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Summary 

This report details the activities carried out in 2019 in the KB DDHT project 8 “Exploring the potential 
of non-destructive and non-invasive sensor technologies in food supply chains”. It compiles all four 
deliverables of this project as a single narrative. There are five case studies at the core of this project 
which address animal welfare, indoor farming, inspection of fresh food products, personalized nutrition 
advise and food fraud detection. Multiple activities were planned in these case studies with main focus 
on sensor technologies for non-destructive and non-invasive sensing. One of the key activities was to 
conduct a survey of sensor technologies applicable and potentially suitable for each case study. In 
addition, for each case study, one or more experiments were conducted which involved data 
acquisition using novel sensors as well as building knowledge on data analysis of data from the new 
sensors. Furthermore, as one of the goal of this project is to explore new sensor technologies, it is 
expected that this project will generate valuable data. Therefore, focus was also on FAIR data sharing 
and management. A workshop was organized in collaboration with WDCC on this topic. Most of the 
case studies also aligned with OnePlanet Research centre, and as a result multiple experiments are in 
planning for 2020 in cooperation with OnePlanet. 
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 Introduction 

Food supply chains are under constant pressure to provide increasingly more food, with better quality 
and in a sustainable manner, while reducing food losses and delivering a safe product, leading to a 
healthy consumer. Data-driven technological advances, supported by innovations in sensor 
technologies, play a key role in addressing these challenges. We are interested in exploring the 
potential of sensor innovations and resulting insights to tackle different challenges across the food 
supply chain. 
 
The objective of this project is to be able to measure and make better decisions based on the 
measured product properties. In particular, the necessity to measure non-destructively, non-invasively 
and on a smaller scale than is currently common: from batch level to product level; from population 
segment to an individual.  
 
The developments and investigations in this project will be demonstrated in five case studies: 
1. Monitoring animal welfare 
2. Sensing of crop development and performance indicators for indoor farming 
3. Quality measurements of fresh food products 
4. Food intake and food properties measurement for personalized nutritional advice 
5. Non-invasive detection of food adulteration 
 
Following key activities were planned for 2019: 
- Survey and inventory of sensing technologies per case study 
- Data acquisition using novel sensors 
- Data analysis and modeling 
- FAIR data organization 
- Cooperation with OnePlanet Research Center 
 
This report details the project output resulting from these activities. Four deliverables were planned 
for 2019 (see Table 1.1.1). We have prepared this single document as a report which combines these 
deliverables. The reason for combining these deliverables is to emphasize the connection between 
these deliverables but also to focus attention on the organic dependency of each deliverable on the 
other. 
 
Table 1.1. Project deliverables for 2019. 
Del.#  Deliverable  Type  Year  
D1.1  A report with a selection of candidate sensors that are likely to 

be suitable for non-destructive/non-invasive measurements in 
all case studies.  
  

Report  2019 

D1.2  A report describing the experiments (and the resulting 
conclusions) in which the potentially suitable sensors are aiming 
to measure the desired properties of the individual products 
(plants, food, fruits), animals and consumers.  

Report  2019 

D1.3  Multi-year collaboration plan with OnePlanet  Plan/Report  2019 
D1.4  Workshop with WDCC on practical considerations for FAIR data, 

models and software sharing   
Workshop  2019 

1.1 Sensor surveys 

D1.1. delivers the survey of sensing technologies for Case studies 1-4 (note that Case study 5, due to 
lower budget, did not have the survey in scope). Three of the surveys, for case studies 1 [2], 3 [3] 
and 4 [1] were collected as datasets and are in the process of being made publicly available in a FAIR 
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manner on the 4TU datasets server. The focus of Case study 2 has been on not only a survey but a 
complete analysis of the needs and requirements necessary for indoor farming. The output of case 
study 2 therefore is a survey article which is reported in Chapter 3. 
 
Towards the end of 2019, additional budget was made available to this project which was used for 
making sensor purchases. These purchases (see Table 1.2) are a direct consequence of these surveys 
which guided in identifying the essential sensors which these case studies identified as important but 
were lacking in their Science groups. 
 
 
Table 1.2: List of purchased sensors. 
Sensor name 
ASD LabSpec 4 High Res 
Linksquare 1 VIS/NIR spectrometer 
UVcamera 
PAR Line sensor 
Radiation sensor (more than 5 needed)  
Air temperature and Relative Humidity sensor (more than 5 needed) 
CO2 sensors (more than 5 needed) 
Water content, Root zone temperature and EC sensor 
GearSense for crop traits 

1.2 FAIR data workshop 

As it was observed in early iterations of project meetings, not all projects teams were aligned with 
respect to their knowledge of FAIR. D1.4. was added as a deliverable for all project teams to attend a 
workshop on FAIR data. With this in mind, a workshop on FAIR data management was organized with 
help of WDCC. The workshop was also kept open to participants outside our project. Overall, 22 
participants attended with 9 being outside this project. 
 
Content of the workshop was programmed by WDCC (Jacquelijn Ringersma and Erik van den Bergh), 
who also organized the instructors from WUR library (data librarians) as well as from TU Delft (4TU 
data organization). The workshop covered topics on Data management and sharing guidelines at 
WUR; introduction to Data archiving facilities (in particular 4TU); internet of things; practical aspects 
of data organization and  documentation; finally a hands on workshop with the data of participants. 
Also to be noted, from our project, WBVR (Jose Gonzales Rojas) and WFSR (Hans Marvin) also shared 
the state of FAIRness in their respective organizations. 
 
As a concrete output, the datasets prepared for deliverable D1.1 are being made publicly available 
followed the procedure learned in this workshop. 

1.3 Data acquisition, analysis and collaboration with 
OnePlanet 

The rest of the document is focused on deliverables D1.2 and D1.4. Chapter 2-6 describe the 
activities carried out in 2019 (data acquisition and data analysis) corresponding to each case study. 
Each chapter also consists a section on experiments planned for 2020, where case studies 1-4 (i.e. 
Chapters 2-5), including their independent activity, also describes concrete experiments planned for 
2020 with OnePlanet. Again, note that this is not the case for Case study 5 which, due to lack of 
budget, could not collaborate with OnePlanet in 2019. This  will be addressed in 2020. 
 
Note on OnePlanet collaboration: Currently there are discussions being held between WUR and 
OnePlanet on the aspects of IP rights and formulations of cooperation between two entities. Due to 
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unclarity on these issues, it is collectively decided by the project team to wait for clarity before  
starting experiments with OnePlanet in 2020. Activities not planned with OnePlanet will move forward 
as expected. 

1.4 References 

[1] van Dongen, E., Rijgersberg, H., Daniëls, F. and  Ummels, M. (2019): A survey of sensor 
technologies for food intake measurement. DOI: 10.4121/uuid:f7de7051-3994-4b04-8047-
ae036623a965 

[2] Kamphuis, C.,  Ouweltjes, W., Gonzales Rojas, J. and van Breukelen, A. (2019): Survey of non-
invasive sensors for monitoring animal welfare. DOI: 10.4121/uuid:b716f540-397f-4f45-8059-
00e2ef4a7967 

[3] Mishra, P. and Meesters, L. (2019): Survey of non-invasive sensing technologies for inspecting 
fresh food products. DOI: 10.4121/uuid:58b23f79-4ee0-4f32-8caa-a340f65f51a6 
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 Case study 1: Non-invasive assessment 
of animal welfare 

Authors: A. van Breukelen (WLR), C. Kamphuis (WLR), W. Ouweltjes (WLR), J. Gonzales Rojas 
(WBVR) 

2.1 Lameness detection based on thermographic images 

Lameness is a prevalent welfare issue in dairy cattle and can result in economic losses for the farmer. 
Lame cows show a reduction in milk yield, activity, and have a higher risk on other health problems 
[5]. Estimates of the prevalence of lameness have been reported in a range of 15% - 50% in various 
studies [3,6,11]. The state of the art method of detecting lameness is visually. However, this is both 
time consuming and subjective, especially cows in an early stage of lameness are difficult to 
distinguish [2]. A detection method that is still in development is lameness detection by infrared 
thermography. Skin temperature is mainly influenced by underlying blood flow and circulation and 
inflammation, i.e. by hoof lesions, results in an increased blood flow by which more heat is emitted 
through the skin [4]. Infrared technology has been successfully applied in human medicine and 
veterinary medicine for the detection of inflammations [4,10]. The aim of this study was to investigate 
the possibility of using thermographic imaging to detect lameness on dairy farms. 

2.1.1 Materials and Methods 

Data used in this report originated from a thesis conducted by four students from HAS university of 
applied sciences Den Bosch. A total of 60 cows were selected for the study from two farms (30 cows 
per farm) and followed for an eight week period between March and May 2019. The cows were divided 
in three lactation groups (10 cows per group): 1) fresh cows (FC) (0-120 days in lactation), 2) mid-
lactation cows (MC) (120-200 days in lactation), and 3) end-lactation cows (EC) (200-305 days in 
lactation). Cows selected for the study were early in their lactation stadium and, therefore, stayed 
within the same lactation group throughout the study.  
 
The following data were collected once a week, on the day when thermographic images were 
collected, during the 8-week period: indoor air temperature and relative humidity were measured 
every 15 minutes with a Tinytag TGP-4500 Humidity and Temperature data logger, as they may 
influence the temperature measured by thermographic images [2]. The average air temperature and 
relative humidity were taken for two hours before the study and during the study.  
 
On farm 1, activity was measured with Smarttag Neck and Smarttag Leg sensors from Nedap and 
measured as mean daily walking time and lying time. On farm 2, activity was measured by a neck 
sensor from Delaval and measured as mean daily low and high activity relative to the mean herd 
activity. On both farms, activity data were recorded daily, and activity was reported as missing when 
cows were in heat. Because of the difference in the method of recording the activity data, analysis on 
activity were performed separately for each farm.  
 
For both farms daily records of expected and actual milk yield (litres) were available. Analysis were 
performed using the delta milk yield, which was defined as the actual minus the expected milk yield. 
On farm 1, expected milk yield data was available for the previous six days and actual milk yield data 
was available for a year. On farm 2, only the last milking routine of the day was registered. Because of 
this difference in the method of recording milk yield data, analysis were performed separately for each 
farm. 
Thermographic images were recorded manually with a Testo type 882 camera and processed with 
Testo IRSoft 4.0 software. All four legs and four claws were photographed, resulting in eight images 
for each cow. Cows’ legs were photographed from aside at a distance of about 1.0m. Cows’ claws were 
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photographed from above at a distance of about 0.3m. The legs and claws were not cleaned, to 
represent the situation in daily practice. On each image, temperature was measured per pixel. Within 
the image, two areas were selected by hand. For legs, these areas were the hottest area on the hock 
or knee and the average of a control area on the skin above the hock or knee. For claws, these areas 
were the hottest area on the coronary band and the average of a control area on skin above the 
coronary band. In further analysis, for both legs and claws, only the hotspot of the hottest area was 
used, whereas the average of the control areas was taken.  
 

 
Figure 2.1: Example of thermographic images recorded during the study of the leg (left) and claw 
(right). 
  
To determine if a cow was lame, a locomotion score (LMS) was recorded by two students. The final 
score was calculated as the average of these two. Scoring was based on a five point scale : 1) normal, 
2) mildly lame, 3) moderately lame, 4) lame, and 5) severely lame [12]. Cows with an average 
lameness score of 2.5 or higher were considered lame in data analyses. Locomotion scoring was done 
at cow level, but no record was taken with respect to which leg or claw was lame. Therefore, in the 
analyses we used parameters for the highest difference between the highest spot and average control 
area of: 1) the legs (HDL) and 2) the claws (HDC). These delta temperatures did not correlate with 
ambient temperature, whereas the highest spot and average of the control area did correlate with the 
ambient temperature (Appendix 3). The temperature difference between the highest spot on the right 
and left hand side of the cow were additionally computed. The decision to look at the difference 
between right and left, and not all four legs of the cow, was made because the weight distribution 
between front and back legs may differ, also over time (i.e. because of filling of the udder), which may 
cause a difference in temperature. From the parameters for the front-hand and back-hand the highest 
differences were taken, which resulted in the following derived parameters: 1) highest difference in 
the left and right leg (HDLR_L) and 2) highest difference in the left and right claw (HDLR_C).  
 
The temperature data was filtered to remove outliers. A threshold value was set to report values of 
less than fifteen degrees Celsius as missing, which is below the range of expected temperatures for 
the selected body areas [9]. After setting this threshold sixteen records were set as missing. All values 
under fifteen degrees Celsius were recorded on the front claws (left and right and both on the highest 
spot as well as the control area). On farm 1, eight values were set to missing (Two records for one 
cow in week one, one record in week three, one record in week six and four records for one cow in 
week seven). On farm 2, eight values were set to missing for four cows all in week two.  
 
For the four temperature parameters (HDC, HDL, HDLR_L, HDLR_C), two-sided t-tests were 
performed between a group of lame cows, matched with two cows that did not become lame during 
the study, at the moment the lame cow was first described as lame. Matching was performed 
randomly and, for performing t-tests, 50 replicates were carried out, of which the average was taken. 
The number of replicates was decided based on the standard error of a test run divided by a desired 
standard error of 0.01. Similarly, two-sided t-tests were performed for activity and milk yield data 
between lame and non-lame cows on the day before a cow was scored as lame. Also in these analyses 
lame cows were matched with two cows that did not become lame during the study, at the moment 
the lame cow was first described as lame, and the average of 50 replicates was taken.  
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2.1.2 Results and Discussion 

During the study, 25 cows had one or more lameness events (lameness score > 2.5) (Table 2.1). The 
total number of lameness events was 56 spread over eight weeks. Mean temperatures of legs and 
claws for lame and non-lame cows are summarized in Table 2.2.  
 
Table 2.1.  The number of cows on each farm, the number of cows included in the study, the number 
of cows with at least one lameness event (lameness score > 2.5), the total number of lameness 
events during the study, and the number of records in each lameness score group. 

