient of cross-validation.   

 

Figure 6.7. Regression plot of viscosity with modelling measured value versus predicted value. Grey, extra virgin 
olive oil; red, refined olive oil; green, pomace olive oil; purple, rapeseed oil; blue, sunflower oil; yellow, peanut 
oil. 

 

6.4. Conclusions and outlook 

This study reveals that the developed ultrasonic measurement system is a rapid and non-
destructive technique which can be applied for the characterisation of vegetable oils. The 
ultrasonic measurements are temperature dependent, and the temperature coefficient of the 
velocity in EVOO is -2.92 m∙s-1∙°C-1. The ultrasonic velocity of EVOO (1453 ± 2 m/s, at 
23.5 °C) differed significantly from POO and other vegetable oils, except for ROO. The 
differences in ultrasonic velocity are primarily due to the level of unsaturation. Prediction of 
the ultrasonic velocity from the FA composition is promising. 

Since the ultrasonic technique is rapid and non-destructive, it is an interesting approach 
to be included in the EVOO characterisation toolbox. In addition, simultaneous measurement 
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of the ultrasonic attenuation and temperature coefficients of vegetable oils can offer further 
valuable information of the ultrasonic properties, which could be another method for the 
characterisation of vegetable oils.  
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7.1. Introduction  

With the globalisation of the food supply system, food fraud can have international 
impacts, sometimes with far-reaching and lethal consequences (Ellis et al., 2012). The extra 
virgin olive oil (EVOO) trade is a global business, while EVOO fraud scandals happened 
frequently all around the world for financial gain. It is reported that half of the bottles that are 
sold as EVOO in Italian supermarkets do not meet the legal requirements for EVOO, while up 
to 80% of EVOO in the US is fake (Whitaker, 2016). To provide insights for prevention and 
mitigation of EVOO fraud, there is a need to understand where the vulnerable points in the 
EVOO supply chain exist and to explore novel, rapid techniques for the authentication of 
EVOO. Therefore, in Chapter 2 we evaluated the fraud vulnerability of actors in the EVOO 
supply chain and their characteristics and identified risk factors contributing to the vulnerability. 
In Chapters 3-6 robust confirmatory and screening analysis methods were developed for the 
assessment of the authenticity of EVOO.  

 

7.2. Vulnerable points in the EVOO supply chain 

In order to investigate the vulnerable points, the fraud vulnerability of the EVOO supply 
chain was assessed in Chapter 2. Moreover, the similarities and differences in fraud 
vulnerability according to group characteristics were evaluated. The overall perception of the 
companies is that the EVOO supply chain is highly vulnerable to fraud. Eleven risk factors 
contributed most to this vulnerability (orange + red > 80% in Figure 7.1). These high-risk 
factors included five factors related to technical opportunities, three factors related to economic 
drivers, one factor related to technical control measures and two factors related to managerial 
control measures.  

It is striking that all technical opportunities were rated as high risk. For other products, 
lower risk scores were determined for these kinds of opportunities previously, e.g. for spices 
(Silvis et al., 2017) and milk (Yang et al., 2019) supply chains. Moreover, 3 out of 11 factors 
associated with economic drivers were rated as high vulnerability. A similar level of 
vulnerability was found for spices previously (Silvis et al., 2017). The prices of EVOO vary 
considerably, which may be due to the fact that EVOO is a seasonal product and the quality is 
affected by multiple factors, such as climate and harvesting (Food Standards Agency, 2016; 
IOC, 2018; Santini et al., 2018). In the past decade, the prices of EVOO surged frequently due 
to disease, drought and frost effecting olive trees in Italy and Spain (Butler, 2015; Macdonald, 
2017; Terazono, 2019). EVOO also has special properties, because the value of EVOO is 
largely determined by its processing method, country of origin, concentration of antioxidants 
and special organoleptic properties (Kalogeras et al., 2009). Furthermore, the level of 
competition across the EVOO supply chain is high, which in turn could trigger food fraud as 
mentioned by Manning (2016). This finding is also in agreement with the study of Santini et al. 
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(2018), who reported that growing competition has appeared in the EVOO sector. In this group 
of prime drivers and enablers, both opportunity and motivation related fraud factors are 
included, which is a toxic combination because it implies that there is a suitable target as well 
as a likely offender at hand. The combination in the absence of a capable guardian is the perfect 
recipe for fraud according to the conceptual framework of van Ruth et al. (2017), which is based 
on the criminological Routine Activities Theory (Cohen & Felson, 1979). Therefore, the 
availability of accurate control measures will be key to mitigate fraud in this supply chain. 

 

Figure 7.1. Relative medium-high vulnerability frequencies of the answers of 28 interviewees for 11 high 
vulnerability (orange + red > 80%) factors in the extra virgin olive oil supply chain (SSAFE Food fraud 
vulnerability assessment tool). O refers to opportunities; M refers to motivations; C refers to control measures; 
numbers next to capital letters refer to the question number in the questionnaire.  

