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A B S T R A C T

Lytic polysaccharide monooxygenases (LPMOs) are powerful enzymes that degrade recalcitrant polysaccharides,
such as cellulose. However, the identification of LPMO-generated C1- and/or C4-oxidised oligosaccharides is far
from straightforward. In particular, their fragmentation patterns have not been well established when using mass
spectrometry. Hence, we studied the fragmentation behaviours of non-, C1- and C4-oxidised cello-oligo-
saccharides, including their sodium borodeuteride-reduced forms, by using hydrophilic interaction chromato-
graphy and negative ion mode collision induced dissociation - mass spectrometry. Non-oxidised cello-oligo-
saccharides showed predominantly C- and A-type cleavages. In comparison, C4-oxidised ones underwent B-/Y-
and X-cleavage close to the oxidised non-reducing end, while closer to the reducing end C-/Z- and A-frag-
mentation predominated. C1-oxidised cello-oligosaccharides showed extensively A-cleavage. Reduced oligo-
saccharides showed predominant glycosidic bond cleavage, both B-/Y- and C-/Z-, close to the non-reducing end.
Our findings provide signature mass spectrometric fragmentation patterns to unambiguously elucidate the
catalytic behaviour and classification of LPMOs.

1. Introduction

An important step in the valorisation of lignocellulose is the enzy-
matic degradation of the (hemi-)cellulosic fraction into fermentable
monosaccharides (Ragauskas et al., 2006). Hereto, hydrolytic poly-
saccharide degrading enzymes were considered unique for a long time.
Therefore, they are abundantly present in commercial enzyme cock-
tails. Nevertheless, lytic polysaccharide monooxygenases (LPMOs) have
been shown to boost hydrolases via oxidative cleavage of β-(1→4)-
linkages in recalcitrant polysaccharides, such as cellulose, in the last
decade (Forsberg et al., 2011; Hemsworth et al., 2015; Horn et al.,
2012; Vaaje-Kolstad et al., 2010). This boosting effect has been ex-
plained by the fact that LPMOs generate new chain ends for hydrolases
to act on and it has been suggested that LPMOs improve the substrate’s
accessibility for hydrolases as well (Harris et al., 2010; Horn et al.,

2012; Martinez, 2016; Villares et al., 2017).
LPMOs have been shown to vary in their regioselectivity, which

means that they are either specifically oxidising the C1- or the C4-
carbon position in polysaccharides. In addition, less regioselective
LPMOs have been described able to oxidise both C1- and C4-carbon
positions (Frommhagen et al., 2018). Due to the oxidation of either the
C1- or the C4-position, the corresponding glycosidic linkage becomes
unstable leading to its cleavage, and, thus, eventually LPMO catalysis
leads to formation of both oxidised and non-oxidised oligosaccharides
(Beeson et al., 2012; Beeson et al., 2015; Kim et al., 2014). The action of
C1-directed LPMOs results in release of unstable δ-lactones, which
further undergo a ring cleavage in aqueous solution leading to the
formation of aldonic acids. The action of C4-directed LPMOs generate
4-ketoaldoses, which might hydrate to their corresponding geminal
diols in the presence of water (Isaksen et al., 2014; Westereng et al.,
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2016), but the latter is not always observed (Frommhagen et al., 2016).
The identification of these C1- and C4-oxidised carbohydrate

structures is far from straightforward, albeit various analytical ap-
proaches have been developed as thoroughly reviewed previously
(Eijsink et al., 2019; Monclaro & Filho, 2017). Among those analytical
approaches, high performance anion exchange chromatography with
pulsed amperometric detection (HPAEC-PAD) and matrix assisted laser
desorption/ionisation - time of flight - mass spectrometry (MALDI-TOF-
MS) are mostly used. Although HPAEC allows identification of LPMO-
oxidised compounds based on their elution time, hereto, not commonly
available standards of oxidised oligosaccharides products are required.
The more complex the oxidised oligosaccharide are, which have been
generated, for example LPMO-oxidised branched xylogluco-oligo-
saccharides (Kojima et al., 2016; Ladeveze et al., 2017; Nekiunaite
et al., 2016; Petrovic et al., 2018), the more challenging the identifi-
cation of C1- or C4- (or both) oxidation is based on their elution time.
MALDI-TOF-MS can be used to detect oxidised oligosaccharides based
on m/z values, but the determination of C1- and C4-oxidised oligo-
saccharides is far from easy. MALDI-TOF-MS cannot distinguish isomers
and specifically cannot distinguish i.e. the geminal diol form of C4-
oxidised from the same oligosaccharide but C1-oxidised having the
same m/z (Forsberg et al., 2011; Frommhagen et al., 2016;
Frommhagen et al., 2015). Therefore, mixed C4-, C1- or both C1-/C4-
oxidised oligosaccharides cannot be distinguished by this method. To
overcome these challenges, other methods, which combine chromato-
graphy directly with mass spectrometry have been studied. Thus ob-
tained mass spectrometric fragmentation patterns are seen as distinct
signatures, and differ for each oligosaccharide structure (Chai et al.,
2001; Kool et al., 2013; Pfenninger et al., 2002b; Westphal, Kuhnel
et al., 2010; Westphal, Schols et al., 2010). Various attempts to separate
and identify LPMO-generated oxidised products have been reported, for
example by using reversed phase - ultra high performance liquid
chromatography (RP-UHPLC), porous graphitic carbon chromato-
graphy (PGC) and hydrophilic interaction chromatography (HILIC)
techniques connected to electrospray ionisation - collision induced
dissociation - mass spectrometry (ESI-CID-MS/MS) (Bennati-Granier
et al., 2015; Frommhagen, van Erven, et al., 2017; Isaksen et al., 2014;
Westereng et al., 2016). However, most intriguingly, a systematic study
to generate MS/MS fragmentation patterns of the different chromato-
graphically separated C1- and C4-oxidised oligosaccharides has not
been performed yet.

