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Obtaining high-quality phenotypic data that can be used to study the relationship between

genotype, phenotype and environment is still labour-intensive. Digital plant phenotyping

can assist in collecting these data by replacing human vision by computer vision. However,

for complex traits, such as plant architecture, robust and generic digital phenotyping

methods have not yet been developed. This study focusses on internode length in cu-

cumber plants. A method for estimating internode length and internode development over

time is proposed. The proposed method firstly applies a robust node-detection algorithm

based on a deep convolutional neural network. In tests, the algorithm had a precision of

0.95 and a recall of 0.92. The nodes are detected in images frommultiple viewpoints around

the plant in order to deal with the complex and cluttered plant environment and to solve

the occlusion of nodes by other plant parts. The nodes detected in the multiple viewpoint

images are then clustered using affinity propagation. The predicted clusters had a homo-

geneity of 0.98 and a completeness of 0.99. Finally, a linear function is fitted, which allows

to study internode development over time. The presented method was able to measure

internode length in cucumber plants with a higher accuracy and a larger temporal reso-

lution than other methods proposed in literature and without the time investment needed

to obtain the measurements manually. The relative error of our complete method was

5.8%. The proposed method provides many opportunities for robust phenotyping of fruit-

vegetable crops grown under greenhouse conditions.

© 2020 IAgrE. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Plant scientists and breeders study the interactions between

the genotype, phenotype and environment to improve crop

performancewith respect to, for instance, yield, resistances to
.P. Boogaard).
s paper.
.01.023
r Ltd. All rights reserved
(a)biotic stress and resource-use efficiency. Understanding

this relationship allows to select plants or crossings based on

their genetic potential instead of their current phenotypic

expression (Houle, Govindaraju, & Omholt, 2010). Modern

breeding methods apply this knowledge to increase the ge-

netic gain of the breeding process and accelerate the
.
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Nomenclature

∩ Intersection

∪ Union

2D Two dimensional

3D Three dimensional

A Numbering accuracy [-]

Bp Bounding box p

c Completeness [-]

DL Deep learning

ei Error between estimated internode length and

ground-truth internode length [mm]

eij; accurate Error of the accurate manual method [mm]

eij; rough Error of the rough manual method [mm]

FN False negative

FP False positive

h Homogeneity [-]

ILSVRC ImageNet Large Scale Visual Recognition

Challenge

IOU Intersection over union [-]

NP Total number of node predictions

NPc Number of correctly numbered node

predictions

qx Horizontal scaling factor for affinity

propagation [-]

qy Vertical scaling factor for affinity propagation

[-]

ri Relative error between estimated internode

length and ground-truth internode length [%]

RGB Red, green and blue

RMSE Root Mean Square Error [mm]

siðtÞ Ground-truth internode length between node i

and node iþ1 at time t [mm]bSiðtÞ Estimated internode length between node i and

node iþ1 at time t [mm]

TP True positive

V V-measure [-]

xn Horizontal coordinate of node n [pixels]

yn Vertical coordinate of node n [pixels]

x0n Transformed horizontal coordinate of node n

[pixels]

y0n Transformed vertical coordinate of node n

[pixels]

xmm
n Metric horizontal coordinate of node n [mm]

ymm
n Metric vertical coordinate of node n [mm]

YOLO You Only Look Once
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development of improved cultivars. However, while genotypic

information is now readily available due to next-generation

sequencing methods, there is a lack of large amounts of ac-

curate phenotypic data (Yol, Toker, & Uzun, 2015). The reason

for this is that phenotyping is still mainly a manual process,

which is time-consuming (Gehan & Kellogg, 2017) and this

tends to lead to subjective data because of perception and

interpretation differences among experts and experiments (Li,

Zhang, & Huang, 2014). To improve this, there is a need for

automated digital phenotyping methods.
Digital plant phenotyping methods mainly use computer

vision to collect accurate and objective phenotypic data. The

accuracy and measurement speed of these methods can

match and surpass human experts (Yol et al., 2015). The most

widespread methods apply two-dimensional (2D) red, green,

and blue (RGB) imaging to measure morphological properties

of plants. In a review by Tripodi, Massa, Venezia, and Cardi

(2018), an overview of work that improves the sensor data by

increasing spatial or spectral resolution of the sensors or by

implementing sensors that can capture the third dimension

(3D) was presented.

These developments open up possibilities to measure

plant architecture on a plant organ level in fruit-vegetable

crops. Plant architecture in fruit-vegetable crops consists of

several traits like leaf orientation and placement, stem char-

acteristics and fruit placement. The expression of these traits

in a specific plant is the result of the genetic composition of

that plant, the environmental conditions in which the plant is

growing and the crop management that has been applied to

the plant (Lobos et al., 2017). Understanding the influence of

both genetics and environment on plant architecture (i.e. the

phenotype) enables breeding towards an optimised architec-

ture. Reasons to optimise plant architecture can for example

be to increase light interception and with that plant produc-

tivity or to reduce labour, possibly by optimising the structure

of the plant for automated crop maintenance or harvesting.

In this paperwe focus on one of the traits defining the plant

architecture, the internode length. Internode length is the

distance between two consecutive nodes along the curvature

of the stem. The internode length and the speed of leaf for-

mation have a direct effect on labour requirement in the

greenhouse. A uniform and stable crop development over

time leads to higher efficiency in crop maintenance, which

reduces the labour costs. Furthermore, variation in internode

length can be an indicator of stress factors like drought and

salinity (Litvin, 2009; Najla et al., 2009; Sibomana, Aguyoh, &

Opiyo, 2013). By measuring internode length with a high

temporal resolution, up to multiple times a day, the internode

development can be tracked over time, providing detailed

information about plant growth.

A current method to estimate internode length, is to divide

the total plant length by the number of nodes. This is rela-

tively fast, but it only provides a rough average per plant and

does not allow to study the variation in internode lengths.

Alternatively, the individual nodes can be measured using a

ruler, which leads to a higher accuracy, but this increases the

amount of labour required to obtain the measurements. The

objective of this research is to develop an automated method

for measuring internode length in cucumber that can match

the accuracy of manual measurements using a ruler, but

without the time investment needed to obtain the measure-

ments manually.

