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“Great minds against themselves conspire.”

- from Dido and Aeneas, H. Purcell





Foreword

In the opera ‘Dido and Aeneas,’ composed by the English composer Henry Purcell, the
Queen of Carthage (Dido) and the Prince of Troy (Aeneas) share a brief romance, before
being driven apart by malicious forces (witches) pretending to represent the will of the
Gods, leading to the death of Dido. However, it is made clear by the chorus that all of this
suffering was unnecessary had either of them had the clarity of mind to look beyond their
own grievances: “Great minds against themselves conspire, and shun the cure they most desire.”
When I participated in a performance of this opera during the final stage of my PhD re-
search, I felt a certain resonance between the words sung and the process of completing
a PhD, or even, by Jove, with research in general.
There is a risk of a PhD project becoming a lone struggle against unaccomplishable goals
and high standards, most of them self-inflicted. Mental health statistics do not look friendly
on PhD candidates: it seems we do ‘against ourselves conspire’. As with Dido and Aeneas,
outside influences play an important role, but let’s hope that supervisors and colleagues
do not have to be compared with the foul witches from the opera who introduce them-
selves with “Harm’s our delight, and mischief all our skill.”
The cure is out there. My cure has been in the great support of friends, fellow PhD can-
didates in Wageningen and at Deltares, doing small side projects and presentations that
showed me how much I had grown in knowledge, conferences, deep and shallow science
discussions, a certain night in Stockholm, understanding supervisors, performing in a sci-
ence related music performance and in the EGU poetry slam, and many other things.
I remember a conversation at the start of my thesis about ‘not wanting to write papers
that are just another paper on an endlessly growing pile of papers.’ My growth as a scien-
tists might be that I now realize the folly of that thought and can look at the pile of papers
not as an enemy, but as confirmation that what I do matters not only to me, but for other
people as well.
Still, I have good hope that this thesis will, just like a skilful forecast, make some impact
before becoming part of history. It is for that reason that I have chosen to dedicate a spe-
cific section of the synthesis to concrete advise to improve the forecasting system used by
the Water Management Centre for the Netherlands (WMCN).
So without further ado, I present the result of four years of conspiracy and cure, a thesis
that can proudly claim its place on the grand pile of PhD theses, and I am glad for that.
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Chapter 1

Introduction

1.1 Why this work?

The threat of increased extreme weather events and their negative consequences, such
as floods and droughts under climate change, has increased the awareness of such devas-
tating events. It is no longer enough to know how likely a flood or drought that has just oc-
curred was, but the new question is if future events will happen more often and are more
extreme (van den Hurk et al., 2016). However, it is not true that extremes exist only be-
cause of climate change. Processes in the hydrological cycle (e.g. precipitation, temper-
ature, streamflow, etc.) are well known to have statistical distributions that show enor-
mous natural variability with ‘casual’ extreme events that can easily differ one or more
orders of magnitude in size compared to average conditions (e.g. Katz et al., 2002; Katz,
2010).
It is the role of environmental scientists to help society to deal with environmental risks,
both current risks and future risks. This societal request has led to a shift towards more
‘actionable climate research’ (Asrar et al., 2013). Research should not only answer ques-
tions about the future climate, but also inform people about how to respond and to act
(Palmer, 2012). It is not enough to generate knowledge; the gained insights have to be
communicated with practitioners and science communication has become an integral
part of being a good scientist (Peters et al., 2008).
This thesis has been written in the framework of the IMPREX (IMproving PRedictions
and management of hydrological EXtremes) project. The rationale behind the IMPREX
project is that ‘present prediction and projection systems, and the present use of the in-
formation derived from these systems, are a starting point to understand, put in context
and make progress on the impacts of a future climate’ (van den Hurk et al., 2016). With
the motto ‘learn from today to anticipate tomorrow’ it takes into account two points that
have been briefly introduced above. First, the realization that the best way (or at least
a good and effective way) to prepare for future extremes is to draw from, and build on,
the knowledge and practices that exist in managing and estimating the hydrological ex-
tremes of today. Second, that actionable research is best achieved by inviting local part-
ners that have to deal with climate and water resource problems on a daily basis into the
scientific process.
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Chapter 1. Introduction

The local partner of the research presented in this thesis is the ‘Watermanagementscen-
trum Nederland’ (WMCN, translation: Water Management Centre for the Netherlands).
The WMCN is a part of the Ministry of Infrastructure and Water Management, that is
tasked with supplying actual information on the current status of all water bodies and
rivers relevant to stakeholders in the Netherlands. The WMCN provides crisis manage-
ment in the event of floods, droughts or heavy pollution, but also acts as a place to share
knowledge about water management (Rijkswaterstaat, n.d.). In particular, the WMCN
runs and manages a forecasting system for the main rivers entering the Netherlands: the
Meuse and the Rhine. The latter of these two rivers is taken as test bed for the studies
presented in this thesis.
In the remainder of the introduction, I first briefly explain the role of hydrological fore-
casts and what type of hydrological forecasts are the target subject of this thesis (1.2). This
is followed by a walk-through of such a short-to-medium term forecasting system, to give
some insight on what type of components are involved in making such a forecast (1.3).
Next, I narrow down on the research topic of this thesis by explaining what I mean with
‘operational aspects’ (1.5). This results in the research questions (1.6), followed by the the-
sis outline (1.7).

1.2 What are forecasts and how are they used?

A hydrological forecast concerns the estimation of future states of hydrological phenom-
ena (WMO, 2009). Hydrological forecasts are made to aid decision making in water man-
agement, in particular to manage adverse consequences of water shortages (droughts)
and excess of water resources (floods). Hydrological forecasts are part of risk manage-
ment strategies. In general, (flood) risk management incorporates the following steps
(Alfieri et al., 2012):

1. Prevention

2. Protection

3. Preparedness

4. Emergency response

5. Recovery and lessons learned
Forecasts provide early warning and are an essential part of the preparedness phase of
hydrological risk management.
The applications of hydrological forecasts are many, dependent on which hydrological
states are forecasted and how far into the future the forecasted event will occur. The time
between that the forecast is issued and the moment that the event occurs is called the
lead time of the forecast. Several fields of application of hydrological forecasts and their
relation with lead time are shown in figure 1.1. Based on the lead time, forecasts can cat-
egorised into groups, each with associated methods:
Short-term forecasts have a lead time up to two days. Very short-term forecasts that

forecast up to a couple of hours are also referred to as (radar)nowcasting. Now-
casting models predict precipitation essentially based on extrapolation from a se-
ries of consecutive weather radar scans up to a few hours (Liguori and Rico-Ramirez,
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1.2. What are forecasts and how are they used?

Figure 1.1: Different uses of hydrological forecasts and associated lead times and uncertainty. From
Verkade (2015).

2014). Short-term streamflow forecasts in larger basins can be reliably achieved
by extrapolating from currently observed upstream streamflow. Short-term fore-
casts are mostly relevant on a small spatial scale, as local conditions can change
most quickly from safe to dangerous and include hazards such as land slides and
flash floods.

Medium-range forecasts have a lead time ranging from two to ten days. This lead time
is achieved by using numerical weather prediction (NWP) systems. Specifically,
limited area NWPs are used. Limited area NWP are higher resolution models that
take the results of a global NWP as boundary conditions to resolve the local weather
at more detail than is possible on the global scale (Baldauf et al., 2011). Medium-
range forecasts target rivers at the (sub)basin scale (Renner et al., 2009; Jaun and
Ahrens, 2009; van den Bergh and Roulin, 2010; Addor et al., 2011). The accuracy of
NWP models becomes questionable beyond 10 days (Bartholmes et al., 2009). Skil-
ful hydrological forecasts can occasionally be made for larger basins (e.g. the whole
Rhine) beyond 10 days when the initial conditions are the main influence on the fu-
ture state, for example under very stable weather conditions with little rainfall, or
large dependency on spring snow-melt (Wanders et al., 2019).

Long-range or seasonal forecasts deal with monthly to seasonal time scales. Seasonal
forecasts are different from the aforementioned forecasts, in that seasonal fore-
casts rely on a combination of initial conditions (e.g. snow storage) and climate
precursors such as the El Niño Southern Oscillation (ENSO) to predict monthly ag-
gregated values of, for example, streamflow. Whereas historically seasonal fore-
casting models relied on statistical relations between climate precursors and ob-
servations, currently seasonal forecasts are also produced based on climate mo-
dels (Yuan et al., 2015).

Climate projections deal with expected meteorological and hydrological changes on the
scale of years to decades. A remaining issue is how to effectively translate these
long-term changes into actual future weather (Hazeleger et al., 2015). Climate pro-
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Chapter 1. Introduction

jections are not usually grouped as operational forecast. Nonetheless, climate pro-
jections clearly aim to improve preparedness and (emergency) response and there-
fore fit the broader picture of operational forecasting, albeit on a timescale that is
more associated with policy making.

This thesis deals specifically with medium-range forecasts. For the Rhine basin, 10 days
is at the limit of skilful prediction of precipitation from NWPs (Renner et al., 2009; van Os-
nabrugge et al., 2019). The next paragraph gives a technical overview of the medium-range
forecasting system under study.

1.3 Medium-range hydrological forecasting systems

Different components that are necessary to produce medium-range hydrological fore-
casts can best be explained by describing an actual forecasting system. The forecasting
system that is repeatedly evaluated in this thesis is the forecasting system RWsOS Rivers,
the forecasting system that monitors the two largest rivers entering the Netherlands: the
Rhine and the Meuse. The RWsOS Rivers forecasting system is based on Delft-FEWS. The
Delft-FEWS software provides a platform by means of which operational forecasting sys-
tems can be constructed (Werner et al., 2013). Delft-FEWS is not a model, but takes care of
all the processes in between: data import from observation networks or external forecast-
ing models, pre- and postprocessing of these data, and scheduling and running the mo-
dels that perform the forecast. Delft-FEWS is used in over 40 forecasting systems world-
wide (Werner et al., 2013).
To start the forecasting process for the Rhine, hydrometeorological data is imported in
FEWS from several observation networks: precipitation and temperature from the SYNOP
(a standardized protocol to share gauge data) network and from national agencies such
as the Koninklijk Nederlands Meteorologisch Instituut (KNMI), Deutsche Wetter Dienst
(DWD), the Swiss Federal Office of the Environment (FOEN) and MeteoFrance; water lev-
els and discharges from several river gauge networks; numerical weather predictions from
several sources such as the ECMWF, KNMI and DWD; precipitation radar data (RADOLAN)
from the DWD; and forecasts that are provided by external parties such as the stream-
flow forecast for the Rhine at Basel from the FOEN and snow cover from again the DWD.
As of yet, not all data that are imported are used in the production of the forecast. With
many more possible sources of information available such as satellite-based observations
of, for example, soil moisture and radiation, and more local observations of streamflow
throughout the basin, there is certainly room to improve the forecasting process by in-
cluding additional data.
Before the forecasting models can be run, it is often necessary to preprocess the imported
data. Most notably, the raw measurements need to be validated by an automatic quality
control procedure so as to limit errors in the forecast due to obvious errors in the imported
data (Blenkinsop et al., 2017). Another preprocessing step is the spatial and temporal in-
terpolation of data to provide areal estimates and to fill gaps in the time series. Other
preprocessing could include bias-correction of NWP forecasts data (Verkade et al., 2013).
After preprocessing, all necessary data is exported to the forecasting models in a data for-
mat that the models can understand. To make the forecast for the Rhine, multiple models
are being used. First, a hydrological rainfall-runoff model is used to translate observed
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1.3. Medium-range hydrological forecasting systems

and forecasted precipitation and temperature into runoff for 148 subbasins in the Rhine.
Second, the calculated runoff is fed into a hydrodynamic model that models the propa-
gation of the water through the main course of the Rhine river.
The first model, and the modelling step that will be a focus in this thesis, is the hydrolog-
ical model that translates observed and forecasted precipitation and temperature into
runoff for 148 subbasins in the Rhine. The hydrological model is the center of hydrologi-
cal forecasting systems (Werner et al., 2013). At the start of this thesis project (Oct 2016),
the operational hydrological model was the HBV96 model. The HBV96 model lacks the
flexibility to make use of recent advancements, such as the rapid expansion of available
satellite derived spatial information (see e.g. Peng et al., 2017; Guo et al., 2017; Zhang et al.,
2017; Li et al., 2016; Lettenmaier et al., 2015; Thakur et al., 2017; Balsamo et al., 2018; McCabe
et al., 2017, for some recent reviews), standardized interfaces such as OpenMI (Gregersen
et al., 2007), and the call for open and reproducible science through shared and open mo-
dels (Hutton et al., 2016). It has a closed model base and does not share common data
sharing conventions, which makes coupling with other applications, that can improve in
the forecast, unnecessarily difficult. Additionally, partial updating of parameters for dif-
ferent applications such as for low flows, high flows, hourly and daily time step and for
policy use, including corrections on precipitation, makes interpretation of results more
difficult. This has led to the conclusion that the HBV96 model has reached its end of life
status for operational hydrological applications in the Rhine basin. In this thesis, atten-
tion is given to a possible replacement. Firstly in the form of wflow_hbv, which is a transla-
tion of the old model concept to the wflow hydrological modelling framework (Schellekens
et al., 2019a) and secondly in the form of wflow_sbm, which is a different model concept
altogether (see Chapter 5).
Before future run-off can be calculated by the hydrological model, first the current condi-
tions, the so-called initial conditions, need to be determined by running the model based
on historical observations until the time of forecast, referred to as t0. Better initial con-
ditions improve the subsequent forecasts. State updating is a data assimilation method
that can improve the initial state estimate (Sun et al., 2016). This was not used in RWsOS
Rivers yet for the hydrological model and is thus another possibility for improving the
forecasts. State updating is investigated in Chapters 6 and 7.
After the initial state is determined by the historical update run of the model, the actual
forecast model run is made. The forecast run is done with the same model as the historical
update, starting from the initial state and forced by the forecasts. For RWsOS Rivers, sev-
eral forecasts are made with the same model and initial state, but forced with data from
different limited area NWP models. Furthermore, the forecast of a NWP does not consist
of a single value for each lead time (deterministic forecast), but consists of a collection
of possible future states (ensemble forecast) as expressed by a fixed number of ensem-
ble members in which each member is a possible future state. A calculation is made for
each ensemble member, leading to an ensemble forecast of discharge for each of the sub-
basins.
After the run of the hydrological model, the results can be further adjusted by applying
postprocessing techniques. Postprocessing in RWsOS Rivers is done with ARMA correc-
tion (see Chapter 7) and quantile-to-quantile mapping (Verkade, 2015).
The second model that is run is a hydrodynamic SOBEK model that models the water flow

5



Chapter 1. Introduction

Figure 1.2: Arrow representing the rationale behind operational forecasting. The transition from
left to right is accomplished using operational forecast services.

in the main course of the Rhine river. The SOBEK model takes the observed (for the his-
torical update run) and forecasted discharge from the hydrological model as input for the
final forecast of discharge and water level at Lobith, which is where the Rhine enters the
Netherlands. The SOBEK model and hydraulic modelling is outside of the scope of this
thesis.
As a last but not to be underestimated step, the results have to be presented to the fore-
casters at the WMCN and disseminated to other users of the forecasts. The results of the
forecast for the Rhine (and Meuse) are used as boundary conditions to run models for the
Rhine delta and water allocation in the Netherlands. Effective dissemination of forecasts
is a subject that has been gaining increased attention of the forecasting research com-
munity in recent years, especially what the communication about forecast uncertainty is
concerned (Ramos et al., 2010).

1.4 Operational hydrological forecasting

Operational forecasting systems refer to systems that continually issue forecasts with a
fixed schedule, for example two times a day at 00:00 and 12:00, 24/7. The goal of oper-
ational forecasting is to transform ‘raw’ (hydro-meteorological) information into opera-
tionally useful concepts and knowledge with the goal of taking informed action, in real
time. During the forecast exercise our knowledge of the system and measurements of
input and output variables are, by means of statistical methods and/or process-based
models, extrapolated in both time and space, as shown in Figure 1.2. Because the ex-
act meaning of ‘operationally useful concept’ is end-user defined, hydrologic operational
modelling is a separate niche within the larger hydrological research community. The
field of meteorological forecasting provides an example of a field where studies on the
numerical computation and data challenges of operational systems form their own sub-
discipline.
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1.5. What is meant with ‘operational aspects’

Traditionally hydrological research was developed to cater client needs (Freeze and Har-
lan, 1969). However, with the advancement of process understanding and challenging
research questions, involving change to the studied system, it became apparent that sim-
ply being right (i.e. matching the observed hydrograph) was not enough. One has to
be right for the right reasons (Kirchner, 2006), meaning that for a justifiable use of a hy-
drological model the model should not only replicate the variable that has to be fore-
casted over a historic period (e.g. river flow at Lobith), but the model’s internal distri-
bution of flows should also match the hydrologists understanding of the basin (Klemeš,
1986). While there a broad agreement on this point, it has to be recognized that 1) for
most operational systems it is currently impossible to verify that modelled processes cor-
respond to real-world processes because of experimental data scarcity, and 2) it might
not be possible at all to run models that resolve all processes on the micro-scale opera-
tionally because of the mentioned data constraint and computational constraints (Beven,
1989).
The art of operational forecasting is focused on translating measured and predicted ob-
servables into an end-user defined product. The hydrological model in this case is not
used for ‘truth-finding,’ but to enable the modeller to answer a user-defined question.
Historically, this would involve classic inquiries regarding streamflow characteristics such
as ‘What will the discharge be next day, week or month?’, ‘What is the expected frequency
of a certain event?’ Today, it is accepted that hydrological systems are under constant
change (Montanari et al., 2013). While the current response of the system to hydrometeo-
rological forcings might be quite well understood, new questions arise with respect to the
future (Wagener et al., 2010). These questions ask for new operational models which give
the modeller access to the perceived controls on streamflow generation, such as land-
use, climate, and the change thereof.
Operational hydrological forecasting is more data-oriented than (flow) process-oriented.
Operational forecasting is not about truth-finding, although it is logical that answers that
closely resemble reality are more useful. Independent of the modelling philosophy used
in setting up the forecasting models, the data available in real time is the starting point,
which is then used in two ways (Fig. 1.3):
On one hand, all available historical data can be used to set-up and calibrate a model
which translates measurable and predictable observables into a forecast of a requested
variable. Within hydrology, this is the traditional art of building a rainfall-runoff model.
On the other hand, all currently available measurements of observables can be used to
adjust the model prediction to more likely values using data assimilation techniques,
making use of all sorts of real-time available data (e.g. from remote sensing) besides only
the required input data of a model.
The future of operational forecasting is then in combining these two pathways to make
predictions as good as possible, warranted by the quality of the model, the quality of the
data, and the efficiency to extract relevant information from those sources, in real-time.

1.5 What is meant with ‘operational aspects’

Operational aspects deal with challenges that arise on scientific topics when interacting
with operational practice. It is not only about knowledge on the topic, but also about gen-
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Chapter 1. Introduction

erating knowledge about the use of knowledge and methods in practice. For example,
as discussed in Chapter 3, the topic of precipitation interpolation, or the estimation of
areal precipitation in general, is a vivid research topic (one you could easily spend mul-
tiple PhDs on) producing many methods to complete the task of estimating spatial pre-
cipitation from a network of precipitation gauges and in combination with other sources
of information (e.g. Brauer, 2014; Hazenberg, 2013; Rios Gaona, 2017). The goal is usually
to find the optimal method. Intersecting this topic with forecasting practice, new con-
straints are introduced, which limit the freedom to search for such an optimal method.
The operational aspect of precipitation interpolation can be found in the suitability of a
method to be used in an operational context.
The operational context adds additional requirements. Operational forecasting is set apart
from hydrological science because of a set of constraints particular to the operational
forecaster:

Near real time availability of data Lack of data is a major constraint in all hydrological
research. This holds from the practical viewpoint that many catchments are un-
gauged (Hrachowitz et al., 2013), but it has also been realized for a long time that
it is impossible to measure hydrological fluxes and stores on each relevant scale
(Klemeš, 1983). Point measurements are not representative for the heterogeneity
of input observables, while spatially gridded products are too coarse to capture all
relevant detail.
The additional data constraint for operational forecasting is that data sets have to
be available in (near) real-time. There is a constant need for input data, without
which the operational model cannot run. In contrast, for other purposes such as
frequency analysis or off-line historical systems analysis it is less relevant when the
measurements become available.
Not all data is available in (near) real time. For example, certain remote sensing
products can have delays for up to a couple of days or weeks; Only a limited set of all
available observations might be shared with the forecaster through data sharing
agreements.

Continuous operation Operational systems are in constant operation. The repetitive-
ness of the task calls for a high level of automatization, but also for robustness in
used methods. In particular, methods should be robust against errors in the data
and missing data.

Processing time There is a strict constraint on processing time determined by the re-
quired update schedule. For example it may be required that a new forecast is is-
sued every day, or every six hours, or even every hour. This limits the processing
time.
Additionally, processing time is time that is ‘borrowed’ from lead time as the lead
time is decreased by the time it takes to make the forecast. A longer lead time in-
creases the positive impact a forecast can have in mitigating negative consequences.
This is most limiting for (very) short term forecasts. As lead time is an important
indicator of the quality of a forecasting system, efficient algorithms are more than
just a convenience and cost savers, but do directly impact the forecast quality by

8



1.5. What is meant with ‘operational aspects’

Figure 1.3: Representation of the steps in operational forecasting. The triangles represent the dif-
ferent focus areas, while the arrows show the flow of information between different aspects. The
starting point is the available data on top. Information from this data is used together with expert
knowledge to build a model which, based on a certain amount of input data, provides forecasts.
The same or other data sources can be used simultaneously to reflect on the perceived quality of
the generated forecast and make updates where necessary through data assimilation schemes.

influencing the lead time. Alternatively, delays in data availability can negatively
impact forecast quality.

Desicion making under uncertainty Forecasting systems are tools to aid decision mak-
ing. Presenting the forecast, including its uncertainty, to the decision maker is there-
fore an integrated part of the forecast chain. To be able to do this, not only must the
sources of uncertainty in the model be well understood, the interaction between
the presented information and the user must also be taken into account (Ramos
et al., 2010). The degree of uncertainty is not just a measure of model performance,
as is often used in model comparison studies, but is important information for the
decision maker (e.g. Weijs et al., 2010). Based on the estimate of predictive uncer-
tainty and objective guidance on the level of confidence in the forecast, the end
user can decide to take action based on their risk tolerance (Demargne et al., 2014).

Due to the predictive uncertainty increasing with lead time, situations can arise a
specific trade-off between predicting an event with a long lead time, but a low pre-
dictability, and one with a short lead time, but high predictability. Because both
might be required by the water manager, and the consequences might be consid-
erable, the meaning and degree of uncertainty must be thoroughly understood.

Operational aspects include then all steps between and including the observations and
gathering of the input data up to and including the dissemination of results to the end-
user, under the constraints presented here.
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Chapter 1. Introduction

1.6 Research questions

As laid out above, hydrological forecasts are a useful and cost-effective tool to aid deci-
sion making. Hydrological forecasts are based on a set-up consisting of several model and
data components which need to be integrated for an effective forecast. Part of this model
train is the hydrological model. Regarding hydrological models, there is a current trend
to move towards high-resolution spatially distributed gridded models, both in the wider
literature and in the specific case of the forecasting system RWsOS Rivers of Rijkswater-
staat. Concurrently, the forecasting models are used for ensemble forecasts and are fur-
ther improved with data assimilation techniques. The combination of those two move-
ments, gridded models and ensemble forecasts including data assimilation, leads to new
challenges, conceptually, but even more so when intersected with operational practice.
This has led to the following research questions about these operational aspects of hy-
drological forecasts:

Research questions

• To what extent is hydrological operational forecasting a separate scientific subfield
in hydrology and to what extent is it the summation of other determined subfields?

• What are the outstanding challenges in operational forecasting related to the change
from lumped to gridded hydrological models?

• In which manner does case-specific actionable research contribute to the science
of hydrological modelling and hydrological forecasting?

1.7 Thesis outline

The outline of this thesis is as follows. The thesis consists of five chapters (Ch. 3-7) con-
taining original research under the theme of operational aspects of hydrological fore-
casts in the Rhine basin. The ordering is determined logically from the order of the mod-
elling/forecasting process as reflected in the title of this thesis: interpolate, simulate, as-
similate. The chapters are presented in such a way that they can be read stand-alone.
Chapter 2 provides an overview of the Rhine basin. Both Chapter 3 and Chapter 4 focus
on the foring used in hydrological models.
Chapter 3 describes the genRE method: a method to interpolate precipitation based on a
limited amount of rain gauge data under operational conditions.
Chapter 4 presents the results of an experiment with different types of potential evapo-
ration forcing. It also describes the production of the temperature and potential evapo-
ration gridded dataset that complement the precipitation dataset from the first chapter
to form a complete set of forcing data to perform distributed hydrological model experi-
ments.
Chapter 5 is all about simulation as a new hydrological model concept for modelling the
Rhine is introduced: wflow_sbm. It is the only chapter were this model concept is used,
as later chapters return to the wflow_hbv model. The model development is an impor-
tant part of the improving predictions narrative and showcases the interrelation between
forecasting issues and model development.
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1.7. Thesis outline

Chapter 6 and 7 then continue with data assimilation. Lake level measurements are used
to improve the initial conditions in the Swiss part of the Rhine basin (Chapter 6) and a
comparison is made between currently implemented post processing techniques and data
assimilation techniques in a large scale assimilation experiment including all the major
subbasins of the Rhine.
The last chapter, Chapter 8, synthesises on the conclusions from the earlier chapters and
extrapolates these conclusions together with other lessons-learned into comments both
on the scientific context and specifically also into advice related to operational forecast-
ing. It is this latter part which I hope will be read by the operational forecasters at the
forecasting centre at Rijkswaterstaat and other operational hydrological forecasting cen-
tres and I hope it will form a basis to further improve predictions in the Rhine basin and
beyond.
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Chapter 2

Study area

2.1 The Rhine basin

The river Rhine (figure 2.1) runs from the Swiss Alps along the French-German border,
through Germany and enters the Netherlands near Lobith, where the Rhine river enters
into the Rhine delta. At Lobith, the basin area equals approximately 160,000km2 (Verkade
et al., 2013).

Sub-basins and topography

The Rhine basin can be partitioned in many sub-basins. In particular the main tributaries
of the Rhine are treated as separate river systems: the Aare and Swiss Rhine in Switzer-
land, the Neckar and Main in Germany and the Moselle in the French-German border re-
gion.
The river is partitioned in six different reaches:
Alpine Rhine from its source in the Alps to the outlet in Lake Constance.

High Rhine from Lake Constance untill Basel (Switzerland). Main tributary is the river
Aare.

Upper Rhine from Basel untill Bingen (Germany). The rivers Elz, Kinzig, Murg, Ill, Neckar
and Main are important tributaries in the Upper Rhine.

Middle Rhine from Bingen untill Bonn (Germany). Here the tributaries Lahn and Moselle
join the Rhine.

Lower Rhine from Bonn untill Pannerdense Kop (The Netherlands). Tributaries in this
part are the Sieg, Ems and Lippe.

Rhine Delta from the bifurcation at Pannerdense kop towards the sea, where each bi-
furcation carries a different name.

Verkade et al. (2013) used three spatial scales when analyzing ECMWF precipitation and
temperature ensemble reforecasts in the Rhine basin: headwaters (defined as gauged
sub-basins smaller than 2500km2), main tributaries, and the whole basin as represented
by the flow into the Rhine delta at Lobith.
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Chapter 2. Study area

Figure 2.1: Map of the Rhine basin (UNEP/DEWA/GRID-Europe, Retrieved on 20-07-16 from
http: // grid. unep. ch/ /products/ 4_ Maps/ basin_ rhineb. gif)
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2.1. The Rhine basin

Figure 2.2: Screenshot of the ‘Hochwasserportal,’ a website providing an overview of near real-
time water level measurements (www.hochwasserportal.de). The situation at the gauges (Situ-
ation am Pegel) is the highest recorded water level in the period 30-05-2016 untill 03-06-2016,
during which a high water level alert was issued.

Runoff regimes

The Rhine has an average discharge of 2200m3s−1 at Lobith. Snow and snowmelt have
a large effect on the river Rhine’s discharge dynamics. During spring and early summer,
more than half of the river’s flow at the outlet originates from snowmelt in the Swiss
Alps (Verkade et al., 2013). River flow is less prone to fluctuations than that of other Eu-
ropean rivers of comparable dimensions because of the different hydrological character-
istics, which show opposing factors in seasonality. In the Upper Rhine, discharge is lower
during the cold season because a large part of winter precipitation is transferred towards
the warm season in the form of snow. The lower Rhine, on the other hand, has a reversed
relation, because in the low mountains and lowlands snow storage is negligible and sum-
mer precipitation largely evaporates. The Alpine Rhine shows a very irregular discharge
regime, but this is filtered by Lake Constance, downstream of which discharge is relatively
steady (Kalweit et al., 1993).

Floods in the Rhine basin

The classification of a certain event as a flood event is a matter of perspective. For exam-
ple, June 2016 saw local flood events due to extensive and intensive rainfall in the Ger-
man states of Baden-Württemberg and Bayern. Also, some of the tributaries recorded
very high water levels. However, the flood peak in the main river was not threatening
(Fig. 2.2).
The largest recent flooding event with a large risk of flooding in the Netherlands hap-
pened around Christmas 1993 and during the last ten days of January 1995. The 1995 ex-

15



Chapter 2. Study area

traordinary flood was caused by a number of record-breaking rainfall events, spaced over
the time period of a week, partly augmented by snow-melt. A long duration of extreme
flood levels on the river Moselle led to a situation where interference with any surge com-
ing down the Rhine was extremely likely, which is what happened. Finally, a smaller, but
ill-timed, rainfall event leading to additional inflow from the river Sieg atop of the already
extreme water levels led to the observed record discharges (Finkl et al., 1996).

Anthropogenic influence on landscape and flow regime

A good overview of anthropogenic influences on the Rhine river can be found in Kalweit
et al. (1993). The river Rhine serves many purposes for the over 60 million inhabitants of
the basin. The enormous rise in economic productivity produces stress on the landscape.
Wood and wasteland have been replaced by agricultural land, which has been made pos-
sible because of flood protection, drainage and irrigation measures. Besides agricultural
land, also the area occupied with paved surfaces and the like has increased dramatically.
Different sectors of industry play an important role in the basin and have, in some areas, a
large influence on river flow and more strongly on water quality and water temperature.
For example, open brown coal mining in the Lower Rhine area required to lower ground-
water levels by hundreds of meters. Now that mining is coming to an end, it is a great
challenge to restore the area to ‘natural’ groundwater levels. Other direct influences are
the use of Rhine water as cooling water for nuclear power plants and hydro-power pro-
duction in the High Rhine, Upper Rhine and numerous tributaries.
The Rhine is an important transportation artery for the European main land. For this pur-
pose the river Rhine has been made navigable with locks and weirs and connected to
canalized rivers and canals. Relatively new factors in water management planning con-
cerning the Rhine are recreational possibilities and ecology. For the latter fish population
is the most important indicator of the ecological quality of the Rhine river.
Through the years the demand to control the waters of the Rhine river have led to many
interventions. During Roman times engineering works mainly served shipping, as this
was of exceptional importance as a means of transport, in those days. Early settlements
and agricultural valuable lands were already protected by dikes.
Regulation of the river started during the Middle Ages. The first river diversions were car-
ried out and flood protection, drainage and irrigation works were created. The use of wa-
ter power was introduced and extended throughout the basin. Two notable advanced
measures were the diversion of the Kanderbach into the Lake of Thun in the Alps, which
resulted in strong attenuation of flood peaks. Along the Upper Rhine successful, and last-
ing, cut-offs were realized.
Regulation measures have become more coordinated in the 19th and 20th centuries, in-
cluding cooperation between riparian states. Stretches of the river and its tributaries were
provided with a stable and regular bed, routed through natural lakes in the Alps. Reser-
voirs were constructed in the higher parts of the basin and an extensive network of dikes
was constructed in the lower reaches.
These structures substantially impacted flood trends. It was found that the construction
of the Rhine weir cascade and other river training measures were responsible for up to
10% change in observed flood trends (Vorogushyn and Merz, 2013). However, time series
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2.1. The Rhine basin

corrected for this river training still exhibit strong significant trends for a number of time
periods with climate variability and/or change, land use change and river engineering in
tributaries as possible perpetrators. This shows the difficulties that arise when assessing
the Rhine as a pure free-flowing river.
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Chapter 3

A spatial hourly precipitation dataset for
model experiments in the Rhine basin

To enable operational flood forecasting and drought monitoring, reliable and consistent
methods for precipitation interpolation are needed. Such methods need to deal with
the deficiencies of sparse operational real-time data compared to quality-controlled of-
fline data sources used in historical analyses. In particular, often a fraction of the mea-
surement network reports in near real-time. For this purpose we present an interpola-
tion method, generalized REGNIE (genRE), which makes use of climatological monthly
background grids derived from existing gridded precipitation climatology datasets. We
show how genRE can be used to mimic and extend climatological precipitation datasets
in near real-time using (sparse) real-time measurement networks in the Rhine basin up-
stream of the Netherlands (approx. 160.000 km2). In the process, we create a 1.2x1.2
km transnational gridded hourly precipitation dataset for the Rhine basin. Precipitation
gauge data is collected, spatially interpolated for the period 1996–2015 with genRE and
inverse-distance squared weighting (IDW), and then evaluated on the yearly and daily
timescale against the HYRAS and EOBS climatological datasets. Hourly fields are com-
pared qualitatively with RADOLAN radar based precipitation estimates. Two sources of
uncertainty are evaluated: station density and the impact of different background grids
(HYRAS vs EOBS). The results show that the genRE method successfully mimics climato-
logical precipitation datasets (HYRAS/EOBS) over daily, monthly and yearly time frames.
We conclude that genRE is a good interpolation method of choice for real-time opera-
tional use. genRE has the largest added value over IDW for cases with a low real-time
station density and a high resolution background grid.

This chapter is based on: van Osnabrugge, B., A. H. Weerts, and R. Uijlenhoet (2017), genRE: A Method to Extend
Gridded Precipitation Climatology Data Sets in Near Real-Time for Hydrological Forecasting Purposes, Water
Resources Research, 53(11), doi: 10.1002/2017WR021201
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3.1 Introduction

Accurate and reliable areal gridded precipitation is one of the most important hydrom-
eteorological input variables for hydrological model development and calibration, ex-
treme value estimation, as well as for operational hydrological forecasting. With the ad-
vent of high temporal and spatial resolution hydrological models (e.g. Bierkens et al., 2015;
Wood et al., 2011) there is an increasing need for estimates of precipitation at equally high
temporal and spatial resolutions (Euser et al., 2015; Melsen et al., 2016). For operational hy-
drological forecasting, high resolution forcing data is needed to derive the best estimates
of the initial conditions at the start of the forecast. Subsequently, data assimilation tech-
niques (Liu et al., 2012; Rakovec et al., 2012, 2015) may be used to further improve these
initial state estimates. High resolution historical precipitation data is also needed to re-
solve the model tendencies of the weather forecasts with equally high accuracy.
In Europe, current and past efforts to construct transnational (gridded) datasets of precip-
itation have mainly focused on climatological analyses (Haylock et al., 2008; Rauthe et al.,
2013; Photiadou et al., 2011; Isotta et al., 2014). The derived datasets have space-time res-
olutions appropriate for climatological analyses, where trends encompassing periods of
decades are investigated. However, they do not meet the high resolutions needed for lo-
cal modeling of streamflow, where relevant processes need to be resolved at sub-daily
timescales (Ficchì et al., 2016; Lobligeois et al., 2014), and local spatial differences in precip-
itation can be large, especially in mountainous areas (Tobin et al., 2011). Such areas are not
covered in sufficient detail in the current gridded datasets.
Currently available gridded datasets are not available in near real-time, needed for hy-
drological forecasting, either. Deriving high quality near real-time gridded forcing data
for operational hydrological forecasting is a challenge. While some European national
meteorological agencies provide this kind of information in near real-time, for many na-
tional hydrological agencies this information is not available. As a consequence, the task
of deriving aerially averaged rainfall in near real-time is often conducted by the responsi-
ble hydrological forecasting agencies. For transboundary catchments (e.g. Danube, Elbe,
Oder, Rhine, Sava etc.), this is an even greater challenge.
Additionally, hydrological models are calibrated to a certain spatial distribution of pre-
cipitation (Euser et al., 2015). For example, a structural overestimation of precipitation in
one region might be compensated for in the model with larger soil stores to dampen the
peak flow resulting in good calibration scores, but for the wrong reasons (Kirchner, 2006).
An important requirement for the hydrological forecasting agencies is therefore that the
real-time precipitation estimates should reflect the climatology of the data used for cal-
ibration.
The main issue hampering the derivation of high quality precipitation information in near
real-time is the limited availability of rain gauge data, either due to restrictions in the
equipment and infrastructure used, or due to restrictions placed on the data by the data
provider. Many more historical observations are often available for deriving climatolog-
ical daily precipitation grids, providing important information on orographic and other
effects on areal precipitation which is difficult to derive in near real-time.
It seems therefore attractive to capture this hard-won information from climatological
gridded precipitation datasets and use it to emulate and extend these high quality data-
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sets in near real-time for hydrological forecasting purposes, but based only on opera-
tionally available data.
With this goal in mind, we describe in this paper an interpolation method for operational
use called genRE. We propose that genRE is a suitable candidate to bridge the gap be-
tween high quality offline climatological datasets and the real-time operational datasets
needed by hydrological forecasting agencies.
The genRE method is evaluated regarding its capacity to emulate the HYRAS climatolog-
ical dataset (Rauthe et al., 2013) for hydrological forecasting purposes in the Rhine basin in
western Europe upstream of the Dutch border. However, the method is not only applica-
ble in the Rhine basin but can be employed in any (transnational) basin to derive gridded
areal precipitation datasets for operational streamflow forecasting if a suitable gridded
climatological precipitation dataset is available.
The aim of this work is therefore (1) to investigate if the genRE method indeed mimics and
extends climatological precipitation datasets in near real-time using (sparse) real-time
rainfall measurement networks, (2) to create a high resolution (near real-time) gridded
precipitation dataset for the purpose of high resolution hydrological modeling of stream-
flow and (re)forecasts in the Rhine basin, and (3) to evaluate the precipitation interpola-
tion procedure used, in a hydrological sense.
Considering our aims we answer the following research questions:

1. Does the use of a background grid based on a reference climatological gridded
dataset for interpolation of hourly rain gauge observations result in comparable
climatology and realistic areal precipitation fields at different (yearly, daily, hourly)
temporal scales for operational forecasting?

