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Mathematics,  
the Science of my Life

Highly esteemed Rector Magnificus and colleagues, dear family, friends, ladies and 
gentlemen,

Delivering a farewell address is not only a nostalgic event, it is also a moment of 
relaxation and joy. To hear the organ of this Auditorium playing a cheerful melody; 
to see so many esteemed colleagues hoping to hear some wise last words; to realize 
that nobody in the audience expects you to impress him or her by an exposition of all 
your expertise  - as is usually the case with inaugural lectures -: it all contributes to 
the nice atmosphere evoked by again a member of the crew becoming old aged. 

By the way, I like to play the organ myself, and my very first wise lesson is: don’t 
forget to move the organ to the new Dialogue Centre on the Campus when this 
Auditorium will be abandonded....

A farewell address may have a high ‘grandpa tells stories’ character. That’s why I feel 
free to start telling you how and why my career culminated in a position at 
Wageningen University. 

Some personal history
Although Mathematics eventually became the dominating science in my life, also 
Physics and Biology played an important role. The combination Biology and 
Mathematics seems a bit less natural than the marriage of Physics and Mathematics. 
For example, the physicist Einstein was able to develop the special relativity theory on 
his own, but the general relativity theory exceeded his powers and he was forced to 
invoke the skills of mathematician Grossmann. To his friend  Sommerfeld he wrote: 

 “I have never worried so much, and received the greatest respect for the mathematics that I, 
simple soul, had hitherto regarded in its more subtle detail as pure luxury”. 
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For the combination of Biology and Mathematics it may be more convenient to quote 
a similar heart cry of good old  Darwin in his diary around 1830:

“I have deeply regretted that I did not proceed far enough at least to understand something of the 
great leading principles of mathematics; for men thus endowed seem to have an extra sense.” 

I think this attitude of Darwin should be exemplary in the life sciences world, but 
practice is unruly. This is eloquently expressed by Gian-Carlo Rota, a famous 
mathematician at MIT, who wrote:

“The lack of real contact between mathematics and biology is either a tragedy, a scandal,  
or a challenge, it is hard to decide which.” 

In my opinion, this lack of contact between Biology and Mathematics is neither  
a tragedy nor a scandal, but a serious challenge. As a consequence of this opinion,  
I took two determining steps in my life. First, I married a biologist, and second,  
I accepted a position in Wageningen.  And, in spite of the worries expressed by Rota,  
I had a splendid time here. For a modeling minded mathematician as I am, 
Wageningen is the place to be. Here I was swimming in a pool with mainly biologists 
around me. Wageningen has always respected its one and only chair in maths, 
initially occupied by Van Uven in 1918, who was famous for both his mathematical 
and musical activities and after whom a street in Wageningen has been named.
 
But, still, it is always good to keep an eye on the perspective: the other technical 
universities - Delft, Eindhoven, Twente - have 8 to 12 math chairs each. We only one...

That mathematics would take such a prominent place in my life was by far not 
self-evident. My secondary school was Christelijk Gymnasium Sorghvliet in The 
Hague. At that moment a very small school, of high quality, but unknown. 
Nowadays it’s nationwide famous because the three royal princesses are visiting it. 

When leaving Sorghvliet, I did not experience the slightest urge to choose 
mathematics as my study. To be honest I found it rather boring. The same applied to 
biology. It was in the sixties of the last century, and although the fascinating 
discovery of DNA had taken place already in the fifties, my biology teacher restricted 
the lessons to enumeration of the bones in the human skeleton and classification of 
the species in the plant domain. So, I started to study physics, since that field seemed 
to provide one with a general understanding of the universe. It was only in the slip 
stream of physics that I also obtained a master degree in mathematics. I got so many 
exemptions for math courses, that I couldn’t resist the temptation. 
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After graduating and having gained deep insight into the universe, I had to join the 
army. My official rank was ‘vaandrig’, i.e. ‘vaandeldrager’, so I had to bear the 
colours. It wasn’t a bad time at all. In view of time limitations I skip this period today.