Measuring in greenhouses involves certain challenges. First,

due to the organisation of the greenhouse with narrow paths, a

small camera-to-plant distance is required. The rows of plants

furthermore cause a high amount of background clutter with

both plant and non-plant material. Lighting conditions change

over time due to weather conditions, artificial top and inter

lighting, type of screens and glass and (self) shadowing of the

plants. Because of the high occupation rate in the greenhouse,

https://doi.org/10.1016/j.biosystemseng.2020.01.023
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plantsalso tendtooccludethemselvesandneighbouringplants,

causingmissingparts in thedata (Minervini, Scharr,&Tsaftaris,

2015; van der Heijden et al., 2012).

Other studies on the development of automated systems to

estimate internode length in fruit vegetable crops can be

found in the literature. Yamamoto, Guo, and Ninomiya (2016)

estimated internode length of tomato seedlings. Although

plants in the seedling stage do not represent the complexity of

full-grown plants, the methods used by Yamamoto et al. are

relevant for this research. A multiple step 2D RGB image-

processing pipeline is proposed, in which the nodes are first

detected, then the order along the main stem is determined,

and finally the internode length is estimated. This method is

highly dependent on a pixel-wise classification algorithm that

tries to find the individual nodes. Although the authors state

that the images were taken in conditions close to practical

cultivation, no background clutter of other plants and no

occluded nodes were taken into account. In the case of full-

grown plants in a high-wire growing system, these chal-

lenges cannot easily be excluded. It is therefore expected that

this will lower the performance of their node-detection

method in greenhouse production conditions. In this paper,

the possibility of implementing a deep-learning based node-

detection algorithm to improve the robustness is investigated.

Deep learning has been used in previous research in agri-

culture and plant phenotyping. For example, Dyrmann,

Jørgensen, and Midtiby (2017) proposed a method for weed

detection in highly occluded cereal fields. For segmentation

and counting of leaves, Giuffrida, Doerner, and Tsaftaris (2018)

proposed a model to count leaves from top-view plant images

and Ward, Moghadam, and Hudson (2019) demonstrated that

using synthetic data for training a leaf-segmentation network

can outperform state-of-the-art results. Singh,

Ganapathysubramanian, Sarkar, and Singh (2018) presented

an overview of recent work using deep learning for pheno-

typing plant stress. In the work of Pound et al. (2017), the

effectiveness of deep-learningmethods for plant phenotyping

was shown for classification of root tips and the detection of

plant parts like leaf and ear tips and bases in images con-

taining a section of a wheat shoot.

Nguyen, Slaughter, Max, Maloof, and Sinha (2015) used a

structured-light multi-viewmethod to reconstruct a 3D point-

cloud model of different plants, including cucumber. The set-

up consisted of multiple pairs of cameras mounted on an arc

and a turn table that rotated the plant. Leaveswere segmented

in the point cloud using Euclidean clustering and by setting

some constraints on the shape of the cluster. Internode length

was estimated indirectly by the distance between two leaf

centres projected on the plant’s principal axis. On average,

this resulted in a 7.28% error with respect to the plant height,

with differences depending on the shape, size and density of

the leaves. The method was tested on small plants, with a

maximum height of 242 mm and was reported to work for a

minimum internode length of 50 mm. The method is

impractical for greenhouse conditions and the leaf-

segmentation method is likely to fail often for more complex

plants and cluttered conditions.

In this paper, we propose a novel method for measuring

internode length and internode development over time for

taller cucumber plants, up to 1.5m. Themethod combines and
builds upon the ideas of Yamamoto et al. (2016) and Nguyen

et al. (2015) and consists of three elements: (i) a deep neural-

network for the robust detection of nodes, (ii) a combination

of multiple viewpoints to deal with a complex and cluttered

environment withmany occlusions, and (iii) a temporal node-

tracking method, which allows the study of internode devel-

opment over time. The aim is to match the accuracy of the

ruler-based manual measurements without the time invest-

ment required.
2. Materials & methods

In this section, the experimental set-up, the image acquisition

system and the implementation of the internode length

measurement method are presented.

2.1. Experimental setup

2.1.1. Plant material and reference measurements
The cucumber (C. sativus) variety used in this research was

Proloog RZ F1 (Rijk Zwaan, De Lier, The Netherlands). Twelve

plants were grown in a climate chamber in the Netherlands.

According to the high-wire growing system, the plants were

trained to grow vertically by placing clips to attach the stem of

the plant to a supporting wire. Plants were positioned such

that no occlusion between plants occurred. The measure-

ments took place between June 25th and July 2nd in 2018. On

June 25th, the plants had 7-9 nodes, which had increased to

11e13 nodes by July 2nd.

During the experiment, it was discovered that three of the

twelve plants (plants four, five and eight) were not properly

attached to the supporting wire and therefore bulged down-

wards under their own weight. Since a fixed plant-camera

distance was assumed for several of the methods tested,

these plants could not be properly analysed. For complete-

ness, the results are shown with and without these outlier

plants.

Ground truth data was collected by manually measuring

internode length using a ruler on June 27th, June 29th and July

2nd between 07:00 H and 08:00 H. Newly formed nodes were

measured once their length exceeded 10 mm. In total, 459

internode lengths were measured. This took 86 min for two

persons. The average measuring time per internode length is

(86 � 60)/459 ¼ 11 s. This is including time to move from plant

to plant and to register the data on a laptop.

2.1.2. Camera set-up and image acquisition
Images were collected using an automated image-

acquisition system that can move through the climate

chamber autonomously, taking images of the cucumber

plants from different viewpoints. An IMPERX B4820 16 MP

CCD camera was used with an image resolution of

4904 � 3280 pixels (IMPERX, 2018). Relevant non-standard

camera settings were the exposure time of 600 ms and the

white balance mode that was set to automatic. During all

image acquisition runs LED top lighting for plant growth

was turned on. Two additional LED light bars were mounted,

one on each side of the camera, to obtain high quality

images.

https://doi.org/10.1016/j.biosystemseng.2020.01.023
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The system took images from the plants from multiple

viewpoints. Given a specific viewpoint, the morphological

structure of the plant can result in occlusion of (part of) the

nodes by leaves. Examples of visible and occluded nodes are

shown in Fig. 1. Taking images from multiple viewpoints

increases the chance of capturing the object of interest (in

our case the node) of a plant (Hemming, Ruizendaal,

Hofstee, & van Henten, 2014; Nguyen et al., 2016). More-

over, nodes can now be detected and combined in multiple

images, improving the robustness of the system. Figure 2

shows a schematic overview of the camera positions used

in this research. Images were taken from three camera po-

sitions (A, B and C) and six height levels (1e6). This was

done from both sides of the plant gutter (0� and 180�)
resulting in 36 viewpoints per plant. In Fig. 3, example im-

ages from one side of the plant gutter are shown. In section

2.3.1, the method to combine the different viewpoints is

explained in more detail.

