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Abstract

Currently, studies reporting the digestibility of carbohydrates, starch and espe-

cially non-starch polysaccharides (NSP) in fish are scarce. Carbohydrate

digestibility in the diet is largely dependent upon carbohydrate composition

(starch vs. NSP). NSP are often considered to be indigestible and thus of no nutri-

tional value. The present study reviews carbohydrates in fish feed, distinguishing

between total carbohydrate, starch and NSP. Besides a qualitative approach, a

meta-analysis was performed, compiling available data from digestibility studies

on tilapia. Our meta-analysis confirms the negative effect of NSP on performance

(FCR) and nutrient digestibility (crude protein, fat and energy). However, an

average NSP digestibility of 24.3% was calculated in 95 cases. Out of these 95

cases, 88% of them showed a positive NSP digestibility. NSP digestibility was

shown to contribute to energy digestibility. The digestion of NSP in fish is associ-

ated with fermentation in the gut, producing beneficial volatile fatty acids that are

rapidly absorbed by the colonic lumen. Therefore, in diet formulation, digestibil-

ity and thus energy originating from NSP should be taken into consideration

because NSP contribute to the energy needs of fish, here tilapia. Besides being an

energy source, specific types of NSP may have immune-modulating and prebiotic

effects and may be increasingly added to fish feed as modulators of fish health.

We suggest that NSP is potentially (partly) digested by a wide range of fish spe-

cies, especially by warm-water species with a long gut adapted to feeding on plant

matter, as these factors favour gut fermentation.

Key words: digestibility, meta-analysis, non-starch polysaccharides, Oreochromis niloticus,

starch.

Introduction

Many studies have been performed with tilapia

(Oreochromis spp.), comparing digestibility across a wide

range of plant ingredients used as substitutes for dietary

fishmeal and oil. In general, these studies use a reference

diet with a particular percentage of plant ingredients, such

as soya bean meal; linseed meal; canola meal; cottonseed

meal; sunflower meal; wheat middlings; corn gluten; rice

bran; barley; and rye (Sintayehu et al. 1996; Degani et al.

1997; Schneider et al. 2004; K€opr€uc€u & €Ozdemir 2005;

Gaber 2006; Dong et al. 2010; Obirikorang et al. 2015). In

these studies, the focus is predominately on protein and fat

digestibility, with little or no attention given to carbohy-

drate digestibility. Carbohydrates are the cheapest energy

source for human, fish and other animals. Carbohydrate

requirements have not been extensively investigated, com-

pared to fat and protein requirements. It is commonly

accepted that appropriate levels of carbohydrates should be

incorporated in fish diets to improve the energy availability,

albeit sparingly for carnivorous fish like trout and salmon,

which are less well adapted to digest complex carbohy-

drates. Lack of carbohydrates in fish diets will increase the

catabolism of protein and lipids (Kim & Kaushik 1992;

Wilson 1994), while sufficient levels of easily digestible

carbohydrates allow for protein sparing effects (Kaushik &

de Oliva Teles 1985; Hemre et al. 1993; Krogdahl et al.

2005).

The optimal level of dietary carbohydrates differs widely

among fish species. In general, warm-water and freshwater

fish are known to utilise higher levels of carbohydrates than

cold-water or marine species (Wilson 1994). Omnivorous

fish can handle higher levels of carbohydrates than carnivo-

rous fish and show much higher rates of protein sparing

(Hemre et al. 1993, 2002; Krogdahl et al. 2005). A review

by Wilson (1994) recommends a dietary digestible
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carbohydrate level of 40% for tilapia, while the optimum

for marine, carnivorous and cold-water fish (i.e. Atlantic

salmon, rainbow trout and plaice) is below 20%. Besides

differences in optimal dietary carbohydrate levels, the way

fish utilise digestible carbohydrates differs between species.

The energy utilisation efficiency of digestible carbohydrates

in common carp and Nile tilapia is found to be constant

(linear relationship), whereas for barramundi and rainbow

trout, the utilisation efficiency decreases with increasing

levels of digestible carbohydrate intake (Schrama et al.

2018; Phan et al. 2019). This suggests that some fish have a

limited capacity to process carbohydrates.

The total carbohydrate digestibility in the diet is largely

dependent on the carbohydrate composition. The total car-

bohydrate digestibility depends on the starch level, the

molecular complexity of the carbohydrate source and total

carbohydrate level in the diet (Stone 2003). The starch frac-

tion of the diet is considered highly digestible with appar-

ent digestibility coefficients (ADC) of 90%, up to 99% in

Nile tilapia (Amirkolaie et al. 2006; Leenhouwers et al.

2007; Haidar et al. 2016). The ADC of the total carbohy-

drate fraction has been found to be as low as 30–60% (El-

Saidy & Gaber 2003; Deng et al. 2016) and as high as 80–
90% for Nile tilapia (Sintayehu et al. 1996; Tran-Ngoc

et al. 2016). The large variation in the digestibility of the

total carbohydrate fraction is mainly caused by differences

in the total dietary fibre fraction.

The dietary fibre fraction consists of remnants of plant

cells, which are non-starch polysaccharides (NSP),

oligosaccharides, lignin and gums (Dhingra et al. 2012).

The NSP forms the bulk of the total dietary fibre fraction.

In this review, the term NSP is used to describe the total

dietary fibre fraction, including oligosaccharides, lignins

and gums. There is a wide range of NSP, differing in both

characteristics and properties (i.e. solubility), while the

amount and type of NSP differ among plant ingredients.

NSP is generally classified into cellulose, non-cellulosic

polymers (hemicellulose) and pectic polysaccharides. Cellu-

lose is a complex polysaccharide, solely consisting of D-

linked glucose units (links of 3000 or more). The non-cel-

lulosic polymers are divided into arabinoxylans, mixed-

linked b-glucans, mannans, galactomannans and gluco-

mannans. The pectic polysaccharides mainly consist of D-

galacturonic acid (GaIA), which forms arabins, galactans

and arabinogalactans (Choct 1997; Sinha et al. 2011). NSP

are considered indigestible by monogastric animals, as they

lack enzymes such as b-glucanases and b-xylanases to break

down the long polysaccharide chains. Therefore, NSP are

often considered to be of little or no nutritional value

(Choct 1997; Stone 2003; Sinha et al. 2011).

Although considered indigestible, a study by Leenhouw-

ers et al. (2007) found a digestibility of up to 24% in Nile

tilapia for the NSP fraction when using barley as the main

NSP source. Amirkolaie et al. (2005) also showed

digestibility for purified cellulose and guar gum in Nile tila-

pia, with an ADC of 2.8% and 20.8%, respectively. A more

recent study using Nile tilapia by Haidar et al. (2016)

showed a digestibility between 41% and 73%, depending

on the feeding level, for a diet enriched with dried distillers

grains with solubles from wheat (DDGS).

Aim

The scarce information available shows large differences

in carbohydrate and NSP digestibility in tilapia (Amirko-

laie et al. 2006; Leenhouwers et al. 2007; Haidar et al.

