
 

Using GPS tracking to understand the impact of management interventions 

on visitor densities and bird populations 

Pouwels, R., van Eupen, M., Walvoort, D. J. J., & Jochem, R. 

 

This is a "Post-Print" accepted manuscript, which has been Published in "Applied 

Geography" 

 

This version is distributed under a non-commercial no derivatives Creative Commons 

 (CC-BY-NC-ND) user license, which permits use, distribution, and 

reproduction in any medium, provided the original work is properly cited and not 

used for commercial purposes. Further, the restriction applies that if you remix, 

transform, or build upon the material, you may not distribute the modified material. 

Please cite this publication as follows: 

Pouwels, R., van Eupen, M., Walvoort, D. J. J., & Jochem, R. (2020). Using GPS 

tracking to understand the impact of management interventions on visitor densities 

and bird populations. Applied Geography, 116, [102154]. 

https://doi.org/10.1016/j.apgeog.2020.102154 

You can download the published version at: 

https://doi.org/10.1016/j.apgeog.2020.102154 

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.apgeog.2020.102154


Using GPS tracking to understand the impact of management interventions on visitor 

densities and bird populations 

ROGIER POUWELS; rogier.pouwels@wur.nl 

MICHIEL VAN EUPEN; michiel.vaneupen@wur.nl 

DENNIS J.J. WALVOORT; dennis.walvoort@wur.nl 

RENÉ JOCHEM; rene.jochem@wur.nl 

Corresponding author: 

Rogier Pouwels, Wageningen Environmental Research, WUR, P.O. Box 47, 6700 AA, 

Wageningen, The Netherlands 

Tel.: +31 6 13297369; fax: +31 317 419 000 



1 
 

Summary 

To manage the potential conflict between outdoor recreation and nature conservation, 

managers of nature areas need information to select effective interventions. For large nature 

areas information on visitor use is often lacking and managers often make decisions based on 

expert judgement. In this paper we use monitoring data gathered with GPS devices to develop 

a tool and derive rules of thumb managers can use to estimate the impact of management 

actions on visitor densities. Using a dataset of 1563 tracks from the New Forest, UK, we 

developed a random forest model and identified which landscape and environmental features 

account for the spatial variation in visitor densities. The random forest model shows that 

distance to car park, distance to roads and openness are the most important factors for 

predicting visitor densities. The model was used as a tool to assess the impact of potential 

management interventions on the population of Nightjar. As developing this type of tool 

requires a lot of data we also derived rules of thumb and a simple algorithm that managers of 

other nature areas can use to estimate the impact of their interventions on visitor densities. 

The derived rules of thumb show that changing the location of car parks in relation to tarmac 

roads can help managers to reduce local visitor densities by 80%. Further research in other 

nature areas should verify the feasibility of these rules of thumb and the simple algorithm.  
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1 Introduction 1 

In many nature areas the dual mandate to protect natural values and accommodate visitors is a 2 

source of potential conflicts (Reed and Merenlander 2008) because recreation can have a 3 

negative impact on biodiversity values (Larson et al. 2016). On the other hand, allowing 4 

recreation in protected areas is thought to be important to build societal support for 5 

conservation in general and local nature management in particular (Thompson 2015). Nature 6 

managers can take measures to mitigate undesired effects of recreation on nature values, but 7 

these measures might have consequences for societal support. Consequently, managers need 8 

to plan actions with care and involve stakeholders in their decision making (Sutherland et al. 9 

2014, McCool 2016). They need adequate monitoring data on the temporal and spatial 10 

distribution of visitors to know where biodiversity values coincide with visitor use (Hadwen 11 

et al. 2007, Hammitt et al. 2015). However, such data are often lacking (Eagles 2014) as 12 

methods are time consuming and often expensive (Orsi and Geneletti 2013, Cessford and 13 

Muhar 2003). Besides information on the current situation, managers also need to know what 14 

options they have to change visitor densities and what impact their measures are likely to have 15 

on social or ecological disturbance thresholds (Sayan et al. 2013, Larson et al. 2018). They 16 

need to understand what features of the landscape and path network will determine the 17 

temporal and spatial distribution of visitors (Hammitt et al. 2015).  18 

 19 

Visitor densities tend to be very heterogeneous in nature areas (Hammitt et al. 2015). 20 

Entrances and car parks act as gateways to an area (Beunen et al. 2008, Larson et al. 2018, 21 

Weitowitz et al. 2019). From these gateways visitors disperse using the path network (Meijles 22 

et al. 2014). Their distribution reflects the choices they make during their visit (Wolf et al. 23 

2015). Research shows that different features influence visitor choices: specific attraction 24 

points, weather, physical features of the landscape, features of the path network, visitor 25 



3 
 

preferences, the time they have available, the motives they have for visiting the area, the 26 

composition of the group and other visitors and users of the area (Arnberger and Haider 2007, 27 

Beeco and Brown 2013, Böcker et al. 2013, Hallo et al. 2012, Shoval 2010, Maldonado et al. 28 

2011, Taczanowska et al. 2014, Torbidoni 2011, Van Marwijk et al. 2009, Schamel and Job 29 

2017). As all these features will interact during a visit, it is difficult to identify which features 30 

account most for differences in visitor densities (Shoval et al. 2010) and which management 31 

actions will be effective in altering visitor distribution.  32 

 33 

In recreation studies GPS devices are considered to be promising for gathering information on 34 

visitor densities and visitor behaviour (Beeco and Brown 2013). They provide accurate data 35 

on distribution, speed of movement and time spent at specific locations (D’Antonio et al. 36 

2010, Beeco and Brown 2013). In recent years monitoring with GPS devices has also been 37 

used in combination with graph theory to evaluate the use of path structure (Taczanowska et 38 

al. 2014, 2017), in combination with recreation suitability mapping (Beeco et al. 2014), in 39 

combination with Public Participation GIS (Korpilo et al. 2017) and for spatial analyses of 40 

movement patterns (Van Marwijk and Pitt 2008, Renso et al. 2012) or developing simulation 41 

models of visitor flows (Gimblett, R. and Skov-Petersen 2008, Van Marwijk 2009, 42 

Taczanowska 2009). However, most studies using GPS devices for monitoring have focused 43 

on their utility for visual analyses and to find hotspots (Beeco et al. 2013). Few studies use 44 

monitoring information to understand what drives visitor densities in nature areas (Beeco et 45 

al. 2014). The exceptions are studies by Meijles et al. (2014), Olson et al. (2017) and Zhai et 46 

al. (2018). However, although both studies provide managers with information about which 47 

features determine visitor densities, this information might still lack relevance to managers. 48 