In a few studies, CID-MS/MS of oxidised cello-oligosaccharides has
been performed, albeit mainly in the positive ion mode. The positive
ion mode is known to provide multiple MS/MS fragments with high
intensity, but the presence of multiple sodium (and ammonium) ad-
ducts complicates the spectra obtained (Deery et al., 2001; Harvey,
2000; Kailemia et al., 2014; Reis et al., 2003). Alternatively, CID-MS/
MS of oligosaccharides can be performed in negative ion mode. This
technique has been shown for non-oxidised oligosaccharides to give
lower background noise, thus clearer spectra, and the fragmentation
behaviours are suggested to be more specific and predictable (Chai
et al., 1998; Chai et al., 2001; Gao et al., 2015; Harvey, 2005a, 2005b;
Lawson et al., 1990).

Furthermore, reduction of oligosaccharides has been shown to assist
in their unambiguous separation and identification. Well known is the
sodium borohydride (NaBH4) initiated reduction of oligosaccharides to
avoid α/β-anomers in various chromatographic approaches and co-
occurring loss of the signal (Abdel-Akher et al., 1951; Barr et al., 1996;
Beeson et al., 2012; Hantus et al., 1997; Kawasaki et al., 2000;
Mazumder & York, 2010; Vinogradov et al., 2002; York et al., 1996). At
the same time, sodium borodeuteride (NaBD4) has been shown to label
the reducing end of carbohydrates, which is helpful for the structural
determination of many different oligosaccharides (Ring & Selvendran,
1978; Selvendran & King, 1989; Xie et al., 2004).

In this study, we investigated the CID-MS/MS fragmentation pat-
terns of non-oxidised, LPMO-generated C1- and C4-oxidised cello-

oligosaccharides in negative ion mode. Moreover, these cello-oligo-
saccharides were reduced by using NaBD4 and fragmentation beha-
viours of the resulting oligosaccharides were studied. It is hypothesised
that oxidised cello-oligosaccharides show distinct signature fragmen-
tation patterns compared to their non-oxidised and reduced forms.
Unambiguous signature fragmentation patterns of C1- and C4-oxidised
cello-oligosaccharides will allow further understanding of LPMO me-
chanisms and their oxidised products.

2. Materials and methods

2.1. Carbohydrates, cellulose substrate and other chemicals

Galactose, NaBD4 and ammonium acetate were purchased from
Sigma-Aldrich (St. Louis, MO, USA). Cellobiose, cellotriose, cellote-
traose, cellopentaose and cellohexaose were purchased from Megazyme
(Bray, Ireland). Regenerated amorphous cellulose (RAC) was prepared
from Avicel PH-101 (Sigma-Aldrich) as described previously
(Frommhagen et al., 2015). Ascorbic acid (Asc) and sorbitol were
purchased from VWR International (Radnor, PA, USA). All water used
was produced by a Milli-Q system (Millipore, Molsheim, France), unless
mentioned otherwise.

2.2. Generation of non-, C4- and C1-oxidised cello-oligosaccharides by
MtLPMO9E and MtLPMO9I from RAC

RAC was suspended in 50 mM ammonium acetate buffer (pH 5.0) to
a concentration of 2 mg/mL. Subsequently, each LPMO from
Myceliophthora thermophila C1 (MtLPMO9E (MTCTH_79765, UniProt ID:
G2Q7A5) andMtLPMO9I (MTCTH_2299721, UniProt ID: G2Q774)) was
added to the corresponding RAC suspension (in the presence of 1 mM
Asc (final concentration)) at a concentration of 2 μM. The expression,
production and purification of MtLPMO9E and MtLPMO9I together
with determination of their protein content and purity are described in
Supplementary information and Fig. S1. Control reactions were per-
formed without the addition of Asc. MtLPMO9E incubations were car-
ried out at 50 °C and those with MtLPMO9I at 30 °C by using an
Eppendorf Thermomixer comfort, placed in a vertical direction, at 800
rpm (24 h reaction; 500 μL total volume). All incubations were per-
formed in duplicate. The reactions were stopped by immediately se-
parating supernatants and pellets through centrifugation 22,000 ×g, 15
min, 4 °C) in a table centrifuge. The resulting supernatants were col-
lected and cleaned up directly or after reduction with solid phase ex-
traction (SPE) as described in section 2.3 prior to analysis.