2016), suggesting that different factors can potentially

affect the digestibility of carbohydrates and NSP. How-

ever, studies reporting carbohydrate, starch and especially

NSP digestibility are scarce, which makes general state-

ments about their digestibility difficult. Considering the

above, the present study reviews carbohydrates in fish

feed, distinguishing between total carbohydrates, starch

and NSP. Besides a qualitative approach, a meta-analysis

was performed, compiling the available data from

digestibility studies with tilapia, thus calculating the theo-

retical total carbohydrate, starch and NSP level in the

diet, as well as the digestibility of the total carbohydrate

fraction and NSP. The NSP level and carbohydrate and

NSP digestibility were checked for correlations with,

among others, feeding level, nutrient composition of the

diet and digestibility of other nutrients. The qualitative

and quantitative (meta-analyses) approaches are com-

bined in this manuscript to improve the understanding

of the role and nutritional value of carbohydrates in fish

feed, focusing predominately on the NSP fraction. This

manuscript describes the total carbohydrate, starch and

NSP fraction in separate chapters, followed by concluding

remarks.

Methodology

Approach

In order to have an overview and quantify the digestibility

of total carbohydrates, starch, NSP and other nutrients,

existing digestibility studies concerning tilapia were com-

piled. From here on, CHO is used for the total carbohy-

drate fraction, being the dry matter minus the sum of the

crude protein, fat and ash. Digestibility studies concerning

tilapia were used, as several studies already showed the

potential of tilapia to digest NSP. In addition, tilapia is

widely used as a model species in digestibility studies,

ensuring an adequate amount of data. Tilapia also has, as a

herbivorous warm-water fish with a long gut, the potential

for gut fermentation (Bergman 1990; Metzler-Zebeli et al.

2010).
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Studies with common and red coloured Nile tilapia (Ore-

ochromis niloticus (L.)), hybrid tilapia (O. niloticus 9 Ore-

ochromis aureus) and Mozambique tilapia (Oreochromis

mossambicus) were selected. Only studies in which CHO in

the diet was given, or could be calculated from the reported

dry matter (DM), crude protein, crude fat and ash or

energy content, were considered. The CHO digestibility

was calculated indirectly when not reported. The CHO

digestibility was calculated from either (i) the mass balance

using the reported ADC of DM, crude protein, fat and ash

or (ii) the reported ADC of energy, crude protein and fat as

described by Schrama et al. (2018). Studies were excluded

when the CHO digestibility could not be calculated. Studies

testing the digestibility under hypoxic conditions were also

excluded. Only controls where fish were fed under nor-

moxic conditions were used to exclude the effect of oxygen

level on digestibility. In addition, studies in which enzymes

or probiotics were incorporated in the diet were not

included, as these can influence the endogenous nutrient

digestibility (Castillo & Gatlin 2015; Hai 2015). Besides the

nutrient composition of the diets (g kg�1 DM) and the

ADC, the feeding level, average weight of the fish at the

start and end, duration of the feeding trial, FCR, specific

growth rate (SGR) and how the diets were manufactured

(extrusion, steam pelleting) were registered. These factors

can potentially affect or be affected by the NSP level and

CHO and NSP digestibility.

In order to calculate a theoretical NSP digestibility, the

NSP level and starch level in the diet had to be determined.

This was done by reformulating all the diets with the use of

the Centraal Veevoederbureau (CVB) 2016 database. The

total CHO in the diet being known, as well as the ratio

between NSP and starch, allowed for calculation of the total

amount of NSP and starch in the diet. The NSP digestibility

was calculated using (i) the CHO level in the diet; (ii) the

CHO ADC; (iii) the level of NSP and starch in the diet; and

(iv) an assumption for the starch ADC of 99.5% for

extruded diets and 91% for pelleted diets. Section 4 will

elaborate on the decision to use these ADC values for

starch. An overview of the calculations used and elucida-

tion of the composition of the data set is provided as

Appendix S1.

Overview studies

Applying the described criteria, data were collected from a

total of 19 published (Table 1) and six unpublished studies.

The unpublished studies were completed at the Aquacul-

ture and Fisheries Group (Wageningen University, the

Netherlands). The experiments included in the data set

were mostly testing multiple diets. Combined, the 25 stud-

ies provided 100 different diets with their corresponding

digestibility. Among these 100 different diets, two diets

were fed at two different feeding levels and another two

diets at three different feeding levels, resulting in 106 cases

with known diet composition and ADC.

Table 1 gives an overview of the dietary nutrient compo-

sition, the nutrient digestibility and other related parame-

ters (FCR, initial body weight, etc.) of the included cases.

As Table 1 shows, the carbohydrate digestibility is only

reported for 29 of the 106 diets, with an average ADC of

71.5%. The NSP digestibility is only presented by

Table 1 Reported average dietary nutrient composition, apparent

digestibility coefficient (ADC) and experimental parameters � SD of the

included diets used for the meta-analysis

Average Number of diets

Nutrient composition (g/100 g DM)

Dry matter (g kg�1) 92.3 � 3.1 97

Crude protein 37.3 � 7.0 100

Fat 10.3 � 4.1 100

Total carbohydrates (CHO)† 43.2 � 9.0 100

Nitrogen free extract 39.8 � 9.4 35

Starch 27.0 � 10.4 24

Non-starch polysaccharides (NSP) 19.6 � 15.5 12

Crude fibre 5.2 � 2.5 43

Energy (kJ g�1) 20.2 � 1.0 90

Ash 9.2 � 2.5 100

Calcium 1.42 � 0.82 18

Phosphorus 1.06 � 0.37 41

Apparent digestibility coefficient (%)

Dry matter 74.2 � 9.9 86

Crude protein 88.8 � 5.6 106

Fat 87.5 � 12.0 106

Total carbohydrates 71.5 � 15.9 29

Nitrogen free extract 73.3 � 13.6 21

Starch 96.2 � 4.4 26

Non-starch polysaccharides 26.4 � 26.8 14

Energy 80.8 � 9.2 96

Ash 48.9 � 10.5 73

Calcium 27.4 � 11.7 14

Phosphorus 64.1 � 25.6 27

Experimental parameters

Feeding level (g kg�0.8 day�1) 13.0 � 4.3 98

Initial body weight (g) 72 � 94.9 106

Feed conversion ratio (FCR) 1.34 � 0.46 79

Specific growth rate (SGR, % day�1) 1.70 � 0.69 80

Length of trial (day) 64 � 56 100

Manufactured by

Steam pelleting – 62‡

Extrusion – 44§

†Calculated on DM basis as: 100 � (crude protein + fat + ash).

‡Sintayehu et al. (1996), Degani et al. (1997), El-Saidy and Gaber

(2003), El-Shafai et al. (2004), Schneider et al. (2004), K€opr€uc€u and
€Ozdemir (2005), Amirkolaie et al. (2006), Amirkolaie et al. (2005,

2006), Gaber (2005, 2006), Leenhouwers et al. (2007), Obirikorang

et al. (2015).