After an enjoyable period of applying for positions of all kinds but avoiding the ones 
with a mathematical flavour, I started at a PhD project at the Free University in 
Amsterdam. In solid state physics, supervised by Adri Lodder, who is present here 
today. He infected me with the passion for research, and for deriving pleasure from 
endless manipulations with formulae to arrive in the end at a result of such an 
intrinsic beauty, that all nuisance is forgotten at the moment of triumph. Research 
requires a great deal of endurance. It is like giving birth to a baby: as soon as the 
sibling is there, most or even all misery is over. 

I would like to give this address the flavour of a last public lecture. This lecture has a 
simple structure: first, I’ll tell you about the philosophy underlying mathematical 
modelling, then I’ll show you the power of mathematics using an example, after 
which I’ll close with some acknowledgements. To keep this address sufferable, I 
won’t bother you with deep mathematics, nor will I make use of typical Life Science 
cases that presume a lot of expert knowledge. 

Mathematical Modeling: what’s inside the box?
As I already told you, physics had evoked with me a fascination for modelling. As I 
worked out in my two inaugural lectures, a model is a representation of some 
system, that helps us to analyze and predict its behaviour.  It should at least mimic 
our observations of the system, but a model without predictive power is like a lion 
without teeth. As an example you could think of the app ‘Buienradar’: given the 
present weather conditions the app predicts the rain fall for the coming hours. 
Bringing it back to the very essence, a model can be looked upon as a box with an 
input and an output, and some 
magic happening inside (Figure 1). 
The key question of mathematical 
modelling is: what’s inside the 
box? 

Figure 1. The mathematical modelling box. 
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Figure 2. Chess playing robot, as a metaphor of mathematical modelling. 

Figure 3. The modelling box of the chess Turk, containing clockwork like machinery.
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I like to play chess, so let us take an example from chess (Figure 2). 
This chess playing robot, the so-called ‘chess Turk’, was built in 1770 by  
Wolfgang von Kempelen for entertaining purposes. The robot was an enormous 
show success and the inventor traveled with it through Europe visiting many royal 
courts. The chess Turk was able to play chess like a human, moving the pieces, which 
on its own was already fascinating to see. But what’s more, it defeated nearly all its 
opponents. We recognize the modelling scheme here: input is a move by a human 
opponent, upon which the robot comes up with a move as output. Here the question 
is literally: What’s inside the box below the desk of the chess Turk? During his shows, 
Von Kempelen opened the box to the audience, showing that there was some 
clockwork like machinery in it (Figure 3).
 
For decades the secret of the machine, that nowadays would be referred to as being 
‘artificial intelligent’, remained unraveled. A cliffhanger moment. 
 
In science, mathematics turns out to be a highly appropriate language to formulate 
models. And so, via the bypass of modelling, I became more and more entangled in 
the world called mathematics.

For Wageningen UR, world leading expertise centre for the Life Sciences, modelling 
is a key expertise. That was for me - in addition to Wageningen being at cycling 
distance from my home town Veenendaal - one of the main reasons to switch from 
TU Eindhoven to Wageningen University. Nearly all life sciences need mathematical 
modelling. It’s a topic belonging to the heart of Wageningen research and education.  
That’s why I would like to pay quite some attention to this activity in this lecture. 

Models can be ordered from so-called bottom-up models to top-down models. It seems 
reasonable to draw that ordering axis vertically, from bottom to top. Since this picture 
would suggest a sort of hierarchy, I shall use a horizontal presentation (Figure 4).

Figure 4. The modelling axis, arranging models from bottom-up (left) to top-down (right). 
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Bottom-up modeling
First we focus on the left hand part of the modelling spectrum: the bottom-up 
models. This is the domain of my specialty: Systems Biology. These models are 
suitable for systems that we know a lot: their components and the physical, chemical, 
and biological mechanisms governing their dynamics are more or less understood.  

As an example I take this mechanical 
duck, constructed by Jacques de 
Vaucanson in 1739 (Figure 5). In this 
duck, the digestive tract was modelled 
in a mechanical way and the duck 
model really worked: one could feed 
the duck at the beak end and after 
some time the duck produced faeces at 
the rear end. 

