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Summary 

WFSR aims to develop a multivariate method based on instrumental analytical data that can support 
the origin claims of banana shipments. Such a method can reduce the possibilities for economically 
motivated fraud with these fruits. Regional variations like weather, soil characteristics and other 
influential factors, that will also change over time, are likely to influence the composition of these 
products subtly. If so, it could be possible to link product properties, i.e. banana composition to be 
analysed upon arrival, to searchable facts on the production location, such as soil profile and weather/ 
climate data. If these production location characteristics have a causal and predictive effect on the 
product properties, it will be possible to predict, and verify, the origin for all bananas being imported.  
 
This report deals with the process of gathering, collating and processing the data from various 
sources, and the creation of predictive models related to origin of the product. 
 
Soil and weather data were obtained from sources at WUR Soil Geography and Landscape, KNMI and 
SoilGrids.org. Analytical data were generated on bananas obtained from a set of 14 selected farms in 
Costa Rica and consisted of volatile profiles (proton transfer reaction mass spectroscopy), infrared 
spectroscopy, carotenoid profiles and element composition in peel and pulp.  
 
These data were cleaned and collated and explored using univariate and multivariate techniques to 
correlate the results from each analytical technique to the available soil data. These correlations were 
present but were not considered strong enough for origin verification. Mid-level data fusion of all 
analytical parameters into several PLS models with leave-farm-out-cross validation to predict a total of 
11 soil and weather parameters from SoilGrids.org provided reasonable fits. These fits were applied to 
actual soil profiles in Costa Rica and surrounding areas in Middle America. In most cases, the predicted 
soil profiles for each farm matched the actual profile with a confidence of >90%. This makes this 
approach promising, but (external) validation is needed before a solid judgement on the performance 
of this example model can be made.  
 
The approach in this report, with R-codes provided, enables the collection and treatment of data from 
several analytical and non-analytical sources. The process of fusing (big) data into predictions that can 
be compared with a public database that covers the entire world offers the possibility of extrapolating 
predictions on origin on a global scale. 
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1 Introduction 

Bananas are a huge commodity, are grown in tropical climates, and are largely exported to other parts 
in the world. Due to this long physical food chain it is difficult to ascertain the exact origin of a certain 
batch of bananas when they are being sold in, in our case, the Netherlands. Although the vast 
majority of the banana as we know it is one species – the ‘Cavendish’ banana, Musa acuminata, it is 
desired to be able to verify the origin of the banana we buy. Not every country in the world is equal in 
its production: environmental considerations in pesticide and fertilizer application, allocation of 
farming land, and social aspects around labour may vary across the different production locations. In 
addition to quality differences due to different natural growing conditions and different farming 
management, this leads to price differences due to origin. When price differences exist, there is an 
opportunity for fraudulent actions, and without means to verify the origin of bananas, it is likely that 
over time some of those fraudulent actions will succeed.  
 
Therefore, analytical methods that can support the origin claims of banana shipments are needed. In 
previous projects, WFSR has gathered analytical data on a pilot set of bananas, aiming to develop a 
(multivariate/fingerprint classification) method directed at confirming a certain origin. However, next 
to differences between countries, also within a specific country, there might be significant regional 
variations like weather, soil characteristics and other influential factors that will change over time. 
Therefore, there is a need to link product properties, i.e. banana composition to be analysed upon 
arrival, to searchable facts on the production location, such as soil profile and weather/climate data. If 
these production location characteristics have a causal and predictive effect on the product properties, 
it will be possible to predict, and verify, the origin for all bananas being imported.  

Aim 
The aim of the overall project, therefore, is to develop a method that can link the composition of a 
bunch of bananas analysed in the Netherlands, to a certain origin. Preferably, this origin could be 
global, and thus the relevant data on the origin should be available for any of the possible production 
areas.  
 
This report deals with the process of gathering, collating and processing the analytical and non-
analytical data from various sources, and the creation of predictive models related to origin of the 
product.  
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2 Data description and sources 

This report does not focus on the origin of the analytical data, but for its purpose it gives a very brief 
background, and data dimensions.  
 
The core of the data set originates from a cooperation between WFSR and WUR Soil Geography and 
Landscape (SG). SG has had projects, contacts and knowledge on soils in Costa Rica and local banana 
farm management for a number of years, and was able to help WFSR with a selection of 15 farms that 
covered the variation of soil/climate conditions in that particular country in middle America. They also 
had access to analytical data on composition of soil and banana leaves (foliar) for each of these farms. 
In 2015, in a cooperation between SC and WFSR, 141 of those farms were visited, and banana 
samples were collected and transported to WFSR for further compositional analysis, performed 
between 2015 and 2018.  
 
In 2018, soil and weather data accessible from external databases were extracted and linked to the 
existing data. 
Details on the data are presented in Table 1.  
 
 
Table 1 Detailed data description 

Data Dimensions (r x c)* Nature, source, remarks 

SG info 14 x 6 Classification of soil for each farm, categorical and ordinal variables. Provided by WUR 

Soil Geography and Landscape 

SG soil (2645 x 11) 

14 x 11 

pH, acidity and 9 elements in soil samples obtained between 2010-2014, analysed in 

Costa Rica. Several incomplete cases, various number of results per year per farm, 

sometimes missing year/farm. Averaged data for each farm, full data or per year 

SG foliar (2845 x 12) 

14 x 12 

12 elements in leaf samples obtained between 2010-2014, analysed in Costa Rica. 