2.3. Reduction of non- and oxidised-cello-oligosaccharides with NaBD4 and
clean-up with SPE

Reduction was performed by adding 200 μL freshly prepared 0.5 M
NaBD4 to 200 μL of the standard mixture (containing cellobiose, cel-
lotriose, cellotetraose, cellopentaose and cellohexaose, 50 μg/mL each)
and of supernatants obtained from theMtLPMO9E- andMtLPMO9I-RAC
incubations at room temperature (20 °C) for 20 h. A clean-up procedure
for reduced and non-reduced samples was carried out by using SPE with
Supelclean™ ENVI-Carb™ columns (3 mL, Sigma-Aldrich). The SPE
column was activated with 1.5 mL 80 % (v/v) acetonitrile in water with
0.1 % (v/v) trifluoroacetic acid (TFA), followed by adding three times
1.5 mL water. Samples were loaded on the column and washed four
times with 1.5 mL water to remove unbound compounds. Bond oligo-
saccharides were eluted with two times 1.5 mL 60 % (v/v) acetonitrile
in water with 0.05 % (v/v) TFA and the obtained samples were dried
under a stream of nitrogen at room temperature (20 °C). The dried
samples were dissolved in 50 μL water prior to analysis.
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2.4. Analytic methods

2.4.1. HPAEC-PAD analysis for profiling oligosaccharides
All samples, NaBD4-reduced and non-reduced forms of (SPE

cleaned) cello-oligosaccharides having a degree of polymerisation (DP)
of 2–6 and NaBD4 reduced and non-reduced forms of (SPE cleaned)
supernatants of RAC incubated with MtLPMO9E or MtLPMO9I, were
analysed by using HPAEC with an ICS-5000 system (Dionex, Sunnyvale,
CA, USA) equipped with a CarboPac PA-1 column (2 mm ID ×250 mm;
Dionex) in combination with a CarboPac PA guard column (2 mm ID
×50 mm; Dionex). The system was further equipped with PAD. Two
mobile phases were (A) 0.1 M NaOH and (B) 1 M NaOAc in 0.1 M NaOH
were kept under helium flushing and the column temperature was 20
°C. The elution profile applied has previously been described
(Frommhagen et al., 2016). Samples were diluted five times before
analysis.

2.4.2. HILIC-ESI-CID-MS/MS for elucidating fragmentation patterns
Oligosaccharides in non-reduced and NaBD4-reduced forms of SPE-

cleaned cello-oligosaccharides (DP 2–6) and NaBD4-reduced and non-
reduced forms of SPE-cleaned supernatants of MtLPMO9E- or
MtLPMO9I-incubated RAC samples were separated and analysed by
using HILIC-ESI-CID-MS/MS. A Vanquish UHPLC system (Thermo
Scientific, Waltham, MA, USA) equipped with an Acquity UPLC BEH
Amide column (Waters, Millford, MA, USA; 1.7 μm, 2.1 mm ID × 150
mm) and a VanGuard pre-column (Waters; 1.7 μm, 2.1 mm ID × 150
mm) was used. The column temperature was set at 35 °C and the flow
rate was 0.45 mL/min; injection volume was 2 μL. Water (A) and
acetonitrile (B), both containing 0.1 % (v/v) formic acid (FA) (all were
UHPLC-grade; Biosolve, Valkenswaard, The Netherlands) were used as
mobile phases. The separation was performed by using the following
elution profile: 0−2 min at 82 % B (isocratic), 2−42 min from 82 % to
60 % B (linear gradient), 42–42.5 min from 60 % to 42 % B (linear
gradient), 42.5−49 min at 42 % B (isocratic), 49−50 min from 42 % to
82 % B (linear gradient) and 50−60 min at 82 % B (isocractic). The
mass (m/z) of separated oligosaccharides was on-line detected by an
LTQ Velos Pro mass spectrometer (Thermo Scientific) equipped with a
heated ESI probe. MS data were obtained in negative ion mode with the
following settings: source heater temperature 400 °C, capillary tem-
perature 250 °C, sheath gas flow 50 units, source voltage 2.5 kV and m/
z range 300-1500. As MS/MS settings, CID with a normalised collision
energy was set at 35 %, with a minimum signal threshold of 5000
counts at an activation Q of 0.2 and activation time of 10 ms. Mass
spectrometric data were processed by using Xcalibur 2.2 software
(Thermo Scientific).

3. Results and discussion

3.1. Negative ion mode CID-MS/MS fragmentation of non-, C1- and C4-
oxidised cello-oligosaccharides separated by HILIC

The aim of this research was to define specific signature fragmen-
tation pathways for non-, C1- and C4-oxidised cello-oligosaccharides by
using HILIC-ESI-CID-MS/MS in negative ion mode. The specific sig-
nature fragmentation patterns of the NaBD4-reduced forms of the non-,
C1- and C4-oxidised oligosaccharides are discussed in section 3.2.