2. What is the effect of station density on the quality of the obtained gridded data-
sets, and how is the background grid affected by the length of the employed clima-
tological reference?

3. Does the use of the genRE method lead to modelled discharges which are consis-
tent with those obtained with the reference climatology as forcing for a model that
is calibrated on the latter?

The data and study area are presented in Section 2. Sections 3.1 and 3.2 describe the
genRE interpolation method and the employed hydrological model. The evaluation set-
up is explained in Section 4. The results are presented in Section 5, followed by discussion
and conclusion in Sections 6 and 7.

3.2 Study area and Data

Rain gauge data

The Rhine basin upstream of the Dutch border (approx. 160.000km2) is part of eight dif-
ferent countries (Fig.3.1, Chapter 5.2). To ensure a smooth transition over the basin bor-
ders, data was also collected for The Netherlands. Consequently, precipitation data was
collected from seven different providers. Some of the data is freely available (Nether-
lands, Germany). Other data could be accessed after subscription (Switzerland), or was
provided without fee after contacting the provider (Luxembourg, Belgium, France). Data
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Figure 3.1: Overview of the Rhine basin in UTM32N projection with Digital Elevation Model as
background. The thick black lines delineate the eight major sub-catchments with names in italic
blue. The thin grey lines represent 148 smaller sub-catchments. The black squares show the loca-
tions of four streamflow measurement stations used in Figure 12.

for the Austrian and Liechtensteinian part of the basin (5 stations) was collected from an
operational archive of SYNOP precipitation stations provided by the Bundesanstalt für
Gewässerkunde (BfG, Germany). Although a tiny part (51 km2) of the Rhine basin can be
found in Italy, no data was collected from that country.
All available stations with hourly resolution have been used in the interpolation scheme.
It was decided to start interpolation in June 1996 as this was the start time of the hourly
precipitation gauge series made available on the DWD climate data server which covers
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Germany.
The total number of stations contributing to the data set at each time step and their spa-
tial distribution are shown in Figure 3.2. Two things are worth noticing. First, the number
of stations available in near real-time steadily increases over time, with the quickest in-
crease between 2004 and 2008. To stress the point of the limited availability of real-time
data, keep in mind that the complete observation network includes more stations than
in the 2015 figure, for the whole period. Second, the number of stations with measured
data at each individual (hourly) timestep fluctuated. Large downward peaks resembled
moments in time where, for example, no data was recorded for any of the German sta-
tions. The loss of station coverage for a large part of the domain is incidental and is dealt
with through a preprocessing step in the interpolation procedure, detailed in the meth-
ods section. For clarity those outings are not shown in Figure 3.2a.
The data was checked for outliers. The check relies on simple thresholds based mainly on
record values measured in Germany and expert opinion of operational forecasters in the
Rhine basin (Weerts et al., 2008). Individual hourly values above 90mm and below 0mm
were removed from the dataset, which resulted in the removal of only seven occurrences
of values above this threshold and two instances of erroneous reporting of negative pre-
cipitation. As a secondary check, time series were checked against multiple thresholds for
different aggregation times: 50mm, 90mm, 120mm, 150mm and 250mm for 1hr, 3hr, 6hr,
12hr and 24h, respectively. Instances where the threshold was exceeded were flagged
and investigated manually to assess if the recording was plausible.
It should be noted that no check was performed on the long-term consistency (temporal
homogeneity) of the time series and that artefacts of changing measurement conditions
are to be expected. Together with the changing measurement density this makes the cre-
ated dataset unsuitable for trend analysis (Peterson et al., 1998).

Reference precipitation climatology datasets

In this study we compare our gridded precipitation estimates with three gridded precip-
itation datasets (Table 3.1).

• The HYRAS (HYdrologische RASterdatensätze) v2.0 (Rauthe et al., 2013) dataset,
which was obtained via the Bundesanstalt für Gewässerkunde (BfG).

• The E-OBS v13.1 (Haylock et al., 2008) gridded dataset, which was retrieved from
the European Climate Assessment and Dataset website.

• RADOLAN (Bartels et al., 2004) gauge adjusted precipitation estimates, taken from
the data feed of the experimental operational forecasting system for the Rhine
running at Deltares.

HYRAS

The HYRAS dataset has been developed by the German Weather Service (DWD) (Rauthe
et al., 2013). The dataset covers the so-called KLIWAS domain, which comprises a num-
ber of transboundary river basins that flow through Germany, including the Rhine. The
gridded estimates are created using the REGNIE method, which is explained in section
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Figure 3.2: a, Number of available precipitation gauges for each time step inside the Rhine basin
upstream of the Dutch border. DWD: Deutscher Wetterdienst, MFRA: Météo France, LUX: Admin-
istration de la gestion de l’eau du Grand-Duché de Luxembourg, SWI : Meteo Swiss, SYN: SYNOP
stations from operational archive; b, Spatial distribution of hourly reporting gauges for four years
during the interpolation period. The black lines represent country borders and the blue lines show
the location of two major rivers: the Rhine, from south to north and the Danube from west to east.
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Table 3.1: Properties of the reference data sets as compared to genRE

genRE HYRAS EOBS RADOLAN
Time step Hour day day 15 min

Grid size 1.2x1.2 km 5x5 km 0.25
deg 1x1 km

Period 1996–current 1951–2006 1950–current 2005–current

Domain Rhine
basin KLIWAS Europe Germany

Updates Near
real-time Sporadic Monthly Near real-time

Reference (This
paper) (Rauthe et al., 2013) (Haylock et al., 2008) (Bartels et al., 2004)

3.3, from a data base of at maximum 6000 stations spread over the larger KLIWAS do-
main. Based on Rauthe et al. (2013, Fig. 2) we estimate that the station density is at least
comparable with the state of the hourly real-time reporting network of figure 3.2b for the
year 2015.

EOBS

The European Daily High-Resolution Observational Gridded Dataset (E-OBS) (Haylock et al.,
2008) is based on daily precipitation observations from the European Climate Assess-
ment and Dataset and interpolated with a three step method. At the time of writing,
62 stations were active inside the Rhine basin out of a total of 11383 stations in the com-
plete database (European Climate Assessment & Dataset, 2017). Firstly, monthly sums are
interpolated using trivariate thin-plate splines with latitude, longitude and elevation as
variables. Secondly, the daily anomalies are interpolated using universal Kriging. Last,
the monthly and daily steps are combined. The method provides daily standard errors
for every grid square.

RADOLAN

RADOLAN (Radar-Online-Aneichung) (Bartels et al., 2004) is another precipitation prod-
uct from the DWD. It merges gauge measurements from 1300 stations with radar-derived
precipitation from 16 weather radars covering Germany. The merge is based on interpo-
lating gauge precipitation and anomalies between gauge and radar data in different ways
and then taking a weighted sum of the different components. Due to the range of the rain
radars, the French part of the Rhine basin is also included. The Swiss part of the basin is
excluded, however.
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3.3 Methods

genRE interpolation method

The genRE method was inspired by a method from the DWD (German weather service)
called REGNIE (‘REgionalisierte NIEderschlagshöhe’, which translates as ‘regionalized pre-
cipitation amounts’) (Rauthe et al., 2013). Because we deviate in a number of ways from
the original REGNIE method to make it more generally applicable and applicable in real-
time, we refer to the method as used in this paper as generalized REGNIE or genRE.
The genRE and REGNIE interpolation method are two-step methods. First, monthly pre-
cipitation background grids (MBGs) are derived, one for each month of the year, with the
expected precipitation amount for each grid cell for that month. In particular, the MBGs
can be derived from existing gridded climatological datasets by calculating the average
monthly precipitation sum.
Second, the monthly precipitation background grids are used in inverse-distance squared
weighting as follows:
To calculate precipitationP at a given grid cellx from a number ofn surrounding gauges,
first calculate the ratio between the value of the monthly background grid at location x
and the value of the monthly background grid at the gauge location for every gauge i to
create a set of multipliersmi,x from the gauges to the given grid cell. Hencemi,x would
change based on the month:

mi,x =
MBGx

MBGi
(3.1)

Next, determine a set of weights based on inverse-distance squared weighting between
all gauges (typically then closest gauges) and the grid cell. This step can have a threshold
for maximum distance as well. di,x is the distance between gauge i and cellx:

wi,x =
1/d2

i,x∑n
i=1

1/d2
i,x

(3.2)

Finally, use the weights and the multipliers to predict the precipitation at grid cellx:

Px =
n∑

i=1

Pimi,xwi,x (3.3)

This formulation makes the role of the background grid clear. Precipitation measure-
ments at locations that are expected to be dry get amplified for cells that are expected
to be wet and measurements at expected wet locations are dampened for cells expected
to be dry. Note that sincemi,x has a range of [0,∞),mi,x is indeed a multiplier and not
a weight.
For implementation we use a slightly different form. Substituting Eq. (3.1) in Eq. (3.3) and
takingMBGx out of the summation gives:

Px =MBGx

n∑
i=1

Pi

MBGi
wi,x (3.4)
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In this form, genRE can be easily implemented with an existing inverse-distance squared
weighting package. First relative precipitation, Pi/MBGi , is interpolated with inverse-
distance squared weighting and then the resulting relative precipitation field can be mul-
tiplied with the MBG to get the desired precipitation fields.
The main difference between REGNIE (Rauthe et al., 2013) and genRE is that the REG-
NIE method specifically uses Multiple Linear Regression (MLR) based on five explanatory
variables: geographical longitude and latitude, height above sea level, exposition, and
mountain slope at the stations, to derive the monthly precipitation background grids. In
genRE, the background grids are calculated from existing climatological datasets.
There are two reasons for using existing climatological datasets over deriving monthly
climatological datasets from raw data independently. First, as shown in this paper, using
an existing climatology forces the interpolation to spatially mimic the reference clima-
tology, which is a quality sought after by flood forecasters as calibrated models might be
’tuned’ to a certain areal distribution of rainfall (Andréassian et al., 2001). Second, many
flood forecasting agencies are tasked with deriving areal rainfall for their domains, but
have only access to a limited part of the available measurements. In many cases the re-
sources (time, people, money to purchase data) are lacking and thus this approach offers
an alternative to other makeshift solutions.
Two additional, smaller, differences between REGNIE and genRE are that we extend the
use of genRE to also interpolate on an hourly basis, where REGNIE was developed to inter-
polate daily accumulations, and that we interpolate to each grid square in the field and
do not copy station data directly to the related grid square as is done in REGNIE. The first
is not a methodological difference, but an extension of the use of the algorithm for use
at shorter time scales. The second decision was made because we did not see any reason
to give special treatment to cells containing stations, favouring a continuous approach.
An additional advantage is that the original measurements cannot be retrieved from the
interpolated results, which can help navigating data sharing agreements that prohibit
sharing station data, but allow sharing of the interpolated product.

Monthly background grids

The background grids are calculated from the HYRAS 2.0 gridded data set (Rauthe et al.,
2013). This is done simply by summation of the daily precipitation amounts for each cal-
endar month over the full time span of the HYRAS dataset (1951–2006) and then dividing
this by the total number of days. This results in one background field per calendar month,
twelve in total, at the grid used in HYRAS (ETRS89-LCC with 5 x 5 km spatial resolution).
The background grids are included in the Supplementary Information (S01). To calculate
m(i, x) for each grid cell, we resampled the background fields with nearest neighbour
resampling to our model grid (1.2 x 1.2 km spatial resolution and projection in UTM32N).
This was repeated to calculate background grids using EOBS (Haylock et al., 2008) data for
the period 1995-2016 to investigate the effect of the choice of background grid on inter-
polation results.
The nearest neighbour method for resampling the grids to our model grid was chosen
to prevent smoothing and to ensure that the background values at the station’s locations
would not change. However, as a consequence, multiple pixels from the 1.2 x 1.2 km grid
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that fall within one pixel of the lower resolution climatological grids receive the same
background grid value.

Implementation of genRE for the Rhine basin

The method is already effectively employed as interpolation method in the operational
flood forecasting and drought monitoring system called ‘RWsOS Rivieren’, part of a clus-
tered multi-hazard early warning system operated by the Dutch Ministry of Infrastruc-
ture and the Environment (in Dutch: Rijkswaterstaat, RWS) (Weerts et al., 2008). This
genRE set-up, however, was not yet evaluated for its intended purpose, namely to closely
mimic the HYRAS climatology, over a longer time period.
genRE was implemented with the Delft-FEWS (Werner et al., 2013) operational forecast-
ing platform. The inverse-distance squared weights were calculated from the eight clos-
est stations (n=8) within a maximum distance of 100km. A distance of 100km was chosen
to ensure that there was full coverage for the whole basin at any time step. This is accept-
able as it is close to the decorrelation distance of hourly precipitation in the Netherlands
which is 90 km in winter and 30 km in summer (van de Beek et al., 2012).
Specific to this Delft-FEWS implementation of genRE is how gaps in station data were
handled. A gap filling step was necessary because whole sections of the observation net-
work did fail at the same time and secondly because of how the inverse-distance squared
weighting was implemented in FEWS. In our FEWS implementation the active gauge net-
work and related weights were calculated once for each day. A gauge was included for in-
terpolation for all days between the station’s first and last record in the database. During
pre-processing it was verified for each station visually if there were any large gaps dur-
ing this period. If necessary, the active period was adjusted to remove unnecessary gaps.
Still, stations could have missing data, reflecting operational circumstances. Incidental
gaps in station data were then filled in a two step hierarchical procedure: 1) genRE itself is
used to assign precipitation values for the station without data; 2) if gaps remained, rel-
ative precipitation values are interpolated linearly in time with a maximum gap of 1 time
step.

Hydrological model of the Rhine basin

The hydrological model used is the HBV (Hydrologiska Byråns Vattenbalansavdelning)
model concept (Lindström et al., 1997a) applied to a 1.2 x 1.2 km grid as implemented in
the open source hydrological modelling framework wflow (Schellekens, 2016). The gener-
ated runoff is routed through the river network with a kinematic wave approach. In the
following we refer to this model as wflow_hbv.
The parameters for wflow_hbv were derived from an earlier HBV model, HBV-148, that
is used in the daily operational forecasting suite for the river Rhine at RWS. HBV-148 con-
sists of 148 sub-catchments where each sub-catchment is a hydrological response unit
(HRU). The HRUs were parameterized through calibration with a Generalised Likelihood
Uncertainty Estimation (GLUE) like procedure (Beven and Binley, 1992), using HYRAS pre-
cipitation as forcing data (Winsemius et al., 2013a,b). To transfer parameters from HBV-148
to wflow_hbv, every grid cell in wflow_hbv inherited the parameters of the sub-catchment
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in HBV-148 the cell belongs to. During preliminary testing, the resulting streamflow gen-
eration of wflow_hbv was shown to be very close to the streamflow generation of HBV-
148. This gave confidence that the model behaves well enough to use it for our current
purpose of investigating the influence of different precipitation forcing data on stream-
flow generation without the need to spatially aggregate the input forcing to the 148 sub-
catchments or costly recalibration of wflow_hbv. This is not too surprising, as spatial prox-
imity is known as a strong parameter regionalization method (Merz and Blöschl, 2004).

3.4 Experimental set-up

To answer our research questions we constructed several experiments. Concerning the
first question, we hypothesized that the climatology of interpolated precipitation grid-
ded datasets made with genRE resemble their donor climatology. This implies that the
genRE climatology resembles the HYRAS climatology where HYRAS is used as reference
and that it resembles the EOBS climatology if EOBS is used as reference. If no background
grid is used, in which case genRE defaults to inverse-distance squared weighting, infor-
mation on orographic effects, etc. is lost.
To test this hypothesis, genRE was applied with background grids derived from the HYRAS
and EOBS climatologies, and the obtained genRE climatologies (yearly sums and monthly
averages) were compared with plain inverse-distance squared weighting and the HYRAS
and EOBS climatologies for the period 1997–2006. Furthermore, we compared genRE
with the HYRAS dataset for daily accumulations and with the RADOLAN gauge adjusted
radar product for hourly fields. The latter comparison is only qualitatitve to reflect on the
spatial detail found with the present day gauge network with genRE.
We expect that as the station density increases, the influence of the background grid will
diminish. For this purpose, the obtained spatial patterns of yearly precipitation accumu-
lations are compared for two time periods of interpolation: 1997–2006 and 2006–2014.
During the latter period the station density is much higher as the number of stations has
increased from roughly 100 stations to 500 stations inside the basin (see also Fig. 3.2 in
the data section).
To investigate the effect of gauge density in a quantitative manner, the Pearson correla-
tion coefficient was calculated between the yearly sum grids from plain inverse-distance
squared weighting and the genRE method for each year. The correlation is expected to
increase with station density.
The variability in the background grid was investigated by taking a 9-year moving average
of monthly precipitation amounts from the HYRAS data record of 56 years resulting in 47
possible background grids for each month. These were normalized by dividing them by
the value of the background grid obtained by averaging all 56 years. Then, the 47 nor-
malized values were used to determine the standard deviation for each grid cell for each
month. The 9-year moving average was chosen to reflect the time span over which the
results were analysed, which is 10 years (1997–2006) and 9 years (2006–2014).
Additionally, minimum and maximum background grids were calculated for each month
by taking the minimum and maximum of all 47 possible background grid values for each
pixel, respectively.
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Finally, the hydrological model is fed with both genRE precipitation and HYRAS precip-
itation. The modelled discharge for each location is extracted from the model grid by
determining on which pixel the streamflow gauge is located. Where the gauge coordi-
nates did not coincide with the right streamflow pixel, as determined by visual compar-
ison between the locations of streams in openstreetmap and the stream network from
the model, the gauge coordinates were adjusted to match the right stream in the model.
The hydrological impact of choosing the HYRAS or genRE data set as precipitation forcing
over the period 1997–2006 is expressed by calculating the Kling-Gupta Efficiency (KGE)
(Gupta et al., 2009). To exclude sites where the model performed non-behaviorally and
thus to limit the effect of model set-up on our analysis of the effect of precipitation forc-
ing, we only analyze pairs for which the model results were deemed behavioral, expressed
as a KGE > 0.5 for at least one of the applied forcings. The model runs start on 01-06-1996
and the first half year is used as spin-up period.
The Kling-Gupta efficiency is calculated by:

KGE = 1−
√

(r − 1)2 + (α− 1)2 + (β − 1)2 (3.5)

With,
α =

σm
σo

β =
µm

µo

In which r is the linear correlation coefficient between modelled and observed values,σ
the standard deviation andµ the mean of modelled (m) and observed (o) flows.

3.5 Results

Climatological evaluation of genRE approach

To show the influence of the genRE method, three interpolation schemes were used: genRE
with HYRAS as background grid, genRE with EOBS as background grid and plain inverse-
distance squared weighting. The results were compared with their respective reference
climatologies. Following the rationale behind the genRE approach, the expectation was
that the interpolated products would closely match the spatial patterns found in their
respective climatology reference.
The genRE products match indeed their reference climatologies, especially when com-
pared with plain inverse-distance squared weighting. The influence of the genRE method
is clear in that Figures 3.3b and 3.3e resemble their reference climatologies in Figures 3.3a
and 3.3b. There are clear differences in spatial patterns of yearly average precipitation ac-
cumulations between methods and between reference climatologies.
The genRE, IDW and EOBS climatologies are significantly different from the HYRAS cli-
matology (Fig. 3.4). At first sight, Fig. 3.3 seemed to indicate that, even for the period
(1997-2006) with relatively low network density, the yearly patterns found in HYRAS are
well emulated with the genRE method. However, the genRE method results in 4% less
rainfall over the whole Rhine basin compared to HYRAS over the period 1997–2006 (Fig.
3.4).
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Figure 3.3: Spatial distribution of average yearly accumulations over the period 1997-2006 ob-
tained with: a, HYRAS reference climatology; b, genRE approach with HYRAS as background
grid; c, plain inverse-distance squared weighting; d, EOBS reference climatology; e, genRE ap-
proach with EOBS as background grid. The last sub figure (f) shows the state of the gauge network
for a representative year (year 2000).

The largest biases are concentrated in a number of regions. Firstly, large biases are seen
in Luxembourg and southern Switzerland (Fig. 3.4a), where genRE yields up to 30% less
precipitation than HYRAS. Secondly, there are a number of distinct points (e.g. clear red
and blue dots in Switzerland) where genRE underestimates or overestimates precipita-
tion compared to HYRAS, which seem to be related to locations where individual stations
in genRE have a large weight because of the lesser station density compared to HYRAS.
Although locally the differences between genRE and HYRAS are substantial, those dif-
ferences are smaller than those between IDW and HYRAS (Fig. 3.4b).
The EOBS climatology has the same spatial distribution of precipitation as the HYRAS
climatology and genRE, but much more diluted due to the coarser spatial grid as rain
rates are a function of scale (Tan et al., 2017). The effect of averaging over larger regions
becomes especially significant when the EOBS climatology precipitation values are pro-
jected on the higher resolution grid of genRE (as would be the case when using EOBS data
with a high resolution hydrological model). Although the bias of the EOBS climatology
compared to the HYRAS climatology is small, large local differences due to the spatial av-
eraging are visible, following a raster-like pattern (Fig. 3.4c). Local differences between
the HYRAS and EOBS reference climatologies are much larger than between HYRAS and
‘emulated HYRAS’ with the genRE method (Fig. 3.4a). A raster-like pattern is also, but
less, visible in the other sub-figures, which is caused by resolution differences between
the genRE and climatological HYRAS grid.
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Figure 3.4: Differences (%) between methods in terms of average yearly climatology projected on
the high resolution (1.2x1.2km) model grid. a, genRE (with HYRAS) – HYRAS b, IDW – HYRAS
c, EOBS – HYRAS.

The differences in climatology between HYRAS and genRE persist also when evaluating
the grids on multi-year monthly averages (Fig. 3.5), with the largest average biases during
autumn and winter. Based on the spatial pattern we noted structural underestimation or
over-estimation of precipitation in the same areas as before.
For the 1997–2006 period genRE underestimates precipitation sums compared to both
HYRAS and EOBS in most sub-basins for January, February, October–December. Addi-
tionally, genRE underestimates precipitation sums compared to HYRAS in the Moselle
sub-basin for the whole year.
In Figure 3.6 we compare seven of the most extreme rainfall events, which gave the high-
est areally averaged precipitation over the different main sub-basins according to HYRAS
in the period 1996–2006. The matching patterns are evident, although HYRAS has a shar-
per delineation of local peaks and between precipitating and non-precipitating areas. For
example, for the event of 18-sep-2006 genRE shows clearly two maxima in the Vosges
area, while HYRAS shows a more homogeneous field, due to the higher station density
underlying the latter. Likewise, for the event of 07-jul-1999 HYRAS distinguishes between
two local peaks in the northern part, whereas genRE merges these peaks into one general
area of intense rainfall.
The differences between genRE and HYRAS are quantified for three events in Figure 3.7:
two of the six extreme events from Figure 3.6, and one randomly chosen less extreme
precipitation event (05-oct-2002). Evaluating on a pixel by pixel basis yields a high coeffi-
cient of determination (ρ2) and a low coefficient of variation (CV ) of the residuals for the
two extreme events. For less extreme events the coefficient of determination decreases
and the coefficient of variation increases.
Large deviations from the 1:1 line can be traced back to inclusion or exclusion of individual
gauges. For example, locations where HYRAS includes gauge locations with high inten-
sity rainfall which are not available on an hourly basis and thus not included in genRE,
lead to horizontal stripes in the upper left-hand part of the scatter density plots. The hor-
izontal stripes are caused by the resolution difference; genRE produces 25 values for each
HYRAS value.
In a similar manner, genRE incorporates a smoothing effect, which causes the precipita-
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Figure 3.6: Daily accumulations of seven extreme precipitation events from genRE (left) and
HYRAS (right).
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Figure 3.7: Maps and scatter density plots of areal precipitation according to genRE and HYRAS
for three days. The shown statistics are the basin average for genRE and HYRAS (R andH), the
coefficient of variation (CV ) and the coefficient of determination (ρ2).

tion to extend over a larger area. In the scatter density plot for the event of 05-oct-2002
(Fig. 3.7), we see most of the deviation from the 1:1 line in the lower right-hand part of
the figure, which means that there are areas which yield a relatively high precipitation
value in genRE, but not in HYRAS. This smoothing behaviour is a trait of inverse-distance
squared weighting. The difference in smoothing can be attributed to the number of sta-
tions on one hand, and the fact that we use more stations for each weighting in genRE
(eight closest stations) than in HYRAS (four closest stations) on the other, which we did
because of the limited station density of our base data.
So far, genRE has been compared to the existing HYRAS and EOBS climatological data
sets. However, genRE has been designed to provide hourly precipitation fields for sup-
porting operational forecasting in the Rhine basin. To evaluate these fields, genRE fields
were qualitatively compared with RADOLAN raingauge corrected weather radar based
imagery.
Figure 3.8 shows the temporal evolution of a precipitation field passing over the Rhine
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basin in 2014. The location and timing of genRE and RADOLAN precipitation coincide.
The precipitative areas in genRE do not extend over a larger area than in RADOLAN. This
suggests that the station density underlying genRE has reached a point where it is suffi-
cient (in relation to the areal scale of the Rhine basin) to capture the most relevant details
of areal precipitation as shown by the RADOLAN merged gauge-radar product.

Influence of station density on genRE and variability of the background grid

To estimate the influence of the station density on the genRE method the spatial patterns
were compared for two time periods of interpolation: 1997–2006 (Fig. 3.3) and 2006–2014
(Fig. 3.9). During the latter period the station density is much higher as the number of
available stations jump from 150 to 400 during the years 2005-2006. As indicated by
Fig. 3.10, there is no change in spatial distribution of rainfall between the two periods.
There is notably less difference between the spatial patterns found with the genRE ap-
proach and inverse-distance squared weighting than in the previous period with lower
station density (Fig. 3.9). Some features, however, remain: the second precipitation max-
imum in the Vosges area (annotated with 1 in Fig. 3.9b) and two areas in the Alps (anno-
tated 2 and 3).
To quantify this, the Pearson correlation coefficient was calculated between the grids cal-
culated with plain IDW and the genRE method (with HYRAS as background grid) for each
year. The correlation between IDW and genRE did indeed increase steadily with the num-
ber of stations included in the interpolation, from 0.85 with 110 stations to 0.96 with 480
stations between the years 1997 and 2015 (Fig. A.7).
The large variability of monthly precipitation amounts in the Rhine basin, as recorded
in the reference climatology, makes that the choice of years to calculate the background
grid has significant impact on the absolute values of the background grid. The maximum
range, i.e. the difference between the minimum and maximum value for one grid point
over all 47 background grids, equaled 1.42 times the average background value. In gen-
eral, the range was between 0.3 and 1 times the average value (Figures A.1-A.6 in the ap-
pendix).
The genRE method, however, as shown in Eq. (3.1), is only affected by the local spatial
gradients of precipitation in the background grid and not by absolute background val-
ues. For each monthly background grid from any 9-year average the spatial pattern, in-
dicating where it is relatively wet and where it is relatively dry, remained the same (Fig.
3.10). However, there are differences in local gradients leading to multipliers that have
the same direction (amplifying or dampening) for each possible background grid but dif-
ferent magnitudes.

Resulting effects on discharge simulations

The choice of forcing dataset has distinct implications on model performance as expressed
by the KGE and its decomposition in correlation (cc), bias of the variance (alpha) and bias
of the mean (beta) (Figure 3.11). Notably, HYRAS scores better for Switzerland, while
genRE leads to unexpected improvements in the Moselle. These are the same areas as
those where genRE and HYRAS showed the strongest systematic differences in yearly
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Figure 3.8: The passing of a precipitation event on 10-11 October 2014 as detected by genRE (left)
and RADOLAN (right).
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Figure 3.9: Spatial distribution of average yearly accumulations over the period 2006–2014
obtained with: a, genRE approach with HYRAS as background grid; b, plain inverse-distance
squared weighting; c, genRE approach with EOBS as background. The last sub-figure shows the
current state of the gauge network d.

precipitation amounts. The difference between HYRAS and genRE KGE scores for the
downstream reaches of the Rhine are small (δKGE≤ 0.05).
Looking at the KGE decompostition, there is little difference in correlation score. Larger
differences are found in the relative variability (Alpha) and relative Bias (Beta). In the
main reach of the Rhine the variability of flows is slightly underestimated by genRE and
slightly overestimated with HYRAS leading to mixed results in the difference column.
Variability is too low in Switzerland and too high in the Moselle area, for both forcing
datasets (Fig. 3.11, Alpha).
There is a negative bias in mean discharge for both forcing datasets for the Rhine river
and Switzerland, but this negative bias is smaller for HYRAS than for genRE. Streamflow
mean is also negatively biased in Luxembourg for both forcing datasets. HYRAS leads to
overestimation of mean streamflow in the Moselle area and the Lower Rhine basin (Fig.
3.11, Beta).
The ambiguity of the calculated difference scores (right column, Figure 3.11) is exempli-
fied by the four hydrographs shown in Figure 3.12. For the same basin and in a short time
period, both datasets can result in under and overshoot of modelled discharge peaks,
with little to distinguish between the two. Note that these stations were not used for mo-
del calibration.
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Figure 3.10: 12 out of 47 background grids for January calculated from the HYRAS climatological
dataset.

3.6 Discussion

Discussion of experimental set-up and results

Table 3.1 gave an overview of some important properties of the HYRAS and EOBS dataset
in comparison with the dataset created with the genRE approach. As can be seen, the
reference datasets differed in temporal and spatial resolution. Therefore a choice had to
be made on which resolution the comparisons were made.
A choice often made in this is to aggregate the higher resolution product to the lower
resolution product (Rios Gaona et al., 2016, 2015). Chen and Knutson (2008) in particular
argue that comparing precipitation datasets at different resolutions is unfair. Aggegrat-
ing to the native resolutions of the reference datasets would have meant, however, that
any difference due to the higher resolution of genRE would be ignored, especially in re-
gions with strong topography. We focused here on the application of the high resolution
product in a similar high resolution model, and thus evaluated the performance of the
gridded rainfall products on the hydrological model grid. As a result of this approach, we
noted that the EOBS spatial resolution is too coarse for high resolution hydrological mod-
elling, with very large local differences which exceeded the differences between genRE
and HYRAS.
Concerning the differences between genRE and HYRAS, two methodological factors were
investigated, but not mentioned in the paper in more detail so far, which could contribute
to the large biases in the affected areas: the choice of using the eight instead of the four
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Figure 3.11: Kling-Gupta Efficiency (KGE) scores and their decomposition (CC: correlation coef-
ficient, Alpha: measure of relative variability, Beta: measure of relative bias) for 346 discharge
gauging stations for two interpolated precipitation forcings (genRE and HYRAS) and their differ-
ence. In the difference column positive values indicate more optimal scores for genRE over HYRAS
and negative scores the opposite.
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Figure 3.12: Four exemplary hydrographs of measured (black dots) and modelled streamflow in
the Rhine basin for two different forcings (genRE: orange, HYRAS: green). The locations (a,b,c,d)
are notated in Figure 3.1.

closest stations for inverse distance interpolation and the inclusion of a large number of
stations just outside the Rhine basin domain which were not included in the HYRAS in-
terpolation. Applying these changes led to even larger negative biases in Luxembourg
and to insignificant change elsewhere. The lack of evidence that methodological differ-
ences are the cause of the found biases combined with the fact that the largest negative
bias is during winter hint that the biases might be partially snow related as snow mea-
surements are very sensitive to the equipment used (Rasmussen et al., 2015). More gener-
ally, malfunctioning gauges can lead to underestimation of precipitation means as mal-
functioning gauges mostly report less rainfall, adding to the need for automated quality
control (Steiner et al., 1999).

Routing the genRE and HYRAS precipitation fields through a gridded hydrological mo-
del showed some complex interaction between forcing and model bias. Even though we
assumed that the HYRAS reference precipitation climatology is more reliable than our
genRE product, the hydrological model is less biased and scored higher KGE scores for the
Moselle area. Overall, the wflow_hbv model, here derived without recalibration from the
HBV-148 model, can be improved upon.
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Outlook

There are multiple deterministic and (geo)statistical methods to choose from for interpo-
lating precipitation gauge data. After an extensive literature review Ly et al. (2013) con-
cluded that geostatistical methods seem preferable for the interpolation of monthly and
annual rainfall, but that for daily rainfall geostatistical methods and IDW provide compa-
rable results. This conclusion supports the rationale behind the genRE method, namely
to derive the spatial relationships between grid cells on the monthly time scale and use
IDW for the hourly interpolation. It is also the approach used in the method behind EOBS.
The novelty of the genRE method is not the interpolation method itself, but the use of
existing climatological grids as secondary variable to guide the interpolation, thereby ex-
tending those climatological grids in real-time without the need for additional data. In
that respect, there are multiple ways to build upon both the idea of combining monthly
climatologies with daily or hourly anomalies, and the idea of extracting geostatistical in-
formation from climatological datasets. For example, the climatological grids could be
used to derive the parameters for geostatistical methods, or the background climatol-
ogy could be used directly as a secondary variable in, for example, Kriging with External
Drift (KED). Still, the simplicity of the genRE approach is favorable for operational cir-
cumstances. For example, the European Flood Awareness System (EFAS) chose IDW over
geostatistical methods to maintain their operational gridded precipitation product for
robustness (Ntegeka et al., 2013).
There are also several ways to further improve the dataset we created with the genRE
method. Firstly, there is no substitute for more, and more accurate, measurements, in-
cluding automated verification. The latter is difficult as a distinction needs to be made
between real outliers (extreme events) and errors. Here, static thresholds were used, but
there are methods in development for more dynamic automated verification (Blenkinsop
et al., 2017).
A legitimate concern is the validity of the background grids under changing atmospheric
circulation patterns. For western Europe, both measurement and model based studies
have shown evidence of changing circulation patterns (Bardossy and Caspary, 1990) and
precipitation amounts (Frei et al., 2006, e.g.). For the Rhine basin in particular, different
magnitudes of change of seasonal average precipitation were found for topographical
features in the basin, most notably for the Rhine valley (Hurkmans et al., 2009a; Photi-
adou et al., 2016, Fig. 6). As HYRAS is meant to be updated in the near future, it would be
wise to calculate new background fields when these become available.
The variability in the background grid derived from different subsets of the original data
could be used to construct ensembles, although this would probably count as ‘adding
uncertainty in an ad-hoc manner’ as criticized in (Newman et al., 2015). In this respect it
should be noted that the whole genRE method is an ‘ad-hoc’ method and is not meant to
replace established methods to create climatological datasets, but rather to fill the gap
between those relatively static exercises and the more dynamic reality found in trans-
boundary operational hydrological forecasting.
Finally, the usefulness of the proposed method could be further demonstrated by apply-
ing the method in other (transboundary) river basins and with other climatological grid-
ded datasets. For the Rhine basin, progress is underway to deliver interpolated products
for temperature and potential evaporation in the same spatial and temporal resolution.
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3.7 Conclusions

In this paper a method to extend high quality gridded precipitation climatology datasets
in near real-time for hydrological forecasting purposes was described. It is called general-
ized REGNIE (genRE), linking its origins to the original REGNIE method used in creating
the HYRAS climatology dataset (Rauthe et al., 2013). The aims of this paper were: (1) to
investigate if the genRE method can indeed be used to mimic and extend climatologi-
cal precipitation datasets in near real-time using (sparse) real-time measurements; (2)
create a high resolution (near real-time) gridded precipitation dataset for the purpose of
high resolution hydrological modeling of streamflow and (re)forecasts in the Rhine basin;
(3) evaluate the precipitation interpolation procedure used, in a hydrological sense.
The genRE method yields interpolated fields that closely match the reference climatol-
ogy used in the method on the yearly, monthly, daily and hourly time scale. The method
has the largest added value when employed with sparse gauge networks, which suits the
purpose of the method. The variation in the background grid for HYRAS was estimated to
be of the same order of magnitude as the relative differences found between the genRE
method and the HYRAS climatology. This shows the dependence of the genRE method
on the selected reference climatology and the associated natural variability.
Our work resulted in a gridded 1.2x1.2 km resolution hourly precipitation dataset for the
period 1996–2016, to be updated in real-time, covering the entire Rhine basin. The data
set is unique in spatial and temporal resolution compared to climatological data sets such
as HYRAS and EOBS. Furthermore, it uses a simple interpolation method and can be up-
dated in real-time. This precipitation dataset successfully mimics HYRAS in terms of match-
ing spatial patterns, showing a low yearly bias and a high correlation coefficient for daily
accumulations. Differences in simulated discharges using HYRAS and genRE as expressed
in KGE scores are overall relatively small, but can be significant for individual peak flow
simulations.
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Chapter 4

Contribution of potential evaporation
forecasts to 10-day streamflow forecast
skill for the Rhine river

Medium term hydrologic forecast uncertainty is strongly dependent on the forecast qual-
ity of meteorological variables. Of these variables, the influence of precipitation has been
studied most widely, while temperature, radiative forcing and their derived product po-
tential evapotranspiration (PET) have received little attention from the perspective of hy-
drological forecasting. This study aims to fill this gap by assessing the usability of poten-
tial evaporation forecasts for 10-day-ahead streamflow forecasting in the Rhine basin, Eu-
rope. In addition, the forecasts of the meteorological variables are compared with obser-
vations.
Streamflow reforecasts were performed with the daily wflow_hbv model used in previous
studies of the Rhine using the ECMWF 20-year meteorological reforecast dataset. Meteo-
rological forecasts were compared with observed rainfall, temperature, global radiation
and potential evaporation for 148 subbasins. Secondly, the effect of using PET climatol-
ogy versus using observation-based estimates of PET was assessed for hydrological state
and for streamflow forecast skill.
We find that: (1) there is considerable skill in the ECMWF reforecasts to predict PET for
all seasons, (2) using dynamical PET forcing based on observed temperature and satel-
lite global radiation estimates results in lower evaporation and wetter initial states, but
(3) the effect on forecasted 10-day streamflow is limited. Implications of this finding are
that it is reasonable to use meteorological forecasts to forecast potential evaporation and
use this is in medium-range streamflow forecasts. However, it can be concluded that an
approach using PET climatology is also sufficient, most probably not only for the appli-
cation shown here, but for most models similar to the HBV concept and for moderate cli-
mate zones.