Bottom-up modelling has a strong 
reductionistic character. With as 
consequence that one runs the risk of 
leaving out components, that later 
turn out to be essential. Or worse: that 
one ignores the holistic view that the 
whole may be more than the sum of its parts. For example, the appeal a racing motor 
has to some people will never be captured  by only modelling its mechanical 
components (Figure 6). 

Figure 6. The appeal of a holistic object like a racing motor stays in sharp  
contrast with the mechanical components that make it up. 

Figure 5. Mechanical model of the digestive tract of a 
duck.
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We meet here with a very important 
modeling dilemma: which level of detail 
should be included? The answer is, of 
course, closely connected to the purpose 
you have in mind. This does not imply 
that bottom-up models consisting of 
relatively simple components can’t give 
rise to complex behaviour. In the 
seventies of the last century the 
mathematical revolution leading to 
‘chaos theory’ took place. I still 
remember how excited I was when 
following these developments. Chaos 
theory shows that very small bottom-up 
models can already exhibit very 
complex, unpredictable behaviour. In the 
life sciences I came across the very 
similar notion of ‘emergent behaviour’, 
which, by the way, should not be 
associated with ‘emergency exit’ or so, 
but rather with ‘Luctor et Emergo’, where it means ‘to pop up’. So, simple elements, 
provided that they interact effectively, may represent very intricate phenomena. As 
an example, look at ants (Figure 7). Each ant on its own has, as far as we know,  no 
high level of intelligence. But together they are able to build a bridge. Isn’t God’s 
creation wonderful? 

Until now I showed you mechanical models from centuries ago for illustrational 
purposes. At present, we have enormous computer power at hand and mathematical 
models live in the form of  computer implementations. For example, how would we 
model the digestive tract of the duck in modern times?

Networks
Before going into detail, I need to give you a short general introduction in 
Mathematical Modelling. It always starts with identifying the essential components 
of the system at hand and representing them in the form of a network. The nodes 
represent the components, the arrows the interactions. Next step is the translation of 
the network into a set of mathematical formulae. In Figure 8 I show ordinary 
differential equations. There are other mathematical languages, but that’s not 
relevant for this lecture. 

Figure 7. Emergent behavior: simple agents like 
ants manage to build a bridge by cooperating.
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Figure 8. Network representation of a mathematical model and its translation into mathematical 
formulae. 

This translation step is far from being trivial. Be aware that a network as such may 
still contain many ambiguities. Only if the formulae are specified, the model becomes 
unique and useful. The general lesson here is: 

• One picture tells us more than 100 words and
• One formula tells us more than 10 pictures,  

with the implication:

• One formula tells us more than 1000 words. 

The network framework is extremely useful thanks to its generality. For example, 
modeling the dynamics of a complex system of genes, the nodes stand for the levels 
of gene expressions and the arrows for the way genes may promote and/or inhibit 
each other’s expression. And if we model a simple predator-prey system,  the two 
nodes stand for the numbers of predators and preys, and the arrows for self-
promotion via birth, decay via death, and, of course, mutual inhibition and 
promotion.  

What would the network of a digestive tract look like? Well, we want to model the 
transformation from feed in the beak to faeces at the back (Figure 9). 
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Figure 9. Network of a digestive tract. The feed contains nutrients N1, N2, .. , with fractions changing at 
the different stages of the tract. 

In the beak the feed has a certain composition. Let’s indicate the nutrients by N1 , N2 , 
etc. The amounts of these nutrients are stored in the nodes in the first layer. For each 
stage of the tract - stomach, small intestines, large intestines, rectum -  we have such a 
layer of nutrient nodes. From layer to layer the contents of these nodes change under 
influence of digesting enzymes and microbiome processes. Here, we will pay no 
attention to the translation step; for now it is only important to keep in mind the 
typical network topology, with layers and a unidirectional flow from beak to faeces. 