Managers not only need to know which features drive visitor densities, but also how visitor 49 

densities depend on these features, what the type of response curve is (Monz et al. 2013). This 50 
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information would enable them to link potential management interventions, such as changing 51 

the features that drive visitor densities, to recognized values such as social and ecological 52 

thresholds. 53 

 54 

In this study we aim to develop tools and rules of thumb that managers can use in decision-55 

making processes with stakeholders to generate support for potential management 56 

interventions when visitor densities exceed social or ecological thresholds. For this support 57 

managers need to know how their interventions will lead to a change in visitor densities. We 58 

use monitoring data from GPS devices gathered in the New Forest (UK) to develop a random 59 

forest model (Breiman 2001) to identify which landscape and environmental features account 60 

for the spatial variation in visitor densities in the area. This model is then used as a tool to 61 

estimate visitor densities for the whole area. To illustrate its possible applications we use it to 62 

assess the impact of potential interventions on the population size of Nightjar (Caprimulgus 63 

europaeus), one of the protected species in the New Forest and sensitive to disturbance 64 

(Langston et al. 2007). As developing this type of tools needs much data and specialized 65 

expertise we also derived rules of thumb that managers can use to estimate the impact of 66 

management actions on visitor densities.  67 

 68 

2 Study area  69 

The New Forest is a large forest-heathland complex and Natura 2000 site in the United 70 

Kingdom. The area is around 57 000 ha in size and was designated as a Natura 2000 site for 11 71 

habitat types, two habitat directive species and seven bird species (JNCC 2015a, JNCC 72 

2015b). It is a mosaic of woodland, heathlands, grasslands and mire systems and is managed 73 

by the Forestry Commission. Several hundred thousand residents live and work in small 74 

villages and medium-sized towns within the area or within a radius of 10 km. The New Forest 75 
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is also a popular holiday destination all year round and is famous for its herds of horses (the 76 

New Forest pony) that roam the area. The area is easily accessible, with over 100 car parks 77 

from where visitors can use the dense network of over 2500 km walking trails (Fig. 1). An 78 

estimated 13.3 million people visit the area each year (Gallagher et al. 2007).  79 

  80 
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Fig. 1. The New Forest study area located west of the city of Southampton in the UK. 

Indicated are car parks, path network and roads.  

 81 

3 Methods 82 

Our method consists of six main steps (Fig. 2). First we collected information on visitor 83 

distribution using GPS devices. In this step the monitoring data from the GPS devices was 84 

prepared for further analyses. Second, we selected explanatory variables that describe the 85 

landscape and environment of the New Forest. In the third step we performed an exploratory 86 

data analysis to better understand the relationships between the different explanatory variables 87 

and characteristics of the routes visitors had followed. In the fourth step we developed a 88 

random forest model (Breiman 2001) to estimate the importance of the variables and their 89 



7 
 

interaction in explaining the spatial variation in visitor densities. In the fifth step we used this 90 

model as a tool to predict visitor density distribution for the whole area. We illustrate the 91 

possible applications of the model by using it to assess the impact of three potential 92 

management interventions on the Nightjar population. In the sixth step we derived rules of 93 

thumb based on the results of the previous steps. The steps are explained in the next six 94 

sections.  95 

  96 
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Fig. 2. Schematic overview of the method. In the first step the monitoring data was collected 

with GPS devices and prepared for further analyses. In the second step explanatory variables 

were selected that described the landscape and environment of the New Forest, followed by 

an exploratory data analysis in the third step. In the fourth step we developed a random forest 

model to estimate the importance of the explanatory variables in predicting the frequency with 

which visitors use specific segments of the path network. In the fifth step we used these 

predicted frequencies to estimate the impact of three potential management interventions on 

the Nightjar population. In the sixth step rules of thumb and simple algorithms were derived 

from the results of the previous steps. 

 97 

3.1 Data collection and preparation 98 

The monitoring data with GPS devices were collected on 80 mostly consecutive days during 99 

spring and summer in 2004 as part of the PROGRESS research project (Gallagher et al. 100 
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2007). Visitors arriving at car parks were asked to participate in the monitoring project. The 101 

GPS devices were stored in a plastic carrying case that could be clipped onto the rucksack or 102 

jacket of visitors who participated in the survey. Participants were instructed to keep the 103 

device with the built-in antenna upward and at an approximate height of 1.5m. Two models of 104 

GPS devices were used, the Garmin eTrex and Garmin eTrex Venture. The record method of 105 

the devices was set to auto to record tracks at a variable rate that creates an optimum 106 

representation  of the track. On average each 51.2 meter a data point was logged. After 107 

participants returned, the data points were stored in a database using the Garmin transfer 108 

protocol. Additional information regarding the group size, number of dogs and use of a leash 109 

for the dog was added to the monitoring data by unique ID.  110 

 111 

In total 1563 GPS tracks with 110 505 data points were collected at 41 car parks. The car 112 

parks were selected by the managers to represent differences in landscape setting and capacity 113 

and that are popular by both local visitors as well as visitors from further away. The 114 

monitoring frequency differed between car parks; some were monitored over 10 days, while 115 

others were only monitored once (Appendix A). As the number of GPS devices was limited, 116 

the proportion of visitors monitored at highly used car parks was probably lower than at less 117 

used car parks. As these proportions are unknown the dataset does not represent true visitor 118 

densities. Instead, we used the GPS tracks to construct the routes visitors were most likely to 119 

have followed (Appendix B). These routes are a set of consecutive path segments. Each path 120 

segment is delineated by two nodes. In the path network each crossing, junction and car park 121 

is represented as a node. For each segment of the path network the constructed routes were 122 

used to determine the frequency of use by visitors from a specific car park by dividing the 123 

number of constructed routes by the number of monitored visitors starting at that specific car 124 
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park (see Table A.1 in Appendix A). Only car parks that had 10 or more routes in the database 125 

were taken into account, resulting in analyses based on 36 car parks (Appendix A).  126 

  127 

3.2 Selecting explanatory variables  128 

We selected several information sources that describe the landscape and environment of the 129 

New Forest. We applied three selection criteria: the data had to represent features that (1) 130 

were known from previous research to have an influence on visitor behaviour and visitor 131 

densities, (2) vary across the New Forest and (3) maps should be available that represent the 132 

situation around 2004 when the monitoring data was gathered. The features we selected were: 133 

car parks, path and road network, vegetation type, openness, slope and traffic noise (Table 1) 134 

and all maps were converted into a 10 x 10 m grid. This resolution was chosen to avoid 135 

information on different path segments being assigned to one cell. The information on the car 136 

parks was used to determine the distance of each point on the track to a car park, as it is 137 

known that visitor densities are higher near car parks (Meijles et al. 2014, Zhai et al. 2018). 138 