This chapter is based on: van Osnabrugge, B., R. Uijlenhoet, and A. H. Weerts (2019), Contribution of potential
evaporation forecasts to 10-day streamflow forecast skill for the Rhine River, Hydrology and Earth System Sciences,
23(3), doi: 10.5194/hess-23-1453-2019
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4.1 Introduction

Hydrologic forecasting has the aim to predict the future state of important hydrologic
fluxes, most notably streamflow. Throughout the process of forecasting, from model set-
up via initial state estimation to forecast run, meteorological forcing is a key component.
Precipitation is known to be the main driver of hydrological processes and most of the
forecast uncertainty is attributed to inaccurate precipitation forcing (Cuo et al., 2011; Pap-
penberger et al., 2005). As a consequence, most attention has been given to the accuracy
of precipitation forecasts. See for example the review of Cloke and Pappenberger (2009).
Evaporation is a result of the interaction between meteorological forcing and, physical
and physiological, processes at the land surface. Meteorological forcing provides the po-
tential energy (potential evaporation or PET) for evaporative processes to take place. There
are many formulas to estimate the potential energy available for evaporation, which can
be divided in three types of formulas based on their data requirements (Xystrakis and
Matzarakis, 2011; Xu and Singh, 2002): Temperature-based (e.g. Hargreave equation, Ham-
mon’s equation), radiation-based, and combined methods (e.g. Hansen’s equation, Turc’s
equation, Makkink’s equation). From an operational viewpoint the different types of for-
mulas result in different demands on data availability.
Constraints on data availability have led to additional approximations for potential evapo-
ration. A common approximation is the calculation of a monthly potential evaporation
climatology or PET demand curves (Bowman et al., 2016). This climatology is then used as
driver for both historic potential evaporation and future potential evaporation.
Hydrological models have proven to be insensitive to the difference between variable
potential evaporation forcing and climatological monthly potential evaporation forcing
with respect to the model’s potential to estimate streamflow after calibration (Andréas-
sian et al., 2004; Oudin et al., 2005a,b). However, in forecasting, different choices in the
handling of forcing data can be made between the historic update step and the forecast
step, while the hydrological model, as a rule, remains the same. It therefore remains rel-
evant to understand how a single model reacts to potential evaporation forcing. Insensi-
tivity to the type of potential evaporation during the process of calibration does not mean
that a model is insensitive to the form of potential evaporation input.
As mentioned above, there has been little attention of the forecast skill of the secondary
forcing variables temperature and radiation in the hydrological context of potential evapo-
ration. Furthermore, there is an easy and often used practice of avoiding potential evapo-
ration forecasts by using a potential evaporation climatology. Therefore, the objective
of this study is to assess to what extent potential evaporation forecasts can contribute to
streamflow forecast skill.
This question is evaluated for the Rhine basin in Europe (Fig. 4.1). The Rhine is one of
the basins currently employed as case study for the IMproving PRedictions of EXtremes
(IMPREX) project, which aims to improve predictions and management of hydrological
extremes through climate services (van den Hurk et al., 2016).
Several studies already directly addressed some aspects of operational ensemble flow
forecasts in the Rhine. Renner et al. (2009) showed that at the time meaningful hydrolog-
ical ensemble forecasts could be produced up to a 9 day leadtime for the Rhine river based
on ECMWF ensemble meteorological forecasts. Reggiani et al. (2009) used a Bayesian en-
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semble uncertainty processor to improve the assessment of uncertainty in the ensemble
forecast. Terink et al. (2010) applied downscaling techniques to ERA15 ECMWF reanalysis
data to develop a downscaling strategy for regional climate models (RCMs). Verkade et al.
(2013) developed post-processing techniques to improve the precipitation and tempera-
ture ECMWF forecasts for the hydrological model. Photiadou et al. (2011) compared two
historical precipitation datasets and assessed the influence of precipitation datasets on
model results. Recently, van Osnabrugge et al. (2017) developed a high resolution hourly
precipitation dataset for use with gridded hydrologic models.
To answer the research question model experiments are performed, but first the data
and hydrological model are presented (Section 2). Second, the model experiments are
described, which also partitions the main question into three subquestions (Section 3)
which are subsequently answered (Section 4). The paper concludes with a discussion on
the results in the wider context of evaporation modelling in hydrologic forecasting and
the conclusions (Section 5).

4.2 Data and model

Observational data has been preprocessed for use with a grid based hydrological model.
The data was processed with hourly time resolution, on a 1.2x1.2 km grid spatial reso-
lution, and for the period mid 1996 through 2015. All source data to derive the gridded
estimates comes from sources that supply their data in near real-time making the data-
sets suitable for operational forecasting. For this study all data was aggregated to a daily
time step. The hourly datasets are downloadable through the 4TU data centre (van Os-
nabrugge, 2017, 2018).

Precipitation

For this study the precipitation dataset from van Osnabrugge (2017) is used. The precipi-
tation data set has been derived using the genRE interpolation method based on ground
measurements and the HYRAS (Rauthe et al., 2013) climatological precipitation dataset
(van Osnabrugge et al., 2017).

Temperature

Temperature observations (1996-2016) are interpolated on the same 1.2x1.2 km grid as
the precipitation data. Temperature is derived from interpolation of ground measure-
ments with correction for elevation using the SRTM digital elevation model (Farr et al.,
2007) and standard lapse rate as follows:
To calculate temperature Tx at a given grid cell x from a number of n surrounding sta-
tions, determine a set of weights based on inverse-distance squared weighting between
all stations (typically the n closest stations) and the grid cell. This step can have a thresh-
old for maximum distance. di,x is the distance between station i and cellx:

wi,x =
1/d2

i,x∑n
i=1

1/d2
i,x

(4.1)
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Figure 4.1: Map of the Rhine basin, Europe. Black lines delineate 148 subbasins used in the anal-
ysis of the meteorological forecast skill. Square markers show the locations used for forecast skill
analysis.
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Second, interpolate the measured temperature Tm,i with the weights as with standard
inverse-distance squared interpolation:

Tm,x =

n∑
i=1

Tm,iwi,x (4.2)

Third, calculate the temperature lapse correction term Tγ,x as the weighted difference
between the height of the grid cellHx and the height of the considered stationsHi mul-
tiplied with the lapse rate γ.

Tγ,x = γ

(
n∑

i=1

(Hi −Hx)wi,x

)
(4.3)

Note thatTγ,x is static for a fixed configuration of the measurement network ifγ is taken
to be a constant. In this study the configuration of the measurement network changed
based on the number of reporting stations at each time step. A constant lapse rate was
assumed: γ = 0.0066[◦Cm−1].
The final temperature estimate for grid cellx is obtained by addingTγ,x andTm,x:

Tx = Tγ,x + Tm,x (4.4)

Downwards shortwave surface radiation flux

The availability of solar radiation measurements at the surface has proven to be spatially
and temporally inadequate for many applications, with remotely sensed solar radiation
products having the largest potential to remedy this (Journée and Bertrand, 2010). Re-
motely sensed solar radiation estimates from the Land Surface Analysis Satellite Appli-
cation Facility (LSA-SAF) were found to be in closer agreement with ground observations
than reanalysis datasets such as the Système d’Analyse Fournissant des Renseignements
Atmosphériques à la Neige (SAFRAN) reanalysis (Carrer et al., 2012) and ERA-Interim (Je-
drzej et al., 2014).
For this study, downward shortwave radiation is resampled and merged from the EUMET-
SAT Surface Incoming Solar Radiation (SIS) (Mueller et al., 2009) and Downward Surface
Shortwave Flux (DSSF) (Trigo et al., 2011) products from the Climate Monitoring Satellite
Application Facility (CM-SAF) and LSA-SAF, respectively. Gaps in the satellite data are
filled with the ERA5 surface solar radiation downwards (ssrd) parameter from the 4D-VAR
reanalysis (Copernicus Climate Change Service, 2018). ERA5 was found to have compara-
ble mean bias with satellite-derived products for inland stations (Urraca et al., 2018).
In earlier research it has been shown that LSA-SAF (2005-current) and CM-SAF (1983-2005)
can consistently be merged into one time series (Jedrzej et al., 2014). The products of the
different SAFs are comparable in terms of bias and standard deviation (Ineichen et al., 2009).

Makkink potential evaporation

There are different approaches in making use of remotely sensed data to calculate evapo-
ration. One branch of research aims to calculate actual evapotranspiration directly from
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satellite imagery (Su, 2002). Applications range from estimating the global evaporation
flux (Mu et al., 2011), water resources management (Bastiaanssen et al., 2005) and con-
straining model parameters for a gridded model (Immerzeel and Droogers, 2008).
For operational use, PET estimates can be derived from satellite data only, or from a com-
bination of satellite imagery and ground measurements. Bowman et al. (2017) explored
the use of MODIS to provide a daily PET, both as dynamic PET (Spies et al., 2015) and PET
climatology (Bowman et al., 2016) for a gridded and lumped version of the Sacramento
Soil Moisture Accounting (SAC-SMA) model. The model was recalibrated for each PET in-
put. No configuration with MODIS derived PET showed consistent improvements across
all basins in their case study. Still, it was concluded that the combination of dynamic PET
in combination with a gridded model had the best overall results (Bowman et al., 2017).
A disadvantage of using satellites such as MODIS is their temporal coverage which is re-
stricted to a single overpass at a set time each day giving one instantaneous value. This
can be resolved by assuming a sinusoidal development of PET over the day (Kim and Hogue,
2008), but the limitation is clear. This disadvantage is resolved by using geostationary
satellites. For example, Jacobs et al. (2009) used solar radiation from NOAA GOES geosta-
tionary satellite in combination with ground observations to calculate daily PET with the
Penmann-Montheith equation.
Here, potential evaporation is calculated from geostationary satellite radiation estimates
and ground observations of temperature with the method proposed by Makkink (Makkink,
1957), which is applicable with remote sensed radiation estimates (de Bruin et al., 2016).
PET calculated with Makkink’s equation is a reference crop evapotranspiration, which
means that crop factors apply determined by the hydrological model. In the set-up of
our hydrological model the crop factor was determined by land-use. A crop factor of 1.15
is applied to the forested areas and 1.0 to all others.
The reasons for choosing the Makkink equation are that 1) it only needs radiation and
temperature, for which gridded estimations are available and 2) the Makkink equation
is used by the Royal Netherlands Meteorological Institute (KNMI) so that the work pre-
sented here is compatible with ongoing local research (Hiemstra and Sluiter, 2011).
The potential evaporation is calculated based on air temperature T [◦C] and downward
shortwave radiationRg [Wm−2] for accumulation period t [s] (Hiemstra and Sluiter, 2011):

PET = 1000 · 0.65 ∆

∆+ ψ
· tRg

λρw
[mm] (4.5)

with,ψ the psychrometric constant,λ the latent heat of water,∆ the slope of the satura-
tion vapor pressure curve and ρw the density of water calculated by:

ψ = 0.646 + 0.0006T [hPa◦C−1] (4.6)

λ = 1000(2501− 2.38T )[Jkg−1] (4.7)

∆ =
6.107 · 7.5 · 273.3
(273.3 + T )2

e
7.5T

273.3+T [hPa◦C−1] (4.8)

ρw = 1000[kgm−3] (4.9)
The Makkink Potential Evaporation calculated for each time step is called ‘near real-time’
(PETNRT ). The potential evaporation climatology (PETClim) was calculated by aver-
aging over the full time period (20yr) for each day (Fig. 4.2).
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Figure 4.2: Difference between climatology and near real time potential evaporation. Shown for
the year 2004 for grid-cell x:200, y:200.

ECMWF reforecast

The European Center for Medium-Range Weather Forecasts (ECMWF) issues hindcasts
produced with the current model cycle for certain days for the last 20 years. The reforecast
obtained for this study was produced with model cycle 43r1 (Buizza et al., 2017). The first
forecast is on 1996-03-10 and the last forecast on 2015-12-29 with reforecasts alternating
every three or four days.
Forecasted Makkink potential evaporation (PETFcast) is calculated based on the t2m
(T ) and ssrd (Rg) variables using equations 4.5-4.9. Temperature was first downscaled
to the model resolution using the standard lapse rate as used in the interpolation of the
temperature observations as follows:

Tx = T +
(
h− hx

)
γ (4.10)

With, T the temperature given by the ECMWF forecast on the ECMWF resolution, h the
average height of the DEM corresponding to the footprint of the ECMWF grid cell,hx the
height of cell x in the model, and γ the lapse rate.

Hydrological model

wflow is a modular hydrological modelling framework that allows for easy implemen-
tation and prototyping of regular grid hydrological model concepts in python-pcraster
(Schellekens et al., 2017). The hydrological model concept used is the HBV (Hydrologiska
Byråns Vattenbalansavdelning) model concept (Lindström et al., 1997a) applied on a grid
basis. The generated runoff is routed through the river network with a kinematic wave
approach (Schellekens et al., 2017). In the following this model is referred to as wflow_hbv.
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Figure 4.3: Flow chart of the model experiment. Blue boxes represent data products. Green boxes
depict modeling activities. Arrows represent the flow of data for historical runs (blue lines) and
forecast runs (black). The red boxes indicate the areas for analysis of the results, each box targeting
a research subquestion.

The set-up of the hydrological model is the same as used in assessing the validity of the
genRE precipitation data set (van Osnabrugge et al., 2017). The model was parameterized
through calibration with a Generalised Likelihood Uncertainty Estimation (GLUE) like pro-
cedure (Beven and Binley, 1992), using HYRAS precipitation as forcing data (Winsemius et al.,
2013b,a). The model is taken ‘as is’ and is not recalibrated for each PET forcing, the effect
of which has been studied extensively elsewhere (e.g. Bowman et al., 2017; Oudin et al.,
2005a).

4.3 Experimental set-up

The analysis consists of a meteorological part and an hydrological part (Fig. 4.3).

Analysis of meteorological forecast skill

In this analysis we aim to answer the following question: What is the forecast skill of tem-
perature, radiation and potential evaporation compared to precipitation? For this pur-
pose the observations and forecasts are spatially averaged over 148 subbasins Fig. (4.1).
Time series of observations and forecasts are then used to calculate the Mean Continuous
Ranked Probability Skill Score (CRPSS) for each basin and each season (MAM, JJA, SON,
DJF).
The Mean Continuous Ranked Probability Score (CRPS) is an overall measure of forecast
quality and is calculated by:

CRPS =
1

n

n∑
i=1

∫ ∞

−∞
(Fy(y)−H(y ≥ x)) dy (4.11)

In whichFy(y) is the cumulative distribution function of the forecast variable andH(y ≥
x) the Heaviside step function that assumes probability 1 for values greater than or equal
to the observation and 0 otherwise (Brown et al., 2010). Interpretation of the mean CRPS
is similar to interpretation of a Root Mean Square Error. Both scores have no fixed upper
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bound, their magnitude is determined by the variable, and lower scores are better, with
zero the perfect score.
The limits of the mean CRPS vary depending on the basin and season and it is therefore
difficult to compare between basins and season. For this reason the CRPS is translated
into the Continuous Ranked Probability Skill Score, which measures the performance of a
forecasting system relative to a reference forecast. The reference forecast here is seasonal
climatology. As such the CRPSS equals 1 for a perfect forecast and 0 when the forecast
ensemble does not score a better CRPS than the CRPS calculated for the climatological
distribution.

CRPSS =
CRPSREF − CRPS

CRPSREF

(4.12)

Additionally the Relative Mean Error (RME) is calculated for the mean of the forecastsYi
to detect relative biases in the mean:

RME =

∑n
i=1(Yi − xi)∑n

i=1 xi
(4.13)

In whichYi is the mean of the ensemble for forecast i andxi the corresponding observa-
tion.
The above scores are calculated with the Ensemble Verification System (EVS), a software
package to calculate ensemble verification metrics (Brown et al., 2010).

Analysis of the effect of PET forecasts on streamflow predictions

In this second part of the analysis we aim to answer the following questions:
1. To what extent are initial states affected by the use of climatological versus near

real time potential evaporation?

2. To what extent can potential evaporation forecasts contribute to streamflow fore-
cast skill?

To answer the first question, the wflow_hbv model is consecutively forced withPETClim

and PETNRT . Four states and two fluxes are exported for analysis: 1) upper soil reser-
voir, 2) lower soil reservoir, 3) interception storage, 4) soil moisture store; and fluxes 5)
discharge and 6) actual evaporation. For the different states and fluxes the Mean Dif-
ference (MD) is calculated for each grid cell. This is done for each season to investigate
seasonality of differences. The MD is calculated as:

MD =

∑n
i=1(STATENRT,i − STATECLIM,i)

n
(4.14)

To answer the second question two hindcast runs are performed with PETFcast and
PETClim as PET forcing, respectively. To avoid effects caused by the initial state all fore-
casts start from the initial states derived from the PETNRT simulation. Forecast skill
scores are calculated as for the meteorological variables for 20 discharge gauges and for
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each season. Different from the meteorological verification exercise, the metrics are cal-
culated for the forecasts with reference to the model output and not compared with ob-
servations. The reason for this was that differences between observation and forecast
stem from many different sources, including errors in the initial state. Subsequently, a
forecast that is ‘too wet’ might compensate in the 10 day forecast for initial states that
were ‘too dry’. For this reason the effect of the meteorological forecast was isolated by
calculating the verification metrics against modeled streamflow. This also avoids issues
of perceptive bias due to the model being calibrated on another PET forcing; One of the
PET types might simply perform better because it is more like the original PET used in
calibration.
Streamflow gauges for analysis were selected such that:

1. Only gauges were chosen for which the model was deemed behavioral as expressed
by a KGE score threshold of 0.5.

2. Only one gauge was selected for each stream in the basin, except for the Rhine
river itself, for which 2 additional gauges were chosen. If multiple gauges in the
same stream were present the gauge most downstream was chosen. The gauge
‘most downstream’ was selected by sorting on mean yearly discharge and picking
the highest.

3. From the then remaining list, the largest 20 streams were selected for analysis.
The streamflow locations are shown in figure 4.1 as black squares including the name of
the river.

4.4 Results

Analysis of meteorological forecast skill

The forecast skill is assessed for all catchments and for each season. Seasons are north-
ern hemisphere seasons spring (MAM), summer (JJA), autumn (SON), and winter (DJF).
Fig. 4.4 shows the Mean Continuous Ranked Probability Skill Score (CRPSS) calculated for
subsamples of all forecast-observation pairs for different levels of exceedance, P (X ≥
x), for each variable. Simply put, the CRPSS value atP (X ≥ x) = 0.1 is calculated for
the top 10% of observations and the CRPSS value atP (X ≥ x) = 0.7 is calculated for
the highest 70% of the observations.P (X ≥ x) is calculated over all observations from
all seasons. This means that for some seasons, for example temperature in winter, there
is an lower limit in P (X ≥ x), because the highest temperatures do not occur during
winter. On the other hand, the response of the CRPSS curve is flat for highP (X ≥ x) for
temperature during summer, as all summer temperatures fall in the highest 60% of tem-
peratures of the whole year. The same is shown for the Continuous Ranked Probability
Score (CRPS), Fig. 4.5, and the Relative Mean Error (RME), Fig. 4.6.
There is no skill in the ECMWF forecast beyond 10 days for daily precipitation. This is con-
sistent with the 9-day leadtime in streamflow forecasts found by Renner et al. (2009). The
skill is best in winter and worst in summer, which is expected based on the dominating
meteorological processes (frontal systems in winter and convective events in summer).
The total amount of precipitation is underestimated after one-day lead time (Fig. 4.6).
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Figure 4.4: Continuous Ranked Probability Skill Score (CRPSS) for the four forcing variables
benchmarked against sample climatology for the 148 HBV subbasins. CRPSS scores are aggre-
gated into mean (solid), 10th and 90th percentile (dashed). Note that the CRPSS score atP (X ≥
x) = 0.1 resp. 0.7 are calculated over respectively the 10% and 70% highest observation-
forecast pairs, conditioned on the observations.

There is more skill in the forecast for the variables temperature and incoming shortwave
radiation. Likewise, there is considerable skill remaining in the potential evaporation
forecast. For temperature the one-day forecast is close to perfect for autumn and spring.
The skill in temperature forecast is similar for spring, summer and autumn, but worse
during winter. The spread, the difference in skill between basins, is also largest during
winter and spring. The RME shows that there is a small negative bias in the temperature
forecasts. The RME for winter is largests, however it should be noted that the RME is the
mean difference weighed by the mean of the observations (Eq. (4.13). As the mean tem-
perature in winter is closer to zero, this results in larger RME. Still, also when expressed in
absolute values, the error for temperature during winter is larger than for other seasons
(Fig. 4.5).
For radiation there is already quite a considerable loss in skill after one day, but then the
CRPSS remains quite stable for longer forecasts, notably during spring and autumn. There
is a larger decline in skill for summer and for extreme low radiation values in winter. In ab-
solute terms, the CRPS is related to the magnitude of the average radiation for each sea-
son, with the smallest absolute errors for winter and the largest during summer (Fig. 4.5).
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Figure 4.5: Continuous Ranked Probability Score (CRPS) for the four forcing variables for the 148
HBV subbasins for the whole year. CRPS is aggregated into mean (solid), 10th and 90th percentile
(dashed). Note that the CRPS score atP (X ≥ x) = 0.1 resp. 0.7 are calculated over respec-
tively the 10% and 70% highest observation-forecast pairs, conditioned on the observations.

In terms of bias, we see that the relative mean error increases with lowerP (X ≥ x) (Fig.
4.6, row 3). This indicates that low values are slightly overestimated while high values
are slightly underestimated, making the radiation forecasts slightly less extreme than
the observations. This is further demonstrated in Fig. B.1 in the appendix, which plots
the RME for different levels of non-exceedance (P (X ≤ x)), as opposed to exceedance
in Fig. 4.6.
The skill of the potential evaporation forecast is closely tied to the skill in radiation fore-
cast, both because Makkink potential evaporation is directly proportional to radiation
and because the larger uncertainty in the radiation forecast. The forecast skill has the
same properties as those found for the radiation forecast. A small difference is that part
of the forecast skill in temperature is found back in a slightly improved forecast skill after
10 days for PET compared to radiation in summer.
Overall, there is relatively little spread in skill between basins, with the 10th and 90th
percentile close to the mean and following the same trajectory. The difference in skill be-
tween the different seasons is larger than the spread between basins, especially for the
variables temperature, radiation and potential evaporation. This difference in skill be-
tween seasons is partly misleading. For example, the forecast skill for radiation in winter
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Figure 4.6: Relative Mean Error (RME) for the four forcing variables for the 148 HBV subbasins
for the whole year. RME is aggregated into mean (solid), 10th and 90th percentile (dashed). Note
that the CRPSS score atP (X ≥ x) = 0.1 resp. 0.7 are calculated over respectively the 10%
and 70% highest observation-forecast pairs, conditioned on the observations.

(Fig. 4.4, purple line) appears to be an outlier. However, the whole range of occurrences
of extreme high and low radiative forcing is compressed in a limited part ofP (X ≥ x).
Although the forecast over the whole range of winter radiative forcing is lower than that
for the other seasons, the top 10% of winter radiative forcings are actually among the best
predicted.

Likewise, high temperatures receive higher skill scores than low season temperatures.
This is even more distinct in the radiation forecasts. This does, however, not mean that
the forecasts of such rare events are more accurate: both RME (Fig. 4.6) and CRPS (Fig.
4.5) are larger for high extremes, meaning larger errors for those forecasts. Still, taking
into account the rarity of the event by calculating the CRPSS, which is the skill of the fore-
cast relative to the skill of a random draw from the climatology, temperature, radiation
and potential evaporation forecasts are found to add most information for extreme high
values, even though the error of those forecasts is larger than for more ‘average’ values
(values with higher probability of occurrence).
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Figure 4.7: Seasonal mean difference in calculated actual evaporation (AET) for each season. Ac-
tual evaporation includes evaporation from interception.

Influence of dynamic PET on initial states

Dynamic potential evaporation leads to lower actual evaporation (AET). The difference is
largest for summer and spring (Fig. 4.7). Part of this lower evaporation is from a reduction
in interception as the interception storage is more filled on average under dynamical forc-
ing. This can be explained by the correlation between precipitation events and low po-
tential evaporation. On rainy days the dynamic potential evaporation is generally lower,
which decreases the amount of interception evaporation. Under climatological forcing
the energy available is not reduced and thus more water evaporates from the intercep-
tion store. The latter is sometimes taken into account in hydrological models by adding
a potential evaporation reduction function dependent on the intensity of precipitation
to correct the PET climatology. For example, the HBV model has this option (Schellekens
et al., 2017).
The lower evaporation with dynamic PET forcing cascades through the different model
storages, accumulating in a mostly wetter lower zone (LZ) storage under dynamic forc-
ing. Finally, the lower evaporation results in higher discharge throughout the Rhine basin
(see Fig. B.2-B.7 in the appendix). Exceptions are the high Rhine during spring and to a
lesser extent during autumn, and several areas during winter when there is very little ef-
fect overall. The wetter conditions also result in higher peak discharges. As these higher
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discharges are a result of the temporal dynamics of the potential evaporation input, we
expect to find a similar effect on forecasted discharges. As will be shown later (Fig. 4.9),
this is indeed the case, albeit very limited.

Influence of PET forecast on streamflow forecast

The CRPSS for streamflow forecast is hardly influenced by potential evaporation forcing
type. At first sight, the skill scores obtained with dynamic or climatological PET are iden-
tical. Small differences only become visible when taking a close up of the differences by
subtracting one from the other (Fig. 4.8). However, the small difference in skill grows
with lead-time. The influence of PET forcing type becomes more intuitive when looking
at the relative mean error (RME). Visible is an increasing drift with lead-time between
PET forcing types (Fig. 4.9). Interestingly, this drift in RME is almost uniform over all sub-
sets of predicted discharge. The drift is positive, which means that forecasted PET leads
to slightly higher forecasted discharges, as expected based on the results of the influence
of variable PET on the initial states.
Analyzed for each season separately, there is a little more to discover about the role of
potential evaporation forecasts and the sensitivity of forecast skill to the meteorological
forecast in general. The contribution of the meteorological forecast to streamflow fore-
cast uncertainty is largest for summer, as shown by the largest decrease in CRPSS for the
10-day forecast in summer compared to the other seasons. The CRPSS especially ‘dips’
for the most extreme discharges, which is not as strong for spring and autumn, and es-
pecially compared to the flat response of the CRPSS for the highest 30% of discharges in
winter.
In terms of the effect of potential evaporation climatology versus forecasted potential
evaporation, the influence is largest (but still quite small) for summer and spring. This
is tied to the potential evaporation being of larger magnitude; there is hardly a response
for winter where there is lowest potential evaporation.
The influence of PET forecasts on low flow prediction is further examined by calculating
the scores for different levels of non-exceedance P (X ≤ x), instead of exceedance, so
that the score value atP (X ≤ x) = 0.1 is calculated for the 10% smallest observations
and the score value at P (X ≤ x) = 0.7 is calculated for the lowest 70% of the obser-
vations. Not only has the choice of PET forcing for the forecast hardly any effect on the
forecasted streamflow (Fig. 4.10, bottom row), but also the forecast skill of low discharge
is affected only slightly by the skill of the meteorological forecast in general. The meteo-
rological forecast skill declines with lead time (e.g. Fig. 4.4), but the forecast skill of low
percentile discharge remains almost perfect (very close to one) compared to the model
under perfect forcing.

4.5 Conclusions

This paper presented a simple and straightforward investigation with an operational fore-
casting practice perspective. First, observation data was preprocessed for used in the grid-
ded wflow_hbv model. Second, the wflow_hbv model was subjected to dynamical and
climatological PET forcing. Three aspects were analyzed: 1) the skill in meteorological
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Figure 4.8: Continuous Ranked Probability Skill Score (CRPSS) for forecast runs (forecasted PET,
climatological PET) and their difference benchmarked against model output for the 20 largest
sub-catchments in the Rhine basin. CRPSS scores are aggregated into mean (solid), 10th and 90th
percentile (dashed). Note that the CRPSS score atP (X ≥ x) = 0.1 resp. 0.7 are calculated
over respectively the 10% and 70% highest observation-forecast pairs, conditioned on the obser-
vations.

Figure 4.9: Relative Mean Error (RME) for forecast runs (forecasted PET, climatological PET) and
their difference for the 20 largest streams in the Rhine basin. RME scores are aggregated into
mean (solid), 10th and 90th percentile (dashed). Note that the CRPSS score atP (X ≥ x) =
0.1 resp. 0.7 are calculated over respectively the 10% and 70% highest observation-forecast
pairs, conditioned on the observations.
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Figure 4.10: Continuous Ranked Probability Skill Score (CRPSS) for forecast runs (forecasted PET,
climatological PET) and their difference benchmarked against model output for the 20 largest
streams in the Rhine basin. CRPSS scores are aggregated into mean (solid), 10th and 90th per-
centile (dashed). Note that the CRPSS score atP (X ≤ x) = 0.1 resp. 0.7 are calculated over
respectively the 10% and 70% lowest observation-forecast pairs, conditioned on the observations.

forecast, 2) the effect of PET forcing on initial states and 3) the effect of PET forcing on
forecast skill.
Nine to ten days is the upper limit on forecast lead time for daily precipitation for the
ECMWF forecast in the Rhine basin, with only very little skill remaining compared to cli-
matology. There is considerable skill in daily temperature, radiation and potential evapo-
ration forecasts, also after ten days. Variable PET forcing resulted in lower evaporation
and to wetter initial states and higher modeled discharges.
The main result of this study is that potential evaporation forecasts improved streamflow
forecasts only slightly. This confirms earlier results that the influence of random errors
on estimated streamflow was generally not measurable when comparing model runs di-
rectly, needing a 20% systematic bias in PET to influence model outcomes significantly
(Parmele, 1972). Likewise, Fowler (2002) concluded that climatological PET estimates pro-
duced a soil water regime very similar to that derived with actual daily PET values, includ-
ing extreme periods, for a site in Auckland, New Zealand.
There is a wider discussion on evaporation modeling in hydrological models (Andréassian
et al., 2004; Oudin et al., 2005a,b) to which the results here might add a new perspective:
that of evaporation as a process relevant for medium term forecasts. This is directly also a
limitation of this research; Only the influence on forecasts up to 10 days was investigated.
The influence on seasonal forecasting might be more substantial, considering that the
modeling of evaporation strongly influences the partitioning between runoff and evapo-
ration in the longer term water balance (Bai et al., 2016).
Further limitations are that only one model was tested (wflow_hbv) and for one climate
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zone (moderate temperate). The model was calibrated originally on a different PET cli-
matology than studied here and was not recalibrated. The latter is not seen as a limita-
tion. Deliberately not recalibrating the model enabled to focus on the changes in mod-
eled processes instead of comparably vague assessments based on model performance
expressed in efficiencies, with the effects brought forward by the PET forcing somewhere
hidden in the parameter space.
In the analysis, forecasting metrics were calculated over subsets of observation-forecast
pairs conditioned on the observations. Alternatively, the subsets could have been condi-
tioned on the mean of the forecasts. This would present more intuitive information for a
forecaster at the time of a forecast when the observation is by definition not yet known
(Lerch et al., 2015).
The idea to look at potential evaporation forecast was instigated as part of a program to
improve forecasts of low flows. Indeed, it is a recurring hypothesis that potential evapo-
ration forecasts should aid especially in making low flow predictions. The uniform re-
sponse of several skill scores for different sub-sets of observed discharge does not support
this idea; there is no special gain for low flows.
Instead, from our model results it follows that the correct prediction of a drought is firstly
dependent on a correct forecast of no-rain. Low flow recession is subsequently deter-
mined, in the absence of further feedback mechanisms, solely by the storage-discharge
relationship of, in this case, the lower zone representing the saturated zone as well as the
routing of surface water.
The follow-up question then is: Is this true in reality, or is this a model deficiency? Should
we rethink hydrological modeling to incorporate more feedbacks on evaporation? Cer-
tainly there are models with more complex representation of evaporative processes. These
are valid and important questions especially in the light of hydrologic response to change
of climate drivers. However, from the results presented here, it should not be expected
that a better understanding of evaporative processes and feedbacks will result directly in
a significant increase in 10-day predictive skill for streamflow.
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Chapter 5

Scaling point-scale (pedo)transfer
functions to seamless large-domain
parameter estimates for high-resolution
distributed hydrologic modelling

Moving towards high-resolution gridded hydrologic models asks for novel parametriza-
tion approaches. A high-resolution conceptual hydrologic model (wflow_sbm) was pa-
rameterised for the Rhine basin in Europe based on point-scale (pedo)transfer-functions,
without further calibration of effective model parameters on discharge. Parameters were
estimated on the data resolution, followed by upscaling of parameter fields to the mo-
del resolution. The method was tested using a 6-hourly time step at four model resolu-
tions (1.2, 2.4, 3.6 and 4.8 km), followed by a validation with discharge observations and a
comparison with LSA SAF actual evapotranspiration (ETact) estimates. Additionally, the
scalability of parameter fields and simulated fluxes was tested. Validation of simulated
discharges yielded KGE-values ranging from 0.6 to 0.9, except for the Alps where a vol-
ume bias caused lower performance. Catchment averaged temporal ETact dynamics were
comparable with LSA SAF (KGE≈ 0.7), although wflow_sbm model simulations were on
average 100 mm y−1 higher. Spatially, the two models were less in agreement (SPAEF
= 0.51), especially around the Rhine valley. Consistent parameter fields were obtained
and by running the model at the different resolutions, preserved ETact fluxes were found
across the scales. For recharge, fluxes were less consistent with relative errors around 30%
for regions with high drainage densities. However, catchment averaged fluxes were bet-
ter preserved. Routed discharge in headwaters was not consistent across scales, although
simulations for the main Rhine River were. Better processing (scale independent) of the
river and drainage network may overcome this issue.

This chapter is based on: Imhoff, R. O., W. J. van Verseveld, B. van Osnabrugge, and A. H. Weerts (2020), Scal-
ing point-scale (pedo)transfer functions to seamless large-domain parameter estimates for high-resolution dis-
tributed hydrologic modeling: An example for the Rhine river, accepted by Water Resources Research,
doi: 10.1029/2019WR026807
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5.1 Introduction

In the European Rhine river, higher winter discharges are expected as a result of climate
change (Middelkoop et al., 2001; Görgen et al., 2010; Hurkmans et al., 2009a; Krysanova et al.,
2017). For both policy and climate change impact studies (e.g. Wit and Buishand, 2007;
Te Linde et al., 2010; Photiadou et al., 2011), and for operational flood forecasting (Reggiani
and Weerts, 2008; Renner et al., 2009; Verkade et al., 2017) by the Dutch Ministry of Infras-
tructure and Water Management, the hydrologic behavior of the Rhine is currently mod-
eled with a semi-distributed HBV96 model (Lindström et al., 1997b). Model selection and
development originate from the late 90’s, following the extreme high water events in
1993 and 1995.
Currently, a transition takes place from lumped to distributed hydrologic models for op-
erational and policy purposes. Within the context of the ongoing H2020 project IMPREX
(van den Hurk et al., 2016), we aim to improve the physical realism of the hydrologic mo-
del and process descriptions for the Rhine, to obtain more trust in the outcomes of such
a model. A transition from lumped to gridded models enables the model developer to
take advantage of present day availability of spatial data (either for model building, forc-
ing or constraining). High-resolution spatial data enables the modeler to represent land
use and vegetation (e.g. LAI), as they are observed from space, in spatially distributed hy-
drologic models. For example, estimates of (shortwave downward) radiation fluxes from
geostationary satellites make it possible to estimate potential evapotranspiration at high
spatial and temporal resolution (de Bruin et al., 2016). Moreover, high-resolution satellite
data provide new ways to test and possibly constrain model simulates, particularly the
spatial pattern and magnitude of snow, overland flow, soil moisture and actual evapo-
transpiration.
As such, it is clear that a new generation of dynamic and spatially explicit hydrologic mo-
dels should take advantage of present day availability of high-resolution spatial data sour-
ces. However, the step towards a distributed hydrologic model that takes into account
the natural spatial variability within catchments, does not automatically lead to more
physical realism. Within the ongoing scientific debate, three main topics can be identi-
fied: (1) the importance of and link between temporal and spatial scales (see (Melsen et al.,
2016; Clark et al., 2017) and references therein), (2) Model structure and in particular pro-
cess representation of these spatially distributed models ((Clark et al., 2017) and reference
therein), and (3) deriving/estimating model parameters for these models (Beven, 2006;
Samaniego et al., 2010; Archfield et al., 2015; Bierkens et al., 2015; Paniconi and Putti, 2015;
Clark et al., 2016; Mizukami et al., 2017). Within the bottom-up modeling approach, it is
generally believed that if we solve physical hydrologic processes at the right scale and if
linked to correct landscape indicators, less (or no further) calibration will be needed. Mov-
ing to a distributed model, which resolves relevant processes on high-resolution, has con-
sequences and comes at a prize regarding parameter estimations (Beven, 2006; Samaniego
et al., 2010; Archfield et al., 2015; Bierkens et al., 2015; Paniconi and Putti, 2015; Clark et al.,
2016; Mizukami et al., 2017).
In (Samaniego et al., 2017), an overview is given of the state-of-the-art regarding parametriza-
tion and regionalization techniques. They propose the Multiscale Parameter Regional-
ization (MPR) technique (Samaniego et al., 2010) as a suitable and practical way to ob-
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tain seamless parameters across scales. A fundamental step in MPR is the selection of
regionalization functions and scaling operators to ensure the transferability of global pa-
rameters across spatial scales and to guarantee the seamlessness of parameter fields. A
systematic approach of determining these functions is in its infancy and a generalized
approach for determining the scaling operators is not yet available. In the MPR method-
ology, many transfer-function coefficients need to be estimated by calibration (∼53 for
the mHM model, see (Rakovec et al., 2016a)). These so-called global parameters include
the coefficients of the transfer-functions that link soil and vegetation properties, such as
LAI, sand and clay content, to physical or model properties (e.g. residual water content
and saturated hydraulic conductivity).

