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Abstract

This paper presents the development, testing and validation of SWEEPER, a robot for

harvesting sweet pepper fruit in greenhouses. The robotic system includes a six

degrees of freedom industrial arm equipped with a specially designed end effector,

RGB‐D camera, high‐end computer with graphics processing unit, programmable logic

controllers, other electronic equipment, and a small container to store harvested

fruit. All is mounted on a cart that autonomously drives on pipe rails and concrete

floor in the end‐user environment. The overall operation of the harvesting robot is

described along with details of the algorithms for fruit detection and localization,

grasp pose estimation, and motion control. The main contributions of this paper are

the integrated system design and its validation and extensive field testing in a

commercial greenhouse for different varieties and growing conditions. A total of 262

fruits were involved in a 4‐week long testing period. The average cycle time to

harvest a fruit was 24 s. Logistics took approximately 50% of this time (7.8 s for

discharge of fruit and 4.7 s for platform movements). Laboratory experiments have

proven that the cycle time can be reduced to 15 s by running the robot manipulator at

a higher speed. The harvest success rates were 61% for the best fit crop conditions

and 18% in current crop conditions. This reveals the importance of finding the best fit

crop conditions and crop varieties for successful robotic harvesting. The SWEEPER

robot is the first sweet pepper harvesting robot to demonstrate this kind of

performance in a commercial greenhouse.
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1 | INTRODUCTION

In modern greenhouses, there is a high demand to automate

labor. The availability of a skilled workforce that accepts

repetitive tasks in harsh greenhouse climate conditions is

decreasing rapidly. The resulting increase in labour costs and

reduced capacity put major pressure on the competitiveness of

the greenhouse sector (Comba, Gay, Piccarolo, & Ricauda

Aimonino, 2010).

The performance of robots for automated harvesting of fruits and

vegetables has remained remarkably stationary in the past three decades.

Around 50 robotic harvesting systems have thus far been globally

developed, of which none have been successfully commercialized to this

date (Bac, van Henten, Hemming, & Edan, 2014). On average, the
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harvesting success of prototypes has been around 66% (values ranging

between 40% and 86%), with cycle times of 33 s per fruit (values ranging

between 1 and 227 s). This performance is far below what is

commercially viable, under the assumption that the market demands a

machine that is highly accurate and fast. However, near‐perfect harvest
success and high speed are not necessarily prerequisites for economic

viability, and also robots with lower performance can be of supportive

value. The major problem is rather the gap between the required and

achieved technological readiness level. In particular, earlier presented

solutions most often lack practical robustness, failure control, and

required postharvest logistics.

The goal of the European Union‐funded research project SWEEPER1

was to develop, test and validate a practical robotic harvesting solution

for sweet peppers in real‐world conditions.

This paper describes various aspects of the project, from the scientific

and technical challenges and solutions to the results of extensive field

tests (262 fruits along 4 weeks) in a commercial greenhouse with a large

variety of conditions (different growing rows, as well as different fruit

varieties/crop conditions). The specific hypotheses tested were whether

harvesting performance depend on the sweet pepper variety and crop

modifications. Furthermore, the robot was integrated into the logistics of

the greenhouse (equipped with a mobile platform which autonomously

traversed along the rows).

2 | STATE OF THE ART

Agricultural robots are being developed for many agricultural tasks

such as field cultivation, planting, harvesting, pruning, and spraying

(Baxter, Cielniak, Hanheide, & From, 2018; Bechar & Vigneault, 2017;

Blackmore, 2016; Duckett, Pearson, Blackmore, Grieve, & Smith,

2018; Edan, Han, & Kondo, 2009; van Henten, Bac, Hemming, &

Edan, 2013). In practice, current working agricultural robotics

systems are limited despite intensive R&D and many feasible

technical solutions that have proven successful (Blackmore, 2016;

Duckett et al., 2018). Fully robotized operations are not yet available,

mostly due to the unstructured, dynamically changing, and undefined

agricultural environment that demands a high level of sophistication

and complicates the development process (Bac et al., 2014).

Furthermore, each crop and task requires tailored designed devel-

opments (Bac et al., 2014). However, a number of companies have

recently announced that they are close to a commercial product

launch. Examples are robots for harvesting strawberries (Agrobot2,

Octinion3) and harvesting and deleafing of tomatoes (Privia4,

Panasonic5).

Due to the complex problem, most R&D on robotic harvesting

focuses on a single aspect of the robotic system, for example,

detection (Halstead, McCool, Denman, Perez, & Fookes, 2018;

Kamilaris & Prenafeta‐Boldú, 2018; Kapach, Barnea, Mairon, Edan,

& Ben‐Shahar, 2012; Vitzrabin & Edan, 2016a, 2016b; Zemmour,

Kurtser, & Edan, 2019; Zhao, Gong, Huang, & Liu, 2016), manipula-

tion and gripping (Bulanon & Kataoka, 2010; Eizicovits & Berman,

2014; Eizicovits, van Tuijl, Berman, & Edan, 2016; Rodríguez,

Moreno, Sánchez, & Berenguel, 2013; Tian, Zhou, & Gu, 2018), and

motion/task planning (Barth, IJsselmuiden, Hemming, & Van Henten,

2016; Korthals et al., 2018; Kurtser & Edan, 2019; Li & Qi, 2018; Liu,

ElGeneidy, Pearson, Huda, & Neumann, 2018; Ringdahl, Kurtser, &

Edan, 2019).

