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A B S T R A C T

Alnus spp. (Betulaceae) have been used for treatments of hemorrhage, burn injuries, antipyretic fever, diarrhea,
and alcoholism in traditional medicines. In this study, a digitized LC–MS/MS data analysis workflow was applied
to provide an overview on chemical diversity of 15 Alnus extracts prepared from bark, twigs, leaves, and fruits of
A. japonica, A. firma, A. hirsuta, and A. hirsuta var. sibirica. Most of the MS/MS spectra could be putatively
annotated based on library matching, in silico fragmentation, and substructural topic modeling. The putative
annotation allowed us to discriminate the extracts into three chemotypes based on dominant chemical scaffolds:
diarylheptanoids, flavonoids or tannins. This high-throughput chemical annotation was correlated with α-glu-
cosidase inhibition data of extracts, and it allowed us to identify gallic acid as the major active compound of A.
firma.

1. Introduction

The genus Alnus (Betulaceae), also known as alder, comprises about
40 species of monoecious trees and shrubs which are mainly distributed
throughout the north temperate zone. In East Asian traditional medi-
cines, Alnus species have been used for treatments of hemorrhage, burn
injuries, antipyretic fever, diarrhea, and alcoholism (Park et al., 2010).
Recent pharmacological studies reported anti-inflammatory, anti-
tumor, anti-obesity, and antioxidative effects of Alnus species extracts
(Sati et al., 2011). These pharmacological activities of Alnus species are
attributed to various specialized metabolites of these plants. Different
types of specialized metabolites, including flavonoids, triterpenoids,
tannins, phenolics, and diarylheptanoids have been isolated from Alnus
species (Ren et al., 2017). Many isolated molecules are reported to have
various biological activities such as anti-inflammation (, Lee et al.,
2017a, b), antioxidative effect (Kim et al., 2016), anti-adipogenesis
(Sung and Lee, 2015), cytotoxicity (Novakovic et al., 2017), and DNA

methylation (Krasilnikova et al., 2018), which makes Alnus species
possible sources for natural drug discovery. Despite the pharmacolo-
gical potentials of specialized metabolites of this genus, interspecific
chemical diversity between different Alnus species has not yet been
systematically investigated. Here, we aimed to establish a liquid chro-
matography coupled to tandem mass spectrometry (LC–MS/MS)-based
analytical method for a comprehensive characterization of different
classes of phytochemical constituents biosynthesized by Alnus species.

LC–MS/MS is the key technology of modern natural product
chemistry and metabolomic studies to explore chemical space (Allard
et al., 2018; Wolfender et al., 2019). Many untargeted metabolomics
studies using LC–MS/MS, especially in the automated Data Dependent
Acquisition (DDA) method, provide information on intra- and inter-
specific differences on chemical composition of medicinal plants (Kang
et al., 2018; Negrin et al., 2019; Robertson et al., 2018; Zhou et al.,
2019). However, in most of these studies, interpretation of MS/MS
spectra were performed manually, based on experts’ knowledge about
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phytochemical distribution and fragmentation patterns of certain spe-
cialized metabolite classes. This way of data curation is low-
throughput, laborious, and time consuming, and furthermore has the
limitation that only a few selected spectra (generally biased by ion in-
tensity in chromatograms) can be annotated among thousands of col-
lected MS/MS spectra. Recently, several computational data analysis
methods have been developed for MS/MS spectral annotation to over-
come this limitation. Public and proprietary MS/MS spectral re-
positories and databases such as MassBank (Horai et al., 2010), ReSpect
(Sawada et al., 2012), NIST (The National Institute of Standards and
Technology; http://www.nist.gov/srd/nist1a.cfm) and Global Natural
Product Social Molecular Networking (GNPS) (Wang et al., 2016) en-
able users to compare their own spectra with reference spectra for
spectral annotation. MS/MS molecular networking clusters and orga-
nizes similar spectra as a network, which allows propagation of mole-
cular annotation to unknown molecules (Wang et al., 2016; Watrous
et al., 2012). In silico fragmentation predictors and combinatorial
fragmentators (Allen et al., 2014; da Silva et al., 2018; Dührkop et al.,
2015; Ruttkies et al., 2016) expand the primary annotation to mole-
cules without any reference spectra deposited in public databases.

