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Automated spider mite damage detection on tomato 
leaves in greenhouses 

A.T. Nieuwenhuizena, J. Kool, H.K. Suh and J. Hemming 
Wageningen University and Research, Wageningen, The Netherlands. 

Abstract 
Spider mites are one of the most challenging pests in the greenhouse, and their 

management is more and more challenging due to resistance to pesticides. Spider mites 
prefer young leaves at the outer canopy, stay at the bottom of leaves, and can crawl to 
nearby plants. Typical symptoms are small yellow and white spots on the upper side of 
the leaf due to chlorophyll depletion, leading to bronzing of the leaves. The challenge is 
to detect the spider mite damage in an early stage, as it is hardly possible to detect the 
actual spider mites underneath the leaves. Based on a structured requirement list, the 
following camera systems were identified as detection system candidates. Three 
multispectral cameras and one RGB camera were further investigated in the research. 
A lab study with hyperspectral imaging was performed that identified discriminating 
wavebands between healthy and diseased leaves. The wavebands 700, 716 and 747 nm 
were selected and used in the multispectral systems. Using Fisher LDA, accuracies up 
to 0.88 could be reached at pixel level with these multispectral cameras. However, none 
of the setups could meet the spatial resolution to detect spider mite damage at early 
stage on the leaves. Second step was to perform color image analysis. An identical 
accuracy of 0.88 with sufficient spatial resolution was reached. Based on these results, 
a high resolution RGB camera was mounted on a measurement cart. Experiments were 
performed in a greenhouse compartment with an ongoing spider mite damage 
infestation in a tomato crop. The results show the automated pipeline for spider mite 
damage detection in a time series of four recordings over three months, having an 
accuracy of 0.90. Heat maps of the infestation rate are presented to the grower and are 
used for input in models for integrated pest management and to support the decision 
on the release of beneficial insects. 
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INTRODUCTION 
Spider mites (Tetranychus urticae) feed on the bottom side of crop leaves. They pierce 

the chloroplast containing cells and thereby the leaf chlorophyll content is decreased (Sances 
et al., 1979). Spider mites are one of the challenging pests in greenhouses with tomato crops 
as their control is increasingly difficult due to resistance to pesticides and difficulties in 
biological control. The mites prefer young canopy at the outside of the plants for feeding, with 
canopy damage as a consequence (Herrmann et al., 2012). Typical symptoms are small 
yellowish white spots on the upper side of the leaf due to chlorophyll depletion, which develop 
into irregularly shaped white or greyish colored spots, and yellowing and bronzing of leaves 
may result. Literature on spectral imaging indicates that detection of spider mite itself can be 
a challenging task due to its small size and crawling on the leaves. However, detection of spider 
mite damage by means of imaging would be feasible in practice. 

Yang et al. (2009) reported that a multispectral radiometer was able to separate 
between green bug and Russian wheat aphid damage to wheat at the canopy scale. They 
showed a potential of using multispectral imaging for mite damage detection. Herrmann et al. 
(2012) indicated that greenhouse pepper and bean leaves were spectrally measured using 
sub-leaf resolution. They concluded that two-spotted spider mite damage could be spectrally 
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detectable in the visible and near-infrared spectral regions, and five spectral bands are enough 
to detect damaged leaves. Herrmann et al. (2017) further confirmed that hyperspectral high 
spatial resolution cameras in a greenhouse or field enable damage detection in an early stage. 
Several recent studies reported that hyperspectral imaging is useful for the plant disease 
detection (Mahlein, 2016). A recent study of Fuentes et al. (2017) showed that a deep-
learning-based approach is a promising solution to detect diseases and pests in tomato plants, 
using images taken by a simple camera. They concluded that their proposed system can 
effectively recognize nine different types of diseases and pests, with the ability to deal with 
complex scenarios from a plant’s surrounding area. 

The objectives of this paper are to describe the options of different camera detection 
techniques to detect spider mite damage on tomato plant leaves, perform lab and greenhouse 
experiments, analyze results and to draw conclusions including suggestions for 
improvements. 

MATERIALS AND METHODS 

Camera system requirements 
The following is a summary of the camera requirements for spider mite damage 

detection in a tomato greenhouse crop: 1) the camera system should robustly detect spider 
mite damage of the leaves. Robust means comparable to human scouting performance; 2) the 
detection system should handle the highly variable greenhouse environment; 3) the output 
should be heat maps like produced by human scouting in the greenhouse; 4) the system 
should be mobile and transportable through the crop and greenhouse compartments. Based 
on these requirements, state of the art cameras that are commercially available were listed as 
candidates for the detection system. 