  N cows 
on farm 

N cows 
in 

study 

N cows with 
at least one 
lameness 

event 

N 
lameness 
events 

N records in each score group 

  1 1.5 2 2.5 3 3.5 4 5 

Farm 1 117 30 14 27 125 34 52 13 8 1 5  

Farm 2 170 30 11 21 99 69 43 5 12 1 2 1 

Total  60 25 48 224 103 94 18 20 2 7 1 

 
Table 2.2. Descriptive statistics of leg and claw temperatures for lame (lameness score > 2.5) and 
non-lame cows assessed in a period of eight weeks with weekly visits. Leg and claw temperatures 
showed a positive correlation with the ambient temperature.  
Week 1 2 3 4 5 6 7 8 

N lame  7 6 9 6 6 4 11 7 

N non-lame 53 54 51 54 54 55 49 53 

Mean ambient temperature 9.02 6.17 11.09 14.47 10.80 11.45 10.19 13.54 

Leg temperature lame         
   Mean 29.02 29.21 30.46 30.95 29.92 30.08 30.59 30.73 

   SD 0.80 1.04 1.13 1.34 2.02 0.98 1.19 1.01 

Leg temperature non-lame         
   Mean 29.52 28.06 30.40 31.31 31.06 30.73 30.37 29.97 

   SD 1.39 1.52 1.66 1.65 1.17 1.22 1.76 1.66 

Claw temperature lame         
   Mean 31.71 30.37 31.74 32.58 31.63 32.37 30.45 31.66 

   SD 1.48 2.91 1.70 1.34 2.72 0.96 2.78 1.98 

Claw temperature non-lame         
   Mean 30.84 29.94 31.37 32.63 32.04 31.22 30.58 31.45 

   SD 2.27 2.45 2.40 1.75 1.94 2.45 2.53 2.19 
 
The spread of milk yield for cows on the day before they were first observed as lame appeared to be 
lower than for non-lame cows (Figure 2.1). However, when performing a t-test the difference in mean 
milk yield of a lame cow matched with two non-lame cows, at the moment the cow was first measured 
as lame, was not statistically significant (p = 0.420 ± 0.713). These results are not in line with 
previous studies, where a lower milk yield was reported when cows were lame [5, 7]. 
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Figure 2.2. Box plots for the differences in milk yield on the day before a cow was visually observed 
as being lame, matched with two cows that did not become lame during the entire study on farm 1 (n 
= 14) and farm 2 (n = 11). The length of each box represents the interquartile range (distance 
between 25th and 75th percentile). The group median is presented by the horizontal line within the 
box. The whiskers and dots represent values outside of the interquartile range.  
 
On farm 1 there was a large spread in the data points for lying time for lame cows on the day before 
they were scored lame, whereas the walking time appeared to be lower for a large part of lame cows. 
However, the difference in means between lame and non-lame cows for lying time and walking time 
was not significant (p = 0.636 ± 0.798 and p = 0.435 ± 0.056, resp.). On farm 2 there were not 
enough data points for activity data on lame cows to draw conclusions (n = 5). 
 

 
Figure 2.3. Box plots for the differences in lying time (left) and walking time (right) on the day before 
a cow was visually observed as being lame, matched with two cows that did not becoming lame during 
the entire study on farm 1 (nlame = 13). The length of each box represents the interquartile range 
(distance between 25th and 75th percentile). The group median is presented by the horizontal line 
within the box. The whiskers and dots represent values outside of the interquartile range. 
 
There were no significant differences between lame cows matched with two non-lame cows on the day 
the cow was first observed as lame for HDC, HDL, HDLR_C and HDLR_L (Table 2.3). In previous 
studies significant differences in the maximum foot temperature between lame and non-lame cows 
were reported, measured by handheld infrared thermometers [8].  
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Table 2.3. Results of two-sided t-tests between lame cows at t=0 matched with two cows that did not 
become lame during the study. The results are the average of 50 replicates. 

 Farm 1 Farm 2 Both farms 

 

Mean 
lame 

Mean 
non-
lame 

p-value 
± s.e. 

Mean 
lame 

Mean 
non-
lame 

p-value 
± s.e. 

Mean 
lame 

Mean 
non-
lame 

p-value 
± s.e. 

HDC 8.27
5 

7.940 0.467 ± 
0.548 

8.248 7.519 0.301 ± 
0.539 

8.277 7.719 0.203 ±  
0.398 

HDL 5.50
9 

5.558 0.629 ± 
0.482 

5.479 5.866 0.408 ± 
0.458 

5.486 5.725 0.490 ± 
0.330 

HDLR
_C 

0.74
3 

1.217 0.357 ± 
0.417 

0.736 0.824 0.542 ± 
0.348 

0.736 0.996 0.378 ± 
0.268 

HDLR
_L 

1.37
3 

1.470 0.559 ± 
0.641 

1.375 1.606 0.556 ± 
0.559 

1.377 1.543 0.633 ± 
0.422 

 
In conclusion, based on the data in this study no significant differences were found for milk yield, 
activity and thermographic images taken from legs and claws between lame and non-lame cows. This 
was not as expected based on results previously reported in literature. A bottleneck of this study, 
which may have caused results being unreliable, is the small sample size. Farms could not be 
compared for milk yield data and activity data, because of differences in the method of recording. 
After making a subset of the data for each farm, the number of records with a lameness record was 
thirteen or lower for all parameters.  
 
Ideally, a cows’ lameness status can be determined by looking at the trend in temperature of a claw or 
leg. However, trends could not be estimated in this study as it was not recorded on which leg or claw 
the cow was lame. Therefore, when looking at a single area for the trend in temperature between 
lame and non-lame cows, cows will be included as lame that in reality were not lame on that area. In 
a future study, the area on which the cow is lame could be selected, based on the area where the 
highest difference in temperature between control area and highest spot was measured. This was not 
possible in this study, as it would greatly reduce the number of data points per area, which makes it 
impossible to show reliable trends for each of the 8 measured points (4 legs and 4 claws).  
 
For continuation of this project, a first step would be to collect more data. Additional points of 
attention for collecting data in the future are: 1) To compare farm data, activity and milk yield data 
should be recorded with a similar method, 2) Ideally, the leg or claw on which the cow is lame is 
recorded and, additionally, the reason of lameness could be recorded (i.e. is there an infection or 
damage to the claw or leg), as not all causes may result in an increase in temperature, 3) To see 
trends, aggregate data as little as possible (i.e. hourly records of activity), and 4) Take daily records 
of temperature. 

2.2 Planned experiments in 2020 

Health problems such as lameness and production diseases (e.g. mastitis) negatively impact animal 
welfare and productivity, causing economic losses to farmers. To minimise these negative impacts, it 
is imperative to detect these problems in its early stages. Moreover, to assess and monitor animal 
welfare, it is essential to have an accurate welfare indicator. During the course of this project we will 
assess the use of non-invasive sensors for monitoring and detection of animal health problems, and 
the development of an animal welfare indicator. A lot of knowledge on the use and utilization of 
noninvasive sensors lies within the domain of human health, and collaborating with partners like IMEC 
will be beneficial.  
 
For 2020 we will work on two main topics. The first will focus on a collaboration with IMEC, whereas 
the other main topic will focus on working with unstructured data from images and video. Please note 
that the details of the experimental planning is outside the scope of this document and not addressed 
here.  
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2.2.1 Collaboration with OnePlanet    

Based on a meeting with IMEC in 2019, we certainly found mutual interests. Particularly the use of 
skin patches, developed by IMEC, are considered worthwhile to be used within the animal domain. 
Skin patches are used to, e.g., assess conductivity of the skin. Currently, electrical conductivity of milk 
is used to assess udder health. However, it is not always straightforward for farmers to identify which 
of the four quarters of the udder is infected. It would be worthwhile to investigate whether the skin 
patches, which can stay on for successive days on the human skin, can be used on dairy cattle as well 
to allow for a more specific detection. Moreover, information from these patches may be useful to 
farmers to decide whether an antibiotic treatment of the udder infection is required, or to monitor 
whether a treatment is successful. However, a first step in this research would be whether these 
patches also stick on the udder skin (which is different from human skin), how long they can stay, and 
whether we can retrieve information that may be relevant. Therefore, for 2020, we propose the 
following activities in collaboration with IMEC:  
 
• Meeting with IMEC to discuss requirements for patches, the data that these patches generate, and 

how this data are used currently within the human health domain. Discuss experimental set-up to 
test whether patches can be used on udder skin;  

• Animal experiment to test (1) whether patches stick on udder skin, (2) how long these patches 
can stay on udder skin, and whether data can be collected from these patches.   

• Meeting with IMEC to discuss findings and develop follow-up research in case findings are positive 
and of mutual interest.  

2.2.2 Working with images/video    

The traditional methods for detection of lameness would be the visual scoring of locomotion, which is 
not only time consuming for farmers but also a not very effective method. In 2019 we studied whether 
thermographic images are useful for the early detection of lameness in dairy cattle, using data 
collected for a period of two months from two commercial dairy farms. Results indicated that data 
were too limited (too few cases of lameness) to clearly state thermographic images were useful for the 
early detection of lame cows. Moreover, traits used in 2019 were default traits, computed by the 
accompanying software, and no new traits were derived from the data.  
 
For 2020, this study will focus on developing a classification algorithm using more thermographic 
images, with more features derived from the thermographic images, to classify these images into 
lameness categories. With respect to the development of a welfare indicator, video images will be 
analyses to assess the time it takes for a dairy cow to stand-up, or to lie down, assuming that the 
longer this process takes, the more welfare is impaired. The focus for 2020 will be to develop a model 
that classifies images within a pre-selected video time-frames into three categories (lying, standing, 
and ‘in the process of lying down/standing up’). Data for this particular step are already available from 
an ongoing project (Freewalk, at DairyCampus) that aims at assessing animal welfare for different 
housing systems. 
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 Case study 2: Non-Invasive Sensing in 
Indoor Farms 

Authors: A. Petropoulou (WPR), Ilias Tsafaras (WPR), Faline Plantenga (WPR) 

3.1 Introduction 

Indoor cultivation systems are well controlled systems that ensure year-round production, 
sustainability and profitability. Climate uniformity has a decisive role in determining efficient control 
operations of the underlying systems while reducing the environmental impact, crop quality variations 
and enhancing yields. Increasing the ability to monitor and investigate plant responses and 
performance through non-invasive sensing is a major  target in greenhouse production systems. 
 
Data in greenhouse cultivation is growing in importance as a means of optimizing plant growth and 
development. Data driven horticulture using Artificial Intelligence (AI) and data analytics deals with 
labour shortages and aims at on-demand food supply with high vitamin and mineral content to 
consumers. Decisive factor for understanding the cultivation processes and developing AI technologies 
is the availability of relevant data that represent the growing climate and crop conditions. 
 
To address the dynamic behaviour and complexity of greenhouse production systems and integrate 
the long-term accumulated experience and intuition of greenhouse growers, the digital information 
measured with sensors, robotics should be qualitatively and quantitatively sufficient for employing 
data driven decision making approaches [1]. So far, the available climate and irrigation greenhouses 
sensors measure necessary growing information. Nonetheless, that does not apply for crop monitoring 
where crop sensing information (3D structure, physiological aspects) is currently missing in the 
essential digital crop data. Additional crop sensors should be explored for continuous collection of crop 
development and performance indicators with the associated climate conditions to expand potentials 
of emerging technologies, data analytics and/or AI in crop management. Information from sampled 
data captured by novel sensors to perform diagnostic, predictive, prescriptive and cognitive analytics, 
can accelerate scientific discovery, bridge current knowledge gaps that cannot yet be explained and 
facilitate decision making [2]. 

3.2 Sensed traits in conventional greenhouse management 

3.2.1 Climate level 

Greenhouses are used for more than 2000 years, since the Roman empire, for growing crops and are 
well known as the cultivation system with the highest yield and resource use efficiency per unit of area 
[68]. Their competitive advantage over the open field agriculture is that they allow active modification 
of the climate, creating more favourable environment for plant growth [69]. The climate parameters 
with a major effect on crop growth and production are radiation, temperature, humidity and CO2. The 
optimal range of those climate conditions varies for different plants but in general an optimal range 
can be defined for every plant; outside this range plants’ growth and production are negatively 
affected. Using tomato, the most commonly grown crop in greenhouses worldwide, as an example, the 
effect of the climate can be summarized as follows: 
 
• Radiation: A rule of thumb says: 1% less light results in 1% less production. This is not always 

exactly correct but for tomato (and most fruit producing vegetables) it comes pretty close. Marcelis 
et al. [70] concluded based on a literature review, that for tomato and cucumber 1% more light 
results in 0.7-1% more yield. For these crops light levels are never too high. However, it could be 
that high light levels result in supra-optimal greenhouse temperature but then the temperature 
control is the problem, not the light level. A light requirement equal or higher than 30 mol m-2 d-1 is 
reported for a tomato culture [71]. Low light levels result in low growth rates and in flower abortion.  
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• Temperature: Sub- and supra-optimal temperature is limiting production primarily as a result of 
poor fruit set, whereas photosynthesis is less temperature sensitive [71]. Based on a literature 
survey for tomato Vanthoor et al. [72] indicated that a) both instantaneous and mean temperatures 
affect crop yield, b) both sub-and supra-optimal temperatures affect several growth processes, 
resulting in lower yield, c) it is difficult to identify one single growth process causing crop stress 
because growth processes influence each other, d) stress sensitivity is cultivar-dependent and e) a 
negative DIF (Difference between day and night temperature) and a large positive DIF negatively 
affect crop yield due to sub-or supra-optimal temperatures. 

• Humidity: Even though humidity strongly affects stomatal conductance, photosynthesis is not 
sensitive to it [73]. Humidity does not affect crop physiology and development within a wide range 
of humidity levels (0.2-1.0 kPa Vapor Pressure Deficit (VPD) [74]), however, it may affect risk of 
diseases. A too high humidity means a VPD less than 0.2 kPa (less than 1.5 g/m3) which means an 
RH larger than 94% at 25°C. Too high humidity results in less calcium in the leaves, hence smaller 
leaves, less light interception and less crop photosynthesis. High humidity also hampers pollination 
(unless bumble bees are used), gives a higher disease risk (e.g. botrytis) and a higher risk of fruit 
“disorders” (cracking). A too low humidity means a VPD higher than 1 kPa (higher than 7.5 g/m3) 
which means an RH lower than 70% at 25°C. A too low humidity results in water stress in the plant, 
closure of stomata, reduced cell elongation and hence smaller, thicker leaves. Closure of stomata 
and thicker leaves results in less crop photosynthesis. Furthermore, low humidity will reduce fruit 
water content (reduced fresh weight) and stimulates blossom-end-rot (BER). 

• CO2: CO2 is required for photosynthesis and in general the higher its concentration, the higher the 
crop growth and production. A general response of crop yield, summarizing experiments with 
several crops including tomato, sweet pepper and cucumber, has been published by Nederhoff [67] 
and is shown below. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Advances in the field of technology and electronics have resulted in the development of sensors that 
accurately monitor the aforementioned climate parameters as well as equipment that can be used to 
control the greenhouse climate. Typically in modern greenhouses multiple parameters (Error! 
Reference source not found.) related to the climate inside and outside the greenhouses are 
measured with the use of sensors.  
 