Previously we demonstrated that a workflow combining several
computational MS/MS data analysis tools can be a powerful method for
phenotyping plant specialized metabolites (Ernst et al., 2019a, 2019b;
Kang et al., 2019). In this study, we applied this digitized MS/MS-based
molecular annotation method to analyze the specialized metabolites of
four Alnus taxa occurring in Korea, A. japonica, A. firma, A. hirsuta, and
A. hirsuta var. sibirica.2 Phytochemical profiles of bark, twigs, leaves,
and fruits of four Alnus species were analyzed to reveal not only in-
terspecific diversity of specialized metabolites, but also metabolite lo-
calization patterns. In addition, we integrated the digitized chemical
space information of Alnus extracts with its biological activity, de-
monstrating that this workflow is an efficient dereplication method for
annotation of bioactive compounds from complex phytochemical mix-
tures.

2. Results and discussion

2.1. MS/MS analysis and annotation of Alnus specialized metabolites

The LC–MS/MS analysis revealed that the 15 Alnus extracts are
different in their specialized metabolite contents, in both a qualitative
and quantitative manner (Fig. 1). As a first step of the digitized data
analysis, 531 mass features were extracted from the entire dataset by
MZmine2-based preprocessing, then the feature table, metadata, and
extracted MS/MS spectral.mgf files were uploaded to the GNPS MS/MS
molecular networking workflow (Nothias et al., 2019). MS/MS mole-
cular networking organized them into a network consisting of 33 mo-
lecular families (two or more connected nodes of a graph (Nguyen
et al., 2013)) and 268 singletons (nodes not having any molecular re-
latives). Two types of metadata related to spectral sources, plant species
and plant parts, were visualized upon the molecular network. Both
species-mapping (Fig. S1, Supplementary Data) and plant parts-map-
ping (Fig. 2) visualized that many metabolites in certain molecular
families are constrained to specific species plant parts. For example,
spectral nodes in molecular family B are mainly found in fruits, while
other metabolites in molecular family D are from bark and twigs and

spectra in molecular family E are predominantly observed in leaves.
Metabolites in molecular family F was only found in A. firma. The
largest molecular family, A, could be divided into two subclusters based
on distribution (Fig. 2). This finding reveals the localization of closely
related yet different chemical structures in different plant parts.

The MS/MS spectral library search through GNPS resulted in 47 hits
to reference MS/MS spectra, which are level 2 annotations according to
the 2007 Metabolomics Standards Initiative (MSI) (Sumner et al.,
2007). Nine previously isolated and purified diarylheptanoids, platy-
phylloside (1; numbers mean spectra indices in the MS/MS molecular
network), aceroside VII (63), aceroside VIII (195), oregonin (202),
rubranoside B (206), rubranoside A (214), rubranoside D (240),
(5S)–O-methylhirstanonol (241), and oregonoyl A (246) were used to
confirm annotations and give level 1 annotations by matching retention
time and MS/MS spectra (Lee et al., 2013, 2010; Sung and Lee, 2015).
Retention time and spectra of these compounds can be found in Result
S1, Supplementary Data.

To maximize the annotation coverage upon the entire dataset, we
applied MolNetEnhancer, a recently developed computational work-
flow for MS/MS-based untargeted metabolomics (Ernst et al., 2019a).
Based on the GNPS library matching and in silico annotation derived
from Network Annotation Propagation (NAP) (da Silva et al., 2018),
most of the molecular families could be annotated for their unique
chemical classes, which are MSI level 3 annotations. Computational
class annotations made by MolNetEnhancer was double-checked
manually in order to prevent false annotations. Most in silico predicted
annotations were reasonable, but some molecular families showed in-
correct annotations. For example, the whole molecular family A was
annotated as triterpenoids by MolNetEnhancer, but manual inspection
on molecular annotations of each spectral node suggested that two
subclusters within A should be annotated as diarylheptanoids and tri-
terpenoids, respectively (Fig. S2, Supplementary Data). Within the
molecular network, class annotation elucidated the localization pat-
terns of different classes. For example, molecular families A, D, and I,
which are present in bark and twigs, were annotated as diarylhepta-
noids and their glycosides. Fruits of Alnus species showed high contents
of ellagitannins (B), while the leaves were abundant in flavonoid gly-
cosides (E).