Several incomplete cases, various number of results per year per farm, sometimes 

missing year/farm. Averaged data for each farm, full data or per year 

SoilGrids 14 x 11 Continuous data for several chemical and physical soil data and climate data, retrieved 

from the 250m grid from SoilGrids.org (retrieved mid-2018) 

(https://rest.soilgrids.org/query?lon=[LN]&lat=[LT), with coordinates LN and LT in 

decimal notation) 

KNMI 14 x 8 Continuous weather data, monthly (June 2015, date of collection and half-year, Jan-

Jun 2015, growing period) averages. Obtained through KNMI from the CRU TS4.01 

0.5°grid size database. Data per farm was assigned to the closest point (source 

example for precipitation: 

https://climexp.knmi.nl/select.cgi?id=someone@somewhere&field=cru4_pre) 

PTR 187 x 155 Proton Transfer Reaction Mass Spectroscopy on the (freeze-dried) fruits, analysed at 

WFSR, results in concentrations (ppbv) for 155 nominal masses. Two or three 

replicates for each sample, 6 samples (bunches) per farm. 

µNIR (1215 x 125) 

199 x 37 

Micro-NIR reflectance spectra on the skin of the fresh, ripened banana, analysed at 

WFSR. Mostly 5 replicates per fruit, 3 fruits per bunch, 6 bunches per farm. Averaged 

per bunch and per position (top, bottom, middle of the hand). Some missing data. 

Edge removal, SNV and 1st derivative, then averaged over 3 consecutive columns. 

Caro (168 x 23) 

84 x 23 

HPLC-DA quantification of 23 carotenoid-like compounds in the banana peels, analysed 

at WFSR. (Averages of) 2 replicates per sample, 6 bunches per farm 

ICPpeel (172 x 25) 

159 x 16 

ICP-OES analyses of banana peel samples, analysed at Utrecht University. Two 

replicates per sample, 6 bunches per farm. Nine elements were considered too noisy 

and/or too low for reliable quantification, some outlying results were removed. 

ICPpulp (172 x 25) 

163 x 15 

See ICPpeel, but for pulp samples. Ten elements were discarded. 

* Dimensions between brackets indicate the size of the available data, after removal of obvious errors and outliers and cases of incomplete data. 

The plain dimensions represent the data used in this report. 

 
1  The 15th farm could not be sampled due to dangerous road conditions at collection time. The data for this farm has been 

excluded from analysis. 

https://rest.soilgrids.org/query?lon=%5bLN%5d&lat=%5bLT
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2.1 Data (pre)treatment 

All (analytical) data sets were initially individually scrutinised. In all cases, data were properly pre-
treated. Refer to Table 1 for exact numbers of variables and samples retained for each data set. For 
elements and carotenoids, autoscaling (mean-center + column-wise standard deviation scaling) 
seemed appropriate, as it removes scale effects between elements that are not necessarily helpful. 
Autoscaling is dangerous and thus inappropriate if some responses have a large variance compared to 
their level. This happened for PTR data, where some nominal masses occurred near LOD, and 10log 
scaling is preferred. Both ICP sets contained some elements that were very noisy, but it is harder to 
attribute this to meeting a certain LOD. Instead, we used expert opinion to identify and remove those 
elements that were not reliably quantified. The remainder of the sets were suitable to autoscale.  
 
NIR data, acquired in reflection mode, suffers from baseline shifts. Therefore, signal normal variate 
(SNV) was applied, and a first derivative was taken to enhance the spectral features. The edges of the 
spectrum were noisy, which is normal for the technique used, and were removed. The number of 
points relative to the spectral features was high, and thus it was decided to reduce the number of 
points by averaging three consecutive points in each spectrum. 
 
After these treatments, the individual data sets –before averaging, where applicable- were visually 
evaluated using PCA. The score plots were evaluated, first on obvious outliers, a few of which were 
found and removed, after which a new PCA was prepared. The subsequent PCA was evaluated for 
natural clustering. The appropriately scaled data did not appear to cluster into distinct groups but 
rather approached spherical structures in the first three dimensions, which is in line with the 
expectation of a multivariate normally distributed data set. Special care was taken to look for natural 
clustering or trends according to measurement series, and no obvious problems were observed. Then, 
a visual and again rather subjective, screening for repeatability was performed by checking the 
distance between sample replicates when plotted in several 2D-PCA plots (i.e. simultaneous display of 
plots for f1 vs f2, f1 vs f3, f1 vs f4, f2 vs f3, f2 vs f4 and f3 vs f4). For samples analysed in triplicate 
or more, the between-replicate distance relative to the spread of all samples in the PCA plot was used 
to identify deviating instances, which have led to a few omissions. If samples consisted of only 
duplicates, it is usually hard to identify the deviating instance of the two, if a large distance is 
observed. Nevertheless, in some cases one of the two sample replicates was sufficiently close to being 
an outlier that this instance was marked as a potential outlier, and averaging was not performed.  
 
All remaining replicates were considered for averaging, although for some analyses (Table 1), the 
between-sample variance was considered important enough to keep them separate for further 
(multivariate) analysis.  

2.2 Univariate analysis 

Whenever a large number of data points is gathered, the most important question is whether a certain 
variable has a causal relationship with the parameter one wants to know. In some cases, this 
knowledge is available from experts or literature, or the causal relationship is strongly suspected. In 
many cases, however, they are just hypotheses. In the current case, the elements in bananas are 
considered to be possibly linked to soil composition, and NIR reflectance and PTR VOC concentrations 
are possibly linked to growing conditions (i.e. soil and weather) through their possible influence on the 
plant’s metabolism. There is no hard evidence that this causal relationship exists, nor is there expert 
knowledge available to advice on which variables are the most important for our goal. However, we 
can perform simple univariate analysis of the chemical parameters measured to check their 
relationship with the parameters we want to predict. A straightforward way to do so is to draw 
correlation plots (Figure A1-A8). For ‘medium-size’ data sets, up to ~200 parameters, this allows to 
draw one plot that summarises the correlation of all variables with the intended parameters. A strong 
correlation (or anti-correlation) indicates that such a variable might be important for predicting a 
parameter, but it does not mean that this relationship is causal. Moreover, a weak direct correlation 
does not necessarily mean that a variable is not important. This is due to correlation effects and is 
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dealt with in multivariate analysis. Despite the uncertainties, correlations are a nice and easy way to 
give some direction towards easy to interpret results, and to have leads for further investigation of 
certain causal relationships.  
 