Regarding control measures, three factors are rated high vulnerability. This concerned 
the lack of a well-established fraud control system by suppliers, which is related to the technical 
control measures and two managerial control measures. With regard to the managerial measures, 
most of the respondents mentioned that the guidance for fraud prevention is lacking across the 
supply chain and fraud related enforcement practices are lacking at most stages across the 
international supply chain. This is a similar result as previously found for spices (Silvis et al., 
2017). On the contrary, these two factors appear to contribute less to fraud vulnerability in the 
Dutch milk supply chain (Yang et al., 2019). Considering the vulnerabilities and limited control 
measures in place, mitigation should receive more attention.  
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Figure 7.2. Radar plot of the medium & high vulnerability frequencies of answers for the six categories of the 
fraud vulnerability assessments for a) four tier groups (OO producers, B2B companies, food manufacturers and 
retailers); b) three groups presenting businesses of different scales (small, medium and large); c) two location 
groups (the Netherlands and Mediterranean countries). B2B refers to business-to-business; OO refers to olive oil. 

Company characteristics appear to affect fraud vulnerability. The effects of the 
position/role in the chain, the scale of the company and its location are presented in Figure 7.2. 
The latter shows the medium+high vulnerability frequencies of answers to the six fraud factor 
categories for the various groups. In Figure 7.2a, retailers and business-to-business (B2B) 
companies show similar fraud vulnerability patterns, and they appear more vulnerable to fraud 
than the other two tier groups. Specifically, the significant differences between these tier groups 
are found in the opportunities in time and place, technical controls and managerial controls. 
This is in line with results in five supply chains, in which the wholesaler/trader group was also 
the most vulnerable one (van Ruth et al., 2018). Large companies appear more vulnerable to 
fraud than small and medium scale companies due to the more extensive opportunities in time 
and place, cultural and behavioural drivers, as well as greatest lack of control measures (Figure 
7.2b). This is somewhat surprising, since large companies may have more resources to 
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implement a fraud mitigation plan than small and medium companies (Silvis et al., 2017). A 
possible reason is that small and medium companies are primarily producers and food 
manufacturers, and interviewees from these companies are overconfident about themselves. 
The larger companies appear later in the chain. While this interaction might lead to bias. 
Furthermore, Dutch companies seem more vulnerable than their Mediterranean counterparts, 
which is primarily due to the increased opportunities in time and place, as well as lack of control 
measures (Figure 7.2c). These aspects may be due again to intertwinement of location and 
position/role in the chain causing bias, since the Dutch companies are primarily retailers and 
B2B companies. They are obviously not olive growers. Taken together, it is evident that both 
the scale and location of the companies in the supply chain affected the vulnerability of the tier 
groups. Moreover, it appears that the companies that are the intermediaries (retailers and B2B 
companies) between producers and customers are more vulnerable to fraud.  

 

7.3. Evaluation of the new fraud detection methods 

Although fraud detection will not prevent fraud, fraud detection is an inseparable part 
of fraud mitigation (van Ruth & Granato, 2017), which means that advanced detection methods 
will limit the impact of fraud. In this thesis, four novel fraud detection methods were developed 
for the authentication of EVOO (Chapters 3-6). In order to assess these four techniques, twelve 
indicators were selected as evaluation criteria. These indicators can be divided into three main 
groups, including technical evaluation (analytical parameters, screening or confirmation test, 
targeted or non-targeted method, sample preparation, sample analysis time, destructive or non-
destructive nature of the technique and maturation stage) (McGrath et al., 2018), performance 
evaluation (discriminatory power) (Malegori et al., 2017) and application evaluation (lab or 
field test, price of the instrument, ease of validation and ease to be circumvented by fraudsters) 
(Rambla-Alegre et al., 2012). Table 7.1 shows the comparison of the four novel fraud detection 
techniques for the discrimination of EVOO from lower grade olive oils according to the 
evaluation of these twelve indicators.  The differences are discussed for each indicator below. 

7.3.1. Technical evaluation 

Analytical parameters. The four techniques focus on different features, which include 
chemical properties, physical properties and other data derived from a combination of both.  

The first set of parameters concern the group of 2-/3-monochloropropanediol (2-/3-
MCPD) esters and glycidyl esters (GEs) which are food processing contaminants most 
commonly occurring in preliminary heat treatment and the refining process of foods (Baer et 
al., 2010). Since these compounds are formed during the deodorisation step of oils, it seemed 
an interesting group of markers to detect the presence of refined oil (Chapter 3). AOCS 
released an official method to detect those processing derived contaminants using gas 
chromatography-mass spectrometry (GC-MS) (AOCS, 2013). GC coupled to tandem mass 
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spectrometry (MS/MS) was used to conduct the measurement in the present study instead of 
GC-MS, since it can improve the sensitivity of the method.  