To lower the number of calibrated global parameters in the MPR methodology, or min-
imize calibration, one could use (pedo)transfer-functions (PTFs) from literature instead
of calibrated relations (for an overview of PTFs developed by the pedometric commu-
nity, see van Looy et al., 2017). A large advantage of such an approach is that the transfer-
functions are not constrained to the model, but to actual field measurements. Note, that
those PTFs are point-scale relationships and that the scale at which these functions can be
used, remains an issue (van Looy et al., 2017; Samaniego et al., 2017). However, the availabil-
ity of high-resolution soil data (e.g. 250m by Hengl et al., 2017) in combination with the
right selection of regionalization functions and scaling operators, ensuring flux preserva-
tion on different scales, make it worthwhile to investigate if point-scale PTFs can be used
for hydrologic modeling. This, by using the philosophy of MPR: first derive model param-
eters on the highest available resolution of the data, followed by scaling to the desired
model resolution.

Therefore, the objective of this study is to investigate the applicability of point-scale (pedo)
transfer-functions in combination with suitable upscaling operators for deriving seam-
less hydrologic model parameters and the preservation of fluxes across scales for a multi-
scale hydrologic model for the Rhine River.

To test the applicability of point-scale PTFs we use the spatially distributed hydrologic
model wflow_sbm. In this model, the soil part is largely based on topog_sbm (Vertessy
and Elsenbeer, 1999), and it uses a kinematic wave approach for channel, overland and lat-
eral subsurface flows similar to TOPKAPI (Benning, 1994; Todini and Ciarapica, 2002) and
G2G (Bell et al., 2007). The evaluation is based on the following sub-questions: (1) Which
(pedo)transfer-functions used in wflow_sbm cover the sensitive parameters of this mo-
del? (2) What is the quality of the resulting wflow_sbm model on the highest resolution
of interest (1200m)? (3) How scale (in)dependent are the resulting wflow_sbm modeled
fluxes? Note that to the authors’ knowledge, the upscaling methodology advocated in
MPR was so far only tested using models without subsurface lateral exchange.

This paper is set up as follows: in section 5.2, the data and study area of this study are
presented. Section 5.3 describes the used methodology, with in 5.3, a description of the
wflow_sbm model and parametrization, and in 5.3, a description of the experimental
setup of this study. The results are presented in section 5.4, followed by the discussion
and conclusions in respectively section 5.5 and 5.6.
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Figure 5.1: Elevation map, based on the STRM digital elevation model (Farr et al., 2007), and
overview of the Rhine basin with three chosen sub-basins as study area (in red).

5.2 Study area and data

Study area

The studied basin is the Rhine basin upstream of the Dutch border, which has a surface
area of approximately 160 000 km2 (Figure 5.1, Chapter 5.2). In this figure, we have indi-
cated three sub-basins of the Rhine, which are used for the sensitivity analysis and later
on to highlight some results. The sub-basins are: Obsi (748 km2), part of the Sieg catch-
ment, Elsenz (539 km2), part of the Neckar catchment and Omos 2 (2912 km2), which is
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part of the Moselle catchment. These three are all headwaters and located in different
regions of the Rhine basin. As such, they are a sample out of the variety of e.g. discharge
regimes, soil types, local climates, vegetation properties and slopes in the Rhine basin.

Available data

In this section, we introduce the most important datasets used in the study. A complete
list of all datasets can be found in Table C.1 in the appendix.

Forcing

A meteorological forcing dataset is available for the Rhine basin, consisting of gauged
precipitation interpolated with the genRE method (van Osnabrugge et al., 2017), potential
evapotranspiration (PET) and temperature data (van Osnabrugge et al., 2019), on a 1200 m
grid. Since not all meteorological stations were continuously delivering high quality data,
we refer to (van Osnabrugge et al., 2017; van Osnabrugge et al., 2019) for an indication of the
yearly availability and quality of the forcing data. This forcing data is available for the
period 1996 through 2015.

DMET LSA SAF evapotranspiration

For the comparison of simulated actual evapotranspiration (hereinafter referred to as ETact)
with model simulations from a land-surface model, the DMET product is used from the
Land Surface Analysis Satellite Application Facility (LSA SAF) (Trigo et al., 2011). This data
is available from 2011 and onward.
LSA SAF DMET (from here-on referred to as DMET) is a product with daily ETact estimates
for terrestrial surfaces and inland water systems, following from physically-based Soil
Vegetation Atmosphere Transfer (SVAT) models, notably a modified version of the Tiled
ECMWF Surface Scheme for Exchange Processes over Land (TESSEL and H-TESSEL, Viterbo
and Beljaars, 1995; van den Hurk et al., 2000; Balsamo et al., 2009; Albergel et al., 2012). The
daily values are an integration over instantaneous 30 min ETact estimates. In their ap-
proach, (Trigo et al., 2011) combine radiative data from the Meteosat Second Generation
geostationary satellites with ECMWF meteorological forecasts and land cover informa-
tion as input for these physically-based land surface models (step 1). DMET then uses
tiles within grid cells with a mixture of plant functional types. For each tile, the SVAT-
model solves the surface energy balance and the resulting ETact value per grid cell is then
a weighted contribution of all tiles in that cell (step 2). Finally, a post-processing module
is used to create the daily product (step 3).

Grid cell resolution of the original data

The grid cell sizes of the used datasets differ. Whereas it is 1200 m for model and forcing,
it is 3000 m for DMET, 250 m for soil data of ISRIC SoilGrids (Hengl et al., 2017), 500 m for
monthly averages of Leaf Area Index (LAI) (Myneni et al., 2015) and 100 m for the CORINE
land cover (European Environment Agency, 2018). Topographic characteristics are based on
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a 30 m rescaling of the SRTM digital elevation model (Farr et al., 2007). The highest spa-
tial resolution determines the base resolution before upscaling, also referred to as ‘level-
0’ in the MPR framework (Samaniego et al., 2010). The handling of the resolution differ-
ences between the model resolution, and the soil and vegetation properties (the upscal-
ing step), as used for the parameter transfer-functions, is described in section 5.3. For the
comparison between DMET product and the wflow_sbm results, model simulations are
upscaled to the DMET resolution following an arithmetic mean.

5.3 Methodologies

In this section, we briefly introduce the wflow_sbm model (5.3), its model setup (5.3) and
parameterization (5.3), followed by a description of the experimental setup (5.3). The ex-
perimental setup is subdivided in three sections describing in order: the parameter sen-
sitivity analysis (5.3), the validation of the model setup on the highest model resolution
(5.3), and the scalability of the model (5.3).

The wflow_sbm concept and modeling setup

The conceptual bucket model wflow_sbm is based on topog_sbm (Vertessy and Elsenbeer,
1999) with a kinematic wave approach for lateral subsurface, overland and river flow pro-
cesses that are similar to TOPKAPI (Benning, 1994; Todini and Ciarapica, 2002) and G2G (Bell
et al., 2007). It is available in the wflow open source modeling framework (Schellekens
et al., 2019b), which is based on PCRaster (Karssenberg et al., 2010) and python. In con-
trast to many conceptual models, wflow_sbm models lateral subsurface flows explicitly
and it has a simplified physical basis with parameters that represent physical character-
istics, leading to (theoretically) an easy linkage of the parameters to actual physical prop-
erties Vertessy and Elsenbeer (1999). While topog_sbm performs best when simulating fast
runoff processes in small catchments (Vertessy and Elsenbeer, 1999), wflow_sbm can be ap-
plied on a wider variety of catchments (Schellekens et al., 2019b). Notable properties of the
wflow_sbm model are:

1. A spatially distributed gridded cell network for both surface and subsurface flow
routing, with the presence of lateral subsurface flow based on a D8-network flow
routing network (Karssenberg et al., 2010).

2. Parameters that represent environmental physical characteristics such as vegeta-
tion and soil properties.

3. A soil divided in saturated and unsaturated store(s). the transfer of water from un-
saturated to (un)saturated zones is simulated with the Brook-Corey equation for
the hydraulic conductivity as a function of normalized volumetric water content
(Brooks and Corey, 1964).

4. A kinematic wave module for river, surface and subsurface lateral flow (compara-
ble to Todini and Ciarapica, 2002; Bell et al., 2007).

5. Evapotranspiration and interception losses. The latter via an analytical Gash model
on daily time steps or a modified Rutter model on sub-daily time steps (Rutter et al.,
1971, 1975; Gash, 1979).
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Figure 5.2: An overview of the processes and fluxes represented by the spatially distributed
wflow_sbm model (Schellekens et al., 2019b).

6. Capillary rise to the unsaturated store.

7. The option to divide the soil depth in any number of layers instead of one soil col-
umn.

8. Reduction coefficients for ETact from the unsaturated zone based on the Feddes
curve (Feddes et al., 1978).

9. Glacier build-up and melting processes.

Model setup

Since a meteorological forcing on a cell size of 1.44 km2 (1200×1200 m) is available for
this study (see section 5.2), the same spatial resolution is used as the highest resolution
for model runs (level-1). The model setup in this study has four soil layers: 0–10 cm, 10–40
cm, 40–120 cm and 120 cm up to the depth of an impermeable layer or bedrock. The first
layer, 0–10 cm, is comparable to the depth remotely sensed soil moisture data is thought
to represent (e.g Dorigo et al., 2017), which should enable spatial comparisons with soil
moisture products. The next layer (10–40 cm) represents a layer, dense in plant roots,
which reacts rapidly to changes in the meteorological forcing. The layer 40–120 cm rep-
resents the depth up to the average end of the soil profile for shallow soils. Below this last
layer, wflow_sbm computes a variable depth per grid cell, i.e. the layer depth is limited to
the maximum soil depth that is set for that grid cell. In this study, we base this depth on
the occurrence of an impermeable layer or the presence of bedrock. This is in the current
setup never deeper than 2 meters, because of dataset limitations (ESDAC, 2004; Hengl
et al., 2017).
The model is run on a six hourly time step. A brief sensitivity analysis (not shown) re-
vealed that at time-steps of more than six hours, a deterioration of the model results will
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start, while at a six hourly time step and smaller, model results were more or less com-
parable. An hourly time step is possible with the available meteorological forcing, but
coarser temporal resolutions are favorable to decrease run times, especially on the scale
of the Rhine basin.
The Rhine basin consists of several large lakes and reservoirs in the Alpine regions. The
largest lakes in Switzerland are represented in the model by a lake module, which is also
used in other hydrologic models within the wflow framework (Lindström et al., 1997b; van
Osnabrugge et al., 2017; Schellekens et al., 2019b). This module requires the reservoir lo-
cations, their surface areas, initial water levels and lake operation schemes, which are
available from the operational model used for hydrologic forecasting at the Dutch water
authority Rijkswaterstaat.
In addition, Alpine glaciers are modeled on all four resolutions. To do this in wflow_sbm,
the initial fraction per grid cell covered by a glacier and the initial storage in these glaciers
(in mm) needs to be estimated. The global RGI (RGI Consortium, 2017), GLIMS (Raup et al.,
2007) and Swiss GLAMOS (Fischer et al., 2014) databases are used for this, together with
glacier volume estimations from (Grinsted, 2013). The modeling of glaciers introduces
three extra parameters in the model, notably:

1. G_SIfrac, the fraction of the snow pack on top of the glacier which is converted
into ice per time step. This parameter is set to 0.002 (typically ranges from 0.001
to 0.006 Luo et al., 2013).

2. G_TT , threshold temperature at which precipitation falls as snow on the glacier.
Set to 1.3 ◦C (Tobin et al., 2013).

3. G_fmax, the melting factor (mm ◦C−1 day−1). Variable from glacier to glacier,
but set to 5.3 mm ◦C−1 day−1 here based on reported values by (Hock, 2003).

Parametrization and upscaling rules

Model parameters are estimated with available point-scale PTFs from literature (Table 5.1),
leading to seamless parameter maps for these parameters over the entire Rhine basin.
Following the MPR methodology, we have estimated the parameters on the original data
resolution (often referred to as ‘level-0’), followed by upscaling procedures to upscale the
parameters to the model resolutions (‘level-1’). These procedures should enable us to use
the derived parameter sets on every desired model resolution (Samaniego et al., 2010; Ku-
mar et al., 2013a; Samaniego et al., 2017).
Universal scaling rules for hydrologic model parameters are not available yet, as they also
depend on model structure (Nijzink et al., 2016). However, the right procedure is found
when parameter fields remain seamless with a constant mean and standard deviation
on various spatial resolutions. The same holds for resulting fluxes and states on various
spatial resolutions. That this is possible with the MPR approach, was already illustrated
for the mHM-model (Samaniego et al., 2010; Kumar et al., 2013a; Samaniego et al., 2017).
Here, we follow some of the upscaling procedures as used by Zhu and Mohanty (2002),
Samaniego et al. (2010), Kumar et al. (2013a), Mizukami et al. (2017) and Samaniego et al.
(2017) to estimate parameter values on four model resolutions: 1200, 2400, 3600 and
4800 m. Generally, these studies slightly differ in the applied upscaling operators, re-
sulting from differences in the model structures and the types of parameters. The used
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Table 5.1: List of parameters estimated with a PTF and the used upscaling operators. Only the ab-
breviated parameter names are illustrated, see Table 5.2 for the interpretation of the parameters.
Upscaling operators are abbreviated as follows: A - arithmetic mean and log A - arithmetic mean
of the natural logarithm.

Parameter Pedo-transfer function by Upscaling
operator

Additional notes

c (Rawls and Brakensiek, 1989) log A λ upscaled with log A, c deter-
mined from λ at model resolu-
tion

Kext (van Dijk and Bruijnzeel, 2001) A Look-up table from land cover
KsatVer (Brakensiek et al., 1984) log A
LAI (Myneni et al., 2015) A
M Derived as exponential decay-

function from KsatVer at 7
depths

N (Engman, 1986) and (Kilgore,
1997)

A Look-up table from land cover

N_River (Liu et al., 2005) Derived at model resolution, de-
pends on Strahler order

RootingDepth (Schenk and Jackson, 2002;
Fan et al., 2016b)

A d75 rooting depth

Sl (Pitman, 1989) and (Liu, 1998) A Look-up table from land cover
Slope (Farr et al., 2007) A PCRaster-functionality (Karssen-

berg et al., 2010), based on
DEM

SoilThickness (Hengl et al., 2017) and (ES-
DAC, 2004)

A

Swood (Pitman, 1989) and (Liu, 1998) A Look-up table from land cover
thetaR (Tóth et al., 2015) A
thetaS (Tóth et al., 2015) A

PTFs and upscaling operators per parameter are listed in Table 5.1. The equations of the
transfer-functions are shown in appendix Table C.2 and a more detailed description of
the parameter estimations is present in the supplementary material (Appendix C and Ta-
bles C.3–C.5).

In the approach taken here, no further calibration on observations (e.g. discharge) was
applied. Note, however that for two model parameters, notably the lateral/horizontal
hydraulic conductivity and the day-degree parameter for snow and the glaciers, no suit-
able PTF is available yet. We applied a constant factor (KsatHorFrac) of 250 on the derived
vertical hydraulic conductivity at different scales and 1.3 ◦C for the day-degree (TT and
G_TT ) parameters. The sensitivity of the model results on this choice is discussed in the
results and discussion.
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Experimental setup

Parameter sensitivity analysis

Table 5.2 lists all used parameters of the wflow_sbm model. A sensitivity analysis is per-
formed to assess which of the wflow_sbm parameters have a pronounced influence on
both discharge and ETact simulations. With the outcomes, we can determine if all sensi-
tive parameters are estimated with a tranfer-function, while the less sensitive parameters
can be set to a default-value in the absence of a PTF. The sensitivity analysis is applied on
three sub-basins (Figure 5.1), which are chosen based on their variety in: soil type, geo-
graphical location and catchment size to have a representation of the catchment variety
within the Rhine basin.
A Latin Hypercube One-factor-At-a-Time (LH-OAT) sensitivity analysis is applied for the
period 2014-10-01 until 2016-01-01 with N=100 LH-points. Hence, 100 × 23 (number of
used parameters + 1 reference) model runs are necessary for this sensitivity analysis. The
LH-OAT analysis uses loops with each loop having one of the LH-points. Each LH-point j
then has a partial effect (Si,j) for each parameter ei (Van Griensven et al., 2006):

Si,j =

100 · ( g · a− g · b
[g · a+ g · b]/2

)

fi
a = (e1, ..., ei · (1 + fi), ..., ep)

b = (e1, ..., ei, ..., ep) (5.1)

In these equations, g refers to the model functions and fi is the fraction by which param-
eter ei is changed (Van Griensven et al., 2006). This fraction is 0.02 in this study. The par-
tial effect is determined for model simulations of discharge and ETact. Finally, the mean
partial effect per parameter is ranked to give an indication of the relative parameter sen-
sitivity.

Validation of the wflow_sbm model for the Rhine

The model is run for the Rhine basin for the period 1 January 1998 until 31 December 2015,
with the first year as warm-up period. In the following paragraphs, the model setup vali-
dation for this model run is described.
Discharge validation on various resolutions
Validation of simulated discharge on 1200 m takes place by a comparison with discharge
observations at 174 gauging stations. The metrics Kling-Gupta Efficiency (KGE) and Nash-
Sutcliffe Efficiency (NSE) are used for this (Nash and Sutcliffe, 1970; Gupta et al., 2009).
Moreover, the lakes in Switzerland and Southern Germany have a pronounced effect on
the behavior of the Alpine basins and the main course of the Rhine river. The lake oper-
ation procedures of the eight largest lakes are also modeled in this study. Therefore, the
simulated lake levels of these eight lakes are validated with observed lake levels.
Validation of evapotranspiration estimates
Current practice to assess model performance is often to solely use discharge observa-
tions as a means for the overall performance. Since we are dealing with a gridded hydro-
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Table 5.2: wflow_sbm parameters that are part of the sensitivity analysis. The right column indi-
cates whether these parameters have a PTF or not. Also the parameter value ranges for the sensi-
tivity analysis are displayed.

Parameter Parameter interpretation Lowest
value

Highest
value

PTF

in range in range
Soil parameters
c Exponent in the Brooks-Corey equation to calcu-

late the hydraulic conductivity as a function of
normalized volumetric water content [-]. This
equation is used to simulate the transfer of wa-
ter from unsaturated to (un)saturated zones.

1.0 20 4

KsatHorFrac A multiplication factor applied to the KsatVer pa-
rameter that gives the horizontal saturated con-
ductivity of the soil at the surface [-].

0.1 10 000

KsatVer Vertical saturated conductivity of the soil at the
surface [mm d−1].

1.0 10 000 4

M Decay of KsatVer with depth [-]. 1.0 3 000 4
SoilThickness Depth of the upper aquifer [mm]. 100 5 000 4
thetaR Residual water content [-]. 0.01 0.25 4
thetaS Saturated water content [-]. 0.25 0.95 4

Transpiration
CapScale Scaling factor in the capillary rise calculations [-]. 0.50 1.50
rootdistpar Curvature value for root connection with the

groundwater table [mm].
-0.01 -10 000

RootingDepth Length of the vegetation roots [mm]. 100 5 000 4

Interception
Kext Extinction coefficient in the canopy gap fraction

equation [-].
0.48 0.96 4

Sl Specific leaf storage [mm]. 0.02 0.2 4
Swood The fraction of wood in the vegetation/plant [-]. 0.0 0.5 4

Flux partition-
ing
InfiltCapPath Infiltration capacity of the compacted soil/paved

[mm d−1].
5.0 500

InfiltCapSoil Infiltration capacity of the non-compacted soil
[mm d−1].

10.0 2 500

MaxLeakage Maximum leakage [mm d−1]. 0.0 2.0
PathFrac Fraction of compacted or urban area per grid cell

[-].
0.0 0.2 4

Routing
N Manning’s roughness coefficient for overland

flow [m− 1
3 s].

0.008 0.96 4

N_River Manning’s roughness coefficient for river flow
[m− 1

3 s].
0.003 0.7 4

Snow
TT Threshold temperature at which precipitation

falls as snow (HBV parameter) [°C].
-2.0 2.0

TTI Critical snowmelt and refreezing temperature
(HBV parameter) [°C].

0.0 3.0

WHC Fraction of water stored in snow volume (HBV pa-
rameter) [-].

0.01 0.3
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logic model, spatial model outputs can also be assessed for model performance. Here, we
focus next to discharge on simulated ETact (as is also done in e.g. Stisen et al., 2011; Wan-
ders et al., 2014; Kunnath-Poovakka et al., 2016). For the assessment of ETact, Demirel et al.
(2018) and Koch et al. (2018) have introduced a new efficiency metric, the Spatial Efficiency
Metric (SPAEF), which resembles the KGE in that it equally weighs multiple components.
It is formulated as:

SPAEF = 1−
√

(φ− 1)2 + (χ− 1)2 + (ψ − 1)2 (5.2)

with:

φ = ρ(A,B) (5.3)

χ =
(σA

µA
)

(σB

µB
)

(5.4)

ψ =

∑n
j=1min(Kj , Lj)∑n

j=1Kj
(5.5)

In these equations, φ is the Pearson correlation coefficient between ‘observed’ and sim-
ulated ETact, χ is the fraction of coefficient of variations, which represents the spatial
variability, andψ is the percentage of histogram intersection between observations and
simulations, withK the histogram of the DMET simulations andL the histogram of the
model simulations with n bins. The difference from other spatial metrics is especially
pronounced in ψ, because this term is sensitive to clusters in spatial patterns (Demirel
et al., 2018; Koch et al., 2018). Hence, this assures that the efficiency metric not only per-
forms on the pixel scale, but also on a larger scale. This is a useful addition, as the model is
compared with another model and ‘observed’ pixel values are not per definition the true
values.
We asess modeled ETact with the estimations from DMET by means of the attained SPAEF
as a measure for the spatial validation of temporally averaged ETact fluxes. The KGE is
used for a temporal assessment of sub-basin averaged daily ETact simulations.
Validation of snow water equivalent estimates
Validation of simulated snow water equivalents (SWE) takes place by a comparison with
modeled SWE from SLF (Jörg-Hess et al., 2014). SLF simulations are available for the same
period as the model runs and for all Swiss basins on a sub-basin level (∼1000 km2) and
a weekly temporal resolution. The results of this validation are not shown here, but are
available in Figures C.13–C.15 of the supplement.

Scalability of the model

To evaluate the outcomes of the parameter estimation and upscaling procedures, we have
used the obtained parameter maps and the results from the model runs to assess whether
parameter maps, states and fluxes remain constant on different resolutions. First, mean
values and standard deviations in parameter maps are compared to show how the pa-
rameters are influenced by spatial scaling.
Secondly, the relative error in modeled fluxes and states are compared to those on the
highest model resolution (1200 m). This cross-spatial comparison of modeled fluxes is
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Table 5.3: Results of the parameter sensitivity analysis. Shown are the rankings from highest to
lowest sensitivity on both modeled discharge (Q) and evapotranspiration (ET) per sub-basin, fol-
lowing Van Griensven et al. (2006). The top 5 most sensitive parameters per sub-basin and flux
type, are highlighted in blue. Parameters with the same sensitivity receive the same ranking.

Elsenz Obsi Omos 2
Parameter name Q ET Q ET Q ET PTF
Soil parameters
c 15 5 15 8 15 8 4
KsatHorFrac 6 11 7 9 5 12
KsatVer 6 12 9 11 9 14 4
M 4 1 3 1 6 1 4
SoilThickness 10 8 12 6 12 9 4
thetaR 13 10 14 12 13 10 4
thetaS 8 4 10 5 11 7 4

Transpiration
CapScale 17 17 17 17 17 17
rootdistpar 16 16 16 16 16 16
RootingDepth 14 2 13 3 14 2 4

Interception
Kext 5 9 5 10 4 6 4
Sl 3 6 4 7 2 5 4
Swood 1 3 2 2 1 3 4

Flux partitioning
InfiltCapPath 17 17 17 17 17 17
InfiltCapSoil 17 17 17 17 17 17
MaxLeakage 9 13 11 15 10 15
PathFrac 17 17 17 17 17 17 4

Routing
N 17 17 17 17 17 17 4
N_River 17 17 17 17 17 17 4

Snow
TT 2 7 1 4 3 4
TTI 11 14 8 13 7 11
WHC 12 15 6 14 8 13

also called flux-matching and is used as a measure of the scale-insensitivity of MPR based
hydrologic models (e.g. Kumar et al., 2013a; Samaniego et al., 2017).
Thirdly, the performance of the model across the different scales is investigated by com-
paring the KGE for simulated discharge on the four resolutions with observations. For
this, 20 (of the 174) gauging stations across the Rhine basin are used.

5.4 Results

Parameter sensitivity analysis

The top 5 most sensitive parameters per sub-catchment and per efficiency metric are col-
ored blue in Table 5.3. The nine parameters that are once or more often part of this top
5 are: c, Kext, KsatHorFrac, M, RootingDepth, Sl, Swood, thetaS (θs) and TT. These parame-
ters have a shared effect on both discharge and ETact simulations, although RootingDepth
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mostly affects the ETact simulations (Table 5.3), as it directly influences the maximum
depth that can be used for water uptake in the evapotranspiration module.
c, KsatHorFrac,M and θs are sensitive parameters as they influence either the available
water storage or the fluxes between layers and cells. From that perspective, we expected
KsatVer to be part of these sensitive parameters as well. Kext, Sl and Swood are parameters
that are used in the interception module by making use of the LAI maps. This affects ETact

and through ETact the runoff ratio is altered affecting discharge. The sensitivity of this
parameter is thus also related to the land cover. Since all three sub-basins have a high
fraction of forest, interception starts to play a bigger role leading to an expectedly higher
sensitivity of these parameters.
Most of the sensitive parameters have an applied PTF to spatially estimate the param-
eter values. The two remaining sensitive parameters without a PTF are KsatHorFrac and
TT. Both parameters have a higher degree of conceptualization than the more physically
based parameters that do have a PTF. Because of this, it is challenging to find a point-scale
PTF from literature with which the parameters can be estimated. Ideally, proper transfer-
functions are derived for these parameters. As this is outside the scope of this study, de-
fault parameter values are used for the model runs: 250.0 for KSatHorFrac, a value in be-
tween the range of values generally used for TOPKAPI and G2G (Todini and Ciarapica, 2002;
Bell et al., 2007), and 1.3 ◦C forTT (Tobin et al., 2013). Hence, with respect to the first sub-
question, most sensitive parameters of wflow_sbm are covered by a PTF, but not all. In
that case, a default value could be applied based on literature.

Validation of wflow_sbm model for the Rhine

Discharge

For most gauging stations in the central and northern part of the basin, KGE values range
from 0.60 to 0.90 (Figure 5.3a). In this figure, an overview is given of the reached KGE
(including r,αandβ) per river in the Rhine basin. Most of the Rhine tributaries have more
than one discharge station. For each tributary, only the station with the largest standard
deviation in discharge is displayed in order to have only one station per tributary in the
figure, as these locations generally correspond to the river outlets.
Over the main course of the Rhine, KGE values fluctuate between 0.57 in Switzerland to
0.82 close to the Dutch-German border. The lower KGE values upstream in the main course
of the Rhine are caused by a bias towards too low simulated discharge volumes in this
region (Figure 5.3a), something we also see in the hydrograph for 2011–2015 of the Up-
per Rhine (KGE = 0.57 at Basel; Figure 5.4), a location which transports all water of the
Alpine basins. Especially during spring and summer, the discharge volume is highly un-
derestimated with approximately a difference of 500–1,000m3−1. Going downstream,
KGE values increase to 0.78 for the Lower Rhine at Emmerich (0.82 for the full period, see
Figure 5.3). The volume difference of the Upper Rhine remains noticeable with slightly
underestimated spring and summer discharges. However, due to the addition of water
from non-Alpine headwaters, which do not have the aforementioned discharge volume
bias, this effect is less pronounced in the results downstream.
This effect in the Alps already starts in the simulations for the headwaters in this area,
with KGE values<0.4 in the southwest of the area. For these headwaters, simulated dis-
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Figure 5.3: (a) Attained KGE per discharge station, split in the r, α and β terms as described by
Gupta et al. (2009). The size of the circles gives an indication of the mean discharge flux mea-
sured at that discharge station, while the colors display the reached values. Per tributary and if
available, one location is displayed; this is the station with the highest standard deviation in ob-
served discharge. KGE values and their decomposition are based on a comparison of the modeled
discharge with discharge observations for the period 1999–2015. (b) Similar to a, but for the sim-
ulated lake levels (bias-term is based on subtracting the minimum lake level of the dataset).
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Figure 5.4: Hydrographs of discharge simulations with wflow_sbm for four sub-basins of the
Rhine (Elsenz, Agger, Omos 2 and the Alpine Thur) and two locations in the main course of the
upper and lower Rhine (Basel and Emmerich). Hydrographs and metrics are shown for the period
2011–2016. Model simulations are indicated by blue lines and observations in black. Attained KGE
and NSE values are displayed in the top left corner.

charge volumes are generally too low, as pronounced in the bias-term (< 0.7). Also dis-
charge peaks are often underestimated. For instance, the Thur basin in the Alpine region
(KGE = 0.52, Figure 5.4), has often highly underestimated peaks, and similar to the re-
sults in the Omos 2, the recession after a peak is slower than in the observations.
Most of the Alpine headwaters are supplying water to the reservoirs in the south of the
Rhine basin, so the simulations of the lake levels should be influenced by the upstream
simulations. This persists into the main course of the Rhine, as the reservoirs are an im-
portant source of water to the Rhine in this region. For the lakes in the east, a bias is
present indicating on the volume difference we also saw in the discharge simulations
(Figure 5.3b). This volume difference is also present in the SWE estimations for snow and
glaciers in the Alps (Figures C.13–C.15 in the supplement). In the southwest, however, the
bias in the lake level simulations is less. Here, not only a volume difference, but also mis-
matches in the lake operation schemes (see Figure C.3 in the supplement), and in the tim-
ing and magnitude of the river discharges into these lakes (Figures C.10 to C.12) can cause
the differences in simulated lake levels.
Model simulations for the river Moselle and its tributaries (west of the figure and mostly
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Figure 5.5: A comparison between modeled yearly averaged ETact simulations (upscaled to a res-
olution of 3 km) and DMET ETact simulations (Trigo et al., 2011).

in France), and part of the Main plus its tributaries (east of the basin), give relatively high
efficiencies with KGE values often in the range 0.7–0.9. In the aforementioned regions,
smaller tributaries sometimes have lower KGE-values (<0.6). This is mostly pronounced
in the α term of the KGE, with values often < 0.7, indicating on a difference in stream-
flow variability between observations and simulations. At these locations, the discharge
simulations generally do not fully capture the quick discharge peaks after a rainfall event,
while the baseflow is higher than observed. The values of r and β on the other hand are
generally closer to 1.0, indicating on both a high correlation and a low bias between ob-
served and simulated discharge. Especially in the Moselle, most model simulations are
unbiased.

Focusing on a couple of the headwaters, discharge simulations for both the Agger (Sieg
catchment) and Omos 2 (Moselle catchment) result in KGE values of respectively 0.79 and
0.77 (NSE = 0.83 in both cases). Summer baseflow is often well captured for these basins,
but discharge peaks are somewhat underestimated for both catchments, generally fol-
lowed by a too slow recession. For the Elsenz (Neckar catchment), the performance is less
with a KGE of -0.20 (NSE = -1.02). The latter sub-basin, Elsenz, does not have a station at
the outlet, but it has a gauging station in the middle of the catchment at a tributary of the
main watercourse, which makes the contributing area even smaller, while the catchment
is already small with 539 km2. The discharge simulations for this basin generally contain
overestimated discharge volumes and peaks.

Hence, with the current model setup, we were able to reach average to good model per-
formance in the middle and downstream region of the Rhine River basin. The Alpine re-
gion, in the south of the basin, is an exception to this due to a clear bias in the estimated
discharge amounts and to a lesser extent due to not well captured discharge variability of
the peaks and recession rates.
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Actual evapotranspiration

For the entire Rhine basin, the spatial patterns of ETact simulations directly reveal that
modeled ETact by wflow_sbm is systematically higher (527 mm y−1) than the DMET mod-
eled ETact (427 mm y−1), with a relative ‘bias’ of 1.23 (Figure 5.5). Spatial patterns shows
a degree of correspondence in the higher Alps in the south and close to the catchment
outlet. A band of higher ETact in the flatter valley in northern Switzerland is also present
in both simulations, although the simulation of wflow_sbm is higher for a larger region
than just a narrow band in the north of Switzerland, as is the case for DMET.
Between other regions, there are more differences, leading to a SPAEF of 0.51. Although
the overall correlation and spatial variability are quite similar (φ= 0.93 and γ = 0.95),
the clusters of spatial patterns differs (the histogram intersection,ψ= 0.52). Especially
the Rhine valley (see also Figure 5.1) shows a clear difference between the two models.
While for DMET, yearly ETact simulations are higher in the Rhine valley than on the two
forested ridges next to it. For the wflow_sbm simulations, this is exactly the opposite.
In Figure 5.6, a time series of sub-basin spatially averaged daily ETact simulations are
compared to DMET. For all basins, winter ETact derived with wflow_sbm is higher than
DMET. For the remaining seasons, the differences between the two models are smaller.
Omos 2 (KGE = 0.68) is an exception to this, with almost continuously higher ETact by
wflow_sbm (bias = 1.33). Other than that, day to day catchment averaged patterns are
somewhat more in agreement than it was the case for the spatial comparison in Figure 5.5,
with KGE-values around 0.7 (ρ≈ 0.8).
A clear discrepancy is present between modeled ETact and DMET simulates for all three
basins from July to August 2013. During a drier period in these months, ETact simulated
by wflow_sbm shows reduced ETact for most of the period. The simulated ETact from
the DMET does not show this behavior. Either the wflow_sbm model overestimates the
reduction in evaporation as a result of limited soil moisture, or the DMET model did not
apply a suitable reduction. If the difference stems from the former, (in this case) likely
either the water storage was too low, e.g. due to the limited soil depth of 2 m, or the root-
ing depth was too shallow. In section 5.5, we elaborate on the different processes between
wflow_sbm and DMET used for estimating the soil moisture content.

Scalability of the model

Parameter estimates on four resolutions

Figure 5.7 illustrates obtained parameter maps for the saturated conductivity (KsatVer)
and the saturated water content (θs), in combination with probability density distribu-
tions of the obtained parameter values. Both the resulting parameter maps of the sat-
urated conductivity (a–h) and the saturated water content (i–p) indicate on a preserva-
tion of the spatial parameter fields on the four resolutions. This is also illustrated by the
mean values and standard deviations of the probability density distributions, which are
unchanged when moving to coarser resolutions: µ= 6.31 andσ= 1.01 (logmmd−1) for
the saturated conductivity, and µ= 0.46 and σ= 0.03 for the saturated water content).
However, for KsatVer, a small decrease ofµ (from 6.31 to 6.30 logmmd−1) and ofσ (from
1.01 to 1.00 logmmd−1) is present.
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Figure 5.6: Catchment averaged daily ETact simulated with wflow_sbm for three sub-basins of
the Rhine for the period 2011–2016. These aggregated daily ETact simulations are compared to
DMET ETact (black line). Green lines indicate the modeled ETact for the Elsenz, in orange for Obsi
and in blue for Omos 2.
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Figure 5.7: Parameter estimates at four resolutions for KsatVer and θs. (a)–(d), parameter esti-
mates of KsatVer with increasing resolution from 1.2 km to 4.8 km. (e)–(h), histograms of the
natural logarithm of the KsatVer parameter values; histograms match with the parameter maps
on top of them. (i)–(l), parameter estimates of θs at the same four resolution. (m)–(p), similar to
the previous histograms, but for θs.
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Consistency of fluxes and states on four resolutions

ETact fluxes are well preserved on all four resolutions (Figure 5.8, a–j), with relative errors
between the highest resolution and the coarser resolution that are generally< 10% (e–
g). Occasionally, relative errors of +/– 30% are present. This mostly occurs in regions with
an average daily ETact flux around 0.5 mm, e.g. the higher Alps and the northern Rhine
valley. For the Alps, these differences can be caused by glaciers and snow processes that
are not well scaled, due to the absence of PTFs for the parameters of these modules. As
most variability seems to take place locally (from pixel to pixel) and not necessarily per
region, figure 5.8 (h–j) illustrates the relative errors of the catchment averaged ETact sim-
ulations. The relative errors in these figures is for all sub-basins close to zero, indicating
that ETact fluxes remain preserved on all four resolutions.
Flux preservation is certainly not everywhere the case for the recharge fluxes (the net flux
of downward transfer and capillary rise, see Figure 5.2) in Figure 5.8 (k–n). Especially in
regions with recharge fluxes just above or below 0.0 mm d−1, the relative errors in (o–
q) often exceed the +/– 50%. However, absolute errors are generally low (0.0–0.1 mm
d−1) in those regions and mostly take place close to river cells. This is likely caused by
the scaling of river cells, which is well visible between the maps of Figure 5.8k (1200 m)
and n (4800 m). Around these river cells, the relative error is highest (Figure 5.8q), while
in other regions the relative error is minimal. The resulting speckled pattern, however,
reduces when the catchment averaged fluxes are compared in (r–t). There, relative er-
rors are more often< 10% and around 30% in the sub-basins around the main course of
the Rhine, where the recharge fluxes are closer to 0.0 mm d−1. This mainly applies to
the central Rhine valley, the river Main and the course of the Rhine after the tributaries
of the Main and Moselle have joined it. These are regions where the drainage density is
relatively high.
In Figure 5.9, performances of modeled discharge, indicated with KGE, are given at the
four model (level-1) resolutions as an average performance for the main course of the
Rhine (dark blue), for thirteen headwaters in the middle and downstream part of the
basin (blue) and for three Alpine headwaters (light blue). Discharge simulations in the
main course of the Rhine remain constant with an average KGE over three gauges of 0.78
on all resolutions. This is, however, not the case for simulations in the (Alpine) headwa-
ters. The averaged attained KGE for the thirteen sub-basin decreases from on average
0.65 to 0.48 between the finest (1.2 km) and the coarsest (4.8 km) resolution. For the three
Alpine headwaters, this decrease is almost absent until a resolution of 3.6 km, followed
by a quick decrease towards a resolution of 4.8 km. Hence, although simulated discharge
scales well for the larger rivers, discharges simulates are not fully consistent for the head-
waters with wflow_sbm and the approach in this study.