§Dong et al. (2010), Saravanan et al. (2012), Schrama et al. (2012),

Deng et al. (2016), Haidar et al. (2016), Tran-Ngoc et al. (2016).
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Amirkolaie et al. (2006), Leenhouwers et al. (2007) and

Haidar et al. (2016). These three studies show an average

ADC of 26.4% for the NSP fraction, indicating the ability

of tilapia to digest NSP to a certain extent. However, the

sample size is small and the variation is large.

Statistics

Correlations between dietary NSP level, CHO and NSP

digestibility, and factors such as nutrient composition of

the diet, feeding level and FCR were explored with Pear-

son’s correlation coefficient. Linear regression equations

were estimated when the Pearson’s correlation coefficient

was significant. The cases (106) were used as experimental

units. A one-way ANOVA was used to compare means

between the production method (pelleting vs. extrusion)

and starch digestibility and reported versus calculated car-

bohydrate digestibility. All statistics were performed using

the IBM Statistical Package for the Social Sciences (SPSS)

program (v 23.0, New York, NY, USA).

Total carbohydrates

Published data on total carbohydrate (CHO) digestibility

are limited. The constructed data set of the current study

contained digestibility values for a total of 106 reported

dietary treatments (diets and feeding level). The CHO

digestibility was reported (averaging 71.5%) from only 29

dietary treatments in the data set. For the remaining 77

treatments, the CHO digestibility was calculated from the

known digestibility of other nutrients (for details on calcu-

lations, see Appendix S1), being on average 64.9% and not

different from the reported CHO digestibility (P > 0.10;

Fig. 1). Within the whole data set, there was a large vari-

ability in CHO digestibility, ranging from 12% to 95%,

with an average of 67%. A CHO ADC of 12% was calcu-

lated for a diet high in protein and fat, including 15% cellu-

lose (Saravanan et al. 2012), whereas a CHO ADC of 95%

was found for a casein diet (34.5%), with only wheat starch

(50.5%) as a carbohydrate source (Sintayehu et al. 1996).

Table 2 shows the correlation between the CHO

digestibility and the experimental design, diet composition

and ADC of other nutrients. Increasing mean initial body

weight of the fish increases the CHO ADC (P < 0.05).

Information on the effect of fish weight on CHO ADC is

scarce. A study by Pen-Hsing and Shi-Yen (1993) indicated

that digestibility of starch was higher in tilapia (O. niloti-

cus 9 O. aureus) with an higher initial weight of 4.55 g,

compared to fish with a lower initial weight of 0.46 g. It is

a long-established fact that the gastrointestinal tract of lar-

vae and small fish is less developed and shorter compared

to adult fish (Govoni et al. 1986). In addition, the produc-

tion of digestive enzymes is lower for smaller fish, most

likely related to the developmental stage of the digestive

tract (Lauff & Hofer 1984). The feeding level did not affect

the CHO ADC, which is in line with some studies (Store-

bakken & Austreng 1987; Azevedo et al. 1998) on rainbow

trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo

salar L.). On the contrary, both Schrama et al. (2012) and

Haidar et al. (2016) showed a reduction in ADC with

increased feeding levels in tilapia (O. niloticus), for all

nutrients, including CHO. In these two Nile tilapia studies,

the feeding levels were approximately 1.5 and 3 times the

maintenance and apparent satiation. With increasing CHO

ADC, the FCR improves (P < 0.01), because a larger part

of the CHO is utilised for growth and metabolism.

The crude protein level in the diet does not influence

the CHO ADC (P > 0.05). The fat level and energy level

in the diet are highly correlated as fat has a high energy

equivalent (39.5 kJ g�1), increasing the total energy con-

tent of the diet. Appropriate levels of carbohydrates

should be incorporated in the diets to improve the

energy availability, sparing the catabolism of protein and

lipids for energy (Wilson 1994). With increasing energy

levels in the diet and thereby most likely increasing fat

levels, the role of carbohydrates in providing energy may

become less important as sufficient fat, and thus energy,

is provided. However, the CHO composition in the diet

in particular has a large effect on the CHO ADC, in as

much as the carbohydrate fraction consists of highly

digestible starch and sugars and poorly digestible NSP.

As expected, increasing levels of starch positively corre-

late (P < 0.01) with the CHO ADC, as the fraction of

highly digestible starch is likely to go up with increasing

40

45

50

55

60

65

70

75

80

85

90

Reported Calculated

Ca
rb

oh
yd

ra
te

 d
ig

es
�b

ili
ty

 (%
)

Figure 1 Comparison between the carbohydrate digestibility for the

reported (29) and calculated (77) cases. Each bar shows overall mean
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starch levels (Fig. 2a). With every 1% of extra starch in

the diet, the CHO ADC increases at almost the same rate

(1.05%). The level of crude fibre in the diets has a much

larger effect on the CHO ADC compared to the starch

level in the diet (Fig. 2b). With each 1% increase in diet-

ary crude fibre, the CHO ADC decreases by 4.4%. Crude

fibre analyses give a rough indication of the cellulose and

lignin content of the diet rather than the total NSP frac-

tion. The diets for which the crude fibre fraction was

given had, on average (43 cases), 4.8 times more NSP

than the reported level of crude fibre. This high increase

in poorly digestible NSP with increasing levels of dietary

crude fibre explains the large impact crude fibre has on

the CHO ADC.

Table 2 Correlation between carbohydrate digestibility (Y variable; in %) and parameters related to the design of the experimental design, to diet

formulation and to apparent digestibility coefficients of other nutrients (ADC)

X Correlation coefficient Number of observations Estimated equation CHO ADC (Y)

Experimental design

Body weight start (g) 0.219* 106 Y = 64 (SE 1.7) + 0.033 (SE 0.01) 9 X

Feed intake (g DM kg�0.8 day�1) ns 98 n/s

FCR (g g�1) �0.446** 79 Y = 86 (SE 4.7) � 14.5 (SE 3.3) 9 X

Dietary level (%)

Crude protein ns 106 n/s

Fat �0.375** 106 Y = 80 (SE 3.5) � 1.32 (SE 0.32) 9 X

Energy �0.207* 96 Y = 125 (SE 29) � 2.9 (SE 1.4) 9 X

Total carbohydrates 0.222** 106 Y = 51 (SE 6.7) + 0.4 (SE 0.15) 9 X

Starch 0.740** 34 Y = 44 (SE 4.9) + 1.1 (SE 0.17) 9 X

Crude fibre �0.748** 43 Y = 85 (SE 3.5) � 4.4 (SE 0.61) 9 X

ADC (%)

Crude protein 0.462** 106 Y = �39 (SE 20) + 1.19 (SE 0.22) 9 X

Fat 0.630** 106 Y = �0.2 (SE 8.2) + 0.8 (SE 0.09) 9 X

Energy 0.791** 96 Y = �34 (SE 8.2) + 1.3 (SE 0.10) 9 X

Starch 0.525** 26 Y = 69 (SE 8.5) + 0.06 (SE 0.09) 9 X

Ash ns 73 n/s

*P < 0.05; **P < 0.01.