Top-down modelling
Let’s switch to the right hand side of the modelling axis (Figure 4). There, we meet 
with, amongst others, classical statistical models, but I will pass them to leave room 
for the farewell address of my colleague Fred van Eeuwijk. On the utmost right hand 
side we enter the domain of Artificial Intelligence and Big Data science where neural 
networks and other machine learning approaches are used. They are designed to 
cope with systems that are way too complex for us to understand. Think of the 
human brain, our economy, or the climate. Can we achieve modelling progress in 
such cases? Yes, we can, but only if we accept a paradigm shift. 

If we have no idea of the inner structure of a system, the only thing we can do is to 
observe its behaviour as response to as many different inputs as possible. That’s to 
say, to gather data. The more, the better. And from these data, we may try to mimic 
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the system. This approach seems a bit poor, but may be very powerful, as I will show 
you. 

A system far beyond our bottom-up modelling abilities is typically the human brain. 
Our brain is nearly unbeatable as it comes to pattern recognition. Expose a human, 
e.g., one of my grandsons present here, to dozens of pictures of cats and dogs in all 
kinds of poses, and he may flawlessly classify the dogs and the cats, putting the dog 
pictures on one pile and the cats on another. 

Neural Networks, Deep Learning
Given enough data, top-down models are amazingly good at imitating these kinds of 
abilities. But, if we have no idea what‘s happening in the brain when recognizing 
patterns, what kind of network should we put in the modelling box (Figure 1) to 
imitate the brain? What about its topology? What about the interactions?
Since we have no clue here, we are free to take a fantasy network with fantasy 
interactions. One would expect a neural network to mimic the neuronal network in 
our brains. So, with neurons interconnected in a complicated fashion. But 
terminology is misleading here. In practice, neural networks have a layered topology 
and a unidirectional flow (Figure 10). 

Figure 10. General structure of a neural network, characterized by a layered structure and a unidirectio-
nal flow of information. 

Does this ring a bell? Of course, we recognize the structure of a digestive tract (Figure 
11). 
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Figure 11. The structure of a neuronal network rather reflects the structure of our digestive tract than 
that of our brains. 

Recently, so-called deep learning networks have become popular. Roughly speaking 
they are very similar to neural networks, but then with many more layers. So, one 
could say that a standard neural network reminds us of the digestive tract of a 
carnivore, whereas a deep learning network is more like the digestive tract of  a 
herbivore. These similarities should, of course, not evoke the suggestion that these 
networks deliver only faeces. Not at all. 

How does a neural network function? You remember that the second step in 
mathematical modelling is the translation of a network into formulae (Figure 8). In 
these formulae parameters are present.  These are numbers that are typical for the 
specific system under study. In bottom-up models the parameter values are either 
dictated by physical laws or deduced from experiments. In top-down models we do 
not have that information; the values of these parameters have to be estimated from 
fitting the model to the data. Therefore, as said before, the more data, the better. 
People are used to saying that they “train a network” – like a dog – , simply meaning 
that its parameter values are estimated from data. 

Artificial Intelligence
For certain applications top-down models are indeed the way to go. To come back to 
the chess example, in the artificial intelligence world it has been a long-standing 
discussion whether computers could ever play inherently complicated games like 
Chess and Go at world-champion level. The Dutchman Max Euwe (1901 - 1981) and 
the Russian Michael Botwinnik (1911 – 1995) - chess world champions in the thirties 
and fifties of the last century, respectively – were heavily involved in developing 
computer chess algorithms. They followed the bottom-up approach and 
implemented strategies they thought humans apply when playing chess. In their 
days, computers were still simple, so the level of playing remained relatively low. In 
later years the computers got such an enormous computational power, that in 1997 
world champion Kasparov was beaten by the computer program Deep Blue (Figure 
12).
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Figure 12. In 1997, for the first time in history, a world champion, Kasparov, was beaten by a computer 
programme: a turning point in Artificial Intelligence. 

As seen in Figure 12, this was quite a dramatic event, since Kasparov had claimed 
that this was impossible. Deep Blue was based on a combination of strategic rules 
and brute force, since at that time the computer could already calculate the 
consequences of many, many moves in a split second. However, this bottom-up 
approach turned out to have limitations, even with supercomputers, since it failed 
when applied to a much more complex game like Go. 