2.1.3. Image data set
Images of the 12 cucumber plants were collected using the

automated image acquisition system. Measurements were

done on eight consecutive days between June 25th and July

2nd at four times per day, at 05:00 H, 09:00 H, 13:00 H and

17:00 H. The total amount of images expected was 12

plants � 8 days � 4 runs � 36 images ¼ 13,824 images. How-

ever, due to technical issues, not all plantswere photographed

in all runs. Thus, in total 11,592 images were captured. All

plants were imaged at least twice per day. Images taken above

plant height, without visible plant material, were discarded

resulting in a dataset consisting of 9990 suitable images.

2.2. Internode-length estimation

The method for estimating internode length from the

collected images consists of four steps:

1) Detecting nodes using a deep-learning-based object-

detection algorithm

2) Combining the detected nodes from multiple

viewpoints

3) Clustering node detections and determining the node

order

4) Estimating the internode length
Fig. 1 e (a) completely visible node, (b) partly o
The individual steps are explained in the following

sections.

2.2.1. Step 1: detecting nodes using a deep-learning-based
object-detection algorithm
Finding objects in images is a common image analysis task

that has been studied for many decades. Earlier object-

detection algorithms were based on hand-designed feature

extractors to locate the objects of interest in the camera im-

ages. These methods usually lack generality and robustness

for use in different objects and environments. With the

development of deep neural networks and deep learning (DL)

techniques, powerful methods have become available that

allow to train object detectors in an end-to-end fashion,

including the feature extraction in the learning process. This

has resulted in many DL-based object-detection algorithms

that have shown to be capable of detecting a wide range of

objects in uncontrolled environments with varying illumina-

tion conditions, such as presented in the ImageNet Large Scale

Visual Recognition Challenge (ILSVRC). The advantages of DL-

based approaches include being completely generic and hav-

ing the ability to learn the problem from training data only

(LeCun, Bengio, Hinton, & Y. LY. BG. H, 2015).

2.2.1.1. The node-detection algorithm. Among the top-

performing DL-based object detection algorithms is You

Only Look Once (YOLO) (Redmon & Farhadi, 2018). The most

recent version, YOLO v3, outperforms the older versions for

small object detection (Redmon & Farhadi, 2018) and was

therefore used in this research. In addition to YOLO, many

other network architectures are available. There is no clear

evidence that YOLO is the best choice for our application,

however, based on the comparisons carried out by Suh,

IJsselmuiden, Hofstee, and van Henten (2018) it seems

reasonable to expect that different network architectures give

similar results. Optimising network architecture is therefore

not carried out within this research. If required in the future,

the object detection algorithm can be adjusted to use an

alternative network architecture relatively easily.

YOLO is a convolutional neural-network architecture that

divides the input image into an S� S grid. Every grid cell is

responsible for detection of objects that fall into that grid cell.

For every grid cell, B bounding boxes with associated object-

ness and conditional class probabilities are predicted. A
ccluded node and (c) fully occluded node.

https://doi.org/10.1016/j.biosystemseng.2020.01.023
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Fig. 2 e Side view and row view of the camera positions used for image acquisition. The side view image shows the camera

positions A, B, and C for the 6 height levels. In the row view image it is shown that images are taken from both sides of the

plant gutter. The dimensions are in mm.

Fig. 3 e Examples of captured images from one side of the plant gutter, three camera positions and three of the six height

levels.
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bounding box represents the location and size of an object.

Objectness is a confidence score on the probability that the

bounding box contains an object and the conditional class

probability gives the probability that the detected object be-

longs to a given class. The features are extracted from the

images based on the Darknet53 (Redmon & Farhadi, 2018) ar-

chitecture. The detected features are then used to predict

bounding boxes at three different scales, relating to three

levels of object sizes. The convolutional neural network is

trained on annotated data using backpropagation (Redmon,

Divvala, Girshick, & Farhadi, 2016; Redmon & Farhadi, 2017).

The YOLO v3 configuration of Alexey (2018) was used and

altered concerning the pre-defined width and height to which

the input images are resized (608) and the number of classes (1

class). The pre-defined width and height were set larger than

the resolution used by Redmon and Farhadi (2018) to enhance

performance on small objects, as nodes in our images are

small objects in relation to the image size. No other adapta-

tions of the networkwere done. Transfer learningwas used by

taking the pre-trained YOLO network that was trained on the

ILSVRC dataset, using the weights file ‘darknet53.conv.74’

(Redmon, 2016). The pre-trained network was then further

trained on images captured by our system for a maximum

number of 3� 105 training iterations. A batch size of 64 and a

subdivision of 16 was used. Weights were saved every 1000

iterations.

2.2.1.2. Training of the network. In order to train the network,

a training set with manually annotated nodes was generated

using the LabelImg annotation tool (Tzutalin, 2015). Nodes

that were clearly visible were annotated as “Node”, nodes that

were partly occluded by plant material, the image border or

any other object were annotated as “Partially occluded nodes”

and fully-occluded nodes were not annotated. Only clearly

visible nodes were used to train the network. For an example

of the different node types see Fig. 1. Each annotated bounding

box was positioned such that the centre point corresponds to

the centre of the node and sized such that the Y-shaped

structure of the node was included. Furthermore, the node

order was included in the annotations, where node 1 is the

node closest to the plant gutter and the node number in-

creases with increasing plant height. To limit the annotation

time, only a subset consisting of for each plant one randomly

selected image acquisition run per day was annotated. In total

8877 fully visible nodes and 1437 partially occluded nodes

were annotated.

Based on the annotated images, the network was trained

on the open source neural network framework ‘Darknet’

(Redmon et al., 2016; Redmon & Farhadi, 2018) using an NVI-

DIA GeForce® GTX 1080 Ti (11 GB) GPU (NVIDIA Corporation,

2018b). CUDA version 9.0.176, cudNN version 7.1.3 (7103) and

OpenCV version 2.4.9.1were used (NVIDIA Corporation, 2018a,

2018c; OpenCV team, 2018). In order to optimally use the an-

notated data for training the network, a k-fold cross-

validation with k ¼ 4 was used. The images were split in

groups of three consecutive plants as opposed to a random

split of the images, to prevent that the same node would be

part of both the train and validation set, which could other-

wise happen as in this case one node is likely to be present on

images from multiple viewpoints and different days. For all
CV-runs, the training dataset contained between 6500 and

6700 nodes and the validation dataset contained between 2100

and 2300 nodes.