The second parameter chosen was the group of volatile organic compounds (VOCs). 
EVOO retains its characteristic aroma (Vichi, 2010) due to the mechanical processing. Non-
EVOO grade oils have less and different aromas than EVOO (Fullana et al., 2004). Therefore, 
VOCs seemed an interesting marker group. A GC-MS set-up is commonly used to separate, 
qualify, and/or quantify relatively volatile compounds of olive oils (Perestrelo et al., 2017; 
Romero et al., 2015). Proton transfer reaction-quadrupole ion guide time of flight-mass 
spectrometer (PTR-QiToF-MS) is a technique that measures volatiles by their masses very 
rapidly in the headspace of food products, and it was selected as a suitable technique for the 
quantitative characterisation of the olive oil VOCs (Chapter 4).  

Many developments in the area of rapid, non-destructive and on-site measurement 
technology have been seen in the infrared spectroscopy area. Near infrared spectroscopy (NIR)  
is based on the absorption of electromagnetic radiation and has shown its value in the 
discrimination of vegetable oils (Casale & Simonetti, 2014). Handheld NIR has been widely 
adopted due to its small size, cost-effectiveness, exceptional performance and ease of use (Viavi, 
2015). Considering its rapid nature and the potential laymen use of the portable variants of the 
technique, handheld NIR was examined for its potential to discriminate EVOOs from other 
grade olive oils (Chapter 5).  

In this study, a very new approach based on ultrasonic measurements was developed 
too. Measurements of ultrasonic velocity have been employed for quality assessments of oils, 
often as a measure calibrated against reference methods (Alouache et al., 2015; Alouache et al., 
2018). However, it had not been used for authentication purposes. Therefore, an ultrasonic 
pulse-echo system was developed and examined for its capabilities to distinguish EVOO from 
other oils (Chapter 6).  

Screening or confirmatory test. The MCPD esters analysis is a confirmatory test and 
is based on the measurement of the concentrations of processing contaminants, which should 
be (nearly) absent in EVOO. GC-MS/MS was utilised to conduct quantitative analysis of these 
processing contaminants (Chapter 3). On the other hand, the other three methods (VOCs 
analysis by PTR-QiToF-MS, spectral analysis by handheld NIR and ultrasonic velocity analysis 
using a pulse-echo system analysis) are screening tests, which generates a full mass spectrum 
(Chapter 4), a full spectrum (Chapter 5) and a monopolar electrical pulse signal (Chapter 6), 
respectively.  
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Targeted (single markers) or non-targeted (fingerprinting) method. Traditional 
strategies for food fraud identification mainly focus on the determination of the amount of 
marker(s) (Ahad & Nissar, 2017). It can be noticed that the first and the fourth methods 
(Chapter 3 and 6) focused on the detection of single features, i.e. 2-MCPD esters, 3-MCPD 
esters, GEs (Chapter 3) and ultrasonic velocity (Chapter 6). In addition, the non-targeted 
fingerprinting approach has been developed and evaluated for food analysis based on the 
measurement and the evaluation of a large number of compounds at once. Since these 
‘composite’ fingerprints contain relevant information on features of the authentic products and 
sometimes also the adulterants in the foodstuff. Due to its complexity, this information is 
extracted with chemometric methods (Ellis et al., 2012). In this thesis, the non-targeted 
fingerprinting approach was applied for the discrimination of EVOO from its lower grade 
counterparts with the second and third methods (Chapter 4 and 5). Furthermore, non-targeted 
fingerprinting approaches are more likely to provide rapid and high-throughput analysis, since 
they are able to reliably identify those that are potentially non-compliant in large numbers of 
samples before confirmatory methods are performed (Ahad & Nissar, 2017).  

Sample preparation. In terms of the sample pre-treatment prior to analysis, the four 
methods differ considerably. Working according to the official AOCS method, laborious 
sample pre-treatment using chemical reagents is needed. In particular, samples need to be 
incubated at 40°C for 16 h prior to analysis (AOCS, 2013). Generally, this procedure is complex, 
time consuming and less environmentally friendly (Chapter 3). There is no considerable 
sample preparation for the other three methods. The headspace air of the sample is equilibrated 
for 30 min at 30 °C in a water bath prior to the VOCs analysis by PTR-QiToF-MS (Chapter 
4), but this can be carried out while other samples are running. In relation to the spectral analysis 
by handheld NIR (Chapter 5) and ultrasonic velocity analysis with the pulse-echo system 
analysis (Chapter 6), samples can be analysed directly without any sample preparation.  