As described in previous studies (Ernst et al., 2019a; Kang et al.,
2019), the MolNetEnhacer workflow takes advantage of MS2LDA,
which provides information about substructural diversity within same
classes of metabolites (van der Hooft et al., 2016). MS2LDA extracts
patterns of fragment ions or neutral losses which are observed together
in multiple spectra, called Mass2Motifs, which can show how the
compounds in same chemical classes are different in their substructure.
For example, Mass2Motifs 41, 49, 72, and 81 were extracted from MS/
MS spectra which are clustered as molecular families A, D, and I, which
are annotated as diarylheptanoids. These Mass2Motifs were annotated
to represent diarylheptanoid scaffolds which are different in the pattern
of unsaturation and hydroxylation. As shown in Fig. 3, Mass2Motif 72
represents the presence of a fragment ion m/z 331.1525 ([C19H23O5]−)
while Mass2Motif 81 represents the presence of a fragment ion m/z
299.1625 ([C19H23O3]−), and these two Mass2Motifs are observed in
MS/MS spectra 214 and 63, respectively. Mass2Motif 3 represents the
neural loss of m/z 162.0525, which is caused by the loss of a hexose
moiety, often related to glucose, and commonly observed in plant
metabolomics data. GNPS spectral library matching annotated these
spectra as rubranoside A (214) and aceroside VII (63). Based on these
annotations, Mass2Motifs 72 and 81 could be annotated as rubranol-
and centrolobol-related motifs, respectively. Similarly, Mass2Motifs 41
and 49 were annotated as hirsutanonol- and platyphyllonol-related
motifs, mainly based on spectral annotation of oregonin (202) and
platyphylloside (1) (Fig. 3). These Mass2Motifs also represent a few
fragment ions with smaller m/z values; and we confirmed that these
fragment ions are identical to the previously reported characteristic
fragment ions generated from each diarylheptanoid aglycone. MS/MS

2 A. hirsuta var. sibirica is currently classified as a synonym of A. hirsuta in the
Plant List (http://www.theplantlist.org). However, many local botanists are
considering A. hirsuta var. sibirica as a variety based on their different mor-
phology (Chang et al., 2005), and our study suggests that these two plants differ
in their metabolite composition. Unfortunately there is no reported genome
sequence of A. hirsuta var. sibirica which is required to confirm its taxonomy; so
we concluded that this is unconcluded and kept it to be described as a genetic
variety.
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fragmentation pathways of diarylheptanoids under ESI negative ion
mode were well established by previous studies (Riethmüller et al.,
2015, 2013), and fragment ions represented by Mass2Motifs 41 and 49
agree with the fragmentation patterns described in these studies. Thus,
we could demonstrate the potential of MS2LDA, which facilitates the
structural annotation of substructures and the storing of these annota-
tions within MS2LDA experiments. These annotated Mass2Motifs can
now also be stored in MotifDB (Rogers et al., 2019). In this way, expert
knowledge is made available for future substructure annotations based
on MS/MS data. By mapping the distribution of Mass2Motifs on to the
molecular network, we could visualize the substructural differences
within molecular families (Fig. 3), which is helpful during annotation
and identification of MS/MS spectra within a molecular network.