2.2.1.3. Node detections. The trained network can detect

multiple node instances in the images. For detection, the

confidence threshold on the objectness was set to 0.5 to

ensure sufficient input for the consecutive steps in the pipe-

line. This could have resulted in an occasional false positive,

but thesewere filtered out by step 2 and 3, as it is very unlikely

that the same false positive occurs in multiple viewpoints.

2.2.2. Step 2: combining the detected nodes from multiple
viewpoints
The result of the node-detection algorithm is a list of image

coordinates of the detected nodes per image (see Fig. 4a). To

combine the node detections of a single plant from the

different viewpoints, we need to transform the node positions

into a single reference coordinate frame. For the trans-

formation, it was assumed that all nodes lie in a plane parallel

to the image planes and that the distance of the nodes to the

camera positions is equal for all viewpoints. This reduces the

transformation to a translation. For each camera position, the

required shift in x and y direction is determined based on the

shift of the manually annotated nodes. In the case of images

taken from the other side of the plant gutter (180�), the images

were horizontally flipped first. In this research, the offsets

were determined once per plant andwere used to also process

images collected at later time points. The corrected position of

the detected nodes is now given by the transformed co-

ordinates (x0, y0), of which an example is shown in Fig. 4b.

It should be noted that the assumption of the nodes lying in

a plane parallel to the camera plane at equidistance was

violated by the three plants identified as “outlier” plants in

section 2.1. The transformation of the node coordinates for

these plants was therefore not very accurate. In future work,

the transformation could be improved by considering 3D in-

formation and using calibration objects.

2.2.3. Step 3: clustering node detections and determining the
node order
Because of the multiple viewpoints used in this research, a

single node is likely to be detected multiple times. These de-

tections need to be clustered and numbered before the inter-

node length can be measured. Following Yamamoto et al.

(2016), affinity propagation (Frey & Dueck, 2007) is used as a

clustering method. Affinity propagation (AP) is a non-

hierarchical clustering algorithm that automatically de-

termines the optimal number of clusters. The algorithm re-

quires a preference factor and a damping factor as input,

which are discussed below.

Commonly, AP is used for clustering data of which both the

spatial distribution and the number of clusters are unknown.

However, since in our case we assume (near) vertical plant

growth, some information about the spatial distribution of the

nodes is available and can be used to support the clustering

algorithm. Therefore, two additional factors (qx, qy) were

introduced which were respectively multiplied by the trans-

formed x-coordinate and the transformed y-coordinate of the

detected nodes before clustering. If the value of qx was larger

https://doi.org/10.1016/j.biosystemseng.2020.01.023
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Fig. 4 e (a) Node coordinates for one plant detected in multiple viewpoints (node number unknown), (b) Detected nodes

mapped onto the reference coordinate frame (node number unknown) and (c) clustered node detections numbered and in

the appropriate order.
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than the value of qy, in the clustering process the variation in

the horizontal (x) plane was amplified as compared to the

variation in the vertical (y) plane and vice versa. Changing the

values of the factors qx and qy allows control of the importance

of differences in the x and y coordinates of the nodes. For

example, if qy is set to a high value, small differences in y-

coordinate between two nodes will already cause them to be

in separate clusters, while for a low value of qy they could be

clustered together.

The node-clustering algorithm was divided in three clus-

tering steps, each with its own values for qx and qy, which

have been determined empirically. In the first step ðqx ¼ 10;

qy ¼ 300Þ, qy was relatively high, which causes nodes with

even a small difference in y to end up in separate clusters.

Since it is likely that falsely detected nodes were only present

in one viewpoint, these false detections will end up in clusters

with only one member. The clusters with only one member

were removed after the first clustering step. In the second step

ðqx ¼ 10; qy ¼ 24Þ, the remaining nodes were clustered again.

The values for qx and qy were chosen such that all detected

nodes corresponding to the same physical node were clus-

tered together. However, the difference in y-direction between

detections of the youngest nodes was smaller than for the

older nodes, which already had elongated internodes. The

youngest nodeswere therefore often clustered together in this

step. To solve this, in the third step ðqx ¼ 10; qy ¼ 150Þ, the
cluster with the highest y-value is re-clustered once more. If

the cluster did contain two proximate nodes, they were likely

to be separated in this step. In all steps, qx was set to a low

value of 10, because the plant was assumed to grow vertically

and clusters should not split up horizontally (i.e. in the x

direction).

To test the sensitivity of the clusteringmethod for changes

in the parameter settings, a grid-search optimisation step was

carried out. The values of qx and qy for all three clustering

steps were set at 1, 10, 100 and 500 and all possible combi-

nations, resulting in 46 ¼ 4096 experiments. Based on the re-

sults, a second more dedicated grid search was performed in

which the values for qx and qy in clustering step 2 were varied

more densely around the empirically determined values
presented above. In this step, we tested the clustering algo-

rithm for qx ranging from 5 to 15 and qy ranging from 19 to 29.

The preference factor of the algorithm controlled the

number of clusters that are defined. According to the advice of

Frey and Dueck (2007), this factor was set to the median of the

coordinates of the bounding boxes multiplied by the values of

qx and qy. The damping factor controls the convergence speed

of the algorithm and can be used to prevent oscillations. Again

according to the advice of Frey and Dueck (2007), this value

was set to 0.6. Based on the results no reason was found to

alter these factors.

The result of the clustering steps is a cluster of node de-

tections for each node on the plant. Since the cluster

numbering of AP is arbitrary, the clusters were re-numbered

according to ascending y-coordinate of the centre of the

clusters. This means that the cotyledonary node gets number

1 and counting upwards along the plant, corresponding to the

order in which the nodes emerged. An example that seeks to

clarify these steps is shown in Fig. 4.

2.2.4. Step 4: estimating the internode length
After clustering the detected nodes, the internode length for

all time points at which images were collected could be

determined. The transformed coordinates (x0i , y0i ) were first

converted to metric coordinates (xmm
i , ymm

i ) using a calibration

object to estimate the pixel resolution at the distance of the

nodes, which in our case was 0.18 mm � pixel�1. The cali-

bration object was placed in the plant gutter at the same

distance from the camera as the plants. The conversion is only

valid for objects at this distance andwill give errors for objects

at a different distance.

