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Abstract

A main issue preventing the use of Convolutional Neural
Networks (CNN) in end user applications is the low level
of transparency in the decision process. Previous work on
CNN interpretability has mostly focused either on localizing
the regions of the image that contribute to the result or on
building an external model that generates plausible expla-
nations. However, the former does not provide any semantic
information and the latter does not guarantee the faithful-
ness of the explanation. We propose an intermediate repre-
sentation composed of multiple Semantically Interpretable
Activation Maps (SIAM) indicating the presence of prede-
fined attributes at different locations of the image. These at-
tribute maps are then linearly combined to produce the final
output. This gives the user insight into what the model has
seen, where, and a final output directly linked to this infor-
mation in a comprehensive and interpretable way. We test
the method on the task of landscape scenicness (aesthetic
value) estimation, using an intermediate representation of
33 attributes from the SUN Attributes database. The results
confirm that SIAM makes it possible to understand what at-
tributes in the image are contributing to the final score and
where they are located. Since it is based on learning from
multiple tasks and datasets, SIAM improve the explanabil-
ity of the prediction without additional annotation efforts
or computational overhead at inference time, while keeping
good performances on both the final and intermediate tasks.

1. Introduction

Deep learning (DL) models are nowadays entering many
fields of application due to their clear advantages in terms of
prediction accuracy. Among the different DL models, deep
Convolutional Neural Networks (CNN) dominate the land-
scape of Computer Vision tasks and keep expectations aloft
by promises of superhuman autonomous driving or health
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Figure 1. Examples of images from the ScenicOrNot dataset and
corresponding crowdsourced scenicness scores (top). We propose
to make use of two distinct datasets such that the final task, scenic-
ness prediction, is solved by linearly combining the results on a
more interpretable intermediate task, attribute prediction using the
images from the SUN Attributes database (bottom).

diagnosis. At the same time, a drawback of DL is increas-
ingly being put forward: the inscrutable nature of their de-
cision making process. Often referred to as black boxes,
CNNs don’t allow to easily understand what elements of
the input contributed to the output and in which way [16].
The end user might require an explanation that is sim-
ple enough to be easily interpretable, while the CNN needs
to perform a highly complex set of operations to solve the
task [[7]. This creates a trade-off between how faithful the
explanation is to the inner workings of the CNN and how in-
terpretable it is [12]. In this paper, we argue that the expla-
nation should actually be part of the model. This is achieved
by an interpretable bottleneck ensuring that the explanation
contains all the information being used to produce the re-
sult. This effectively eases the tradeoff between the inter-
pretability of the prediction and the faithfulness of such in-
terpretation, since the explanation will include both aspects



by design. However, this risks to create another trade-off,
this time between interpretability and performance, due to
the limiting capacity of the interpretable bottleneck.

We explore the possibility to gain interpretability by
learning (and predicting) an intermediate semantic repre-
sentation from auxiliary datasets on related tasks. We do so
by constraining the bottleneck of a CNN to predict class-
specific maps, which are useful to interpret the final deci-
sion of the model on an harder to interpret final task. We
rely on the idea of interpretable decomposition [37], where
we assume that the final task can be explained as a linear
combination of a series of semantic contributions.

As the final task, we focus on the highly subjective vi-
sual problem of estimating landscape scenicness (i.e. aes-
thetic value) [27,131]. We use a crowdsourced dataset from
the ScenicOrNo project (SoN, Fig. |1} top). The model
needs to capture the average perception of a large amount
of annotators. This subjectiveness makes it hard for a user
to evaluate the faithfulness of the prediction of such model
making it important to understand which visual elements
led to the final decision. To provide evidence on the model’s
inner decision process, we force it to use a combination of
objective elements (a subset of 33 relevant SUN Attributes
[23]], Fig. [1} bottom) in its last intermediate representation
layer, just before providing the scenicness score. By doing
so, the user receives both the score and the relative con-
tribution of each interpretable element as a set of attention
maps: both can be further used to assess confidence and/or
generate new knowledge about landscape preferences.