2.2. Chemotype discrimination of Alnus extracts

Based on the molecular network and structural annotation, che-
mical diversity between Alnus extracts were systematically analyzed. As
a first step, the dissimilarity between samples was calculated. In most
metabolomics studies, the diversity between samples has been analyzed
by using multivariate analysis techniques such as principal component
analysis (PCA) (Worley and Powers, 2012), which is based on the Eu-
clidean distance metric or principal coordinate analysis (PCoA) which
can be based on different distance metrics such as for example the Bray-
Curtis dissimilarity (Brückner and Heethoff, 2017). However, these
conventional methods consider each feature as independent entities,
ignoring the structural relationship between molecules. To reflect the
chemical similarity at the scaffold level shared by samples from the
same plant parts, we applied the Chemical Structural and Composi-
tional Similarity (CSCS) metric (Brejnrod et al., 2019; Sedio et al.,
2017), which accounts for the chemical structural similarity across
metabolites by integrating the MS/MS spectral similarity calculated in
the process of GNPS molecular networking.

Compared to the PCA score plot (Fig. 4C) or hierarchical cluster

analysis using the Euclidean distance (Fig. 4D), the weighted (by in-
tensity of MS1 ion intensities) CSCS metric showed clearer dis-
criminative patterns both in a Principle Coordinates Analysis (PCoA)
(Fig. 4A) as well as the chemical dendrogram (Fig. 4B); especially the
chemodendrogram revealed that the samples can be discriminated as
three chemotypes. By mapping these chemotype-classes on the mole-
cular network, the major differences in their metabolites were easily
visualized (Fig. 4E). Chemogroup 3 (Ah-L, Ahv-L, Af-L, Af-T, and Af-B)
showed high contents of the molecular family E, which was annotated
as flavonoids, while Chemogroup 2 (Aj-L, Ah-F, Af-F, and Ahv-F) was
rich in tannins. On the other hand, diarylheptanoids were majorly re-
presented in the remaining samples (Chemogroup 1). This pattern
partially agreed with the plant parts-based distribution (Fig. 2), but it
could be revealed that there are some exceptional cases such as Aj-F
(rich in diarylheptanoids while the other fruits are abundant in tan-
nins), Aj-L (rich in tannins while the other leaves are abundant in fla-
vonoids), and Af-T and Af-B (rich in flavonoids while the other bark and
twigs are abundant in diarylheptanoids). It is well known that plant
specialized metabolite profiles vary based on a number of biotic as well
as abiotic factors, such as diurnal changes, presence of herbivory or
plant symbionts, nutrient availability and exposure to sunlight
(Bednarek and Osbourn, 2009; Wink, 2010). We were not able to ex-
plain the biological context of these exceptional localizations in A. firma
and A. japonica as metadata collected did not allow for a precise eva-
luation of contributing factors to the differences of the metabolic pro-
files observed here; however, differences in chemical profiles revealed
here will provide a helpful guidance for further phytochemical studies
on Alnus species.

2.3. Identification of α-glucosidase inhibitory compounds from Alnus firma

A previous study reported that H2O or MeOH extracts of A. firma
leaves exhibited inhibitory activity against α-glucosidase (Yu et al.,
2007). However, none of the compounds isolated in this study showed

Fig. 1. LC–MS base peak ion (BPI) chromatograms of 15 Alnus extracts. Gaps between chromatogram were added to visualize their difference, so y-axis values do not
equal to the absolute intensities.
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α-glucosidase inhibitory activity, and other metabolites from Alnus
have not been reported to exhibit α-glucosidase inhibition, except three
cyclic diarylheptanoids isolated from A. sieboldiana (Chiba et al., 2013).
We hypothesized that the chemical information derived from MS/MS-
based dereplication in this study could be used to reveal which com-
pounds contribute to the α-glucosidase inhibitory activity of A. firma,
and tried to associate the annotations to bioactive extracts. 15 Alnus
extracts were evaluated for their α-glucosidase inhibitory activity as
shown in Table 1. As previously reported, the leaf extract of A. firma
exhibited potent inhibitory activity showing IC50 values of 12.29 μg/
mL. Extracts of A. firma bark, twigs, and fruits, and A. hirsuta var. si-
birica fruits also showed potent activity with IC50 ranging from 6.80 to
8.48 μg/mL. Extract of A. japonica leaves and A. hirsuta var. sibirica
leaves exhibited moderate inhibitory activity with IC50 values of 23.36
and 29.84 μg/mL, while other extracts showed very weak or no in-
hibitory activity against α-glucosidase.