Hyperspectral, multispectral and RGB camera 
The first camera considered was the Silios CMS-V multispectral camera (CMS-V, Silios 

Technologies, Peynier, France) with a range of 550-800 nm with eight custom spectral bands 
and a resolution of 1280×1024 pixels. The second camera was the PixelCam multispectral 
camera (PixelCam, PixelTeq, Largo, USA) with range of 400-1000 nm with eight custom 
spectral bands and a resolution of 2048×2048 pixels. The third camera was the SpectroCam 
multispectral camera (SpectroCam, PixelTeq, Largo, USA) with eight custom spectral bands 
and a resolution of 1408×1044 pixels. The fourth camera was a red, green, blue (RGB) color 
camera (UI-3000SE, IDS, Obersulm, Germany) with a resolution of 4104×3006 pixels. 
Hyperspectral cameras were not considered as a viable option in this project, however, the 
Specim V10E hyperspectral camera (V10E, Specim, Oulu, Finland) with a range of 400-1000 
nm with spectral bands of 2.8 nm was used to determine discriminative wavebands in a lab 
experiment for the multispectral cameras. 

Lab experiment setup to select discriminating wavebands 
To determine the discriminating wavebands suitable for the multispectral cameras and 

to determine the performance of detecting the spider mite damage with the RGB camera, 
spider mite damaged leaves of tomato plants were collected. These leaves were collected in 
an experimental greenhouse at Proefcentrum Hoogstraten in Belgium (May 10, 2017) and in 
an experimental greenhouse at Wageningen University and Research in the Netherlands 
(October 23, 2017). An example image of a damaged leaf is shown in Figure 1. After collecting 
the leaves they were brought to Wageningen to the lab where the hyperspectral 
measurements were performed to gather the spectra of the leaves. After gathering the 
hyperspectral data, analyses were performed with Matlab (Matlab, Mathworks, Natick, USA) 
and the perClass toolbox (perClass Toolbox, perClass, Delft, The Netherlands). Damage areas 
were manually labeled and annotated. For the classification Fisher linear discriminant 
analysis (LDA) was used. Based on the hyperspectral analysis interchangeable stock filters 
were inserted in the SpectroCam camera to be used for taking images of the leaves. The 
multispectral images were analyzed with Matlab and perClass toolbox as well. 
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Figure 1. Spider mite damaged leave used for lab experiment. 

Using a seven megapixel digital camera RGB images were taken as well of the spider 
mite damages leaves to determine the detection chances of this technique as well. The RGB 
images were analyzed with Matlab and perClass toolbox as well. 

Greenhouse experiment setup 
To determine the performance of spider mite damage detection under greenhouse 

growing conditions, a measurement setup was prepared to take images from a standing crop 
in a greenhouse compartment. The greenhouse compartment was situated at experimental 
station Hoogstraten in Belgium. Within the 18 row greenhouse compartment a spider mite 
infestations was initiated such that the damage evolution could be followed during the growth 
season. During a three month period from May to July 2018 every two weeks manual scoring 
of spider mite damage as well as camera detection of spider mite damage was performed. 
Within the greenhouse compartment 10 rows containing 240 numbered plants were 
monitored and imaged. The number of images was on average 800 per measurement day. The 
manual scoring of disease level was done at plant level, by counting the number of spider 
mites on the top leaves of the tomato plants. 

The camera setup as used in the greenhouse consisted of several components as shown 
in Figure 2. A triggering and battery powered supply box was used to enable wheel encoder 
based image recording every 250 mm along the crop rows. An IDS UI-3000SE RGB camera 
with a resolution of 4104×3006 pixels was used with a lens with a fixed focal length of 25 mm. 
On both sides of the camera a VIGI-Lux MVS 5002 Machine Vision Strobe flashlight 
(PerkinElmer Optoelectronics, Salem, USA) was mounted to ensure a constant light level 
during image acquisition. In combination with a short shutter time of the camera of 50 
microseconds this eliminates the effects of changing environmental light conditions and the 
effects of vibrations of the measurement setup. Images were stored as raw uncompressed 10-
bit tiff files, to have maximum detail information available. 

Spider mite damage detection algorithm 
When all images of the four measurement days were available, analysis on the images 

was performed. A preliminary investigation showed very high variability in green color 
brightness off the leaves and crop stand with respect to the camera positioning. Therefore, 
static methods for image processing did not fit well to detect spots with spider mite damage 
on the leaves. We therefore chose a deep learning approach to identify spots in images with 
spider mite damage. 
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Figure 2. Measurement cart with battery, electronics and camera end flash in the top. 

As a result of overlapping images, parts of images were not useful, as there were none, 
or only very far from the camera, leaves in the image. Therefore, we selected images 
containing enough green plant material in the following manner. We loaded the images using 
Python 3.6 and OpenCV 2.0 and did split the image in its three channels R, G and B. A classical 
excessive green filter was deployed, that is, a pixel was considered excessive green if the value 
of 2G-R-B was between 80 and 255. That way a mask was created and after a closing filter we 
determined the percentage of excessive green pixels in each image. We selected those images 
that had more than 25% of the pixels excessive green. The number of images selected varied 
a lot per day: on the subsequent days there were 402, 320, 101 and 27 files selected. These 
files were randomly distributed over a training, test and validation set, comprising 
respectively 60, 20 and 20% of the images. The images of the training and validation set were 
tiled in a grid with tiles of size 299×299 pixels. From each of the images of the training and 
validation sets of the third recording day tiles were selected that were either manually 
classified as damaged or healthy. The corresponding coordinates and tiles were stored on disk, 
resulting in 753 training and 358 validation files. A classifier was created using PyTorch 
(version 0.4) and Torchvision modules, and transfer learning. We retrained the Resnet18 (He 
et al., 2015; Huang et al., 2016) using transfer learning as explained by Chilamkurthy (2019). 
On the validation set, the network achieved an accuracy of 0.90 and the confusion matrix is 
shown in Table 1. Using the trained network the selected images of the 4 days were analyzed. 
This time each image was tiled with tiles of size 224×224 pixels. The model classified all the 
tiles as either healthy or damaged, numerically 0 or 1 respectively. For each tile the percentage 
of excessive green pixels was recorded, with the same algorithm as above. To analyze the 
spider mite damage per plant, the images of one row were distributed over 24 groups, as this 
was the number of plants per row. We considered each group of images as taken from one 
plant, and defined the infection degree per plant to be: 