Our results suggest that it is possible to make a CNN
predicting scenincness interpretable in terms of semantic
landscape elements, and this without increasing the anno-
tation or computational efforts and with a minimal decrease
in terms of performance on the final task.

2. Related work

Interpretable deep learning for solving visual tasks is be-
coming a major research field. This section provides a re-
view of the different strategies that have been explored in
this direction.

Attribute based zero-shot learning. The relationship be-
tween attributes and classes is exploited for zero-shot learn-
ing, a learning setting in which some classes have no train-
ing samples, but can be related to known classes via a shared
set of attributes. Given a set of known classes ) with at least
one training sample and a disjoint set of hidden classes Z
(no training samples), zero-shot learning [[18]] aims at as-
signing a new element from the input feature space X to one
class in ) U Z. This can be done by leveraging a set of at-
tributes A, also referred to as Semantic Output Codes [22]],
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common to Y and Z, that can be used to uniquely describe
each class [6]. Direct Attribute Prediction (DAP) [17]] is a
family of methods for zero-shot learning in which two func-
tions, f : X - Aandg : A — Y U Z are composed to
perform classification.

Although not initially devised to improve interpretabil-
ity, we propose to use an architecture inspired in DAP to
make sure that the final result depends only on the learned
attributes.

Attributes without supervision. Citing relevant visual
attributes is an intuitive way of explaining an image-
based decision. CNNs have been shown to automatically
learn representations that are well correlated to visual at-
tributes [5 2] that can be leveraged to get an intuitive idea
of what elements are used for the output [9, 21]. This be-
haviour can be improved further by adding a loss during
training that makes the activation maps of each filter more
attribute-like, such as by encouraging them to be class-
specific and localized [34]]. Nevertheless most individual
filters in current approaches can not readily be assigned a
semantic label [8]].

Interpretability by localization. A direction to improve
the interpretability of a CNN'’s result is to point out which
parts of the input contribute the most to the output. Re-
searches considered occlusions of parts of the image as
ways to assess the region’s importance [33| 25| 24]]. Alter-
natively, Class Activation Maps (CAM [36]), use an aver-
age pooling operation on the last feature tensor, right before
the last fully connected layer, to assess region importance.
This allows to see which locations are being used the most
to generate the output. Grad-CAM [26] and LRP [20] use
the gradient information to backtrack an output to the input
elements it is most sensitive to. Such localization methods
have been shown to improve the perceived trustworthiness
of DL models [25]]

Interpretability by generating explanations. Interpret-
bility by localization lacks the expressivity that is expected
from explanations in human communication. This has been
addressed by building an external model that is trained to
generate a plausible explanation to the output of the vi-
sual model [10]], which can then also be combined with lo-
calization [13} [11]]. Another approach to present post-hoc
semantic explanations is to decompose the activation map
provided by a localization method, such as CAM, using an
interpretable basis of maps [37], such that the final map is
reconstructed using a combination of maps that are seman-
tically interpretable.

Compositionality. Generally referred to the semantics of
natural language, compositionality implies that the mean-



ing of an expression is formed by the combination of the
meanings of its parts. This principle can also be found in
applications on images, such as for the task of extracting
high-level information by combining low-level cues [30],
and on videos, in order to use the presence of concepts, for
instance individual actions and objects, to classify video se-
quences as belonging to an event category (e.g. wedding,
sport event, efc.) [32]]. Exploring the high-level represen-
tation space of CNNSs using sets of images containing the
same concept has been proposed as a way to hint these con-
cept’s presence in the image [[15]. Methods for making the
flow of information in CNNs as local as possible are also re-
searched to make the models more compositional [29, 28],
since they encourage each individual region of the input to
contribute to the output independently from its context.