To bridge the bioactivity and chemical information, we applied the
workflow named “bioactive molecular networking”, which was devel-
oped in our previous study (Nothias et al., 2018). In this workflow, the
Pearson correlation coefficients (r) and their significances (p values)
between the semi-quantitative intensities of MS/MS features and the

bioactivity value are calculated. By plotting r and p values on the mo-
lecular network, it was easily visualized that MS/MS spectra showing
negative r values (negative correlation with IC50; meaning possibly
inhibitory against α-glucosidase) with significance (p < 0.05) are
mainly clustered within the molecular families B (ellagitannins) and G
(gallotannins) (Fig. S3, Supplementary Data). In order to narrow down
the candidates from chemical classes to single compounds, we filtered
the candidate list using the Bonferroni correction for multiple hypoth-
esis testing (Nothias et al., 2018). As a result, only one MS/MS feature
(10) was left as a possible contributor to the bioactivity showing an r
value of −0.8625 (IC50 values were applied as bioactivity index, so
negative r values mean higher contribution to bioactivity) and a p value
of 3.52 × 10−5. The MS/MS feature 10 was annotated as gallic acid by
spectral matching, and the identification was confirmed by standard
compound injection. We inspected the MS/MS feature table and con-
firmed that active extracts (Af-B, Af-T, Af-L, Af-F, Aj-L, Ahv-L, and Ahv-
F; ion intensity for 10 ranging from 49,854 to 96,211) show a higher
intensity of the gallic acid ion than inactive extracts (Aj-B, Aj-T, Aj-F,
Ah-L, Ah-F, Ah-B, and Ahv-T; ion intensity for 10 ranging from 520 to
11,358) as shown in Fig. 5. A previous study reported gallic acid as a
potent α-glucosidase inhibitor (Wansi et al., 2007), so it could be

Fig. 2. The MS/MS spectral network of specialized metabolites contained in the bark, twigs, leaves, and fruits of A. japonica, A. firma, A. hirsuta, and A. hirsuta var.
sibirica. Spectral nodes are colored according to the mean precursor ion intensity per different plant parts: bark, twigs, leaves, and fruits. Molecular families A–I are
highlighted.
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hypothesized that gallic acid is the main contributor of α-glucosidase
inhibition of these Alnus extracts. Although this result did not provoke a
discovery of a previously unknown bioactive compound, it demon-
strated that the digitized MS/MS-based dereplication strategy can re-
veal bioactive components from complex phytochemical extracts and
reduce the unnecessary effort spent in re-isolation of previously known
bioactive compounds.

3. Conclusions

The present study shows that the digitized MS/MS data analysis
workflow strongly enhances phytochemical investigation. Commonly in
Nature, conservation of specialized metabolism-related genes leads to
chemical similarity within specific taxa, and this has been an essential
background of chemotaxonomy in the plant kingdom. Our workflow is

especially advantageous in analyzing chemical similarity of specialized
metabolites; MS/MS molecular networking allows the visualization of
the similarity pattern for all metabolites detected in a sample. The CSCS
metric takes advantage of spectral similarity, and our result shows that
it is especially useful to reveal the chemotypes of different plant spe-
cies/organs based on the distributional pattern of different molecular
scaffolds.