A mixture of commercially available non-oxidised cello-oligo-
saccharides with a DP of 2–6 (Glc_2–6) was used as the standard (Fig.
S2 and S3). C4-oxidised cello-oligosaccharides (Glc_n*) were generated
by incubating MtLPMO9E with RAC only when Asc was present (Fig. S2
and S3). We confirmed its C4-specific oxidative cleavage with pre-
viously reported data of other C4-specific LPMOs, in particular by
comparison of HPAEC elution behaviours (Fig. S2) and MALDI-TOF
mass spectra (Frommhagen et al., 2016; Frommhagen, van Erven, et al.,
2017; Kadowaki et al., 2018). In addition to Glc_n* in the MtLPMO9E-
RAC-digest, Glc_2–4 were also generated (Fig. S2, F and Fig. S3, B),
which were confirmed by their elution time identical to the standards
(Glc_2–4) by HPAEC (Fig. S2 and S3) and by their m/z-values in HILIC-
ESI-MS (Fig. S4). C1-oxidised cello-oligosaccharides (Glc_n#) were
generated by incubating RAC with MtLPMO9I in the presence of Asc.
Notably, we discovered a new C1-specific LPMO (Fig. S2 and S3) and
confirmed its regioselectivity based on the comparison with previously
reported data of RAC incubated with C1-specific MtLPMO9B and
MtLPMO9D (Frommhagen et al., 2016; Frommhagen, Westphal, et al.,
2017). Apart from Glc_n#, Glc_2–6 were present in the MtLPMO9I-RAC-
digest (Fig. S2, D and Fig. S3, C) and their identities were similarly
defined as just described for the Glc_2–4 present in the MtLPMO9E-
RAC-digest. It should be noted that minor peaks next to each DP of
Glc_n were also observed of which the identities remain so far un-
known. Although these minor peaks might be of utmost importance to
understand LPMO’s mode-of-action in more detail, their exact nature
and significance are out of the scope of this research and not further
studied here.

Mass spectra of Glc_n and Glc_n* analysed in full-scan mode with
HILIC-ESI-MS indicated that these oligosaccharides were present
mainly as their single charged deprotonated ([M - H]-) and formate
adducted ([M + FA - H]-) products, while Glc_n# were present only in
their [M - H]-form (Fig. S4). In addition, the analysed m/z of Glc_n* (m/
z -2 compared to the m/z of Glc_n of the same DP) indicated that the C4-
oxidised cello-oligosaccharides were in their 4-ketoaldose form.
Previously reported geminal diol forms of Glc_n* (m/z +16 compared
to the m/z of Glc_n of the same DP (Isaksen et al., 2014; Westereng
et al., 2016)) were not observed under the analytical conditions used.
The Glc_n# were observed as aldonic acids based on their m/z-values
(m/z +16 compared to the m/z of Glc_n of the same DP; Fig. S4). The

Fig. 1. HILIC extracted ion chromatograms of non-, C4- and C1-oxidised cello-oligosaccharides. (A) Non-oxidised cello-oligosaccharides: Glc_3, m/z 503.2; Glc_4, m/z
665.3; Glc_5, m/z 827.3; (B) Both non- and C4-oxidised cello-oligosaccharides: Glc_3–5 m/z see explanation panel A; Glc_3*, m/z 501.2; Glc_4*, m/z 663.3; Glc_5*, m/
z 825.3; (C) Both non- and C1-oxidised cello-oligosaccharides: Glc_3–5, m/z see explanation panel A; Glc_3#, m/z 519.2; Glc_4#, m/z 681.3; Glc_5#, m/z 843.3. C4-
and C1-oxidised cello-oligosaccharides were obtained from the incubation of RAC with either MtLPMO9E or MtLPMO9I in the presence of Asc (Fig. S2).
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separation of DP3, 4 and 5 within Glc_n, Glc_n* and Glc_n# (Fig. 1),
with well distinguishable m/z-values, allowed generation of their MS/
MS fragmentation patterns. Hereto, the [M - H]- products were pre-
ferred, because fragmentation of [M + FA - H]- products was either not
obtained or resulted in complex spectra with various formate adducted
fragments.

The MS/MS spectra of DP3, 4 and 5 of non-oxidised cello-oligo-
saccharides (Glc_3–5) are shown in Fig. S5 and annotated according to
the nomenclature developed by Domon and Costello (1988). The MS/
MS spectrum of Glc_3 (Fig. S5) showed two most abundant fragments Z1
(m/z 161) and C2 (m/z 341). The C1 fragment (m/z 179) was also found
but in lower abundance. Cross-ring fragments were seen from the ions
0,2A2 (m/z 281) and 0,2A3 (m/z 443), and with consecutive water loss
from the ions 0,2A2 (0,2A2 - H2O, m/z 263) and 0,2A3 (0,2A3 - H2O, m/z
425). This further loss of a water molecule of 0,2An fragments into 0,2An

- H2O ions (or annotated as 2,5An ions in some studies) has previously
been shown to occur (Boulos & Nystrom, 2016; Mulroney et al., 1999;
Quéméner et al., 2015). With increasing DP of non-oxidised cello-oli-
gosaccharides (Glc_4 and Glc_5), C-type fragmentation was still pre-
dominant as shown by the pronounced relative intensity of C2 (m/z
341), C3 (m/z 503) and C4 (m/z 665). In addition, the most abundant
cross-ring fragments 0,2An and 0,2An - H2O resulted from cleavages of
the B ring (reducing end) and the B-neighbouring ring. Similar CID-MS/
MS results of neutral β-(1→4) linked gluco-oligosaccharides ([M - H]-)
with predominant C-type glycosidic cleavage and 0,2An cross-ring
fragmentation have been described (Chai et al., 1998; Palma et al.,
2015; Pfenninger et al., 2002a; Quéméner et al., 2003). Although the
MS/MS fragmentation patterns of Glc_n in negative ion mode can be
found in literature, we still provided our MS/MS spectra of Glc_n here
as the reference to better compare to the spectra of other types of cello-
oligosaccharides.