Joint learning of semantic hierarchies. Tasks such as
action recognition are well suited to a hierarchical repre-
sentation, in which objects [14] and object sub-actions [35]]
can be learned jointly and combined to obtain the final re-
sult. Following the same logic, images can be represented
by a semantic bottleneck that describes them and that can
then be used for some downstream task. The bottleneck
can adopt different forms, such as pieces of text that de-
scribe the image [3]], objects [4}119] or object parts and their
attributes [1]. Such representations are intelligible for hu-
mans and can thus be easily interpreted.

In this work, we design an interpretable layer performing
localization of objects and attributes in the image. Similarly
to CAM, we use activation maps before the fully connected
layers, but we force those maps to correspond to fixed con-
cepts. We exploit the idea of compositionality by assuming
that our main uncertain task (scenicness prediction) can be
predicted by a linear combination of semantic interpretable
concepts, which we learn in a supervised fashion. To do
so, we use a dataset (SUN Attributes) disjoint from the one
employed to train for the main task (SoN). In this way we
exploit the semantic information contained in the auxiliary
dataset and provide interpretable intermediate maps, as well
as a transparent look at their importance in the final deci-
sion.

3. Semantically Interpretable Activation Maps
(SIAM).

SIAM consists of an end-to-end trainable CNN based
on a two-level hierarchical output with a DAP [17] struc-
ture. As in [34], we want to obtain interpretable feature
maps without the need for any additional annotation. But
instead of relying on an unsupervised loss, we make use of
an already existing dataset that contains relevant attributes
(or concepts). This removes the requirement of having to
inspect a substantial part of the dataset to understand the

correct interpretation of each feature map, since the at-
tributes are predefined. Our approach reassembles the inter-
pretable basis representation method of [37], with the main
difference that our system is trained end-to-end and does
not allow a residual; all the high-level information used to
solve the final task must be contained in the interpretable
maps. Our model also uses the average pooling technique
of CAM [36] to also provide the approximate location on
the image of each attribute without the need for any posi-
tional ground truth and without any additional overhead at
inference time.

Figure 2] summarizes the proposed Semantically Inter-
pretable Activation Maps (SIAM) architecture using as ex-
ample a subset of the SUN Attributes as the semantic bottle-
neck A and landscape scenicness as final output ). The first
block of the model, f : X — A, outputs as many feature
maps as there are attribute classes (Section [3.1I). This first
level output is used as input to the second block, g : A — Y,
which multiplies each map with a learned spatial template
(see Fig. @] for a visualization of templates after training),
and linearly combines the resulting activations to obtain the
final scenicness score (Section[3.2)). This direct dependence
between the attribute maps .4 and the final output ) allows
to understand what elements are being detected and how
they are contributing to the output.

The two blocks are trained jointly using the correspond-
ing datasets providing labels for attributes and scenicness,

respectively (Section [3.3).
3.1. Predict attributes with f

As f we use a standard CNN architecture, ResNet-50.
Given an input image x € X = RM*MX3 the output f(x)
isatensor A € A = R™*™*4 of activation maps (one map
A; € R™*™ for each attribute ¢ € {1, ..., A}). In practice
we have used M = 500 and m = 15, but only a center
crop of the maps of size 11 x 11 is used, to reduce potential
border effects. An average pooling is then applied to the
maps to return a vector a € R4 of length A, the number
of attribute classes. The elements a; € a are subject to
a sigmoid non-linearity before being compared to the the
ground truth attribute annotation @; € a via a multi-class
binary cross entropy:

1
Lsyn = 1 Z[di log(a;) + (1 —a;)log(l —a;)], (1)

3.2. Combine attributes for the final result with ¢

We choose the function g, with the output y = g(A)
being a scalar, to be formed by a concatenation of linear op-
erators, making the mapping between .4 and ) easily inter-
pretable as a single linear mapping that provides a template
for each attribute. This operation can be thought of as a
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Figure 2. Flowchart of the proposed model. Each attribute map is multiplied with a learned template (see Fig.[dfor a visualization), and the
resulting activations are linearly combined to obtain the scenicness score. If the input image belongs to the SUN database, only the Lsy n
loss is computed and f is updated. If it belongs to the SoN database, only the Ls,n, which allows to update f o g.

weighted average pooling, where each element of the tem-
plate indicates the weight of the attribute, positive or neg-
ative, towards the final output at every spatial location (see
Figure [ for the templates obtained for the SUN attribute
classes).