The estimated internode length between node i and node j

at time t, bSijðtÞ was calculated as the Euclidian distance be-

tween the centre of clusters i and j according to Eq. (1).

bSijðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
xmm
j � xmm

i

�2

þ
�
ymm
j � ymm

i

�2
r

½mm� (1)

Inordertoobtainanestimateof the internodelengthsat time

pointswhere no imageswere collected, a local linear function is

fitted to the preceding and the subsequent measurement of a
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certain timepoint. If a certain nodewasonlydetectedonce, that

value was used to obtain the estimate.

2.3. Evaluation methods

The evaluation methods for the node-detection, node-clus-

tering and cluster-numbering steps, as well as the evaluation

method for thecompletepipeline, are introduced inthissection.

2.3.1. Multiple viewpoints
In order to evaluate the benefit of collecting images from

multiple viewpoints, node detection using different combi-

nations of viewpoints was evaluated. Eight combinations of

different viewpoints (see section 2.1.2) were considered.

Firstly, the effect of only imaging from one position straight in

front of the plant (position B), versus imaging from three po-

sitions on one side of the plant (positions A, B and C) was

analysed. Secondly, the effect of imaging fromonly one side of

the plant (0�) or both sides (0� and 180�) was analysed. Thirdly,

three different positions in the vertical direction (position 1, 3

and 5) were compared to all six vertical positions (1e6).

Two factors were evaluated: (1) the number of times a

single node was observable in the different combinations of

viewpoints introduced above, and (2) the percentage of nodes

observable in at least two camera images, as this is the min-

imal cluster size used in Step 3 of our method.

2.3.2. Node detection (Step 1)
The performance of the node-detection algorithm was eval-

uated based on the intersection-over-union (IOU) between the

predicted bounding box, Bp, and the annotated bounding box,

Ba. IOU is a standard performance measure also used for the

ILSVRC and COCO object detection challenges (COCO, 2018;

Everingham, Van Gool, Williams, Winn, & Zisserman, 2010).

The IOU value is calculated by dividing the area of the inter-

section of the two bounding boxes by the area of their union:

IOUðBp;BaÞ ¼ jBp∩Baj
jBp∪Baj ½�� (2)

IOU takes a value between 0 and 1 with higher values for

better matches. The resulting IOU-value is then compared to

an IOU threshold in order to decide if the node was correctly

detected. A commonly used threshold of 0.5 was applied to

account for some inaccuracies in the annotation (Everingham

et al., 2010).

To obtain the number of true positives (TP), false positives

(FP) and false negatives (FN), the IOU values between all pre-

dicted and all annotated nodes in the image were calculated

and sorted from high to low. If the IOUðBp; BaÞ> 0:5, the pre-

diction was a TP and the annotated node was marked as

detected. The prediction was an FP if the IOU value with all

annotated nodes was smaller than the IOU threshold or when

the annotated node was already detected by another predic-

tion with a higher IOU value. If an annotated node was not

detected by any of the predicted bounding boxes, this was

counted as an FN.

Based on the number of TP, FP and FN, the precision and

recall performancemeasureswere calculated. The precision is

ameasure of howmany of the nodes predicted by the network

correspond to an actual node, as specified in Eq. (3). The recall
describes how many of the real nodes are detected by the

network, as specified in Eq. (4). The F1-score defined in Eq. (5)

calculates the harmonic mean of the precision and recall,

which allows to compare the performance based on a single

indicator (Sasaki, 2007).

Precision ¼ # TP
# TPþ# FP

½�� (3)

Recall ¼ # TP
# TPþ# FN

½�� (4)

F1� score ¼ 2,
Precision,Recall
Precisionþ Recall

½�� (5)

The precision, recall and F1-score were evaluated regularly

during the training of the network. Evaluation of the results of

the remainder of the method is based on the weights of the

network obtainedwhen the F1-score on the validation set was

to its maximum.

The analysis of the results showed that the node-detection

algorithm often detected nodes that were partly occluded by

plant parts (e.g. see Fig. 1b) or that were partly cut off by the

image border. Since annotation of these nodes was not

included in the ground-truth used for training the network,

these detections are strictly false positives. However, since it

seems reasonable to consider the detection of partly-occluded

nodes as being correct, in the evaluation of the node-detection

algorithm they were classified as true positive.

2.3.3. Node clustering and cluster numbering (Step 2 and 3)
The performance of the clustering algorithm was evaluated

using the Homogeneity (h), completeness (c) and V-measure

(Rosenberg & Hirschberg, 2007). Homogeneity indicates to

what extent each cluster contains only points of a single class

and completeness indicates to what extent all points

belonging to a single class are clustered in the same cluster.

Both measures range from 0 (poor) to 1 (perfect). The V-mea-

sure is the harmonic mean of the homogeneity and

completeness and is the performance measure used for

evaluating the performance of the clustering method as

specified in Eq. (6).

V ¼ 2,
h*c
hþ c

½�� (6)

In addition, numbering accuracy was measured, as the V-

measure is independent of cluster numbering. Numbering

accuracy was calculated by dividing the number of correctly

numbered node predictions, NPc, by the total number of node

predictions, NP, as specified in Eq. (7). The value NPc was

determined by combining the predicted node order resulting

from Step 3 of our method (section 2.2.3) with the annotated

node order.

A ¼ NPc

NP
½�� (7)

2.3.4. Complete pipeline (Step 1e4)
The performance of the complete pipeline was evaluated by

the error (ei) between the estimated internode length (bSi) and

the manually measured ground-truth internode length (si)

between node i and the consecutive node iþ 1 (Eq. (8)). As the
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image acquisition times and themanualmeasurements times

did not coincide exactly, the estimated internode length was

interpolated at the time the manual internode length mea-

surements were performed (see Step 4, section 2.2.4). The

relative error (ri) was calculated according to Eq. (9) to enable

comparison to the results of Yamamoto et al. (2016) and

Nguyen et al. (2015).

ei ¼ bSi � si ½mm� (8)

ri ¼ jeij
si

½%� (9)

In order to compare the results of our method to the

manual measurements, the error of the manual measure-

ments was also estimated. This was done by comparing the

manual measurement of a specific node at a specific day with

the average of the manual measurements. We distinguished

between the rough measurement (dividing the total plant

length by the number of nodes) and the accurate measure-

ment using a ruler. For the roughmeasurement, the error was

estimated by taking the difference between the measured

internode length and the average measured internode length

per plant (taking the sumover the nodes), per day, according to

Eq. (10). For the accurate measurement, the difference be-

tween the measured internode length and the average

measured internode length per node per day was taken, ac-

cording to Eq. (11). In both calculations, only the first five in-

ternodes were taken into account, to prevent internodes still

elongating from influencing the results.