Some of the correlation plots from the banana datasets are given in Annex I. The figures show that 
there are many correlations in the sense that any technique has one or more variables with a strong 
positive or negative correlation with any of the farm origin parameters. In very few cases, however, 
this effect is very strong or very close to 1. And many variables also have a very weak correlation. 
There are a few specific conclusions that can be drawn, but in this case, it proved difficult to reach 
hypothesis for causal insights from these plots. For the analyses on the bananas, there were hardly 
any variables without any correlation with any of the farm origin parameters to predict, so it was 
decided not to exclude any of the variables at this point.  

2.3 Multivariate analysis 

In any multivariate data set, correlation between variables is expected. This has at least two effects 
that are worth mentioning here: 1) Multiple variables with strong correlation may exist (even across 
analytical datasets – univariate correlation plots such as in Annex 1 confirm that this happens in these 
datasets too; data not shown) and these might cause undesired weight to the sample information they 
contain, especially if this information is not helpful in predicting the desired parameters. 2) Their 
correlation might change with any of the parameters to predict – or more concretely: two variables 
might overall be correlated and thus might both be low in certain samples and high in others. 
However, certain conditions in the soil might cause to influence the content of one of those variables, 
and cause that in certain samples from this condition the first variable could be low and the second 
could be relatively high. These effects are usually relatively subtle and are therefore almost impossible 
to spot in univariate views of the data. Multivariate analysis is perfectly suitable to deal with these 
effects, also if these correlations occur over more than two variables.  
 
However, compared to univariate analysis, the results of multivariate analyses can be harder to 
interpret. Moreover, the more variables are included, the more chance that random correlations 
contribute to overly optimistic results, and therefore a proper validation of the model is required. 
 
The number of options multivariate data analysis for this particular data set is huge (number of 
preprocessing options, algorithms, which parameters to predict), and only a part of the work 
performed on individual data sets is displayed in this report. Software used to perform the multivariate 
calculations were Pirouette 4.5 (Infometrix, Bothell, WA, USA) (mainly for visual data exploration) and 
R 3.5.0 (R Core Team, Austria). We only display regression predictions for the SoilGrid data, one 
parameter per individual dataset. That means that all classifications (prediction of categories) are 
omitted. Also the data from WUR Soil Geography is not displayed, as the latter is only available for a 
very limited number of production locations, and lacks extrapolation ability.  
 
Table 2 presents the agreement (expressed as r2) between the predicted (leave-one-out) and true 
value per individual data set. The goodness of these predictions are, very subjectively, considered as 
mediocre. There seems to be some capability of the models to predict the parameters, but it never 
gets ‘really good’. Moreover, these results are obtained with leave-one-out validation (LOO), which is 
considered as the simplest and most optimistic form of validation. In LOO, as the name suggests, only 
one sample at a time is left out of the dataset, where all other samples are used to produce a model 
and predict the result for the left-out sample. Since there are many samples from one farm, all farms, 
with their own fixed parameters, are still represented by several samples in all sub-models. This 
makes this approach for this dataset over-optimistic. The next section (data fusion) will feature a 
more appropriate validation approach. If the individual analytical data sets are to be evaluated, 
software that features the option to leave-one-farm-out validation in this data is considered more 
suitable.  
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Table 2 r2 of validation (LOO) of PLS-predictions per individual sample set. Values in bold face 
indicate models that are graphically represented below. 
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PTR .68 .59 .72 .36 .74 .45 .57 .64 .47 .54 .73 

µNIR .43 .40 .55 .33 .59 .19 .33 .43 .47 .42 .50 

Caro .71 .73 .76 .56 .75 .54 .44 .62 .33 .65 .78 

ICPpeel .65 .65 .68 .44 .72 .60 .62 .65 .68 .59 .74 

ICPpulp .64 .78 .74 .58 .70 .55 .60 .70 .80 .55 .76 

 
 

 

Figure 1 PTR-MS prediction (10log, mean-center) of average annual precipitation. Coloration by 
location north/south of Reventazon river. 
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Figure 2 Micro-NIR prediction (SNV, mean-center) of sand%. Coloration by location north/south 
of Reventazon river. 
 
 

 

Figure 3 Carotenoids prediction (autoscaled) of organic carbon stock. Coloration by location 
north/south of Reventazon river. 
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Figure 4 ICP elements in peel prediction (autoscaled) of soil-pH in KCl. Coloration by location 
north/south of the Reventazon river. 
 
 

 

Figure 5 ICP elements in pulp prediction (autoscaled) of bulk density. Coloration by location 
north/south of the Reventazon river. 
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2.4 Data fusion 

2.4.1 Introduction on data fusion 

Data fusion is the process to bring data from different sources together in a sensible and useful way. 
It is a form of ‘orthogonal analysis’; a phrase that is heard around WFSR the last months. There are 
three general modes of data fusion called low, mid, and high-level data fusion. In low-level data 
fusion, (analytical) data sets are aligned per sample, and put directly next to each other to form one 
data set. Mid-level data fusion first extracts features from each individual dataset and then merges 
these features into a data set. Features could be several variables with known predictive power for a 
certain parameter, or a number of factors from a PCA dimension reduction step, for example. High 
level data fusion indicates the process of making (multivariate) predictive models for individual data 
sets, and setting up rules how to use these multiple results into one final decision. In this report, low- 
and mid level approaches are implemented.  
 