The MS/MS fragmentation spectra of DP3 and DP4 of C4-oxidised
cello-oligosaccharides (Glc_3* and Glc_4*) are shown in Fig. 2. The MS
intensity of Glc_5* was too weak to obtain decent MS/MS spectra,
mainly due to the very low amount of Glc_5* present in theMtLPMO9E-
RAC-digest. Various attempts, for example increasing the dose of
MtLPMO9E, were performed to increase the yield of Glc_5*. However,
the yield of Glc_5* was not significantly improved (data not shown). It
is thought that MtLPMO9E is able to cleave soluble cello-

oligosaccharides having DP larger than 5, which has been reported
previously (Kadowaki et al., 2018; our MtLPMO9E is MtLPMO9J in this
study). Nevertheless, to our opinion, the clear signature fragmentation
behaviours and diagnostic fragments of DP3 and DP4 are representative
for C4-oxidised cello-oligosaccharides in general. The MS/MS spectrum
of Glc_3* indicated B1 (m/z 159) and C1 (m/z 177) ions, which were m/
z -2 compared to Z1 (m/z 161) and Y1 (m/z 179), indicating, as ex-
pected, that an oxidised glucosyl unit was present at the non-reducing
end (A ring). MS/MS ring-fragments of Glc_3*, 0,2A2 (m/z 279) and
0,2A3 (m/z 441; 0,2A3 - H2O, m/z 423) were also found, in decreasing
abundance towards the A ring. Surprisingly, the fragment 2,4X2 (m/z
281) was detected, which has barely been shown to occur in negative
ion mode CID-MS/MS of oligosaccharides so far. Fragmentation of the
C4-oxidised cellotrimer apparently resulted in loss of the oxidised end
via ring cleavage leading to a 2,4X2 (m/z 281) fragment. In the MS/MS
spectrum of Glc_4*, the three most abundant fragments were B1 (m/z
159), Y2 (m/z 341) and Y3 (m/z 503). Hence, B- and Y-type fragmen-
tation preferably took place at the glycosidic linkage at the right side of
the A and A neighbouring ring, most likely influenced by the C4-oxi-
dised group. In contrast, pronounced ions of Z1 (m/z 161), C3 (m/z 501)
and C2 (m/z 339) suggested C- and Z-type fragmentation at the glyco-
sidic linkage at the left side of the B ring, similar to the fragmentation of
non-oxidised cello-oligosaccharides. This preference was further ap-
parent from the very low intensity of C1 (m/z 177), Y1 (m/z 179), B3

(m/z 483) and Z3 (m/z 485) fragments. Likewise, for Glc_3*, A- and X-
type of cross-ring fragmentation of Glc_4* was observed as 2,4X3 (m/z
443) and 2,4X3 - H2O (m/z 425). Hence, these 2,4Xn fragments can be
seen as diagnostic ions specifically for C4-oxidised cello-oligosacchar-
ides. The intensity of the 2,4Xn fragments decreased closer to the B ring,
observed from the much lower relative intensity of 2,4X2 (m/z 281) and
2,4X2 - H2O (m/z 263). For the B ring and B neighbouring rings 0,2An (-
H2O) fragments were predominant and decreased in intensity when
situated closer to the A ring.

A summary of the MS/MS fragmentation patterns of the (C4-oxi-
dised) cello-oligosaccharides, including signature fragments, is given in
Table 1.

The MS/MS fragmentation of C1-oxidised cello-oligosaccharides
(aldonic acids, Glc_n#, Fig. 3 and Fig. S6) was very distinct from the
fragmentation obtained for Glc_n and Glc_n*. In the Glc_3# MS/MS