Currently reported attempts of fully integrated autonomous

harvesting include melon (Edan, Rogozin, Flash, & Miles, 2000),

cucumber (van Henten et al., 2002, 2003), strawberry (Hayashi et al.,

2010), cherry tomato (Feng, Zou, Fan, Zhang, & Wang, 2018;

Tanigaki, Fujiura, Akase, & Imagawa, 2008), eggplant (Hayashi,

Ganno, Ishii, & Tanaka, 2002), apple (De‐An, Jidong, Wei, Ying, &

Yu, 2011; Silwal et al., 2017; Yuan, Lei, Xin, & Bing, 2016), orange

(Almendral et al., 2018; Ferreira, Sanchez, Braunbeck, & Santos,

2018), and sweet peppers harvesting (Bac et al., 2017; Lehnert,

English, McCool, Tow, & Perez, 2017). However, most research to

date has been has been tested either in simulation (Edan & Miles,

1993; Shamshiri et al., 2018; Wang et al., 2018) or in laboratory

conditions (Almendral et al., 2018; Ceres, Pons, Jimenez, Martin, &

Calderon, 1998; Foglia & Reina, 2006). Very few works have been

tested in field conditions (Bac et al., 2017; Bontsema et al., 2014;

De‐An et al., 2011; Edan & Miles, 1993; Hayashi et al., 2010; van

Henten et al., 2003; Lehnert et al., 2017). Furthermore, these field

tests were limited and did not include a wide range of conditions

(different seasons, times along the day) and different plants

(cultivars, growing conditions). Overall, the number of test samples

evaluated in 56 cases reported varied from 11 to 2,506 (Bac et al.,

2014). Recent studies that present new developments are still very

limited in performance evaluation. For example, the gripper of a

sweet pepper harvester tested on an integrated system in a Dutch

commercial greenhouse for 176 fruits of single cultivar crops in

simplified and unmodified crop along 8 days in the same month. A

sweet pepper harvester by another development (Lehnert et al.,

2017) was tested in a commercial Australian greenhouse in two field

trials with total 50 fruits along 10m crop. An apple harvester (Silwal

et al., 2017) tested in a commercial orchard in Washington State

evaluated performance for 150 fruits with no details on how many

trees this included and/or timing of the tests. Other agricultural

robots tested in field conditions include a pruning robot (Botterill

et al., 2017) that was tested on a single row of one cultivar in 1

month and spraying robots (Adamides et al., 2017; Berenstein &

Edan, 2018) that were tested in actual vineyard conditions focusing

on human–robot interaction evaluation.

Given the complexity of harvesting that is highly variable in the

environment and operating conditions (Kurtser & Edan, 2018), it is

questionable whether the reliability of a performance indicator

1Sweeper website http://sweeper‐robot.eu. Accessed February 28, 2019.

2http://agrobot.com. Accessed on March 17, 2019.

3http://octinion.com. Accessed on March 17, 2019.

4https://www.priva.com/discover‐priva/news‐and‐stories/priva‐kompano‐deleaf‐line.
Accessed on March 17, 2019.

5https://internetofbusiness.com/panasonic‐robot‐tomato‐picker. Accessed on March 17,

2019.
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based on such few fruit samples can represent the robot

performance in the complex crop environment (Bac et al., 2014).

Moreover, these test samples were probably evaluated at a

specific hour on a day and did not include the weather variations

throughout the day. Furthermore, even when a full system is

tested, it usually does not include the full integration into the crop

logistics and details on actual experimental conditions are not

always fully reported.

Due to the large variation throughout and between seasons, it is

important to conduct long‐term tests in a variety of conditions and

for different crop varieties (Bac et al., 2014; Edan & Miles, 1994) and

mostly report testing conditions.

3 | ENVIRONMENT AND REQUIREMENTS

In Figure 1, a typical growing system of a commercial sweet pepper

crop in a modern Dutch greenhouse is illustrated. Figure 2 shows the

crop from two different perspectives. The heating pipes form the

central infrastructure of the greenhouse on which harvest and crop

maintenance carts can move between two rows of plants. Each plant

consists of three stems, and the plants are placed to form double plant

stem rows (V‐system, in the following referred to as the double‐row
cropping system) with on average 20 cm spacing between stems along

the aisle. Plants are positioned on a hanging gutter that is attached to

the roof of the greenhouse. Plant stems are guided along a vertical

support wire. The average plant stem density is 7.2 stems/m2.