It is easy to argue that leaving an approach out makes this work incomplete. However, for any 
multivariate task there are simply too many valid possibilities to perform and compare. In most cases, 
it is impossible to predict upfront which (valid) approach is better. This is true for the form of data 
fusion, but also for pre-processing options, validation scheme, and model algorithm choice. Even 
within specific items, there are many degrees of freedom in the details. Examples of these details are 
the exact number of points to use for a spectrum first derivative, or the number of factors to employ 
for PLS predictions, which can be a fixed number, or determined using an algorithm, which in turn 
depends on the validation approach.  
 
Every different approach and every change in detail will certainly lead to different outcomes, and there 
are always ways to further optimise the method. However, experience has shown that a conclusion 
whether a model is useable or not, i.e. the model’s agreement with the data is poor – mediocre – 
reasonable – good – excellent, does not really depend on the details. What matters in the evaluation 
of multivariate methods, including those from multiple data set, in our opinion is: 
• The data is of sufficient quality and size  
• The data is appropriately pre-processed 
• A robust algorithm is used (and only non-linear ones if the data needs that) 
• A properly designed validation scheme is applied  
 
We realise that this list is extremely subjective, and even among experts opinions will vary. It is 
therefore important for the credibility in a certain model that the steps are transparent and checkable 
for other experts.  

2.4.2 Low level data fusion 

In our current set, we have a number of analytical data sets, obtained on banana samples. We would 
like to use these to predict the conditions from their origin, which we know on farm level. That means 
that we have to fuse the analytical data on the banana samples, and to fuse the predictor variables. 
 
The foliar analytical results, as we do not generally import banana leaf material with bananas, are not 
useful for our practical case and are disregarded. The analytical results on the farm’s soils provided by 
WUR Soil Geography are included in the calculations, but have little practical value and are therefore 
not displayed in further sections of this report. The agreement between the predictions from the 
banana sample analyses and the WUR SG soil characteristics was comparable with the agreement with 
the SoilGrid’s parameters. 
 
Because of some missing analyses, some irregular additional analytical replicates, and some individual 
results classified as outliers, the analytical data sets on bananas were not equal in size (Table 1). The 
data sets contain both analytical replicates and replicates on bananas from the same farm. The 
variation between samples from the same farm come from analytical variation (repeatability and 
reproducibility effects) and natural variation between individual bananas (different bunches, and 
different bananas from the same bunch). Since the within-farm variation was rather large for all 
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techniques used, we decided that averaging all samples into one average per farm would solve the 
problem of unequal data dimensions for data fusion, but that would also reduce the analytical variation 
to create, in our opinion, a too optimistic model. Therefore, we created a matrix with exactly 14 
(farms) x 6 (bunches) x 3 (replicates) = 252 samples. Data per farm/bunch are sampled from the 
original data if available, missing data are sampled from other bunches from the same farm (R-code 1. 
Low-level data fusion script) This is a practical approach that assumes equivalence of analytical 
replicates and samples from the same bunch. It creates a data set without any missing data, which is 
also perfectly balanced for farm/bunch. There is an element of chance in the sampling step, and this 
procedure should be and was repeated for a number of times without noticeable differences in the 
final results (data not shown).  
 
 
R-code 1. Low-level data fusion script 

This R-code snippet assumes data from 5 different techniques to be present in 5 different 

data frames, and fuses them into a farm-balanced flatted (i.e. matrix-like) list called 

‘FusedWorkData’.  

OrgData <- list (PTRdata,  

                 ICPPeeldata, 

                 ICPPulpdata, 

                 Carodata, 

                 NIRdata) 

 

SampleRep <- 3 

FusedData <- list (PTR= matrix(data=NA, nrow=14*6*SampleRep, ncol=ncol(PTRdata)-2),   

                   ICPPL= matrix(data=NA, nrow=14*6*SampleRep, ncol=ncol(ICPPeeldata)-2), 

                   ICPPP= matrix(data=NA, nrow=14*6*SampleRep, ncol=ncol(ICPPulpdata)-2), 

                   Caro= matrix(data=NA, nrow=14*6*SampleRep, ncol=ncol(Carodata)-2), 

                   NIR= matrix(data=NA, nrow=14*6*SampleRep, ncol=ncol(NIRdata)-2))  

#-2 is to remove the (non-numeric) Farm ID and Bunch IDs.  

#14 for 14 farms, 6 for 6 bunches per farm 

 

colnames(FusedData[["PTR"]]) <- colnames(PTRdata)[1:(ncol(PTRdata)-2)] 

colnames(FusedData[["ICPPL"]]) <- colnames(ICPPeeldata)[1:(ncol(ICPPeeldata)-2)] 

colnames(FusedData[["ICPPP"]]) <- colnames(ICPPulpdata)[1:(ncol(ICPPulpdata)-2)] 

colnames(FusedData[["Caro"]]) <- colnames(Carodata)[1:(ncol(Carodata)-2)] 

colnames(FusedData[["NIR"]]) <- colnames(NIRdata)[1:(ncol(NIRdata)-2)] 

 