The path network was used to distinguish between different path types, as previous research 139 

suggested that visitors have different preferences for path surfacing (Beeco et al. 2014). The 140 

path network was also used to determine the distance to tarmac roads, as Henkens et al. 141 

(2006) showed that visitors avoid crossing tarmac roads and visitor densities might be lower 142 

near tarmac roads. The vegetation information was selected because vegetation types were 143 

found to determine the attractiveness of the landscape to visitors (De Vries et al. 2013), which 144 

may result in a spatial variation in visitor densities.  145 

 146 

The openness of a landscape is considered one of the most important indicators of the visual 147 

landscape experience (Kaplan et al. 1989, Weitkamp 2011). In nature areas this openness 148 

strongly depends on the vegetation structure as perceived by visitors. Information 149 
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representing landscape openness in the New Forest was not available. Instead, the Viewscape 150 

model (Jochem et al. 2016) was used to determine openness for each grid cell in the area. 151 

ViewScape calculates the visible area of the landscape from sightlines within a radius of 3 km 152 

(Jochem et al. 2016). Two openness features were used as explanatory variables: the total 153 

visible area and the variation in sightlines. Slope was selected as visitors avoid steep slopes 154 

(Beeco et al. 2014) and lower densities are expected at steeper slopes. Traffic noise was 155 

selected as visitors prefer tranquil areas and densities are expected to be lower in areas with 156 

high noise levels (Benfield et al. 2010).  157 

 158 

  159 
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Table 1. Selected explanatory variables used in the random forest model. The justification for 

the chosen variable is given in the third column (Source) together with the reference. 

Variable Variable determination Source 
Distance to car park The distance to the car park was calculated as 

the crow flies. 
Visitor densities are higher 
near car parks (Meijles et al. 
2014, Zhai et al. 2018).  

Path type Five path types were distinguished, composed 
of a path network map showing nine path 
types: unclassified dirt tracks (72% of total 
length), gravel tracks (3%), tracks on lawns 
(6%), cycle paths (8%) and tarmac roads 
(11%). The map was provided by the Forestry 
Commission. 

Visitors densities depend on 
path type as visitors have 
different preferences for types 
of path surface (Beeco et al. 
2014) and path width (Zhai et 
al. 2018). 

Distance to roads Distance to the nearest tarmac road was 
calculated as the crow flies. 

Visitors densities are expected 
to be lower near roads as 
visitors avoid crossing roads 
(Henkens et al. 2006). 

Vegetation type 11 Groups of vegetation types were 
distinguished, composed of a vegetation type 
map containing 52 vegetation types. The 
vegetation map was provided by the Forestry 
Commission. Corine Land Cover map (EEA 
2016a) was used to fill gaps in the vegetation 
map. 

Visitor densities depend on 
vegetation types as they 
determine the attractiveness of 
landscapes, as perceived by 
visitors (De Vries et al. 2013) . 

Openness: 
 
 
 
          Total area 
 
 
          Variation 
 

Based on the vegetation map, two openness 
features were determined by the Viewscape 
model (Jochem et al. 2016): 
 
Total visible area; amount of area visible to a 
distance of 3 km.  
 
Standard deviation in the length of the 180° 
sightlines representing diversity in openness in 
the 360° view. 

Openness is an important 
factor for visitor preferences 
(Kaplan et al. 1989).  

Slope The slope (in degrees) was based on the 
European Digital Elevation Model (EU-DEM) 
(EEA 2016b). 

Visitors avoid steep slopes 
(Beeco et al. 2014). 

Traffic noise Traffic noise (in dB) was based on modelled 
noise levels for major traffic routes (DEFRA 
2016). For the missing values a background 
noise of 35 dB was assumed (based on 
Pesonen 2000). 

Visitors prefer tranquil areas 
and densities are expected to 
be lower in areas with high 
noise levels (Benfield et al. 
2010). 

 160 
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3.3 Exploratory data analyses 161 

The dataset on the derived routes was analysed for basic characteristics, such as total trip 162 

length, maximum distance from car park, average group size and presence of dogs. 163 

Information on the explanatory variables was added to explore the relationships between these 164 

variables, visitor densities and characteristics of the expected routes followed by visitors. In 165 

this step an extra GIS action was executed to add information on crossing tarmac roads to the 166 

derived routes. The path network was used to construct compartments of the New Forest that 167 

are surrounded by tarmac roads. When the derived routes occur in more than one 168 

compartment visitors are expected to have crossed at least one tarmac road or used it as part 169 

of their trip. 170 

 171 

3.4 Visitor density analyses 172 

A random forest model was constructed to estimate which landscape and environmental 173 

features account for spatial variation in visitor densities in the area. For the analysis, all 174 

covariates and the response were converted to a 10 x 10 m grid. We used the implementation 175 

by Wright and Ziegler (2017). Their implementation of random forests follows that of 176 

Breiman (2001) and is also suitable for large data sets. The frequency of use of a path by 177 

visitors from a specific car park was used as the response variable (‘y’ variable).  178 

 179 

For practical reasons (data reduction to make the calculations feasible) only locations within 5 180 

km of the car parks, as the crow flies, were taken into account. As almost 99% of the data 181 

points of the GPS tracks are within this distance from the car parks we think 5 km is a suitable 182 

value. The model we constructed consists of 500 regression trees, each of which is based on a 183 

bootstrap sample from the original data. Each bootstrap sample has the same size as the 184 

original data and was obtained by simple random sampling with replacement. This means that 185 
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some records of the original data set occur more than once, and some never. Data that were 186 

not in the bootstrap sample were used for ‘out-of-bag’ validation. According to Breiman 187 

(2001, p.11), using out-of-bag data (about one-third of the data) removes the need for a set 188 

aside validation set. The importance of the explanatory variables used (see Table 1) was 189 

computed in three steps. First, the out-of-bag mean squared error was computed for each tree. 190 

Then, this statistic was also computed for each tree after permuting each predictor variable. 191 

Finally, the difference between the two mean squared errors was averaged over all trees (Liaw 192 

and Wiener 2002).  193 

 194 

3.5 Assessment of potential management interventions as an illustration of a practical 195 

application 196 

To illustrate how the data and tools could be applied to support decision making we designed 197 

three potential management interventions and estimated the visitor densities for the whole 198 

area. The visitor densities were used to assess the impact of the interventions on the Nightjar 199 

population by comparing it with the current situation. We chose management interventions 200 

that restrict visitors by temporary or permanent closures of car parks as these are one of the 201 

most commonly used methods of reducing visitor densities in sensitive parts of nature areas 202 