5.5 Discussion

The transition from lumped to gridded models enables us to take advantage of spatial
data and is important for a variety of modeling applications, in particular to study climate
and land use changes (Fatichi et al., 2016). As stated in the introduction, moving to dis-
tributed modeling concepts has consequences and comes at a price regarding parameter
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Figure 5.8: Simulations of daily averaged ETact on four resolutions, (a) 1.2 km, (b) 2.4 km, (c)
3.6 km and (d) 4.8 km. (e) - (g) illustrate the relative error per grid cell between one of the coarser
resolutions (b–d) and the simulations on 1.2 km (a) after upscaling these simulations to one of
the coarser resolutions. (h) - (j), same as (e–g), but catchment averaged fluxes are used instead
of fluxes per grid cell. (k) - (n) illustrate the daily averaged recharge fluxes on the four resolutions.
(o) - (t), same as (e–j) but then for the recharge fluxes.
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Figure 5.9: KGE per resolution as derived with model simulations and observations from 19 gauges.
Shown are the mean KGE for: 3 gauges in the main course of the Rhine (dark blue), 3 gauges in
Alpine head waters (light blue) and 13 gauges in headwaters in the middle and downstream area
of the Rhine basin (blue). The shaded blue area is the area in between the 25% and 75% percentile
(the interquartile range - IQR) for the middle and downstream headwaters.

estimations (Beven, 2006; Samaniego et al., 2010; Archfield et al., 2015; Bierkens et al., 2015;
Paniconi and Putti, 2015; Clark et al., 2016; Mizukami et al., 2017). In this study, we were
able to parameterize most sensitive components of the wflow_sbm model using litera-
ture PTFs derived from laboratory experiments with point-scale samples in a bottom-up
approach. Still, in the current scientific debate, there is no consensus on the matter of
using either a bottom-up or top-down approach in setting up hydrologic models. Argu-
ments against a bottom-up approach are that this results in overly complex models, and
that processes on the data-driven conceptualization scale, e.g. the PTFs derived on the
point scale, may not be representative on the actual modeling scale (Beven, 1989; Blöschl
and Sivapalan, 1995; Sivapalan et al., 2003). With the increased availability of (remotely
sensed) spatial data, meteorological forcing with both high spatial and temporal resolu-
tion, new upscaling procedures (e.g. Samaniego et al., 2010), and high-resolution models,
it can be argued that this makes a bottom-up approach more feasible.
However, the use of so-called point-scale PTFs, as used in this study, is still debatable.
Samaniego et al. (2017) even state that these PTFs should not be used at all beyond their
derivation scale (often 100 cm3). They support this statement based on an analysis with
PCR-GLOBWB (Bierkens and Van Beek, 2009; van Beek et al., 2011) and Noah-MP (Niu et al.,
2011), which are parameterized with ad hoc implementations of PTFs. An important dif-
ference with this study, is that the model parameters are not well upscaled (Noah-MP)
or even derived at the model resolution (PCR-GLOBWB). In this study, we have focused
on deriving the parameters on the original data resolution (level-0) followed by upscal-
ing with suitable upscaling operators to the model resolution (level-1). In essence, when
this two step approach takes place in the appropriate way, the process of upscaling the
parameter estimates should be independent of the chosen parametrization (i.e., calibra-
tion, use of PTFs, etc.) on the level-0 scale. That does not mean that calibrated transfer-
functions can not lead to better model performance, when focusing on simulated fluxes
as compared to observations or other models, but this is something that will follow from
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the model validation and not from flux- and state-matching on different resolutions.
The question that then remains, is whether point-scale PTFs can be used to obtain pa-
rameters at the current level-0 scale (e.g. 250 m for SoilGrids; Hengl et al., 2017). We ex-
pect this to be parameter specific, e.g. the saturated conductivity varies more on small
scales than the soil depth. A focus on the parametrization (level-0) scale is therefore rec-
ommended in future studies with point-scale PTFs. Point-scale PTFs have the advantage
that they require no further model calibration and therewith leaving out any model and
forcing related dependency of the results. In fact, these transfer-functions are derived
from laboratory experiments with soil samples and are therefore still closely linked to
soil properties. A comparison between derived transfer-functions with the MPR approach
and point-scale PTFs (for one model) would be of interest in our opinion.
We think that with the increasing spatial resolution of soil and vegetation datasets, in
combination with high (spatial and temporal) resolution models that move towards bet-
ter physical representations of hydrologic processes, the use of these point-scale PTFs be-
comes more feasible. Certainly, with the results obtained in this study, we see a clear rea-
son to keep exploring the potential of such an approach.
An advantage of this approach is that it shifts the focus towards the model processes and
its limitations. This is something that, in our opinion, is not present yet in other papers
that included the MPR approach. This focus, makes it possible to specify improvements
for model parameters and model structure for both increased model performance and
a better scalable model. In the following sections of the discussion, we focus on these
improvements by reflecting on the sub-questions that were posed in the introduction.

Parameter sensitivity, estimates and upscaling rules

In this section, we focus on the (pedo)transfer-functions used in wflow_sbm that cover
the sensitive parameters of this model and the parameters that are not covered by a transfer-
function (5.5). Possible improvements in the parameter estimates are discussed in sec-
tion 5.5.

Parameter sensitivity analysis

In the sensitivity analysis, we have found nine sensitive parameters that should have a pa-
rameter estimation, either via PTFs or via calibrated transfer-functions. Two of them did
not have an applied (pedo)tranfer-function. Although this is outside the scope of the cur-
rent study, a transfer-function for these parameters is needed in the absence of a point-
scale PTF. The search for and calibration of transfer-functions for the snow module pa-
rameters is then an option. That this is possible for these parameters, has already been
shown by Samaniego et al. (2010) and Kumar et al. (2013a).
The other sensitive parameter without a PTF is KsatHorFrac. This multiplication factor ap-
plied to the vertical saturated conductivity, which is generally larger than 1, has a pro-
nounced effect on the lateral subsurface flows and via that way on modeled discharges
(see also section 5.5). Although multiple PTFs are available for the vertical saturated con-
ductivity in literature (e.g. van Looy et al., 2017), there are no PTFs available in literature for
this multiplication factor, that may compensate for anisotropy resulting from the point-
scale PTF to estimate KsatVer. The estimation of the horizontal saturated conductivity is
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therefore likely not representative for larger scale horizontal saturated hydraulic conduc-
tivities at the model resolution (with in reality smaller hill slope flow length scales). To
allow for no further calibration, we have chosen to fix this parameter to a default value.
Nevertheless, for future model improvement, a transfer-function or calibration of this pa-
rameter is recommended.
Kext, Sl and Swood, parameters that are part of the interception module, were found to be
among the most sensitive parameters of the model. In section 5.4, we gave a reason for
this sensitivity, as it highly impacts evapotranspiration and with that discharge. In addi-
tion, the temporal scalability of these parameters (here run on a 6-h time step) is possibly
an issue too. The wflow_sbm model switches from the analytical Gash model (Gash, 1979)
on daily time steps to a modified Rutter (Rutter et al., 1971, 1975) model on sub-daily time
steps. This can already cause non-scalable behavior, especially for interception related
parameters (Ficchì et al., 2019), possibly leading to a higher sensitivity to these parame-
ters on a 6-h time step, as this is also at the transition between the two approaches. An
improved interception module, that uses a constant approach on different time scales, is
therefore recommended.

Parameter estimates

Using point-scale PTFs from literature, a large part of the measured variability (expressed
in relatively high KGE/NSE values) is explained. This minimizes the need for further cali-
bration, although of course an MPR calibration could potentially further improve the out-
comes. This is left for future work. The advantage of the approach taken here is that the
transfer-functions are no longer constrained to the model and regional discharge data,
giving, in theory, even more potential for regionalization. However, also PTFs have a con-
straint, which are the field samples they are based on. These field samples are generally
limited to certain regions in the world, which makes the empirical relationships derived
in the laboratory not necessarily representative for all river basins. For the estimation of
especially θs, θr , KsatVer and c, many more PTFs are available. So, the choice of a modeler
for a certain point-scale PTF can then depend on the area of interest.
In addition, some of the point-scale PTF implementations can still be improved. By mak-
ing use of KsatVer estimations at seven depths and a simple exponential fitting, a rough
estimation of the M -parameter is made. Conceptually, M is the exponential decay of
KsatVer with depth, so this approach suits the concept. However, with the wealth of soil
information on seven depths and therewith also KsatVer estimations on seven depths, the
M parameter is not strictly necessary. For shallow soils, the saturated conductivity with
depth can also be estimated with the available information and in that way also allow for
e.g. increasing saturated conductivity values with depth, instead of only a decay.
Moreover, Nriver , Manning’s roughness coefficient for water flow in watercourses, has
not been found to be a sensitive parameter, but it may become more important for larger
river systems such as the main course of the Rhine. In this study, we have used a method
which relates the Strahler-order of a river cell to a coefficient value for Nriver (Table 5.1)
based on Liu et al. (2005). This method is, however, not often tested and therefore it is
uncertain whether these values are universally applicable or only locally applicable.
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Validation of wflow_sbm model for the Rhine

In this section, we discuss the resulting quality of the wflow_sbm model on the highest
resolution of interest (1200 m) as assessed on simulated discharge (5.5) and evapotran-
spiration (5.5) after the parameter estimations and upscaling procedures were applied.

Discharge

The results at Lobith, at the Dutch-German border, are comparable to results found with
the (MPR calibrated) mHM-model in an earlier study for the Rhine by Rakovec et al. (2016a)
(supplement Figure C.8; note that the used forcing is different). With a KGE just under
0.9 for both models, discharge is generally well simulated. One difference is that the first
peaks during fall seem to be better captured by wflow_sbm, as the results with mHM give
too flashy responses with a high recession rate afterwards. Winter peaks are reasonably
well captured by both models in the comparison.
The results are also comparable to discharge simulations by van Osnabrugge et al. (2017)
with wflow_hbv (a distributed version of HBV within the wflow framework), where five
model parameters were derived with a basin by basin GLUE analysis approach. In that
study, the same meteorological forcing was used. In the Alpine headwaters, lower KGE
values were attained as well. Discharge performance in the river Main is better than for
wflow_hbv, while the opposite is true for the river Ahr (central region of the basin) and the
river Ruhr (northeast). Other regions are similar in terms of attained KGE for discharge
simulations, see also (van Osnabrugge et al., 2017).
Although discharge simulations and therewith model performance are promising with
this modeling approach, discharge simulations are insufficient in the Alpine region. We
see five likely reasons for this behavior of the model: (1) incorrect lake ‘operation’ repre-
sentation, (2) used model parameters, mainly KsatHorFrac and snow parameters, (3) the
model forcing in this area, (4) the chosen model resolution and (5) the river and drainage
network derivation procedure.
In Figure 5.3b, we saw that some of the lakes in Switzerland are not well modeled, result-
ing in lower KGE values. Additional time series of lake levels are present in the supple-
mentary material (Figure C.3). Part of this can be attributed to a mismatch in simulated
discharge volumes and timing from the upstream headwaters, but e.g. the Murtensee is
an example of a reservoir for which the release of water clearly occurs in the wrong season
leading to a clear mismatch between the observed and modeled lake levels. Improving
the reservoir operation schemes, which were obtained from the operational Rhine mo-
del, is therefore a necessary additional improvement.
It is obvious that the used approach of a uniformly applying default snow parameter val-
ues is insufficient, as also the SWE estimations are on average a factor two lower than
the SLF estimates (see also Figures C.13–C.15). Ideally, these parameters are estimated
with transfer-functions. Day-degree parameters are hard to relate to physical character-
istics (Seibert, 1999), although some studies have tried to link the day-degree factor to
land cover, elevation, slope and aspect (e.g. Kuusisto, 1984; Semádeni-Davies, 1997; Dunn
and Colohan, 1999). As a calibrated transfer-function, relating the day-degree factor to
land cover was already done by Kumar et al. (2013a).
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In addition, KsatHorFrac was found to be a sensitive parameter. This parameter has a pro-
nounced effect on the partitioning of discharge in quick runoff and baseflow. A higher
value for KsatHorFrac leads to a higher baseflow, lower peaks and a somewhat slower re-
cession after a discharge peak. Besides the need for a calibrated transfer-function for this
parameter, the uniformly applied value of 250 may have been too high for many regions in
the Rhine basin (see e.g. Figure 5.4). Especially for the Alps, quick responding catchments
are often not well modeled with too high baseflows and too low or even missed discharge
peaks. In this region, a lower value for this parameter can increase model performance.
This is tested for the Thur basin (supplementary Figure C.9), where four different KsatHor-
Frac values (10, 100, 250 and 1 000) are implemented. With decreasing KsatHorFrac, peaks
get higher with steeper recession curves and generally a lower baseflow. For a KsatHorFrac
of 10, the peaks that were highly underestimated in Figure 5.4, are even overestimated.
With a calibration procedure, we expect that a value in between 10 and 100 will be found,
leading to increased model performance for this (and similar Swiss) basin(s).
Mainly in the south west of the Alps, forcing errors played a role. In this region, mostly
located in Switzerland, the observation network used for the forcing is not dense enough
to capture the high rainfall variability in this mountainous region. The result is an under-
estimation of precipitation for this region compared to other precipitation data sets (van
Osnabrugge et al., 2017). Hence, besides the parameterization, this is a second reason for
the mismatch between modeled and observed discharge in this region, especially con-
cerning the volume bias during the winter period (October - March).
Within this approach, a high resolution model on 1200×1200 m was used which led to
discharge simulations that well resembled the observations in most of the Rhine basin.
However for the Alpine region, this grid cell resolution may still be too large to well cap-
ture processes such as the lateral subsurface flow representation. It is possible that other
parameters, e.g. KsatHorFrac, are compensating for this now.
Another issue related to resolution, is the derivation of the river and drainage direction
and network. This derivation was conducted on the model resolution, while ideally this
takes place on the DEM resolution, followed by an upscaling procedure keeping the sub-
grid information available on the model resolution. What we see with the current model,
is that discharge and subsurface lateral flow simulations are not scale independent (Fig-
ures 5.9 and C.7). This is certainly related to the fact that the river network is not properly
scaled. Section 5.5 focuses further on this scalability. For the Rhine and especially the
Alps, it is needed to improve the derivation of river and drainage direction networks. This
is currently under development.

Actual evapotranspiration

In this study, we have compared modeled ETact values with LSA SAF DMET estimates by
Trigo et al. (2011). Note that this is a comparison of two models and care should be taken
when interpreting the results or drawing hard conclusions on the basis of this compari-
son. In our opinion, however, this is a valuable addition to the validation procedure of hy-
drologic models since both models estimate ETact in a different manner. An important
difference is that DMET estimates the plant available water with remotely sensed soil
moisture status estimations, while in wflow_sbm, plant available water is the remain-
ing precipitation from the forcing in the unsaturated buckets that are reachable by the
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plants roots. Hence, the driving boundary conditions for root-zone water availability, i.e.
remotely sensed soil moisture or precipitation estimates, can already be substantially dif-
ferent, leading to e.g. the bias between the two model estimates.
Simulated average yearly ETact differed considerably between the models with 427 mm
a year for DMET and 527 mm a year with wflow_sbm. Hurkmans et al. (2008, 2009b) have
found a yearly average of 659 mm from lysimeters for the Rheindahlen (near the Dutch
border), 541 for the Rietholzbach (part of the Thur basin), and on average for the land use
types deciduous forest, grassland and crops values of: 491, 659 and 398 mm. This indicates
that DMET estimates are too low for the area. Nevertheless, day to day variability of ETact

for the three sub-basins is comparable for both models (Figure 5.6).

Scalability of the model

In this section, we focus on the scale (in)dependency of the resulting wflow_sbm mo-
del. How important were the upscaling rules (5.5) and what is still necessary to reach flux
preservation for especially the discharge related fluxes (5.5)?

Upscaling rules

The application of appropriate parameter-specific upscaling rules are of key importance
within this approach. Both in Figure 5.7 and in the supplementary Figures C.4–C.6, some
examples are given of the effects of the upscaling rules on obtained parameter fields. The
results show a high degree of consistency in the parameter fields, comparable to e.g. Fig-
ure 3 in the study by Samaniego et al. (2017). Therefore, we argue that consistent param-
eter fields on different resolutions are reachable with a combination of a-priori PTFs and
the right upscaling rules.
The results of this study have shown that saturated hydraulic conductivity (and lambda)
fields, are well upscaled with an arithmetic mean of their natural logarithm. This choice
has followed from their log-normal distribution and the used PTFs which are formulated
as an exponential function (Table C.2). In practice, however, the difference between up-
scaling with the arithmetic mean of the natural logarithm or just the arithmetic mean of
the normal values is small (but present) (Figure C.6). Possibly, this is caused by the high
standard deviation in the parameter estimations, partly caused by the high natural spa-
tial variability in the saturated conductivity, which makes the effect of different upscaling
operators less pronounced.
In addition, saturated and residual water content parameters are upscaled with a har-
monic mean in the mHM model (Samaniego et al., 2010; Kumar et al., 2013a,b; Rakovec et al.,
2016b,a; Samaniego et al., 2017). Within our approach, upscaling of these parameters has
taken place with an arithmetic mean. In the supplement (Figure C.4), we have compared
both approaches and they give similar consistencies in parameter fields on different reso-
lutions, although with a slightly different mean for the two approaches. Hence, it seems
that the chosen upscaling procedure (i.e. harmonic or arithmetic) does not matter that
much for these two parameters.
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Flux preservation on different resolutions

In theory, the choice of the right upscaling procedure per parameter should lead to the
preservation of modeled fluxes and states on different spatial resolutions (Samaniego et al.,
2010; Kumar et al., 2013a,b; Samaniego et al., 2017). In this study, similar results are found
for ETact flux estimates on the four applied spatial resolutions (Samaniego et al., 2017,
e.g. 0–10% in Figure 7 of). Only on a sub-basin scale, we have found similar results for
recharge fluxes, while on the grid cell scale, the variability is higher.
In contrast to those results, we have not found flux preservation for discharge related
fluxes (e.g. river runoff and subsurface lateral flows), especially for headwaters (Figures 5.8
and C.7). This is particularly the case for small basins (mostly headwaters) that rely on
well scaled slopes, and well scaled river and drainage networks. In areas where the net-
work is dense and not well scaled to the model resolution, this leads to a river network
and lateral subsurface flows that have a slightly different direction or location (in case of
the network) than at higher resolution, which can lead to large relative errors in spatially
accumulating fluxes. This is well visible in Figure C.7 of the supplement.
For mHM, however, discharge simulations have given quite consistent results on both
finer and coarser spatial resolutions, with a maximum efficiency at a simulation and cali-
bration scale of 8 km (Samaniego et al., 2010; Kumar et al., 2013a). Hence, this shows that it
is possible to obtain discharge flux preservation on different spatial scales. However, that
this is possible with a model that allows for lateral subsurface flows has not been shown
yet. For wflow_sbm, it requires a structural change in the (current) automated process
of slope, river and drainage network derivation from e.g. DEM information. Ideally, this
takes place on a sub-grid scale, as the local drainage directions, determined at the mo-
del resolution, probably do no longer capture all drainage processes well on the coarser
model resolution, leading to erroneous representations of rivers and drainage networks.
Finally, we have not tested the approach on finer resolutions than 1200×1200 m. Ku-
mar et al. (2013a) have shown that fluxes remain more or less preserved when moving
towards higher resolutions than the used calibration scale. Although this is not tested
here, we expect to obtain similar results or even increasing model performance when it
comes to simulation of discharge or lateral subsurface flows with the current version of
wflow_sbm. This is based on the aforementioned representation of the river and drainage
network, which is expected to be better on higher resolutions.

5.6 Conclusions

Moving towards high-resolution spatially distributed hydrologic models asks for a dif-
ferent approach in estimating parameter values. In this paper, we combined parameter
estimates from point-scale (pedo)transfer-functions (PTFs) with a high spatial and tem-
poral resolution model (wflow_sbm) for the Rhine basin. Following previous studies by
among others Samaniego et al. (2010), Kumar et al. (2013a), Kumar et al. (2013b), Rakovec
et al. (2016a), Mizukami et al. (2017) and Samaniego et al. (2017), we set up the parameter
estimates on the original data resolutions and upscaled derived parameter fields to vari-
ous model resolutions by making use of suitable upscaling operators.
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The objective of this study was to investigate the applicability of point-scale (pedo)transfer-
functions in combination with suitable upscaling operators for deriving seamless hydro-
logic model parameters and the preservation of fluxes across scales for a multi-scale hy-
drologic model for the Rhine River. We focused on three aspects: (1) Can we cover the
sensitive parameters of the wflow_sbm model with point-scale PTFs from literature? (2)
To what model performance does this setup lead on the highest resolution of interest
(1200 m)? (3) How scale (in)dependent is the resulting model on four resolutions (1.2,
2.4, 3.6 and 4.8 km)?
With point-scale PTFs from literature, we were able to estimate almost all sensitive pa-
rameters of the wflow_sbm model. The two remaining parameters, together with the
relatively insensitive parameters, were set to default-values and were applied homoge-
neously over the entire Rhine basin. This gave us a model setup with parameter values,
either estimated or fixed, which made it possible to model the hydrology of the Rhine
basin without any further calibration, while obtaining similar performance as calibrated
models (i.e., mHM and wflow_hbv).
The used parametrization of the model led to promising results. For most discharge gaug-
ing stations in the central and northern part of the Rhine basin, KGE values ranged from
0.6 to 0.9. An exception to this result was the Alpine region, where lower KGE-values were
attained, especially in the southwest of the basin. For the greatest part, this could be at-
tributed to a volume bias in the simulated discharge. This volume bias in the upper part
of the basin transferred downstream in the main course of the Rhine and we attribute
this to a biased forcing in this region.
The validation of evapotranspiration simulates took place with a comparison with LSA
SAF DMET estimates. Model simulates were systematically higher than for DMET with
100 mm y−1, although DMET was found to have too low estimates for the Rhine region
compared to values from literature. Spatial patterns between the two models were some-
what similar for the Alps, northern Switzerland and the downstream area of the basin.
Between the other regions, however, many differences were present, especially in the
Rhine valley and the surrounding hills (SPAEF = 0.51). Here, spatial patterns of higher
and lower evapotranspiration were often the opposite of the DMET estimates. Contrarily,
catchment averaged temporal dynamics for three sub-basins were better with KGE val-
ues around 0.7. Hence, although the temporal dynamics were comparable to the DMET
estimates, fluxes were highly different between various regions in the Rhine basin.
Results indicated that consistent parameter fields on various resolutions could be ob-
tained with the used method. Modeled actual evapotranspiration fluxes remained pre-
served on coarser spatial resolutions, which is in agreement with the findings of Samaniego
et al. (2010), Kumar et al. (2013a) and Samaniego et al. (2017). Recharge fluxes were only
preserved for regions where the fluxes were considerably higher than 0. In the other re-
gions, local relative errors of ± 30% (sometimes up to 50%) occurred on a pixel to pixel
scale. Catchment averaged fluxes were, however, better preserved on the four resolu-
tions.
Moreover, flux preservation was not found for routed discharge in smaller rivers and head-
waters on coarser resolutions, while the routed discharge for the main course of the Rhine
was consistent on all four resolutions. The headwaters rely most on well scaled slopes,
river and drainage networks. In areas where the network is dense and not well scaled to
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the model resolution, this leads to a river network and lateral subsurface flows that have
slightly different directions and locations than on the highest resolution. For wflow_sbm,
a model that allows for lateral subsurface flows, it requires a structural change in the mo-
del process of slope, river and drainage network derivation from spatial information, such
as the DEM. Ideally, this takes place on a sub-grid scale in order to better represent the
drainage processes on smaller scales. Research in this direction is currently underway.
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Chapter 6

Assimilation of multiple lake levels in an
operational integrated catchment model
of the Swiss Rhine basin

Data assimilation methods have the potential to improve hydrological forecasts by reduc-
ing errors in the initial state of the model at the time of forecast. In this paper the potential
of using lake level measurements in state updating is explored. By means of a synthetic
model experiment and a real world case applying the Ensemble Kalman Filter (EnKF) to a
hydrological model of the Swiss Rhine, it was found that lake level measurements contain
information that can be related to upstream hydrological states. Hence, there is poten-
tial for state updating. For the real world case the results were mixed. Updating multiple
states, most notably the store related to fast runoff processes, led to overshoots in the
low flow period. Restricting the updates to the lake level and the state related to base-
flow processes gave the best results, closely followed by direct insertion of the lake level
observations.

This chapter is under review as: van Osnabrugge, B., R. Uijlenhoet, and A. H. Weerts (2019), Assimilation of
multiple lake levels in an operational integrated catchment model of the Swiss Rhine basin, submitted to Journal
of Hydrology
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6.1 Introduction

Operational streamflow forecasts are an integral part of water management. Operational
forecasts are not only set-up for flood early warning (Reggiani and Weerts, 2008), but are
also beneficial for a number of other purposes, such as providing water level information
to the shipping industry (Meißner et al., 2017; Meißner and Klein, 2016) and for water al-
location issues during dry periods (Gijsbers et al., 2017). A clear example of daily use of
streamflow forecasts is hydropower production, where a good forecast can result in im-
proved reservoir management (Hamlet et al., 2002; Chen et al., 2011; Fan et al., 2016a).
Forecasts are inherently uncertain. This uncertainty comes from multiple sources in the
forecast model train. Precipitation estimates are the largest contributer to streamflow
forecast uncertainty (Cloke and Pappenberger, 2009), with only a secondary influence of
other meteorological variables such as potential evaporation (van Osnabrugge et al., 2019).
In hydrological modelling three sources of model uncertainty are generally identified:
model structural errors, model parameter uncertainty and uncertainty in the model’s ini-
tial state. Although different papers have addressed each of those sources of uncertainty
separately (Wagener et al., 2004), in practice the different sources of uncertainty are dif-
ficult to separate (Beven and Binley, 2014), an issue that accidentality has led to one of the
more extended polemics in hydrology (Mantovan and Todini, 2006; Beven et al., 2007; Man-
tovan et al., 2007; Beven et al., 2008).
The influence of state errors on total model uncertainty has long been neglected in hy-
drological modelling. The reason for this is that hydrological systems are damped dy-
namical systems, which means that any distribution of initial conditions will eventually
converge over time towards a single state, in contrast to meteorological systems where
state errors lead to strong divergence. Hence, for hydrological models it is possible to run
lengthy calibration runs without reinitializing the model for years. The initial state error
is incorporated in the parameter uncertainty as errors from the previous time step need
to be corrected by the parametrization of the model for future time steps. The parame-
ters of the model then do not describe the propagation of the model from one time step
to the next, but the average propagation over the calibration period as the model has to
adjust continuously for any possible past error that has led to an incorrect state (Vrugt
et al., 2005).
Theoretical issues aside, in hydrological operational forecasting practice model structure
and model parameters are determined offline and are generally fixed for several years
due to the costs of the exercise of updating parameters. At the same time the meteoro-
logical forecast is usually provided by an external agency. This basically leaves mostly only
the initial state of the model as playground for the hydrological forecaster to improve the
quality of the forecast. This can be achieved with state updating. State updating is a form
of data assimilation (DA) were the discrepancy between observations and model results
are mapped onto the model state in near real-time. The model state is then adjusted in
such a way that would ideally result in the best possible estimate based on the respective
uncertainty of the model and the observations. A growing number of studies have shown
that state updating is effective in improving forecasts (e.g. Xie et al., 2014; Rakovec et al.,
2012; Seo et al., 2009; Clark et al., 2008).
One difficulty in the data assimilation of hydrological models, is that most hydrological
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model states are not directly observable. This is partly because of the difficulty of measur-
ing the quantities involved (e.g. soil moisture), but also largely because of the fact that in
almost every hydrological model the model states are highly conceptual, even if they are
denoted by physical characteristics (Beven, 1989). Still, there is a growing list of observa-
tional variables that have been used for state updating of hydrological models, including
snow cover, surface brightness, soil moisture and streamflow. For a review and references,
see Sun et al. (2016).
Another problem when using data assimilation is the ambiguity in the technical imple-
mentation of any DA filter, referring to how the outcome of a DA algorithm can be tuned
by setting DA parameters such as the ensemble size and, most notably, the presumed
uncertainty in the assimilated observations (Thiboult and Anctil, 2015). Last, it is uncom-
mon (or unwise) to update all hydrological states. Instead, careful consideration should
be given to which states are updated, and which states are ignored by the filter. However,
in practice the above settings, which have a large influence on the post-ensemble, are set
by means of trial and error, until the modeller is satisfied with the outcome.
As mentioned above, the nature of hydrological models is such that any ensemble of ini-
tial states will converge towards one future state without external perturbation. How-
ever, the rate of this convergence can differ greatly between different types of hydrolog-
ical storages. The time it takes for a model to converge after an initial perturbation of
states is called the memory of the system. The memory determines the expected lead
time of the expected gain, with improvements to be expected to be longer with a larger
memory of the system. From this perspective it is most interesting to update states that
have the largest contribution to system memory. Snow and groundwater states are states
with notably long memories, that have predictive skill on the seasonal time scale (Koster
et al., 2010).
The influence of different storages and fluxes on streamflow forecast skill differs from
upstream to downstream locations of interest in a river basin. In upstream or headwater
areas, future streamflow is dependent on local meteorological conditions and local ini-
tial conditions. Further downstream future streamflow also becomes more dependent
on the amount of water already in the river system as the concentration time, the time
needed for all water from a basin to reach its outlet, increases. Under dry conditions, the
prediction of streamflow becomes even more strongly dependent on the determination
of the amount and distribution of current water.
Most hydrological storages have been considered for state updating, such as snow, ground-
water, and river water level. One source of storage that seems to have been overlooked
is the storage of water in natural and artificial lakes. Lake levels have not been assimi-
lated extensively in an operational system, but show clear potential. Lake levels generally
change slower than discharge, indicating system memory. Lake levels are easily measur-
able, in-situ, but also using remote sensing, which could enable application of assimi-
lation of lake levels in global models. For these reasons, we investigate the potential of
assimilating lake levels and compare this to the better studied approach of assimilating
streamflow.
In the following, first the Ensemble Kalman filter (EnKF) is explained and the issues briefly
presented above are addressed with some insights from literature (6.2). Next, an overview
is given of the study area and related data (6.2), followed by the experimental set-up de-
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scribing the model experiments (6.3). Results are given in Section 6.4, followed by Dis-
cussions (6.5) and Conclusions (6.6).

6.2 Data and methods

Formulation of the EnKF

One-dimensional problem

To understand the working and results of the EnKF it is useful to start with the most basic
understanding of the data assimilation algorithm. The basic concept of data assimilation
is well explained by Reichle (2008):
Letmbe a scalar model variable with uncertainty (or error variance)σ2

m, with correspond-
ing scalar observation owith uncertaintyσ2

o .m is called the prior. The model estimatem
is the output of the model at the moment observation o becomes available. The goal is
then to find the most likely estimate x̌ of the true statex based on the available informa-
tion fromm and o.
To do this one has to define an objective function J which quantifies the misfit between
the true state x, the model state and the observation. If the difference betweenm and
o is quantified by the least-square-error, with the assumption that all errors are random
and Gaussian, the objective function becomes:

J =
(x−m)2

σ2
m

+
(x− o)2

σ2
o

(6.1)

This can be solved to get estimate x̌ by taking dJ/dx = 0:

x̌ = (σ2
m + σ2

o)
−1(σ2

om+ σ2
mo) (6.2)

This is typically rewritten as:

x̌ = (1−K)m+Ko (6.3)

or
x̌ = m+K(o−m) (6.4)

whereK =
σ2
m

σ2
m+σ2

o

The termK is called the (Kalman) gain and it is now understood that the best estimate x̌
is the weighted average between the model outcomem and the observation oweighed
by their respective uncertainties as expressed by the gain K (note that 0 ≤ K ≤ 1).
The best estimate x̌is also referred to as the analysis or posterior. If the observation error
variance σ2

o is small compared to the model uncertainty σ2
m, the gain will be large, and

the resulting estimate will be close to the observation. If the observation error variance
σ2
o is large compared to the model uncertainty σ2

m the estimate will be close to the mo-
del. Equal model and observation error variances produce equal weights (K = 0.5),
reflecting equal trust in the model and the observation.
Mentioning ‘level of trust’ as a measure that defines the results of an otherwise math-
ematical method may seem unscientific, where it would be expected that σ2

m and es-
pecially σ2

o are based on a ‘true uncertainty’ derived from statistical time series analysis
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or first principles. However, the true uncertainty is always unknown for the complex dy-
namical heterogeneous systems dealt with in hydrology, which makes σ2

o and σ2
m sub-

jective choices reflecting the trust the user has in the observations and model, respec-
tively. In practice, values for σ2

o are based on prior data assimilation experience. For ex-
ample, the error standard deviation for streamflow observations is often set to σQ =
0.1Q · N (µ, σ2). This setting can be traced back to (Georgakakos, 1986) who substan-
tiate their assumption only with: “the standard deviation of the observation noise corre-
sponding to the discharge rate was taken to be time varying as a function of the obser-
vation measurement according to σQ = 0.1Q, implying higher measurement error for
higher flows”, without reference given. Since then, the assumption of σQ = 0.1Q has
propagated through literature to become an accepted reasonable estimate that results
in decent data assimilation performance (Weerts and El Serafy, 2006; Rakovec et al., 2012,
2015; Mazzoleni et al., 2018).
Rewriting Eq. (6.3) as

x̌−m = K(o−m), (6.5)

two more definitions can be added: the increment x̌−m and the innovation o−m. This
formulation shows that the increment is proportional to the innovation. In other words,
the largest potential for updates in absolute terms is when the difference between o and
m is large, but note that x̌ will always be in between the values of o and m. Equation
6.5 is also called the update equation as the model estimate is updated with information
from the observation. In forecasting the whole activity of propagating a model forward
in time can be referred to as update step, which includes running the model to generatem
and running a data assimilation scheme to produce x̌.
Finally, if the errors in the model output and the observation are uncorrelated the error
variance of the assimilation estimate for this example with the least-square-error is:

σ2
x̌ = (1−K)σ2

m = Kσ2
o (6.6)

Hence, σ2
x̌ is smaller than the variances of the model and observation (as 0 ≤ K ≤ 1),

reflecting how data assimilation has increased knowledge about the true statex.

EnKF matrix formulation

Environmental problems usually have more than one model outcome and more than one
observation. However, Eq. (6.3) can be easily expanded by writing it as a matrix multipli-
cation:

x̌ = m+K(o−m) (6.7)

In which x̌, m, o and K are know vectors of length [mx1], with m the number of states,
which equals here the number of observations. The Kalman gain becomes:

K = Pm(Pm +Ro)
−1 (6.8)

Pm and Ro are the covariance matrices for the error variances of the model and obser-
vations, respectively.
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In the above case, there is a direct observation available for every model state. In any en-
vironmental case the number of model states is much higher than the number of obser-
vations.

Φa
i = Φf

i +K(di −HΦf
i ), i = 1, · · · , N (6.9)

Here,Φa
i [mx1] is the analysis andΦf

i the model forecast [mx1]. The update procedure is
still the same as in Eq. (6.7), with the difference that now the perturbed observations di

[nx1] and the state vector Φf
i [mx1] have different dimensions. Hence, a transformation

is needed such that only the states with matching observations are selected. This is done
with the observation matrix H [nxm]. Because discharge is not a linear function of the
model states, the discharge is added to the state vector when discharge is assimilated.
This is known as state augmentation. Now that the discharge is treated as a state, the
observation matrix is a simple matrix filled with ones and zeros to match the observed
discharge with the modelled discharge at certain points.
The Kalman gain [mxn] also needs to be adjusted to take into account the fact that there
are only limited observations:

K = PfHT (HPfHT +R)−1 (6.10)

Pm from Eq. (6.8) has now been replaced with two terms: PfHT andHPfHT . PfHT

is the covariance between all states in the full forecast vector (Φf
i ) and the limted number

of those states that make up the forecasted observation (HΦf
i ). HPfHT is the covari-

ance of the forecasted observations with themselves. This is expressed in the formulas
(Houtekamer and Mitchell, 2001):

PfHT ≡ 1

N − 1

N∑
i=1

(Φf
i −Φf )(HΦf

i −HΦf )T (6.11)

HPfHT ≡ 1

N − 1

N∑
i=1

(HΦf
i −HΦf )(HΦf

i −HΦf )T (6.12)

With these equations for PfHT and HPfHT the Kalman gain can be calculated di-
rectly from the ensemble forecast (Φf

i ) with ensemble meanΦf .

OpenDA

Implementation of the EnKF formula is quite easy, but optimizing the ensemble calcu-
lation process is much more complex. The open data assimilation library (OpenDA) is a
toolbox to link models with a library of data assimilation techniques (Ridler et al., 2014).
The OpenDA library also has methods to perform the perturbation of spatial forcing fields
and observations (OpenDA Assiociation, 2016).

Study area, data and model

Study area

The Rhine river (area approx. 160.000km2, see Chapter 5.2) has a mixed pluvial-snowmelt
flow regime (Fig. 6.1). The largest contribution of snow melt to river flow is from the Swiss
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Figure 6.1: Map of the Rhine basin, Europe. Thick black line delineates the Swiss part of the Rhine
basin. Rheinfelden is the main station at the outlet of the Swiss Rhine basin.

Alps area in the south of the basin. Another notable feature of this area are the large nat-
ural lakes. Furthermore, the Swiss region of the Rhine basin has the highest yearly precip-
itation. During the months June-July the Swiss part of the Rhine contributes on average
almost 70% to total streamflow at the Dutch-German border (Fig. 6.2). Almost all of the
water that leaves the sub-basin at Rheinfelden is routed through one of the Swiss lakes.
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Figure 6.2: Percentile contribution (black line, left y-axis) of the flow of the Rhine near the Swiss
border at Rheinfelden (blue line, right y-axis) to the total monthly streamflow at the Dutch-
German border (Orange line, right y-axis). 20 year average 1996-2016.