Weather stations located in close proximity to the greenhouse facilities are equipped with 
temperature, humidity, CO2, pyranometers, anemometers as well as precipitation sensors. In addition 
to outdoor weather stations, indoor climate sensors are located in a plastic housing (measuring box) 
that protects them from water, dust or direct radiation rays. The measuring boxes include 

Figure 3.2. Relative crop production (%) at various levels of CO2. The production at ambient level (340 
ppm in 1985) is taken as 100%. The wide band is due to variation between crops and conditions. This 
graph is based on data from 60 publications of experiments worldwide in many greenhouse crops [67]. 
The solid black line indicates the 95% confidence interval of the mean of the observations and the 
dashed line shows the 95% confidence interval of the observations. 
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temperature, CO2, humidity and radiation sensors and they are equipped with fan and air filters to 
provide reliable registrations. Additionally, to climate sensors, sensor on the irrigation and drain tanks, 
allow continuous monitoring of the volume, Electrical Conductivity (EC) and pH levels of the supplied 
and drain water. Information on water quantity and quality is integrated in the fertigation process 
control units to define the watering strategies. 
 
These aforementioned measurements serve as input for a control system that regulates the use of the 
climate control equipment. The latter is governed by “if... then...” rules set by the user and depending 
on the configuration of the equipment, it can operate, through actuators, the climate control 
equipment such as heating, cooling, (de)humidification, natural or mechanical ventilation, lighting, 
CO2 supply. 
Obviously, the chosen climate control settings directly influence plant growth and production. 
However, these settings also have a strong influence on the resource use to achieve the desired 
settings. Lately, major part of scientific research in the greenhouse sector focuses on efficient ways of 
growing (e.g. New Generation Growing (Het Nieuwe Telen, in Dutch)).  
 
Therefore, growing crops in a greenhouse is hardly associated with measuring and influencing the 
greenhouse climate. To a certain extent, the success of a greenhouse business depends on how well a 
grower can deal with the optimal control problem of balancing the benefits associated with the 
marketable product against the operating cost during the operation of the climate control equipment 
[75].  
 

Table 3.2. Climate parameters measured in commercial greenhouses 
Outside (Weather) Inside 
Temperature Temperature 
(Relative) Humidity (Relative) Humidity 
CO2 concentration CO2 concentration 

Wind speed 
Photosynthetically Active 
Radiation (PAR) 

Wind Direction Net radiation 
Photosynthetically Active 
Radiation (PAR) 

Flue gases (NO X , CO) 
concentration 

Net radiation  
Light spectrum  
Rain  

 

3.2.2 Crop level 

Although the surroundings of the crop are well monitored, not all commercial growers  use sensors to 
monitor the crop itself. However, some plant characteristics can be logged during cultivation and some 
plant characteristics are measured by the grower during cultivation or at harvest. These characteristics 
will be discussed below, but it must be realized that different crops grow differently and thus not all 
plant characteristics can be logged in the same way for each crop. 
 
Logged plant characteristics during cultivation: 
  
• Plant temperature: One of the plant characteristics that is logged in commercial greenhouses is 

the plant temperature [3]. Plant temperature can give the grower an indication that the crop is 
transpiring properly [4]. The change from water in an aqueous state to a gas state requires energy, 
in this case thermal energy, therefore, transpiration cools down the plant [5]. High transpiration is 
possible when the stomates are open, which also allows for gas exchange which is required for 
photosynthesis and growth. If the leaf temperature increases, it may mean the plant is not 
transpiring properly and the stomates are closed. Perhaps because not enough water is available to 
the plant and humidity of the plant's surroundings is low [6]. 
 
Besides a measure to determine plant transpiration, the plant temperature is essential for plant 
development, growth and yield. A higher temperature leads to faster plant processes, until it 
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exceeds an optimum, after which rates decrease. The optimal temperature and the effect of an 
increase or decrease depends on the plant process, developmental stage, plant tissue and plant 
species. Finally, the plant temperature is important to growers due to damage by condensation on 
the leaves. If the plant is wet because of condensation, diseases like Botrytis can infect the plant 
[7]. Condensation occurs if the temperature of the surface of the plant falls below the dewpoint of 
the air [7]. More on the effect of temperature was discussed in the section on climate level.  
o How: Infrared camera – IR camera (Hoogendoorn), Pointed microclimate sensor (30MHz), Topcrop 

monitor (Priva), Thermoview (Fluke, Lets’Grow) 
• Plant weight: The weight can give an indication of the increase in plant growth. The plant growth is 

important for the yield. For hanging tomato plants the fresh weight can be estimated in certain 
weighing systems by measuring the weight of the hanging plants. However, in other cultivations like 
pot plants, the plants do not hang and therefore can only be measured by measuring the plant plus 
pot on the measuring gutter. In this case, the exact increase in plant weight cannot be determined 
because it is not known how much water remains in the growing medium (e.g. pot). However, if the 
pot weight is known at saturation, an estimation can be made of the increase in plant weight, but 
only the fresh weight can be estimated and not the increase in (dry) biomass. If it is also known how 
much water is applied, the water uptake in the plant can be estimated (exact uptake cannot be 
determined because it is not known how much water is lost through transpiration and evaporation 
from the substrate). If the plant cannot take up enough water, it cannot grow properly.  
o How: weighing gutter – Aquabalance (Hoogendoorn), Moisture balance (Priva), ProDrain (Ridder), 

DrainVision (Paskal)  
• Leaf thickness: The leaf thickness can serve as an indicator for the water status in the plant, which 

makes it possible to regulate irrigation based on the needs of the plant [8]. When the plant receives 
enough water, the water outside the cells will have a lower solute-concentration than the water in 
the cell. Because the cell membrane is semi-permeable, water will flow from outside the cell, into 
the cell until the amount of solutes on both sides of the membrane are in equilibrium. This will cause 
the cell to expand. However, this expansion can only happen to a certain extent because plant cell 
walls are rigid. The intracellular pressure that occurs is called turgor and gives plants a part of their 
firmness. Although cell walls are not able to expand much, turgid cells are thicker than cells without 
this intracellular pressure. Therefore, measuring the thickness of cells, in this case by measuring the 
leaf thickness, can give an indication of the turgor and thus water status in the plant.    
o How: Leaf thickness sensor - LeafSen (Netafim) or Leaf Sensor Rev3 (Agrihouse), Pressure Probes 

(in development) 
• Sap flow: The sap flow in a stem can also tell us something about the water balance in a plant [9]. 

Water is crucial for proper growth of a plant. Through the process of photosynthesis, light energy is 
used to convert water and carbon dioxide into sugars, the building blocks of plants. Furthermore, 
water is needed for multiple plant processes, including plant firmness (turgor) and transpiration. The 
sap flow can give an indication of the transpiration rate in the plant [9]. The more water that 
escapes the plant through transpiration, the more water that needs to be taken up from the soil, 
and be transported through the xylem towards the stomata in the leaves. By measuring the flow 
speed of this sap in the xylem, transpiration rates can be estimated [10]. The transpiration can give 
an estimation of the water status in the plant [9]. As mentioned previously, transpiration is required 
to cool down the plant, and transpiration occurs when stomates are open, which allows for gas 
exchange.   
o How: sap flow sensor – SF 4M and SF 5M (Edaphic), sap flow sensor (Phytosense) 

 
Measured plant characteristics during cultivation  
Although characteristics that are commonly measured in crops strongly depends on the type of crops 
that are cultivated, some common traits are mentioned below:  
• Fruit set: For instance, in tomatoes and sweet pepper, the fruit set is checked to determine the 

speed of plant development and to make an estimation of the yield. How: manually, by visual 
observation  

• Number of flowers: For instance, in tomatoes, the number of flowers gives a rough indication of 
how many fruits will be formed (not all flowers will form fruits). Too many fruits may lead to smaller 
fruit, which may not be desired. On the other hand,  too few fruits may limit the final yield. In 
gerbera the number of flowers per m2 is counted as an indication for the plant load and the growing 
time from bud to flower. How: visual observation  
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• Length stem/plant: For instance in rose production, the length of the stem is a quality indicator. 
Longer stems fall in a higher quality class than shorter stems. Also, weekly measurements of the 
stem or plant length give an indication of the growing speed. How: tape measure  

• Thickness of (top of) stem: For instance, in tomatoes the thickness of the top of the stem can 
give information on the source-sink balance in the plant (explained in more detail later on). Also, the 
thickness of the stem is important for the balance of the plant itself. If the stem is thin, it will not be 
able to support further length increase. How: with a calliper and visually.  

• Length leaf: The leaf length can give an estimation of the leaf area, which in turn gives an 
indication of how much the plant can photosynthesize and form assimilates for production (explained 
in more detail later on). How: tape measure  

3.2.3 Sensing technologies in conventional greenhouse production systems 

The proper combination of greenhouse climate and crop information determines the healthiness and 
vigorousness of the crop. On the basis of this information process controls are optimized e.g. changes 
to the pipe temperature, window opening and percentage. A lot has been done to increase labour 
productivity through adjustments in the production processes to alleviate work and support 
greenhouse workers. However, crop monitoring remains a labour-intensive activity as the majority of 
crop traits is manually measured and registered.  
 
From the aforementioned characteristics (paragraph 1.2), fruit set, number of flowers are visually 
inspected and registered. Length and thickness of the stem as well as leaf length is also hand 
measured. This results in systematic errors that rely on the expertise and intuition of the greenhouse 
worker. Furthermore, the time required, and intensiveness of the measurements limit the information 
collected ideally in daily or weekly registrations. However, certain traits are currently measured by 
sensing devices in a non-invasive manner. Monitoring of the heat load of the plant can be conducted 
with thermal cameras, infra-red thermometers targeted on crop, leaf or flower level. The technologies 
allow for indications on water deprivation (Pointed temperature sensors 30MHz, canopy temperature 
Thermoview LT-IRM (Edaphic)). Additional to thermal imaging, weighing gutter systems allow 
monitoring of water uptake, transpiration and growth rate of crop plants. The system consists of 
separate weighing cells that continuously measure the irrigation water, drain water, slab and plants 
(Aquabalance (Hoogendoorn), Moisture balance (Priva), ProDrain (Ridder), DrainVision (Paskal)). 

3.3 Towards well-monitored greenhouse production systems 

3.3.1 Climate level 

Given the influence of greenhouse climate on the success of the greenhouse business, in modern 
greenhouses a major part of a grower’s cultivation activities focuses to the monitoring and 
management of the aforementioned climate parameters (Table 3.1).  
 
Sensors widely available in the market and present in every modern greenhouse can measure air 
temperature and humidity of the air with an accuracy of 0.1°C and less than 1% respectively. This 
accuracy is only achieved when the sensors are ventilated; otherwise overheating of the sensor by 
radiation causes overestimation of temperature and underestimation of relative humidity. However, 
these sensors have a major drawback: they are located in rather big housing and they require wire 
connections both to transmit the measured data to the climate control computer and to be powered. 
As a result they are installed in limited numbers. Therefore, they provide hardly any information about 
spatial climate distribution. Recent research has shown that, in commercial greenhouses, temperature 
differences of up to 5°C and humidity differences of up to 20% are common between installed sensors 
[76]. Numerous research projects have proven that information on spatial climate distribution can 
definitely serve as the starting point for more accurate climate control that results in higher climate 
homogeneity [76-79]. Climate homogeneity is linked to a number of benefits such as more accurate 
climate control, homogeneous crop, energy saving and less diseases. This information can be retrieved 
by a dense grid of sensors that should meet at least two basic requirements: (i) small size and 
wireless connection that allows to be placed in multiple places close to the crop without interrupting 
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common greenhouse work actions (e.g. crop management) and (ii) sufficient ventilation to ensure 
accurate measurements. 
 
Greenhouse climate is monitored and controlled in order to be as suitable as possible for crop growth 
and production. Therefore, crop related parameters that provide direct feedback on crop’s status and 
performance are also important to be measured. Lately, crop temperature measurement is becoming 
more common. Periods that crop temperature differs from air temperature are critical and climate 
control needs to be adapted during those periods. Common examples are: (i) moments with high 
(intercepted) radiation (warmer crop), (ii) moments with high emitted longwave radiation (colder 
crop) during clear cold dark periods  and (iii) moments when latent heat loss (transpiration) during a 
dark period can also result in cold crop that might be as cold as the dew point temperature. Infra-Red 
(IR) cameras which capture, and measure emitted longwave radiation are used to estimate crop 
temperature. As soon as the emission coefficient of the crop is known with fair accuracy the crop 
temperature estimation is accurate as well but in practice, users experience significant inaccuracies 
when longwave radiation from other surrounding objects of different temperature (e.g. heating pipes, 
soil, construction elements) is also measured by the camera which cannot define the source of the 
measured radiation. A measuring tool consisting of an IR camera combined with a software module 
capable to perform object segmentation (using probably additional information from an RGB camera ) 
and provide individual values of leaf and fruit or flower temperature free of surrounding effects would 
be a really useful tool for the growers. 
 
Similar concept of spatial distribution can be also applied for the radiation measurements. Commercial 
greenhouses are frequently equipped with a (spot) radiation sensor above the crop. This is already 
important information, but knowing the vertical distribution of radiation (light penetration) would 
provide the growers with insight into a very critical additional information which is the amount of 
radiation intercepted by the crop. The latter could serve as a criterion for decisions related to crop 
management actions (e.g. leaf picking and crop training system) as well as a more accurate method 
to evaluate crop performance ((intercepted) Light Use Efficiency). 
 
Considering greenhouse climate homogeneity an important target within the general concept of 
climate control, getting insight into airflows in the greenhouse would help towards a more 
homogeneous climate. In greenhouses, air speeds are limited in comparison to the open fields but still 
exist and under certain conditions can cause sufficient air movement that results in climate 
heterogeneity. Typical examples are climate control actions such as screen use (open-close or gaps), 
ventilation or heating that result in naturally driven (buoyancy) air flows as well as air blowing devices 
(e.g. fans, VentilationJets, cooling systems, air distribution ducts). In practice, smoke experiments are 
performed in order to visualize the described air flows. However, these experiments are of debatable 
validity, sometimes resulting in outcomes which are difficult to interpret, hardly repeatable, and do not 
provide any quantitative information. Therefore, sensors measuring air flow speed and direction would 
be a valuable addition to greenhouse climate monitoring equipment. These sensors should be placed 
in a dense grid (similar to the temperature sensors they should meet requirements of power 
autonomy, small size and wireless) in order to measure possible air streams and turbulences and they 
should be combined with a relevant software that visualizes the measured results. In addition of 
helping towards a more homogeneous greenhouse climate, airflow sensors could also aid towards 
energy and resource (CO2, water) savings if they can provide an accurate estimation of the ventilation 
rate. 

3.3.2 Crop level 

Eight plant researchers, including plant physiologists and cultivation experts, were interviewed and 
asked to list the five most important plant characteristics that determine plant yield and quality. Based 
on their answers a list of the most relevant plant parameters was compiled (Table 3.2). 
 