Conditions in the greenhouse vary a lot during the day (e.g.,

illumination, temperature) and during the season (e.g., crop reaches

a height of 4.5m toward the end of the season).

The robot was designed to operate in a commercial greenhouse

with the following requirements:

• Ability to harvest ripe (yellow colored) fruits in the greenhouse.

• Should not damage the harvested fruit body or fruit stem

(peduncle).

• Should not damage other fruits, plants, or guide wires.

• Must interface with automatic guided vehicle logistics.

4 | SYSTEM DESIGN AND OPERATION

On the basis of the requirements outlined in the previous section, an

initial robot design was proposed and developed. Field tests of partial

solutions called for alternative solutions, which were then developed

and tested in an iterative manner. In the remaining part of this

section, the final design is described. The overall operation of the

robot and algorithms for fruit detection, grasp pose estimation, and

motion control are detailed.

4.1 | Overall design

An overview of the robotic system is shown in Figure 3. The system was

composed of a standard six degrees of freedom (DOF) industrial robot

arm (Fanuc LR Mate 200iD), a custom designed end effector (patent No

PCT/NL2019/050396–pending approval), a high‐end main computer with

graphics processing unit (GPU), programmable logic controllers (PLCs),

sensors, other electronic equipment, and a small container to store

harvested fruit. One Arduino‐based PLC controlled the cart operations

(motion along the row and cart elevation); another PLC controlled the

low‐level functions of the end effector. All equipment was mounted on a

cart that could drive on the pipe rail and also on the concrete floor. The

cart is a modification of the commercially available Qii‐Drive Pepper AGV
pepper harvest cart (Bogaerts Greenhouse Logistics, Belgium). This cart

has a scissor lift that can elevate the platform with the robot manipulator

to the harvest zone. Both cart propulsion and scissor lift as well as the

camera system and manipulator were controlled by the system's main

computer. The whole system was powered by 24V rechargeable

batteries.

4.1.1 | End effector design

The end effector is the tool mounted at the last link of the robot arm.

The purpose of the end effector in this robot was to facilitate safe

removal of the fruit from the plant and also to hold it during

transportation to a container.

F IGURE 1 Schematic top and side view of one aisle in a sweet pepper greenhouse. In this situation, each plant in a row of plants has three

stems. The growing architecture in the “Y” shape results in a double row of stems per plant row as seen from the aisle. This is also known as the
“double row” system. In the “single row system” each plant in the row would have only one single stem [Color figure can be viewed at
wileyonlinelibrary.com]
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As detailed in Figure 4, the end effector comprises a housing

for the RGB‐D camera and is fitted with custom made LED lighting

fixtures, described in Section 4.2.3. The last joint of the robot arm

is connected to this housing by a robot arm mount. Furthermore,

on top of the housing, a plant stem fixation mechanism is placed

with a vibrating knife configured to cut the fruit peduncle driven

by an electrical motor. In the first contact position with the plant

stem, the cutting edge of the knife is positioned right above the

peduncle of a fruit while it is shielded by the stem fixation

mechanism to prevent plant damage by the knife. When the

cutting action is initiated, by moving the end effector downwards,

the fixation mechanism is lifted, thereby providing the knife room

to cut downwards through the peduncle. After the peduncle is cut,

the fruit catching device holds the fruit which consists of six metal

fingers coated by soft plastic. The fingers are attached to the

upper part of the camera housing of the end effector. They are

spring‐loaded to rotate around their mounting point. This enables

the fingers to individually flex backwards if they hit an obstacle

F IGURE 2 Photos of a sweet pepper

crop in the greenhouse [Color figure can be
viewed at wileyonlinelibrary.com]

F IGURE 3 The SWEEPER prototype consists of a Fanuc LR Mate
200iD robot arm mounted on an automated cart with a scissor lift.
The end effector mounted at the tip of the robot arm contains a
cutting mechanism, an imaging system, and a fruit catching device. The

photo shows the prototype with the side panel opened. CB, controller
box power and network; CE, controller box end effector; FC, FANUC
robot controller; PA, compressor for pressured air; PC, computer; PW,

power inverter [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 4 End effector components

(without catching mechanism). Patent No
PCT/NL2019/050396 (pending approval)
[Color figure can be viewed at
wileyonlinelibrary.com]
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while the end effector is approaching the target. Figure 5 shows a

photo of the final end effector, including the fingers.

4.2 | Software design

The software developed in the project was crucial to achieve the

required functionality. Most software was written in C++ and

Python, using ROS Indigo running on Ubuntu 14.04. Most

programs were installed on the main computer mounted on the

platform. Some functionality, such as image‐based obstacle

detection, was run on the main computer's GPU to speed up

operation.

4.2.1 | Overall operation

The autonomous operation of the robot was defined in a flowchart,

describing how sequencing of image‐based fruit localization and

motion control of platform, robot arm, and end effector was

combined to achieve successful harvesting of fruit (see Figure 6).