It was previously known that diarylheptanoids, flavonoids, and
tannins are abundant in Alnus species, but their localization among
different species and plant parts has not been investigated before. Here,
we found that diarylheptanoids are abundant in bark and twigs, while
tannins are accumulated in fruits and flavonoids in leaves. Interestingly
there were also some exceptional cases shown in A. japonica and A.
firma. However, we could not conclude here that this is a very general
phenomenon in Alnus species, because not enough biologically

Fig. 3. MS2LDA-driven substructural annotation of diarylheptanoids of Alnus species. Integrated with GNPS library matching and NAP in silico annotation, dia-
rylheptanoid-related Mass2Motifs 41, 49, 72, and 81 could be characterized and correlated with specific substructures of diarylheptanoid aglycones. Scaffold
diversity within diarylheptanoid molecular families A, D, and I were revealed by mapping these Mass2Motifs on the molecular network with different colors. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 4. Discrimination of the analyzed
Alnus extracts into chemogroups. The
analyzed extracts can be discriminated
into three chemogroups by visualizing the
CSCS distance metric between samples as
PCoA plot (A) and chemical dendrogram
(B). On the other hand, conventional
methods such as PCA score plot (C) or
hierarchical clustering analysis (HCA)
using the Euclidean distance (D; che-
mogroups 1–3 are visualized with same
colors used in B to make it easy to be
compared) could not discriminate the
samples into the same chemotypes. By
mapping the chemogrouping of samples
on the molecular network, it could be vi-
sualized that the three chemogroups were
rich in diarylheptanoid, flavonoid, and
tannins, respectively (E). (For interpreta-
tion of the references to color in this figure
legend, the reader is referred to the Web
version of this article.)
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replicated samples were available for this study. We also could not
provide any hypothetical explanation, which was an illustration of the
lack of our knowledge on the metabolism of non-model species.
Nevertheless, the discrimination of chemotypes and estimation on the
bioactive compounds shows the potential of high-throughput metabo-
lite annotation tools for natural product chemistry researchers. We
expect that the chemical overview on Alnus species made in this study
will provide valuable insights for further exploration and research on

these and other medicinal plants.

4. Experimental

4.1. Chemicals and reagents

HPLC grade water and acetonitrile (MeCN) were purchased from
Avantor Performance Materials, Inc. (Center Valley, PA, USA). Formic
acid and leucine-enkephalin were purchased from Sigma-Aldrich (St.
Louis, MO, USA). Ultrapure water was triple deionized (Millipore,
Bedford, MA, USA). MeOH was purchased from Daejung Chemicals Co.,
Ltd. (Siheung, Korea).

4.2. Plant material

The bark, twigs, leaves, and fruits of Alnus japonica (Thunb.) Steud.,
Alnus hirsuta (Spach) Rupr., and Alnus hirsuta var. sibirica (Spach)
C.K.Schneid. (Betulaceae) were collected in the Nambu forest of Seoul
National University, Baegwoon Mountain, Gwangyang, Korea (GPS
N35°06′, E127°37′) in March 2008. The bark, twigs, leaves, and fruits of
Alnus firma Siebold & Zucc. (Betulaceae) were obtained from SK forest,
Chungju, Korea (GPS N37°03′, E128°00′) in March 2008. These samples
were authenticated by Prof. Jong Hee Park (Pusan National University,
Pusan, Korea). The voucher specimens (SNU 751–765) were deposited
at the Herbarium of the Medicinal Plant Garden, College of Pharmacy,
Seoul National University, Koyang, Korea.

Table 1
α-Glucosidase inhibitory activity of tested Alnus extracts.

Samples IC50 (μg/mL) 95% confidence intervals

A. firma barks 8.48 6.07–11.84
twigs 7.47 5.57–10.01
leaves 12.29 7.32–20.65
fruits 6.80 4.61–10.02

A. japonica barks > 100 14.37–37.96
twigs > 100
leaves 23.36
fruits n.d.

A. hirsuta barks 69.55 30.36–159.30
twigs > 100
leaves > 100
fruits > 100

A. hirsuta var. sibirica twigs > 100
leaves 29.84 10.86–82.00
fruits 7.33 3.68–14.60

acarbosea 513.50 μM 432.3–746.1 μM

a Positive control.