Counter <- 1; FusedID <- NULL 

for (Farm in c(1,2,4,5,6,7,8,9,10,11,12,13,14,15)) { 

  for (Bun in c("A", "B", "C", "D", "E", "F")) { 

     for (Tech in 1:5) {  # 5 techniques 

       if (length (which(OrgData[[Tech]]$Farm==Farm&OrgData[[Tech]]$Bunch==Bun))>0) { 

           AddThese <-sample(which(OrgData[[Tech]]$Farm==Farm &  

           OrgData[[Tech]]$Bunch==Bun), SampleRep,replace=TRUE) } else { 

           AddThese <- sample(which(OrgData[[Tech]]$Farm==Farm), SampleRep,replace=TRUE)  

           } 

           FusedData[[Tech]][Counter:(Counter+SampleRep-1),] <-  

                  as.matrix(OrgData[[Tech]][AddThese,1:(ncol(OrgData[[Tech]])-2)])} 

       Counter <- Counter+SampleRep 

    FusedID <- c(FusedID, rep(Farm, SampleRep))    

  }  } 

 

FusedWorkData <- cbind(FusedData[[1]], FusedData[[2]], FusedData[[3]], FusedData[[4]], 

FusedData[[5]]) 

FusedTech <- NULL 

for (i in 1:5) {FusedTech <- c(FusedTech, rep(names(FusedData)[i], ncol(FusedData[[i]])) 

)} 
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2.4.3 Mid-level data fusion 

As mid-level data fusion approach a PCA dimension reduction was used (R-code 2. Mid-level data 
fusion). The original data was replaced with the PCA scores. In a second step, the number of scores 
(per technique) was reduced, in this case to half of the original number of variables with a maximum 
of 20. This is a rather subjective choice, but we feel this fits the data well. An obvious alternative is to 
select the minimum number of samples to reach a certain percentage of explained variance. Although 
this sounds more objective, the cut-off point still needs to be selected, and the explained variance is 
strongly dependent on the nature of the data and its pre-processing. Moreover, the amount of total 
explained variance is not necessarily correlated with the predictive power of a latent variable. The 
resulting data is used for further processing. 
 
 
R-code 2. Mid level data fusion 

This script transforms the flat “low-level” fused data matrix into PCA scores (separately 

per technique). Then, up to 20 latent variables with the highest explained variance are 

retained, as they are stored in index-variable “TheseColumns”. 

FusedPCAData <- FusedWorkData 

FusedPCAData[,which(FusedTech=="PTR")] <-  

             princomp(scale(FusedWorkData[,which(FusedTech=="PTR")]))$scores 

FusedPCAData[,which(FusedTech=="ICPPL")] <-  

             princomp(scale(FusedWorkData[,which(FusedTech=="ICPPL")]))$scores 

FusedPCAData[,which(FusedTech=="ICPPP")] <-  

             princomp(scale(FusedWorkData[,which(FusedTech=="ICPPP")]))$scores 

FusedPCAData[,which(FusedTech=="Caro")] <-  

             princomp(scale(FusedWorkData[,which(FusedTech=="Caro")]))$scores 

FusedPCAData[,which(FusedTech=="NIR")] <-  

             princomp((FusedWorkData[,which(FusedTech=="NIR")]))$scores 

FusedWorkData <- FusedPCAData 

 

TheseColumns <- NULL;  

  for (i in unique(FusedTech)) { 

    nPCs <- round(length(which (FusedTech ==i))/2)  

    if (nPCs>20) {nPCs <- 20} #half of number of original pcs, maximised at 20. 

  TheseColumns <- c(TheseColumns, which (FusedTech ==i)[1:nPCs])  } 

 

2.4.4 Outlier detection 

Although the data was screened for outliers in the individual data sets, the fused data were not. The 
fused dataset appeared to suffer from a few outliers, which were influencing the predictions 
negatively. It is tricky to remove outliers twice, although it can be argued that by fusing data new 
insights and new situations might arise, which allows renewed outlier detection and removal. If the 
current models were to be used in practice, this step would need more careful consideration, but by 
applying the code below (R-code 3. Outlier removal), 6 of the 252 samples were removed as outliers. 
This outlier detection routine is based on the Mahalanobis distance of autoscaled data, and checks 
whether there are extreme values that are not part of the (non-parametric) distribution.  
 
 
R-code 3. Outlier removal (for fused data, but applicable for any multivariate dataset) 

This script tests the Mahalanobis distance of each sample’s (included, “TheseColumns”) 

variables in the dataset, and determines its distribution. Samples clearly separated from 

this distribution are identified as outliers, and can be excluded in further analysis. 

NonOL <- rep(TRUE, nrow(FusedWorkData)) 

FusedWorkData <- scale(FusedWorkData) 

Maha <- mahalanobis(FusedWorkData[, TheseColumns], center=0,  

           cov=cov(FusedWorkData[, TheseColumns]), inverted=TRUE) 
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MahaOL <- density(Maha) 

MahaOL.index <- rle(MahaOL$y>(max(MahaOL$y)/20)) 

 for (i in 1:length(MahaOL.index$values)) { 

  until.index <- sum(MahaOL.index$lengths[1:i]) 

  if (MahaOL.index$values[i] & (sum(MahaOL$y[1:until.index])/sum(MahaOL$y))>.5 ) 

           {break}  #that means that until.index contains the "TRUE"(density is higher 

                    #than 5% of the max dens), AND the sum of the density is higher than 

                    #50% of the total. The rest are probably outliers. 

 }  

NonOL <- Maha<= MahaOL$x[until.index] 

2.4.5 Multivariate predictions 

The predictions of the different parameters are performed by a simple PLS regression model (R-code 
4. Predictive modelling). This includes a proper validation step, in which all samples from one farm 
were removed from the dataset, and were predicted by the model based on the other farms. PLS is a 
robust and fairly standard algorithm for regression, and no other algorithms are compared.  
 