Data

Observational data has been preprocessed for use with a grid-based hydrological model.
The data was processed with hourly time resolution, on a 1.2×1.2 km grid spatial resolu-
tion, for the period mid 1996 through 2015. All source data to derive the gridded estimates
comes from sources that supply their data in near real-time, making the datasets suitable
for operational forecasting. For this study all data was aggregated to a daily time step. The
hourly datasets are downloadable through the 4TU data centre (van Osnabrugge, 2017,
2018).

The precipitation data set has been derived using the genRE interpolation method based
on ground measurements and the HYRAS (Rauthe et al., 2013) climatological precipita-
tion dataset (van Osnabrugge et al., 2017). The temperature is interpolated using a fixed
lapse rate to correct for height differences between stations and grid cells, and potential
evaporation is calculated with the Makkink formula based on those temperature fields,
in combination with satellite-based solar radiation estimates from the CM-SAF (Climate
Monitoring Satellite Application Facility) and LSA-SAF (Land Surface Analysis Satellite Ap-
plication Facility) (van Osnabrugge et al., 2019).

Forecast data is obtained from the European Center for Medium-Range Weather Fore-
casts (ECMWF). ECMWF issues hindcasts produced with the current model cycle for cer-
tain days for the last 20 years. The reforecast obtained for this study was produced with
model cycle 43r1 (Buizza et al., 2017). The first forecast is on 1996-03-10 and the last fore-
cast on 2015-12-29 with reforecasts alternating every three or four days.

Forecasted Makkink potential evaporation was calculated based on the 2-meter tempera-
ture, t2m (T ), and the surface solar radiation downwards flux,ssrd (Rg), variables. Tem-
perature was first downscaled to the model resolution using the standard lapse rate, sim-
ilar to the interpolation of the observed temperature fields. The process is the same as in
van Osnabrugge et al. (2019).
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Figure 6.3: Catchment discretization and schematic structure of the HBV-96 model for each grid
cell. Model states are in bold and model fluxes in italics (Rakovec et al., 2015).

Hydrological model

Wflow is a modular hydrological modelling framework that allows for easy implemen-
tation and prototyping of regular grid hydrological model concepts in python-pcraster
(Schellekens et al., 2018). The hydrological model concept used is the HBV96 (Hydrolo-
giska Byråns Vattenbalansavdelning) model concept (Lindström et al., 1997a) applied on a
grid basis (Fig. 6.3). The generated runoff is routed through the river network with a kine-
matic wave approach (Schellekens et al., 2018). In the following this model is referred to as
wflow_hbv. The set-up of the hydrological model is the same as used in assessing the va-
lidity of the genRE precipitation data set (van Osnabrugge et al., 2017), and in assessing the
influence of potential evaporation forecasts (van Osnabrugge et al., 2019). The model was
parameterized through calibration with a Generalised Likelihood Uncertainty Estimation
(GLUE)-like procedure (Beven and Binley, 1992), using HYRAS precipitation as forcing data
(Winsemius et al., 2013a,b).

Lake modelling

Of special attention is the modeling of the Swiss lakes in the hydrological model. Eight
lakes are modelled (Fig. 6.4), of which specific properties are listed in Table 6.1.
Lakes are initialized based on two spatial maps: 1) lake area, and 2) lake location. The
lake area map is simply a pixel map in which the pixels that make up the surface area of
the lake are numbered with each number corresponding to a lake. The lake location map
shows a single pixel for each modelled lake. This shows the model at which locations in
the stream network the lake model routine has to be run. The lake surface area is used
to calculate lake evaporation and direct precipitation into the lake, but for water balance
purposes the lake is compressed in one pixel of the stream network. This is most logically
the most downstream area of the lake where the outlet is located. Lakes are modelled in
different ways depending on the available information.
The first difference is the link between water level and water volume stored in the lake.
For lakes for which no information is available on the relation between water level and
surface area (denoted in Table 6.1 with ResStorFunc=SIMPLE), the assumption is of a sim-
ple rectangular reservoir and S = A ∗ H , with S the storage, A the surface area, and
H the water level. Note that, since the water levels are given in height above mean sea
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Figure 6.4: Location of the eight modelled lakes on top of the stream network. 1. Bodensee (Upper),
2. Bodensee (Lower), 3. Lac de Neuchâtel, 4. Bielersee, 5. Vierwaldstättersee, 6. Zürichsee, 7.
Murtensee, 8. Walensee.

Table 6.1: Table listing the model properties of the modelled lakes. The columns list which type of
functions are used to model the surface area as function of water level (ResStorFunc), the outflow
as function of water level (ResOutflowFunc) and which lakes are linked with each other and with
which lake (Linked).

# name ResStorFunc ResOutflowFunc Linked
1 Bodensee (Upper) LUT SDC 2
2 Bodensee (Lower) LUT LUT 1
3 Lac de Neuchâtel SIMPLE SDC 4
4 Bielersee SIMPLE LUT 3
5 Vierwaldstättersee SIMPLE LUT -
6 Zürichsee SIMPLE LUT -
7 Murtensee SIMPLE LUT -
8 Walensee SIMPLE SDC -

level, the calculated volume is not an indication of the actual volume of water stored in
the lake, but a practical way to implementdH = dS((H)/A. For some lakes (denoted in
Table 6.1 with ResStorFunc=2) the relationship between water level and storage is given
in a lookup table,S = LUT (H), which should reflect actual stored volumes.
The second difference is how the outflow of the lake is calculated based on the water
level. For most lakes (ResOutflowFunc=LUT in Table 6.1), the outflow is determined with
a lookup table Qout = LUT (H, JDAY ), with JDAY the day of the year. This en-
ables simple control rules to be implemented in the modelling. For example, one water
level can lead to different outflows depending on water level targets and human control.
The other lakes (ResOutflowFunc=SDC in Table 6.1) are modelled with a stage-discharge
relationship:

Qout = a(H −H0)
n, (6.13)

withH0 the outflow threshold and a andn parameters that are fitted to observed water
levels and observed downstream discharge.
In the case of linked reservoirs, the water levels of the linked reservoirs are compared. If
the water level of the downstream lake is higher than the upstream lake level, Eq. 6.13 is
then used to calculate a flow from the lower reservoir to the upper reservoir.H is then the
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water level of the lower lake (which is higher) andH0 is the threshold of the upper reser-
voir. The upper reservoir then has no outflow (but additional inflow, as negative outflow
Qout).
After determining all fluxes the storage is calculated with the water balance:

St+1 = St +Qin∆t+ Plake∆t− PETlake∆t−Qout∆t (6.14)

With the mentioned considerations, the computation algorithm is as follows:
For a location x, y on the stream network that is designated a lake, the following steps
are performed:

- determine the inflow from upstream into the lake node;
- determine water level differences with any linked reservoirs;
- calculate lake level storage from the water level state, based on either a rectangular

assumption or a lookup table, linking water level with storage if available;
- calculate the outflow based on a) a lookup table linking water level and discharge

or b) a stage-discharge relationship. Based on the water level differences with linked
reservoirs water can also flow back into upstream lakes using the same stage dis-
charge relationship with the water level between the lakes as input;

- calculate the new storage based on the water balance;
- calculate the new water level state using the same relationships as earlier when

determining the storage;
- add the calculated outflow to the downstream pixel in the stream network.

Before the algorithm above is started, a check is done on the time step. For any time step
above 6 hours the time step for the lake level calculation is reduced to prevent instabili-
ties related to the linked reservoirs, which can show numerically induced oscillation if the
time step is too large.

6.3 Experimental set-up

To test the usefulness of assimilating lake level data in our hydrological model, a twin ex-
periment is performed. With ‘useful’ we mean here that 1) the algorithm works properly
and a better estimate of the true state is obtained as described by Eq. 6.6, and 2) the algo-
rithm is able to update states with longer memories such as upstream groundwater re-
lated states. In this twin experiment the application is first investigated using a complete
model based example (synthetic) so that all states are known beforehand. Only after the
added value of assimilation of lake levels has been evaluated in the idealised modelled
case, a real world experiment is performed in which actual water levels are assimilated.

Synthetic experiment

The synthetic case is run for one of the eight modelled lakes. For the synthetic case the
Walensee was chosen as subbasin, since it is located upstream and small, but still has
all the characteristics which complicate hydrological modelling in the Swiss Alps, such as
high spatial gradients, snow, and glaciers. In addition, the lake is fed by two tributaries,
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one of which is routed through by means of a channel. Since the synthetic case is meant
to show the workings of the filter, the run time is limited to one year with an additional
two months of spin up (2002-10-01 till 2004-10-01). The analysis period is 2003-01-01 till
2004-10-01, which is known as a particularly dry year.
The set-up is as follows (Fig. 6.5):
A 16 member ensemble is created by perturbing the forcing fields with the openDA soft-
ware. Precipitation is perturbed with a multiplicative noise with σP = 0.5, zero time
correlation between days and a horizontal correlation scale of 10000 m. Temperature is
perturbed with an additive noise with σT = 2◦C , zero time correlation between days
and a horizontal correlation scale of 5000 m. The short decorrelation distances are cho-
sen to reflect the large spatial variability in forcing errors in a mountainous region. Poten-
tial evaporation is not perturbed. The ensemble of meteorological forcings is then fed to
the wflow_hbv model to generate an ensemble of hydrological states. From the ensem-
ble then a single member is chosen to present the model-truth, including discharge, lake
level and all other internal states of the model.
Next, a new ensemble is formed with the same uncertainty settings and also run through
wflow_hbv to create a model ensemble forecast. The forecast is then updated to the pos-
terior using the EnKF in openDA, using observations derived from the model-truth. This
then leads to the posterior ensemble, which is analysed with respect to the model truth
and the original ensemble simulation of the model-truth. The observations are derived
from the model-truth by adding some noise. Discharge is perturbed with noise σQ =
0.1Q, and water level with σW = 0.02m. The synthetic case is an idealized case, not
only because all uncertainties are known, but also because the data assimilation update
is performed with the true uncertainties.
To investigate the usefulness of data assimilation of lake levels, control runs are performed
in which downstream discharge is assimilated so that the results can be compared. Ad-
ditionally, two different sets of states are selected to be updated. In the first only the lake
level state is updated, while in the second the upper zone store, lower zone store and river
water level model states are also updated. Additionally the experiment is repeated to
test the data assimilation approach for robustness with respect to errors in the stage dis-
charge relationship of the lake. In total 10 runs are performed: 2×2 for the combination
of assimilated variable with both sets of updatable states, and 3×2 to test the robustness
of the result under a specified error in theH0,n andaparameter, respectively, and again
for both the assimilation of lake level and downstream discharge.

Real world experiment

For the real world experiment the assimilation scheme is applied to the Swiss part of
the Rhine basin (Fig. 6.1). The uncertainty settings are kept the same, with exception of
σW = 0.01m after it became clear (see Fig. 6.7) that this is closer to the assumed error in
the discharge of σQ = 0.1Q in terms of discharge. The number of ensemble members
is doubled to 32. To show the added value of the data assimilated scheme, the data as-
similation case is compared with a benchmark. The benchmark is not only the open loop
case, but a second baseline scenario is generated in which the lake level states are directly
replaced by the perturbed observations (direct insertion). This gives more insight in the
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Figure 6.5: Flow diagram of the synthetic experiment set-up. Blue squares give the set-up of the
idealised model-truth, while the orange blocks show the steps to regain the idealised truth by
means of data assimilation.

added value of using a computationally expensive data assimilation scheme in compari-
son with simpler methods.
Data assimilated are the lake levels for all eight modelled lakes. Validation takes place
based on the downstream discharge at Rheinfelden. Additionally the states of the lakes
themselves are evaluated. Forecasts are produced from the updated states with observed
forcing (perfect forecast).

6.4 Results

Synthetic experiment

The posterior ensemble converges strongly towards the model-truth in all cases for both
the simulation of downstream discharge and for lake level, with strongly decreased RMSE
of the ensemble mean and reduced variance. Apparent is the difference in the degree of
convergence between the assimilation with lake level (Fig. 6.6, top row) and the assim-
ilation with discharge (Fig. 6.6, bottom row), in which the posterior ensemble is much
narrower when discharge is assimilated.
Choices on which states are updated by the filter have effects on data assimilation per-
formance. Differences in behaviour are found between the cases updating the lake level
states and three other upstream states (right column in Fig. 6.6) and the cases updating
only the lake levels (left column). When only the lake level is included in the state update,
the part of the Kalman gain that relates to non-updated states is neglected. This results in
a less reduced variance in the posterior for both the assimilated lake level measurements
and discharge data. Reducing the degrees of freedom to only the most governing state
for the outflow and updating this state directly with an observation of that state resulted
in the lowest RMSE error (upper left), while other combinations did improve the RMSE,
but to a lesser extent. The reason for this can be understood by comparing the position
of the synthetic truth in the posterior ensemble, which is close to the mean for the lake
level-lake level quadrant, but is on the bottom for the other cases, resulting in a slight
bias.
The difference in convergence between updating discharge data or lake level measure-
ments, has to do with how the observation uncertainties translate into discharge through
the stage-discharge relationship. The propagation of the error from the water level obser-
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Figure 6.6: Exemplary hydrograph of modeled lake level for different set-ups of the update. The
upper row shows the results for updates with the lake level as assimilated variable and the bottom
row for the discharge. The left column shows the results for the case where only the lake level state
was updated, while the right column shows the results for the case where multiple states were
updated.

vation to the calculated discharge can be calculated by applying the rules of error propa-
gation to the stage-discharge formula (Eq. 6.13):

δQ = |A||n| δH

|H −H0|
|Q| (6.15)

Although the standard error on the lake level observation ofσW = 0.02m seems small,
a 2 cm difference in water level means aQ = a(H+σW −H0)

n difference in discharge.
Not only is this of different magnitude (2 cm difference for the Walensee equals +/- 25-30
m3s−1 ), but also has non-linear properties as compared to the applied error to the dis-
charge, σQ = 0.1Q, which is assumed to be linearly increasing with the discharge (Fig.
6.7). This leads to the conclusion that the errors on the water level measurement have to
be very small indeed (∼ 0.005m) to be able to compete with the assumed accuracy of
the discharge measurement, hence the larger spread in the posterior ensemble for the
case with lake levels.

Propagation of information to upstream states

Data assimilation of lake levels has a positive effect on the modelled water level and the
downstream discharge, however, ideally the correction extends to all hydrological mo-
del states. Figure 6.8 shows the prior and posterior ensembles for the lower zone storage,
which is related to slow flow processes. The update extends to the lower zone storage, as
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Figure 6.7: Difference in conceptualization of the measurement error between a widely used as-
sumption, σQ = 0.1Q (red line), and levels of additive error (e) added to the water level in a
stage-discharge relationship,Qout = a(H −H0)

n, for different values ofn. δQ refers to the
resulting standard deviation as function of the dischargeQ.

the posterior ensemble differs from the prior ensemble significantly. The spread of the
ensemble is reduced everywhere in the catchment, but this does not lead to a better rep-
resentation of the model truth by the mean of the ensemble or as expressed in the mean
continuous ranked probability score (MCRPS) overall. There is no defining spatial fea-
ture that seems to determine if a single pixel benefited from the update, although there
are some areas were improved and non-improved RMSE scores are clustered together.
A higher number of ensemble members might lead to a clearer image of good and bad
performing areas as random factors are reduced.
Time series for the lower zone storage and snow storage were extracted for six points dis-
tributed throughout the basin. For all locations the posterior ensemble is narrower than
the prior. However, unlike for the lake water level and the discharge earlier, the model-
truth is not always captured by the posterior ensemble, indicating over-estimated cer-
tainty in the posterior ensemble.
For updates of the snow store, the results are largely the same as for the lower zone store
in that the average RMSE over the basin increases for the data assimilation run. Differ-
ent is that in the updates for the snow store, a clear pattern emerges where successful
updates, marked by positive values in Fig. 6.9, are close to the stream network. It is not
possible to say if this is because of the pixels’ faster drainage or because the snow pack is
of intermediate height as deeper snow packs are found further up the slope.

Robustness of the assimilation

So far the usability of water level information for state updating looked promising: data
assimilation of lake levels moved the posterior ensemble closer towards the model-truth
for both modelled water level and discharge. An important aspect of the usability is the

111



Chapter 6. Data assimilation of lake levels

Figure 6.8: State update of the lower zone store by the EnKF. Spatial representation of the gain in
RMSE and visually for 5 representative pixels (location shown in the spatial display). Observations
(red), open loop (grey) and posterior (light blue). The lz max line denotes the maximum volume the
lower zone store can take for each pixel. The tables inside the plots list the Root Mean Square Error
(RMSE), Standard Deviation (STD) and Mean Continuous Ranked Probability Score (MCRPS) for
the open loop (OL) and the data assimilation (DA) run.

112



6.4. Results

Figure 6.9: State update of the snow store state by the EnKF. Spatial representation of the gain in
RMSE and visually for 5 representative pixels (location shown in the spatial display). Observations
(red), open loop (grey) and posterior (light blue). The tables inside the plots list the Root Mean
Square Error (RMSE), Standard Deviation (STD) and Mean Continuous Ranked Probability Score
(MCRPS) for the open loop (OL) and the data assimilation (DA) run.
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Figure 6.10: Robustness test for data assimlation of lake water levels with respect to modelled dis-
charge. The column headers show perturbations of parameters in the stage-discharge relationship
Q = a(H − H0)

n, while the row headers denote the data type that is used for assimilation:
lake level (top row) or discharge (botom row).

robustness. In particular, it is important to verify if there are risks of unexpected behaviour
that might decrease the efficiency of the filter or even lead to worse results than the open
loop simulation. The efficiency of data assimilation with lake levels is dependent on the
quality of the modelling of the lake (Fig. 6.10). From the three parameters in the stage
discharge relationship (Eq. 6.13), the posterior ensemble is most sensitive to theH0 pa-
rameter. Errors in this parameter immediately lead to biases in the estimation of dis-
charge (when assimilating lake water level) or in modelled lake level (when assimilating
discharge). The reason for this bias is clear: the filter tries to match the modelled value
with the observation. Because in the case shown H0 is too low this leads to a too large
(H − H0) term and consequently a too high discharge. For the next step this water is
again added to the lake in the model to correct for a now too low water level (Fig. 6.10,
top row). Importantly, the same is true for water level in case discharge is assimilated.
Also for biases in the other terms of the stage-discharge relationship,Aandn, the perfor-
mance of the data assimilation is more stable when discharge is assimilated. The mean
of the posterior ensemble is a better estimation of the true value than the mean of the
prior ensemble for all the disturbed cases, whereas this is not the case when lake level is
assimilated.

Real world experiment

In the real world experiments the update is performed with actual observed data. The
assumed uncertainty in the observations and the perturbations of the forcing to form the
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ensembles is the same as in the synthetic case, but now the true uncertainty is of course
unknown. Additionally there are no model structural errors in the synthetic experiment.
The posterior ensemble is highly influenced by the assimilation and is distinctly different
from the open loop (Fig.6.11). First to note is that the model is ‘too dry’ and water levels
are consequently too low for parts of the year. The quality of the open loop modelling also
varies between lakes. This is not necessarily a reflection of the quality of the modelling
of the lake itself, but is also influenced by the modelling of the inflow. For the upper and
lower Bodensee the modeled water level is too low, but otherwise follows the dynamics
of the observations. The linkage of Lac de Neuchâtel and the Bielersee can be clearly seen
by the matching open loop simulation of the two lakes. The observations show that the
nearby Murtensee is also linked with those lakes, as the dynamics of that lake match the
dynamics of the former lakes almost perfectly. This is, however, not represented in the
model, and the modelled behaviour of the Murtensee deviates most from the observa-
tions of all lakes. That there is no free flow from the Lac de Neuchâtel and Murtensee can
also be seen from the observed outflow of those lakes, which at times is negative. The
Zürichsee and the Walensee are modelled quite well. The simulation of the water level
of the Vierwaldstättersee is also chronically too low.
For the Bodensee (upper and lower), the EnKF filter works as expected as the posterior
ensembles are in between the observation and the open loop, reflecting their respec-
tive uncertainties. The same works for the Vierwaldstättersee, but the posterior is much
closer to the model than to the observation. This has to do with large uncertainties in the
lake modelling. As can be seen in Fig. 6.12, the modelled discharge is higher than the
observed discharge for most of the year based on direct insertion (the downstream dis-
charge is calculated directly from observed water levels). The positive bias in simulated
discharge leads to lower lake levels for the one-day ahead forecast of water level. The is-
sue here is not the data assimilation scheme, but the inadequate modelling of the lake. It
is important to note that, just as in the synthetic experiment when errors were introduced
in the stage-discharge relationship of the lake (Fig. 6.10), perfectly adjusted water levels
would not lead to improved discharges. Instead, errors in lake level can compensate for
errors in discharge modelling.
That the assimilation can have large influence is shown for the Murtensee, where the
open loop model result has a completely different dynamic, but the updated result fol-
lows the general trend of the observations, pushing the modelled lake in line with its
neighbouring lakes Lac de Neuchâtel and Bielersee. The reaction of the latter lakes to
the EnKF filter is similar.
A large drawback of the assimilation results were the observed high peaks in the poste-
rior ensemble when the upper zone storage is included in the updates (EnKF_W+LZ+UZ).
The peaks are most notable in the Murtensee, Bielersee and Walensee. The peaks in wa-
ter levels also result in peak discharges from the lakes, and at the outlet (see Fig. 6.12,9.
Rheinfelden, around 2003-08). The peaks are forced because the filter adds water to the
(unbounded) upper zone of the model upstream of the lake. This causes the next pre-
cipitation event to not infiltrate but produce direct runoff into the routing and into the
lake. This excess of water is then not corrected for in the following update, but needs to
be drained by the hydrological model itself, which it does in the form of a peak discharge.
The peaks mainly occur in the smaller lakes.

115



Chapter 6. Data assimilation of lake levels

Figure 6.11: Modelled and observed water levels of the eight Swiss lakes. The observed water
levels are the one step ahead forecast. Only the means of the ensembles are shown. The labels
EnKF_W+LZ+UZ and EnKF_W+LZ refer to the update runs including and excluding the uppder
zone store for state updating, respectively.
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Figure 6.12: Downstream discharge of 7 lakes and the outlet at Rheinfelden. The labels refer to
the lakes, but the measurements are from independent observation stations downstream. Only
the mean of the ensembles are shown. The labels EnKF_W+LZ+UZ and EnKF_W+LZ refer to the
update runs including and excluding the upper zone store for state updating, respectively.

When the upper zone is not included in the updates (EnKF_W+LZ), but only the lake wa-
ter level and the lower zone were updated, the peaks were reduced. For the outflow at
Rheinfelden, updating only the lower zone improved the update for the peaks during low
flow, but at the cost of some loss of being able to follow the observations into local peaks
during intermittend flow conditions, for example during April and June.
The direct insertion run reflects the quality of the modelling of the lakes. Looking at the
outflow of the lakes (Fig. 6.12), the outflow modelled with direct insertion should match
the observations closely. Combined, the calculated discharge from observed water levels
does not add up to the observed discharge at Rheinfelden for the period of lowest flow
from August till October. For that period the outflow calculated with direct insertion of
the lake levels leads to higher streamflows than observed.
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Table 6.2: Nash-sutcliffe efficiency scores for modelling water levels (left) and discharges (right).
The NSE scores are calculated for daily aggregations. The columns list the model set-up variants:
open loop (OL), direct insertion (DI), EnKF updating four states (LZUZ) and EnKF updating with
only the lower zone (LZ). Row numbers list the number of the lake corresponding to Fig. 6.11,
with the exception of number 9 which represents the outflow at Rheinfelden, corresponding to
Fig. 6.12.

Water level Downstream discharge
# OL DI LZUZ LZ # OL DI LZUZ LZ
1 -0.67 0.99 0.76 0.71 1 -0.48 0.98 0.57 0.56
2 -0.88 0.98 0.90 0.89 2 -0.64 0.96 0.90 0.89
3 0.38 0.98 0.89 0.92 3 0.24 -0.25 -0.06 -0.04
4 0.50 0.90 0.88 0.86 4 -0.12 0.70 0.64 0.60
5 -3.97 0.30 -1.13 -1.10 5 0.30 -0.91 0.40 0.47
6 0.83 0.95 0.85 0.86 6 0.55 0.89 0.40 0.59
7 -1.92 0.94 0.57 0.55 7 0.13 -1.08 -0.74 -0.53
8 0.53 0.95 0.85 0.93 9 0.24 0.82 0.57 0.84

Deviations between model and observations have a number of sources: bias in the obser-
vations, uncertainty of the measurements of the lake levels or their representativeness, or
model errors in the lake modelling. As mentioned above, the Vierwaldstättersee shows
a systematic difference between the outflow modelled with direct insertion and the ob-
served discharge in particular. The higher discharge from the Vierwaldstättersee is the
main contributer to the overestimation of low flows at Rheinfelden, indicating that solv-
ing this model issue has a good chance of improving the final modelling of discharge at
Rheinfelden.
The performance of the different set-ups is summarized in Table 6.2 by a comparison of
Nash-Sutcliffe efficiencies. The scores underline the results described above, for exam-
ple the fact that both water level and discharge are only marginally adequately mod-
elled without data assimilation for the Zürichsee (#6) and that the relation between wa-
ter level and lake outflow is badly modelled for Lac de Neuchâtel, Vierwaldstättersee and
the Murtensee (#3,#5,#7, right column DI).
There is little difference in NSE scores between the update with the LowerZone and the
update also including the UpperZone. The only notable (larger than 0.1) differences are
for the water level of the Walensee (#8), the discharge from the Zürichsee (#6) and the
discharge at the outlet at Rheinfelden (#9). The latter show (bottom line) that EnKF up-
dates targeting the lake level and LowerZone give the best results in terms of NSE, closely
followed by direct insertion.
So far, the effect of the update procedures has been demonstrated by considering the
updated initial states at the time of forecast, with similar performance of EnKF_LZ and
direct insertion. For the EnKF it is expected that updates to upstream states result in a
longer retention of the advantage gained by state updates for the forecast, as states are
updated which have a longer memory such as the lower zone store that represents longer
stored groundwater. This was tested by calculating the Relative Absolute Mean Distance
between the open loop forecast and the posterior forecasts. With l the index for a partic-

118



6.5. Discussion

Figure 6.13: The relative absolute mean distance (RAMD) expresses the convergence between the
updated forecasts and the open loop as function of lead time. A RAMD of1equals an absolute mean
difference equal to the absolute mean difference at lead time one. A RAMD of0.5means that the
absolute mean difference has since been halved.

ular lead time andn pairs of forecasts, the RAMD for lead time l equals:

RAMDl =
1

n

n∑
i=1

pn,l − fn,l
fn,l

/
pn,1 − fn,1

fn,1
, (6.16)

with f the forecast from an open loop initial state and p a forecast from an updated ini-
tial state. The RAMD equals 1 for the first lead time, and subsequently indicates to what
extent both forecasts have converged.
For direct insertion, on average only 43% of the original gain remains after 10 days, mea-
sured as the relative distance between the forecasted value from the updated initial state
with the open loop. As differences in initial condition converge over time this measure
will converge for each version at a different rate from one to zero. Updates with the EnKF
have a longer memory than direct insertion. Updates with and without the upper zone
included converge at the same rate for the first two days, after which the update with the
upper zone included converges faster (45% after 10 days) than with only updates to the
lower zone (65% after 10 days).

6.5 Discussion

The results described above need to be understood within the following limitations. The
experiment was conducted for a single hydrological model (wflow_hbv). In particular,
this model has an unbounded upper zone store. Unbounded states are tricky to update
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as there is no physical control on the values the states will take. The conclusion that the
best results were obtained when only the lower zone store of the wflow_hbv model was
updated is model specific. Other models might benefit from including fast runoff com-
ponents in the update. The modelling of the lakes themselves is also a fundamental part
underlying this study.

Smaller fluctuations and deviations and irregularities in the posteriors, such as the fluc-
tuations on the reclining limb of the lower Bodensee, were partly caused by spurious cor-
relations between lakes. The influence of spurious correlations was investigated by up-
dating all lake levels with only the observation of the Vierwaldstättersee. It showed that
other lakes that are not connected to this lake still were affected greatly. Doubling the en-
semble size and adding the localization function developed by Zhang and Oliver (2011)re-
duced the spurious correlations. Even though the spurious correlations were only sec-
ondary factors contributing to the issues seen in the assimilation, as the influence of the
direct observation of each lake far outweighed the influence of other observations, the
used number of ensemble members remains small compared to other studies utilizing
the EnKF.

It is known that management rules are imperfect and a source of uncertainty for the mod-
elling of the behaviour of lakes. A trade-off in the real-world experiment was between
focussing on a single lake or the combined effect of multiple lakes on the discharge from
an integrated catchment model. Focussing on a single lake might have resulted in bet-
ter performance as more settings and combinations could have been tried as one of the
conclusions is that each lake needs to be investigated separately to obtain optimal data
assimilation parameters for each lake. The advantage of the integrated catchment ap-
proach is that 1) data assimilation in models that span multiple tributaries is on the ad-
vancing edge of hydrological data assimilation itself, and 2) the issues of spurious corre-
lations as well as the differences between lakes would not have come to the fore while
focussing on a single lake.

This was an exploratory study in the use of lake water levels for data assimilation. More
complex methods for analysis could have been used in several parts of this study, but it
was judged that this would not change the lessons learnt. For example, forecasting met-
rics based on multiple years of forecasts could have further quantified the difference in
forecast between open loop, EnKF and direct insertion, but this would not change the un-
derlying mechanics which have already been made visible.

This study is a starting point for further studies, both theoretical and practical. Theo-
retically it would be of interest to further investigate the discrepancy between the sim-
ple linear observation uncertainty used for discharge, and the complexity of the real er-
rors, including errors in the stage-discharge curve, used to calculate observed streamflow.
Another interesting study would be to replace the in-situ measurements with estimates
from satellite imagery, possibly introducing global wide potential. Practical pathways to
improve further on the data assimilation for this area of the Rhine would be to add a di-
verse mix of observations of different variables. Snow measurements and gridded snow
estimates are available, as are plenty of discharge measurements. The openDA software
makes it easy to add additional variables.
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6.6 Conclusion

The goal of this paper was to investigate the usefulness of integrating lake water level ob-
servations into a data assimilation scheme to improve low flow forecasts for the Rhine.
To gather insight in the particularities of assimilating lake level data, first a synthetic mo-
del experiment was performed to test the data assimilation set-up under ideal circum-
stances.
The synthetic experiment showed that assimilating lake levels did not only improve the
lake level and downstream discharge simulations, as expected, but also influenced up-
stream hydrological states. This was not a given due to the delaying function a lake has on
the flow of water and thus upstream processes and the lake level might not be correlated
due to a time shift (Rakovec et al., 2015). In this case, two aspects contributed to the corre-
lation between lake level and upstream states: 1) the daily time step is relatively coarse
for the basin tested, neglecting for a large part the delay between upstream and down-
stream due to routing that is seen at small time steps (Rakovec et al., 2015); 2) specifically
for the relation between water level and the snow state, the temperature was perturbed,
so that the snow pack during snow melt is related in the same way to the water level in
the lake as precipitation would have been.
Special attention has been given to general aspects of assimilating lake water level data.
The main lessons learnt are:
First, observation uncertainty needs to be determined for each lake separately, as any un-
certainty can be relatively small or large based on the dynamic range of the lake. This is
different from, for example, discharge, where a single blanket observation uncertainty
suffices in most cases. This could be remedied by describing the observation uncertainty
as a function of dynamic range. Still, it was also shown that the functional form of the
widely used linear observation uncertainty for discharge, σQ = 0.1Q, is different from
any possible additive error to the lake level, which is distinctly non-linear when trans-
formed into error in discharge through the stage-discharge curve of the lake. This should
give pause for thought about the correctness of σQ = 0.1Q for discharge, as discharge
is also in fact produced based on a measured water level and a stage-discharge curve.
Second, assimilating lake water levels might not be the most robust option when the goal
of the model is to predict streamflow. In the case of errors in the stage-discharge relation-
ship of the lake, assimilating downstream discharge will adjust the lake model state to-
ward a level that corresponds with the measured discharge, which will give better results
for streamflow even if the lake model state is incorrect. Assimilating lake water level can
lead to biases in such cases. Logically, this is the other way around when the focus is on
modeling the lake levels as accurately as possible, for example for lake management.
When applied to the actual model of the Swiss Rhine, results were mixed. The assim-
ilation did reduce the dry bias in the model for the update. However, the update also
resulted in overestimation of streamflow at the outlet for peaks during the dry season.
Better results for the dry period were achieved if the updates were limited to the lake
level and the lower zone. The effect of the update was also the most persistent for the
EnKF, with only the lower zone and the lake water level as updated states having positive
effects on longer lead times.
Direct insertion proved to be a computationally lean alternative to the EnKF for updat-
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ing lake levels. Short term forecasts were still improved as the dry bias in the model was
corrected by replacing the modelled lake levels with observed ones. Direct insertion was
compatible with how the lakes are modelled as point states and hence no spatial esti-
mate has to be made based on a single observation.
The three methods showed clear trade-offs in performance. First, direct insertion is com-
putationally lean and not prone to unwanted side-effects caused by the update, such as
the observed high peaks for the update with the upper zone. The drawback of the direct
insertion is that due to modelling errors in the lake modelling, direct insertion still leads
to temporal biases based on those errors at times when the EnKF alternatives did make
successful corrections. The direct insertion did also converge most quickly to the open
loop run for forecasts.
Second, the EnKF is computationally heavy and 32 ensemble members is still at the lower
end to prevent spurious correlations and other artefacts that can inhibit a good EnKF re-
sult. Some experimentation was needed to decide which states were suitable for update,
with the case excluding the upper zone showing the better performance for low flows. In
particular, the updates with only the lower zone updated did not show overshoots during
the low flow period and the update had a longer persistence in the forecast. .
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Chapter 7

Assimilation of streamflow in a
distributed hydrological model for Rhine
tributaries: comparison of forecast skill
between state updating and
post-processing

In this study, a large scale data assimilation and reforecast experiment was conducted for
the twelve main tributaries of the river Rhine. The effect on forecast skill of state updating
with the Asynchronous Ensemble Kalman Filter (AEnKF) and ARMA error correction are
compared for medium-term (15-day) forecasts over a period of 20 years (1996 till 2016).
State updating improved the initial state for all subbasins and resulted in lasting skill
score increase. ARMA also improved the forecast skill, but the forecast skill with ARMA
does not always converge towards the uncorrected model skill, but instead can deterio-
rate for longer lead times. ARMA correction outperformed the AEnKF state updating for
the first two days, after which state updating became more effective and outperformed
ARMA. We conclude that state updating has more potential for medium-term hydrolog-
ical forecasts than ARMA.

In preparation as: Van Osnabrugge, B., M. Smoorenburg, R. Uijlenhoet, and A.H. Weerts, Assimilation of stream-
flow in a distributed hydrological model for Rhine tributaries: comparison of forecast skill between state updat-
ing and post-processing, to be submitted to HESS
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7.1 Introduction

There is an ongoing trend in hydrological forecasting towards both spatially distributed
(gridded) models, ensemble forecasting and data assimilation techniques to improve fore-
casts’ initial states. While in the last years those different aspects have been investigated
separately, there are only few studies where the three techniques are combined: ensem-
ble forecasts with state updating of a gridded hydrological model.

State updating has te ability to improve hydrological forecasts by adjusting model states
towards values that better match the observed (diagnostic) values (see also previous chap-
ter). A remaining challenge is to apply data assimilation methods to large scale inte-
grated gridded hydrological models. Such models have an extremely large number of
states (e.g. all model states for each grid cell in the model) and correlations between the
innovation (observed error between model and observation) and model states are sepa-
rated in both space and time (Rakovec et al., 2012, 2015). There are still only few studies
that apply data assimilation to fully distributed hydrological models. In general, studies
addressing data assimilation in hydrology focus also on relatively short time spans, rang-
ing from a single event to two or three years.

We here aim to fill this knowledge gap with a 20-year data assimilation and ensemble
reforecast experiment with a high resolution gridded hydrological model (wflow_hbv,
1200x1200m) of the full Rhine basin (160 000km2). To put the impact of state updating
in an operational forecasting context, the data assimilation results are compared with AR
post-processing as used by the Dutch Forecasting Centre (WMCN).

State updating is not the only way to improve a model forecast. Error correction and other
post-processing techniques are available to improve the forecast skill and to give insights
into forecast uncertainty (Verkade, 2015). Post processing techniques have a longer his-
tory in operational hydrological forecasting and are therefore more often found in opera-
tional practice (e.g. van Andel et al., 2013). The operational system for hydrological fore-
casts of the Rhine river at the Dutch border of Lobith uses an Auto Regressive Moving
Average (ARMA) error correction to correct errors in the predictions of streamflow from
upstream subbasins, that serve as input for the Rhine hydrodynamic model. As part of
current changes to the hydrological modelling environment, state updating is one of the
options to replace, or augment, the current ARMA error correction. To make a decision
about which method to pursue for the new modelling system, it is vital to better under-
stand the relative advantages and disadvantages of both methods.

In this study, we compare data assimilation state updating, with the Asynchronous En-
semble Kalman Filter (AEnKF), with ARMA error correction for medium-term (15-day) fore-
casts using a fully distributed hydrological model and over a long (20-yr) time-period. We
compare the forecast skill of two scenarios: one set of forecasts with state updating and
one set of forecasts with ARMA correction. To extract generalities about the difference
between the two methods in general, a reforecast data set is used to make forecasts for
the last 20 years over the period 1996 till 2016 and for multiple subbasins.
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Figure 7.1: Catchment discretization and schematic structure of the HBV-96 model for each grid
cell. Model states are in bold and model fluxes in italics Rakovec et al. (2015).