(Hammitt et al. 2015). The three possible interventions assessed are: 1) closure of small car 203 

parks, 2) closure of relatively isolated car parks that are located near areas with many 204 

Nightjars and 3) closure of all but 20 car parks to concentrate visitors near the border of the 205 

area or near villages, for example Lymington and Lyndhurst (see Appendix C for more details 206 

on the chosen interventions).  207 

 208 

For this assessment we used the random forest model developed in step four together with the 209 

territories of Nightjar that were recorded during a full survey of the New Forest in 2004 210 
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(Newton 2010). The random forest model was used to predict relative visitor frequency on 211 

path segments for all car parks in the area. For each intervention the number of visitors at the 212 

car parks was used to calculate a map with the visitor densities per path per year. In order to 213 

calculate the expected impact of each intervention we used the dose–impact relationship 214 

between visitor densities and breeding pair density as described by Pouwels et al. (2017). This 215 

resulted in estimates for the total (potential) population size for the Nightjar in the New Forest 216 

area for each situation. The dose-impact relationship is based on a study in a similar 217 

landscape, the Veluwe (the Netherlands). The Veluwe is also a large forest-heathland 218 

complex and Natura 2000 site with a dense path network and high visitor numbers (See 219 

Appendix C for more details of the method used).  220 

 221 

3.6 Deriving rules of thumb 222 

The random forest model was used to determine the importance of the explanatory variables 223 

in explaining the spatial variation of the visitor densities in the New Forest. The relationship 224 

between the variables and visitor densities may be visualized in ‘partial dependence plots’. 225 

However, as these variables might be correlated and interact with one another, interpreting 226 

these visualizations can be complicated or even misleading (Molnar 2019). Nevertheless, 227 

managers need these relationships to estimate the impacts of interventions. Therefore, we 228 

combined the results from the data exploratory analyses for the most important variables 229 

selected by the random forest model and derived rules of thumb and simple algorithms. These 230 

rules of thumb and algorithms may be used by managers to estimate the impact of 231 

interventions on visitor densities and help them to gain support for these interventions in 232 

decision-making processes with stakeholders. We focused on interventions related to 233 

restricting visitor use by temporary or permanent closure of car parks or by changing the 234 

capacity and location of car parks.  235 
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 236 

4 Results 237 

4.1 Exploratory data analysis 238 

The additional information from the GPS tracks shows that 40% of the tracks represent a 239 

single visitor, 40% represent two visitors and 20% represent visitor groups with more than 240 

two people. The average number of people for each track was 2.0 visitors with a standard 241 

deviation of 1.5 visitors. Two thirds of the visitors walked their dog. Most of them were on 242 

their own and 23% had the dog off leash. This number might be biased due to the presence of 243 

the researchers at the car parks. The average trip length of visitors without dogs was 5.4 km 244 

and of visitors with dogs 3.2 km. More than half the visitors stayed within a radius of 1000 m 245 

of the car park (Fig. 3).  246 

 247 

The data also show that 17.6% of visitors cross roads or use them during their visit. 248 

Combining this data with other variables shows that visitors without dogs in open landscapes 249 

avoid crossing roads more often than visitors in closed landscapes. The probability of crossing 250 

roads declines from 41% in the least open landscapes to 13% in the most open landscapes. For 251 

visitors with dogs the probability is less than 10% in all landscapes (Fig. 4). 252 

  253 
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Fig. 3. Numbers of data points from GPS tracks after data handling (Appendix B) at specific 

distances from the car park. Just 1.6% of all data points are found at distances exceeding 5000 

m and are not shown on the graph.  

  254 
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Fig. 4. Probability of visitors crossing tarmac roads in relation to average openness of the 

landscape along the route taken. The number of routes in each openness class is given. The 

average openness is defined as the percentage of area that is visible within a 3000 m radius 

during the entire visit.  

 255 

4.2 Impact of landscape and environmental features on visitor densities  256 

The fitted random forest model explains 74% of the variance in the data. The models show 257 

that besides distance to car park, distance to road, openness related variables, path type, slope 258 

and vegetation type are important factors for predicting visitor densities (Fig. 5). Traffic noise 259 

showed a very low importance in the first models and was removed from the final dataset, 260 

suggesting that the distance to roads is a better predictor of visitor densities than the level of 261 

traffic noise itself.  262 

  263 
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Fig. 5. Importance of variables in predicting visitor densities.  

 264 

4.3 Impact of management actions on visitor densities and current distribution of 265 

Nightjar 266 

The random forest model shows visitor densities in the New Forest varying between 0 and 267 

300 000 visitor groups per ha per year (Fig. 6). The current population of Nightjar in the New 268 

Forest consists of 498 breeding pairs. The potential population size, without recreation in the 269 

area, is estimated to be 805 breeding pairs, implying that current recreational use lowers the 270 

population size by 38%. All three interventions lead to an increase in population size, but only 271 

the intervention in which all but 20 car parks are closed shows a large impact on the 272 

population size (Table 2). It should be noted that these results should be seen as an indication 273 

as they are based on the dose-impact relationship from the Veluwe and that the accuracy of its 274 

use for the New Forest has not been determined.  275 
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 276 

Fig. 6. Visitor density map on the New Forest based on the random forest model and the 

current location of car parks and Nightjar territories. The area containing the highest visitor 

densities is located at Wilverley in the south.  