For better readability, some details and most of the error handling

are left out in the figure. The basic operation was as follows:

The platform autonomously moves along the plant row and raises

itself to the desired working height. The manipulator then moves in a

predefined pattern to scan for fruits. As soon as a fruit is detected (see

Section 4.2.3), the manipulator moves closer to the fruit, and the location

of the stem relative to the fruit is determined (see Section 4.2.4). The end

effector is then rotated such that the stem is behind the fruit and then

moves towards the fruit using visual servoing. When the fruit is reached,

the vibrating knife on the end effector is actuated, and the end effector is

moved down to cut the peduncle of the fruit. The fruit is caught in the

fingers mounted on the end effector, and the manipulator is moved to the

fruit container, where the fruit is dropped. The manipulator is then

brought back to where it first saw the fruit, and the scanning procedure

and harvesting continue until the scanning pattern is completed. The

platform is then lowered to the second harvesting level where harvesting

proceeds. When all fruits have been harvested from the current platform

position, the platform moves along the rails to the next plant, and the

harvesting procedure is repeated. If a fruit harvesting operation fails, a

maximum of two additional attempts are made (not shown in flowchart).

If the harvesting operation still fails, the fruit is left. When the platform

has reached the end of the plant row, it automatically moves back to the

starting point of the row.

4.2.2 | High‐level control

To execute the flowchart described in the previous section, a state

machine‐based framework for agricultural and forestry robotics

(Hellström & Ringdahl, 2013) was implemented. Each state is usually

connected to one or several ROS nodes that perform specific actions

such as moving the manipulator or detecting fruits in an image.

F IGURE 5 End effector with cutting device, Fotonic F80 camera,

LED illumination, and fruit catching device [Color figure can be
viewed at wileyonlinelibrary.com]

F IGURE 6 A flowchart describing the
operation of the final harvesting robot
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4.2.3 | Fruit detection

A central function in the system is detection of fruits to be harvested.

For successful operation, the three‐dimensional (3D) location of each

fruit must be determined with a high accuracy. The chosen solution is

based on an RGB‐D camera that simultaneously reports color and depth

information. The camera (Fotonic F80; Fotonic Inc., Sweden; Figure 5)

employs a time‐of‐flight technology for depth measurements and uses a

single sensor for measuring both RGB and depth, thus allowing fully

registered channels. It was proven very robust to varying outdoor

illumination conditions with a signal‐to‐noise ratio well suited for

agricultural applications in greenhouses (Ringdahl et al., 2019). Using

this camera and a custom built LED‐based illumination system, RGB

images of the plant were acquired from both overview distance and

close range. Since detectability was dependent on the imaging

acquisition distance and the sensing system tilt (Hemming, Ruizendaal,

Hofstee, & van Henten, 2014; Kurtser & Edan, 2018), a constant tilt

upwards of the sensors and illumination rig was applied.

To facilitate high frame‐rate operation, a shape and color‐based
detection algorithm was implemented (Arad et al., 2019). Color

constancy is a key factor in the performance of such algorithms and

was achieved by applying a filter to obtain homogeneous light

distribution in the image. Before operation, the algorithm was

calibrated over several sample images (2–3 images), and the user

was prompted to select the target fruit. Using this input, color

thresholds for detection were automatically set on the basis of the

statistics of the selected areas. Calibration needed to be performed

only once for each target pepper variety. Several other approaches to

automatically determine thresholds were developed and evaluated,

see for instance Ostovar, Ringdahl, and Hellström (2018). Once

calibrated, the algorithm scanned each acquired image for regions

matching the target color thresholds. Detected regions were then

further refined by removing detections exceeding predefined

minimum/maximum sizes. A Pepperness measure P was also calcu-

lated, for each of the detected peppers according to Equation (1), to

further remove misdetections

=P
A C Z
P P

,P
2 2

W H
(1)

where AP is the detected area of the pepper in pixels, C is the

camera's pixel to cm coefficient, Z is the distance of the pepper (cm),

PW and PH are standard pepper width and height (controllable

parameters in cm). “Holes” in the detected regions were filled using

mathematical morphology operations. Finally, depth information

from the camera was used to compute the volume of the detected

regions. Detected regions were compared with the volume of an

average pepper, and the relative size was reported as part of the

detection (see Figure 7). This information was then used to further

prune false detections, avoid nonharvestable fruit clusters, and

define harvest priorities. The exact 3D location of the point of mass

was calculated using the depth information extracted from the

detected region and a standard procedure of pixel‐to‐world

transformation of the region (e.g., Wei & Ma, 1994; Zhang & Pless,

2004). Given the subsets of regions that were classified as peppers to

be harvested, a methodology for harvesting sequencing was defined.