7.2 Methods

Data

Observational data has been preprocessed for use with a grid based hydrological mo-
del (van Osnabrugge et al., 2017; van Osnabrugge et al., 2019). The data was processed with
hourly time resolution, on a 1.2x1.2 km grid spatial resolution, and for the period mid 1996
through 2015. All source data to derive the gridded estimates comes from sources that
supply their data in near real-time making the datasets suitable for operational forecast-
ing. For this study all data was aggregated to a daily time step. The hourly datasets are
downloadable through the 4TU data centre (van Osnabrugge, 2017, 2018).
For the meteorological forecast data reforecast data from the European Center for Medium-
Range Weather Forecasts (ECMWF) is used. The ECMWF issues hindcasts produced with
the current model cycle for certain days for the last 20 years. The reforecast obtained for
this study was produced with model cycle 43r1 (Buizza et al., 2017). The first forecast is on
1996-03-10 and the last forecast on 2015-12-29 with reforecasts alternating every three or
four days.

Hydrological model

wflow is a modular hydrological modelling framework that allows for easy implemen-
tation and prototyping of regular grid hydrological model concepts in python-pcraster
(Schellekens et al., 2018). The hydrological model concept used is the HBV96 (Hydrolo-
giska Byråns Vattenbalansavdelning) model concept (Lindström et al., 1997a) applied on a
grid basis (Fig. 7.1). The generated runoff is routed through the river network with a kine-
matic wave approach (Schellekens et al., 2018). In the following this model is referred to as
wflow_hbv. The set-up of the hydrological model is the same as used in assessing the va-
lidity of the genRE precipitation data set (van Osnabrugge et al., 2017), and in assessing the
influence of potential evaporation forecasts van Osnabrugge et al. (2019). The model was
parameterized through calibration with a Generalised Likelihood Uncertainty Estimation
(GLUE) like procedure (Beven and Binley, 1992), using HYRAS precipitation as forcing data
(Winsemius et al., 2013a,b).
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Asynchronous Ensemble Kalman Filter (AEnKF)

A distinction can be made between ‘three-dimensional’ (3-D) and ‘four-dimensional’ (4-
D) data assimilation schemes. In 3-D data assimilation, all assimilated observations are
assumed to be synchronous with the time of updating. 4-D data assimilation takes the
temporal dimension into account, hence 4-D, by assimilating also observations that are
asynchronous and taken at times different than the time of updating.
One solution to the problem of asynchronous updating could be to run the updating fil-
ter every time a new observation becomes available. However, this is unfeasible in any
real operational setting as assimilation filters are computationally expensive. It is there-
fore preferable to be able to assimilate over a certain assimilation window, reducing the
number of updates but taking into account all observations.
The AEnKF was therefore developed as an extention of the Ensemble Kalman Filter (EnKF)
to deal with asynchronous observations so that the popular EnKF algoritmn now also could
be used for 4-D updating (Sakov et al., 2010). It is observed that the AEnKF should not be
seen as a new method, but as a simple modification of the EnKF (Rakovec et al., 2015).
Additionally, for hydrological simulations, assimilating over a longer assimilation win-
dow can provide improved representation of the time-lag between internal model states
and the catchment response in the form of discharge. This idea was also investigated by Li
et al. (2013) for the Ensemble Kalman Smoother (EnKS), which is an algorithm very similar
to the AEnKF in effect.
As with other assimilation filters, most of the published results are in the fields of me-
teorology and oceanography. A number of studies discuss the use of the AEnKF for use
in hydrology. Rakovec et al. (2015) applied the AEnKF for flood forecasting in the Upper
Ourthe catchment ( 1600km2) in the Belgian Ardennes with a grid-based spatially dis-
tributed version of the HBV hydrological model with a 1x1km spatial and hourly temporal
resolution. This is supposed to be the first use of AEnKF in flood forecasting (Rakovec et al.,
2015).
At the time of writing, about ten research papers have cited Rakovec et al. (2015). How-
ever, only two of those studies actually use the AEnKF. Tao et al. (2016), use the AEnKF
in comparison with the EnKF and the fixed-lag EnKS to assess the potential of data as-
similation for an operational system of three basins in the Southern Appalachian moun-
tains, USA. Discharge at the outlet is assimilated in the fully distributed physically based
hydrological model (DCHM). The DCHM model is run with a spatio-temporal resolution
of 250x250m and 5-min time-step. The experiment is performed for a single high water
event during an incentivised measurement campaign and only the discharge after up-
dating is evaluated. The AEnKF and EnKS outperform the EnKF. Testing different assim-
ilation frequencies and time windows leads to the conclusion that the optimal assimi-
lation time window varies between basins and that this asks for context-aware configu-
ration of the DA system. Mazzoleni et al. (2018), compared five DA techniques, amongst
which the AEnKF to assimilate streamflow observations into a 3-parameter Muskingum
routing model for three river stretches of the Trinity and Sabine rivers in Texas, USA. Re-
garding the AEnKF, they found that the performance of the AEnKF was less sensitive to
suboptimal choices in the settings governing the assimilation, that ensemble methods
provided smooth updates along the stream direction, and that the AEnKF was deemed
the preferable method for distributed models. A review of all papers citing Sakov et al.
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(2010) did not unearth other studies where the AEnKF is used for land surface hydrology
at the time.
The AEnKF algorithm is one of the data assimilation algorithms available in the openDA
software (Ridler et al., 2014). For the mathematical formulation in a hydrological context
we refer to Rakovec et al. (2015).

ARMA post processing

An Autoregressive Moving Average model (ARMA) is used to describe weakly stationairy
stochastic time series in terms of two polynomial functions that represent the AutoRe-
gressive (AR) and Moving Average (MA) part, respectively:

Xt = c+ εt +

p∑
i=1

φiXt−i +

q∑
i=1

θiεt−i (7.1)

with, φ the autoregressive model’s parameters, θ the moving average model’s parame-
ters, c a constant and εwhite noise error terms.
The lengths of the sums is determined by the order of the ARMA model, written as ARMA(p,q).
So an ARMA(3,4) model takes into account the last three previous model outcomes for
the AR part and last four model outcomes for the MA part, and has 7 parameters. ARMA
models can be used for forecasting by running the ARMA equation sequentially for each
future time step.
When ARMA is used for error correction, the ARMA model is set-up to forecast the fu-
ture residual error, which is subsequently added to the forecast of the forecast model to
produce a corrected forecast. Xt from Eq. (7.1) is then the error of the forecasting model
(hydrological model) at time t:Xt = Qm,t −Qo,t.
The coefficients φ and θ need to be fitted and the order (p,q) needs to be determined so
that best fit with historic data is obtained. To do this automatically, Broersen and Weerts
(2005) developed the ARMASA algorithm to fit the coefficients as well as determining
the optimal order. An equivalent to the ARMASA algorithm has been incorporated in the
Delft-FEWS forecasting platform (Werner et al., 2013), which is used in this research. In
the operational system that is investigated, the maximum order for the AR part is set to
3. The MA part is not used in the current operational system.

7.3 Experimental set-up

The domain of the Rhine is split in 12 subbasins (tributaries), with corresponding dis-
charge measurement stations (see Fig. 7.2). The outlets of the subbasins correspond with
the locations where the calculated discharge is used to feed a hydrodynamic model that
covers the modelling of the flow in the main course of the Rhine. The AEnKF is applied to
update the initial state prior to the forecast for 11 of the subbasins. Splitting the domain in
multiple separate subbasins has two advantages: 1) there is no danger of spurious cross-
correlations between basins and 2) the smaller domains enable the computations to be
run on relatively ‘normal’ machines (12GB RAM, 8 cores). In this way, the manual splitting
of the whole domain in subdomains is a form of manual parallelization. The AEnKF is not
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Figure 7.2: Location of the subbasins in the Rhine basin. The red dots show the location of the dis-
charge gauges used in this study, while the yellow dots show the locations of the stations that mea-
sure the lake levels.

applied for the subbasin ‘Rhine above Maxau.’ Instead, the modelled lake levels were re-
placed by observed water levels (direct insertion, or DI) as was investigated in Chapter
6.
The AEnKF update is carried out with global settings for all basins. The assumed error on
the discharge equalsσQ = 0.1Q(m3s−1) (Chapter 6 Weerts and El Serafy, 2006; Rakovec
et al., 2012, 2015; Mazzoleni et al., 2018). The ensembles are formed by perturbing the
input precipitation and temperature fields. The precipitation fields are perturbed with
σP = 0.5P (mm), with no time correlation between hours and a spatial correlation dis-
tance of the error of 10 km, and the temperature fields with σT = 2(◦C), with no time
correlation between hours and a spatial correlation distance of 5km. The wflow_hbv mo-
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del states that are updated are the LowerZone (associated with slow-flow processes), Up-
perZone (associated with fast-flow processes) and the water level state of the kinematic
wave routing. The soil moisture state is not updated as this deteriorated performances
for discharge forecasting using wflow_hbv (Rakovec et al., 2015).
The model is run with an hourly time step. The initial state was updated every 6 hours over
the period 1996-06-16 till 2015-12-31, which matches the available forcing data. Forecasts
were done every three to four days matching the availability of forecast data from the
ECMWF reforecast. The ensemble forecasts depart once from the ensemble mean of the
AEnKF update and once from the open loop initial state without updating. The ensem-
ble mean of the AEnKF is used to compare the forecast based on the AEnKF initial states
with the forecasts based on the deterministic open loop run. After the forecast run, the
ARMASEL algorithm is used to apply an AR correction to the open loop ensemble forecast
with AR parameters estimated from the deterministic open loop run.
Results are evaluated in update mode and forecast mode, focussing solely on effects on
modelled discharge. The analysis is based on well known scores: the KGE and NSE for
assessing the initial states, and the CRPS and CRPSS to assess the forecast runs. A one year
spin-up period is excluded from the analysis. The scores are calculated over the period
1996-06-11 till 2015-12-28 for the initial states assessment and starting from 1998-01-01
for the assessment of the forecasts.

7.4 Results

Initial state updates

Applying the AEnKF improves the fit of the discharge to the observed discharge for all
basins (Fig. 7.3). The largest gains are for the basins that are modelled worst (Erft, Wup-
per), which is not unexpected as the potential for updates is also largest when the inno-
vation (o−m) is largest. Hydrographs were plotted for each basin for the best and worst
performing year based on the open loop model run and the KGE metric to get insight in
the model performance. For the poor performing basins, there is a large negative bias in
the Erft basin (gauge Neubrueck). For the Wupper (gauge Opladen), discharge is missing
for mainly the discharge peaks (Fig. 7.4.

Effect of state updating and ARMA correction on forecast skill

Forecast skill was calculated for all subbasins and methods. The Mean Continuous Ranked
Probability Skill and Skill Score (MCRPS and MCRPSS, respectively) are plotted as func-
tion of lead time and for three different quantiles for all basins. The chosen quantiles
represent the high flows (top 25%), low flows (bottom 25%) and overall behaviour (all
data). The quantiles are based on the observations. Each basins differs in its response to
the AEnKF and ARMA correction, but some general trends are clear. For this purpose, Fig-
ure 7.5 is chosen to show a number of typical aspects of the open loop, AEnKF and ARMA
forecast. Figure for all basins can be found in the appendix, Figures D.1-D.5.
First, the absolute errors, as expressed in the MCRPS, are small for the low flows and high
for the high flows, with the average flows in-between (Fig. 7.5, left panel). This is impor-
tant to keep in mind when assessing the relative skill score metric later, as small absolute

131



Chapter 7. Large scale data assimilation

Figure 7.3: KGE for all subbasins with and without state updating with the AEnKF.

Figure 7.4: Hydrograph for Opladen measurement station in the Wupper subbasin, with and
whithout state updating with the AEnKF. The year shown is the year with the lowest KGE score
of the open loop simulation.
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changes in forecasts can lead to large changes in MCRPSS. The forecast error is smaller
for AEnKF and ARMA for short lead times, with the error for ARMA for the first lead time
almost zero. Both the AEnKF and ARMA forecast then converge towards the open loop
forecast, but where the error for the AEnKF based forecast remains smaller than the open
loop error (although negligibly smaller for longer lead times), the error for the ARMA cor-
rections becomes slightly larger than the open loop forecast.
Second, there is considerable skill for all quantiles for each model set-up (Fig. 7.5, mid-
dle panel). The positive skill score extends up to the total forecast length of 15 days (360
hours), which is longer than the skill found in the precipitation forecast (van Osnabrugge
et al., 2019), although the latter paper takes seasonal variability into account in the sam-
ple climatology, setting a stronger benchmark for the MCRPSS. The MCRPSS for low flows
does not decrease with lead time (for the case shown, but the other basins show similar
behaviour) . This is due to a number of factors. To begin, the sampling based on obser-
vations means that peaks caused by future precipitation are excluded from the analysis
for the low flow quantile. After all, a considerable precipitation event shifts the observed
flow quickly to the intermediate range. Therefore, it is likely that the low flow quantile is
made up almost exclusively of observed recession periods (dry spells). The only injections
of uncertainty are precipitation events that are predicted, but that do not show up in the
observed streamflow. This makes the forecast period assessed much like a normal model
run and hence the skill does stay the same for all lead times. Additionally, the open loop
model shows negative biases for low flow periods almost exclusively. Now that there is
a positive sampling bias in forecasted precipitation, due to the hits and misses being fil-
tered out by the above mechanism, the positive bias compensates for the negative bias,
thus even increasing forecast skill for the low flow quantile. This slight increase in skill is
also seen in a number of basins.
Third, ARMA improves the forecast skill compared to the open loop forecast skill the most
for short lead times (first two days), however for longer lead times ARMA is not conse-
quently improving the forecast. Forecasts based on the AEnKF show less improvement
compared to ARMA for the short lead times, but then perform consistently better for longer
lead times (Fig. 7.5, right panel).
The advantages and disadvantages in terms of forecast skill for ARMA compared to AEnKF
state updating are shown in Figure 7.6. Most basins follow the pattern as described above:
ARMA has a better skill for the first 24-50 hours and then the AEnKF has higher skill. The
outliers are shown to be basins were the model has poor performance: a red coloured line
means that the model without state updating or correction has worse performance than
sample climatology.
For the low flows (right panel), the outliers are the Main@Raunheim and Lippe@Scherm-
beck. For both the Main@Raunheim and Lippe@Schermbeck the peaks are well mod-
elled, but biases exist for low flows that leads to bad performance for uncorrected fore-
casts. The AEnKF weighs the respective uncertainties of the observations and the model
and ends up in between the model and the observation. The ARMA model corrects the
forecast with the complete bias over the full forecasting window and therefore shows bet-
ter skill.
For the high flows (middle panel), the forecast for Erft@Neubrueck is the outlier. Already
in discussing the updates, it was mentioned that the model does model the dynamics
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Figure 7.5: Forecast verification scores for station Dietersheim MCRPS (left panel) and MCRPSS
(middle,right). The scores are shown for three scenarios: open loop (solid line), AEnKF (dotted line)
and open loop with AR correction (stripe dot line), and for three quantiles (see legend). The differ-
ence between the middle and right panel is that for the first the MCRPSS is calculated with sample
climatology as benchmark forecast and for the right panel the MCRPSS is calculated with the fore-
cast from the open loop initial state as benchmark.

Figure 7.6: MCRPSS of ARMA posprocessing versus AEnKF state updating for all basins, for three
quantiles and as function of lead time. The colors of the lines indicate the overall quality of the
forecast itself as expressed in the MCRPSS of that forecast with sample climatology as benchmark.

of the basin very badly, in addition to a large negative bias. The AEnKF algorithm only
corrects partly for the bias, and the model deteriorates quickly after the update as it is not
able to properly model the catchment. As for the low flows, the ARMA model corrects for
this lack of dynamics for the whole forecast period.

7.5 Discussion

This discussion consists of three parts. First, the computational approach in running the
model experiment is discussed. Second, the results obtained here are compared with
those found in Bourgin et al. (2014), who did a similar exercise. Third, advantages and dis-
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advantages of using a 20-year reforecast are discussed and future research is presented.

Data assimilation in large scale distributed hydrological models

The performance of spatially-distributed hydrologic simulations has historically been hin-
dered by high computational demands (Wood et al., 2011). Although computational power
is increasing, the limitations are still present. The focus shifts from simply running the
models at the desired scale, towards performing meaningful experiments with it, such as
data assimilation, ensemble uncertainty and long-period climate modelling, all of which
require many model runs. For this study, the domain of the Rhine basin was partitioned
into several subbasins, for which subsequent steps were then applied individually. This
manual parallelization limits the relevance of applying the AEnKF to a large river basin,
as this approach has effectively turned the problem into 12 smaller independent assimi-
lation experiments. Still, attempts at parallelization for distributed hydrological models
are all about how to partition a region into independent sub-basins in a way that opti-
mally distributes the computational load (Vivoni et al., 2011), a process which is further
complicated when coupled with distributed data assimilation. Hence manual, or paral-
lelization based on a preprocessing step (Yalew et al., 2013), is still a common approach to
solve computational problems related to large domains.
Acknowledging that the experiment here is similar to 12 independent data assimilation
experiments, it is good to question the optimality of the used settings of the AEnKF. Dif-
ferent basins can have different optimal (uncertainty) settings (Thiboult and Anctil, 2015;
Tao et al., 2016) and this could influence the conclusion that ARMA is consequently out-
performed by the AEnKF for longer lead times, but that ARMA outperforms the AEnKF for
shorter lead times. An example of how this result would change under different AEnKF
settings, is the case where the observation uncertainty is set to be negligibly small. In
that case, the updated initial state would practically match the observed discharge value
at the start of the forecast, as did ARMA in the current set-up, enabling the AEnKF to com-
pete with ARMA for short lead times. As for longer lead times, under all AEnKF settings
the influence of the in initial state on the forecast quality will diminish with lead time
and the forecast of based on the AEnKF initial state will always converge with the forecast
from the not-updated state. As the ARMA correction can actually make forecasts worse
for longer lead times, it is safe to conclude that the behaviour of the AEnKF is more conse-
quent and reliable for longer lead times than ARMA, as any auto-correlations of the error
for longer lead times can become entirely fictional (Broersen and Weerts, 2005).
A similar question can be posed about the optimality of the implementation of the ARMA
correction. A problem for the ARMA correction is that the hourly observations are noisy
and small temporary fluctuations can hide the more relevant signal. Furthermore, the
adaptive way in which the ARMASEL tries to optimize the order of the AR function makes
it difficult to assess exactly why the ARMA correction operates the way it does. However,
it is no surprise that the auto-correlation of the error between observation and model is
limited in time and that as a consequence the effectiveness of ARMA correction is limited
for longer lead time (Broersen and Weerts, 2005).
More discharge stations are available for the 12 subbasins. Additional stations can be eas-
ily added to the state updating scheme due to the flexibility of the combination of a dis-
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tributed model and openDA. For the large basins (Moselle, Main) this could stretch the
computation resources as the memory requirements of the AEnKF (as with the EnKF) is
dependent on the number of observations assimilated. For this study, assimilating mainly
the station at the outlet assured a fair comparison with the ARMA correction as both meth-
ods received the same information.

Post-processing and data assimilation

The interaction between state updating and post-processing has been previously investi-
gated by Bourgin et al. (2014). Bourgin et al. (2014) compared four set-ups employing either
state updating, post-processing, neither, or combined, for a 17-month period and 202
unregulated catchments in France with the lumped GRP model. Short-range (48-hour)
forecasts were investigated. As post-processing technique, they employed a hydrological
uncertainty processor that adds uncertainty to the hydrological forecast based on empir-
ical uncertainty bounds, also known as ensemble dressing. It is not clear exactly what
data assimilation procedure was employed. The explanation given, is that it consists of
a two-step procedure that first exploits the last observed discharge to update the rout-
ing store and then applies a multiplicative correction. The given reference, Berthet et al.
(2009), only adds that the first step is not of the Kalman family and that the second step
is, in fact, an ARIMA correction step.
Bourgin et al. (2014) found that state updating and post-processing strategies had comple-
mentary effects. State updating influenced the forecast accuracy, while post-processing
had a positive and longer lasting effect on forecast reliability. A combination of tech-
niques is recommended. It is important to note that for their experiment state updating
consists of two steps, the second of which is actually an ARIMA correction. ARIMA is a
variant of the ARMA error correction, a step that we call post-processing in this study.
This is not to discuss semantics, but to point out that our results of the first 48 hours
should only be compared with their data assimilation results. When we applied ARMA
corrections to the DA results (not presented), we did see that this led to results in skill that
were broadly an average of the skill for when the two methods were applied individually.
Our results for data assimilation are comparable with those found in Bourgin et al. (2014),
in that state updating has a strong positive impact on the ensemble mean. Adding en-
semble dressing to the state updating approach presented here for medium-term fore-
casts would be an interesting further study.

Further research

The approach for data assimilation that was used in this study is not new, in fact is an up-
scaling of the method of Rakovec et al. (2015) from a single basin towards multiple basins,
and from individual events to a consecutive period of 20 years. This could be improved
upon further, by adding more measurements to the data assimilation scheme. For a true
‘large scale’ data assimilation experiment it would be interesting to assimilate not a dozen
observations, but the 700 or so discharge observations that are routinely done in the Rhine
basin.
For this research, a 20-year hindcast was performed with a forecast every three to four
days. Pursuing such reforecasts is a significant exercise, which raises the question if long
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hindcasts truly add insight to the performance of our methods compared to the more
usual hindcasts of a couple of years or even individual events.
While the value of hindcasts with the ECMWF reforecast data set is understandable for
experiments as presented here, namely to work towards comparisons between methods
that are statistically significant, it is less clear if the absolute values of the metrics calcu-
lated have any real value for operational forecasters working with the system. The main
issue, assuming that the skills themselves are perfectly interpretable, is that the actual
forecasts are made on the basis of limited area NWPs, which have different uncertainty
characteristics than the ECMWF reforecasts. The question then is if a short hindcast with
the latest system is not more insightful than a long hindcast based on different data.
Further research could, by using the data created in here, investigate the variability of the
several verification metrics between years, and conclusions could be compared between
event based analysis, seasonal, yearly and for the whole reforecast period. This would
shed light on the issue above.

7.6 Conclusions

A large scale data assimilation and reforecast experiment was conducted for twelve main
tributaries of the river Rhine. The aim of this research was to combine ensemble forecast
with data assimilation and a spatially distributed model and to evaluate the performance
over a long time period (20-year) and on a scale that is relevant operationally (the Rhine
river). To put the impact of state updating in an operational forecasting context, the data
assimilation results were compared with AR post-processing as used by the Dutch Fore-
casting Centre (WMCN).
Two sets of forecasts were performed for multiple subbasins in the Rhine basin: one with
state updating with the AEnKF and one with ARMA error correction. For both scenarios
the same data was used, namely the discharge at the outlet of the subbasin.
State updating improved the initial state for all subbasins and results in lasting skill score
increase, in particular for low flows. ARMA also improved the forecast skill, but it was
found that the forecast skill with ARMA does not always converge towards the uncor-
rected model skill, but can deteriorate for longer lead times. ARMA correction outper-
formed the AEnKF state updating for the first two days, after which state updating be-
came more effective and outperformed ARMA. We conclude that state updating has more
potential for medium-term hydrological forecasts.
Further research aims to mine the 20 year reforecast that was produced for more insights
in the value of such long-term reanalysis in the light of the effort that is involved and the
limited availability of data sets that are long enough to perform such an exercise.
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Chapter 8

Synthesis

8.1 Introduction to synthesis

In this Chapter, I work towards answering the research questions formulated the intro-
duction. First, I discuss how a definition of operational aspects as set out in the intro-
duction defines a research field in hydrological forecasting and how different operational
aspects were investigated in this thesis. Second, I give special attention to the hydrologi-
cal modelling that was done in Chapter 5, and how this modelling relates to operational
aspects. Third, I focus on the operational challenges that are introduced by moving from
lumped to gridded models. Fourth, I accumulate the results of this thesis to give advice for
advancing the operational forecasting system operated by Rijkswaterstaat for the Rhine.
This is followed by an argument that such a practical advice is a meaningful part of a sci-
entific thesis as part of actionable research. Last, I present my view on what is the current
state-of-the art in hydrological forecasting systems, and my view on future hydrological
forecasting systems.

8.2 Operational aspects of hydrological forecasts

Forecasts are an important aid in making decisions under uncertainty. Many different
components are involved in making a forecast, and all of those components, from pre-
cipitation interpolation to model simulation and data assimilation, have their own field
of research. For the subfield of operational hydrological forecasting then to deserve to
exist, it needs to focus on challenges that are unique to the operational domain (Pagano
et al., 2014).
Luckily, at least for someone who would want to write a PhD thesis on operational fore-
casting, this field has shown to have its own challenges (see also Pagano et al., 2014), which
I categorized here by means of a number of specific constraints. When these constraints
are applied to methods and insights from the various subfields that are used in making
an operational forecast, this leads to new challenges. In this thesis, I have called this op-
erational aspects.
In Chapter 3, the operational aspect studied was precipitation interpolation under the
constraint of limited data availability. Specifically, limited network density of hourly real-
time reporting gauges and the constraint of reliability in the sense that any interpolation
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method should also work in case of missing data. Collected rain gauge data were spa-
tially interpolated using the genRE method, which uses climatological grids to inform
the interpolation about the spatial distribution of precipitation. It was shown that im-
proved hourly interpolation results could be obtained with the operational interpolation
method by using climatological grids which were derived from non-operationally avail-
able daily data with a higher quality and quantity, thereby successfully using non real-
time data to enhance the information available in real-time.
The interpolation exercise also led to a much needed hourly gridded interpolation set,
which was subsequently used throughout this thesis. Regarding the existence of this data-
set, and the availability of this dataset to other researchers, one needs to be aware that
the genRE precipitation dataset was made with operational methods, studying opera-
tional aspects. It is therefore definitely not the end-all of precipitation datasets for the
Rhine basin. In particular, it has been shown in later Chapters (Ch. 5 for example), that
there are known negative biases in the dataset for large parts of the Alpine region.
The subject of Chapter 4 was the treatment of potential evaporation (PET) in hydrolog-
ical forecasting. The operational aspect that was studied was the choice between using
average PET climatology based on a long time series of offline data, or the use of near
real-time available data to calculate PET in near real-time, including calculating PET from
forecast data for use in hydrological forecasts. A 20-year reforecast was done and the re-
sulting skill scores with online and offline PET data were compared. It was shown that for
our case there was a negligible difference in discharge forecast skill between using the
offline or online PET data for forecasts up to 10 days.
Chapter 5 reported the set-up of the wflow_sbm model concept without calibration. Pa-
rameters for the model were derived based on pedotransfer functions found in literature
and open access spatial data, such as soil properties. The model parameters were subse-
quently scaled from the highest data resolution to several coarser model resolutions. It
was shown that this resulted in adequate modelling results of discharge throughout the
Rhine basin, as well as flux conservation between modelling on different spatial scales.
Although the scalability and uncalibrated properties of the model are interesting for use
in an operational context, Chapter 5 did not directly deal with operational aspects, as
the hydrological modelling exercise was investigated on its own and not as part of the
constraints that define operational aspects. However, it delivers interesting context as
the development of gridded high-resolution models drive the operational aspects in the
other chapters. The relation of the main properties of the wflow_sbm model, namely the
fact that it is spatially scalable and uncalibrated, with operational aspects of hydrological
modelling is further discussed in Sections 8.3 and 8.4.
Last, Chapters 6 and 7 showed the results of two experiments with state updating. Chap-
ter 6 employed the Ensemble Kalman Filter (EnKF) to investigate if measured lake water
levels could be used to improve downstream discharge forecasts. The results showed that
indeed state updating with lake level measurements can aid in making discharge fore-
casts, but that the robustness of this state updating is highly dependent on the quality of
the lake modelling.
Chapter 7 applied the Asynchronous Ensemble Kalman Filter (AEnKF) to assimilate dis-
charge into the gridded hydrological model at the subbasin level. The results of the as-
similation were compared with ARMA postprocessing. It was shown that the ARMA cor-
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rection was very strong for the first two days, but that the AEnKF provided more consistent
improvements for longer lead times.
Some operational aspects of state updating are quite intuitive as state updating is used to
deal with correcting errors while taking into account multiple sources of uncertainty, con-
cerning observations and model alike. A less intuitive operational aspect of state updat-
ing comes to the fore when data assimilation research is intersected with the constraint
that a decision has to be made. As explained in Chapter 6, data assimilation methods
need to be instructed regarding the relative uncertainty of the model and observations in
question. There is no unambiguous way to set the model uncertainty and observational
uncertainty in a real practical situation, but the parameters governing the respective mo-
del and observational uncertainty can be used to adjust the reliability (sharpness) and the
uncertainty (ensemble spread) of the forecast according to the wishes of the forecaster.
To conclude, there are many more ways in which established research fields are confronted
with operational constraints and create operational challenges that deserve the atten-
tion of the research community, than addressed in this thesis. I argue that addressing
and including those operational aspects can aid in closing the gap between researcher
and practitioner.

8.3 Hydrological modelling at the forecasting interface

An operational aspect that can very well be discussed based on the results of the wflow
_sbm model that is developed in Chapter 5, is how calibrated hydrological models de-
crease the modularity of hydrological forecasting systems by tying forcing and hydrolog-
ical model strictly together.
During calibration of a hydrological model, the parameters of the model are adjusted to
match a set of observations, mostly discharge. In automatic calibration an objective func-
tion is maximized and the resulting model with calibrated parameters is mathematically
optimal to describe the observations that have been used to calibrate it. As a result of this
procedure, the parameters of the model are dependent on the employed forcing data.
Calibrated models are known to be very sensitive to changes in forcing data through cali-
bration of parameters (Andréassian et al., 2004, 2001; Melsen et al., 2016), which makes this
issue non-trivial.
As a calibrated model is only optimal for a given forcing data set, it becomes increas-
ingly difficult to make changes to the forcing part of the hydrological forecasting chain.
Changes in the spatial distribution of precipitation alter the optimal parameter sets of
hydrological models (Melsen et al., 2016; Euser et al., 2015). Likewise, a change in model
forcing might easily decrease the metrics that are used to quantify the quality of the mo-
del set-up. Calibration techniques that do not aim for a single optimal parameter set, but
instead aim to constrain the model parameter space, give more freedom to the model to
reflect the uncertainty in the model, which adds flexibility, but the essential problem of
calibration, namely that the model is conditioned on a fixed set of observations and forc-
ing data, remains (Andréassian et al., 2012). In effect, this makes recalibration an essential
part of any change to the forecasting system. Thus it is more difficult to study parts of the
forecasting system in isolation, which reduces the modularity of the forecasting system
and makes research to improve the whole forecasting system more expensive.
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The wflow_sbm model was set up without calibration on streamflow. As a disadvantage,
this means that the wflow_sbm model does not score as well as calibrated models in sim-
ulating discharge at specific points in the basin. In particular, it is sensitive to the negative
precipitation bias in the Alps (Ch. 3). On the other hand, this highlights exactly that better
forecasts can be obtained by improving the precipitation estimates in these areas, which
might be obscured in calibrated models.

8.4 Operational challenges for gridded models

The move towards gridded hydrological models for operational forecasting purposes in-
terferes with the continuous operation and processing time operational constraints due
to the added computational costs and the quadratic increase in the volume of produced
data.
There are three consecutive developments that claim computational resources: ensem-
ble forecasts, data assimilation methods and high resolution gridded models, with the
latter having by far the most impact as ensembles and data assimilation methods are
multipliers on the base cost of running the model. The impact of computational resources
propagates throughout the forecasting process, including increased computation time,
but also increased data costs for preparation of forcing data, model data, and ensem-
ble and data assimilation applications. Computational power remains one of the limit-
ing factors in pursuing full uncertainty analysis of integrated forecasting systems (Pap-
penberger et al., 2005).
Parts of this study were hampered by the added load of working with gridded models. A
six-hour time step for the wflow_sbm model was chosen over an hourly time-step partly
based on run-time considerations. The daily time-step for the investigation of the assimi-
lation of lake levels was chosen for the same reasons. Additionally, the number of ensem-
ble members was kept limited.
Given a fixed amount of computational resources and the processing time constraint in
operational forecasting, a valid question is then how to distribute those computational
resources between uncertainty analysis of the integrated forecasting system, finer spatial
distribution of the hydrological model including more detailed processes, and updating
the model through data assimilation techniques. This question on effective attribution
of resources cannot be solved without integrating the view of the user.

8.5 Advice related to operational forecasting for the Rhine

The previous sections have put the results of this thesis in the broader context of opera-
tional forecasting science, focussing on operational aspects. In this section, the focus is
on the actionable part; it is specific advice on how to advance the short-to-medium term
forecasts in the Rhine basin and sets out further research.

Available data and data structuring

To start with the most practical recommendation, it is advised to implement the methods
that have been used in this thesis to derive the spatial forcing estimates (Ch. 3 and 4). This
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includes importing the downward short-wave surface radiation (ssrd) product from the
Land Surface Analysis Satellite Application Facility (LSA SAF) and calculating near real-
time PET. Although the comparison between forecasts based on real-time estimated PET
and climatological PET did show only a negligible improvement for 10-day forecasts, it is
still advised to make the change to real-time estimated PET for future model implemen-
tations, as preparation for models than can take advantage of the improved spatial and
temporal information (Ch. 4).
For the purpose of this thesis, a large number of discharge gauge measurements, far ex-
ceeding the number of currently operationally available gauges, was requested and ob-
tained from throughout the Rhine basin. The usefulness of this data was not fully ex-
plored. The additional data was mainly used to show a spatial assessment of the hydro-
logical model performance, which might become part of a standardized benchmarking
strategy. It is recommended to still investigate what value those additional measure-
ments, mostly on smaller streams, can bring when used in data assimilation techniques.
A practical experiment would be to broadly repeat the experiment performed in Ch. 7,
but with many more discharge measurements included for each subbasin.
It is recommended to keep an up-to-date database containing all the data that is needed
for a reforecast analysis. The Delft-FEWS software has the necessary functionality to keep
and maintain such an archive. The acquisition of data for the Rhine basin was, due to the
many parties involved, time consuming and therefore an expensive part of each analy-
sis. This is especially the case when this exercise needs to be repeated for each research
project separately, severely limiting the scope of small research projects in particular. Ad-
ditionally, there is a delay between current events and the moment at which the data
necessary to properly study them becomes available. A good recent example of this is
the drought of 2018. There was a clear incentive to perform the assimilation study of Ch.
6 for this recent year to also contribute to the discussion on this recent drought. How-
ever, the datasets built for this thesis work do not extend past December 2016. The time
involved in requesting the necessary data was the reason why the dataset could not be ex-
tended, and the 2018 drought could not be studied. A good database of necessary base
variables enables and promotes research in the Rhine basin. That good databases of ba-
sic variables promote research can be seen in the popularity and success of for example
data collections such as MOPEX (Schaake et al., 2006), CANOPEX (Arsenault et al., 2016)
and CAMELS (Addor et al., 2017). Having a readily available archive of base data is also a
corner stone of the automated benchmarking system proposed.

Data assimilation

It is advised to implement the data assimilation set-up as used in Chapter 7. This set-up
improves the forecasts at the inflow points of the hydrodynamic SOBEK model. It was
shown to be more reliable and consistent for short-to-medium range forecasts than the
ARMA correction that is currently employed. As mentioned in the relevant Chapters (6,7),
the state updating system is not yet optimized. Further steps would include adding more
discharge measurements to the updating procedure and the assimilation of spatial data,
such as snow cover and spatially sensed soil moisture data.
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Hydrological modelling and the wflow framework

As argued in the introduction (Section 1.3), the currently used HBV96 model is out-of-
date. The work presented in this thesis (Ch. 5) is not the first exploration of alternative
models to use in the forecasting system RWsOS Rivers either. Previously, a TOPOFLEX
model was explored for the Meuse basin based on the thesis work of Euser et al. (2015);
de Boer-Euser (2016). This model was implemented in the wflow modelling framework.
The recent model developed by Buitink et al. (2019) is also currently being implemented
in wflow. I argue that it is of paramount importance to choose a hydrological modelling
framework first, and a preferred model concept second.
The wflow framework has now been tested with different model concepts and has been
integrated with the Delft-FEWS and openDA software. Therefore, it is advised to adopt
the wflow framework as hydrological modelling framework. The old HBV96 model can
be replaced directly by the wflow_hbv model. Despite the promising features of the wflow
_sbm concept as parameterised in this thesis, the work in this thesis does not support a
conclusive advice on which model concept to use eventually, especially when discussing
the use of such a model for both short-to-medium range forecasts and policy analysis,
which have different requirements. Instead, I hope that, by focussing on operational as-
pects, ideal conditions can be created to perform future model experiments to determine
which model concept to use, starting with fully benchmarking the wflow_sbm concept
against wflow_hbv. The following paragraph describes how to set-up this benchmarking
system, which incorporates all components that have been studied in this thesis.

Automated benchmarking system

Forecasting systems are not static, but should be able to accommodate changes in data
availability, changes in external models (NWPs in particular) and new insights from the
scientific community. However, the effects of those changes on the forecast quality, espe-
cially from the latter source, can be difficult to quantify. Testing the quality of the forecast
should be standard routine; testing and improving the forecasting system should be per-
formed themselves as operational routines. The key to this is twofold:
First, it is important to specify how the quality is assessed: how do I know if my forecasts
are better? The paper by that name by Pappenberger et al. (2015) can be taken as a guide
to choose appropriate benchmarks. The benchmarks should reflect the priorities of the
forecaster and as such are an excellent starting point to start a discussion on what the
forecaster’s expectations are of the forecasting system. Part of this conversation is the
trade-off between reliability (sharpness) and uncertainty.
Second, after the benchmarking procedure has been defined, it should be set-up such
that performing a benchmark test is a small effort, not taking into account calculation
times, which still can be considerable. This can be done with Delft-FEWS. Delft-FEWS
was used as data manager for all research shown in this thesis, and has also shown to
be an excellent research tool for reanalyses elsewhere (Werner et al., 2013, and references
therein).
The basis of a Delft-FEWS based reforecasting system would be that historical operational
data is stored in a FEWS operational archive. Workflows then can be set-up to run the cal-
culations necessary to produce the historical reanalysis and reforecast data of the new

144



8.6. The role of case-based actionable research

to-be-tested set-up. Due to the modularity of Delft-FEWS, small singular changes to the
input data are easy to implement. With the combination of the wflow framework and
openDA software for data assimilation, changes in hydrological model or data assimila-
tion are also easily implemented. The calculation of benchmark metrics and other veri-
fication statistics does not have to be done in the Delft-FEWS system, but can be coded
separately and then run as part of the workflow after generating the data.