A single fully connected template T? is multiplied
element-wise with each individual attribute map, yielding
a single scalar per attribute 2z = T? - A?, without using
a bias term. The absence of a bias ensures that the output
is non-zero exclusively if the attribute has been detected.
To initialize the templates we chose not to use any ran-
domization, since that could inject biases in the how at-
tributes affect the final output. Instead, we learn two non-
negative templates for each attribute map. Both are then
combined, one with a positive weight, the other with a neg-
ative weight. This allows to initialize both templates with
a constant positive value, reducing the bias and leading to
a spatially smoother result. The linear combination makes
it algebraically equivalent to using a single template. The
resulting vector z € R* is then linearly projected onto the
output scalar y = w - z + b, this time with a learnable bias,
which can capture the average value of the output over the
dataset. This output is then compared to the crowdsourced
scenicness value ¢ using a Square Error loss,

Lson = (y — )™ 2)
3.3. Joint training

SIAM solves two inter-dependent tasks: the prediction
of attributes, A = f(x), and the prediction of scenicness

based on these attributes, y = g(A). These two tasks in-
volve two separate losses, needing annotations of attributes
(Eq. (1)) or scenicness scores (Eq. (2)), respectively. We
use two different and non-overlapping datasets for these two
tasks: the SUN Attributes database is used to learn the
attribute maps and the ScenicOrNot (SoN E[) is used as a
reference for the main task of predicting the scenicness. In
practice, we first fine-tune the first part of the model (f)
on the sub-task of predicting the attributes by minimizing
Lsyn. Then, the network is finetunded again using both
tasks,

L= Lsyn +0.1Lgon, 3

in order to learn f o g using samples from both the SUN
and the SoN databases. Samples from either database are
used alternately, and only one of the two losses propagates
gradients at each time: when a SUN sample is considered,
only Lgy v generates a learning signal; when the sample is
from SoN, only Lg,n does. The contribution of Lgyy is
set to be an order of magnitude larger than that of Lg,n to
prevent the model from improving on scenicness prediction
at the expense of its performance on the attributes.

4. Results and discussion

To investigate the ‘performance vs. interpretability’
trade-off, we test the proposed approach on the problem
of automatic landscape scenicness estimation. We use the
dataset provided by the SoN project, from which we ob-

Zhttp://scenicornot.datasciencelab.co.uk/
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Figure 3. Co-occurrence between class presence in an image and its scenicness value on our dataset of annotated attributes over SoN

images. Running and still refer to water bodies, and ice includes snow.

# images SoN RMSE | SoN 7 | SUN
Data Label | Training Validaiton Test Baseline 0.987 0.640 -
SoN Yy 150"000 20000 30’000 SIAM (ours) 1.01 0.607 | 0.418
SUN A 11414 1497 17429 SIAM (no finetuning) 1.24 0.496 | 0.331
Son+SUN | A4, - - 90 Table 2. Numerical results. Scenicness prediction on the SoN test

Table 1. Number of samples per dataset

tained the first 200’000 listed outdoor images from the UK
with at least 3 crowd-sourced scenicness scores. Ordered
by ID, we took the first 150’000 images for training, fol-
lowed by 20’000 images for validation purposes and 30’000
for testing (Table I)).

Regarding the landscape attributes, they are learned using
the SUN Attributes database [23]], from which we have cho-
sen 33 attributes relevant for our task (Figs. [3]and ).