Sample analysis time. For the first method (Chapter 3), it takes more than 30 min per 
sample for separating and analysing the particular contaminants by GC-MS/MS (Yan et al., 
2018). The time required to characterise a single sample with PTR-QiToF-MS is only about 1 
min per sample (Chapter 4). With regard to the spectral analysis and ultrasonic velocity 
analysis (Chapter 5-6), the typical measurement time for one sample is less than 30 s (Yan et 
al., 2019a; Yan et al., 2019b). In terms of the total analysis time (including sample preparation 
and sample analysis), the spectral analysis by handheld NIR is the fastest method (no sample 
preparation and less than 1 s analysis time per sample), followed by ultrasonic pulse-echo 
system (no sample preparation and ~30 s per sample), PTR-QiToF-MS (30 min sample 
preparation and ~30 s analysis time per sample) and GC-MS/MS (> 1 day sample preparation 
and > 30 min analysis time per sample). Therefore, handheld NIR and the ultrasonic pulse-echo 
system would be the best choice if rapid analysis without any sample preparation is needed and 
when considering sample preparation and analysis time only.  
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Destructive or non-destructive nature of the method. In the MCPD esters analysis 
(AOCS, 2013), samples are destroyed by the chemical solvents for the extraction of the 
processing contaminants of interest (Chapter 3). With regard to the other three techniques 
(Chapter 4-6), no chemicals are applied and samples are not destroyed, which means those 
samples can be recycled. Those results also indicate that the MCPD esters analysis is less 
environmentally friendly as it involves the usage of chemicals, such as n-heptane and methanol.  

Maturation stage. For the first technique, the MCPD esters analysis by GC-MS/MS is 
considered a matured method (Chapter 3). MCPD esters have been well known as food 
processing contaminants since 1978 (Weißhaar, 2008). They are present in many foodstuffs 
like vegetable oils, acid-hydrolysed vegetable protein, soy sauces, crackers, bread, toast as well 
as other bakery products and soups (Hamlet et al., 2002). Due to its broad spread across foods 
and its health concerns, analysis of MCPD esters has been standardised. For instance, the AOCS 
has released an official method for the measurement of these processing contaminants in edible 
oils using GC-MS (AOCS, 2013).  

PTR-MS technology was introduced for on-line measurements of trace components at 
ppb levels about 25 years ago (Hansel et al., 1995; Lagg et al., 1994). It has been proven to be 
a highly sensitive and efficient method to detect most of the VOCs (Lindinger et al., 1998). 
About ten years ago, the PTR-(Qi)ToF-MS variant was launched and applied for on-line breath 
analysis in 2009 (Herbig et al., 2009). After this application, this technique was applied to many 
food analyses (Fabris et al., 2010; Marone et al., 2017; Sabbatini et al., 2018; Schuhfried et al., 
2016; Taiti et al., 2015; Yener et al., 2014). Although the PTR-MS technology has been widely 
applied by scholars and the food industries, no standardised methods exist. Therefore, we 
consider this technique to be at a developing stage (Chapter 4).  

NIR has received particular attention due to the pioneering work of Norris (1965), who 
is the founder of modern NIR analysis. Moreover, the on/in-line NIR instrumentation has a 
proven record of 40 years for food analysis due to the robustness and simplicity of 
instrumentation, as well as its highly precise and efficient nature (Ellis et al., 2012; Osborne, 
2006). With the increasing miniaturisation and affordability of NIR instruments, the MicroNIR 
(Viavi, 2013), SCIO (Consumer Physics, 2017) and Telspec (Tellspec Inc., 2015) surfaced on 
the market. These devices can be applied in the field, at the farm, or anywhere throughout the 
supply chain. They have been successfully applied in food analysis with high accuracy (Correia 
et al., 2018; Grassi et al., 2018; Liu et al., 2018; O'Brien et al., 2013; Ribeiro et al., 2016; Sun 
et al., 2016). Despite these scientific applications, there are very few fully, formally validated 
and no standardised procedures exist for these portables yet. Hardware is also still developing 
rapidly. Therefore, this technique is considered to be at a developing stage (Chapter 5).  

The ultrasonic behaviour of edible oils was first reported in 1985. The correlation 
between ultrasonic properties and rheology was investigated (Gladwell et al., 1985). Some 
applications for fat quality assessments have been developed as well. However, the technology 
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had not been applied for authentication purposes. Currently, the technique is still in its infancy 
for these kind of application (Chapter 6). It is believed that further applications of this approach 
in food analysis will be developed in the future.  

Thus, the MCPD esters analysis by GC-MS/MS is best established, followed by the 
VOCs analysis by PTR-QiToF-MS and spectral analysis by handheld NIR. The most novel 
technique and least established is the ultrasonic velocity analysis with the pulse-echo system. 

7.3.2. Performance evaluation 

Discriminatory power. The MCPD esters analysis by GC-MS/MS showed good 
repeatability and linearity (Chapter 3). Moreover, the results predicted a good discrimination 
performance, which is that refined olive oil (ROO) and pomace olive oil (POO) admixtures to 
EVOO are detectable at 2% w/w levels based on 3-MCPD esters, at 5% based on 2-MCPD 
esters and at 13% (ROO) and 14% (POO) based on GEs.  