Several options for harvesting sequencing were reviewed, including

optimization of harvesting distance (Edan, Flash, Peiper, Shmulevich,

& Sarig, 1991; Zion et al., 2014). The heuristic that was implemented

was harvesting in a top‐down sequence to facilitate harvesting of

clusters, followed by closest to the center to facilitate proper visual

servoing that keeps the target in the middle of the image.

4.2.4 | Stem detection

As described in Section 4.2.1, the manipulator rotates around the

stem such that the stem is behind the fruit as seen from the camera.

To enable this, a method to estimate at what angle the fruit was

positioned around the stem was developed. First the images were

semantically segmented using a deep learning approach (Barth,

IJsselmuiden, Hemming, & Van Henten, 2017, 2018). In this way, the

fruit and stem were identified, from which the centers of each plant

part could be calculated. Detected stem regions were processed with

an Canny edge detector, and the resulting edge image was used to

detect straight lines (the estimated path of a stem) by a Hough

transform. From the center of the detected stem, a rectangular

search region of 200 × 200 pixel was defined for the fruit. The largest

connected region inside the search region was selected as fruit

region. Around the center of mass of the selected region, the fruit

position estimation was refined with a 125 pixel circular mask. The

center of mass of the refined region was selected as final fruit center.

The corresponding stem center was calculated in the same horizontal

plane. Figure 8 illustrates the method applied in unmodified green-

house conditions.

When the center of the fruit and stem was determined in one

viewpoint, the position of the fruit around the stem (angle) could be

determined, knowing that the average distance between the fruit

center and the stem is 4 cm and the distance of the camera and the

fruit surface is 20 cm. However, because this method cannot

differentiate if the fruit is in the front or the back of the stem, two

F IGURE 7 Example of real‐time fruit detection. The red curves
indicate detected areas [Color figure can be viewed at

wileyonlinelibrary.com]
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viewpoints were required to confirm the proper angle of the fruit.

The method was evaluated using 45 greenhouse images for which the

ground truth angles between fruit and stem were known. In 73% of

the cases, the error was <25°, which was the accuracy requirement

set by the mechanical constraints of the end effector (Barth,

Hemming, & Van Henten, 2019).

4.2.5 | Motion control

Once a fruit had been detected as described above, the robot arm

should move the end effector to a position from which the fruit could

be harvested while avoiding obstacles. This is a nontrivial task for

several reasons. In general, the robot arm is moved by changing the

angles of the six motor‐controlled joints in the arm. Finding joint

angles for a given goal position is known as the inverse kinematics

problem, which in general has several possible solutions. The problem

is further complicated by the fact that not only the position, but also

the orientation of the end effector must be controlled. To move the

end effector along a given path toward the fruit, a sequence of

solutions of the inverse kinematics problem has to be computed.

Mostly, motion control of the robot arm was implemented using

dedicated motion planning software. Several kinds of motion

planners and kinematic solvers available in ROS MoveIt! were

evaluated, and the lazy PRM* (Bohlin & Kavraki, 2000) planner from

the OMPL package and TRAC‐IK (Beeson & Ames, 2015) kinematic

solver was finally chosen. For the final approach to the fruit, visual

servoing was applied, aiming at keeping the detected center of the

fruit in a predetermined position in the camera image. By this

procedure, requirements on camera calibration and 3D coordinate

estimation were substantially lowered, and the accuracy of end

effector positioning increased substantially.

5 | GREENHOUSE TESTING AND
PERFORMANCE EVALUATION

The finalized robotic system6 was evaluated in a commercial sweet

pepper production greenhouse in IJsselmuiden, the Netherlands,

during June 2018. The procedure for testing and evaluation of results

is described in the remaining of this section.

5.1 | Testing procedure

The greenhouse was set up as described in Section 3. Two rows were

selected for robotic harvesting experiments, with each comprising

100 stems of the sweet pepper variety Sardinero, followed by 100

stems of the variety Gialte. In this way, the hypothesis that Sardinero

would be more suitable for robotic harvesting than Gialte could be

tested. The motivation for this hypothesis is that a longer peduncle

(fruit stem) should allow more free space to position the end effector

F IGURE 8 Method for estimating fruit and stem centers. (a) Original color image. (b) Semantic segmentation into classes background (black),
stems (magenta), and fruit (yellow). (c) Stem pose estimation and found stem center in the image. (d) Search region for fruit within 200 × 200

pixel rectangle; the largest connected region was selected. (e) Around center of mass of selected region, the fruit estimation was refined with a
125 pixel circular mask. (f) Center of mass of refined fruit estimation was selected as final fruit center and corresponding stem center in the
horizontal plane as final stem center [Color figure can be viewed at wileyonlinelibrary.com]

6A video of the final prototype can be found at http://www.sweeper‐robot.eu/videoclips and
https://www.youtube.com/watch?v=VbW1ZW8NC2E.
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and that a long peduncle should reduce the risk of damaging the fruit

by cutting into the fruit body.