In addition to checking the scenicness estimation perfor-
mances of our model, we need to verify that the attributes
are being correctly predicted on the images from the SoN
database. To this end, an additional set of 90 SoN images
was labeled by 4 different annotators with the same 33 at-
tributes from SUN. Note that this set of SON images with
SUN attributes is used for validation purposes only and it is
never using during training of either block of SIAM.

4.1. Performance on the original datasets

Table [2] shows the impact of using a constrained-but-
interpretable representation bottleneck on the performance
in both tasks. We report both the Root Mean Square Error
(RMSE), as well as Kendall’s 7 rank correlation coefficient,
as in [27], to assess the performances on the scenicness es-
timation task. Average precision is reported for the attribute
detection task [23]].

As a baseline for SoN, we use a finetuned ResNet-50,
pretained on ImageNet, on the task of regressing scenicness
values without making use of attributes. This results in a
performance comparable to the one reported in [27], where
the authors obtained values for Kendall’s 7 ranging from
0.62 to 0.65 on their test set using finetuned DL models.

We observe that training our model SIAM in two sep-
arate steps, f only on SUN and then g only on SoN with
f frozen, results in a substantial drop in accuracy, with a
25% increase in RMSE with respect to the baseline. How-
ever, finetuning the whole model, g o f, jointly on SoN and

set (RMSE and Kendall’s 7) and SUN attribute prediction on the
SUN dataset (average precision). The last row corresponds to
SIAM with only g trained on SoN, instead of the full model f o g.

SUN, not only reduces substantially this gap (by an order of
magnitude, to 2.3% RMSE increase), but also significantly
improves the prediction on the subset of SUN attributes: the
average precision on the SUN test set increases from 0.33 to
0.41. This suggests that both tasks are correlated and con-
firms that optimizing jointly over the two losses does not
penalize the attribute detection. This is of high importance
for the final interpretability of the model, since a substantial
drop in the attribute detection performance would risk mak-
ing the interpretation of each attribute map meaningless.

4.2. Attribute detection on ScenicOrNot images

The small set of 90 SoN images, selected to represent
the whole range of scenicness values and annotated with
SUN attributes, with 10 images randomly selected for each
bracket between integer scenicness scores. This allows us
to get an idea of the co-occurrence between the presence of
these classes and the scenicness values, as shown in Fig. 3]
We can see how a few classes, such as those related to wa-
ter (ocean, still water and running water), rugged and hik-
ing are very correlated with high scenicness values, while
most man-made classes tend to co-occur with below aver-
age scenicness. A few other classes, such as trees, grass,
clouds or farming are much less polarized in terms of their
average associated scenicness.

Table 3| shows the numerical results on these 90 images.
The models used here, including the baseline, are the same
described in the previous section and were trained on the
original training sets of SoN and SUN (Table[T). The over-
representation of images with very low and very high scores
favours both higher RMSE and Kendall’s 7 values. On
scenicness prediction, SIAM matches the performance of
the unconstrained model in terms of RMSE, although still
lags behind in terms of Kendall’s 7. We observe a sub-
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SoNRMSE | SoN 7 | SUN
Baseline 1.23 0.747 -
SIAM (ours) 1.22 0.700 | 0.501
SIAM (no finetuning) 1.68 0.526 | 0.449

Table 3. Numerical results on the 90 images SoN subset
(SoN+SUN in Table |I|) Scenicness prediction on the SoN test set
(RMSE and Kendall’s 7) and SUN attribute prediction on the SUN
dataset (average precision). The last row corresponds to SIAM
with only g trained on SoN, instead of the full model f o g. The
average agreement between the four annotators on the attributes is
0.496.

stantial improvement on the SUN attributes detection task,
matching the average agreement between annotators, which
is of 0.496. This suggests that the improvement on SUN at-
tributes prediction observed in the SUN database (Table [2))
generalizes well to SoN images, which do not contain SUN
attribute labels at training time. This indicates that the se-
mantic bottleneck can be indeed trusted when used to inter-
pret the contribution of each attribute to the scenicness on
the SoN images.