1
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

� � 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

 

We normalized all infection values by dividing by 56.62, the maximum value 
determined. 
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Table 1. Confusion matrix for spider mite damage detection algorithm. 

 Predicted healthy Predicted damaged 
Healthy 203 14 
Damaged 21 120 

RESULTS AND DISCUSSION 

Lab experiment 
The camera selection criteria list, together with the literature review resulted in a list of 

camera systems used in the lab experiment. Within the lab experiment, hyperspectral 
measurements were performed to identify wavebands that were primarily responsible for the 
discrimination between healthy and spider mite damaged tomato plant leaves. 

The wavebands 700, 716 and 747 nm were selected and used in the multispectral 
systems. Using Fisher LDA, accuracies up to 0.88 could be reached at sub-leaf area with these 
multispectral cameras. However none of the setups could meet the spatial resolution to detect 
spider mite damage at early stage on the leaves. For an application in the greenhouse such 
cameras, due to the limited spatial resolution, would allow to only acquire images of very 
small patches of the canopy per image and moreover images will get out of focus very easily 
for such small patches. In case of the PixelCam camera, that uses a filter wheel to position 
subsequently the different spectral filters in front of the camera optics, it would require that 
the measurement system stand completely still during the acquisition of the full image set. 
Having plants that always move a little by e.g., wind in the greenhouse and a camera that is 
mounted high up in the crop on a long pole which is sensitive to movements and vibrations 
this turned out to be not a viable option. As machine vision color cameras with very high 
resolution are available off the shelf, the second stage in the lab experiment was to perform 
color image analysis. An identical accuracy of 0.88 with sub-millimeter spatial resolution was 
reached in discriminating healthy and damaged spots smaller than a square millimeter. Based 
on these results, a high resolution RGB color camera was preferred to be used on the 
measurement cart. 

Greenhouse experiment 
A measurement setup and cart was successfully realized and used for taking 

measurements in a greenhouse, shown in Figure 3. An image processing pipeline was 
developed having an accuracy of 0.90 in detecting spider mite damage on individual crop 
images as shown in Figure 4. In total 850 images resulted from the selection procedure, shown 
in Figure 5. Grey locations indicate that there were no images selected. For the images that 
were automatically analyzed, a visual investigation indicated that the method performed to 
some extent in providing heat maps in correspondence with human counting. 

 

Figure 3. Image recording in greenhouse. 
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Figure 4. Example original image with the detection results, the represented tiles all contain 
more than 25% excessive green pixels. The red tiles are classified as damaged, 
green tiles as undamaged. Image brightness has been increased by 55% to enhance 
reader visibility. 

However, the total number of plants with analyzed data was too low to justify a 
quantitative analysis. The decreasing number of selected images over time was due to the 
variability in growth among the plants. Also, the tomatoes were grown using a high-wire 
system, where plants are lowered several times during the season. 

CONCLUSIONS 
The lab experiments and camera selection procedure showed that we succeeded in 

identifying wavebands that can discriminate between healthy and spider mite damaged leaf 
areas. State of the art multispectral cameras were investigated for suitability. However, these 
are not suitable for greenhouse application due to limited spatial resolution and standstill 
requirements. A measurement cart was realized that allows semi-automatic acquisition of 
high resolution images of the top of tomato plants in the real world greenhouse. It works 
independent from the environmental light conditions such as night to full-sunlight conditions. 
Working with images from the greenhouse compared with images in the lab faces more 
challenges. Locating objects of interest in the images, handling the changing light conditions, 
handling not standing still plants and vibrating cameras are all additional challenges to reach 
proof of concept technology readiness. These challenges were faced and overcome in this 
research. Finally, an automated pipeline to create heat maps to be used by decision support 
systems for integrated pest management was established. 

In future work we expect to investigate the use of 3-dimensional information, for 
example by stereo imaging, to be able to compensate for the huge variation in image intensity 
levels caused by the high variability of the camera to plant distance. We foresee to mount the 
system on a fully autonomous crop-scouting cart to enable better integration with monitoring 
for integrated pest management. 
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Figure 5. Heat maps produced by normalizing and merging all data. The top four are the hand 
counted rates. The heat maps are a top view of the glasshouse, in which there where 
10 rows each containing 24 plants. 
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