Table 3.3. Relevant crop parameters associated with crop performance 
Plant production parameters (yield, biomass) 
Development  Leaf formation rate   
 Truss and fruit formation rate (cucumber/tomato)  
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 Number of formed fruits and leaves  
 Growing time (from planting to harvest)  
 Timing of switch from vegetative to generative growth   
Morphology  Leaf area index (LAI)   

 
Leaf width of all leaves or only at the bottom of the plant (correlates with leaf area 
and is easier to measure)  

 Thickness and color of the head of the plant  
 Leaf angle distribution   
 Light interception  
Other  
  

Photosynthesis (best: crop level, good: plant level, minimum: leaf level, in 
combination with leaf area)  

 Harvest frequency  

   
Plant quality parameters (e.g. shape, color, firmness, shelf life, sugar content, dry matter content 
fruit, taste)  

Development  Number of formed flowers, leaves and fruits  

 Stage of plant when harvested  

 Growing time (from planting to harvest)  

 Ripeness at harvest   

Morphology  Leaf area index (LAI)  

Other  
Photosynthesis (best: crop level, good: plant level, minimum: leaf level, in 
combination with leaf area)  

 Color of leaves and flowers  

 Nutrients and irrigation (not really plant measurements)  

 
Relevance of plant parameters based on plant physiology processes  
These plant characteristics were chosen based on the experience of the interviewees. However, these 
characteristics can also be linked to yield and quality based on their involvement in physiological 
processes in the plant.  
 
Developmental plat characteristics 
Plant yield depends on the interaction of many factors. Furthermore, the same factors may affect the 
yield of different crops in various ways. For instance, in a fruit crop like tomato, the switch from a 
vegetative phase to a generative phase, where the fruits are formed, is an important step required for 
yield. However, in a crop where the vegetative part of the plant is consumed, for instance lettuce, a 
switch to the generative phase is not desirable for the yield. Therefore, the switch from vegetative to 
generative is an important factor which can affect the yield (either positively or negatively).   
 
There are more developmental plant characteristics which affect the yield and quality. For instance, 
the speed at which a plant develops, which is not only the time in which the plant is ready for harvest 
(growing time), but also the number of leaves, flowers and fruits that have been formed. By 
combining this information, the leaf, truss and fruit formation rate can be determined. Developmental 
speed is crucial for plant production. If this development is slow, leaves will be formed slower, which 
means less leaf area for photosynthesis (discussed later) and assimilate production. A slower 
development will mean that it will take longer to achieve the required yield, which in most cases also 
leads to higher production costs. In fruit crops, the developmental speed also determines how fast 
the plant can start investing in the fruits, as opposed to the vegetative part of the plant. From the 
moment fruit growth is initiated, the assimilates that are formed through photosynthesis can be 
directed towards the fruits, and thus towards crop production. However, faster is not always better. If 
the plant would start forming fruits very early without having formed enough leaves, the assimilates 
will be pulled towards the fruits (strong sinks) and not be invested in leaf production. Thus only a 
small leaf area would be available for photosynthesis and the formation of new assimilates, leading to 
low yields. Therefore, determining the developmental rate and finding the right optimum between leaf 
growth and fruit growth is essential for good yields. When considering the quality, the developmental 
rate is also important. In ornamental plants the number of leaves and flowers determines the 
ornamental value of the plant. For the post-harvest quality of the crop not only developmental speed 
is important, but also the timing of the harvest. The ripeness of the fruits at picking strongly affects 
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the post-harvest quality and can affect the flavor of the fruits [11]. For ornamental plants the plant 
stage when harvested can influence the quality of the plant. 
 
Morphological characteristics  
The shape of the plant has a big impact on its growth. Photosynthesis mainly takes place in the 
leaves, and the amount of photosynthesis that can occur will determine the amount of assimilates 
that can be formed and eventually be invested into plant growth. The larger the leaf area, the larger 
the area which can be used for photosynthesis. However, this area must be able to receive sunlight, 
otherwise photosynthesis cannot take place. Therefore, the angle of the leaves is also important for 
growth and plant production. To find out how much light can actually reach the plant, it would be 
important to know the light interception of the plant. How much light the plant intercepts depends on 
the total leaf area, the leaf angle and how much the leaves overlap [12]. For plant quality, the leaf 
area is also important. For instance, in potted plants the amount of leaves may determine the 
decorative value of the plant.  
  
A morphological trait often used by the growers to determine the growth of their crop, is the 
thickness of the head of the plant. If the stem at the top of the plant becomes too thick, this tells the 
grower that the plant has become too “heavy” and vegetative. In this case the light/temperature 
balance may be decreased. If the stem at the top of the plant is too small, this indicates that the 
development might be too fast and that the plant should invest more in vegetative growth. In this 
case the light/temperature balance may be increased. Although looking at the thickness of the top of 
plant is based more on the gut feeling and experience of growers, there is a physiological basis 
behind this. While the total amount of photosynthesis determines how much assimilates can be 
produced, the source-sink balance in the plant determines how these assimilates will be divided 
throughout the plant. If there are no or not enough fruits (strong sinks), the assimilates will go to the 
top of the plant (further growth) and to the roots [13]. In this case the top of the plant will be thick. 
If there are fruits, the assimilates will first be sent to the fruits and then to the top of the stem and 
roots [13]. In this case the top of the stem will be less thick. If you have too few fruits, compared to 
the amount of assimilates, the assimilates will be invested in vegetative growth or even be stored as 
starch in the leaves [13]. This is clearly a waste of resources. If there are too many fruits, fruits will 
become small, which is not desired and not enough assimilates will remain for the growth of the 
plant, which is also not desired. Therefore, a proper balance between sink and source must be 
sought, and the thickness of the head is an easy indicator for this. In tomatoes, an excess of 
assimilates can also be estimated by a purplish hue at the top of the stem [3]. 
 
Other characteristics  
As mentioned before, photosynthesis is a crucial step for crop production as this process leads to 
formation of the assimilates needed for production. By measuring the photosynthesis it can be 
determined how the production will be affected – more photosynthesis, higher the production 
(although this does not need to be a linear correlation due to other limiting factors). To measure the 
total plant photosynthesis properly requires a lot of work and equipment. To have the most correct 
value of photosynthesis, the whole crop photosynthesis must be considered, thus all 
photosynthesizing parts of the plants in the greenhouse. If an air-tight greenhouse compartment is 
used, the total influx and efflux of CO2 could be measured, and the net photosynthesis could be 
determined. However, such greenhouses are not used in practice (or in most researches). A good 
alternative would be to measure the plant photosynthesis, which considers the photosynthesis of all 
photosynthesizing parts of the plant. For this air-tight chambers, the whole plant must be used. Such 
greenhouses are also rare and not used in practice or in most researches. What is usually done in 
research is to determine the leaf photosynthesis and use the total leaf area and light interception to 
estimate how much the whole plant would be photosynthesizing. There is equipment for leaf 
photosynthesis measurements, but the process is complicated, time-consuming and not feasible for 
growers. Finally, another method can be used to estimate photosynthesis efficiency (chlorophyll 
fluorescence). This method is easy to use in practice, shows how efficient the photosynthesis is, but 
does not quantify how much photosynthesis is taking place.  
 
Another plant characteristic that is used for production is the harvest frequency. This links back to the 
source-sink balance. By harvesting the plants, the sinks are removed, which in turn may affect the 
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assimilate distribution in the plant. For quality measurement, the color of the leaves, flowers and 
fruits are also an important characteristic to look at. Not only does an undesired color at harvest lead 
to a lower ornamental value of a plant, fruits also become less sellable if they have the wrong colors 
(for instance a greenish tomato or yellow cucumber). During growing the color of the leaves is also 
important as an indication of the nutrient status in the plant. Yellowing may indicate a deficit of 
certain required nutrients, which in turn may lead to the sub-optimal growth of the plant. Although 
not a plant characteristic, the nutrients and irrigation applied to the crops also determine the proper 
growth of the plant. Determining the nutrients in the run-off water and in the substrate, can give an 
indication of the nutrients the plant did not take up. Even better would be to determine the nutrient 
content in the plants, to determine if these levels are in the optimal range during growth. However, to 
determine the nutrient content, the plants need to be analyzed destructively.  
 
How can these parameters be measured?  
In Table 3.3 it is indicated which parameters can be measured with which devices and which cannot yet 
be measured with current technologies.  
 
Are there opportunities to develop sensing methods for (difficult) scientific analyses?  
Some plant characteristics are measured using (complex) techniques and equipment, not available or 
not commonly used by commercial growers. Another possibility is that these traits can only be 
measured destructively. If these plant characteristics could be measured by non-destructive sensing, 
that would be a huge advantage to the growers. Examples are the leaf area (index) and the 
photosynthesis, but also nutrient analyses in plant tissues. Developing non-destructive sensing 
techniques that could measure these traits through time would be very useful. In the case of 
photosynthesis and nutrient analyses, if whole plant can’t be measured, it must first be determined 
where point-measurements would be relevant (plant part).  
 
Are there still new opportunities for sensing on plant level?   
Table 3.3 indicates plant processes which we would like to track that cannot yet be measured, or 
require expensive equipment and time-consuming measurements. 

3.3.3 Sensing potential for well monitored growing environment 

Emerging technologies can facilitate non-invasive sensing of traits responsible for growth, 
development, production, quality and resistance to stresses. More data and better analytics can 
increase understanding of the underlying plant processes and reveal new insights. Thus, to ensure 
sufficient amount of quantitative data, fully automated high throughput systems, ideally offering 
continuous data streaming, need to be defined. The collected information via sensors must stand out 
in terms of accuracy, robustness, reliability and functionality as it steers the actuation of modern 
greenhouse climate computers and affects growers’ decisions. 
 
Table 4.3. Climate and crop traits to monitor using non-invasive sensing techniques. 
Crop status (non-destructive) 
Parameter Method Status-Limitations Available sensors 

Photosynthesis on 
crop level 

Chlorophyll fluorescence 
camera or laser (ETR) 

Available. 
Ongoing research 

CropObserver Phenovation [14] 

Photosynthesis chamber Available. 
Ongoing research 

PlantData [15] 

Photosynthesis monitor 
(gas exchange whole 
greenhouse)  

Monitor sensitive 
to changes in 
window opening 
and CO2 supply  

Elias Kaiser et al. [16] 
 

Photosynthesis on 
leaf level 

Chlorophyll fluorometer 
Gas exchange 
measurements 

Handheld Mini-PAM II Waltz [17] 
CI-340 CID Bio-Science [18] 
LI-6800 LICOR[19] 

Crop growth 
Weight gain 

Weighing gutter systems  Sensitive to 
surrounding 
perturbations 

Aquabalance Hoogendoorn [20],  
Moisture balance Priva [21],  
ProDrain Ridder [22] 
DrainVision Paskal [23] 
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Evaporation of the 
crop and stomata 
status 

Watering-drain 
measurement and 
calculation 
 

Sensitive to 
surrounding 
perturbations 

Aquabalance Hoogendoorn [20],  
Moisture balance Priva [21],  
ProDrain Ridder [22] 
DrainVision Paskal [23] 

Juice flow and stem 
thickness/firmness 
 

Imaging, or clip that could 
be attached which expands 
and tests firmness by 
applying pressure 

Available. 
Ongoing research 

Phytosense [24]  
2Grow [25] 

Plant/Leaf 
temperature -
Condensation on 
plant/fruits 

Infrared cameras 
Thermal cameras 
 

Plant specific Hoogendoorn [20] 
Thermoview [48] 
LetsGrow.com[26] 
Topcrop monitor Priva [27] 
Pointed Microclimate [28] 

Artificial fruits Fruit specific  Ridder [29] 

Number of formed 
leaves/ fruits/ 
flowers/ buds (plant 
load) 

RGB camera  
3D cameras and image 
processing techniques on 
counting instances of the 
desired parameter 

Available. 
Ongoing research 

Rob2Pheno (Phenobot) 
GearSense Gearbox [30] 
Phenoeye [31] 
LUNA [32] 

Growth period, 
formation rate 
fruit/flower/bud/truss 
development 

3D cameras and image 
processing 

Available. 
Ongoing research 

GearSense Gearbox [30] 
Phenoeye [31] 
 

Internal length 
 

Digital caliper Hand operated  Research Schouten et al., [33] 
RGB camera- Machine 
learning 

 Research Yamamoto et al., [34] 

Light-based modelling  Research Kahlen et al., [35] 

Leaf Area 
Leaf size (width 
length) 

Portable device measuring 
area, length, average and 
maximum width of each 
leaf 

Hand operate LICOR LI-3000C  [36] 

Leaf angle 
distribution 

Trigonometric relationship 
using smartphone 

Hand operated-
patent  

Ahmes [37] 

Ripeness of harvest 
RGB and hyperspectral 
camera 

Available. 
Ongoing research 

Plantalyzer Hortikey [38], 
Metomotion [39], 
Root AI [40] 

Sugar content at a 
given time  

Hyperspectral Ongoing research Research Rahman et al., [41] 
Research PerClass-WUR [42] 

Dry matter at a given 
time 

Hyperspectral, Image 
Analysis 

Ongoing research Research Tackemberg [43] 

Gene expression  Nanopore No online sensing Oxford Nanopore [44] 
CD Genomics [45] 

Plant balance (switch 
from vegetative to 
generative) 

Imaging, Artificial 
Intelligence 

Proposed trait- 
currently missing 

 

Thickness and colour 
of the head of the 
plant  

 Proposed trait- 
currently missing 

 

Assimilate 
partitioning 

Hyperspectral 
Technique can be similar to 
sap flow but then for 
phloem 

Proposed trait- 
currently missing 

 

Temperature of plant 
parts as shoot apex, 
leaf, whole plant 

Infrared imaging Proposed trait- 
currently missing 

 

Colour of leaves and 
flowers 

 Proposed trait- 
currently missing 
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Flower diameter 
(continuous, 
gerbera) 

Imaging   Proposed trait- 
currently missing 

 

Bud size and shape  Imaging Proposed trait- 
currently missing 

 

Fruit size  Hyperspectral Proposed trait- 
currently missing 

 

Position and length 
of the truss stem  

 Proposed trait- 
currently missing 

 

Indoor environment (non-destructive) 
Temperature 
Relative Humidity  
CO2  

Measurement boxes 
containing sensors 
measuring temperature, 
(electronic) relative 
humidity and CO2 
 

Available. More 
spatial 
measurements 
are required 

Hoogendoorn [20] 
Priva [46],  
Ridder [29],  
30MHz [47],  
Technolution [48],  
Sigrow Air Pro [49] 
LICOR LI-830-LI-850 CO2 H2O  [50] 

Photosynthetic Active 
Radiation  (PAR) 

PAR sensor Available. More 
spatial 
measurements 
are required 

Hoogendoorn [20] 
Priva [46],  
Ridder [29],  
Technolution [48],  
Sigrow Air Pro [49] 
Li-250Q LICOR [51][52] 

Light spectrum Spectrometer Available. More 
spatial 
measurements 
are required 

LI-180 LICOR [53] 
Wave Illumination [54] 

Net Radiation Pyranometer and 
pyrgeometer 

Available. More 
spatial 
measurements 
are required 

CNR4 [55] 

Flue gas composition Gas analyser (NO, CO, 
NO2, C2H4)  

Available MACView [56] 

Air speed Anemometers  Available WindMaster 3D Anemometer [57] 
Airflow sensors 30 MHz [58] 

Water tank sensors 
pH  Digital pH meters  Available  
EC  EC meters  Available  
Macronutrients  
(N, P, K, Ca, Mg, Cl, 
NH4, NO3, SO4, PO4, 
HCO3, Fe, Zn, B, Cu, 
Mo, Mn) 

Multi ion electrode (8 
elements) 

No online 
sensing- Lab 
analysis 

CleanGrow Auto CG200 [59] 

 Multi ion electrode (6 
elements) 

No online 
sensing- Lab 
analysis 

CleanGrow Multi-ion Nutrient 
Analyzer kit [60] 
 

 Capillary electrophoretic 
meter 

No online 
sensing- Lab 
analysis 

Capilix [61] 

Root zone sensors 
Water content 
EC 
Temperature  

Substrate moisture EC and 
temperature sensors (WET) 

Available. More 
spatial 
measurements 
are required 

Teros-12 MeterGroup[62] 
GroSens Grodan [63] 
WER-2 Delta-T [64] 
GS3 Cultilene [65] 
Soil Pro Sigrow [49] 
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Nutrient composition 
in slab (N, P, K etc.)  