As sweet pepper commercially is harvested before the complete

fruit body turns from green to yellow, each fruit with at least a 5 cm2

big yellow colored patch was considered ripe and was manually

labeled with a fruit number. Unripe fruits were not labeled and not

selected to be harvested by the robot.

Half of the plant stems of both varieties were modified to

simulate idealized circumstances, with low occlusion and no clusters

interfering with the end effector's reachability. The proposed

modifications were introduced after consulting with commercial

growers and agronomy experts. The modification was done by

removing leafs that occluded a labeled fruit from a frontal

perspective. Neighboring fruits that might interfere with a harvest

attempt (e.g., clusters) were also removed. Figure 9 illustrates this

modification. It was hypothesized that performance for the modified

crop would be significantly higher than for the commercial

(unmodified) crop.

The current double row growing architecture (as shown in

Figure 1) does not allow robotic harvesting from both sides of the

stem (front and back) since fruits may be visually and physically

occluded by the row of stems. To analyze the potential of the robot in

a best fit cropping system (where the robot can reach the stem from

both sides), we also calculated the robot performance by only

considering fruits that were in front of the row. In the following, this

cropping system is referred to as the single row system. For this, only

fruits positioned in front of the row (positioned over −90° or +90°)

were taken into account. The resulting percentages are with regard

to only these fruits.

The actual testing procedure started by positioning the robot at

the beginning of the plant row with the selected plant stems. The

robot was then started to perform the autonomous harvest cycle as

described in Section 4.2.1. After the robot finished harvesting fruits

from all stems, the remaining ripe fruits that the robot was not able

to harvest were manually harvested. In this period of the harvesting

season, 4–5 days were the typical period between two consecutive

manual harvest actions. Therefore, the robotic harvesting experiment

was then paused for 5 days to let the next fruit setting ripen, before

starting a new harvest trial at the same plant stems.

5.2 | Performance measures

The harvest cycle consists of a sequence of substeps that all have to

work for a fruit to be successfully harvested. To improve under-

standing and analysis of the test results, success of the following five

substeps were logged: fruit detected, fruit reached, fruit cut, fruit

caught, and fruit in container.

For each reached fruit, the end effector knife positioning error

was measured in two ways (the robot was paused during measure-

ments): the Euclidean distance from the bottom center of the knife of

the end effector to the top center of the peduncle (manually

determined using a tape measure) and the difference in angle of the

end effector with the stem and the angle between the fruit and the

stem (manually determined by measuring the difference in angle).

The time spent in the different steps of the harvest cycle was

logged. These steps were platform movement, fruit localization,

obstacle localization, visual servoing, detach fruit, and put fruit in

container (move to storage bin and back).

6 | PERFORMANCE RESULTS

In total, 262 fruits were attempted to be harvested: 104 in the

modified crop (66 Sardinero and 38 Gialte) and 159 in the

unmodified crop (99 Sardinero and 59 Gialte).

Results for all combinations of growing conditions (pepper

variety, single/double row, modified/unmodified) are presented in

Table 1, with success rates after each one of the five substeps of the

harvesting cycle. Each column contains the fraction of fruits

successfully completing the corresponding substep. Hence, success

rates for the entire harvesting cycle can be found in the right‐most

column. Table 2 presents noncumulative success rates for each

individual substep for the same data. From this table, bottlenecks can

be identified.

For all ripe fruits, percentage of coloration determined manually

based on the average ripeness was 69% and 87% for the Sardineroİ

and Gialteİ varieties, respectively.

The most common failure of fruit localization in the unmodified

condition was the occlusion of fruit by leaves of the same plant stem

or neighboring stems. Occlusions were hardly present in the modified

condition.

F IGURE 9 Example of the crop before (left) and after
modification (right). The red dotted circles indicate the plant element
that have been manually removed [Color figure can be viewed at

wileyonlinelibrary.com]
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In addition, for the unmodified condition, fruit clusters could

cause the robot to center in the middle of the cluster, as opposed to

the desired middle of the top fruit. The fruit recognition algorithm

was sometimes not able to distinguish individual fruit in the clusters.

A center error in this phase caused the next phase of the obstacle

detection to fail and abort the harvesting attempt. Sometimes, the

distance reading of the fruit center was incorrect due to an occluding

leaf coming into view during the centering of the robot, causing the

robot to abort the current attempt.

When the fruit was properly centered, the obstacle detection

took a first overview image to segment the stem and the fruit.

Sometimes this failed because the situation was so unique, and it was

not covered in the training data of the machine learning algorithm.

Sometimes only one of the two classes was detected, causing a

failure of this action.

Most failures during visual servo control were due to losing sight

of the fruit, notably from leaves coming into the view when the end

effector moved closer by. This most often happened in the last

5–10 cm to the fruit. For the modified condition, failures during visual

servo control were rare. Visual servo control could also fail when the

end effector pushed away the fruit (getting in contact with the stem

or a neighboring fruit). In the current mechanical design, the fingers

to catch fruit sometimes push the plant away while the end effector

is approaching the fruit. This is because the fingers, even constructed

to do so, do not flex away easy enough when touching leaves or other

fruits in the way. The target fruit then never comes closer to the tool

center point, aborting the procedure when the manipulator reached

the boundary of its workspace.