 277 
Table 2. Predicted impact of potential interventions to amend the spatial variation of visitor 

densities on Nightjar breeding pairs in the New Forest, UK. The figures represent the current 

and predicted number of Nightjar breeding pairs over four visitor density zones (column 1) 

for four situations: the current distribution of car parks (column 3) and three interventions 

(columns 4–6). Column 2 shows the predicted number of breeding pairs for a situation 

without recreation.  
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visitors 

(x 1000 per 

year per ha) 

without 

recreation 

(predicted) 

current 

(actual in 

2004) 

intervention 1: 

 close small car parks 

(predicted) 

intervention 2: 

 close 3 car parks 

(predicted) 

intervention 3: 

 close all but 20 car parks 

(predicted) 

0 – 10 805 157 177 199 578 

10 – 25  156 141 144 64 

25 – 50  95 90 88 35 

> 50  90 92 85 28 

total 805 498 500 515 705 

 278 

4.4 Rules of thumb 279 

To estimate the impact of management interventions on visitor densities we derived two rules 280 

of thumb and one simple algorithm for managers by combining the results from the data 281 

exploratory analyses for the three most important variables selected by the random forest 282 

model: distance to car park, distance to road and openness (total area). The first rule of thumb 283 

concerns the impact of tarmac roads on visitor densities: as on average 17.6% of all visitors 284 

cross roads or use them during their trip (see section 4.1) visitor densities are up to five times 285 

higher in areas on the same side of the road as the car park than on the opposite side of the 286 

road. Managers could use this rule of thumb to change visitor densities by relocating car 287 

parks. These interventions might reduce visitor densities by 80% in areas that are sensitive to 288 

disturbance without restricting visitor use completely. The presence of dogs might even be 289 

reduced by 90%. The second rule of thumb concerns the interaction between tarmac roads and 290 

openness. In woodlands the impact of tarmac roads on visitor densities is less distinct (around 291 

78% reduction), while in open landscapes, like heathlands, the impact is larger (around 95% 292 

reduction). Combining both rules of thumb shows that managers might be able to reduce 293 

visitor densities by up to 95% by relocating a car park from one side of the road to another in 294 

open landscapes.  295 

 296 
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Results from the exploratory data analysis and the random forest model give a reliable 297 

estimate of how visitor densities decline with increasing distance from the car park. We used 298 

the frequency distribution of GPS locations, the data points (Fig. 3), to derive a simple 299 

algorithm that estimates the number of visitor groups at a specific path segment. First, we 300 

chose an algorithm that describes the sigmoid declining curve and fitted the parameters for the 301 

correlation of data points. This curve represents the probability that a visitor group is present 302 

at a specific distance (Eq. 1; Fig. 7). Next, we multiplied this by the number of visitor groups 303 

starting at a specific car park, taking into account that visitor groups will be present at a 304 

specific distance twice: when they enter the area and when they return to the car park. Finally, 305 

the number of visitor groups was divided by the number of paths segments at a specific 306 

distance class to account for a potential unevenness in path density over distance (Eq. 2). 307 

Managers can use Eq. 2 to acquire a first estimate of the number of visitors at a specific 308 

location (Nv). The parameters needed are quite easy to collect and are (1) the distance to the 309 

car park of interest, (2) the number of visitors that use the car park, and (3) the density of the 310 

path network around the car park. For locations within 5 km of more than one car park, the 311 

algorithm should be applied for each car park separately and the number of visitors per path 312 

segment should be summed.  313 

 314 

𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠 = 1 − 𝑠𝑠𝛼𝛼

𝐻𝐻𝛼𝛼+𝑠𝑠𝛼𝛼
       Equation 1 315 

 316 

fsdp fraction of data point at distance d  317 

d distance to car park (m) 318 

H parameter at which visitor presence is 50% (m); 965 in Fig. 7 319 

α parameter determining the rate at which visitor presence declines; 2.80 in Fig. 7  320 

 321 
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𝑁𝑁𝑣𝑣 = (1 − 𝑠𝑠2.80

9652.80+𝑠𝑠2.80� × 𝑉𝑉𝑐𝑐𝑐𝑐 × 2
𝑠𝑠𝑑𝑑

     Equation 2 322 

 323 

Nv Predicted number of visitors present at a path segment at distance d (per day or per 324 

year)  325 

d distance to car park (m) 326 

Vcp number of visitors starting at a specific car park (per day or per year) 327 

pd number of path (segments) at a specific distance class 328 

  329 
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Fig. 7. Fraction of data points at a certain distance from a cark park. The parameter values of 

Eq. 1 are 2.80 for α and 965 m for H. 

 330 

5 Discussion and implications for recreation management 331 

5.1 Practical implications 332 

In this paper we show that random forest models are suitable for modelling the complex 333 

interaction between different landscape and environmental features to explain visitor densities 334 

in nature areas. A random forest model was used as a tool to assess the impact of potential 335 

interventions on visitor densities and consequently on a population of a target species, the 336 

Nightjar, in the New Forest, UK. We focused on reallocating visitors, but interventions such 337 

as changes to path type or vegetation type could also be assessed. Although the GPS data only 338 

covered one third of all car parks, we believe that the data are representative of all car parks in 339 

the area and so the model predicts visitor densities for the whole area (Fig. 6). Random forest 340 

models based on GPS monitoring data are particularly useful in areas where managers need 341 

tools to estimate visitor densities and relate them to social or ecological thresholds. Managers 342 
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could use these tools in decision-making processes with stakeholders to discuss and find 343 

support for potential interventions. 344 

 345 

To discuss the effectiveness of interventions with stakeholders, managers need to know what 346 

measures are needed to lower visitor densities to certain desired levels. As the random forest 347 

model does not provide straightforward dose–effect relationships between a single variable 348 

and the visitor density, we derived two rules of thumb. Both use a simple algorithm to relate 349 

the location of car parks to visitor densities at specific distances from the car parks. 350 

Relocating car parks is effective as car parks act as gateways (Larson et al. 2018) and, as this 351 

present study has shown, their location accounts for much of the spatial variation of visitor 352 

densities in the area. These rules of thumb can be used by managers of nature areas who lack 353 

the resources or expertise to collect and analyse the type of data used in this study.  354 

 355 

The distinctive downward curve of visitor densities corresponds with other distance decay 356 

curves (Yang and Diez-Roux 2012, Tratalos et al. 2013, Prins et al. 2014). The added value of 357 

our algorithm is that it is based on the data points of the GPS tracks, which is a better 358 

representation of visitor densities than a curve based on the maximum distance visitors walk 359 

(Tratalos et al. 2013, Prins et al. 2014). A distance decay curve based on the maximum 360 

distance visitors walk implies visitors walk in a straight line back and forth. Our dataset 361 

shows that not taking into account the shape of the route visitors follow will result in 362 

underestimating visitor densities by approximately 10% between 500 and 1500 m from car 363 

parks.  364 

 365 

In the past decades other modelling approaches, like RBSim (Itami et al. 2003) and 366 

MASOOR (Jochem et al. 2008), have been developed to simulate the interaction between 367 
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different landscape and environmental features and visitor flows in nature areas. Our analyses 368 

might contribute to these agent-based models as they indicate which features are important to 369 

incorporate. However, in these models the agents, the simulated visitors, navigate over a path 370 

network in pursuit of goals. During this navigation they make choices at crossings and 371 

junctions based on the local situation and the already covered route (Jochem et al. 2008). 372 