Fig. 2. Negative ion mode CID-MS/MS spectra
of C4-oxidised cello-oligosaccharides DP3 and
DP4 (Glc_3*, m/z 501.2 and Glc_4*, m/z
663.3); average spectra across chromato-
graphic peaks. The fragments are annotated
according to Domon and Costello (1988). Blue
solid arrows indicate abundant fragments,
while dashed arrows indicate fragments with a
lower relative intensity. 4-keto groups are in-
dicated in red. A and B ring represent the non-
reducing and reducing end, respectively. C4-
oxidised cello-oligosaccharides were generated
by RAC incubated with MtLPMO9E in the pre-
sence of Asc (Fig. S2) (For interpretation of the
references to colour in this figure legend, the
reader is referred to the web version of this
article).
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spectrum (Fig. 3), abundant B1 (m/z 161) and C1 (m/z 179) ions were
observed, which represented the cleavage of the non-reducing end
glucosyl unit (A ring). Apparently, glycosidic linkage cleavage next to,
or in the neighbourhood of the aldonic acid residue was less favoured.
In addition, A-type cross-ring fragments were detected, especially from
cross-ring cleavage of the carboxyl end (B ring; 2,4A3 (m/z 383)).
Likewise for Glc_3#, MS/MS of Glc_4# (Fig. 3) showed predominant
cross-ring cleavage on the oxidised B ring and B neighbouring ring
(2,4A4 (m/z 545) and 2,4A3 (m/z 383), respectively; Table 1). Again 0,2An

(- H2O) fragments were formed. Similarly, the MS/MS pattern of Glc_5#

(Fig. S6) showed a series of 2,4An and 0,2An (- H2O) fragments, which
were predominant for the B ring and the B neighbouring ring (e.g. 2,4A4,
m/z 545 and 2,4A5, m/z 707). Glycosidic bond cleavage still occurred
but was relatively less abundant (Table 1). Although similar data for the
MS/MS spectrum of Glc_3# has been reported previously by Boulos and

Nystrom (2016), the systematic fragmentation behaviours of a series of
C1-oxidised cello-oligosaccharides is here presented for the first time.

3.2. Negative ion mode CID-MS/MS fragmentation of reduced non- and C4-
oxidised cello-oligosaccharides separated by HILIC

Non- and C4-oxidised cello-oligosaccharides were successfully re-
duced by NaBD4 to their alditol forms (RD-Glc_n and RD-Glc_n*) and
analysed by HPAEC (Fig. S7), while the obtained gluconic acid forms of
the C1-oxidised cello-oligosaccharides cannot be reduced and remained
in their aldonic acid form (Fig. S7). Through NaBD4 reduction, the B
ring of Glc_n was converted to the alditol form with one deuterium ion
inserted, which led to m/z of 3 higher compared to the non-reduced
Glc_n with the same DP (Fig. S8). Similarly to Glc_n, Glc_n* were re-
duced at their reducing end, however, the C4-oxidised A ring was also

Table 1
Summary of fragmentation patterns of five types of cello-oligosaccharides observed in HILIC-ESI-CID-MS/MS.

Sugar type Structure
(β-(1→4)-glucosyl backbone)

Fragmentation patterns

Glycosidic bond cleavage Cross-ring cleavage

Non-oxidised
(Glc_n)

C-ions are predominant 0,2An- and 2,4An-fragments; 0,2An-fragments are
predominant on B ring, but decreases closer to A ring;

2,4An-fragments on B ring and B neighbouring ring

C4-oxidised
(Glc_n*)

Both B-/Y- and C-/Z-fragments; B/Y-cleavage is
predominant directly next to A ring, but decreases closer to
B ring; C-/Z-cleavage is predominant directly next to B ring

but decreases closer to A ring

2,4Xn- and 0,2An-fragments; 2,4Xn-framents are predominant
on A ring, but decreases closer to B ring; 0,2An-fragments
are predominant on B ring, but decreases closer to A ring

C1-oxidised
(Glc_n#)

Both B-/Y- and C-/Z-fragments; glycosidic bond cleavage is
less pronounced compared to ring cleavage

0,2An-, 2,4An- and little (0),1An-fragments; 2,4An-fragments
are predominant (even over glycosidic bond cleavage) on
the ring closed to B ring, but decreases closer to A ring

Reduced-non-
oxidised
(RD-Glc_n)

Both B-/Y- and C-/Z-fragments; glycosidic bond cleavage is
predominant closer to A ring, but decreases closer to B ring

0,2An- and 2,4An-fragments; not on A and B rings, but on the
neighbouring rings of A and B

Reduced-C4-
oxidised
(RD-Glc_n*)

Both B-/Y- and C-/Z-fragments; glycosidic bond cleavage is
predominant closer to A ring, but decreases closer to B ring

0,2An- and 2,4An-fragments; not on A and B rings, but on the
neighbouring rings of A and B