The r2 of validation are given in Table 3, which can be compared to the individual data (calculated in 
Pirouette, Table 2).  
 
 
R-code 4. Predictive modelling  

This script performs the predictive modelling, on the (fused) data provided, without 

outliers and possibly without the lower PCs. It automatically selects the number of PLS 

components to minimise the PRESS (Predicted Residual Error Sum of Squares). Standard is 

segmented (farm) cross validation, LOO validation is an option provided. The predictions 

are stored in “predictions_value”  

library (pls) 

CVseg <- list() # update the segments for OLs 

for (i in unique(FusedID)) {  CVseg <- c(CVseg, list(which(FusedID[NonOL]==i))) } 

par (mfrow=c(6,7), mai=c(.2,.1,.2,.1)) #note: this scrip also visualises the output 

 

predictions_r2 <- NULL 

predictions_value <- NULL 

for (i in 1:ncol(ThisPred)) { 

  RegDF <- data.frame (DAT=FusedWorkData[NonOL,TheseColumns],  

                       Y=ThisPred[Y_index[NonOL],i]) 

  PLSmodel <- plsr (Y~., data=RegDF, ncomp=10, validation="CV", segments=CVseg,  

                    scale=TRUE, center=TRUE) 

  #uncomment the next line for LOO validation: 

  #PLSmodel <- plsr (Y~., data=RegDF, ncomp=10, validation="LOO", scale=TRUE,  

                     center=TRUE) 

  NumComp <- which.min(PLSmodel$validation$PRESS) 

  LinPred <- lm(PLSmodel$validation$pred[,1,NumComp]~ThisPred[Y_index[NonOL],i]) 

  Corr <- cor(PLSmodel$validation$pred[,1,NumComp],ThisPred[Y_index[NonOL],i]) 

  predictions_r2 <- c(predictions_r2, Corr) 

  predictions_value <- rbind (predictions_value, PLSmodel$validation$pred[,1,NumComp]) 

  MainCol <- "red"; if (abs(Corr)>.5) {MainCol <- "orange"};if (abs(Corr)>.7)  

             {MainCol <- "darkgreen"}  

  plot(PLSmodel$validation$pred[,1,NumComp]~ThisPred[Y_index[NonOL],i],  

       main=list (paste0(colnames(ThisPred)[i], " r2=", round(Corr,2)," nC=", NumComp), 

       col=MainCol), xlab=NA, ylab=NA, cex.main=.8, cex.axis=.8) 

  abline(a=LinPred$coefficients[1], b=LinPred$coefficients[2], col=MainCol) 

} 
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Table 3 r2 of validation of PLS-predictions for fused data.  
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Fused, LOO .79 .87 .80 .70 .79 .75 .83 .78 .82 .81 .79 

PCA, LOO .69 .75 .71 .54 .70 .48 .65 .62 .66 .63 .77 

Fused, Val .09 .10 .40 .35 .12 .39 .04 .42 .35 .04 .27 

PCA, Val .08 .22 .05 .54 .17 .61 .11 .36 .09 .20 .31 

 
 
Tables 2 and 3 show that the LOO-validated data for the fused data set is clearly better than the 
individual data sets. However, when a single farm is left out, the performance drops severely, and 
would in most cases be considered of insufficient quality. As discussed previously, there is room for 
optimisation of the performance of the prediction. The most obvious improvement would be to select 
those variables that are relevant for each of the desired parameters, and build separate models for 
each parameter. This is likely to yield some improvement in prediction accuracy. This variable 
selection needs to be performed carefully, and with some form of validation. This step is 
recommended if this data set is to be used in the future.  

2.4.6 Retrieve external data 

Initially, the training data from SoilGrid.org (and the KNMI database) were extracted manually from 
the respective websites. To extrapolate the results, data for all relevant areas are needed, and it 
proved very easy to automate the extraction (R-code 5. Data retrieval). For convenience for future 
users, the code used for SoilGrid data retrieval and processing into useable format is given below.  
 
 
R-code 5. Data retrieval from SoilGrid.org 

This script performs data extraction and ‘flattening’ into a matrix where the desired 11 

properties are stored per coordinate. Two sets of coordinates are given, one for Costa 

Rica, one for a larger rectangular area covering Middle- and a a part of South America at 

two different resolutions. 

library(jsonlite) 

Xcoord <- seq(-86,-82.5, by=.025)  #Costa Rica 

Ycoord <- seq(8,11, by = .025)     #Costa Rica  

Xcoord <- seq(-96,-67, by=.05)  #For a larger area middle and south america 

Ycoord <- seq(-3,21, by = .05)  #For a larger area middle and south america 

 

SOILGRID <- array(NA, dim=c(length(Xcoord), length(Ycoord), 11)) 

for (x in 1:length(Xcoord)) { 

  for (y in 1: length(Ycoord)) { 

 

dat <- read_json(paste0("https://rest.soilgrids.org/query?lon=", Xcoord[x], "&lat=", 

Ycoord[y],"&attributes=OCSTHA,BLDFIE,CLYPPT,SLTPPT,SNDPPT,CECSOL,ORCDRC,PHIHOX,PHIKCL,WWP

,PREMRG"))  #this single line retrieves the desired data as javascript object 

 

SOILGRID[x,y,1] <- tryCatch ({mean(as.numeric(dat$properties$OCSTHA$M[ which 

(names(dat$properties$OCSTHA$M) %in% c("sl1", "sl2", "sl3", "sl4","sd1", "sd2", "sd3", 