Fig. 5. A boxplot showing the ion intensities of MS/MS feature 10 (gallic acid) in extracts which were active (IC50 < 30 μg/mL) and inactive against α-glucosidase.
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4.3. Sample preparation

The accurately weighed 100.0 mg of powdered samples were ex-
tracted with 1.0 mL MeOH, sonicated at room temperature for 2 h,
centrifuged at 10,000 g for 5 min, and 0.5 mL supernatant was col-
lected. The collected supernatant was filtered with a PVDF filter for
LC–MS/MS analysis. A Branson 8510 ultrasonic bath (Branson
Ultrasonics Corporation, Danbury, CT, USA) was used for extraction.
Centrifugation was performed using HANIL micro centrifuge
(Micro17TR, Hanil scientific industrial, Seoul, Korea).

4.4. LC–MS/MS data acquisition

LC–MS/MS analyses were performed on a Waters Acquity UPLC
system (Waters Co., Milford, MA, USA) coupled to a Waters Xevo G2
QTOF mass spectrometer (Waters MS Technologies, Manchester, UK)
which was equipped with an electrospray ionization interface (ESI).
Chromatographic separations were performed on a Waters Acquity BEH
C18 (100 × 2.1 mm 1.7 μm) column. The mobile phase comprised H2O
(A) and MeCN (B), both of which were acidified with 0.1% formic acid.
The column temperature and sample organizer were maintained at
40 °C and 15 °C, respectively. A stepwise gradient method at constant
flow rate of 0.3 mL/min was used to elute the column with the fol-
lowing conditions: 10–100% B (0–27 min), followed by 3 min of
washing and 5 min of reconditioning. Analyses of the samples (1.0 μL
injected) were performed in an optimized DDA mode consisting of a full
MS survey scan in the m/z 100–1500 Da range (scan time: 100 ms)
followed by MS/MS scans for the three most intense ions. The collision
energy was applied at a gradient from 20 to 80 V. The ESI conditions
were set as follows: capillary voltage 3.0 kV, cone voltage 25 V, source
temperature 120 °C, desolvation temperature 450 °C, cone gas flow
50 L/h, and desolvation gas flow 800 L/h. High-purity nitrogen was
used as the nebulizer and auxiliary gas, and argon was used as the
collision gas. Considering the abundance of phenolic compounds in
Alnus species (Sati et al., 2011; Liigand et al., 2017), negative ion mode
(ESI−) was selected for analyses. The [M − H]− ion of leucine en-
kephalin at m/z 554.2615 was used as the lock mass to ensure mass
accuracy and reproducibility.

4.5. LC–MS/MS data analyses

4.5.1. Chromatographic and spectral preprocessing using MZmine
Raw LC−MS/MS data files were imported into MZmine 2.33

(Pluskal et al., 2010). The mass detection was performed with the noise
level at 200 (for MS scans) and 20 (for MS/MS scans). MS chromato-
grams were built with ions showing a minimum time span of 0.02 min,
minimum height of 5000, and m/z tolerance of 0.002 (or 5.0 ppm), then
missing data points were filled by using the peak extender module with
minimum height of 1000. The chromatographic deconvolution was
achieved by the baseline cutoff algorithm, with the following para-
meters: minimum peak height of 1000, peak duration range of
0.02–5.00 min, and baseline level of 330. Chromatograms were deiso-
toped using the isotopic peaks grouper algorithm with an m/z tolerance
of 0.002 (or 10.0 ppm) and a tR tolerance of 0.1 min, and then were
aligned together into a peak table by the join aligner module [m/z
tolerance at 0.006 (or 10.0 ppm), absolute tR tolerance at 0.2 min,
weight for m/z of 70, weight for tR of 30]. Peaks without any MS/MS
scan were removed by the GNPS filter module, then gap-filled with the
peak finder module [intensity tolerance at 30.0%, m/z tolerance at
0.001 Da (or 5.0 ppm), absolute tR tolerance of 0.2 min].

4.5.2. GNPS molecular networking
MS/MS molecular networking was performed using the GNPS web

platform (https://gnps.ucsd.edu) (Wang et al., 2016). MS/MS spectra
were window filtered by choosing only the top six peaks in the± 50 Da
window throughout the spectrum. A network was then created where

edges were filtered to have a cosine score above 0.70 and more than
four matched peaks. The spectra in the network were then searched
against the spectral library of GNPS. The library spectra were filtered in
the same manner as the input data. The molecular network was vi-
sualized using Cytoscape 3.7.1 (Shannon et al., 2003).