Although some of our results, like the probability to cross tarmac roads, seem useful to 373 

implement in these models the exact parameterisation is not straightforward. The probability 374 

of a visitor to cross a tarmac road during a visit is a combination of the probability to 375 

encounter a tarmac road and the probability to cross this road. Our result shows the combined 376 

effect of both probabilities while in the agent-based model only the probability to cross an 377 

encountered road should be implemented. Therefore, we propose to use the derived routes to 378 

determine which choices visitors make at crossings (i.e. Jochem et al. 2008) and determine the 379 

factors that affect visitor behaviour (i.e. Cavens et al. 2004, Taczanowska et al. 2008).  380 

 381 

5.2 Generalization of the results 382 

Our results show that visitor densities in the New Forest depend on the interaction between 383 

several features of the path network and landscape as well as on the accessibility of the area. 384 

That distance to car park is an important factor confirms the conclusion of Meijles et al (2014) 385 

and Zhai et al. (2018). Our finding that visitors avoid crossing tarmac roads confirms the 386 

conclusion of Henkens et al. (2006). In addition, the total visible area and the variation in 387 

180° sightlines are important predictors of visitor densities. However, the model outcomes 388 

show that the correlation is complex and not easy to interpret. The New Forest is expected to 389 

attract visitors who prefer open areas like heathlands as well as visitors who prefer closed 390 

areas like ancient woodlands. The results of our study reflect these mixed preferences. Also, 391 

Heijman et al. (2011) showed that respondents preferred a mix of open and closed forest, 392 
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making it difficult to identify a correlation between openness and visitor densities. A variable 393 

that was not found to be important by our analytical method was traffic noise. This may be 394 

due to the lack of variation provided by the data (too coarse) and the fact that a large part of 395 

the area was based on the value of background noise of 35 dB.  396 

 397 

If our rules of thumb are to be useful, it is essential that they are applicable in a range of 398 

nature areas. Such areas should therefore have similar features to our study area. The most 399 

important features of our study area are its size (a few thousand hectares), the large path 400 

network with multiple car parks, the fact that it is a cultural landscape, common in western 401 

Europe, and the presence of just a few specific attractions. The steep distance decline curve 402 

has also been found in several other studies, suggesting that it is a generic description of the 403 

correlation between visitor densities and distance to car park (Yang and Diez-Roux 2012, 404 

Tratalos et al. 2013, Prins et al. 2014). One way of testing the validity of the algorithm for use 405 

in other areas is to compare the average trip length of visitors in the New Forest found in this 406 

study with other studies in similar areas. Such a comparison shows that the average trip length 407 

is in the same order of magnitude. Meijles et al. (2014) reported 4.8 km in a mixed forest and 408 

heathland area in the Netherlands, Taczanowska et al. (2008) reported 5.2 km in an urban 409 

forest park in Austria and Zhai et al. (2018) reported 3.4 and 3.8 km in two urban forest parks 410 

in China. Shorter lengths were reported by Sharp et al. (2008): 2.2 km for dog walkers and 2.4 411 

km for walkers in the Dorset heaths (UK) and 2.5 km for dog walkers and 2.6 km for walkers 412 

in the Thames basin heaths (UK). In small nature areas the results might be less useful as the 413 

average trip length and maximum distance visitors penetrate into the area might be lower; 414 

Hornigold et al. (2016) uses 400 m as a typical distance covered by visitors entering nature 415 

areas in the UK.  416 

 417 
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5.3 Limitations of the used methodology 418 

For our study we used an existing data set. The data was collected as part of the PROGRESS 419 

research project to show the managers of the New Forest how visitors behaved in the area 420 

during their visit (Gallagher et al. 2007). Although reusing this data is efficient, it may 421 

introduce a bias because the data was not tailor-made for our study. Two design choices are of 422 

interest in this respect: the selection of car parks and the survey period. Managers selected car 423 

parks that are popular by both local visitors as well as visitors from further away and 424 

represent differences in landscape setting and capacity. This might lead towards a bias of car 425 

parks that are busy. We expect that it is unlikely that poorly used car parks will greatly affect 426 

the results. Poorly used car parks will have a small impact on the overall visitor densities in 427 

the area. Nevertheless, we may not exclude that a focus on busy car parks has introduced 428 

some bias and for future research it is preferred to select survey locations randomly. The 429 

survey period was during spring and summer 2004. During this period the proportion of 430 

visitor from further away is higher in the New Forest (Sharp et al. 2008). For our study this 431 

difference should be included as the conflict between outdoor recreation and nature 432 

conservation is most prominent during spring and summer; the breeding season of bird 433 

species. However, managers should be cautious to use the tools for conflict situations during 434 

autumn and winter. Visitors might behave differently during these periods.   435 

 436 

5.4 Dealing with GPS data 437 

Due to the large numbers of tracks and car parks where visitors have been monitored in the 438 

area we consider the dataset to be a good reflection of visitor behaviour and visitor densities 439 

in the New Forest. Using GPS devices for monitoring purposes always has limitations due to 440 

the accuracy of the locations stored by the GPS device. Especially in woodlands, data points 441 

may lie some distance from the path network (Piedallu and Gégout 2005). Lack of accuracy 442 
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can lead to errors in the dataset and we found that error handling is a time consuming part of 443 

the research (Meijles et al. 2014). Communication errors or breakdowns between the GPS 444 

device and satellites, usually for short periods, meant that some parts of the routes taken by 445 

visitors were missing. We used the travelling salesman algorithm (Appendix B) to fill these 446 

gaps, but as the algorithm always chooses the shortest distance over the path network, some of 447 

the selected paths may not actually have been used. A relatively small part of the routes 448 

followed (15%) were constructed by the algorithm and we are confident that most of the paths 449 

were selected correctly as the visual check in step four of the data preparation did not show 450 

any unexpected results. Nevertheless, further research is needed to determine the accuracy of 451 

this algorithm in selecting path segments to complete the routes followed by visitors, based on 452 

the data points collected by GPS devices.  453 

  454 
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Appendix A. Dataset of GPS tracks  455 

 456 

The original dataset was collected as part of the PROGRESS research project in the New 457 