Fig. 3. Negative ion mode CID-MS/MS spectra
of C1-oxidised cello-oligosaccharides DP3
(Glc_3#, m/z 519.2) and DP4 (Glc_4#, m/z
681.3). See Fig. S6 for DP5 (Glc_5#, m/z
843.3); average spectra across chromato-
graphic peaks. The fragments are annotated
according to Domon and Costello (1988). Blue
solid arrows indicate most abundant fragments,
while dashed arrows indicate fragments with
relatively lower intensity. Carboxyl groups are
indicated in red. A and B ring represent the
non-reducing and gluconic acid end, respec-
tively. C1-oxidised cello-oligosaccharides were
generated by RAC incubated withMtLPMO9I in
the presence of Asc (Fig. S2) (For interpretation
of the references to colour in this figure legend,
the reader is referred to the web version of this
article).
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reduced with addition of one deuterium ion, which was evident from
the m/z observed. RD-Glc_n* resulted in a m/z of 4 higher compared to
the non-reduced Glc_n with the same DP (Fig. S8). Constituent mono-
saccharide analysis after TFA hydrolysis showed that reduction of the A
ring led the formation of glucosyl as well as galactosyl units (Fig. S9).
HPAEC monosaccharide chromatograms clearly showed that galactose
was generated in RD-Glc_n*, but not in RD-Glc_n after TFA hydrolysis.
The generation of galactose after reduction of C4-oxdised cello-oligo-
saccharides and TFA hydrolysis was also described by Beeson et al.
(2012). It can be hypothesised that the reduction of the C4-oxidised
glucosyl residue leads to the formation of a hydroxyl group at the C4-
carbon atom, whose conformational orientation is in equilibrium be-
tween the equatorial or axial position. The formation of the two types of
RD-Glc_n* was also seen from the HPAEC chromatogram (Fig. S7). As
RD-Glc_n* with glucosyl or galactosyl units have the same m/z values in
HILIC-ESI-MS, we used RD-Glc_n* to indicate both (Fig. S8). RD-Glc_3-5
and RD-Glc_3-5* ([M - H]-) were well separated by HILIC (Fig. 4), al-
lowing accurate characterisation of their MS/MS fragmentation beha-
viours. An overview of fragmentation behaviours of the reduced cello-
oligosaccharides is shown in Table 1.

The MS/MS fragments of RD-Glc_n (Fig. 5 and Fig. S10) showed
again distinct cleavage patterns. In the MS/MS spectrum of RD-Glc_3

(Fig. 5), B1 (m/z 161) and C1 (m/z 179) were abundant ions and mainly
generated from the A ring. Closer to the B ring, glycosidic bond frag-
mentation was less pronounced indicated by the low relative intensity
of B2 (m/z 323) and C2 (m/z 341). The same fragmentation was ob-
served from the high relative intensity of Y2 (m/z 344) and Z2 (m/z 326)
and low abundance of Y1 (m/z 182). Cross-ring fragmentation occurred,
mainly seen from 2,4A2 (m/z 221) and more abundant 0,2A2 - H2O (m/z
263). RD-Glc_4 exhibited a similar trend of fragmentation as de-
termined for RD-Glc_3 (Fig. 5). Again, glycosidic bond cleavage pre-
ferably occurred at the right side of the A ring and decreased closer to
the B ring: Z3 (m/z 488) and Y3 (m/z 506) were the most abundant ions
followed by Y2 (m/z 344), B1 (m/z 161) and C1 (m/z 179). Cross-ring
fragmentation (0,2An and 2,4An) was indicated, like for RD-Glc_3, but to
a lesser extent. The MS/MS fragmentation patterns as described above
were also obtained for RD-Glc_5 (Fig. S10), demonstrated by the
abundant ions of Y4 (m/z 668), Z4 (m/z 650) and Y3 (m/z 506) and
relative low intensities of B4 (m/z 647), B3 (m/z 485), C3 (m/z 503), B2

(m/z 323) and Z2 (m/z 326).
The MS/MS spectra of RD-Glc_n* (Fig. 6 and Fig. S11) displayed

overall the same patterns and fragmentation behaviour as obtained for
RD-Glc_n, which can be expected given their almost identical structures
after reduction. The only difference is the deuterium ion at the C4-

Fig. 4. HILIC extracted ion chromatograms of NaBD4-reduced non-, C4- and C1-oxidised cello-oligosaccharides. (A) Reduced non-oxidised cello-oligosaccharides: RD-
Glc_3, m/z 506.3; RD-Glc_4, m/z 668.3; RD-Glc_5, m/z 830.3; (B) Both reduced non- and C4-oxidised cello-oligosaccharides: RD-Glc_3–5 m/z see explanation panel A;
RD-Glc_3*, m/z 507.2; RD-Glc_4*, m/z 669.3; RD-Glc_5*, m/z 831.3; (C) Reduced non- and C1-oxidised cello-oligosaccharides: RD-Glc_3–5, m/z see explanation panel
A; Glc_3#, m/z 519.2; Glc_4#, m/z 681.3; Glc_5#, m/z 843.3.

Fig. 5. Negative ion mode CID-MS/MS spectra
of reduced non-oxidised cello-oligosaccharides
DP3 (RD-Glc_3, m/z 506.3) and DP4 (RD-Glc_4,
m/z 668.3). See Fig. S10 for DP5 (RD-Glc_5, m/
z 830.3); average spectra across chromato-
graphic peaks. The fragments are annotated
according to Domon and Costello (1988). Blue
solid arrows indicate the most abundant frag-
ments, while dashed arrows indicate fragments
with relatively lower intensity. The deuterium
ion is indicated in red. A and B ring represent
the non-reducing and deuterated alditol end,
respectively (For interpretation of the refer-
ences to colour in this figure legend, the reader
is referred to the web version of this article).
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position of the glucosyl A ring of RD-Glc_n* compared to the hydrogen
ion for the RD-Glc_n oligosaccharides, resulting in A ring fragments of
m/z +1. This mass difference in the ions containing the A ring still
allowed to distinguish RD-Glc_n from RD-Glc_n*. As indicated above,
reduction also formed A ring galactosyl units, which could have po-
tentially influenced the MS/MS fragmentation patterns of RD-Glc_n*.
Yet, due to co-elution these effects cannot be further specified and the
absence of cross-A-ring fragments furthermore does not allow to dis-
tinguish both structures.