With regard to the VOCs analysis, the fingerprinting approach combined with 
chemometrics showed good discrimination performance (Chapter 4). POO was efficiently 
discriminated from EVOO, however, the identity of 9% of the ROO samples was predicted 
incorrectly. The good discriminatory power of PTR-QiToF-MS observed in the current research 
is in keeping with the result of Taiti and Marone (2017). These scientists reported a study in 
which EVOO PTR-ToF-MS data were correlated with panel test results. The instrument seemed 
to show similar specificity as the sensory panel. 

 The spectral analysis by handheld NIR also presented high discrimination performance 
(Chapter 5). POO samples were fully discriminated from EVOO, but for 12% of the ROO 
samples, the identity was predicted incorrectly. This finding is consistent with that of Yang and 
Irudayaraj (2001) who found that POO could be 100% discriminated from EVOO by benchtop 
NIR. It also indicates that this miniature device may be an alternative to the conventional NIR 
for this application.  

The performance of the fourth technique is still relatively weak (Chapter 6). The 
ultrasonic velocity of EVOO samples differed significantly from those of other botanical 
vegetable oils and POO samples, but not from ROO samples. However, the application of this 
technique for authentication is at an early stage. Additional work may improve its 
discriminatory power. For instance, the investigation of ultrasonic attenuation as an additional 
authentication parameter (Ju et al., 2010). Considering the discriminatory power of these four 
techniques, the MCPD esters analysis by GC-MS/MS presented the best discriminatory power, 
followed by the VOCs analysis by PTR-QiToF-MS, the spectral analysis by handheld NIR and 
the ultrasonic velocity analysis by pulse-echo system. For the latter three methods, it was 
consistently the ROO samples that caused difficulties.  
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7.3.3. Application evaluation 

Lab or field test. The GC-MS/MS and PTR-QiToF-MS can only be used in the lab due 
to their large size and the critical experimental conditions. In order to allow for industrial 
applications, large, stationary analytical instruments need to be transformed into lightweight 
tools (Crocombe, 2004). The handheld NIR device is already at that stage. In terms of the pulse-
echo system, the size of the sample platform is 80 × 100 × 200 mm (Chapter 6). The 
oscilloscope (Tektronix TDS 210) is only 120 mm from front to back and weighs 1.5 kg, which 
allows for portability. Furthermore, the size of the pulse generator (Panametrics-NDT Model 
5800) is 419 × 88.9 × 315 mm and the weight is 6 kg (Olympus NDT, 2008). However, much 
smaller ultrasonic systems are available. Therefore, the pulse-echo system could also be applied 
for field tests. Considering the scope of the application, the handheld NIR and ultrasonic pulse 
echo system could be more widely applied than GC-MS/MS and PTR-QiToF-MS, since the 
first two devices can be utilised anywhere along the supply chain.  

Price of the instrument. The price is an important aspect for companies and authorities 
when considering the purchase of an analytical instrument. To meet all companies’ requirement, 
an important development on the analytical equipment is the reduction in the manufacturing 
costs and subsequent market prices. The price of the two laboratory devices is more than € 
50,000. While the price of the other two devices is significantly lower than the two laboratory 
equipment, i.e. less than € 5,000. Since the high price of GC-MS/MS and PTR-QiToF-MS is 
beyond the affordability of small food companies, these devices are more likely to be applied 
by large companies and large research centres. Handheld NIR and the ultrasonic pulse echo 
system are affordable for nearly all companies. In terms of the price, handheld NIR and 
ultrasonic pulse echo system could be more widely applied by any types of companies than the 
laboratory-based devices (GC-MS/MS and PTR-QiToF-MS). Obviously, when considering 
finances, not only the purchase of the equipment but also the running costs and labour must be 
considered. 

Ease of validation. For routine analysis, analytical procedures must be validated to 
make it legally incontestable (Riedl et al., 2015). To conduct a validation, the analytical 
requirement will be described and the performance capability will be evaluated (Khodabocus 
& Balgobin, 2011). With regard to the classical targeted analysis, some official routine 
strategies for the validation of the method are available (Commission of the European 
communities, 2002; European Commission, 2015; ISO, 2017). Methods can be easily validated 
and accredited for official use due to the standardised procedures for validation of single feature 
methods. Therefore, the MCPD esters analysis by GC-MS/MS and the ultrasonic velocity 
analysis by pulse-echo system are easily validated. 

On the other hand, there are no equal guidelines for methods of validation concerning 
non-targeted fingerprinting methods. Researchers (Alewijn et al., 2016; Riedl et al., 2015) 
proposed practical guidance documents for the validation of non-targeted fingerprinting 
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approaches. However, there is still a lot of debate over which performance characteristics would 
need to be considered. Therefore, it would not be easy to sufficiently validate these methods for 
official use. This holds for the VOCs analysis by PTR-QiToF-MS and the spectral analysis by 
handheld NIR.  