Forest during spring and summer of 2004 at 41 car parks (Gallagher et al. 2007). Both models 458 

of the GPS devices used, the eTrex and eTrex Venture, were manufactured by Garmin and 459 

have 12 receiver channels. The nominal position accuracy is 15 m for the eTrex and 5 m for 460 

eTrex Venture. However, Rodríguez-Pérez et al. (2007) showed a decrease in accuracy in 461 

areas with a forest canopy for comparable device models. The positional accuracy is affected 462 

by stem density due to the lowering of the signal to noise ratio and the signal interception 463 

caused by electromagnetic waves penetrating through stems and canopies. At each car park, 464 

the GPS devices were turned on before data collection to ensure that the current almanac was 465 

stored and an accurate position was acquired. At the time of data collection, no selective 466 

availability was in operation. The devices have a storage capability for 2048 data points and 467 

were set to the ‘Auto’ record method for recording the tracks. This method records the tracks 468 

at a variable rate to create an optimum representation of the track. After participants returned, 469 

their device was connected to a laptop. A lightweight application, using the Garmin transfer 470 

protocol, read the data points into a database.  471 

 472 

Table A.1 shows the number of days the car parks were monitored and the number of tracks 473 

collected from each car park. Table A.2 shows monitoring was conducted less frequently on 474 

Sundays. Sharp et al. (2008) showed that residents in the New Forest tend to use different car 475 

parks than visitors living outside the area. Combining the dataset with information from Sharp 476 

et al. (2008) indicates that visitors with dogs are mainly local residents (Fig. A.1). The dataset 477 

used contains 14 columns of information (Table A.3).  478 

  479 
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Table A.1. Number of tracks gathered at each car park. 

Car park Times monitored Total tracks 
Acres Down 4 7 
Anderwood 2 8 
Andrews Mare 4 24 
Ashley Walk 6 31 
Beaulieu Heath 5 19 
Blackwater 5 38 
Blackwell Common 7 41 
Bolderwood 7 75 
Burbush Hill 6 25 
Burley 5 20 
Busketts Lawn 7 30 
Cadnam Cricket 3 6 
Clay Hill 4 29 
Crockford 4 31 
Deerleap 12 109 
Dibden Inclosure 6 114 
Fritham 4 22 
Godshill Cricket 6 57 
Hincheslea Moor 3 11 
Kings Hat 5 30 
Linford Bottom 6 61 
Longslade Bottom 5 42 
Longslade Heath 4 34 
Millyford Bridge 4 19 
Mogshade 1 2 
Moonhills 9 77 
Ober Corner 2 9 
Pig Bush 7 56 
Pipers Wait 5 32 
Queens 14 119 
Shatterford 8 41 
Smugglers Road 5 44 
Standing Hat 4 16 
Turf Hill 5 57 
Vereley 4 20 
Whitefield Moor 6 41 
Wilverley Plain 7 66 
Woods Corner 2 19 
Wooton Bridge 3 11 
Yew Tree Bottom 4 24 
Yew Tree Heath 8 46 
Total 218 1563 

 480 

  481 
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Table A.2. Number of tracks gathered on each day of the week. 

Day 

Times 

monitored 

Number of 

tracks 

Monday 11 210 

Tuesday 12 262 

Wednesday 12 272 

Thursday 13 269 

Friday 12 223 

Saturday 12 227 

Sunday 8 100 

Total 80 1563 

  482 
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Fig. A.1. Relationship between percentage of local visitors (residents; from Sharp et al. 2008) 

and percentage of visitors with dogs (based on the GPS tracks) for 19 car parks that are 

available in both datasets. 

  483 
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Table A.3. Explanation of headers in the added file (dataset.xlsx) containing data from the 

GPS tracks. The first 11 rows originate from the original dataset and the final three rows were 

added during the preparation of the dataset.  

 

Header Further information 

ID unique ID for each data point 

Track_ID Unique ID for each track 

Easting Easting coordinate 

Northing Northing coordinate 

Date_Time time of storing data point 

Date Date of survey 

Car_Park_Name Name of car park where GPS device was handed out 

Car_Park_Code Code of car park where GPS device was handed out 

N_People Number of people in the visitor group 

N_Dogs Number of dogs along the visitor group 

Dogs_on_Leash "Y" means dogs were on leash and "N" means dogs were off leash 

Internal_Track_ID Unique ID for each data point starting at 1 for each track 

After_Preperation Data point taken into account after preparation step 

After_GIS Data point taken into account after GIS snapping procedure 
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Appendix B. Data handling of GPS tracks 484 

 485 

The data points of each GPS track were used to construct the expected route of a visitor or 486 

visitor group in four steps. The four steps are illustrated for one track in Fig. B.1. This track 487 

was chosen as it illustrates all the potential problems we encountered in constructing routes 488 

from data points. The first step in the preparation of the dataset was the removal of outliers 489 

and data points that are considered redundant for further analyses. Outliers are data points that 490 

are located at large distances from the rest of the data points on a specific track. We found two 491 

types of outliers: outliers caused by researchers switching the GPS device on and off before 492 

arriving at a car park without resetting the device, and outliers due to errors in the 493 

communication between the GPS device and satellites (Piedallu and Gégout 2005). A visual 494 

check revealed that for some tracks two consecutive data points were outliers. To select these 495 

consecutive errors we calculated the average distance to the three previous data points and to 496 

the three following data points. We used the rule that one of the average distances had to 497 

exceed 500 m and the other at least 250 m to be considered an outlier. The dataset also 498 

contains clusters of data points at the start of a visit and at the end of a visit, due to the 499 

handling time between researchers and visitors, and at locations where visitors probably had a 500 

short stop. These clusters of data points contain many data points that may be considered 501 

redundant for determining the route followed. To decrease preparation time data points within 502 

5 m of one another were reduced to one data point for further analysis (Fig. B.1). The removal 503 

of outliers and redundant points resulted in a 5% reduction in the number of data points.  504 

 505 

In the second step, data points were assigned to the path network using the snapping method 506 

from the ArcGIS Toolbox (http://pro.arcgis.com/en/pro-app/tool-reference/editing/snap.htm). 507 

We used the snapping rule to assign data points to the nearest path within a distance of 50 m. 508 
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Data points that are further away from the path network were excluded for further analyses 509 

(Fig. B.1). This preparation step resulted in a 1% reduction of the data points.  510 

 511 

The third step was the construction of the routes. Many tracks missed data points for small 512 

parts of the route followed. To fill these gaps a travelling salesman route algorithm was used 513 

in QGIS Desktop (v2.14.12) with GRASS (v7.2.0) 514 

(https://grass.osgeo.org/grass70/manuals/v.net.path.html). This algorithm constructs routes 515 

based on the order of data points. The shortest route between different data points on a path 516 

network are linked to one route. Information from the track logs was used for the order of the 517 

data points (Fig. B.1). For 10 tracks no routes could be constructed as they contained too few 518 

data points. At this stage of the analysis the resulting dataset contained 1553 routes.  519 