"sd4")) ]))}, error=function(e){NA}) 
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SOILGRID[x,y,2] <- tryCatch ({mean(as.numeric(dat$properties$BLDFIE$M[ which 

(names(dat$properties$BLDFIE$M) %in% c("sl1", "sl2", "sl3", "sl4","sd1", "sd2", "sd3", 

"sd4")) ]) )}, error=function(e){NA}) 

SOILGRID[x,y,3] <- tryCatch ({mean(as.numeric(dat$properties$CLYPPT$M[ which 

(names(dat$properties$CLYPPT$M) %in% c("sl1", "sl2", "sl3", "sl4","sd1", "sd2", "sd3", 

"sd4")) ]) )}, error=function(e){NA}) 

SOILGRID[x,y,4] <- tryCatch ({mean(as.numeric(dat$properties$SLTPPT$M[ which 

(names(dat$properties$SLTPPT$M) %in% c("sl1", "sl2", "sl3", "sl4","sd1", "sd2", "sd3", 

"sd4")) ]) )}, error=function(e){NA}) 

SOILGRID[x,y,5] <- tryCatch ({mean(as.numeric(dat$properties$SNDPPT$M[ which 

(names(dat$properties$SNDPPT$M) %in% c("sl1", "sl2", "sl3", "sl4","sd1", "sd2", "sd3", 

"sd4")) ]) )}, error=function(e){NA}) 

SOILGRID[x,y,6] <- tryCatch ({mean(as.numeric(dat$properties$CECSOL$M[ which 

(names(dat$properties$CECSOL$M) %in% c("sl1", "sl2", "sl3", "sl4","sd1", "sd2", "sd3", 

"sd4")) ]) )}, error=function(e){NA}) 

SOILGRID[x,y,7] <- tryCatch ({mean(as.numeric(dat$properties$ORCDRC$M[ which 

(names(dat$properties$ORCDRC$M) %in% c("sl1", "sl2", "sl3", "sl4","sd1", "sd2", "sd3", 

"sd4")) ]) )}, error=function(e){NA}) 

SOILGRID[x,y,8] <- tryCatch ({mean(as.numeric(dat$properties$PHIHOX$M[ which 

(names(dat$properties$PHIHOX$M) %in% c("sl1", "sl2", "sl3", "sl4","sd1", "sd2", "sd3", 

"sd4")) ]) )}, error=function(e){NA}) 

SOILGRID[x,y,9] <- tryCatch ({mean(as.numeric(dat$properties$PHIKCL$M[ which 

(names(dat$properties$PHIKCL$M) %in% c("sl1", "sl2", "sl3", "sl4","sd1", "sd2", "sd3", 

"sd4")) ]) )}, error=function(e){NA}) 

SOILGRID[x,y,10] <-tryCatch ({mean(as.numeric(dat$properties$WWP$M   [ which 

(names(dat$properties$WWP$M)    %in% c("sl1", "sl2", "sl3", "sl4","sd1", "sd2", "sd3", 

"sd4")) ]) )}, error=function(e){NA}) 

SOILGRID[x,y,11] <-tryCatch ({mean(as.numeric(dat$properties$PREMRG$M))}, 

error=function(e){NA}) 

  } } 

 

2.4.7 Model performance 

Although the (validated) predictions from the model are not great, they are not totally random either. 
Moreover, they need to be put in perspective. That is, we are not necessarily interested in accurate 
prediction in the soil properties, but in a location where a banana sample originated from. One of the 
many possible ways to integrate the predictions into useable information is to correlate the set of (11) 
predictions with the known values for each geographical point. A script (R-code 6. Create location 
probabilities) to do so is provided, followed by a graphical representation of the results (correlation of 
the soil type predicted from the banana composition with the actual soil type for a large (Figure 6) 
area around Costa Rica, and in more detail for Costa Rica only (Figure 7).  
 
 
R-code 6. Create location probabilities 

This script plots the possible locations based on the predicted SoilGrid parameters. A 

matrix is filled with correlations between predicted (validated!) and known values. These 

points are ordered, and interpolated between 0 and 1, so that 0 represents the point with 

the worst (numeric) correlation with the predicted data, 1 the best. This is plotted as a 

map, with some custom color setting. 

for (i in unique(FusedID)) {  #this will loop over the farms 

thisFarm <- which(FusedID[NonOL]==i) 

thisFarmAvgPred <- rowMeans(predicted_values[,thisFarm]) 

thisDistMap.c <- matrix (NA, ncol=dim(SOILGRID)[2], nrow=dim(SOILGRID)[1]) 

for (x in 1:length(Xcoord)) { 

   for (y in 1: length(Ycoord)) { 

     thisDistMap.c[x,y] <- cor(thisFarmAvgPred, SOILGRID[x,y,]) }} 
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C_prob <- ecdf(thisDistMap.c) 

thisDistMap <- matrix(C_prob(thisDistMap.c)^2,nrow=nrow(thisDistMap.c)) 

 

plot(NA, xlim=c(min(Xcoord),max(Xcoord)), ylim=c(min(Ycoord),max(Ycoord)),  

     main=paste0("Farm ", i), xlab="Longitude", ylab="Latitude") 

rect(min(Xcoord),min(Ycoord),max(Xcoord),max(Ycoord), col="blue") #color the sea blue 

image(x=Xcoord, y=Ycoord, z=thisDistMap,add=TRUE, breaks=c(0, 0.5, 0.8, 0.85, 0.9, 0.92, 

0.94, 0.96, 0.98, 0.99,1),col=heat.colors(10)) 

points (FarmLocs$X.Coordinates[i], FarmLocs$Y.Coordinates[i], pch=21, col="green", 

cex=1.2, lwd=2) #FarmLocs contains the coordinates from the farms 

readline ("Enter to continue")  #waits for Enter until the next farm is plotted 

}  

 
 

  

  

Figure 6 Location probability based on predicted soil properties. Prediction is based on PCA-
preprocessed data with leave-farm-out validation. Colour relates to increasing correlation of the 
predicted profile with the actual profile, intense yellow are probably locations of origin, red is unlikely. 
The actual farm location is marked with a green circle. 
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Figure 7 Location probability based on predicted soil properties, only for Costa Rica and direct 
surrounding area. Prediction is based on PCA-pre-processed data with leave-farm-out validation. 
Colour relates to increasing correlation of the predicted profile with the actual profile, intense yellow 
are probably locations of origin, red is unlikely. The actual farm location is marked with a green circle. 
 