Ease to be circumvented by fraudsters. The four analysis methods are not easy to be 
circumvented by fraudsters. Considering the 3-MCPD esters analysis, the refining process will 
trigger the formation of these processing derived contaminants (Hrncirik & van Duijn, 2011; 
Smidrkal et al., 2016; Weisshaar & Perz, 2010). Weißhaar (2008) reported that no or only a 
small amount of 3-MCPD esters can be detected in unrefined oils, but concentrations of 3-
MCPD esters in nearly all refined oils are in the range of 0.2-20 mg/kg. Nowadays, many 
research papers reported that the improved refining technology is able to mitigate the formation 
of 3-MCPD and glycidyl esters, such as water degumming instead of dry degumming 
(Zulkurnain et al., 2013), alkali neutralisation by adding sodium carbonate or sodium 
bicarbonate (Freudenstein et al., 2013), wet bleaching followed by use of magnesium silicate 
(Zulkurnain et al., 2013), double deodorisation (Shimizu et al., 2013), addition of various 
antioxidants (Cheng et al., 2017), or use of lower deodorisation temperatures (Gallina-Toschi, 
2018; Matthäus & Pudel, 2013), but it cannot completely eliminate these contaminants. 
Furthermore, most of the mitigation strategies are reported by academic and research 
organisations. It is unknown to what degree the industry implements these strategies. After the 
mitigation methods are successfully operated in laboratories, a scale-up of research and 
operation costs are required to implement the mitigation strategies in production plants (Oey et 
al., 2019). In our studies, these contaminants were found in all refined olive oils analysed above 
the EVOO levels so far. Thus, currently the detection method in practice appears to be not easily 
circumvented by fraudsters.  

The VOCs analysis by PTR-QiToF-MS and the spectral analysis by handheld NIR are 
both fingerprinting methods, which means that a full (mass) spectrum is used in the analytical 
method. Therefore, the combination of complex data and advanced statistical modelling 
techniques makes it difficult for a fraudster to catch up with the method (van Ruth & Granato, 
2017).  

With regard to the ultrasonic velocity analysis by the pulse-echo system, it is a newly 
developed method for vegetable oil characterisation and has a complex mechanism since it is 
related to physical and chemical properties. Therefore, this methodology is also difficult to be 
circumvented by fraudsters. Therefore, all four detection techniques are fairly resistant in terms 
of potential fraudster manipulation.  

In summary, each method has its own intrinsic strengths and weaknesses: 

1) In regard to the technical evaluation, the four methods rank as follows from high to 
low: (1a) the VOCs analysis by PTR-QiToF-MS, (1b) the spectral analysis by 
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handheld NIR and (1c) the ultrasonic velocity analysis using the pulse echo system; 
(2) the MCPD esters analysis by GC-MS/MS. 

2) Regarding performance, the ranking of the methods is as follows from high to low: 
(1) the MCPD esters analysis by GC-MS/MS; (2a) the VOCs analysis by PTR-
QiToF-MS and (2b) the spectral analysis by handheld NIR and (3) the ultrasonic 
velocity analysis using the pulse echo system. 

3) The ranking of the methods according to their application evaluation is: (1a) the 
spectral analysis by handheld NIR and (1b) the ultrasonic velocity analysis using 
the pulse echo; (2a) the VOCs analysis by PTR-QiToF-MS and (2b) the MCPD 
esters analysis by GC-MS/MS. 

Therefore, the selection of the suitable method for any situation is based on the intended 
purpose.  

 

7.4. Practical implications 

In order to prevent and mitigate frauds, the following pipeline is proposed: (1) an initial 
search for the weak spots by an assessment of the fraud vulnerabilities, (2) on site screening 
and (3) subsequent more elaborative screening and confirmatory tests in a laboratory setting 
(Figure 7.3). The four stages are detailed below. 

1) Fraud vulnerability assessments. Food companies can use any of the available food 
fraud vulnerability assessment tools to conduct a self-assessment and assess their vulnerability 
to fraud. A low fraud vulnerability would require low levels of mitigation. However, if the 
company appears vulnerable, mitigation is recommended. This mitigation can include fraud 
monitoring in raw materials and final products.  