CHO, total carbohydrates; n/s, not shown, because of being not significant; ns, not significant.

Values represent the Pearson correlation coefficient and the number of observations.
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for tilapia.
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The starch ADC is directly related to an improvement in

the CHO ADC, as starch in general takes up the largest part

of the carbohydrate fraction in the diet. With an increase in

CHO ADC, more energy is digested in the form of CHO,

thus increasing the energy ADC (P < 0.01). The overall

trend when looking at the correlation between the CHO

ADC and the ADC of the other nutrients (except ash) is

that digestibility is always highly positively correlated with

increasing CHO ADC. This trend, especially the correlation

with protein, fat and energy, may be better explained by the

quality of the diet (ingredients, formulation, processing) of

the diet, rather than the CHO ADC actually having an

effect on protein, fat and energy digestibility. The quality of

the diet (i.e. choice of ingredients) and processing method

(i.e. extrusion vs. steam pelleting) are factors known to

influence the overall nutrient ADC, irrespective of the

nutrient composition (Alonso et al. 2000; Cheng & Hardy

2003). In addition, high-quality diets are generally low in

crude fibre and NSP. Therefore, the known negative effects

of NSP on the digestibility of other nutrients (including

CHO) are likely to be further aggravated with increasing

levels of dietary crude fibre and NSP. Examples of how

NSP can negatively affect nutrient digestibility are as fol-

lows: dietary viscosity, which can hamper the mixing of

enzymes within the chyme and the absorption of nutrients,

due to hindered effective interaction at the mucosal surface

(Choct 1997); and increased faecal losses of bile acids

(which are important for fat digestion), as a consequence

of binding to NSP and/or an increased deconjugation of

bile acids by microbial activity, stimulated by NSP (Sinha

et al. 2011). The quality of the diet, and thus the digestibil-

ity of the nutrients (fat and protein), is likely to contribute

to not only an improvement in the CHO ADC (P < 0.01),

but also in the FCR.

Starch

As seen in Section 3 on total carbohydrates, the starch frac-

tion is important for the CHO ADC, as starch is highly

digestible in tilapia. Starches (corn, wheat, etc.) are often

included to limit the amount of protein utilised for energy

(Wilson 1994). For example, Wang et al. (2005) showed an

improvement in the protein efficiency ratio in Nile tilapia

when including 22–46% of starch in the diet, compared to

levels of 6% or 14%. From the 26 diets reporting the ADC

of starch, 10 diets were manufactured by steam pelleting

with an average ADC of 91.0 � 2.25%, while the other 16

diets were manufactured by extrusion and had an ADC of

99.4 � 0.7% (Fig. 3). These differences in starch ADC are

in line with results from Amirkolaie et al. (2006), where

starch gelatinised by extrusion showed an ADC of around

99.3%, while native starch had an ADC of around 93.8%.

Similar results are shown for rainbow trout, where

gelatinising native starch increased the ADC of starch from

38.1% to 86.5% (Bergot & Breque 1983). Cooking carbohy-

drates, to enhance their digestibility through gelatinisation,

dates back to the 1940s for trout (Phillips & Brockway

1956).

Non-starch polysaccharides

Non-starch polysaccharides in fish feed

Nowadays plant proteins are increasingly frequently used

more used to replace fishmeal in fish feeds, in order to

reduce costs and keep pace with the increasing demand for

high-quality protein. This has resulted in a steady decline

in dietary fishmeal (and fish oil) in aquafeeds (Carter &

Hauler 2000; Shepherd & Jackson 2013). A major downside

of using plant ingredients such as soya, wheat, rye and

legume seeds is the presence of a variety of anti-nutritional

substances (ANS), often limiting the inclusion of these

ingredients in aquafeeds. NSP is one of the major ANS pre-

sent in plant ingredients (Choct 1997; Francis et al. 2001;

Sinha et al. 2011). Multiple studies in broilers and pigs

have shown that feedstuffs containing NSP negatively affect

nutrient digestibility and thus limit growth (Choct & Anni-

son 1992; Annison 1993; Knudsen et al. 1993; JøRgensen

et al. 1996; Mroz et al. 2000). Similar studies in fish are

scarce.

Non-starch polysaccharides also influences chyme vis-

cosity. Dietary soluble NSP increases the viscosity,

thereby decreasing the passage rate and diffusion rates of

digestive enzymes and substrates, whereas insoluble NSP

increases the passage rate. NSP may influence the gut

Figure 3 Effect of pellet manufacturing (steam pelleting vs. extrusion)

on the starch digestibility in tilapia. Each bar shows overall mean with

standard deviation represented with error bars. Bars with different

lower case letters are significantly different (P < 0.05).
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morphology, physiology and mucus layer, affecting the

endogenous secretion of water, proteins, electrolytes and

lipids. These changes can lead to reduced nutrient

digestibility (Choct 1997; Choct & Kocher 2000; Sinha

et al. 2011). In pigs, for example, inclusion of cellulose

in the diet resulted in the shortening of villus length.

Shortening of villi results in a loss of intestinal surface

area. As a result, absorption of nutrients is decreased

(Sinha et al. 2011). A lower passage rate, as a result of

increased levels of soluble NSP in the diet, may decrease

the oxygen tension in the gut, favouring anaerobic

microbiota. An increase in anaerobic microbiota can

enhance the production of toxins and the deconjugation

of bile salts, which are important for fat digestion (Carey

et al. 1983; Choct 1997; Sinha et al. 2011). However,

information about the effect of NSP on the metabolism

in fish is scarce.

The calculated dietary NSP level in the present meta-

analyses averaged 17.5% � 8.6, with a minimum of 1.4%

and a maximum of 37.9%. This large variation in dietary

NSP level is simply due to the choice of ingredients, that

is using soya bean meal as a protein source versus an iso-

late or concentrate, like soya protein isolate or pea pro-

tein concentrate. In line with the above theory, increasing

the levels of dietary NSP was shows to negatively corre-

late with the digestibility of crude protein, fat and energy

(P < 0.001; Table 3). Figure 4 shows the relationship

between the dietary NSP level and energy digestibility; for

each per cent increase in dietary NSP, the energy ADC

decreases by 0.7%. Similarly, as in Figure 4, Haidar et al.

(2016) showed that increasing the dietary NSP level

causes a decrease in both the energy digestibility and the

protein digestibility (P < 0.05). In line with a lower avail-

ability of nutrients, due to a decrease in nutrient

digestibility, the FCR increases by 0.03 for every per cent

increase in dietary NSP (Fig. 4).

Non-starch polysaccharide digestibility

Digestive enzymes, such as a-amylase, disaccharidase and

a-glucosidase, in combination or independently, are able to

hydrolyse a-glycoside bonds (Stone 2003). NSP, however,

generally remains undigested in monogastric animals. The

enzymes needed to hydrolyse the ß-glycosidic bonds of the

long NSP chains such as cellulase, ß-xylanases, ß-glucanases

and ß-galactases are scarce or non-existing in the gastroin-

testinal tract (GIT) of fish (Kuz’mina 1996; Choct 1997;

Stone 2003; Sinha et al. 2011). Cellulase activity has been

reported in several carp species, for example bighead carp

(Aristichthys nobilis), grass carp (Ctenopharyngodon idella)

and common carp (Cyprinus carpio; Chakrabarti et al.