 
Table 4 Probabilities of the actual farm location as predicted by the fused model (leave-farm-out 
validated, PCA processed results). Values of 1.000 would indicate the best correlating pixel (location) 
on the map. 

 Costa Rica America  Costa Rica America 

Farm 1 .936 .990 Farm 9 .928 .992 

Farm 2 .850 .997 Farm 10 .933 .989 

Farm 4 .827 .997 Farm 11 .982 .983 

Farm 5 .982 .942 Farm 12 .796 .997 

Farm 6 .643 .898 Farm 13 .301 .635 

Farm 7 .906 .965 Farm 14 .968 .980 

Farm 8 .998 .978 Farm 15 .673 .936 

 
 
The results (Table 4) indicate that for some farms (scores >90%) the overall prediction comes quite 
close, and perhaps close enough, to what is needed to verify banana origin. But there are also a few 
farms that show that this model is most probably not yet suited for practical use. 
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3 Conclusions and recommendations 

This document aims to give an example of the combination of different types of analytical data for 
certain products, and the combination of different external data sources. It shows some practical ways 
and concrete scripts that can be used in similar cases. Some considerations on modelling and data 
fusion are given too, with the idea of reusability of the scripts in mind.  
 
As the degrees of freedom in concrete approaches to model the data is almost infinite, the most 
important issue is the validation of the model. In the current set, two forms of validation are used, 
which show that a ‘proper’ validation gives dramatically different results than an optimistic (and 
common) validation approach. And even the ‘proper’ validation approach is a form of cross validation, 
before any attempt to use the current data set in practice, external validation should be performed.  
 
The results for the current data set, in terms of prediction of individual soil parameters, are considered 
to be mediocre at best. There are certainly ways to optimise the models, most probably through high-
level data fusion and careful variable selection. This is quite labour intensive, and given the current 
results, the improvement is expected to be only minor.  
 
However, when the individually predicted parameters are combined and compared with the soil data 
that is available, the results are reasonably good: there appear to be relatively few places which 
correlate well enough with the predicted values. This means that many locations in Costa Rica and 
certainly in the wider Middle America region can be excluded as possible origins, as shown in the maps 
in this report.  
 
Based on that finding, the combination with publicly available data sources and analytical data on 
products with a known (or claimed) origin can still be considered promising.  
 
In order to bring the data and approaches to such a level that they can be used to effectively evaluate 
the origin of bananas it is recommended to: 
• Develop and apply (multivariate) QC approaches for each of the analyses to ensure analytical 

stability over years. 
• Establish the long-term stability and suitability of the model by checking the performance with 

samples from new harvest dates from the 14 farms used in this study, and 
• validate the model with new samples from known origin, from Costa Rica and other relevant 

production areas. 
• Carefully define the model’s mode of application and performance. For instance, if new samples with 

a claimed origin need to be verified, what is the threshold for authenticating this claim, and what is 
its confidence? 

 
More generally, the following research is necessary in order to gain more insight in the applicability of 
combining general (big) data with specific analytical results in order to evaluate the product claims  
• Develop and apply (multivariate) QC approaches from the beginning of the study. A starting point 

might be the approach formulated in SOP F-0094. 
• Develop infrastructure and protocols to facilitate merging and using data from different sources, 

starting with data from analytical instruments and their meta data. FAIR principles are a good 
starting point.  

• Develop, share and maintain code, according to good coding practices, as code is needed to perform 
the classification as described in this study. This type of work cannot be realistically be performed in 
‘standard’ office programmes (excel), and expertise to use, maintain and improve this code should 
be present in more than one or two individuals.  
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 Correlation plots 

 

Figure A1 Correlation plot between different ‘external’ data sources: data on the 14 banana farms 
in Costa Rica. 
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Figure A2 Correlation plot between soil and foliar composition data on the 14 banana farms in 
Costa Rica. Analyses in Costa Rica in cooperation with WUR Soil Geography. Averages over the 
available data 2008-2015. 
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Figure A3 Correlation plot between PTR-MS variables (VOC masses measured in bananas, at 
WFSR) and known data – analytical and public database-extracts- on the farms of origin.  
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Figure A4 Correlation plot between micro-NIR variables (wavelengths, after SNV and derivative, 
measured at bananas skins, at WFSR) and known data – analytical and public database-extracts- on 
the farms of origin.  
 
 

 

Figure A5 Correlation plot between HPLC-DAD variables (carotenoids or lookalikes measured in 
banana peel samples at WFSR) and known data – analytical and public database-extracts- on the 
farms of origin.  
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Figure A6 Correlation plot between ICP elements in banana peel samples and known data – 
analytical and public database-extracts- on the farms of origin.  
 
 

 

Figure A7 Correlation plot between ICP elements in banana pulp samples and known data – 
analytical and public database-extracts- on the farms of origin. 
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