Euwe, Botwinnik, Kasparov, they all couldn’t foresee the paradigm shift caused by 
deep learning. In December 2018 the so-called ‘AlphaZero’ team reported 
(DOI: 10.1126/science.aar6404) that they had trained a deep learning network that 
could beat the world champion Go. A network with the same topology could also 
play Shogi and Chess at that very high level. Only the parameter values were 
different for each of these games. Taking notice of these developments, Kasparov 
made a comparison that will resonate with biologists:

“Much as the Drosophila Melanogaster fruit fly became a model organism for geneticists, 
chess became a Drosophila of reasoning”.

What kind of data did the AlphaZero team use? Data from the immense literature on 
Chess or Go? No. They simply got their data from letting a computer play Chess or 
Go against itself. In this way they could practically obtain an infinite amount of data. 
The deep learning network was not explicitly fed with strategies but, on the contrary, 
deduced these strategies from the data and stored them in an implicit way, namely in 
the values of  parameters. 

It is clear that these techniques will deeply influence our society, for example via 
robotics. It also evokes philosophical questions. Are we creating real intelligence, 
consciousness, monsters? I don’t think so.  Although the achievements with deep 
learning are very impressive, from a modelling point of view this approach leaves us 
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with an unsatisfactory feeling.  After the training stage, the deep learning network 
may mimic the system under consideration perfectly well, but we haven’t gained any 
insight into the system. The full training information has been stored in the values of 
parameters, but these parameters don’t bear any interpretable relationship with the 
functioning of the system itself. 

Closing the loop
I think that the challenge of the coming years is to close the loop. The modelling axis 
should be bent and  closed in itself, so that the extremes meet each other (Figure 
13A). A first, partial attempt is a research topic within my group. The idea is to start 
with a complex bottom-up model. Because of its complexity, analysis in the form of, 
for example, sensitivity analysis is obstructed by extremely long computation times. 
A top-down model is then trained, a so-called surrogate model, that mimics the 
original model but is way faster to handle and analyze (Figure 13B). 

From a more fundamental point of view, I expect that in some way it must still be 
possible to interpret neural networks (Figure 13C). The learning process during 
training must contain information to deduce how the system internally works, at 
least globally. This seems to me one of the most intriguing problems artificial 
intelligence presents us nowadays. 

Figure 13.The modelling axis should be bent, such that bottom-up and to-down modelling fertilize each 
other (panel A). A large and computationally hard to handle bottom-up model can be replaced by a 
surrogate model, trained on data from the bottom-up model (panel B). Deducing insight in the functio-
ning of a system by studying the neural network by which it is modelled is the challenge we are facing 
nowadays (panel C).  

By the way, do you remember our cliffhanger: the thrilling secret of the chess Turk. 
As you may have guessed, inside the box a human was hidden, undetectable for the 
audience, thanks to an ingenious system of mirrors and a moveable seat. So the 
mechanical Turk, representing a human, was modelled by a human. It’s like a digital 
twin, but then not digital. More bottom-up is simply not possible! 
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Figure 14. The secret of the chess playing robot was a human hidden inside  
the box: the utmost form of bottom-up modelling!

Law of Benford
I promised to explicitly show you the beauty and power of mathematics via an 
example. The example I have chosen is an appetizer for a course I developed together 
with Erik van der Linden and Mehdi Berouzhi and it is all about the extremely 
important role played by ‘scaling’ in nature and thus in modelling.

It is generally believed that with each formula in a book or presentation one loses 
half of the audience. This goes back to Stephen Hawking who wrote: 

“Someone told me that each equation I included in the book would halve the sales”. 

I challenge you to belie this claim.
This story starts with a guy called 
Newcomb who consulted a book with 
logarithm tables in the library of his 
institute (Figure 15). 

Figure 15. The first pages of the book with log 
tables were much more worn than the last pages, 
as Newcomb observed. 
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To his surprise, he observed that the pages in the first half of the book were much 
more worn and dog-eared than the later pages. Why were these initial pages used so 
frequently? As you remember, these pages are related to numbers that start with the 
lower digits. So, numbers starting with 1, 2, or 3, occur much more often than 
numbers starting with 7, 8, or 9. He started to think about this strange phenomenon, 
reported it in 1881, but couldn’t find an explanation. Later, in 1938, Benford 
rediscovered the phenomenon and understood the essence. 