1995; Li et al. 2009; Banerjee et al. 2016). In tilapia, this

information is rare; however, a study by Saha et al. (2006)

measured cellulase activity from isolated bacterial strains

from the gut of tilapia (Oreochromis mossambica), measur-

ing a maximum cellulase activity of 67 U mL�1. In Baner-

jee et al. (2016), besides cellulase, xylanase activity and

xylanase-producing microbial symbionts were detected in

the proximal and distal intestine of six freshwater carp spe-

cies. The assumption was that the xylanase- and cellulase-

producing microbiota were autochthonous as the fish were

starved for 48 h prior to taking the GI tracks, after which

the GI tracts were cleansed with sterilised (0.9%) saline.

German and Bittong (2009) suggest that fish ingest cellu-

lase- and xylanase-producing microbes while feeding on

detritus derived from plant matter, rather than these

enzymes being produced by the autochthonous microbiota.

Whether the cellulase- and xylanase-producing microbiota

are endogenous, and/or whether the gut is colonised by

ingested microbes while feeding on detritus, is unknown.

Cellulase and xylanase are responsible for the breakdown of

cellulose and xylans, respectively, which are the major NSP

in plant matter (Sinha et al. 2011; Banerjee et al. 2016).

Table 3 Correlation between the total non-starch polysaccharide (NSP) level in the diet (X variable in the equation, in %) and fish performance

parameters and apparent digestibility coefficients (ADC) of other nutrients

Y Correlation coefficient Number of observations Estimated equation (Y) using NSP level (X)

Performance

FCR 0.500** 79 Y = 0.9 (SE 0.10) + 0.03 (SE 0.006) 9 X

SGR (% day�1) ns 80 n/s

ADC (%)

Crude protein �0.491** 105 Y = 100 (SE 2.3) � 0.7 (SE 0.12) 9 X

Fat �0.500** 105 Y = 95 (SE 1.1) � 0.3 (SE 0.06) 9 X

Energy �0.662** 95 Y = 93 (SE 1.6) � 0.7 (SE 0.08) 9 X

Starch ns 26 n/s

Ash ns 72 n/s

**P < 0.01.

n/s, not shown, because of being not significant.

Values represent the Pearson correlation coefficient and the number of observations.
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Although present in the gut, the activity of cellulase is gen-

erally low (<70 U mL�1; Chakrabarti et al. 1995; Banerjee

et al. 2016). Besides that, the hydrolysis of cellulose is gen-

erally slow and incomplete and therefore possibly only

occurs on a small scale in the gut (Schwarz 2001).

Although long considered as indigestible in fish, a few

studies now show that part of the NSP fraction can be

digested by tilapia (Amirkolaie et al. 2005; Leenhouwers

et al. 2007; Haidar et al. 2016). The wide range of NSP

used in these studies differed in characteristics and proper-

ties, including endogenous digestibility. Amirkolaie et al.

(2005) showed significant differences in the NSP digestibil-

ity when comparing guar gum (oligosaccharides) and cellu-

lose, indicating that cellulose, with an ADC of 2.8%, is

more inert than guar gum, which has an ADC of 20.8%.

Similar results were found by Leenhouwers et al. (2007),

where replacement of 40% of a reference diet with either

maize, wheat, barley or rye resulted in significant differ-

ences in NSP digestibility. Solubility of the NSP is an

important factor affecting the digestibility of the NSP frac-

tion (Sinha et al. 2011). Leenhouwers et al. (2007) made a

distinction in NSP digestibility based on its solubility (sol-

uble vs. insoluble), indicating negative values for the

digestibility of the insoluble NSP fraction, independent of

the NSP source (maize, wheat, barley and rye), with an

ADC of up to 60% for the soluble NSP fraction. This is in

line with the poor digestibility found for cellulose (insol-

uble), compared to guar gum (soluble), in Amirkolaie et al.

(2005). In the present meta-analysis, the feeding (g

DM kg�0.8 day�1) had no effect on the NSP digestibility.

On the contrary, Haidar et al. (2016) showed that with

increasing feeding levels, feeding the same diet, the ADC of

NSP decreased drastically. This suggests a threshold in the

amount of NSP that can be digested.

From the present meta-analysis, an average NSP

digestibility of 24.3% was found from the 95 cases pre-

sented. From these 95 cases, in only 11 cases was there a

negative ADC, indicating that no NSP was digested. This

indicates that in 83 of these cases NSP digestibility can be

assumed, of which 12 had an ADC above 50%. In three

studies (Amirkolaie et al. 2005; Leenhouwers et al. 2007;

Haidar et al. 2016), where NSP ADC was reported, the NSP

ADC averaged 26.4% for a total of 14 cases, which is highly

comparable to the NSP ADC of 24.3% found by meta-anal-

yses. In cases where NSP ADC reported a negative value, if

this value was hypothetically increased to 0%, then the ADC

value would increase to 28.4%. In other monogastric ani-

mals, like pigs and poultry, it is well established that fer-

mentability varies considerably among different types of

NSP, with, for instance, lignin being very resistant and pec-

tins usually undergoing complete fermentation (Williams

et al. 2001, 2017). In tilapia this also seems to be the case

based on the limited amount of literature on NSP ADC. For

example, in a study by Maas et al. (2019), different experi-

mental diets contained contrasting types of NSP, by incor-

porating wheat bran, sunflower meal or citrus pulp to a

reference diet. The ingredients were chosen for their contrast

in NSP composition; wheat bran being relatively rich in

hemicellulose, sunflower meal rich in cellulose and citrus

pulp rich in pectins. The pectin-rich citrus pulp diet showed

the highest NSP digestibility at 31.7%, followed by the sun-

flower (18.8%) and wheat bran (17.1%) diets.

Comparable to the digestibility of the CHO fraction, the

digestibility of the NSP fraction increases with an increase
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in initial body weight (P < 0.001; Table 4). The digestion of

NSP in fish occurs through fermentation in the gut (Berg-

man 1990; Metzler-Zebeli et al. 2010). The gastrointestinal

tract of larvae and adult fish differs largely, with a more

complex morphology and histology for adult fish (Govoni

et al. 1986). As the gut is the site of action of gut fermenta-

tion, a more developed gut in bigger fish could explain for

the higher NSP digestibility with increasing fish size.

Increasing NSP digestibility significantly (P < 0.05) con-

tributes to an improvement in FCR, as seen by the negative

correlation coefficient. The digestibility of NSP decreases

with increasing levels of crude fibre (P < 0.05). Crude fibre

analyses give a rough indication of the cellulose and lignin

content of the diet rather than the total NSP fraction.