Ion selective 
measurements 

Proposed trait- 
Currently missing 

CleanGrow Multi-ion Nutrient 
Analyzer kit  
(not online) [60] 

3.4 Activity plan 2020 

3.4.1 Experimental set-up 

Development of methods to automatically, and in real-time, detect crop performance (growth, 
development, stress and nutrition) in greenhouse crops is continuously increasing. Relevant crop and 
climate traits that are correlated to crop performance are described in  
Table 3.5 along with corresponding non-invasive sensing techniques. Some of these traits have been 
studied in previous experiments that have been carried out within the Greenhouse Horticulture 
Business Unit. However, the data of the traits was either described with weekly registrations or was 
individually investigated in several experiments. 
 
An experimental set-up has been defined to investigate crop performance and crop response under a 
well-monitored greenhouse climate.  
Table 3.5 indicates additional sensors that have been selected to be placed in an existing greenhouse 
project “Winterlicht Kas” that is constructed for cucumbers at the greenhouse facilities of the Business 
Unit in Bleiswijk. 

 
 

 
Table 3.5. Sensing equipment for greenhouse experiment 2020 
Sensors in experimental set-up 2020  

PAR line Quantum sensors (LI-191R) 
Real time monitoring of Photosynthetic Photo Flux Density 
(PPFD)  

Pyranometer (CNR4- Net Radiometer) 
Real time monitoring of incoming short-wave and long-wave 
FAR Infrared radiation versus surface reflected short-wave and 
outgoing long-wave radiation 

Weighing devices (Phytovision) Real time monitoring of plant growth (crop weight)  

Weighing gutter system (Aquabalance)  
Real time definition of plant water requirements and monitoring 
of EC and pH on slab level  

Thermal Camera Real time monitoring of canopy temperature 

Root zone sensors 
Real time monitoring of water content, temperature and EC of 
the slab 

NoIR camera (existing software developed 
with AR glasses ? Gerrit Polder)  

Measuring of Normalized Difference Vegetation Index (NDVI) 

Crop Observer 
Real time monitoring of chlorophyll fluorescence (effective 
efficiency of Photosystem II, Electron Transport Rate) 

Figure 3.3: Winterlicht greenhouse 
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3.4.1.1 Description of the purchased sensors 

• Li-191R 
Li-191R is a line quantum sensor that measures PAR 
integrated over a 1-meter length. The system allows 
measuring of the incident light in many plots in units 
of Photosynthetic Photon Flux Density (PPFD) 
expressed as µmol s-1m-2 [66]. The diffuses is in one 
continuous pies that integrates an infinite number of 
points over the surface into a single value that is 
representative of the entire 1 meter-length.  
Three units of this sensor will be placed at different 
heights between the crop where the light field is 
non-uniform. The varying incident light within the 
day will be correlated with crop responses (weight-
Phytovision) and water requirements (irrigation, EC, 
pH-Aqua balance). 
 
• CNR4- Radiometer 
Measures net radiation on three levels on the 
crop level. This is the sum of the shortwave 
radiation gain and the long wave radiation loss.  
 
 
 
 
 
 
 
 
 
• Phytovision 
The Phytovision system enables monitoring of the 
daily weight accumulation processes in gr/plant. 
The system weighs individual stems in the 
greenhouse using a weighing unit that transfers 
data in intervals of 20 minutes. The high frequency 
of the data will permit observation of the growth 
patterns and analysis of their correlation with 
climate and irrigation data. The distribution of 16 
measuring units in a grid will support the mapping 
and estimation of uniformity of plant 
characteristics. 
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• Aquabalance 
The Aquabalance is a weighing gutter system that 
determines plant’s water requirements and tailors  
the irrigation strategy precisely by monitoring the 
weighing development of the substrate mates 
(saturation weigh) precisely. The systems allows 
for sustainable irrigation and drainage while limits 
the use of water and fertilizers. Finally the system 
saves energy costs for the less water that is 
pumped and heated before the distribution to the 
plants as well as for less drain water needed to be 
disinfected. The weighing system will also take 
measurements from 
the EC and pH values of the drain water. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.4.2 Timeline 

Table 6: Planning Activities over 2020 
Activities Q1 Q2 Q3 Q4 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Running 
Experiment 

x x x x x x x x x x x x 

Figure 3.4. Schematic representation of the experimental set-up: 3 units of quantum sensors and 3 
pyranometers placed on three levels of different height from surface floor area. 16 units of weighing 
scales, 1 unit for chlorophyll fluorescence, 2 units for monitoring root zone, 1 thermal camera and one 
weighing gutter for estimating water content on slab. Sensors are additional to the already existing 
climate measuring boxes that register all the necessary greenhouse climate traits(e.g. temperature, 
relative humidity  etc. ).  
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Monitoring x x x x x x x x x x x x 
Sensors 
installation 

x x           

Data 
logging 

 x x          

Data 
analysis 

        x x x x 

Reporting           x x 
 

3.4.3 One Planet collaboration 

3.4.3.1 Nutrient(nitrate) sensor 

Team meetings and brainstorming activities with One Planet revealed common interest in a sensor 
that will monitor online and at the spot the nutrient composition for certain macro and micro nutrients 
that are currently measured biweekly in the lab. The initial ambition is to develop a sensing device 
that is able to monitor a pre-defined list of nutrients on the irrigation and drain tank. The difference 
between the nutrient composition of the tanks will estimate the nutrient uptake that is performed by 
the crops. Once the sensor will be developed by IMEC, it will be tested and calibrated in an existing 
experiment of the Greenhouse Horticulture Business Unit. Thereafter, the mechanism can be tested on 
the slab level, to monitor real time the nutrient composition of the plants. In this collaboration, WPR 
has shared the technical requirements, particularly the ranges and required accuracy for major 
nutrients and for two commercial greenhouse crops as well as a preliminary business case. The 
potentials of proceeding with the proposed idea will be discussed within 2020.  
 

3.4.4 Microclimate sensor – stomatal activity 

For growth it is important that photosynthesis can take 
place optimally. Measuring chlorophyll fluorescence 
allows the estimation of the photosynthetic activity of a 
leaf. Another indicator of the photosynthetic efficiency 
is stomatal conductance. If stomata are closed, CO2 
cannot enter and photosynthesis cannot take place 
even though chlorophyll fluorescence does not indicate 
any change in the photosynthetic efficiency. Therefore, 
knowing stomatal conductance next to the chlorophyll 
fluorescence could give a better estimation of the net 
photosynthesis. This can already be done with a 
handheld device, but not continuously. Online 

Irrigatio
 

Drain 

Figure 3.6: Portable instrument for the 
measurement of stomatal conductance and 
plant water use 

Figure 3.5: Graphical representation of the proposed nutrient sensing methodology 
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monitoring would be valuable information as stomatal opening fluctuates during the day. 
 
The idea for the development of such a sensing methodology has been discussed and is currently under 
consideration for the collaboration with One Planet initially for 2020. 
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 Case study 3 Report 2019: Non-
destructive measurement of food 
products 

Authors: M. Paillart (WFBR), P. Mishra (WFBR) and L. Meesters (WFBR) 

4.1 Introduction 

The project Sensing Potential aimed to explore the feasibility of sensing technology to measure non-
destructively fruit quality properties on a batch and an individual product level. 
 
In the first year of this project, two existing datasets have been analysed, post-harvest challenges 
were described and for one of these problems a study has been planned. Furthermore, last year’s 
collaboration with OnePlanet - Imec has been very fruitful. The discussed novel sensor options 
resulted in two technology concepts we would like to explore further next year. 
 
The first existing dataset compiled avocado fruit data and consisted of destructive reference data 
based on  visual binary classification of avocados in being healthy or having stem-end rot after the 
avocado was opened. The Specim IQ VNIR camera was used to obtain non-destructive measurements. 
It has been demonstrated that the normalized difference vegetation index (NDVI) can be used as a 
measure to visualize the progression of stem-end rot in an avocado. The proposed binary classification 
model based on the Mahalanobis distance can detect most of the avocados with stem-end rot (92,3% 
accuracy) but a large number of the healthy avocados were misclassified as having stem-end rot 
(59.3% accuracy to detect healthy avocados). The second existing dataset analysed consisted of 
destructive reference measurements for Brix (refractometer) and firmness (penetrometer) of kiwi 
fruit. The non-destructive measurements were taken with the acoustic firmness sensor (AFS) of 
AWETA and the Specim IQ visible and near-infrared (VNIR) camera. The results showed a good 
correlation between the VNIR data and the Brix reference (R2=0.74). But only a moderate correlation 
was found between the VNIR and the firmness reference (R2 = 0.50). In a previous study, a similar 
correlation was found between the AFS and the firmness reference (R2=0.56). 
 
The post-harvest challenges that were identified require sensors and models to detect or quantify 1) 
the cut-flower leaves quality, 2) the chilling injury, 3) the internal rot, 4) the internal browning or 
discoloration, 5) the sweet perception of RTE fruit and 6) the firmness of fruit with a thick skin. The 
latter problem was selected to be studied next year. The experiment plan for next year describes the 
reference measurements (firmness acquired with a penetrometer, dry matter, skin area/thickness) 
and the two non-destructive measurements, i.e., the AFS of AWETA and the ASD LabSpec HiRes NIR 
sensor. The aim is to study the effect of the fruit skin on the reference and the non-destructive 
measurements and to model the firmness with a dual sensor approach consisting of acoustic and 
optical signals.  
 
The two technology concepts that emerged from the discussions with OnePlanet - Imec are 1) a non-
contact acoustic imaging system to measure fruit properties and 2) a semi-invasive extraction of fruit 
micro-fluids allowing an on-the-spot analysis of fruit properties (LoC). 

4.2 Data analysis 2019 

In the PPS project GreenCHAINge [2], the goal was to measure fruit quality properties non-
destructively with several sensors including colour cameras, spectroscopy and hyperspectral imaging. 
Based on two GreenCHAINge datasets, we describe in this chapter the shortcomings to reliable 
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measure fruit properties from a sensing and data modelling perspective. Section 4.2.1.1 describes the 
analysis of hyperspectral data to detect stem-end rot in avocados. Section 4.Error! Reference 
source not found. describes the analysis of hyperspectral data to measure the firmness and Brix of 
kiwis. The lessons learned are listed in section 4.4.2.3.   

4.2.1 Stem-end rot detection in avocado 

4.2.1.1 Goal - early detection of stem-end rot in individual avocado fruits 

Stem-end rot is one of the main quality issues observed on Ready-To-Eat (RTE) avocados. At first, the 
mould is not visible on the outside part of the avocado. But when avocados are ripening (softening), 
mould may develop into the avocado flesh. In this study, we investigated if HSI can be used to detect 
stem-end rot early. Two batches of avocado were followed over the ripening period stored under 
controlled conditions. One of the batches was considered as healthy and the second one was 
inoculated with stem-end rot spores on the first day of the experiment. 
 
4.2.1.2 Material and methods 

Unripe avocados were sourced from the avocado importer, located in Rotterdam (The Netherlands). 
Avocados were transported to the Wageningen Research facility and stored at 5°C for 24 hours. Two 
batches of avocados were created on the basis of their initial firmness. Firmness was measured non-
destructively with the Acoustic Firmness Sensor (Aweta, Pijnacker, NL). Homogeneous batches were 
created and each avocado was individually coded. The healthy batches consisted of untreated 
avocado. The inoculated batch consisted of avocados inoculated on day 0 with a stem-end mould 
extract at the peduncle-end. Every two days, each avocado was imaged and the corresponding 
firmness measurements were performed.  Each batch received similar treatment (healthy and 
inoculated) and was destructively analysed at regular periods. After measuring the avocado firmness 
and recording the hyperspectral images, RGB pictures of the avocado were taken. Each avocado was 
then opened and stem-end rot symptoms inside the avocado were scored. Also, an RGB picture of the 
opened avocado was taken.  
 

 
 

Figure 4.1. The left hand side panel shows on top a healthy avocado and at the bottom a fruit with 
stem end rot. The left hand side panel shows the Specim IQ snapshot hyperspectral camera setup. 
 
4.2.1.3 Data processing 

The Spectral images were acquired with a portable camera ‘Specim IQ’. The images were acquired in 
the spectral range of 400-1000 nm. Since the stem-end rot develops at the stem-end extremity of the 
avocados, it was decided to only extract the region around the stem and to use it for data modelling. 
There were a total of 160 avocados (80 healthy and 80 inoculated) used for model development. The 
modelling approach utilises majority voting based on Mahalanobis distance. However, since the 
spectra have a large number of dimensions, a spectral transformation was performed. The spectra 
extracted from the region around the stem from avocados were transformed by estimating partial 
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least square scores. In total, the first three partial-least square (PLS) scores were extracted from the 
training set utilising a two classes partial least-square discriminant analysis (PLS-DA) (stem-end rot or 
not). Once the data is transformed - use the training set to make the prediction for the test set - each 
avocado from the test set was compared to healthy and inoculated class samples and assigned to a 
class to which it has a minimum Mahalanobis distance. There were a total of 80 samples used for 
model testing.   
 
4.2.1.4 Results - progression of avocado stem-end rot 

 
Figure 4.2: Evolution of a single avocado along the number of days of monitoring. The image depicts 
how the stem-end rot develops from day 1 to day 6. 
 
Figure 4.2 presents the normalised difference vegetation index (NDVI) evolution of the single avocado 
generating stem-end rot. The changes in the avocado can be identified with the change in colour from 
yellow to blue. Also, as majorly the stem-end rot develops around the stem region, the region around 
the stem is extracted and presented in Figure 4.3.  
 
