INITIAL BEDROCK AND SOIL DEPTH

Comparing differently derived soil depth and bedrock strength inputs for rieda

landscape evolution modelling of the Bergantes catchment (Spain).

Introduction

Altitud .
o 188477 B o Depth to bedrock is an

= Low : 442.84 important initial condition for
landscape evolution models as it
governs the magnitude of
erodibility and sediment
availability. This comprises
estimation of soil depth,
thickness of recent alluvial
deposits, slope material and
U T unconsolidated bedrock, that in
AT A turn are derived from geology,
3 climate and landscape position.
For this aim, relatively simple
30m gridded bedrock depth
maps are constructed using
increasinlgy complex
information from the 30m DEM
derivatives and the IGME
geology map (Fig. 2) on these
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Fig. 1: The Bergantes catchment location
showing the 30m DEM with crosssection.
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Fig. 2. Left: simple elevation slope based soil depth maps
used for initial model runs. Right: geological map.

nt to Unconso/idated m

Veld
WOr

(ACSIMILE

nd Computer SIMulation In Landscape Evolution

FACSIMILE

Over the past decade the FACSIMILE working
group (Field And Computer Simulation In
Landscape Evolution), founded by Maddy,

kamp and Wainwright, has been
King on the synergy between numerical

has
sing

pala

modelling and field-based approaches. The
past few years the FACSIMILE working group

been focusing their attention to one
le catchment: the Bergantes river, a

tributary of the Guadalope river, that drains
the south-east part of the Ebro basin
(Northeast Spain, Fig. 1, 3). Various experts
in the fields of computer simulation,

eohydrology, geochronology,

geomorphology and sedimentology work
together in an attempt to improve the
synergy and understanding of the Late
Quaternary landscape evolution of the
Bergantes catchment over the past 140 Ka

S e with a multidisciplinary approach.

aterials.

Methods and Results

Using slope, elevation and landforms based on Topographic Position Index (TPI)' from SAGA-GIS ( Fig 4),
relations between landforms and soil depth are listed (Table 1). Soildepth is linearly scaled with elevation and
slope. Below: TPI landform factors lead to a slope-landform based soil depth map. Because soil depth in the
Bergantes varies with climatic periods", a subdivision between two initial climates is made: 1) Warm, moist,
with developed soils and incised streams and 2) cold, dry, with thin soils on slopes and thick deposits in
streams. A factor three more available soil material in the warm moist scenario occurs, whilst in the cold dry
scenario, most unconsolidated material occurs in streams (Fig 5, 6).

@BUUU T‘IZIDDEI T1EIEICICI TEUIEIEIEI T24IDUD TZBICICIEI T32|DDD ?SEIEIEIEI T4EIIEIEIEI 744000 T4BICICIEI TEEIDDD o
=1 Landforms 2 | Warm, Cold, BedrockDepth_WarmMoist
~ - i Value
- High Ridges molist Dry . High : 2.982
. 5 ’i”’ds';"g% Ridges . TPl Landform Landform Bedrock Bedrock L aams
= | ocal RKidges 2 | .
=1 I Upper Slopes & (Weiss, 2001) factor factor  factor
[ 1 Open Slopes
[ 1 Plains
- | I Valleys - Streams, canyons 0 0.1 1
4 I Upland Drainages & :
= | [___1 Midslope Drainages ~ |V|Id.S|Ope
B strcams drainages 1 0.8 0.5
= =1 Upland drainage 2 0.9 0.5
o valley (U-formed) 3 2 2
Plains 4 2 0.2
=1 21  Open slopes 5 1 0.1
_ _ Upper slopes 6 1 0.1
) ) Local ridges 7 0.3 0
= S 11— =|  Midslope Ridges 8 0.3 0
= 02 4 6 8101214 16 18 5
708000 "}12'000 716000 720000 724000 728000 732000 735000 740000 744000 743000 752000 High ridges 9 0.3 0

Fig. 5: bedrock depth (m) under warm,
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Evaluation Initial bedrock depth

The increased amount of detail of the 30m DEM compared with the coarser Soilgrids data
seems valid, given the complex relief and geological subsurface in the catchment. The Vale
Facsimile-Bergantes products are better in producing heterogeneous bedrock depth =
pattern witnessed in the field. Bedrock depths of Crossection Il (Fig. 8) resemble local

relief variation and valley infillings with increasing complexity.
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SoilGrids comparison

The Soilgrids project' produced global 250m gridded bedrock depth
maps. For the finer resolution modelling demands of the Bergantes
catchment, their depths and patterns do not resemble catchment
patterns well. A map showing the probability of the occurrence of an
R horizon (bedrock) within 2 meter resembles catchment patterns

best and is converted to a d
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A bedrock depth input for Landscape

lution modelling should reflect the
ropriate initial conditions at the time of
start of the model. Several terraces are

recognized along the Bergantes'!, two of
which a palaeoDEM has already been created
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