2) On-site rapid screening. Rapid screening methods (e.g. handheld NIR analysis, 
Chapter 5) could be employed as a front-line testing method to ensure the quality and 
authenticity of commercial EVOO since the analysis can be conducted on-site, is non-
destructive and rapid. B2B companies (distributors and wholesalers), retailers (supermarkets 
and groceries) and law enforcers, who want a cost efficient device, can employ this technique 
(Figure 7.4). If the analysis results shed doubt on the identity of the sample, it is time to send 
it to the laboratory. 
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3) Laboratory-based rapid broad anomaly screening. After the on-site screening, 
there are two ways to go if we consider the developments in this thesis. The ultrasonic velocity 
analysis using a pulse echo system mentioned above as potential on-site method (Yan et al., 
2019b) could also be applied as a laboratory method for rapid discrimination of EVOO from 
other botanical origin vegetable oils. Another rapid option is VOCs analysis by PTR-QiToF-
MS. Due to the high price of PTR-QiToF-MS, only large-scale food companies and advanced 
laboratories, can afford this kind of device (Figure 7.4). One could also skip the second 
screening and progress with the confirmatory analysis.  

4) Laboratory-based confirmation. For confirmatory analysis, the MCPD esters 
analysis by GC-MS/MS can be applied. However, the 3-MCPD analysis is a tedious and time-
consuming method (Table 7.1) and also requires advanced equipment. On the other hand, it 
performs very well and has a low detection limit. Therefore, this method could be considered 
as the final step to confirm the authenticity of commercial EVOO. Due to the high price of GC-
MS/MS and the tedious sample preparation of this method, this technique can only be applied 
by large scale food companies and advanced laboratories (Figure 7.4).  

 

Figure 7.4. The application of the advanced fraud detection techniques by food companies of different scales. GC-
MS/MS, gas chromatography-tandem mass spectrometry; LC-MS, liquid chromatography-mass spectrometry; 
NIR, near-infrared spectroscopy; PTR-QiToF-MS, proton transfer reaction-quadrupole ion guide time of flight-
mass spectrometry. 

The purpose of the proposed pipeline is to improve food quality control, reduce costs 
and make better and faster decisions. To achieve this goal, on-site screening, followed by 
laboratory-based broad anomaly testing combined with a multivariate statistics approach is 
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proposed. Then, a selection of samples will only be analysed in the laboratory for a reliable, 
validated and possibly accredited confirmation.  

 

7.5. General conclusions  

The overall objective of this thesis is to develop strategies to combat fraud in the EVOO 
supply chains through knowledge about weak spots and underlying risk factors and the 
development of novel detection methods. The weakest points in the EVOO supply chain are, 
according to the present study, the companies in the middle and end of the supply chain (B2B 
companies and retailers) due to the higher number of opportunities to commit fraud, as well as 
greatest lack of food fraud control measures. In addition, both the scale and location of the 
companies in the supply chain affect the fraud vulnerability of olive oil supply chain actors.  

In the current study, four new methods were developed, which cover a wide range of 
points of use and differ in maturation stage. Each method has its own strengths and weaknesses. 
More specifically, the MCPD esters analysis by GC-MS/MS is a confirmatory lab-based 
method that presented the highest discriminatory power, but it is time consuming and is not an 
eco-friendly method. The VOCs analysis by PTR-QiToF-MS is a rapid, non-destructive, lab-
based screening method and is eco-friendly, but the instrument is fairly expensive. The spectral 
analysis by handheld NIR could be utilised in field tests for rapid and non-destructive analysis, 
but it presents a slightly poorer performance than the MCPD esters analysis. The newly 
developed ultrasonic pulse-echo system presents a new idea to discriminate EVOO from other 
oils based on the sound properties of oils. Although it could discriminate EVOO from most 
other oils, it showed a poor discrimination between EVOO and ROO. ROO appeared also the 
most challenging sample group for the other methods. Taken together, each method has its own 
characteristics, therefore, the selection of the most suitable method for any situation needs to 
be based on the intended purpose. There is no one size fits all. The newly developed methods 
could be implemented in particular at the weak spots identified in the current thesis.   

 