eij; rough ¼ sij �
Xn

i¼1

Xd

j¼1
sij

d*n
½mm� (10)

eij; accurate ¼ sij �
Xd

j¼1
sij

d
½mm� (11)

where sij is themeasured internode length between node i and

the consecutive node iþ 1 at day j, d is the number of days a

certain internode length was measured and n is the total

number of nodes taken into account (5 in our case).
3. Results

Section 3.1 presents the analysis of the number of viewpoints

required for successful node detection. The results of the node-

detection algorithm are presented in section 3.2. In section 3.3,

the results of the node-clustering and cluster-numbering algo-

rithms are given. The results of the full internode-length esti-

mationmethod are finally presented in section 3.4.

3.1. Multiple viewpoints

The average number of observations of a node as a function of

the number of viewpoints is plotted in Fig. 5. The more view-

points taken, themore frequent thenode is visible in the images

acquired.When theplant is observedonly fromstraight in front

(position B) at three different heights, there are three camera

imagesandnodescanbedetectedonaverage0.8 times.When36
images are taken (positions A, B and C, both sides of the plant

gutter and 6 heights), the nodes can be detected on average 9.1

times.

In our algorithm, a node needs to be detected at least twice,

as node clusters with only one observation were considered

noise by our node-clustering method. Figure 6 shows the

percentage of nodes that was identified at least twice using

different viewpoint configurations. When images of the plant

were taken only from straight in front (position B) at three

different heights, 1.4% of the nodes was detectable. This rises

to 64.0% when images were taken at six different heights. The

method benefits greatly from images taken also from the rear

side of the plant gutter (B both sides). Nodes are then detect-

able in 56.5% and 91.9% for images taken respectively at three

and six different heights. When all viewpoints are taken into

account (ABC both sides), the level of detectable nodes in-

creases to 95.6% and 99.3% for respectively three and six

height positions.

3.2. Node detection (Step 1)

This section describes the results of the node-detection algo-

rithm (Step 1). The average number of iterations required in

order to train the network was 20,250, corresponding to 585

epochs. After training, the average precision, recall and F1-

score for the training set were 0.97 (s ¼ 0.005), 0.99 (s ¼ 0.0)

and 0.98 (s ¼ 0.004) respectively. For the validation set, the

precision, recall and F1-score were 0.91 (s ¼ 0.01), 0.92

(s ¼ 0.01) and 0.92 (s ¼ 0.01) respectively. As stated in section

2.3.2, these scores were corrected by considering the de-

tections of partly visible nodes as true positives. This gave an

average precision, recall and F1-score for the validation set of

0.95 (s ¼ 0.01), 0.92 (s ¼ 0.01) and 0.94 (s ¼ 0.01), as in Table 1.

To obtainmore insight into the detections of the algorithm,

Fig. 7 shows some typical examples. The first row of the image

shows three correctly identified nodes. Despite the large

variation in the appearance of the nodes, the network learned

to detect them correctly. The second row of Fig. 7 shows three

typical false positive failures of the node-detection algorithm.

Image (d) shows an example where a partially occluding leaf

creates image features that strongly resemble a node. This

issue appears only in some viewpoints and can be dealt with

easily in the subsequent multi-view steps in our algorithm.

The error in image (e) was caused by a difference in size be-

tween the predicted bounding box and the ground truth

bounding box, causing the IOU value to drop below the set IOU

threshold of 0.5. The position of the node, however, is correct.

In (f), the node was not annotated because it is only partly

visible as it is cut off by the image border. The node-detection

algorithm, however, did detect it correctly. This is an example

of a detection that was considered as a true positive. The last

row of Fig. 7 shows three false negative examples. These

nodes were annotated in the ground truth data, but not

detected by the algorithm.

Based on the visual evaluation of the predicted nodes, it

can be seen that the node-detection algorithm had difficulties

detecting the youngest node at the top of the plant. The

average recall for the youngest nodes was 0.66 (s ¼ 0.06). This

is considerably lower than the average recall obtained on all
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Fig. 5 e Average number of times a particular node was detected by the algorithm for different viewpoint configurations.

The error bars show the standard deviation.

Fig. 6 e Percentage of nodes detected at least twice for different viewpoint configurations. The error bars show the standard

deviation.
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Table 1 e Performance measures for the trained network
per cross validation run.

CV-run
(�)

Validation
precision (�)

Validation
recall (�)

Validation F1
score (�)

1 0.93 0.91 0.92

2 0.95 0.92 0.94

3 0.96 0.93 0.94

4 0.95 0.93 0.94

Average 0.95 0.92 0.94
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nodes of 0.92 (s ¼ 0.01), indicating that it was more difficult to

find the youngest node of a plant.

3.3. Node clustering and cluster numbering (Step 2 and 3)

The node detections from the different viewpoints are com-

bined (Step 2) and clustered by the node-clustering algorithm

(Step 3). The performance of node clustering is shown in
Fig. 7 e Examples of detected and undetected nodes. Purple rect

the ground-truth annotations. The images include true positive

and false negative examples (g, h and i).
Table. The first row shows the performance for all plants

whilst the second row excludes the three outlier plants. The

homogeneity and completeness are both very high, close to

1.00, illustrating that the vast majority of the clusters only

represent one node and that the vast majority of detections

belonging to a specific node are in the same cluster. This re-

sults in a high value for the V-measure. The results are

somewhat better when the outlier plants are discarded.

Table 2 also provides the accuracy of the cluster-

numbering method. The numbering accuracy for all plants is

relatively low and has a high standard deviation. This is

caused mainly by the outlier plants, since the numbering ac-

curacy was close to 1.00 when the outlier plants are discarded.

As explained in section 2.1.1, the outlier plants were not

properly attached to the supporting wire and therefore they

violated the assumption of a constant camera to plant dis-

tance. Violation of this assumption leads to incorrect node

clustering and numbering. The results in Table 2 show that

the clustering and numbering algorithm were able to cluster
angles are detections of the network and red rectangles are

examples (a, b and c), false positive examples (d, e and f)
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Table 2 e Homogeneity, completeness, V-measure and numbering accuracy of the clustering algorithm.