Amirkolaie et al. (2005) showed that cellulose is almost

completely inert to digestion by tilapia. Increasing levels of

almost inert dietary crude fibre may therefore decrease the

total NSP ADC. The energy and fat digestibility increased

with increasing NSP digestibility (P < 0.01) in tilapia. With

an increase in NSP digestibility, the NSP level in the gut is

likely to go down and with it the potential negative effects

NSP has on the gastrointestinal tract and nutrient utilisa-

tion. A NSP ADC of 24.3% (average found in present

study), would result in an increase in the energy ADC by

3% compared to having no NSP digestibility in tilapia.

Fermentation and volatile fatty acids

The digestion of NSP in fish, as shown in the present meta-

analysis and in studies by Amirkolaie et al. (2005), Haidar

et al. (2016) and Leenhouwers et al. (2007) using tilapia,

occurs through fermentation in the gut. Other than starch

and sugars, which are generally directly digested in the

stomach, NSP are mainly fermented in the gut. During the

fermentation of NSP and carbohydrates, short-chain fatty

acids (SCFA) and the gases H2, CO2 and CH4 are formed

through microbial anaerobic glycolysis (Bergman 1990;

Metzler-Zebeli et al. 2010). The SCFA are often referred to

as volatile fatty acids (VFA). With fermentation of carbohy-

drates, 73% of the C fraction can be converted into com-

pletely metabolisable VFA, whereas the remainder is lost

(CO2; Williams et al. 2001). The VFA produced can rapidly

be absorbed by the colonic lumen. In monogastric animals,

around 95–99% of the VFA produced are absorbed before

reaching the rectum (Von Engelhardt et al. 1989; Schep-

pach 1994). The principle end products of VFA from car-

bohydrate fermentation are acetate, propionate and

butyrate and to a lesser extent formate, valerate, caproate

and the branched chain acids isobutyrate and isovalerate

(Williams et al. 2001; Macfarlane & Macfarlane 2003).

Levels of the intermediate lactic acid, which is commonly

found in monogastrics like pigs (Argenzio & Southworth

1975), have not been reported in fish, but most likely, they

have not been measured. However, with the use of an

in vitro gas production technique, using freshly collected

intestinal content from Nile tilapia, lactic acid was mea-

sured (Leenhouwers et al. 2008). Hereby, four different

substrates were used (glucose, wheat starch, arabinoxylan,

whole wheat), the substrate used strongly influenced the

amount of lactic acid produced (P < 0.001). 11.06 mM

Table 4 Correlation between digestibility of non-starch polysaccharide (NSP) (Y variable; in %) and parameters related to the design of the experi-

ment, to diet formulation and to apparent

X Correlation coefficient Number of observations Estimated equation NSP ADC (Y)

Experimental design

Body weight start (g) 0.967** 95 Y = 17 (SE 3.8) + 0.1 (SE 0.03) 9 X

Feed intake (g DM kg�0.8 day�1) ns 87 n/s

FCR (g g�1) �0.245* 70 Y = 43 (SE 11) � 17 (SE 7.6) 9 X

Dietary level (%)

Crude protein ns 95 n/s

Fat �0.287** 95 Y = 45 (SE 8.0) � 2.1 (SE 0.74) 9 X

Energy ns 85 n/s

Total carbohydrates 0.213* 95 Y = �8 (SE 15) + 0.7 (SE 0.35) 9 X

Starch ns 27 n/s

Crude fibre �0.379* 41 Y = 57 (SE) � 7 (SE 2.6) 9 X

ADC (%)

Crude protein ns 95 n/s

Fat 0.319** 95 Y = �46 (SE 22) + 0.8 (SE 0.25) 9 X

Energy 0.412** 86 Y = �92 (SE 28) + 1.4 (SE 0.34) 9 X

Starch ns 29 n/s

Ash 0.395** 67 Y = �9 (SE 10) + 0.7 (SE 0.21) 9 X

*P < 0.05; **P < 0.01.

n/s, not shown, because of being not significant.

Digestibility coefficients of other nutrients (ADC). Values represent the Pearson correlation Coefficient and the number of observations.
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(g�1 organic matter weighed in) of lactic acid was mea-

sured for glucose and 2.82 mM for wheat starch, while there

was almost no lactic acid found for the substrates arabi-

noxylan and whole wheat (<0.04 mM). The total VFA

(acetic + propionic + butyric + isobutyric + valeric + iso-

valeric acid) level measured for the glucose amounted to

3.01 mM, which is 3.7 times lower compared to the amount

of lactic acid (11.06 mM). The in vitro study of Leenhouw-

ers et al. (2008) makes the assumption plausible that lactic

acid can be produced in Nile tilapia. It should be noted that

both glucose and wheat starch are not commonly incorpo-

rated in aqua feeds, of the 25 studies included in the present

analyses only one used wheat starch as an ingredient (Sin-

tayehu et al. 1996). If other starches, like maize starch,

result in similar levels of lactic acid, as compared to wheat

starch, is currently unknown.

The fermentation in fish takes place throughout the gut

with increasing microbial activity from the proximal to

the distal the end of the hindgut, conjointly with increas-

ing levels of VFA towards the proximal end (Mountfort

et al. 2002; Amirkolaie et al. 2006; Leenhouwers et al.

2007). This is comparable with pigs, where easily accessi-

ble compounds are utilised in the upper part of the GIT,

whereas complex low-soluble substrates are fermented and

utilised in the lower GIT sections (Knudsen et al. 2012).

In general, the composition of the VFA produced remains

within a range of 60–75% acetate, 15–25% propionate

and 10–15% butyrate for monogastric animals fed con-

ventional diets (Bugaut 1987). However, in humans the

rate of breakdown of individual NSP and the ratio of fer-

mentation products (acetate, butyrate & propionate) vary

depending on the type of polysaccharide present (Macfar-

lane & Macfarlane 2003). Similar characteristics have been

seen in cows, where the amount of VFA and the ratio

between acetate, butyrate and propionate differed depend-

ing on the cereal used, when comparing hay (100%) ver-

sus a concentrate of cracked corn (81%), soya bean (9%)

and timothy hay (10%; Russell 1998). Hitherto, little is

known about the ratio of the VFA produced through fer-

mentation in fish compared to pigs and poultry. Compa-

rable with other monogastrics, Leenhouwers et al. (2007)

and Amirkolaie et al. (2006) found high levels of acetate

(�16.4 mM on fresh digesta) and minor levels of propi-

onate (�0.4 mM) and butyrate (�0.2 mM) in the distal

gut of tilapia. An overview of studies measuring VFA in

the distal gut of different fish species is given in Table 5,

for species with predominately herbivorous feeding habits.

Most of these studies measured VFA levels in different gut

segments, showing increasing total VFA levels towards the

proximal end (Clements et al. 1994; Clements & Choat

1995; Mountfort et al. 2002; Amirkolaie et al. 2005;

Fidopiastis et al. 2006; Leenhouwers et al. 2007). The VFA

composition is comparable among studies with proximate

levels of 60–95% acetate, 5–25% propionate and 1–15%
butyrate.

