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Abstract

Summary: Copy number variation (CNV) is a major type of structural genomic variation that is increasingly studied across
different species for association with diseases and production traits. Established protocols for experimental detection and
computational inference of CNVs from SNP array and next-generation sequencing data are available. We present the
CNVRanger R/Bioconductor package which implements a comprehensive toolbox for structured downstream analysis of
CNVs. This includes functionality for summarizing individual CNV calls across a population, assessing overlap with func-
tional genomic regions, and genome-wide association analysis with gene expression and quantitative phenotypes.

Availability and implementation: http://bioconductor.org/packages/CNVRanger.

Contact: ludwig.geistlinger@sph.cuny.edu

1 Introduction

Copy number variation (CNV) is a frequently observed deviation from
the diploid state due to duplication or deletion of genomic regions
(Conrad et al., 2010). CNVs can be experimentally detected based on
comparative genomic hybridization, and computationally inferred
from SNP-arrays or next-generation sequencing data (Geistlinger et al.,
2018). These technologies for CNV detection report, for each sample
under study, genomic regions that are duplicated or deleted with re-
spect to a reference genome. Such regions are denoted as CNV calls
and are the starting point for subsequent downstream analysis. In pre-
vious work, we developed, described, and applied functionality for
analyzing CNVs across a population, including association analysis
with gene expression and quantitative phenotypes (da Silva et al.,
2016, 2018; Geistlinger et al., 2018). To allow straightforward applica-
tion to similar datasets, we generalize these concepts and provide
refined implementations in the CNVRanger R/Bioconductor package.

2 Features

2.1 Reading and accessing CNV data
The CNVRanger package reads CNV calls from a simple file format,
providing at least chromosome, start position, end position, sample
ID, and integer copy number for each call (Fig. 1A). Once imported

into R, the CNV data are stored for efficient representation and ma-
nipulation in Bioconductor (Huber et al., 2015) data structures
as implemented in the GenomicRanges (Lawrence et al., 2013)
and RaggedExperiment (Morgan and Ramos, 2017) packages.

2.2 Summarizing individual CNV calls across a

population
For the analysis of CNVs in a population study, CNVRanger imple-
ments three frequently used approaches for defining recurrent regions
(Fig. 1B). The CNVRuler (Kim et al., 2012) method trims low-density
areas that would otherwise inflate the size of the resulting CNV region,
by default trimming region margins that are covered by <10% of the
total number of calls within a region. The reciprocal overlap (RO) pro-
cedure merges calls with sufficient mutual overlap (Conrad et al.,
2010). For example, an RO of 0.51 between calls A and B requires A
to overlap at least 51% of B, and B to also overlap at least 51% of A.
Particularly in cancer, it is important to distinguish driver from passen-
ger mutations, i.e. to distinguish meaningful events from random back-
ground aberrations. The GISTIC (Beroukhim et al., 2007) method
identifies those regions of the genome that are aberrant more often
than would be expected by chance, with greater weight given to high
amplitude events (high-level copy-number gains or homozygous dele-
tions) that are less likely to represent random aberrations.
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2.3 Overlap analysis with functional genomic regions
Once recurrent CNV regions have been defined, CNVRanger allows
to assess whether and to which extent these regions overlap with
functional genomic regions (Fig. 1C). As a certain amount of overlap
can be expected just by chance, an assessment of statistical signifi-
cance is needed to decide whether the observed overlap is greater
(enrichment) or less (depletion) than expected by chance.
CNVRanger therefore builds on the regioneR package (Gel et al.,
2015), which implements a general framework for testing overlaps
of genomic regions based on permutation sampling. We use the
package to sample random regions from the genome, matching size
and chromosomal distribution of the CNV regions. By re-computing
the overlap with the functional features in each permutation, statis-
tical significance of the observed overlap can be assessed.

2.4 CNV-expression association analysis
The CNVRanger package implements association testing between CNV
regions and RNA-seq read counts based on edgeR (Robinson et al.,
2010). For CNV regions with only one CN state deviating from the 2n
reference group, this reduces to the classical 2-group comparison as previ-
ously described (Geistlinger et al., 2018). For multi-allelic CNVs (e.g. 0n,
1n, 2n), edgeR’s ANOVA-like test is applied to test for expression differ-
ences in any non-diploid group with respect to the 2n group. Assuming
distinct modes of action, we distinguish between (i) local effects (cis),
where expression changes coincide with CNVs in the respective genes,
and (ii) distal effects (trans), where CNVs supposedly affect trans-acting
regulators such as transcription factors (Fig. 1D). Due to power considera-
tions and to avoid detection of spurious effects, stringent filtering of (i) not
sufficiently expressed genes, and (ii) CNV regions with insufficient sample
size in groups deviating from 2n, is carried out when testing for distal
effects. Local effects have a clear spatial indication and the number of
genes locating in or close to a CNV region of interest is typically small;
testing for differential expression between CN states is thus generally bet-
ter powered for local effects and less stringent filter criteria can be applied.

2.5 CNV-phenotype association analysis
Specifically developed for CNV calls inferred from SNP-chip data,
CNVRanger allows to carry out a probe-level genome-wide association
study (GWAS) with quantitative phenotypes (Fig. 1E). CNV calls from
other sources such as sequencing data are also supported by using the

start and end position of each call as the corresponding probes. As pre-
viously described (da Silva et al., 2016), we construct CNV segments
from probes representing common CN polymorphisms (allele fre-
quency >1%), and carry out a GWAS as implemented in PLINK
(Purcell et al., 2007) using a standard linear regression of phenotype on
allele dosage. For CNV segments composed of multiple probes, the seg-
ment P-value is chosen from the probe P-values, using either the probe
with minimum P-value or the probe with maximum CNV frequency.
This is similar to a common approach used in differential expression
analysis of microarray gene expression data, where the most significant
probe is chosen in case of multiple probes mapping to the same gene.
Results can be displayed as for regular GWAS via a Manhattan plot.
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Fig. 1. (A) The CNVRanger package imports CNV calls from a simple file format into R, and stores them in dedicated Bioconductor data structures, and (B) implements

three frequently used approaches for summarizing CNV calls across a population: (i) the CNVRuler procedure that trims region margins based on regional density (Kim et al.,

2012), (ii) the RO procedure that requires sufficient mutual overlap between calls (Conrad et al., 2010), and (iii) the GISTIC procedure that identifies recurrent CNV regions

(Beroukhim et al., 2007). (C) CNVRanger builds on regioneR (Gel et al., 2015) for overlap analysis of CNVs with functional genomic regions, (D) implements RNA-seq ex-

pression Quantitative Trait Loci analysis for CNVs by interfacing with edgeR (Robinson et al., 2010), and (E) interfaces with PLINK (Purcell et al., 2007) for traditional gen-

ome-wide association studies (GWAS) between CNVs and quantitative phenotypes
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