I will explain this remarkable phenomenon to you in a my own, very condensed way, 
showing how powerful maths can be.  
Assume you generate a data set by measuring the size of randomly picked objects. 
From the size of a bacterium, to the length of your nose, to the height of your house, 
to the height of the Eiffel tower, etcetera. This results in a set of numbers spanning 
many orders of magnitude. 

There must be a probability function, p(x) say, that tells you what the probability is 
for a number to be chosen. For the time being we have not the slightest idea what 
p(x) looks like, but this ignorance will not last long. I think most of you still 
remember that the probability P(a,b) of picking a number in the interval [a,b] is given 
by the integral of p(x), from a to b (Figure 16).

Now the scaling argument comes in. All of a sudden, we realize that all the numbers 
in our dataset have been measured in meters. But there was no reason to select 
meters as unit of length. We could have used decimeters, centimeters, micrometers, 
kilometers, or whatever unit as well. This implies that the horizontal x-axis could 
have been arbitrarily squeezed or stretched. So, if I replace the interval [a,b] by the 
interval [γ a , γ b], with γ an arbitrary positive constant, the chance to find a number 

Figure 16. The probability P(a,b) to 
randomly pick a number in the interval 
[a,b] is given by the integral of p(x) 
from a to b. 
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in that new interval must be the same as in the original interval. This implies that the 
form of p(x) must be such that the two shaded areas in Figure 17 are equal.

A picture is informative, but as I already said above, a formula is better. So, we arrive 
at the condition 

P(γ a, γ b) = P(a, b). 

It is hard to believe, but this insight is enough to derive the distribution p(x) and thus 
the probability P(a, b). In Figure 18 we indicate the steps in the derivation. The 
mathematics underlying this figure is of a fascinating beauty, but I will save you. I 
guess that only the mathematicians among us may immediately check that if we 
differentiate the integrals on both sides with respect to b, apply the chain rule, and 
set then b equal to one, we find that p(x) behaves as 1 over x, so that P, the anti-
derivative of p, is a logarithm. Finally we find that  P(a,b) is proportional to log (b/a). 

Figure 18. From the condition in 
the box at the top we may easily 
derive that the probability P(a,b) is 
proportional to log(b/a), which 
essentially is the Law of Benford.

Figure 17. If we stretch or squeeze 
the horizontal axis, the shaded area, 
representing P(a,b), must be 
conserved. 



Wageningen University & Research | 19 

Don’t bother, all others in the audience may simply accept this as a miracle. So, we 
find that the chance P(a, b) is proportional to log (b /a). Since this chance only 
depends on the quotient of b and a, we find that the chance to pick a number 
between 1 and 2, say, is equal to pick a number between 10 and 20, or between 100 
and 200, etc. So, this distribution of chances is for each decade the same and given by

chance of picking a number starting with 1 is proportional to log (2/1) 
chance of picking a number starting with 2 is proportional to log (3/2) 
etcetera

If we plot these chances (Figure 19), we find a distribution that completely explains 
the observations by Newcomb and Benford. The chance to find 1 as first digit is about 
6 times higher than the chance to hit 9 as first digit.

This phenomenon does, of course, not only hold for data with the dimension of 
length. The essential issue is that the data span several orders of magnitude. All 
kinds of data turn out to follow the Law of Benford. For example, the numbers of 
inhabitants of USA towns obey, unexpectedly, this law nearly perfectly. 

In practice, the Law of Benford is used to detect fraud: if someone is manipulating 
data or even generating artificial data, he/she usually forgets to take into account this 
law. From that omission the malversation can easily be detected. You may ask: has 
this relevance for Wageningen? As for fraud, I don’t hope so. But Wageningen UR is a 
huge data generator. In applying statistical regression models, one often applies the 
log transform. It is good to know that this is not a calculation trick, but is based on 
sound scaling arguments.