4.5.3. In silico annotation using NAP
The molecular network was used to compute the propagation of in

silico annotation with Network Annotation Propagation (NAP (da Silva
et al., 2018); https://proteomics2.ucsd.edu/ProteoSAFe/?params=
{%22workflow%22:%22NAP_CCMS2%22}) using parameters as fol-
lows: 10 first candidates, exact mass searches within 5 ppm, and
structural databases of DNP (an in house version of Dictionary of Nat-
ural Products) and SuperNatural.

4.5.4. MS2LDA substructural topic modeling
Mass2Motifs were extracted from the pre-processed.mgf spectra file

using the MS2LDA web platform (http://MS2LDA.org) (Wandy et al.,
2018). Parameters for the MS2LDA experiment were set as follows: m/z
tolerance 5.0 ppm, tR tolerance 10.0 s, minimum MS1 intensity 0 au,
minimum MS2 intensity 20.0 au, no duplicate filtering, number of
iterations 1000, number of Mass2Motifs 100.

4.5.5. Integration of annotation data using MolNetEnhancer
In silico annotations by NAP and Mass2Motifs extracted by MS2LDA

were integrated into the molecular network using MolNetEnhancer
(Ernst et al., 2019a). The MolNetEnhancer workflow embedded in
GNPS (https://gnps.ucsd.edu/ProteoSAFe/index.jsp?params=%7B
%22workflow%22:%22MOLNETENHANCER%22%7D) was used to re-
trieve chemical class-level annotation for each molecular family, while
the R package named rMolNetEnhancer (https://github.com/
madeleineernst/RMolNetEnhancer) was used to integrate the distribu-
tion pattern of Mass2Motifs into the network.

4.5.6. Chemotyping of extracts based on chemical dissimilarity
The weighted CSCS distance matrix was calculated using the Python

package pyCSCS (https://github.com/askerdb/pyCSCS), and Principal
Coordinates Analysis (PCoA) was performed using the cmdscale func-
tion of the R stats package (R Core Development Team, 2013). Hier-
archical clustering analysis (HCA) was performed using the complete-
linkage clustering method and was visualized as a dendrogram.

4.6. α-Glucosidase inhibitory assay and data integration with MS/MS
analysis

α-Glucosidase inhibitory activity of Alnus extracts were exhibited as
described in our previous study (Lee et al., 2017a, b). Briefly, 90 mL of
100 mU/mL α-glucosidase (from Saccharomyces cerevisiae) solution in
0.05 M PBS buffer (pH 7.0) and 20 mL of Alnus extracts diluted with the
PBS buffer were mixed and pre-incubated at 36 °C for 10 min in a 96-
well microplate. 90 mL of 1.2 mM p-nitrophenyl-α-D-glucopyranoside
(PNPG) solution was added to initiate the enzymatic reaction. The re-
action mixture was incubated at 36 °C and monitored using a micro-
plate reader (SpectraMax M5, Molecular Devices, CA, USA) at a wa-
velength of 405 nm. Absorbance of the mixture was measured every
2.5 min up to 5 min, which indicates the formation of p-nitrophenol.
The reaction mixture with the test solution replaced by equivalent PBS
buffer was used as control, and acarbose was used as the positive
control. All samples were measured in triplicate. IC50 values were cal-
culated using GraphPad Prism 5 (Graphpad Software, CA, USA) with a
dose-inhibition curve with at least six appropriate concentrations.

For integration of bioassay data with MS/MS analysis data, an R-
based Jupyter notebook (Kluyver et al., 2016) named Bioactive Mole-
cular Networks, was downloaded from GitHub, https://github.com/
DorresteinLaboratory/Bioactive_Molecular_Networks (Nothias et al.,
2018). The spectral feature table generated from MZmine preprocessing
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and IC50 values calculated in the α-glucosidase inhibitory assay were
used in the data analysis workflow.
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