In Figure 4.3, the development of stem-end rot is visualized by the change in colour contrast from 
yellow to blue. While in the case of healthy avocado, the stem region is homogenous and maintained 
similar colour contrast on Day 6 as compared to Day 1. Blue colour reflects the diseased part on the 
avocados (the region around the stem of the avocado) and the yellow part reflects the healthy part. 

 
Figure 4.3: Evolution of the stem-end rot region along the number of days for non-diseased (healthy) 
and diseased avocado. 
 
Figure 4.4 presents the confusion matrix obtained from testing the model on the test set data. There 
were around 80 test samples with 26 samples with stem-end rot and 44 healthy samples. Class 0 in 
Figure 4.4 belongs to the healthy class and class 1 belongs to the stem-end rot avocados. It can be 
seen that 59.3 % of the healthy avocados were predicted as healthy, where, 92.3 % of the avocados 
were correctly predicted of having the stem-end rot. The classification analysis showed that it is easier 
to predict correctly if the avocado has stem-end rot or not. However, it is difficult to predict correctly if 
the avocado is healthy or not. Overall accuracy of 70 % was obtained. 
 

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6
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Figure 4.4: The confusion matrix for the test-set data with class 0 as healthy avocado and class 1 as 
stem-end rot affected data. The green colour shows correct prediction and the red shows the wrong 
predictions. The blue colour shows the overall accuracy. 
 
 
4.2.1.5 Conclusions 

The results showed that VNIR HSI captured the changes in the avocados during the development of 
stem-end rot. The changes were mainly limited to the region around the stem during the early stages.  
The classification modelling showed that a very high accuracy rate (92.3 %) in terms of detecting the 
stem-end rot can be obtained. However, to classify if the fruit is healthy an accuracy of 59.3 % was 
obtained. In a previous analysis (GreenCHAINge project), the overall accuracy was almost similar; 
however, the capability of detecting the stem-end rot was low. In present work, we have gained the 
capability to perform correct prediction for detecting stem-end rot. However, the accuracy to detect 
the sample to be healthy was lowered. In conclusion, both modelling approaches did not provide a 
good classification accuracy to develop a real applicable model. However, a reason for this could also 
be understood as the spectral imaging was only performed in the spectral range of 400-1000 nm 
which is mainly dominated by the pigmented and moisture-related information in the fruits. However, 
as avocado is also very rich in oil, it will be worthwhile to explore the complete NIR range to capture 
the changes in the oil content with the development of stem-end rot. Furthermore, there is also need 
to study for any internal changes occurring in the avocado due to stem-end rot. It can be done with 
techniques like X-ray which can penetrate through food and based on the composition and structure of 
the fruits can generate internal structure and compositional maps.  
 
There is a need to explore multi-sensor approach to improve the accuracy to detect healthy avocado. 
 

4.2.2 Firmness and brix measurement of kiwis 

4.2.2.1 Goal - non-destructive prediction of firmness and brix in kiwis 

Brix and firmness are the two major key quality parameters of kiwi fruits. A large number of post-
harvest decisions are made on the basis of Brix and firmness in the kiwi supply chain. However, the 
current methods to measure them are destructive, labour intensive and time-consuming. VNIR 
spectroscopy and imaging is emerging as a potential tool to predict these properties non-destructively. 
The VNIR spectroscopy works in the principle of diffuse reflectance where the light interacts with the 
surface of the material and while being reflected captures the physical and chemical information about 
the probed material.  
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In the present work, the VNIR spectral imaging has been utilised to make a link with the Brix and 
firmness parameters in the kiwi fruits. The research utilises a portable hyperspectral camera and 
chemometric data modelling.  

4.2.2.2 Material and method 

In total, 1172 kiwi fruits were measured with HSI, a refractometer (Brix), penetrometer (firmness) 
and the AWETA acoustic sensor (firmness). The VNIRS spectra were extracted from the kiwi by 
defining a square region over the central spherical part over the kiwi. The spectra were then used for 
partial-least square regression analysis with the reference Brix and firmness values. In total, three 
different models were developed including a model for Brix, a model for firmness with penetrometer 
and a model for firmness with AWETA.  

4.2.2.3 Data processing 

The data were analysed utilising the partial least-square regression (PLSR) analysis. PLSR works by 
performing a bilinear type decomposition of the multivariate matrix into a score and loading matrix. 
The decomposition is performed in such a way that the extracted PLS component maximises the 
covariance with the Y variables. The cross-validation was performed by a 10-block method where the 
complete dataset was randomly divided into a set of 10 data blocks. The model was trained on the 9 
blocks and 1 block was used as a validation set. In the present work, PLS was implemented in 
MATLAB. Further, correlation and error values were estimated and presented in the plots. 

4.2.2.4 Results 

Figure 4..5 presents the measured vs predicted Brix values with the PLSR modelling performed 
utilising the VNIR data. It can be seen that a calibration and cross-validation R2 of 0.795 and 0.744 
respectively can be obtained from the modelling.  

 

Figure 4.5: PLSR model performance explaining the correlation between measured and predicted brix 
of kiwi fruit. 
 
Figure 4.6 presents the measured vs predicted firmness values (measured with the penetrometer) 
with the PLSR modelling performed utilising the VNIR data. It can be seen that a calibration and cross-
validation R2 of 0.604 and 0.498 respectively can be obtained from the modelling.  
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Figure 4.6: PLSR model performance explaining the correlation between measured and predicted 
firmness of kiwi fruit using penetrometer equipment. 
 
Figure 4.7 presents the measured vs predicted firmness values (measured with Aweta) with the PLSR 
modelling performed utilising the VNIR data. It can be seen that a calibration and cross-validation R2 
of 0.685 and 0.617 respectively can be obtained from the modelling.  

 

 

Figure 4.7: PLSR model performance explaining the correlation between measured and predicted 
firmness of kiwi fruit using Aweta instrument. 
 
Figure 4.8 presents the prediction maps for the Brix utilising the regression model developed. The 
prediction was performed by predicting Brix value for each pixel of the spectral image. It can be seen 
that the kiwi with low Brix can be seen as less bright blue regions compared to a kiwi with high Brix 
content. 
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Figure 4.8: Sample prediction map for predicting brix over the complete kiwi. Blue intensity indicates 
the brix content (light: high Brix content, dark blue: low Brix content).  

 

4.2.2.5 Conclusions 

The VNIR seems to be correlated well with the Brix measurements compared to the firmness 
measurements. A correlation R2 of 0.79 was obtained for the Brix and VNIR model. The firmness 
prediction was better for the Aweta measurements (R2=0.685) compared to the penetrometer 
reference measurement (R2=0.604). However, the correlations are not sufficient to be used directly in 
a real-case scenario. There is a need for some extra measurements which might complement the VNIR 
measurement in terms of explaining the biophysical information. Utilising acoustic measurements in 
combination with the VNIR could be a solution to improve the prediction of the firmness 
measurements. In the present work, a limited spectral range for NIRS was used (400-1000 nm), 
however, the sugar and moisture have a better correlation in the spectral range of 1000-2500 nm. An 
extended range of NIR can predict chemical properties like sugar better. In the case of firmness, NIRS 
and acoustic can complement each other as NIRS captures the physical (not clearly explainable) and 
chemical information about the samples and acoustics can capture physical information. 
 

4.2.3 Lessons learned 

The lessons learned from a sensing and data modelling perspective include: 
• A non-destructive firmness model should take into account skin properties, 
• A better understanding of the fruit flesh and skin physiology is needed, 
• Substantiation for the choice of the firmness reference method is needed. E.g. a penetrometer 

measures different aspects of firmness than an acoustic device. 
• A NIR sensor with a broader range (400-2500nm) can predict chemical properties better.    
• A multi-sensor approach (e.g. acoustic combined with NIR) could probably improve quality 

predictions. 
• The data transfer was difficult because the data was not easily accessible (readable and 

findable) for researchers who were not involved in the original research. 

4.3 Idea generation – experiments 

This chapter summarizes an inventory of several postharvest quality challenges that may be analysed 
via a multi-sensor approach (destructive and/or non-destructive). These challenges are the result of a 
brainstorm that was organised with several postharvest physiologist experts from Wageningen Food & 
Biobased Research. In total six new and innovative ideas were proposed. The ideas are listed below.  
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• Prediction of cut-flower leaves quality 
Leaves of cut-flower rose are subject to fungal decays when the flowers are reaching the end of their 
vase life period. Symptoms are looking like strong dehydration areas over the whole leave. Cut-
flowers are transported in reefer containers for an extensive period (up to 35-40 days) at low 
temperature and high relative humidity. It seems also that the degree of infection is linked to the rose 
variety and the grower. A multi-sensor approach may help to identify the postharvest physiological 
processes and to predict at an early stage which batch of roses will show these quality decays so that 
the transport commodity (air-cargo or reefer-cargo) can be optimized.  
  
• Prediction of chilling injury 
Tropical and semi-tropical fruits are sensitive to low storage temperature. When such products are 
transported at too low temperature, chilling injury symptoms appear with some delay. Chilling injury 
symptoms are the result of physical damages occurring in the cell membrane of the fruit. Due to 
chilling temperature, structure and fluidity of the cell membrane are disrupted. Chilling injury 
symptoms are the result of cell leakage occurring when the cell membrane breaks down. A multi-
sensor approach may help to sort fruits that have been subject to chilling conditions.    
 
• Prediction and detection of rot (avocado) 
Ready-to-eat (RTE) avocado are getting more and more popular on the European market. During the 
ripening process of the avocado, the fruit may develop a fungal infection (rot) at the stem-end 
extremity. This infection develops in the avocado flesh but is not visible from the outside of the fruit. A 
multi-sensor approach may help to score the infection level of the stem-end rot and to sort the 
healthy RTE avocado from the infected ones.  
 
• Prediction of internal browning discoloration (mango) 
During the ripening process of mango, some batch may present brown discoloration of the mango 
flesh. These mangos with brown internal colour are judged as non-acceptable by the consumer. Brown 
discoloration is the result of phenol and quinone production and oxidation. These pigments are 
physiologically produced by the mango when its ripening stage is not optimal (too ripe) or when 
storage conditions have differed from the optimal ones. First studies have shown that internal brown 
discoloration is detectable with NIR. A multi-sensor approach may help to improve these predictions 
and identify the change of colour and flesh structure typical to the internal brown discoloration.   
 
• Prediction of fruit firmness for fruit with thick skin (Avocado, citrus, ...) 
Measuring the texture of the fruit is essential to deliver the best quality to consumers. Several sensors 
propose to measure the texture non-destructively. These measurements are applied through the skin 
of the product. From previous experiments, we have learnt that the physical composition of the fruit 
skin may change during the ripening of the fruit. These changes do not necessarily evolve at the same 
rate as the ripening process of the fruit flesh itself. For this reason, the use of non-destructive 
measurement may be incorrect when the wrong fruit tissue is measured. This has been observed for 
fruits presenting a thick skin or with a skin that comes loose from the fruit flesh. A multi-sensor 
approach will allow us to follow the behaviours of the different fruit tissues (skin, flesh, stone, ...) and 
to predict the real ripening stadium of a fruit. 
 
• Prediction of sweet perception for RTE fruit 
Ready-to-Eat fruits are subjected to a specific ripening protocol in order to get the fruit softer and to 
allow the release of all the fruit flavours. Nowadays only texture of the fruit is measured to determine 
the RTE stage of the fruit. However, fruit needs to taste also sweeter in order to be considered as 
Ready-To-Enjoy. Sweet perception can be succinctly defined by the sugar (% Brix) to acidity 
(titratable acid) ratio. During the ripening process, acidity of the fruit decreases whereas the sugar 
content stays stable. A multi-sensor approach may help to measure the sugar and the acidity of the 
fruit during the ripening protocol. In this way, only fruit with an extended flavour profile may be 
sorted and sold as a Ready-To-Enjoy product.  
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4.3.1 Conclusion 

Amongst the results from the brainstorm, the following challenge was selected for execution in 2020: 
Measurement and modelling of fruit firmness for fruit with a thick skin. 

4.4 Planned experiments for 2020  

As a continuation to the project three experiments are being planned in 2020. The first experiment is 
a direct result of the conclusions arrived in the previous chapter. In addition, the discussions with 
OnePlanet - Imec have led to two technology concepts we would like to explore further if additional 
budget can be allocated, otherwise these experiments are considered optional. The details of the 
experimental planning is outside the scope of this document and not addressed here.  

4.4.1 Avocado firmness experiment 

Avocado fruits are getting more and more popular in Europe. However, buying and eating avocado 
fruit at its optimal ripening stage remains a challenge. The fruit sector has devised a Ready-To-Eat 
(RTE) concept, partly to guarantee consumers a high product quality so that the bought fruit can be 
enjoyed and consumed immediately. But to measure the avocado RTE level non-destructively is not so 
easy.  
 
Non-destructive measurements are always measured through the skin. One of the difficulties is that 
the avocado skin is thick and lumpy, and on top of this, the skin structure changes when the fruit 
ripens. In 2020 we will build on our current knowledge and study the effect of thick skin on non-
destructive firmness measurements. 
 
This experiment is chosen based on the conclusions arrived in the previous chapter.  

4.4.2 Collaboration with OnePlanet 

4.4.2.1 Micro-fluids experiment 

The sweet taste of fruit depends on the ratio of sugar and acidity. The aim is to explore if an LoC 
device can be developed to measure these fruit properties on the spot. The first steps in a feasibility 
study include: 

• Can micro fluids be extracted? 
• Can micro fluids be extracted without damaging the fruit? 
• How much liquid is needed to analyse certain fruit properties? 
• Which fruit properties can be measured? 

 
Imec can provide the technology to acquire micro-fluids. But this has not been tested for fruits.  
 
4.4.2.2 Acoustic imaging experiment 

Current acoustic methods are contact-based and use a small pendulum or hammer to strike the fruit 
and a microphone to record the vibrations. Ultrasound solutions need a medium, like a gel, to 
measure internal structures.  
 
The envisioned non-contact acoustic imaging devices create pictures from the reflected sound. The 
spatial information can provide additional information to model fruit properties like internal defects or 
the firmness. The first steps to explore this technology include: 

• Discussions with Imec (Leuven) if the concept of their acoustic sensor can be used to measure 
fruit property 

• Demonstrate the benefit of multiple surface measurements with a contact-based acoustic 
sensor 
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 Case study 4: Non-invasive 
measurement of food intake and food 
properties 

Authors: F. Daniëls (WFBR), H. Rijgersberg (WFBR), J. Top (WFBR), M. Ummels (WFBR) 

5.1 Introduction and rationale  

There are scientific indications that personalised dietary advice can contribute to prevent health issues 
[1]. For such an advice, one’s individual dietary habits need to be known as a reference point for 
change. Observed food intake over time can also be an approximation for one’s health status. Dietary 
intake can be assessed by various types of dietary assessment methods, such as recording or recall 
methods. Commonly used recording methods are self-reported food diaries (implemented in apps) or 
duplicate portion method. Frequently used recall methods are (3-days) dietary histories, food 
frequency questionnaires (FFQ) or 24-hour dietary recalls [1]. 
  