7.6. Research limitations and recommendations 

There are three limitations in this study that could be addressed in future research. 
Firstly, the variety of samples studied has introduced some bias. Samples in this study are all 
from European countries, whereas non-Europe olive oils were not considered. Indeed, the main 
purpose of this study was intended to provide a fraud prevention strategy based on the European 
olive oil market. However, due to the expansion and globalisation of the olive oil market, it is 
important to take non-European olive oil production into account as well. In future research the 
sample set needs to be expanded in general to include more samples from each source. The 
second limitation is related to the adulterated samples, all methods were applied successfully to 
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differentiate EVOO from its lower grade counterparts with relatively high sensitivity, 
specificity and accuracy. However, mixtures of olive oils have not been considered in this study, 
which needs to be further investigated, since most frauds in practice are admixtures rather than 
full replacements. The third limitation is the lack of full validation of the methods developed. 
In this study, the calibration or evaluation of bias and precision using reference standards or 
reference materials have been conducted. However, the evaluation of some other performance 
characteristics has not been considered yet. This concerns e.g. a systematic assessment of the 
factors influencing the result, interlaboratory comparisons and the evaluation of measurement 
uncertainty of the results based on an understanding of the theoretical principles of the method 
and practical experience of the performance of the sampling or test method (ISO, 2017). 
Similarly, the validation of the fingerprint methodology could be extended. Therefore, in order 
to apply these techniques in practice, a full method validation should be performed to provide 
evidence that methods are fit for the intended purpose in practice.  
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Food fraud is a crime, an intentional act for economic gain. Extra virgin olive oil (EVOO) 
is considered one of the most frequently reported commodities, suffering from fraud. 
Knowledge about risk factors and precise laboratory and broad on-site screening methods will 
help to combat fraud in the EVOO supply chain network. The main objective of this thesis is 
to develop strategies to combat fraud in the EVOO supply chains through knowledge about 
weak spots in the supply chain and underlying risk factors and the development of novel 
detection methods. To achieve these goals, firstly, the EVOO supply chain was assessed for 
their vulnerability using the SSAFE food fraud vulnerability assessment tool (Chapter 2). 
These assessments indicate that the EVOO supply chain is fairly vulnerable. B2B companies 
and retailers in the EVOO supply chain are more vulnerable to fraud than olive oil producers 
and food manufacturers due to the additional vulnerability related to opportunities in time and 
place and a lack of control measures. Fraud vulnerability across the EVOO supply chain was 
not only determined by the place of the actor in the chain (node), but also by the scale and 
location of the companies.  

Four novel methods were developed in this thesis for EVOO authentication. 
Monochloropropanediol (MCPD) esters and glycidyl esters (GEs) analysis by gas 
chromatography-tandem mass spectrometry (GC-MS/MS) was applied to defect EVOO 
adulteration with lower grade oils (Chapter 3). The limit of fraud detection of lower grade 
olive oils in EVOO was 2% when using 3-MCPD esters, 5% for 2-MCPD esters and 13–14% 
for GEs. These results imply that the method is fairly useful for confirmatory analysis. However, 
3-MCPD analysis by GC-MS/MS is currently a tedious and time-consuming method, it is not 
recommended to use this method to analyse a large number of suspect samples when a quick 
response is required. In addition, three rapid and non-destructive techniques were developed. 
The volatile organic compounds (VOCs) fingerprint analysis by proton transfer reaction-
quadrupole ion guide time of flight-mass spectrometry in combination with multivariate 
statistics proved to be a promising screening methodology for the distinction of EVOO from its 
lower grade counterparts, as well as from other vegetable oils that are potential adulterants 
(Chapter 4). In the one class classification evaluation, the k-nearest neighbours model 
presented the best results, which showed that more than 95% of oil samples were correctly 
predicted. For this most successful model, formic acid, dimethyl sulphide and hexenal are key 
compounds for the distinction of EVOO from the other oils. Except for the VOCs analysis, the 
spectral analysis by handheld near infrared spectroscopy combined with multivariate statistics 
also proved to be good methodology to discriminate EVOO from its lower grade counterparts 
(Chapter 5). The EVOO samples were 100% correctly identified. Pomace olive oil (POO) was 
efficiently discriminated from EVOO, but 7% of the refined olive oil samples were predicted 
incorrectly. Furthermore, it was found that the relevant spectral information for the distinction 
of the oils strongly correlated with the degree of unsaturation of the oils as well as their levels 
of chlorophylls, carotenoids and moisture. In addition, a newly developed ultrasonic pulse echo 
system appeared to be a rapid and non-destructive method for the characterisation of vegetable 

166   |   Summary



 
 

 
 

oils (Chapter 6). The ultrasonic velocity of EVOO differed significantly from those of POO 
and the oils of other botanical origin, but not from the velocity of refined olive oil. Furthermore, 
it was found that the underlying reason for the ultrasonic velocity differences between oils was 
the variation of the density and viscosity of the oils.   

In conclusion, this thesis shows that the intermediaries between producers and 
consumers are more vulnerable to fraud due to the opportunities to commit fraud, as well as the 
greatest lack of adequate food fraud control measures. The results of this thesis also show that 
the newly developed methods cannot easily to be circumvented by fraudsters and they can be 
effectively applied for the distinction of EVOO from lower grade counterparts and some 
vegetable oils. The insights in the weak spots in the EVOO supply chain network in 
combination with the newly developed fraud methods add to and reinforce the strategies to 
combat fraud in the EVOO supply chain. This all will help to ensure that consumers get what 
they are paying for and to fight unfair competition.  
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Propositions  

 

1. Fraud vulnerability assessments and fraud detection methods ensure food authenticity and 
identify food fraud.  

(this thesis) 

2. Novel fraud detection methods enhance the probability of fraudsters being caught.  

(this thesis)  

3. Food fraud becomes food crime when public safety is threatened.  

4. A fraudster could be anyone around you.  

5. Broaden your view, you will find a new world. 

6. Stay curious and objective, you may end up as a scientist. 
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