I wonder whether I lost half of my audience. Time for another shock: we  switch to 
Dutch. 

Figure 19. Probability distribution 
to find k as first digit according to 
the Law of Benford. 
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Dankwoord
Ik zou graag allerlei mensen gaan bedanken. Het is echter ondoenlijk om namen te 
noemen van de collega’s in Leiden, Amsterdam, Nijmegen, Eindhoven en Twente, de 
universiteiten waar ik met veel plezier gewerkt heb. Ik concentreer me op de laatste 
periode, in Wageningen dus. Overigens, ook hier kan ik niet beginnen aan het noemen 
van veel namen. 

Ik heb al gezegd dat ik het hier ervaren heb als een enorm fijne werkomgeving. En dat 
zit hem natuurlijk vooral in de mensen. Directie PSG dank ik voor de altijd boeiende en 
voor mij vaak vermakelijke voorjaars- en najaarsgesprekken. Collega’s van veel andere 
groepen voor de prettige samenwerking. Ik dank ook voor het vertrouwen dat de 
toenmalige rector Martin Kropff, in mij stelde om mij twee achtereenvolgende keren te 
benoemen tot trekker van het investeringsthema Systeembiologie. Dat zorgde ervoor 
dat ik binnen no-time een netwerk binnen WUR kon opbouwen.  

En dan kom ik natuurlijk bij mijn Biometriscollega’s. Tezamen vertonen jullie sterk 
emergent gedrag: het geheel is veel meer dan de som der delen. Jullie vormen de 
mooiste en fijnste club die ik ooit meegemaakt heb -  en ik heb toch op veel plaatsen 
gewerkt. De uitslagen van de MedewerkerMonitor – een regelmatig afgenomen 
werktevredenheidsonderzoek – spreken boekdelen: Biometris eindigde de laatste 
twee keren van alle wetenschappelijke WUR groepen bovenaan. 

We begonnen 13 jaar geleden vrij klein. Experimenteel ook: een fusiegroep bestaande uit 
één leerstoel Wiskunde en Statistiek en een DLO-groep, oftewel de commerciële afdeling 
Biometrie. Fred van Eeuwijk en ik bezetten samen die éne leerstoel. Dat was een beetje 
naïef bedacht door het toenmalige management. Met twee kapiteins op één schip had dat 
wel eens geweldig fout kunnen gaan. Maar in de praktijk bleek het een geweldig geluk 
dat we qua persoonlijkheden gigantisch verschillen. Na een periode van zoeken vonden 
we de perfecte rolverdeling. Fred werd minister van Handel en ik minister van 
Binnenlandse Zaken. Dit uiteraard naast ons dagelijks onderzoek en onderwijs. Fred 
heeft zijn handelsmissies op fantastische wijze tot een succes gemaakt. Biometris groeide 
gestaag dankzij drie factoren: de vele externe projecten, de stijgende studentenaantallen, 
en de overname van collega’s van andere groepen – soms 7 medewerkers tegelijk - die 
quantitatief bezig waren, zich niet op hun plaats voelden, en zich graag bij ons aan 
wilden sluiten. Daardoor werd binnenlandse zaken steeds belangrijker. Echter, doordat 
we financieel nogal goed boerden, heb ik mijn taak altijd als relatief licht ervaren. 
Medewerkers vragen wel eens: wat gebeurt er met al die miljoenen in onze reserves? 
Wel, daarmee worden armlastige groepen, die ook heel waardevol zijn voor de 
wetenschap, maar niet zo gemakkelijk geld binnenhalen, gesteund. Dat doen we graag, 
want zoals de Bijbel al zegt: “Het is zaliger te geven dan te ontvangen”. 
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Ik denk dat Biometris nog heel wat groeipotentieel heeft. Echter, het  blijkt best 
moeilijk om goede staf te vinden op ons vakgebied. Mensen die veel van wiskunde 
en/of statistiek weten en tegelijkertijd affiniteit met de levenswetenschappen hebben 
zijn zeldzaam en goud waard.  