However, registration of dietary behaviour and intake over a period of time is notoriously difficult. 
People find it hard to recall (recall-bias), and dietary assessment methods are considered cumbersome 
and time consuming [1, 2]. An individual’s input is still an important factor to verify food intake. 
Nowadays, various food intake monitoring techniques are upcoming [2-5]. Development and 
improvements in sensor-based technologies and artificial intelligent (AI) systems for measuring food 
intake or food properties may help to overcome certain shortcomings using self-reported dietary 
assessments methods [2].  
 
The goal of this project is to explore the development and to evaluate new non-invasive sensors and 
data processing algorithms to assist in registering food intake. An additional AI system will be 
developed to provide predictions for missing data supporting the food intake measurements. 
Measuring health status as such is a research topic in itself and is not considered part of this project. 

5.2 Objectives 

Primary objective: The purpose of this case study is to evaluate and explore the development of a 
non-invasive sensor to measure an individual’s actual food intake (i.e. type, quantity, and 
(macro)nutrients), in order to give personalized dietary feedback.    
- Can we use circumstantial information to improve or simplify these observations? 
- Can we measure other properties of food products non-invasively, and are these measurements 

relevant for personalised dietary advice?  
 

Steps: 

1. Survey/ Literature research of potential non-invasive sensing technologies suitable for measuring 
food intake and meal properties.  

2. Experimenting the use and validation of a non-invasive sensing technology for food intake or food 
product type.  

3. Design of an AI system using prior information from recipes and personal food intake to fill in 
sensor measurement gaps. 
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5.3 Study design experiment 

Food intake monitoring approaches can be categorized by the technology used such as smartphones 
or wearables [6]. In project ‘NWA Food Intake’ we are developing methods using colour and depth 
cameras to identify on a plate the vegetables present and estimate their mass. These methods are 
suitable to be implemented using hardware available on current smartphones. However, identification 
using colour cameras is ultimately limited as ingredients are either difficult to recognize or distinguish 
from one-another or become so after cooking, baking or mixing. User input could be requested to 
provide such information, however the increased intrusiveness could limit the adoption [1]. Moreover, 
ingredients are identified with the purpose to retrieve their macronutrients through look-up tables. 
This raises the question if macronutrients cannot be, using others sensors, measured directly. We 
have explored literature for such sensors which, though now perhaps still at lab-scale, could, with the 
advent of technology, find its way to consumer mobile phones. 
 
NIR sensors have been used to identify energy values [7-12] and macronutrients such as fats [7, 10, 
11], proteins [7, 10], fibres [13-15] and carbohydrates [7, 10, 16, 17] in food products. Most work in 
this involved some form of sample preparation or was done on single products/ingredients rather than 
on meals. Our goal is to verify the suitability of NIR sensors for measuring the energy value or amount 
of macronutrients of a meal as unprepared samples. To do this we propose a number of objectives in 
increased complexity. 

5.3.1 Objectives 

First, we will look at identifying ingredients and food groups. In both cases we are interested in cases 
where colour cameras could fall short due to limited discriminating information in the visual range. 
Knowing the ingredients allows to look up their macronutrients in knowledge tables, while knowing the 
food groups only already enables the possibility of personalized dietary advice. Of interest is to see to 
what degree ingredients of the same food group share similarities in spectra. When looking at 
prepared meals, shared similarities could be exploited to identify food groups when ingredient 
identification fails. For instance, identification of ingredients requires them to be known beforehand by 
system, this might not always be the case in practice. Second, we will try to measure macronutrients 
directly, on ingredient level as well as meal level. This will be challenging as the ingredients will not be 
homogenised. To compare these efforts we will also blend the ingredients and meals. It would be 
interesting to see to what extent models built on blended ingredients and meals can be used for 
unblended products as well. Our objectives are listed in Table 5. 
 
Table 5.1. Proposed tasks for our experiment. 

# Task Subject Context 
T1 Classification into food groups Ingredients Single ingredients 
T2 Identification (or detection of presence) Ingredients Prepared meal 
T3 Food groups Prepared meal 
T4 Estimation of energy value and amount of 

macronutrients (fat, carbohydrates, protein, fibres) 
Ingredients Single ingredients 

T5 Ingredients Single ingredients blended 
T6 Meal Prepared meal 
T7 Meal Blended meal 

5.3.2 Samples 

We have selected a number of ingredients which individually vary in macronutrients and together 
could form a (simple) macaroni dish. More specifically, we have selected three grains, three 
vegetables, and three different sauces. Table 5.3 lists the selected ingredients and corresponding 
nutrients. The nutrient information is determined via the package information for the specified 
products. Meals will be formed from two and three components, by selecting one of the grain 
products, one of the vegetable products and with and without sauce, depicted in Table 5.2. 
Additionally we have grouped ingredients so that within every group there are alternatives where one 
of the components fibres, fats, carbohydrates, or proteins is increased or decreased. 
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Table 5.2. Proposed meals from ingredients.  

#  Ingredients Description 
M1  I1 + I4  White macaroni + frozen spinach 
M2  I1 + I4 + I7 White macaroni + frozen spinach + tomato sauce (concentrate puree) 
M3  I1 + I6 + I7 White macaroni + frozen spinach with Boursin + tomato sauce (concentrate puree) 
M4  I1 + I5 + I8 White macaroni + frozen spinach à la crème + tomato sauce (Traditional instant pot - 

Grand Italia)  
M5  I1 + I5 + I9 White macaroni + frozen spinach à la crème + tomato sauce (Traditional instant pot – 

Bertolli) 
M6  I1 + I5 White macaroni + frozen spinach à la crème  
M7  I2 + I6 Whole grain macaroni + frozen spinach with Boursin  
M8  I2 + I6 + I8 Whole grain macaroni + frozen spinach with Boursin + tomato sauce (Traditional instant 

pot - Grand Italia)  
M9  I2 + I4 + I8 Whole grain macaroni + frozen spinach + tomato sauce (Traditional instant pot - Grand 

Italia) 
M10  I2 + I5 + I9 Whole grain macaroni + frozen spinach à la crème + Tomato sauce (Traditional instant 

pot - Bertolli) 
M11  I2 + I6 + I9 Whole grain macaroni + frozen spinach with Boursin + tomato sauce (Traditional instant 

pot - Bertolli) 
M12  I2 + I5 Whole grain macaroni + frozen spinach à la crème 
M13  I3 + I4 White macaroni extra fibres + frozen spinach  
M14  I3 + I5 + I8 White macaroni extra fibres + frozen spinach à la crème + tomato sauce (Traditional 

instant pot – Grand Italia) 
M15  I3 + I6 White macaroni extra fibres + frozen spinach with Boursin  
M16 I3 + I6 + I7 White macaroni extra fibres + frozen spinach with Boursin + tomato sauce (concentrate 

puree) 
M17  I3 + I5 + I7 White macaroni extra fibres + frozen spinach à la crème + tomato sauce (concentrate 

puree) 
M18  I3 + I4 + I9 White macaroni extra fibres + frozen spinach + tomato sauce (Traditional instant pot – 

Bertolli) 
 
 



 

 

Table 5.3: Selected ingredients and corresponding nutrients for the experiment. 

# Ingredients Kcal* Fat in g* Carbs in g* Protein in g* Fibre in g* Salt in g* Food 
group 

Food category  

I1  White macaroni (Honig) 141 0.6 28.8 4.4 1 0.012 F1 Grain and grain 
products 

I2  Whole grain macaroni (Honig)  137 0.8 25.6 5.6 2.7 0.012 F2 Grain and grain 
products 

I3  White macaroni extra fibres (Honig) 134 0.6 25.6 4.4 4.4 0.012 F2 Grain and grain 
products 

I4 Frozen spinach (Iglo) 22 0.4 0.5 3.1 2.1 0.05 F3 Vegetables 

I5  Frozen spinach à la crème (Iglo) 54 2.6 3.3 3.5 1.8 0.8 F4  Vegetables 

I6  Frozen spinach with Boursin (Iglo) 87 7.1 1.8 3.4 1.5 0.8 F4 Vegetables 

I7 Tomato sauce (concentrate puree) 113 0.2 20 5.6 5.9 0.02 F5 Sauce 

I8 Tomato sauce (Traditional instant pot - 
Grand Italia) 

36 0.2 6.5 1.6 0.9 0.62 F6 Sauce 

I9 Tomato sauce (Traditional instant pot - 
Bertolli) 

65 2.5 9 1.5 1 0.82 F6 Sauce 
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5.3.3 Approach 

For the given tasks and samples we will perform measurements using NIR sensors. Analyses will be 
done using methods from machine learning such as autoencoders, convolutional neural nets (CNN) 
and using multivariate statistic methods such as partial least square regression. Reference 
measurements of especially macronutrients are essential. We estimate that using the package 
information plus the measured mass for each ingredient on the plate gives us enough accurate 
information. In this case, the package nutrient information for the specified products is preferred over 
the nutrient information from the NEVO table, due to the use of the average product information in 
NEVO-online. For the potential deviations in nutrient values for unprepared and prepared macaroni the 
factor 2.5 is used to take the water absorption into account [18]. If need be, we could send samples 
to Merieux Nutriscience in Ede who are able to analyse them for macronutrients. To be able to build 
reliable models for the macronutrients, sufficient variation has to be present. For estimation of 
macronutrients of individual ingredients, we attempt to extend the current list of products to have at 
least ten different products for each category. On prepared/blended meals we aim to get the needed 
variation through a number of mixtures and try to detect to quantity present. 
 
Table 5.7, 5.8 and 5.9 summarize the planned measurements. 
 
Table 5.7. Clustering of ingredients into food groups. 

Measurements R1 
Task T1 
Subject Ingredients I1-10 
Objective Food groups F1-6 
Method Unsupervised Clustering algorithms 
Reference  Table 5.3 
Description Measurements of single ingredients to identify food groups. To what extent 

have ingredients of the same food group similar characteristics in their NIR 
spectra (and can they be clustered)? 

 
 
Table 5.8. Identification of ingredients and food groups. 

Measurements R2 
Task T2, T3 
Subject Meals M1-M18 
Objective Ingredients I1-10, Food groups F1-6 
Method Advanced classification methods 
Reference  Tables 5.2 and 5.3 
Description Measurements of meals to identify the presence or absence of ingredients and 

food groups. 
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Table 5.9 Measurement of macronutrients. 

Measurements R3 
Task T4, T5, T6, T7 
Subject Ingredients I1-10 and meals M1-M18 both unblended and blended. 
Objective Macronutrients. 
Method Multivariate statistics and mass of plate. 
Reference  Table 5.2 and 5.3 together with mass of individual ingredients. 
Description Measurements of meals and ingredients to identify macronutrients. 

5.4 Activities planned for 2020 

Based on the literature study and inventory of different sensing techniques suitable for measuring food 

intake and meal properties, a selection of relevant technologies for the experiment were made. In this 

section the sensor technology or the spectroscopic method is described. The planning for this 

collaboration will be given in Subsection 5.4.2. The additional AI system for filling in measurement 

gaps is described in Subsection 5.4.3. 

5.4.1 Name and description of investigational  product(s) 

 
For our experiment, we have two near-infrared sensors available; ASD’s LabSpec 4 High Res, shown in 

Figure 5.1, and Imec’s Snapscan. The former has a wider range, 350 to 2500nm, but is a point 

measurement device. The latter is an area scan camera and can, as such, capture a plate in its 

entirety, however it has a reduced range and resolution of 900 to 1700nm. 

 

 
 
 
 
 
 
 
 
 

 

5.4.2 Collaboration with OnePlanet 

In 2019, discussion of sensor technology started with OnePlanet-Imec, who will provide the Imec 

Snapscan, to perform the experiment. The collaboration with OnePlanet-Imec will be continued in 

2020. The frequency of the meetings will be once in 2-3 weeks, depending on the timepoint of the 

experiment. Tests will be performed by the project team and in consultation partly by OnePlanet-

Imec. 

Figure 5.1. LabSpec 4 High Res analytical instrument 

https://malvern.dist.sdlmedia.com/distributions/?o=82292e66-21ff-4b79-8742-1ae5ee29c91a
https://malvern.dist.sdlmedia.com/distributions/?o=370601fd-5d5b-4b14-b661-9eb0487c5021
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5.4.3 AI system 

It is likely that the intended sensor system will not always lead to an adequate measurement result. 

For example when food products on the plate overlap and cover each other, a certain ingredient may 

not be detectable. For this reason we intend to use data from recipes and food frequency 

questionnaires to detect any missing ingredients from the determined ingredients. For instance, on the 

basis of different recipes for macaroni, a measurement of the amount of macaroni could give a 

probability distribution for the amount of sauce. Factors such as gender and age could be included 

from the food intake data. Amounts of nutrients in food are important for a person's health. Based on 

the data on nutrients in food – the so-called NEVO tables of RIVM [18] – the amount of nutrients in 

meals can be calculated. 

5.4.4 Outlook 

A successful outcome of this experiment would be the ability to identify food groups or ingredients in a 

meal, with possibly the ability to estimate macronutrients directly. A continuation of this work could be 

in, first, extending the number of ingredients/meals for testing the accuracy of the measurements on 

various food types. Secondly, the development of a phone app with a commercial available handheld 

NIR sensor could be of interest for further research to assess dietary intake. 

 

This tool could estimate the mass of a meal as well as proportions of different ingredients present. The 

user could then be instructed to use the accompanied NIR sensor to measure the unknown ingredients 

for identification or for estimation of macronutrients. In a future outlook, this tool could support 

adapting personal dietary advices promoting better health care of both patients suffering e.g. 

diabetes, or people in general. 
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 Case study 5: Non-invasive detection of 
food fraud 

Authors: Y. Weesepoel (WFSR), Y. Bouzembrak (WFSR), H. Marvin (WFSR), J. Mueller-Maatsch 
(WFSR) and A. Gavai (WFSR) 

6.1 Introduction 

Adulteration skimmed milk powders (SMPs) is a classical food fraud case, finding its origin in the 
melamine scandal in 2007 [4]. Therefore, the usage of fast and cheap optical screening methods were 
investigated, with a recent example of WFSR work done by Capuano et al [1]. Near-Infrared 
spectroscopy (NIR) was proven to be an effective pre-screening method for the detection of anomalies 
of different nature in SMPs [2]. In the past 5 years, the availability of affordable portable NIR sensors 
has increased and therefore also the need to evaluate these sensors for application in the food fraud 
area.  Therefore, the main objective of the case study is to detect food adulteration in SMPs 
(adulteration using protein fillers and chemical compounds) using low-cost portable near-infrared 
spectrometers that can measure food fraud on site. Three different portable near-infrared 
spectrometers will be tested and their performance will be compared on the basis of multivariate 
parameters.  