Ions of m/z 162, 180, 324 and 342 in RD-Glc_3* (Fig. 6) were an-
notated as B1, C1, B2 and C2, respectively, as they obtained m/z +1
compared to the ions generated from RD-Glc_3. Similarly, fragments of
m/z 222, 264 and 282 were determined to be 2,4A2, 0,2A2 - H2O and
0,2A2, respectively. The similar MS/MS fragments having m/z +1 were
also found in RD-Glc_4* (Fig. 6) and RD-Glc_5* (Fig. S11) compared to
the corresponding annotate ions in RD-Glc_4 and RD-Glc_5, respec-
tively. In the MS/MS spectra of RD-Glc_3* and RD-Glc_4*, m/z 161 was
unexpectedly more abundant than the B1 ions (m/z 162). It is hy-
pothesised that m/z 161 came from the internal glucosyl ions resulting
from a double cleavage on RD-Glc_n*. Such double cleavage generating
internal glucosyl ions (m/z 161) can also occur for RD-Glc_n, but cannot
be distinguished from its B1 ion (m/z 161). This double cleavage has
been previously shown on other types of gluco-oligosaccharides in ne-
gative ion mode, such as carbohydrate chains of glycoproteins having 3-
linked N-acetylglucosamine units and endoglucanase-digested xy-
logluco-oligosaccharides (Chai et al., 2001; Quéméner et al., 2015).

In summary, the five types of cello-oligosaccharides analysed
showed distinct fragmentation patterns in HILIC-separated negative ion
mode CID-MS/MS (Table 1). In general, both glycosidic bond cleavage
and cross-ring fragmentation occurred, though they were found to be
rather different for each type of cello-oligosaccharide. Predominant C-
and 0,2An (- H2O)-fragments were found for non-oxidised cello-oligo-
saccharides, as also widely described in literature. C4-oxidised cello-
oligosaccharides obtained predominant B-/Y-type fragmentation on the
oxidised A ring while C-/Z-fragments were pronounced on the reducing
end B ring. Notably, diagnostic 2,4Xn (- H2O)-ions were annotated for
the first time, which distinguish C4-oxidised cello-oligosaccharides
from other ones. Extensive A-type cross-ring fragmentation over gly-
cosidic bond cleavage was found in C1-oxidised cello-oligosaccharides,
which is a unique feature of these particular cello-oligosaccharides.

Though reduced non- and C4-oxidised cello-oligosaccharides showed
identical fragmentation patterns, their structures can be distinguished
by the different masses of ions containing the A ring. Compared to their
non-reduced forms, reduced non- and C4-oxidised cello-oligosacchar-
ides showed preferred glycosidic bond cleavage closer to the A ring.

4. Conclusions

In this study, fragmentation patterns of non-, C1- and C4-oxidised
cello-oligosaccharides released by LPMOs and the reduced forms of
non- and C4-oxidised cello-oligosaccharides were analysed by using
HILIC-ESI-CID-MS/MS in negative ion mode. All type of cello-oligo-
saccharides showed both glycosidic bond and cross-ring cleavage
fragments, but the fragmentation pattern of each type is distinct. Based
on the outcomes of this research, also other structures of different oli-
gosaccharides containing a β-(1→4)-glucosyl (cellulose-like) backbone,
for example branched oxidised xylogluco-oligosaccharides, can be
elucidated by their diagnostic ions and the specific fragmentation pat-
terns. The structural elucidation of these complex (oxidised) oligo-
saccharides will further help understanding the mode-of-action of
LPMOs regarding their ability to oxidatively degrade a range of plant
cell wall polysaccharides, including cellulose and xyloglucan.
Moreover, it can be envisaged that beyond the LPMO-field, our study
contributes to the characterisation of (chemically) oxidised oligo-
saccharides in general.

Declaration of Competing Interest

The authors declare that they have no competing interest.
All authors contributed to this study. Peicheng Sun, Matthias

Frommhagen, Willem J.H. van Berkel and Mirjam A. Kabel con-
tributed to the conception and design. Peicheng Sun, Matthias
Frommhagen, Maloe Kleine Haar and Gijs van Erven developed the
methodology and carried out the experiments. Peicheng Sun and
Edwin J. Bakx performed the data analysis. Peicheng Sun andMirjam
A. Kabel prepared the original draft. All authors were involved in cri-
tically reviewing all data and in writing the final manuscript. All au-
thors read and approved the final manuscript.

Fig. 6. Negative ion mode CID-MS/MS spectra
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Glc_4*, m/z 669.3). See Fig. S11 for DP5 (RD-
Glc_5*, m/z 831.3); average spectra across
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notated according to Domon and Costello
(1988). Blue solid arrows indicate the most
abundant fragments, while dashed arrows in-
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dicated in red. A and B ring represent the non-
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tively. Note that the A-ring can represent a
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