Detachment of the fruit could fail in multiple ways. First, the end

effector might have not been positioned accurately regarding the

angle of the end effector and the fruit and stem (i.e., not in line with

each other), but also regarding the Euclidean distance of the knife

and the peduncle, which could be too much after visual servo control.

In such cases, the knife failed to intersect with the peduncle fully,

causing only a partial or no cut of the fruit. Second, it was observed

that the knife was sometimes slipping off the peduncle, especially

with the Sardinero variety with its longer and more vertical

peduncles. Third, the motion downward of the end effector was

not always possible because the manipulator could already be near

the end of its workspace when the knife was was positioned on top of

the peduncle after visual servo control.

When the fruit was cut, it was required to be caught by the

catching device. On a rare occasion, this failed because the fruit

bounced just on the edge of the device. In some other rare occasions,

the fruit got entangled in side branches or leaves while falling down

after cutting, causing not to end up in the catching device.

The total average cycle time was 24 s (ranging between 18 and

25 s). It is important to mention that, due to safety reasons, the robot

was not operated at the maximum speed technically possible. This

was to protect the researchers working close to the system to collect

data and also to protect the mechanical components of the robot.

The unique end effector and the camera might otherwise have been

easily damaged by unexpected self‐collisions or collisions with the

crop or greenhouse equipment. Laboratory experiments with the

same prototype showed that it is possible to harvest one fruit in

<15 s (excluding platform movements) Figure 10.

The measured positioning error of the end effector after visual

servoing control and before the cutting operation gives information

on the combined accuracy of fruit localization, stem–fruit angle

estimation, and visual servoing control. Figure 11 shows average

errors for combinations of modified/unmodified conditions and crop

varieties, computed for the simulated single row system. For both

crop varieties, the unmodified, commercial crop condition results in

larger error, measured by both distance and angle.

TABLE 1 Cumulative success rates after each one of the five
substeps in the harvesting cycle

Fruit

detected

Fruit

reached Fruit cut

Fruit

caught

Fruit in

container

Double row

Modified

Gialte 97% 92% 84% 71% 71%

Sardinero 68% 61% 47% 36% 36%

All 79% 72% 61% 49% 49%

Commercial

Gialte 78% 44% 31% 24% 24%

Sardinero 64% 34% 20% 16% 14%

All 69% 38% 24% 19% 18%

Single row

Modified

Gialte 97% 91% 91% 81% 81%

Sardinero 74% 63% 51% 43% 43%

All 85% 76% 70% 61% 61%

Commercial

Gialte 83% 55% 43% 33% 33%

Sardinero 65% 40% 35% 27% 23%

All 73% 47% 38% 30% 29%

TABLE 2 Noncumulative success rates for each one of the five
substeps in the harvesting cycle

Fruit
detected

Fruit
reached Fruit cut

Fruit
caught

Fruit in
container

Double row

Modified

Gialte 97% 95% 91% 85% 100%

Sardinero 68% 90% 77% 77% 100%

All 79% 91% 85% 80% 100%

Commercial

Gialte 78% 56% 70% 77% 100%

Sardinero 64% 53% 59% 80% 88%

All 69% 55% 63% 79% 95%

Single row

Modified

Gialte 97% 94% 100% 89% 100%

Sardinero 74% 85% 81% 84% 100%

All 85% 89% 92% 87% 100%

Commercial

Gialte 83% 66% 78% 77% 100%

Sardinero 65% 62% 88% 77% 85%

All 73% 64% 81% 79% 97%
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7 | DISCUSSION

Results show large differences between a modified and unmodified

crop. Under a single row system assumption, harvest performance

averaged over both crop varieties was 61% for the modified crop as

opposed to 29% of the unmodified crop. Broken down into the

subtasks fruit detected, fruit reached, fruit cut, fruit caught, and fruit

put in container, the difference in performance was 12%, 29%, 32%,

31%, and 32%, respectively. This difference can solely be explained by

the removal of leaves and neighboring fruit. Regarding the former,

leaves occlude the computer vision in many stages of the harvest

cycle, causing early aborts. Regarding the latter, neighboring fruit can

interfere with the end effector's motion to position the tool accurately.

Neighboring fruit can also affect the fruit localization process.

The results indicate that the performance of the robot could be

increased by addressing occlusions and clusters of fruit. Approaches

like plant breeding, mechanical solutions, or growing architecture,

and crop maintained strategies could help to achieve this.