6.2 Materials, methods and data collection 

6.2.1 Materials 

Ammonium chloride (AMC) 99.8 % and melamine (MEL) 99 % were obtained from Sigma-Aldrich (St. 
Louis, MO USA). Ureum (URE) 99.5 % was purchased from Merck (Darmstadt, Germany). Six 
skimmed milk powders (SMP) were obtained from routine control by the Netherlands Food and 
Consumer Product Safety Authority (NVWA). Five whey protein powders (WHE) (brands Lucovitaal, 
Pulsin, BulkPowders, Purasana, Myprotein) and 3 soy protein powders (SOY) (brands BlukPowders, 
Purasana, Myprotein) were purchased from web-shops. SMP reference values were determined, 
amongst other reference values, according to WFSR SOP-A-0756 (fat content according to Röse-
Gottlieb, based on ISO 1736 / IDF 009:2008), SOP-A-08356 (nitrogen content and calculation of the 
protein content, Kjeldahl method. Based on NENE-ISO 8968-1:2014) and SOP-N-0333 (moisture 
determination in powdered milk products, based on NEN-EN-ISO 5537). The reference values for 
these provisions are reported in Table 6.1. 
 
Table 6.1. SMP reference values for provisions protein, fat and moisture content.  
 

SMP Protein (% w/w) Fat (% w/w) Moisture (% w/w) 
1 32.8 0.5 3.5 

2 38.6 0.6 3.5 

3 34.8 0.5 3.5 

4 38.0 0.5 4.0 

5 32.4 0.4 3.6 

6 37.1 0.6 3.7 
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6.2.2 Sample preparation 

SMPs were adulterated by mixing random selected WHE and SOY in a concentration range of 1 – 50 % 
(w/w) resulting in 7 samples for each adulterant. AMC, MEL and URE were added to random selected 
SMPs in the concentration range of 0.1 – 10 % (w/w) resulting in 7 samples for each added 
compound. 

6.2.3 Near-infrared spectroscopy and data acquisition 

Three NIR sensors were used for data acquisition in diffuse reflectance mode: 
• Short wavelength NIR spectrometer SCiO (Consumerphysics, Tel Aviv, Israel) with detector range 

750 – 1059 nm version 1.1. The device was controlled by Bluetooth using the smartphone app 
‘SCiOLab’ (Consumerphysics, version 2.3.0 (iOS)). Calibration of the spectrometer was carried out 
before each series of analysis by applying the 99 % diffuse reflectance white reference built-in in the 
cover of the spectrometer. 

• Tellspec Enterprise Food Sensor g1 scanner (Tellspec Inc., Toronto, Ontario, Canada) with detector 
range 900 – 1700 nm. The device was controlled by Bluetooth using a pilot app from the device 
producer (iOS). Calibration of the spectrometer was carried out before each series of analysis by 
applying a 99 % diffuse reflectance white standard. 

• MicroNIR Pro (Viavi Solutions, Milpitas, CA, USA) controlled with MicroNIR Pro software (version 2.2, 
Viavi Solutions) in diffuse reflection with detector range 908-1676 nm. Calibration of the 
spectrometer was carried out before each series of analysis by applying a 99 % diffuse reflectance 
white standard and a dark calibration measurement. 

SMPs and adulterated samples were transferred to standard issue transparent glass bottles and were 
applied on top of the (combined) light source and detector (Figure 6.1). For the MicroNIR a sample 
holder was mounted on the sensor head to shade the sample vials from outside light. Five NIR spectra 
were acquire for each sample per device.  
 

 
Figure 6.1. Mode of operation of data acquisition with A. SCiO, B. Tellspec and C. MicroNIR. 

6.2.4 Multivariate statistics 

Multivariate statistics were performed using two methods. First, the classification approach, showed 
the overall efficacy of the sensors towards identification of adulterant compounds in SMPs. This 
approach would be used in control by inspectors as a traffic light (green – red) prescreening approach. 
Known the output of the sensors, 25 machine-learning algorithms (e.g. decision trees, Bayes models, 
k nearest neighbors, support vector machines, boosting, random forest, bagging and random 
subspace) were benchmarked by using 80% of the samples as model training dataset and 20% as 
validation. The prediction accuracy was used as a performance indicator in the benchmark. These 
experiments were conducted on Windows 10 OS with Intel I7 @ 2.40 GHz CPU, with 16GB memory 
using MATLAB 2019b software.  
 
Secondly, the quantification approach, indicated the performance of the three NIR sensors by means 
of multivariate statistical parameters. Quantitative multivariate statistics were performed using The 
Unscrambler X 10.3 (Camo, Oslo, Norway). Spectra used for chemometric analysis were transformed 
by either standard normal variate (SNV) analysis, or a first or second derivative Savitzky-Golay 
transformation with 19 smoothing points assuming a symmetric kernel (SNV, Der1, Der2 
respectively). Outliers were removed by visual inspection of spectra upon transformation and 
subsequent unsupervised principal component analysis (PCA, data not reported). Partial least-squares 
regression (PLSR) was used to model a linear fit of the concentration SMP in the presented sample. 
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The performance of the PLSR models were judged by assessing the Pearson’s R2 and the Limit of 
Detection (LOD) by the Root Mean Square Error of Calibration (RMSEC). Due to the limited sample set, 
further cross-validation and validation activities were not performed. Variable selection was not 
applied.  

6.3 Results and discussion 

Data exploration 

The three NIR sensors used in this work produce significantly different spectra for SMPs for both 
detector range as well as detector response (Figure 6.2). The SCiO sensor has a shorter detector 
range and contained the least spectra information compared to the other sensors. The Tellspec sensor 
has a similar detector range as the MicroNIR, though the maximum absorbance value was 0.3-0.4 AU, 
whereas for the microNIR this was 0.9 – 1.0 AU. Furthermore, the MicroNIR spectra contained the 
highest amount of spectral information of the sensors used in this experiment. The most probable 
causes for these differences are (i) the sensitivity of the optical sensors and (ii) the sample 
presentation of the MicroNIR which was shaded from outside light. The detector range of 1623 – 1700 
nm of the Tellspec sensor was removed from the data set because seemingly random noise (sensor 
high and low spikes) was observed which could not be correlated to the sample identity.  

 
An example of the visual comparison of the discriminative power of the sensors is displayed in Figure 
6.3. The PCA plot (without the 100% adulterants) of the SCiO sensor data after Der1 processing 
showed a relatively scattered group of SMPs and the samples with mixed-in adulterants relatively 
close or overlapping with the SMPs. The adulterated samples were positioned without any logical 
grouping around the SMPs. The WHE and SOY adulterated samples with relatively high concentrations 
of adulterant (50% w/w) were clearly separated from the SMP group. The MicroNIR PCA plot after SNV 
processing showed a more defined SMP group with a clear separation from most of the adulterated 
samples. Also, the different types of adulterated samples are grouped more clearly with some 
exceptions. This as a result from the more information dense NIR spectra resulting from the MicroNIR.   
 

 

Figure 6.2. Unprocessed NIR spectra of SMP. 
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Figure 6.3. PCA score plots of A. SCiO after der1 and B. MicroNIR after SNV.  

 
Figure 6.4. Classification results using the most optimal algorithm out of 25 tested for A. SCiO; B. 
Tellspec; C. MicroNIR 

6.3.1 Classification of skimmed milk powder adulteration samples using machine 
learning 

For general inspection purposes, a traffic light type of output from the sensor and decision software 
would be most desirable. For the three NIR sensors the following learning algorithms were found to be 
most accurate:  
- SCiO: General accuracy is 97% for weighted K-nearest neighbours (KNN) (Figure 6.4A). 
- Tellspec: General accuracy is 93.3% for ensemble subspace KNN (Figure 6.4B). 
- MicroNIR: General accuracy is 98% for ensemble (subspace discriminant) (Figure 6.4C). 
The MicroNIR was performing  with the highest accuracy, followed by the SCiO. The SCiO sensor had 
misclassifications in almost all adulterant categories (lowest concentrations), whilst the MicroNIR only 
failed with some MEL samples. This was also the case for Tellspec, where 50% of the MEL samples 
were not correctly classified, leading to the lowest accuracy overall. In conclusion, it can be said that 
the NIR sensors are suitable for this matrix, though further optimization of a green-red decision 
support system need to be made.  

6.3.2 Sensor performance comparison by quantitative PLSR 

PLSR was used to produce performance indicators in order to compare the performance of the three 
different sensors. A three-step optimization process was followed to present a comprehensive 
comparison: (i) optimization of the samples included in the PLSR model; (ii) optimization of the data 
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pre-processing on a PLSR model accounting for all samples and (iii) application of the optimized pre-
processing to the individual adulterants.  
 
(i) Optimization of the samples included in the PLSR model 

In this work we assume a linear response of the sensor towards the concentration of all adulterants 
according to the Lambert – Beer’s law. This linearity is due to the nature of the different adulterants 
not very plausible and therefore may interfere with the model performance. In Figure 5, two PLSR 
models of the Tellspec data after der2 processing were compared. In the first model (A) the 100% 
adulterants were included in the PLSR model, whilst in the second model (B) these samples were 
omitted. Both models Pearson’s R2 values were sufficient (0.96 and 0.94 respectively), but the RMSEC 
drastically decreased from 7.4 to 2.7 % (w/w). This indicates that the presence of the 100% 
adulterants negatively influence the PLSR model performance and therefore should not be 
incorporated in order to estimate the SMP concentration.  

 
Figure 6.5. Comparison of PLSR models from Tellspec spectral data after der2 for A. the full data-set 
and B. spectra of the 100% adulterants omitted.  
 
(ii) Optimization of the data pre-processing on a PLSR model accounting for all samples 

Due to the different properties of the sensors as displayed in Figure 6.2 and 6.3, different levels of 
data pre-processing will be required. The pre-processing of the data is necessary to remove machine 
error (i.e. baseline shifts or multiplicative scatter effects) and to enhance the spectral features that 
correspond to the SMP and adulterant concentration. In Table 6.2 the RMSEC values for PLSR models 
with different data pre-processing is displayed without incorporating the 100% adulterants. For SCiO, 
SNV processing did not result in a viable model as a machine error was not removed from the data. 
Derivatization did improve this, but the order of derivatization made no difference. For Tellspec, the 
der2 processing was effective in enhancing spectral features and lowering the RMSEC to 2.7 % (w/w). 
For MicroNIR processing effects were not as dramatic as for Tellspec, with a lowest RMSEC of 2.8 % 
(w/w) for der1. Striking is that creating an ‘overall’ model for all adulterants resulted in relatively high 
RMSEC values, unacceptable when it comes to detection of MEL, URE and AMC. Therefore, individual 
PLSR models should be created.  
 
 
Table 6.2. Overall PLSR RMSEC values (SMP % (w/w)) for SCiO, Tellspec and MicroNIR after SNV, der1 
and der2 data pre-processing.  
 

Sensor SNV Der1 Der2 

SCiO N.A.  4.0 4.0 

Tellspec 4.6 4.6 2.7 

MicroNIR 3.1 2.8 3.6 

 
(iii) Application of the optimized pre-processing to the individual adulterants 

In Table 6.3 the PLSR RMSEC values for the individual adulterants are found, where the WHE and SOY 
samples were pooled. For the SOY and WHE combination the Tellspec sensor showed lowest RMSEC 
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values. Chemical adulterants were best calibrated using the MicroNIR with RMSEC values in the range 
of  0.4 – 0.5 % (w/w). The Tellspec sensor performed relatively well for AMC and MEL compared to 
the SCiO, but seemingly failed for the URE adulterant. Similar values for MEL and URE detection in 
gluten using Tellspec were previously reported by Kovacs et al [3] with values of  0.3 for MEL and 1.0 
% (w/w) for URE. Most probably, the Tellspec sensor response towards the URE spectral NIR features 
was lower compared to the other chemical adulterants. SCiO performed almost equally well for URE as 
the MicroNIR sensor. 
 
Table 6.3. PLSR RMSEC values (SMP % (w/w)) for SCiO, Tellspec and MicroNIR for individual 
adulterants after data pre-processing optimization.  
 

Sensor Fillers (WHE+SOY) AMC MEL URE 

SCiO (Der1) 4.3 0.8 1.3 0.5 

Tellspec (Der2) 2.5 0.7 0.5 1.0 

MicroNIR (Der1) 3.2 0.5 0.4 0.4 

 

6.4 Conclusions 

Three portable NIR sensors were compared on the basis of their performance to SMP powders. The 
MicroNIR sensor performed best for the chemical adulterants, while the Tellspec had the lowest 
RMSEC for WHE and SOY combined. Although the MicroNIR performed best overall, the difference in 
performance with the relatively cheap Tellspec scanner is not very pronounced. Still, for the relatively 
cheap NIR sensors the performance can fluctuate when presented with different adulterants. Most 
probably, the sensor response of SCiO and Tellspec is not as optimized as for MicroNIR. 
Implementation of a red-green decision support system seems possible, but only after further 
optimization of the classification models. 

6.5 Activity plan for 2020 

6.5.1 Adulterated halal minced meat detection 

Measure pork adulterated halal minced meat samples using the seven systems stated above. In 
collaboration with the SBUM researcher, a sampling plan will be generated to find pork adulteration in 
minced meat samples of chicken, mutton and beef meats. All minced meat samples will be prepared 
in-house and will be benchmarked by means of a gravimetric reference method and will be analysed 
by the spectral sensors in a similar time-frame. The size of the sample set is dependent on the sample 
preparation method (i.e. time required) which will be discussed with the SBUM researcher. Multivariate 
statistics will be applied to the dataset in order to investigate the effectivity of the sensors for 
detecting pork meat in the samples. 

6.5.2 Collaboration with OnePlanet 

In 2019, collaboration with OnePlanet was not within the scope of this case study. Therefore, this 
year, initial discussions and possible opportunities for cooperation will be discussed with OnePlanet, 
leading towards concrete experiments in 2021. 
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 Appendix 

Table 7.1: Correlation between skin temperature of the claw and mean ambient temperature (from 
HAS report) 

 
 
 
Table 7.2: Correlation between skin temperature of the leg and mean ambient temperature (from 
HAS report) 

 
 
 
 

MAT = Mean Ambient 
Temperature 
AV_C_MEAN = Mean of the 
Average temperatures of 
the control areas of the 
Claws 
HS_C_MEAN = Mean of the 
Highest Spots of the 
research area of the Claws 

MAT = Mean Ambient 
Temperature 
AV_L_MEAN = Mean of the 
Average temperatures of the 
control areas of the Legs 
HS_C_MEAN = Mean of the 
Highest Spots of the research 
area of the Legs 
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