4.3. Visual analysis

Attribute templates. Figure f] shows the per-attribute
SIAM templates T* learned for predicting the scenicness.
Dark green represents a large positive impact on the scenic-
ness when the attribute is present in the corresponding loca-
tion, while dark magenta means a large negative contribu-
tion. White represents a null contribution. The templates in
Fig. @] show that the attributes that contribute most consis-
tently are, on the positive side, hiking, rugged, water (ocean
and still) and ice (which includes snow), and on the nega-
tive side metal, glass, wire, transport and dry. The remain-
ing attributes show some level of location dependency (e.g.
farming has some positive impact when in the bottom half
of the image but a negative one when it is located on the
top third of the image) but have an overall weaker impact
on scenicness.

Activation maps. We analyze the images from the SoN
test set in which our model and the baseline disagree the
most. For each image, we show the eight predicted attribute
maps that contribute the most to the scenicness, both posi-
tively (with a green frame) and negatively (with a magenta
frame). The thickness of the frame around each map rep-
resents the magnitude of the contribution to the scenicness
score. For the baseline and the proposed model we show the
total activation maps, which show how the contributions are
distributed spatially.

Figure [3 illustrates some examples where our proposed
model (SIAM) performs well in attribute detection. The
spatial distribution of the scenicness is similar in both STAM
and the baseline, but the elements that induce the latter to
fail are not straightforward to discern, showcasing how ex-
planations by localization might not always be satisfactory.

Figure [6] shows cases in which the error in scenicness
can be easily attributed to misclassifications at the attribute
level, allowing to correctly guess whether the model is over-
or underestimating the score. In the top example, the reflec-
tion in the water is misclassified as road, impacting the pre-
diction negatively. In the middle, the top of the phone booth
is also misclassified as road, driving down the estimation of
the score. In the bottom case, the reflection on the lake is
predicted as ice, which is assigned a large positive contribu-
tion.

The examples in Fig. [7 represent cases where the base-
line model captures subtleties related to attributes (or ob-
ject classes) that are not explicitly considered. In this case,
SIAM remains blind to those contributions, since it is con-
strained to use only the pre-selected classes in the inter-
pretable bottleneck. In the top and middle examples, the
attribute classes metal and transport are not able to capture
subtleties such as the added aesthetic value of a vintage tram
or a pleasant boat. In the last one, the positive scores of the
rugged and mountain features overwhelm the dirtiness de-
tected in a landfill.

These examples show that a fix and predefined set of at-
tributes might not suffice, and a method for the discovery of
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potentially useful attributes could play arole in the selection
of additional attribute classes. In addition to this, we often
see that, although reasonable, the activation maps do not al-
ways match well with the semantics of the image. This is
due to the weakly supervised nature of the attribute learn-
ing process, and some additional supervision, in the form of
segmentation maps, could help solve this issue.

5. Conclusion

We propose the use of a semantic bottleneck made of
Semantically Interpretable Activation Maps (SIAM) to pro-
vide an explanation of a CNN’s output. These maps inform
about what objective elements are relevant, where in the im-
age they are, and how they contribute to the final prediction.
We applied this method to the subjective task of landscape
scenicness estimation, by forcing the model to use an in-
formation bottleneck that is jointly trained to predict a set
of 33 landscape related attributes from the SUN Attributes
database. Firstly, looking at the model layers that use the
attribute maps as input, we can understand how the output
will react to the presence of a given class at a given location
on the images. Secondly, when an image is shown to the
model, the activation maps and their contribution to the final
score can help the user understand which elements are being
used to construct the final score and get a hint about poten-
tial sources of errors. Despite a small loss of performance

transport lass dry

hiking rusty road wire
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Figure 7. Failure cases in which STAM mispredicts the scenicness without obvious mistakes on attributes prediction.

rusty

(smaller than 2.5% in terms of RMSE) in scenicness esti-
mation, we observed a boost in the attribute detection and,
more importantly, a much richer source of interpretation of
the predicted value, without needing additional annotation.
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