Dankzij Biometris heb ik me hier in Wageningen altijd als een vis in het water 
gevoeld, of met een toepasselijker beeldspraak: als Arabidopsis Thaliana in Radix: een 
onooglijk plantje, maar waardevol en gewaardeerd in de wetenschap. Ik hoop van 
harte dat mijn opvolger diezelfde vreugde gaat beleven in jullie midden. Totdat die 
gearriveerd is, zullen Ron Wehrens en Saskia Burgers mijn ministerie met bekwame 
hand leiden. Ik hoop overigens nog jaren regelmatig op bezoek te komen: er zijn nog 
7 aio’s die netjes aan hun eindje geholpen dienen te worden en er lopen nog 
prachtige postdocprojecten over Resilience, System Identifiability en Fotosynthese.  

Toen onze huisvesting, het gebouw met de fraaie naam Radix, dat wij delen met de 
plantenwetenschappers, bijna klaar was won ik de naamgeefwedstrijd. Wat ik nou zo 
jammer vind is dat zo veel mensen de diepere laag in die naam niet meer beseffen. 
Want Radix betekent niet alleen wortel in de plantenzin, maar ook wortel in 
wiskundige zin (Figure 20). Bedenk dus, als u langs gebouw Radix fietst, dat het 
zowel planten- als wiskundegeleerden herbergt. 

Aan het begin van mijn wetenschappelijke loopbaan schafte ik mijzelf een poster  aan 
om mijn werkkamer op te fleuren. Die poster is alle verhuizingen meegegaan. Vooral 
natuurlijk vanwege de tekst: ‘Wie in Mij blijft, en Ik in hem, die draagt veel vrucht’. 
Jezus zegt dat in het kader van de bekende gelijkenis van de wijnstok en de ranken in 
Johannes 15. De poster geeft precies aan hoe ik mijn werk altijd heb willen doen: in 
afhankelijkheid van God, onze Schepper. En u begrijpt hopelijk wel dat met die 
vrucht niet bedoeld is het produceren van zo veel mogelijk wetenschappelijke 
artikelen. Maar het impliceert wel de vraag: heb ik werkelijk iets betekend voor God 
en mijn collega’s? Zo’n simpele poster heeft al die tijd een prachtige belofte gevormd, 
maar roept me bij zo’n afscheid als vandaag ook ter verantwoording.

Figure 20. De naam Radix van onze 
huisvesting heeft een dubbele betekenis: 
het gebouw huisvest zowel plantenwe-
tenschappers als wiskundigen. 
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Tenslotte, de vrouw die mij al vele jaren terzijde staat is Gerda, u weet wel, de biologe 
(Figure 22). 

Hoewel we erg gelukkig zijn met elkaar en elkaar doorgaans goed aanvoelen, vraag 
ik me de laatste maanden serieus af of ze wel de juiste verwachtingen heeft van mijn 
tijdsbesteding in de pensioenjaren. Ze schonk me ter voorbereiding het boek ‘Hoe 
houd ik huis’ (Figure 23A), waaruit ik zou moeten leren hoe een moderne man, al of 
niet met pensioen, gras maait (Figure 23B) of knijpers aanreikt (Figure 23C). Dat 
grasmaaien zal nog wel gaan, maar die knijpers.....

Mijnheer de rector, ik heb gezegd.  Ik dank u allen voor uw gewaardeerde aandacht. 

Figure 21. Poster met tekst uit Joh. 15:5. Figure 22. Echtpaar Molenaar- Graafland, symbool 
voor de symbiose van biologie en wiskunde.

Figure 23 A,B,C. Handleiding “Hoe houd ik huis” voor de moderne man, al of niet met pensioen.
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'Mathematical modelling, i.e. the prediction of real-life 
phenomena with the help of mathematical tools, has been a 
common thread in my life. It was indispensable when acting as a 
maths consultant, but also when holding the maths chair at 
Wageningen University. This lecture is a plea to integrate the 
classical approach of bottom-up modelling with the more recent 
development of machine learning techniques, in order to reinforce 
our modelling tool kit. To show the elegance and power of 
modelling, I discuss the so-called Law of Benford.'
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