Node clustering Numbering accuracy

Homogeneity Completeness V-measure

Avg. Std. Avg. Std. Avg. Std. Avg. Std.

All plants 0.97 0.04 0.98 0.04 0.97 0.04 0.94 0.11

Excluding outliers 0.98 0.03 0.99 0.02 0.98 0.02 0.97 0.03
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the annotated bounding boxes almost identical to the anno-

tated node numbering when excluding the outlier plants from

the analysis.

In Table 3, the ability of the algorithm to count the number

of nodes per plant is evaluated. The total number of predicted

nodes by our algorithm is compared to the actual number of

nodes per plant. When all plants are taken into account, node

counting was correct in 62.1% of the cases. The number of

nodes was overestimated in 10.5% of the cases and under-

estimated in 27.4% of the cases. For all underestimations, it

was found that the data points belonging to the two youngest

nodes were combined into one cluster. If the outlier plants are

discarded, the correct node count increases slightly to 65.3%,

mainly due to the fact that an overestimation now happens in

only 1.4% of the plants. Underestimation caused by the

inability of the algorithm to separate the youngest nodes

remained and even slightly increased. The effect on the pre-

viously reported node-clustering performance is limited,

because for every youngest node there were 6e12 regular

nodes.

3.3.1. Parameter check node clustering and cluster numbering
The distribution of the performance measurements obtained

from the grid search, introduced in section 2.2.3, is presented

in Table 4. The first step of the grid search shows that

changing the values of qx and qy has an effect on the per-

formance of the clustering algorithm. For all performance

measurements, the maximum score found was close to 1,

while the minimum score found was substantially lower. The

low standard deviation shows that most values were close to

the mean performance.

In the second grid search the clustering algorithm was

tested for qx ranging from 5 to 15 and qy ranging from 19 to 29

in the second clustering step. The results are again presented

in Table 4.With these settings, the standard deviation drops to

below 0.0001 for all performance measurements. This shows

that within the tested range the algorithm is not sensitive to

small changes in the values of qx and qy.

The performance for a specific setting of qx and qy is a trade-

off between the different performance evaluation criteria. In

the selected settings for the remainder of our paper the

empirically determined values introduced above were used,

since they scored highly for all performance evaluation criteria.
Table 3 e Percentage of times that the predicted number of nod
annotated number of nodes.

Underestimated by 1 (%) Equal (%)

All plants 27.4 62.1

Excluding outliers 33.3 65.3
3.4. Complete pipeline (Step 1e4)

3.4.1. Estimation of internode length
In Fig. 8, the internode length estimated by our algorithm (Step

1e4) is plotted against the manually measured internode

length for the inlier and outlier plants. Assuming that the

manual measurements are correct, in the ideal case the esti-

mations would be equal to the manual measurements, rep-

resented by the green line. Visual assessment already shows

that the estimations are closer to the ideal line for the inlier

plants (left) than for the outlier plants (right). Furthermore, it

seems that there is a systematic error in the data. By cali-

brating the data using a linear-regression fit a better model

can be obtained, which is represented by the red dashed lines

in Fig. 8. For the internode length estimations of the inlier

plants, this results in an R2-value of 0.95. The Root Mean

Square Error (RMSE) and the relative error (Eq. (9)) are 8.8 mm

and 5.8% respectively. For the outlier plants, the R2-value is

0.41, while the RMSE and relative error are 24.7mmand 32.9%.

In the remainder of this paper the internode length estima-

tions will be calibrated based on the linear regression model.

The error in the calibrated estimation of the internode

length for all plants (Eq. (8)) is shown in Fig. 9. It can be seen

that the distribution of the errors for the outlier plants is

considerably larger than for the inlier plants. The internode

length estimations for the inlier plants show a lower error and

are more consistent. The medians for these plants are in the

range of �2.6 mme5.1 mm and the lower and upper quartiles

range from �10.0 mm to �2.1 mm and 2.2 mme10.5 mm

respectively. For the outlier plants, the medians are in the

range of�3.7mme12.9mm and the lower and upper quartiles

range from �36.4 mm to �8.4 mm and 8.0 mme20.1 mm

respectively.

3.4.2. Comparison to manual measurements
The internode length estimates made by our automatic

method were compared to two methods for manual mea-

surements, a slow and accurate method, and a fast and rough

method, as explained in section 2.3.4. Figure 10a shows the

errors of the manual and automatic methods. The accurate

manual method showed very consistent measurements. The

median error of 0 was due to the way the error was calculated

according to Eq. (11). The rough manual measurement had a
es by the clustering step is lower, equal or higher than the

Overestimated by 1 (%) Overestimated by > 1 (%)

8.4 2.1

1.4 0,0
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Table 4 e Results of the grid search optimisation. The numbers represent the minimum, maximum, mean and standard
deviation of the performance of the clustering algorithm for different settings of qx and qy.

Node clustering optimisation Numbering accuracy

Homogeneity Completeness V-measure

Grid search step 1 Minimum 0.62 0.74 0.75 0.11

Maximum 0.99 1.00 0.99 0.98

Mean 0.87 0.89 0.87 0.44

Standard deviation 0.02 0.02 0.02 0.10

Grid search step 2 Mean 0.98 0.99 0.98 0.97

Standard deviation <0.0001 <0.0001 <0.0001 <0.0001

Fig. 8 e The relation between the estimated internode length and the manually measured internode length specified for

inliers (plants having a (near) vertical growth pattern) and outliers.
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median error of �3.5 mm with a large spread. The lower and

upper quartile are ranging from �28.0 mm to 29.0 mm. The

estimates of the automatic method showed a median error of

0.1 mm and they were quite consistent, with the lower and

upper quartile ranging from �6.3 mm to 6.0 mm.