In an in vitro experiment, using the contents of the distal

gut from common carp (C. carpio L), cumulative and com-

position differences in VFA products were found when the

contents were inoculated with different substrates

(oligosaccharides; Kihara & Sakata 2002). With NSP fer-

mentation, the concentration, and thus the anti-nutritional

effects of the NSP fraction, will be lowered. With NSP fer-

mentation, the digestibility of the NSP and thus the carbo-

hydrate fraction will improve, resulting in lower faecal

waste and improved feed efficiency (Sinha et al. 2011).

Besides these practical implications, the microbiota, intesti-

nal- and animal health can be influenced by the production

of VFA. The amount and composition of the fermentation

end products will influence the animal, microbiota and

intestine in different ways as they differ in characteristics

and properties (Bergman 1990; Claus et al. 2007). Acetate

and propionate enter the blood passively due to a concen-

tration gradient and are transported to the liver (Williams

et al. 2001; Montagne et al. 2003). Acetate is used as energy

substrate for muscle tissue via acetyl-coenzyme A syntheses

(Clements et al. 1994). In the liver, propionate is used for

gluconeogenesis, turning propionate into glucose, which

provides an important source of energy for metabolic activ-

ities in the colon. Butyrate is primarily used as a direct

source of energy by the colonocytes, providing energy for

its metabolic activities and stimulating epithelial cell prolif-

eration. This is mainly known for pigs and poultry. In fish,

such data are lacking. By supplying energy in different

ways, the contribution of VFA to the energy in the gut and

body can be substantial (Von Engelhardt et al. 1989; Wil-

liams et al. 2001; Montagne et al. 2003). VFA was shown to

inhibit growth of some bacterial pathogens in the gut of

rabbits and pigs when in an acidic environment, similar

effects on pathogens induced by VFA production in fish

may occur as well (May et al. 1994; Montagne et al. 2003).

NSP as functional feed ingredients

Non-starch polysaccharides, including b-glucans, mannan-

oligosaccharides (MOS), galacto-oligosaccharides (GOS)

and fructo-oligosaccharides (FOS; Nawaz et al. 2018), but

also pectins (Wiese 2019), may contribute as prebiotics to

animal health by preventing pathogen adhesion, stimulat-

ing immune maturation and gut barrier function, and serv-

ing as fermentable substrates for gut bacteria. The increased

production of intermediate metabolites, such as SCFA, can

assist in balancing the immune system. In aquaculture, the

NSP most frequently used as a prebiotic is probably b-glu-
cans, their effects are often evaluated as modulations of

innate immune responses by measuring gene expression or

enhanced phagocytosis, reactive oxygen species, lysozyme
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activity and, more recently, trained immunity (Petit &

Wiegertjes 2016). These prebiotic products are added to

fish feed, usually at low inclusion rates of <1% as functional

feed ingredients (Dalmo & Bøgwald 2008). It should be

noted that the b-glucans used as prebiotics generally origi-

nate from yeast, which has a different structure than the b-
glucans from cereals and legumes. To which extent b-glu-
cans from cereals and legumes have the same mode of

action as those from yeast is unclear.

Non-starch polysaccharides may be increasingly added

to fish feed as modulators of fish health but, for most if not

all NSP, it remains undecided whether their modulatory

effects are direct or gut microbiota mediated. In a prelimi-

nary study on the normal gut microbiota of common carp

we could detect an abundant presence of Bacteroides bacte-

ria, well known for their capacity to degrade and ferment

carbohydrates, in line with earlier studies of cellulase activ-

ity (Chakrabarti et al. 1995; Li et al. 2009; Banerjee et al.

2016). In vitro fermentation of a commercially available b-
glucan functional feed ingredient indicated an increased

presence of propionate, a SCFA with immunomodulatory

properties, whose presence possibly helps explain earlier-

noted immunomodulatory effects, such as inhibition of the

expression of several pro-inflammatory genes (Falco et al.

2014).

Direct immune-modulatory effects of NSP could be

achieved via recognition of, for example, b-glucans, by

receptors present locally on cells in the gut. Yet, despite the

frequent application of b-glucans in aquaculture practice,

the exact receptors and downstream signalling remain to be

described. In fish genomes, no clear homologue of Dectin-1

could be identified, a member of the C-type lectin receptor

(CLR) family and the best-described receptor for b-glucans
in mammals. Still, a recent transcriptome analysis of genes

expressed in common carp macrophages, stimulated with

b-glucan, highlighted differential regulation of a signalling

pathway typical of CLR activation. Subsequent genome

analysis identified a large number of candidate b-glucan
receptor genes encoding for proteins, with at least one C-

type lectin domain (CTLD) typical of the CLR family. This

large number could be narrowed down to a few genes with

a typical sugar-binding motif in their CTLD, but these were

not expressed in macrophages, the innate immune cell

types often associated with recognition of b-glucans (Petit
et al. 2019a). Of course, b-glucan receptors in the gut are

not necessarily exclusively expressed on macrophages and

could also be found on other locally present (non-)immune

cells.

Possibly the most interesting immune-modulating effects

of NSP, such as b-glucans, could be their effect on the

innate immune cells associated with the concept of trained

immunity, a form of innate immune memory best

described in mice and humans. A literature review for indi-

cations of trained immunity in fish, supported the notion

that the innate immune system of teleost fish can be trained

and that effects could be long-lived (Petit & Wiegertjes

2016). This was based on indications for at least one out of

three of the following criteria, considered characteristic of

Table 5 Overview of studies measuring volatile fatty acids in the distal gut of different fish species, values are means in mM L�1 (fresh sample)

Species Acetate Propionate Butyrate† Reference

Nile tilapia Oreochromis niloticus 16.5 0.5 0.3 Leenhouwers et al. (2007)

16.2 0.3 0.2 Amirkolaie et al. (2006)

African catfish Clarias gariepinus 25.7 1.1 2.0 Leenhouwers et al. (2007)

Silver drummer Kyphosus syndneyanus 37.5 12.8 1.3 Mountfort et al. (2002)

Butterfish Odax pullus 20.8 4.7 1.0 Id.

23.5 7.7 5.2 Clements et al. (1994)

Herring cale Odax cyanomelas 24.6 1.9 2.0 Id.

Sea carp Crinodus lophodon 16.4 4.5 1.3 Id.

Marblefish Aplodactylus arctidens 8.3 4.1 1.3 Mountfort et al. (2002)

Zebra-perch Hermosilla azurea 15.3 4.0 0.6 Fidopiastis et al. (2006)

Surgeonfish Acanthurus spp. 9.7 1.7 0.8 Clements and Choat (1995)‡

Striated surgeonfish Ctenochaetus striatus 5.1 0.3 0.9 Id.

Ridolfi fish Naso spp. 18.1 4.2 1.2 Id.

Surgeonfish Zebrasoma spp. 24.3 7.1 2.7 Id.

Parrotfish Scarus spp. 5.5 0.4 0.3 Id.

Blue sea chub Kyphosus cinerascens 28.7 7.8 3.5 Id.

Bicolor angelfish Centropyge bicolor 35.7 8.6 2.2 Id.