 520 

Finally, in the fourth step a visual check of the constructed routes was conducted using QGIS. 521 

During the check small segments, or ‘dangling nodes’, of the routes were deleted (Fig. B.1). 522 

These segments originated from snapping a data point to the nearest path. At crossings this 523 

sometimes resulted in allocating the GPS data point to a path the visitor most likely would 524 

have crossed instead of followed. Only segments of paths were deleted when the snapped 525 

point was within 100 m, as the crow flies, of the main route a visitor had most likely followed. 526 

The set of 1553 routes was used to derive rules of thumb. For the random forest model only 527 

car parks with 10 or more routes in the database were taken into account, resulting in 528 

frequency maps for 36 car parks based on 1521 expected routes. 529 

 530 

  531 

https://grass.osgeo.org/grass70/manuals/v.net.path.html
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Fig. B.1. Overview of the preparation of the GPS tracks into visitor routes for track ID 1057, 

containing 35 data points. The red dots show the outliers and redundant data points. Numbers 

1–5 are not shown as these are located 20 km from the New Forest in an urban area; the 

researcher probably forgot to reset the GPS device before the start of the study. Data point 20 

illustrates an outlier resulting from errors in communication between the GPS device and 

satellites. Data point 30 is an even more extreme outlier at several hundred metres off the 

route and not visible at this scale. Data points 6, 10 and 34 illustrate redundant data points. 

For this track all selected data points (orange) are within 50 m of the path network (black dots 

represent the snapped data point). The travelling salesman route algorithm was used to derive 

the final route (the combination of the blue and dotted red lines). For this track the algorithm 

was needed to connect the route between data points 19 and 21 and between 29 and 31. Based 
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on a visual check the red dotted lines towards data point 22 and 24, 28 and 29 were deleted 

resulting in a final route for this visitor group.   
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Appendix C. Description of three potential management interventions used to assess the 532 

impact of possible management actions on the Nightjar population 533 

 534 

The model was used to assess three potential management interventions that alter the capacity 535 

and use levels of the car parks. The capacities were based on the input maps of the car parks 536 

and the use levels were based on the local knowledge of the site managers. The current 537 

capacities and use levels were altered by the researches to simulate the three interventions and 538 

illustrate the potential of the model. The total number of visitors to the New Forest (13.3 539 

million; Gallagher et al. 2007) were distributed over the car parks based on the combination 540 

of their capacity and use level.  541 

 542 

The three potential management interventions are: 543 

1. Closing small car parks: All car parks with a capacity of less than 20 cars were 544 

considered closed. This resulted in the closure of 45 car parks and a redistribution of 545 

less than 10% of all visitors over the other car parks. Visitors that were expected to 546 

start from these 45 car parks in the current situation were redistributed in proportion to 547 

the number of visitors starting at the other car parks. Closing down small car parks 548 

may be expected to result in larger areas that are disturbance free. 549 

2. Focus on suitable areas: Three relatively isolated car parks located near areas with 550 

many Nightjars were considered closed. Visitors from these three car parks were 551 

redistributed to five surrounding car parks in proportion to the capacity of these car 552 

parks. The three car parks are Andrews Mare, Yew Tree Heath and Moonhills. It was 553 

expected that this scenario would have the highest impact per redistributed visitor as 554 

the measures focus on areas that are suitable for Nightjar.  555 
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3. Concentrate visitors in a small part of the area: All but 20 car parks were considered 556 

closed. All visitors were distributed over these 20 car parks evenly. The total number 557 

of visitors that start their trip from these car parks corresponds to the two car parks 558 

that are used most in the current situation, Bolderwood and Wilverley Inclosure. This 559 

most extreme intervention was expected to concentrate visitors in a small part of the 560 

area, resulting in large undisturbed areas and an increase in population size of 561 

Nightjar.  562 

 563 

First, the random forest model, based on monitoring data from 36 car parks, was applied to all 564 

the car parks in the area. This gave the frequencies with which visitors would be present at 565 

certain locations. For each scenario these frequencies were multiplied by the number of 566 

visitors starting from a specific car park. The results for all the car parks were summed to 567 

derive the estimated visitor density on the path network in the New Forest.  568 

 569 

Second, we determined the potential population of Nightjar for the situation without 570 

recreation. The Forestry Commission provided a map with the breeding pairs of Nightjar in 571 

the New Forest based on the 2004 survey, the same year as the GPS dataset (see also Newton 572 

2010). We assumed this distribution reflects the habitat suitability for Nightjar, but should be 573 

corrected for the impact of the disturbance of visitors. In areas with high visitor numbers, the 574 

number of breeding pairs is expected to be much higher when visitors are absent. We used the 575 

dose–impact relationship of Pouwels et al. (2017) to correct the current distribution and 576 

estimate the potential population in the area for a situation without recreation by multiplying 577 

each breeding pair by the inverse of the index in Fig. C.1. We used the maximum visitor 578 

groups per ha per year within a radius of 500 m as the disturbance level (x-axis in Fig. C.1). 579 

This radius is based on research by Murison (2002) and Lowe et al. (2014). 580 
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 581 

 

Fig. C.1. Dose–impact relationship between recreation pressure, in visitor groups per ha per 

year, and the breeding bird density index for Nightjar. The figure is taken from (Pouwels et al. 

2017). 

 582 

Finally, for the three interventions the maximum number of visitor groups per ha per year was 583 

determined within a radius of 500 m for each breeding pair. Using Eq. C.1, the corrected 584 

number of breeding pairs for a specific intervention was determined (Cpdi). The Cpdi is 585 

summed to predict the population size. For the current situation this resulted in the number of 586 

breeding pairs from the survey itself as Ibpdi equals Ibpdcurrent. Ipbdi is the index of the 587 

breeding pair density based on the recreation pressure for a specific intervention  and 588 

Ipbdcurrent for the current situation. As some values within the 500 m buffers are very high, we 589 

cut off the impact of visitors at the impact of 100 000 visitors, resulting in a minimum index of 590 

25% of breeding bird densities.  591 

 592 



42 
 

 𝐶𝐶𝑏𝑏𝑏𝑏𝑖𝑖 =  1
𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

× 𝐼𝐼𝑏𝑏𝑏𝑏𝐼𝐼𝑖𝑖        Eq. C.1 593 

 594 

Cbpi is the corrected number of breeding pairs for a specific intervention 595 

Ipbdcurrent is the Index of the breeding pair density based on the recreation pressure in the 596 

current situation 597 

Ipbdi is the Index of the breeding pair density based on the recreation pressure for a 598 

specific intervention 599 

 600 
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