The absolute errors of the different methods are shown in

Fig. 10b.Whether the absolute errors of the estimatesmade by

our algorithm were significantly different from the absolute

errors of the accurate and rough manual measurement

method was tested. All tests were performed in R (R Core

Team, 2018). First, a ShapiroeWilk test (Shapiro & Wilk,

1965) was performed to check the normality of the data. The

p-values for the accurate and rough measurements and the

estimates of our method were both less than 0.001, indicating

that it cannot be assumed that the data are normally distrib-

uted. Therefore, a Wilcoxon signed-rank test (Wilcoxon, 1946)

was conducted to compare the methods. Based on the test

results comparing the errors of our method with the accurate

manual method (Z ¼ �8.1, p < 0.001) and the rough manual
method (Z ¼ �12.1, p < 0.001) the null hypothesis can be

rejected in both cases. Taking into account the values plotted

in Fig. 10b, it can be stated that the errors of our method were

significantly lower than the errors of the rough manual

method, but the errors of the accurate manual method were

significantly lower than the errors of our method. In other

words, our automatic method outperformed the fast and

rough manual method, but not the slow and accurate manual

method.
4. Discussion

This paper presents a method for automated measurements

of internode length in cucumber plants. The method includes

a node-detection algorithm based on deep learning, multiple

viewpoints to solve occlusions in the plant and a node-

clustering and node-numbering algorithm to combine de-

tections and estimate the internode length.
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Fig. 9 e Box-and-whisker plot of the error (Eq. (8)) of the

inlier (left) and the outlier (right) plants. The thick black line

indicates the median, the box shows the lower and upper

quartile, and the whiskers indicate the highest and lowest

error, where points outside the interquartile range are

considered outlier values (noted as a circle).

Fig. 10 e Box-and-whisker plots comparing the two

manual measurement methods, accurate and rough, with

the estimations from our automatic method.
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The best performance was achieved by combining all

different viewpoints from which images were collected. In

this case, the percentage of nodes detected at least twice was

99.3%. Reducing the number of viewpoints caused the number

of detected nodes to drop to as low as 1.4% for the case where

images from one side of the plant and three height positions

were used. Capturing images from multiple viewpoints

around the plant was able to solve the problem of undetected

nodes that occurs when using a single viewpoint.

The precision (0.95) and recall (0.92) of the node-detection

step presented in this paper were higher than the precision

(0.78) and recall (0.72) obtained by the node-detection
algorithm of Yamamoto et al. (2016), illustrating that the DL-

based object-detection algorithm, applied in this research, is

capable of detecting nodes more accurately than the multi-

step pipeline used by Yamamoto et al. (2016). Some node de-

tections were rejected because the size of the annotated

bounding box did not match the size of the predicted bound-

ing box (e.g. Figure 7e). Since the size of a node is difficult to

define and the centre point of a node is sufficient for

measuring internode length, we recommend testing point

annotations instead of bounding box annotations in future

work. Another interesting approach is to perform pixel-wise

regression to predict heatmaps indicating areas where it is

likely that a node is present. This approach was used by

Pound, Atkinson, Wells, Pridmore, and French (2018) to locate

and count spikes and spikelets in images of wheat.

The performance of the node-clustering and node-

numbering step was heavily influenced by plants that were

not properly attached to the supporting wire and therefore did

not follow a near-vertical growth pattern; thus indicated as

“outliers”. Current work includes testing of a system that pro-

duces 3D-data and developing a data-analysis pipeline to deal

with this additional dimension. It is expected that this

approach will solve the problem of underestimating the inter-

node length by ignoring the distance between two nodes in the

third dimension. In addition to an increased performance for

plants having a near-vertical growth pattern, by applying this

approach it is expected that also plants that had to be consid-

ered “outliers” in the current approach can be measured.

The relative error of our complete pipeline (5.8%) was lower

than the relative error reported by Yamamoto et al. (2016) and

Nguyen et al. (2015), which was 7.2% and 6.3% respectively.

However, the calculation of this number was slightly different

with these authors. In the case of Yamamoto et al. the relative

error was averaged over the experimental period, which also

averaged out the measurement specific error. Since our aim

was to measure and follow internode development over time

this is not applicable in our case. The error reported by Nguyen

et al. was calculated as the error over the plant length, while

our error was calculated as the error over the internode length.

Recalculating our error based on the method of Nguyen et al.

would not result in a fair comparison, since our plants were

more than 1.6 m tall which would cause the error to drop.

Therefore, it is not straightforward to compare the reported

errors. Other aspects that need to be considered when

comparing systems are the ability of our system to deal with

occlusions and the annotation of newly formed nodes when

their length exceeded 10mm. This is shorter than the systems

presented by Yamamoto et al. who focused on elongated

stems of tomato, and Nguyen et al. who reported successful

working algorithms where the internode length was >50 mm.

Although our method was applied to cucumber plants in

this research, the only crop-specific part of the work is the

training of the node-detection algorithm. With retraining of

the algorithm, it is expected that ourmethodwill also perform

well in other crops that are grown in similar growing systems,

such as tomato or aubergine. Since similar growing systems

will also result in a similar spatial distribution of the nodes, it

is expected that the selected node-clustering and cluster-

numbering parameters will also perform well with these

crops. However, it is recommended to test this hypothesis in

https://doi.org/10.1016/j.biosystemseng.2020.01.023
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future work by performing similar optimisation steps as were

carried out in this research.

In line with the previous paragraph, the node-detection

algorithm is the only part of the method influenced by the

conditions in which the plants are growing. The plants ana-

lysed in this paper were grown in a climate chamber and were

spaced out to reduce the level of occlusion. Although this is a

simplification of the growing conditions in a standard green-

house, the algorithm was able to deal with nodes that were

occluded by the plant itself and was not influenced by other

plants (including other nodes) and construction elements in

the background of the images. However, it is expected that

conditions in an actual greenhouse will still be challenging,

mainly due to a higher level of variation in lighting conditions

and a more complex and cluttered environment due to a

higher plant density. A sufficiently large size of the training

dataset should be able to solve this.

Another challenge is that in a production greenhouse the

exact position of each plant is not known. Therefore, especially

when measuring the same plant multiple times, a plant iden-

tification and tracking system needs to be developed. If such a

system was in place, in combination with a sufficiently large

training dataset, it could be expected that our approach will

achieve good performance in greenhouse settings. As

mentionedearlier, it is expected that implementing 3Ddatawill

improve the results both in climate chambers as well as in

greenhouse settings. It is suggested to test this in future work.

5. Conclusion

Our results show the benefit of a multi-view approach. The

visibility of nodes greatly improves whenmultiple viewpoints

are used. It has been shown that the trained deep neural

network was a robust method for node detection. In general,

affinity propagation was able to cluster the node detections

from the different viewpoints successfully. The node count in

our tests was regularly underestimated due to the two youn-

gest nodes in the top of the plant being too close to each other

to be separable. However, in a later growth stage, the nodes

were correctly separated. The complete method provides es-

timates of internode length that were more accurate than a

rough manual measurement. However, there is room for

improvement to achieve a performance similar to an accurate

manual measurement. Including 3D-imaging is expected to

improve performance greatly in future work.
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