Rabbitfish Siganus spp. 14.2 1.8 0.6 Id.

†Clements and Choat (1995) and Fidopiastis et al. (2006) measured both isobutyrate and butyrate; the sum is shown in the table as butyrate.

‡Clements and Choat (1995) measured volatile fatty acids in the gut of a total of 32 fish species; for fish of the same family, the average values are

calculated; Acanthurus spp., Naso spp., Zebrasoma spp. and Scarus spp.
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this phenomenon: (i) providing protection against a sec-

ondary infection in a T- and B-lymphocyte-independent

manner; (ii) conferring increased resistance upon re-infec-

tion; and (iii) relying on key roles for innate immune cell

types such as natural killer cells and macrophages. A recent

follow-up study in vitro could confirm that common carp

macrophages can indeed be trained, with evidence of meta-

bolic reprogramming as well as heightened phagocytosis,

production of reactive oxygen species and expression of

inflammatory genes (Petit et al. 2019b). Overall, the long-

evity, non-specificity and presumed evolutionary conserva-

tion of immune-modulating effects of NSP associated with

trained immunity, could be especially interesting to aqua-

culture practise.

NSP degrading enzymes

The use of enzymes, like phytase, xylanase and b-glucanase
in pigs and poultry, is a common way to break down NSP

in order to enhance VFA production and to improve the

digestibility of the feed (Bedford & Schulze 1998). Recently,

the use of exogenous carbohydrase enzymes in aqua feeds is

attracting more attention. Multiple effects have been attrib-

uted to exogenous carbohydrase supplementation like

improved feed intake, improved growth rate, increase in

endogenous digestive enzymes and nutrient digestibility

(Goda et al. 2012; Castillo & Gatlin 2015; Maas et al.

2018). Approximately 200 enzymes from of a microbial ori-

gin, out of around 4000 enzymes known, are commercially

used. From these 200 enzymes, only 20 are produced on an

industrial scale (Li et al. 2012). These include a wide range

of carbohydrases, including enzymes that cut part of the

polymeric carbohydrates by hydrolysis. Examples of com-

mercially available carbohydrases include (b-)glucanase,
(a-)xylanase, amylase, cellulase, pectinase and galactosi-

dase. Of these enzymes, b-glucanase and xylanase make up

more than 80% of the commercial market (Adeola & Cow-

ieson 2011; Castillo & Gatlin 2015). There is a large variety

in NSP (cellulose, arabinoxylans, mixed-linked b-glucans,
mannans, galactomannans, glucomannans, arabins, galac-

tans, arabinogalactans) from different sources, differing in

characteristics and properties (Choct & Kocher 2000; Sinha

et al. 2011). NSP have different characteristics and chemi-

cal structures, therefore it is likely that not all enzymes have

the same effect on diets with different NSP contents. Maas

et al. (2019) showed that the effectiveness of phytase and

xylanase on growth performance and nutrient digestibility

is dependent on the NSP composition. Therefore, it is

important that the formulation of the enzyme(s) is comple-

mentary to the diet composition (Officer 2000; Maas et al.

2019). An important benefit of the carbohydrase enzyme is

that they reduce the negative effects NSP have on the fish

and its gut (i.e. affecting the chyme viscosity). Reducing the

negative effects of NSP, and breaking down the polysaccha-

rides into readily available oligomers and monomers for

fermentation, will improve nutrient utilisation (Vahjen

et al. 2007; Castillo & Gatlin 2015).

Concluding remarks

In this manuscript, an average total carbohydrate (CHO)

digestibly of 67% was calculated for tilapia. The large differ-

ences in CHO digestibility between studies are mainly

attributed to the dietary inclusion level of NSP, because

NSP is poorly digested compared to starch. NSP digestibil-

ity averaged 24.3% across studies. The presented meta-

analysis allows us to assume that NSP digestibility occurred

in many tilapia studies (88%). If we assume that 100% of

the starch was digested, then this would still result in a pos-

itive value for NSP digestibility. This clearly demonstrates

that NSP is not inert for tilapia but is digestible. However,

between studies and diets the variation in digestibility is

high. By knowing the factors affecting NSP digestibility,

predictions may be made for NSP ADC. This study shows

that NSP ADC increased with increasing fish weights and

with dietary carbohydrate levels, whereas increasing dietary

fat levels as well as dietary crude fibre levels decreased NSP

digestibility. Information on the aforementioned factors

enabled a qualitative prediction of NSP digestibility, but for

a quantitative prediction of NSP digestibility from dietary

and fish-related factors, more knowledge is required. In

other words, more in vivo studies are required, in which the

CHO and NSP digestibility is actually measured and/or

indicators of the degree of fermentation of NSP are used.

In the present study, the CHO fraction not consisting of

starch and sugars was considered as NSP. This approach

was used in order to be able to quantify the amount of

NSP. However, it is not entirely correct to treat the differ-

ent types of NSP as one, and to allocate certain properties

to NSP as group. As seen in this manuscript, the variation

in NSP digestibility is large, which is most likely partly

related to the different characteristics of the NSP fractions.

In addition, specific NSP, like b-glucans and MOS, may

have immune-modulatory effects and contribute to animal

health as a prebiotics. Therefore it is important to create

more insight into the effects and characteristics of individ-

ual types of NSP.

This study demonstrates that NSP is partially digestible by

tilapia, but the process behind it remains unclear. NSP is

expected to be fermented through microbial anaerobic gly-

colysis, forming short-chain fatty acids. However, how the

glycosidic bonds of the long NSP chains are hydrolysed is

unclear, as enzymes like cellulase, ß-xylanases, ß-glucanases

and ß-galactases are scarce, or non-existing, in the gastroin-

testinal tract of fish. It is unclear whether and to what extent

other fish species can digest NSP. The ability of omnivorous
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fish to utilise higher levels of carbohydrates, compared to

carnivorous fish, is well known. Besides tilapia, Leenhouwers

et al. (2007) showed the ability of African catfish (Clarias

gariepinus) to digest NSP with an ADC of up to 56%. Like

tilapia, the African catfish is a warm-water species adapted

to feeding on plant matter. This suggests that NSP is poten-

tially digestible by a wide range of fish species, especially

warm-water species with a long gut adapted to feeding on

plant matter, as these factors favour gut fermentation.

To conclude, the current meta-analysis confirms the neg-

ative effect NSP has on the performance (FCR) and nutri-

ent digestibility (crude protein, fat and energy) of tilapia.

NSP is not inert to digestion in tilapia, with an average

ADC of 24.3%. The body weight and dietary fat level, total

carbohydrates and crude fibre are factors that relate to NSP

digestibility, in addition to the functional properties of the

NSP fraction, that is structure and molecular complexity.

NSP could be interesting as functional feed ingredients in

aquaculture practice, especially due to NSP associated

immune-modulatory effects related to trained immunity.

NSP digestibility was shown to contribute to energy

digestibility in tilapia. Therefore, in tilapia diet formula-

tions the digestibility, and thus energy originating from

NSP, should be taken into consideration as it contributes

to the energy needs of the fish.
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