The hypothesis that the Sardinero crop variety would be more

suitable for robotic harvesting compared with the Gialte variety

could not be confirmed. It turned out that the longer and more

vertical peduncles of Sardinero resulted in a less stable contact point

for the knife such that sometimes the knife did not cut through but

slipped off the peduncle. Furthermore, the longer peduncles

increased the uncertainty about the exact location of the cutting

point as the developed system only locates the fruit body and not the

cutting point itself. This is also reflected by the observed higher end

effector positioning errors for Sardinero, as shown in Figure 11. The

hypothesis that a longer peduncle should reduce the risk of cutting

into fruit body was not confirmed. As the fruit immediately drops

down into the catching fingers once the peduncle is cut, typically no

fruit damage occurs, even when the robot continues a bit more with

the downwards cutting motion. This emphasizes the need for

experimentation in real‐world conditions.

Under a single row system assumption, the harvest success rate

for the modified condition was 81% for Gialte and 43% for Sardinero.

For the unmodified condition, results were closer at 36% for Gialte

and 23% for Sardinero. The results also show that the fruit detection

rate for the variety Gialte was higher than for Sardinero for all

scenarios. The higher average degree of ripeness of the fruits of the

Gialte variety (as described in Section 6) may have facilitated the

detection and correct localization of the target fruits. The fruit

ripeness is, however, not a characteristic of the variety but changes

over time. It should be noted that the reported experiment only

included two varieties. It was also observed that during the 4 weeks

the experiments took place, the crop conditions/crop geometry like

openness of the crop and appearance of fruit clusters changed a lot

within the same variety. These changes seemed even larger than the

difference between the two varieties. The different performance for

different crop varieties should be further researched, ideally in

cooperation with breeders. It is suggested to develop a robust

evaluation method to simplify performance measurements of robotic

harvesting. This would speed up the overall design process of an

improved robotic system.

The results show that a modified cropping system significantly

increases harvest performance. Further development should there-

fore concentrate on usage in modified cropping systems, such as the

previously described single row system. Such modifications should

not negatively influence plant growth or yield and should always be

acceptable to the commercial growers. In general, the estimated

harvest performance, on average 29% in the unmodified crop and

61% in the modified crop, shows promise for an autonomous

preharvest of the crop, whilst the remainder would be harvested

by humans. Compared with previous results from the CROPS project

(Bac et al., 2017; Bontsema et al., 2014) 6% for unmodified and 26%

for modified crops, performance has increased significantly. Compar-

able improvements have been made to the cycle time, currently at an

average of 24 s, compared with 94 s for CROPS and 35–40 s by

Harvey (Lehnert et al., 2017) not including platform movement.

Additional evaluation should also be conducted in different seasons

and greenhouses to ensure robustness.

8 | SUGGESTED IMPROVEMENTS

The field tests provided valuable insights in the performance of the

integrated system and how its modules functioned together. The

following bottlenecks and possible improvements have been iden-

tified:

F IGURE 10 Average time needed for the different robot subtasks

F IGURE 11 Average positioning errors of the end effector after

visual servoing control and before the cutting operation for the
different crop varieties and cropping systems
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Ways to increase performance of the submodules for detection,

reaching, cutting, and catching should be further investigated.

The performance results and failure analysis indicate that a

different type of robot arm with an increased workspace and/or

different mounting pose may improve the success rate. Compared

with the overall size of the platform, the robotic arm (and its

workspace) is rather small. However, an arm with longer joints will

most likely also have more difficulties to plan and execute a collision

free motion in this dense environment. An arm with more DOF will

increase the computational efforts to plan the trajectory.

A smaller end effector would increase reachability and would

decrease the risk of collisions with the crop. The end effector size can

be reduced by using a smaller camera, light unit, or catching device.

As described above, the fingers of the catching device do not flex

away enough when touching leaves or other fruits, thereby

preventing in some occasions fruits from being reached and

harvested. A redesign of the catching device is therefore recom-

mended.

Transportation of the fruit to the storage bin currently consumes

a lot of time compared with the other actions. The speed of the

manipulator should be increased or alternative ways of storing the

fruit should be considered.

Another insight concerns error handling and uncertainty control.

Currently, when the robot loses sight of the fruit or cannot reach a

certain position, harvesting is simply aborted. Instead, the system

should try to recover by backtracking to a point from which the

operation can be resumed.

9 | CONCLUSIONS

The developed prototype was able to fully autonomously harvest

sweet pepper fruits in a commercial greenhouse. For the current

commercial cropping system (double row), 18% of all ripe fruits were

harvested in the commercial crop and 49% in the modified crop. For

this modification, most occluding leaves and fruit clusters have to

been pruned away beforehand. For the (simulated) single row plant

system, 29% of all ripe fruits were harvested in the commercial crop

and 61% in the modified crop. The average cycle time to harvest a

fruit was 24 s. The robot fulfils three of the four defined require-

ments for operations in commercial greenhouses (Section 3); the

interface with other AGVs was not addressed in the prototype. The

hypothesis regarding the positive effect of crop modification was

confirmed. This shows that breeding or other ways to enhance fruit

visibility or decrease fruit clustering have great potential in the

future of robotic harvesting.
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