8.6 The role of case-based actionable research

The previous section can be read as a specific set of advice to a specific client. It is not
unlogical to question such a specific advice in a scientific thesis. However, in this para-
graph I will argue not only why it is justified to add this advice to this thesis, but also why
I would challenge other PhD students to translate their thesis work into specific advice as
an integral part of reflecting on the work done.
As discussed in Palmer (2012), for science that is effective in influencing policy decisions,
not only broad multidisciplinary teams are needed that go beyond the natural sciences,
but those teams also need to turn the tables and ask policy makers and policy influencers
what they need from the scientific community. Engaging with policy and active interac-
tion with users is therefore a skill that is important to learn. Looking at these require-
ments, which are laid out for current and future scientists, it is good to question if a thesis
should only focus on the scientific community, e.g. a discussion on papers. Instead, tar-
geting a broader audience, i.e. specifically addressing the needs of a user, can increase
the impact of thesis work as well as prepare the PhD candidate to work in the multidisci-
plinary user question driven scientific environment that is necessary to tackle outstand-
ing environmental problems.
Translating conclusions into specific advice is also a good reflection method. The pos-
sibility for action puts an increased weight on each word written. It is relatively safe to
discuss, lets say, the advantages and disadvantages of gridded models in a scientific con-
text, but it is a different matter to ask an organization to change their operations based
on your work. The scientific discourse is by nature well equipped to identify the gaps in
knowledge and the unknowns. There is no time limit either. Translating scientific dis-
cussions into specific time-bound advice asks for a broader vision that also reflects on
non-scientific aspects that influence the decision making.

8.7 The future of operational hydrological forecasting

To conclude this thesis, I will give my view on the future of hydrological forecasting, by
discussing some properties that any operational hydrological forecasting system should
possess:
Modular Hydrological forecasting systems used to be build around specific hydrological

models, but have in many instances already been replaced by software that rec-
ognizes the many components that make up a forecasting system (Werner et al.,
2013). This modular approach is critical to develop forecasting systems, as it allows
forecasting centres to incorporate new techniques and new data more rapidly into
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their forecasting system. Part of this modular philosophy is a clear separation be-
tween developing forecasting systems and developing hydrological models.
In my opinion, a quest for better hydrological model concepts can be a bit of a red
herring, distracting from other components that can improve forecasts and the im-
pact that those forecasts can have. The type of hydrological model concept does
not make or break what is a state-of-the-art forecasting system. Instead, from an
operational perspective, developing hydrological models should focus on expand-
ing hydrological modelling frameworks to integrate the hydrological model with
other forecasting components, such as data assimilation software.

Integrated and coupled models Paradoxically, forecasting systems also need to become
more integrated, especially regarding the propagation of uncertainty through all
model components (Pappenberger et al., 2005). This is possible in a modular frame-
work, but requires standard formats to exchange uncertainty information between
components. Two-way coupled hydrological and meteorological models are a pos-
sible way forward to increase forecast skill (Seuffert et al., 2002).

Integrated social elements and user interaction The integrated perspective should not
only include technical elements. Recently, growing attention has also been given
to the interaction between forecast and forecaster (e.g. Demeritt et al., 2007; Ramos
et al., 2010; Arnal et al., 2016). For state-of-the-art forecasting systems, the human
aspects of forecasting need to be treated with the same attention as other, more
technical, parts (Pagano et al., 2016). Future forecasting systems move from por-
traying technical information towards the forecasting of impacts that better sup-
port decision making by including social-economic factors (Terti et al., 2015).

Improved integration of data sources There is still much to be gained by combining dif-
ferent sources of information. This does not only hold on a component by com-
ponent basis, such as improving the spatial estimation of precipitation through a
combination of gauge data, radar data, satellite data and other novel sources such
as telecom links (Rios Gaona et al., 2015) and in combination with crowdsourced
data (de Vos et al., 2018), but also regarding the combination of data from through-
out the forecasting chain. In an integrated uncertainty framework, uncertainty is
not only a feed-forward property that propagates from forcing and forecast to the
model and onwards, but model outcomes and ‘downstream’ information have equal
strength to inform about uncertainty in the ‘upstream’ information (Vrugt et al.,
2008). In this way, errors in precipitation can be corrected based on the response
of streamflow, for example.

Multi-purpose The uses of hydrological forecasting systems are increasingly multi-pur-
pose. As the number and the diversity of the users of forecast information grows,
so do the requirements of hydrological forecasting systems, as skilful forecasts are
required for different variables, scales and under varying circumstances. It is an
open question whether those different needs can be better catered for with mul-
tiple specialized models, or with coupled models of everything, aiming to model
the whole environment (Blair et al., 2019).

Automated learning systems State-of-the-art forecasting systems include the process
of model improvement and system updates into the operational procedure itself.
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Clear benchmarks that inform about what a forecasting system can, and cannot,
forecast are part of communicating uncertainty. Changes to the system are directly
tested on benchmark performance, based on which a well informed decision can
be made. A possible drawback of the use of standardized benchmarks is that bench-
mark results could become indecisive when results show different signs of change
for different locations or variables. The new approach should then be applied for
some locations, but not for others. A possible solution could be to apply multi-
model ensembles with weights determined by benchmarks. New ideas that work
locally can be added and the new system has only to adjust the weights to generate
new optimal multi-model ensembles for each location.

Consolidated There might be only a few organisations that will be able to combine the
expertise and resources necessary to provide forecasting systems that combine the
points above. Therefore, for the changes above to materialize, a step has to be
made to form consortia that will deliver forecasts on a transnational scale, but still
can beat local forecasts. In this respect, it will be very interesting to see how the
European Flood Awareness System (EFAS) will develop, and if EFAS forecasts, or
future counterparts, can first beat and then replace locally produced forecasts (Bar-
tholmes et al., 2009). This does not only ask for steps in technology, but also in in-
ternational cooperation between forecasting centres.
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A Supplemental figures to Chapter 3

Figure A.1: Background grids for the genRE method derived from the HYRAS climatology.

Figure A.2: Standard deviation (not normalized) in the background grid derived from HYRAS cal-
culated from 47 9-year averages.
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Figure A.3: Standard deviation (normalized) in the background grid derived from HYRAS calcu-
lated from 47 9-year averages.

Figure A.4: Minimum background grid values derived from HYRAS out of the 47 9-year periods.
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Figure A.5: Maximum background grid values derived from HYRAS out of the 47 9-year periods.

Figure A.6: Difference, or range, between maximum and minimum background grid values de-
rived from HYRAS out of the 47 9-year periods.
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Figure A.7: Correlation between yearly precipitation accumulations calculated with IDW and
with genRE_hyras as a function of the number of stations in the Rhine basin.
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B Supplemental figures to Chapter 4

Figure B.1: Relative Mean Error (RME) for the four forcing variables benchmarked against sample
climatology for the 148 HBV subbasins for the whole year. RME is aggregated into mean (solid),
10th and 90th percentile (dashed). The CRPSS score at P (X ≤ x) = 0.1 resp. 0.7 are cal-
culated over respectively the 10% and 70% lowest observation-forecast pairs, conditioned on the
observations. Note that radiation (Rg third row) is indeed overestimated for low extremes as pre-
sented in the main text. Additionally, the asymptotic behaviour of the RME of precipitation (P, first
row) is caused by the large number of events with zero or close to zero precipitation, so that the rel-
ative error grows without bounds. In the inverse figure (for P(X>x), Fig. 6) those values were auto-
matically excluded. For temperature (T, second row), the RME is unstable for values around zero,
but since actual temperatures of exactly zero are rare, this remains within bounds, albeit with a
jump from positive to negative due to sign differences between observed and forecasted values.
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Figure B.2: Seasonal Mean Difference in calculated actual evaporation (aevap) for each season.
Actual evaporation includes evaporation from interception.
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Figure B.3: Seasonal Mean Difference in calculated interception storage (ic) for each season. This
is not the average interception flux, but the average storage in the interception reservoir so that
wetter interception stores means less interception.
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Figure B.4: Seasonal Mean Difference in calculated soil moisture (sm) for each season.
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Figure B.5: Seasonal Mean Difference in calculated upper zone storage (uz) for each season.
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Figure B.6: Seasonal Mean Difference in calculated lower zone storage (lz) for each season.
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Figure B.7: Seasonal Mean Difference in calculated discharge (run) for each season.
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C Supplemental tables and figures to Chapter 5

In this section the implementation of the PTFs from Chapter 5 is described in more detail.

SoilThickness
The SoilThickness parameter describes the depth of the upper (phreatic) aquifer. An es-
timation of this parameter (per grid cell) is possible and purely depends on the depth to
either an impermeable layer or bedrock. Depths to bedrock are globally available from
Hengl et al. (2017) and depths to impermeable layers are available for Eurasia from the
ESDAC (2004) dataset. Note, however, that both datasets are limited to a depth of 2 me-
ters, which is acceptable for shallow soils, but will result in an underestimation for deeper
phreatic aquifers.

Saturated water content
θr and θs are parameter values for respectively the residual and saturated water content.
Per grid cell, both parameters can be estimated by two empirical functions as proposed
by Tóth et al. (2015). The equations are present in Table B1 of the main paper’s appendix.
Both parameters thus depend on soil properties, which are available at seven depths from
the 250m SoilGrids dataset as described by Hengl et al. (2017).

Manning parameters
Manning’s coefficient consists of two different parameters in wflow_sbm: N for overland
flow (non-river cells) and N_river for water flow through watercourses (river cells). It is
possible to estimate the Manning parameter, N, for all non-river cells, by making use of
the land cover. Engman (1986) and Kilgore (1997) made a list of Manning values for various
land covers (i.e. a look-up table for these values). Hence, N can be determined when a
land cover map, such as Corine (European Environment Agency, 2018), is present.
The estimation of the N_river parameter is possible via a similar method which is based
on the Strahler order instead of the land cover (Table C.5), as proposed and used by Liu
et al. (2005) for the TOPKAPI model. Note, however, that this relationship between Strahler
order and Manning’s roughness coefficient is purely empirical and is not often tested.

Saturated conductivity
The parameter KsatVer is a representation of the saturated conductivity of the soil. It is
hard to estimate the saturated conductivity due to the spatial variability of this soil prop-
erty. A couple of empirical equations are, however, available to estimate this parameter.
A study by Wagner et al. (2001) concluded that the method of Wösten (1997) gave the best
results, but this method can not be used when the percentage of organic matter in the
soil exceeds 15%. For these cases, the method by Brakensiek et al. (1984) is recommended.
For consistency, we only use the method by Brakensiek et al. (1984) in this approach. The
PTF is shown in Table B1 of the paper’s appendix. Since the soil data of Hengl et al. (2017)
is available at seven depths, we have also estimated KsatVer at seven depths.

M
The model only requires the KsatVer of the top layer and it will approximate the satu-
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rated conductivity of the deeper layers with the M-parameter. M governs the (often ex-
ponential) decay of the saturated conductivity with depth (Vertessy and Elsenbeer, 1999;
Schellekens et al., 2019b). With the assumption that this decay is often exponential, KsatVer
at depth zi is estimated in wflow_sbm with the M-parameter. Since we have calculated
KsatVer at seven depths, it is possible to fit the decay-function of M through the values
of KsatVer. The used equations for this are also shown in Table B1 of the appendix of the
paper. Hence, with the present data, we have calculated KsatVer at seven depths and we
have determined M by making use of the estimated KsatVer at those seven layers.

Water fraction
The parameter WaterFrac represents the fraction of water per pixel, which is used for the
open water evaporation estimations in the model. Grid cells have a value between 0 and
1, with 1 representing a cell with only water and 0 a cell with no open water at all. This
parameter is estimated with the used land cover map in this study (European Environment
Agency, 2018).

Rooting depth
RootingDepth is a parameter which gives the effective depth of vegetation roots on a par-
ticular pixel. The estimation of this parameter is based on the work by Schenk and Jackson
(2002), who estimated rooting depth for different vegetation classes by making use of
the following fitted curve per vegetation type:

R(d) =
Rmax

[1 + ( d
d50

)c]
. (8.1)

Here, R(d) is the cumulative root amount above depth d, Rmax is the total amount of
roots, d50 is the depth at which the cumulative root amount (R) equals 0.5×Rmax and
c is a dimensionless coefficient which is fitted to the available vegetation data.
The required data to determine the depth of the roots for a certain vegetation type and
cumulative root fraction, are the d50 length and coefficient c, which are available for a va-
riety of vegetation types in Schenk and Jackson (2002) and Fan et al. (2016b). In this study,
we have related these vegetation types to the used land cover dataset by European Environ-
ment Agency (2018). And with the available datasets, we have calculated the d75 length,
i.e. the depth up to which 75% are present. The reason for this depth is twofold: (1) The
maximum rooting depth (d100) is much longer than the effective rooting depth as used
by wflow_sbm, and (2) at the d75 length, to be precise in between 60 and 80%, there is a
tipping point where the steepness of the rooting depth as a function of cumulative root
density percentage highly increases. This point, we assume to be the end of the effective
rooting depth.

c andλ
The parameter c is the value for the exponent in the wflow_sbm vertical transfer equa-
tion which determines the transfer of water from the unsaturated to the saturated zone
per soil layer. This parameter has its origin in the Brooks-Corey equations and we can es-
timate cwhen we know the value forλ (Brooks and Corey, 1964). These equations are also
illustrated in appendix Table B1 of the paper. Whenλ is estimated and upscaled, c is cal-
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culated from the λ parameter fields on the model resolution, following Rawls and Brak-
ensiek (1989).

Leaf Area Index
Another option in the model, is to make use of the Leaf Area Index (LAI) in order to es-
timate interception and evaporation losses. This requires estimations of LAI and intro-
duces three new parameters (see below). In this study, we used LAI estimates from the
MODIS/Terra Leaf Area Index global dataset by Myneni et al. (2015). These estimates are
averaged per month over the years in the run period, resulting in one map per month.
The introduced parameters are Specific leaf storage (Sl), the woody fraction of the vegeta-
tion (Swood) and an extinction coefficient (Kext). These three parameters can be related
to land cover according to look-up tables as derived for wflow_sbm by Schellekens et al.
(2019b). The look-up tables are determined from Pitman (1989) and Liu (1998) for Sl and
Swood, and determined from van Dijk and Bruijnzeel (2001) for Kext.

Table C.1: Complete List of datasets used in Chapter 5.

Name dataset Unit Additional information Source
Precipitation (genRE) mm Time period: 1996-2015 van Osnabrugge

et al. (2017)
Air temperature °C Time period: 1996-2015 van Osnabrugge

et al. (2019)
Potential Evapotranspiration mm Time period: 1996-2015 van Osnabrugge

et al. (2019)
LSA SAF DMET (ETact,
9km2)

mm Time period: starting from
2011-11-14

Trigo et al. (2011)

Discharge at multiple loca-
tions in the Rhine basin

m3 s−1 Time period: 1997-2015 Same as used in
van Osnabrugge
et al. (2017)

Leaf Area Index m2 m−2 Time period: monthly 2000-
02 until 2017-02

Myneni et al.
(2015)

ISRIC SoilGrids 250m - See below Hengl et al.
(2017)

kg m−3 Bulk Density
- Soil Types
kg m−3 Soil Organic Carbon
% Sand content
% Clay content
% Silt content
cm Depth to bedrock

ESDAC Depth to Imperme-
able layers

Classes
[cm]

ESDAC (2004);
Panagos et al.
(2012)

Global Land Cover - European Envi-
ronment Agency
(2018)
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Table C.3: Corine land cover codes(European Environment Agency, 2018) and derived wflow_sbm
parameters based on empirical relationships. Manning N parameter is based on Engman (1986)
and Kilgore (1997), and assigned to the land cover. Specific leaf storage (Sl) and the woody fraction
of the vegetation (Swood) are based on Pitman (1989) and Liu (1998). The extinction coefficient
(Kext) is based on van Dijk and Bruijnzeel (2001). Rooting depth, see also text S1, are based on
Schenk and Jackson (2002) and Fan et al. (2016b). Part 1 of the table, part 2 on the next page.

Code Land cover N Sl Swood Kext Rooting
[m− 1

3 s] [mm] [-] [-] Depth[mm]
111 Continuous urban fabric 0.011 0.04 0.0 0.6 256
112 Discontinuous urban fabric 0.011 0.04 0.01 0.6 256
121 Industrial or commercial units 0.011 0.04 0 0.6 0
122 Road and rail networks 0.011 0.04 0.01 0.6 107
123 Port areas 0.011 0 0 0.6 0
124 Airports 0.011 0.04 0.01 0.6 107
131 Mineral extraction sites 0.011 0 0 0.6 0
132 Dump sites 0.011 0 0 0.6 0
133 Construction sites 0.011 0.04 0 0.6 0
141 Green urban areas 0.15 0.04 0.05 0.6 256
142 Sport and leisure facilities 0.15 0.04 0.01 0.6 107
211 Non-irrigated arable land 0.2 0.1272 0 0.6 390
212 Permanently irrigated land 0.2 0.1272 0 0.6 249
213 Rice fields 0.2 0.1272 0 0.6 107
221 Vineyards 0.5 0.07 0.2 0.7 432
222 Fruit trees and berry plantations 0.5 0.07 0.2 0.7 430
223 Olive groves 0.5 0.07 0.2 0.7 432
231 Pastures 0.15 0.1272 0.01 0.6 107
241 Annual crops associated with 0.2 0.1272 0 0.6 390

permanent crops
242 Complex cultivation patterns 0.2 0.1272 0 0.6 390
243 Land occupied by agriculture 0.44 0.1272 0 0.6 284

with significant natural
vegetation areas

244 Agro-forestry areas 0.5 0.03926 0.5 0.8 406
311 Broad-leaved forest 0.6 0.036 0.5 0.8 430
312 Coniferous forest 0.4 0.045 0.5 0.8 382
313 Mixed forest 0.5 0.03926 0.5 0.8 406
321 Natural grasslands 0.15 0.1272 0.01 0.6 107
322 Moors and heathland 0.24 0.09 0.05 0.6 178
323 Sclerophyllous vegetation 0.5 0.07 0.1 0.7 432
324 Transitional woodland-shrub 0.5 0.07 0.1 0.7 432
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Table C.4: Continuation of Table C.3

Code Land cover N Sl Swood Kext Rooting
[m− 1

3 s] [mm] [-] [-] Depth[mm]
331 Beaches dunes sands 0.15 0.04 0 0.6 107
332 Bare rocks 0.01 0 0 0.6 0
333 Sparsely vegetated areas 0.02 0.04 0.04 0.6 137
334 Burnt areas 0.02 0.04 0.04 0.6 0
335 Glaciers and perpetual snow 0.01 0 0 0.6 0
411 Inland marshes 0.15 0.1272 0.01 0.7 107
412 Peat bogs 0.15 0.1272 0 0.6 137
421 Salt marshes 0.15 0.1272 0.01 0.7 107
422 Salines 0.075 0.1272 0.005 0.7 53
423 Intertidal flats 0.075 0.1272 0.005 0.7 53
511 Water courses 0.01 0 0 0.7 0
512 Water bodies 0.01 0 0 0.7 0
521 Coastal lagoons 0.15 0.1272 0.01 0.7 107
522 Estuaries 0.15 0 0.01 0.7 107
523 Sea and ocean 0.01 0 0 0.7 0
999 NODATA 0 0 0 0 0

Table C.5: Determination of Manning’s N_river based on the river Strahler order (Liu et al., 2005).

Strahler order N_river [m− 1
3 s]

1 0.050
2 0.040
3 0.035
≥ 4 0.030
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Figure C.1: Discharge simulations with wflow_sbm for four sub-catchments of the Rhine basin
(Lippe, Ruhr, Moselle and Neckar) and two discharge simulations in the main river of the Rhine,
one upstream (Maxau) and one downstream (Emmerich), for the hydrologically extreme year
2003. Discharge simulations are indicated by blue lines and observations in black. Reached KGE
and NSE are displayed in the top left corner.
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Figure C.2: Yearly maximum daily discharge peak simulations compared to observed yearly max-
imum daily discharge peaks. Data is based on six catchments in the Rhine basin: Moselle, Neckar,
Main, Ruhr, Sieg and Lippe. Blue dots indicate modeled vs observed discharge peak and the dotted
line is the 1:1 line when modeled and observed discharge peak magnitude would be the same.
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Figure C.3: Simulated lake levels of the eight largest lakes in the Rhine basin as compared with
observed lake levels. All lakes are located in Switzerland or Southern Germany.

168



C. Supplemental tables and figures to Chapter 5

Figure C.4: Obtained parameter estimates at four resolutions for two upscaling techniques for the
model parameter θs (saturated water content). (a)–(d), parameter estimates of θs from 1.2 km
to 4.8 km upscaled with an arithmetic mean. (e)–(h), histograms of θs parameter values; his-
tograms match with the parameter maps on top of them. (i)–(l), parameter estimates of θs from
1.2 km to 4.8 km as upscaled with a harmonic mean. (m)–(p), similar to the previous histograms,
but for the harmonic mean upscaling.
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Figure C.5: Obtained parameter estimates at four resolutions for two of the model parameters: c
and λ. (a)–(d), parameter estimates of c from 1.2 km to 4.8 km as upscaled with an arithmetic
mean. (e)–(h), histograms of c parameter values; histograms match with the parameter maps on
top of them. (i)–(l), parameter estimates of λ from 1.2 km to 4.8 km as upscaled with an arith-
metic mean of the natural logarithm. (m)–(p), similar to the previous histograms, but of the nat-
ural logarithm ofλ.
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Figure C.6: Obtained parameter estimates at four resolutions for KsatVer (saturated conductiv-
ity). (a)–(d), parameter estimates from 1.2 km to 4.8 km as upscaled with an arithmetic mean
after upscaling from the natural logarithm. (e)–(h), histograms ofKsatV er parameter values;
histograms match with the parameter maps on top of them. (i)–(l), parameter estimates from
1.2 km to 4.8 km as upscaled with an arithmetic mean of the normal parameter value. (m)–(p),
similar to the previous histograms, but for (i–l).
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Figure C.7: Simulations of daily averaged lateral subsurface flows on four resolutions, (a) 1.2 km,
(b) 2.4 km, (c) 3.6 km and (d) 4.8 km. (e) - (g) illustrate the relative error per grid cell between one
of the coarser resolutions (b–d) and the simulations on 1.2 km (a) after upscaling these simulations
to one of the coarser resolutions. (h) - (j), same as (e–g), but catchment averaged fluxes are used
instead of fluxes per grid cell.
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Figure C.8: Discharge simulations for three different model setups as compared with observations
with Lobith (main course of the Rhine at the Dutch-German border). The illustrated model setups
are wflow_sbm in blue (this study), mHM setup with transfer-functions with a calibration con-
strained by discharge (orange) and mHM with transfer-function with a calibration constrained
by both discharge and GRACE data (green) Rakovec et al. (2016a).
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Figure C.10: Discharge simulations as compared with observations at Engebuoc (Switzerland).
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Figure C.11: Discharge simulations as compared with observations at Birs (Switzerland).
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Figure C.12: Discharge simulations as compared with observations at Aare 1 (Switzerland).
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Figure C.13: SWE simulations as compared with SWE simulations from SLF Jörg-Hess et al. (2014)
for Engebuoc (Switzerland).
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Figure C.14: SWE simulations as compared with SWE simulations from SLF Jörg-Hess et al. (2014)
for Birs (Switzerland).
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Figure C.15: SWE simulations as compared with SWE simulations from SLF Jörg-Hess et al. (2014)
for Aare 1 (Switzerland).

175



Appendices

D Supplemental tables and figures for Chapter 7

Figure D.1: Forecast verification scores for several stations. MCRPS (left panel) and MCRPSS (mid-
dle,right). The scores are shown for three scenarios: open loop (solid line), AEnKF (dotted line) and
open loop with AR correction (stripe dot line), and for three quantiles (see legend). The difference
between the middle and right panel is that for the first the MCRPSS is calculated with sample cli-
matology as benchmark forecast and for the right panel the MCRPSS is calculated with the fore-
cast from the open loop initial state as benchmark.
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Figure D.2: Forecast verification scores for several stations. MCRPS (left panel) and MCRPSS (mid-
dle,right). The scores are shown for three scenarios: open loop (solid line), AEnKF (dotted line) and
open loop with AR correction (stripe dot line), and for three quantiles (see legend). The difference
between the middle and right panel is that for the first the MCRPSS is calculated with sample cli-
matology as benchmark forecast and for the right panel the MCRPSS is calculated with the fore-
cast from the open loop initial state as benchmark.
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Figure D.3: Forecast verification scores for several stations. MCRPS (left panel) and MCRPSS (mid-
dle,right). The scores are shown for three scenarios: open loop (solid line), AEnKF (dotted line) and
open loop with AR correction (stripe dot line), and for three quantiles (see legend). The difference
between the middle and right panel is that for the first the MCRPSS is calculated with sample cli-
matology as benchmark forecast and for the right panel the MCRPSS is calculated with the fore-
cast from the open loop initial state as benchmark.

178



D. Supplemental tables and figures for Chapter 7

Figure D.4: Forecast verification scores for several stations. MCRPS (left panel) and MCRPSS (mid-
dle,right). The scores are shown for three scenarios: open loop (solid line), AEnKF (dotted line) and
open loop with AR correction (stripe dot line), and for three quantiles (see legend). The difference
between the middle and right panel is that for the first the MCRPSS is calculated with sample cli-
matology as benchmark forecast and for the right panel the MCRPSS is calculated with the fore-
cast from the open loop initial state as benchmark.
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Figure D.5: Forecast verification scores for several stations. MCRPS (left panel) and MCRPSS (mid-
dle,right). The scores are shown for three scenarios: open loop (solid line), AEnKF (dotted line) and
open loop with AR correction (stripe dot line), and for three quantiles (see legend). The difference
between the middle and right panel is that for the first the MCRPSS is calculated with sample cli-
matology as benchmark forecast and for the right panel the MCRPSS is calculated with the fore-
cast from the open loop initial state as benchmark.
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Summary

Summary
Hydrological forecasts are a useful and cost-effective tool to aid decision making. Hydro-
logical forecasts are based on a set-up consisting of several model and data components,
which need to be integrated for an effective forecast. Part of this model train is the hydro-
logical model. Regarding hydrological models, there is a current trend to move towards
high-resolution spatially distributed gridded models, both in the wider literature and in
the specific case of the forecasting system RWSosRivers of Rijkswaterstaat. Concurrently,
the forecasting models are used for ensemble forecasts and are further improved with
data assimilation techniques.

A number of constraints particular to the operational forecasting chain are identified:

• Near real-time availability of data;

• Continuous operation;

• Processing time;

• Desicion making under uncertainty.

The combination of the movement towards gridded models, ensemble forecasts and the
inclusion of data assimilation leads to new challenges, conceptually, but even more so
when intersected with operational practice. The challenges that arise on the intersection
of hydrological science disciplines and the constraints above are called in this thesis oper-
ational aspects.
The thesis consists of five research chapters that each contribute original research on op-
erational aspects of hydrological forecasts, with the Rhine basin as case study.
In Chapter 3, the operational aspect studied was precipitation interpolation under the
constraint of limited data availability. Specifically, limited network density of hourly real-
time reporting gauges and the constraint of reliability in the sense that any interpolation
method should also work in case of missing data. Collected rain gauge data were spa-
tially interpolated using the genRE method, which uses climatological grids to inform
the interpolation about the spatial distribution of precipitation. It was shown that im-
proved hourly interpolation results could be obtained with the operational interpolation
method by using climatological grids which were derived from non-operationally avail-
able daily data with a higher quality and quantity, thereby successfully using non real-
time data to enhance the information available in real-time.
The subject of Chapter 4 was the treatment of potential evaporation (PET) in hydrolog-
ical forecasting. The operational aspect that was studied was the choice between using
average PET climatology based on a long time series of offline data, or the use of near
real-time available data to calculate PET in near real-time, including calculating PET from
forecast data for use in hydrological forecasts. A 20-year reforecast was done and the re-
sulting skill scores with online and offline PET data were compared. It was shown that for
our case there was a negligible difference in discharge forecast skill between using the
offline or online PET data for forecasts up to 10 days.
Chapter 5 reported the set-up of the wflow_sbm model concept without calibration. Pa-
rameters for the model were derived based on pedotransfer functions found in literature
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and open access spatial data, such as soil properties. The model parameters were subse-
quently scaled from the highest data resolution to several coarser model resolutions. It
was shown that this resulted in adequate modelling results of discharge throughout the
Rhine basin, as well as flux conservation between modelling on different spatial scales.
The scalability and uncalibrated properties of the model fit the use in an operational con-
text very well.
Last, Chapters 6 and 7 showed the results of two experiments with state updating. Chap-
ter 6 employed the Ensemble Kalman Filter (EnKF) to investigate if measured lake water
levels could be used to improve downstream discharge forecasts. The results showed that
indeed state updating with lake level measurements can aid in making discharge fore-
casts, but that the robustness of this state updating is highly dependent on the quality of
the lake modelling.
Chapter 7 applied the Asynchronous Ensemble Kalman Filter (AEnKF) to assimilate dis-
charge into the gridded hydrological model at the subbasin level. The results of the as-
similation were compared with ARMA postprocessing. It was shown that the ARMA cor-
rection was very strong for the first two days, but that the AEnKF provided more consistent
improvements for longer lead times.
Based on these results, specific advice is given to improve the forecasting system for the
Rhine. It is recommended to:

• Apply the methods used in this thesis for the spatial preprocessing of the forcing
data and to keep an up-to-date database containing all the data that is needed for
a reforecast analysis;

• Implement the data assimilation set-up as used in Chapter 7, with the annotation
that this method can be further optimized for individual subbasins;

• Make the decision to base further developments in the hydrological model on the
wflow model framework, under the vision of ‘choose a modelling framework first,
and hydrological model concept later’;

• Invest in the set-up of an automated benchmarking system.
This advice fits in a broader picture on the future of state-of-the-art forecasting systems.
Such forecasting systems are likely to:

• Be modular in set-up with interchangeable components;

• Have integrated uncertainty estimation, with coupled models of hydrology, mete-
orology and other environmental models;

• Include the user as integral part of the forecasting chain and include social ele-
ments in the forecast;

• Apply improved integration of commensurable data sources throughout and up-
and-down the forecasting chain;

• Be multi-purpose and cater to a wide range of clients with different needs;

• Be automated learning systems that utilize standard benchmarks to continuously
improve modelling;

• Be operated by consortia of parties that have the necessary expertise and resources.



Samenvatting
Prognoses (forecasts) van hydrologische variabelen zijn een bruikbare en kosteffectieve
manier om betere beslissingen te nemen omtrent watermanagement. Zulke hydrologi-
sche verwachtingen worden gemaakt aan de hand van een serie van verschillende com-
ponenten die samen moeten werken om een voorspelling te creëren. Onderdeel van deze
trein aan modellen is het hydrologische model. Op het gebied van hydrologisch model-
leren wordt er steeds meer gewerkt met ruimtelijk gedistribueerde modellen. Ook voor
het operationele systeem voor afvoervoorspellingen voor de Rijn en de Maas, RWsOS Ri-
vieren, worden zulke modellen op grid basis overwogen. Tegelijkertijd worden dergelijke
hoge resolutie modellen ook gebruikt voor ensemble verwachtingen en gecombineerd
met data-assimilatie methodes.
Daarnaast is er nog een aantal specifieke randvoorwaarden waar rekening mee gehouden
moet worden wanneer het gaat om operationele hydrologische voorspellingen:

• Onmiddelijke beschikbaarheid van de benodigde datastromen;

• De systemen zijn continu in gebruik;

• De beschikbare verwerkingstijd is beperkt;

• Beslissingen moeten worden genomen op basis van onzekere verwachtingen.
De combinatie van ruimtelijk expliciete modellen en het gebruik van ensembles en data-
assimilatie leidt tot nieuwe uitdagingen, vooral in combinatie met de specifieke rand-
voorwaarden behorende bij operationele voorspellingen. In dit proefschrift wordt een
aantal van deze operationele aspecten, ofwel de uitdagingen die ontstaan op het raakvlak
tussen bestaande theorie en de genoemde randvoorwaarden, onderzocht.
In Hoofdstuk 3 wordt neerslaginterpolatie onder de loep genomen in het geval van be-
perkte near-real time beschikbaarheid van neerslaggegevens. Specifiek wordt onderzocht
hoe een betrouwbare ruimtelijke verdeling van de neerslag kan worden bepaald op ba-
sis van een beperkte dataset die in near-real time beschikbaar is. Dit wordt gedaan op
basis van klimatologische neerslagverdelingen die zijn afgeleid van een grotere, niet in
real-time beschikbare, dataset. De resultaten laten zien dat de geteste genRE methode
succesvol informatie gebruikt over de ruimtelijk verdeling van de neerslag uit de klima-
tologische neerslagkaarten en zo de ruimtelijke interpolatie verbetert.
Hoofdstuk 4 kijkt naar het effect dat verschillende potentiëleverdampingsproducten (PET)
hebben op de hydrogische voorspelling. Het operationele aspect dat hiermee wordt on-
derzocht is de keuze tussen het gebruik van een PET klimatologie, gebaseerd op een lange
tijdreeks van historische PET, en het uitrekenen van PET in near-real time op basis van
actuele gegevens en weersverwachtingen. Op basis van een twintigjarige reforecast zijn
skill scores uitgerekend voor beide gevallen. Hieruit blijkt dat er voor een tiendaagse
voorspelling nauwelijks verschil is tussen de twee methodes.
Hoofdstuk 5 beschrijft een methode om het hydrologische wflow_sbm model te para-
meterizeren op basis van pedotransferfuncties uit de literatuur en publiekelijk beschik-
bare ruimtelijke gegevens zoals bodemeigenschappen. De modelparameters worden
geschaald van de hoogste dataresolutie naar verschillende lagere resoluties waarop de
modelberekeningen worden uitgevoerd. De resultaten laten zien dat de voorgestelde
methode zorgt voor redelijk tot goede prestaties op het gebied van het voorspellen van



afvoeren. Ook blijven de hydrologische fluxen, zoals verdamping, behouden wanneer er
wordt gewisseld tussen verschillende ruimtelijke modelresoluties. Deze schaalbaarheid
en het feit dat bij deze methode niet gekalibreerd wordt, zijn eigenschappen die voordelig
zijn in een operationele context.
In Hoofdstuk 6 wordt het Ensemble Kalman Filter (EnKF) gebruikt om te onderzoeken of
het assimileren van waterstandsmetingen van de Zwitserse meren bijdraagt aan betere
afvoervoorspellingen. De resultaten laten zien dat waterstandsmetingen van meren op
deze manier kunnen bijdragen aan betere voorspellingen, maar dat het resultaat sterk
afhangt van hoe goed de afvoeren van de meren worden gemodelleerd.
Hoofdstuk 7 gebruikt het Asynchrone Ensemble Kalman Filter (AEnKF) om afvoermetingen
te assimileren in het gedistribueerde model voor de Rijn op het niveau van deelstroomge-
bieden. De data-assimilatie wordt vergeleken met de ARMA-nabewerkingsmethode. Re-
sultaten laten zien dat ARMA zeer goede resultaten geeft voor de eerste twee dagen van
de verwachting, maar dat data-assimilatie meer consistente verbeteringen geeft voor
langere tijd vooruit.
Naast de wetenschappelijke relevantie op het gebied van operationeel voorspellen van
afvoeren, geven de resultaten uit deze hoofdstukken ook aanleiding tot specifieke ad-
viezen over het verbeteren van hydrologische prognoses voor het Rijnstroomgebied. Het
wordt aangeraden om:

• de methodes die gebruikt zijn in dit proefschrift over te nemen en om daarvan een
continu geactualiseerde database bij te houden samen met (een selectie van) alle
andere data die binnenkomt in het operationele systeem;

• de data-assimilatie toe te passen zoals gebruikt in Hoofdstuk 7, met de kantteke-
ning dat de gebruikte implementatie nog verder geoptimaliseerd kan worden voor
de verschillende deelstroomgebieden;

• verdere ontwikkelingen aan het hydrologische model te baseren op de hydrologi-
sche modelleeromgeving wflow, op basis van de visie ‘kies eerst een framework,
en dan pas een concept;’

• te investeren in een workflow voor automatische benchmarking van resultaten voor
validatie en om verdere ontwikkelingen te bevorderen.

Dit advies past in een bredere visie op hoe state-of-the-art systemen voor hydrologische
voorspellingen er uit zullen zien in de toekomst. Toekomstige systemen:

• zijn modulair qua opzet, met uitwisselbare componenten;

• hanteren geïntegreerde methodes om de onzekerheid van voorspellingen te bepalen,
in combinatie met gekoppelde hydrologische, meteorologische en ecologische mo-
dellen;

• houden rekening met de gebruiker als integraal onderdeel van het systeem en wor-
den ook sociale aspecten meegenomen in het voorspellingsproces;

• kenmerken zich door vergevorderde integratie van verschillende bronnen van in-
formatie die elkaar aanvullen;

• zijn multi-inzetbaar en leveren gegevens aan een breed spectrum van eindgebruik-
ers;



• zijn zelfverbeterend door middel van standaard benchmarking en continue verbe-
teringsprocessen;

• worden beheerd en geëxploiteerd door consortia die gezamenlijk de nodige ex-
pertise en middelen hebben voor zulke geavanceerde systemen.
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My baby

Did I show you yet, a picture of my baby?
No?
Here, a picture! A picture! A figure!
Here its processing it’s first (it’s first!) time steps!
Here you see it making it’s first steps!
Is anything more wonderful?
Here, the poor child, is throwing errors.
Is it not adorable?
Doesn’t it do this adorably?
Don’t you think it is so cute?
Only Yesterday it made it’s first appearance on a conference.
Such a great model, just like it’s modeller.
Such a great toddler, just like it’s modeller
Somebody said we should train it better,
but I think it is just perfect as it is.
It is after all such a great model.

Of course, some times are hard.
The errors, the little accidents, the long and broken nights.

Sigh.

But, enough about my model.
Do you have any plans to start making models?
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Het regent

Er valt regen, dat valt tegen!
Geen festival, zo’n valpartij aan regenval!

Valt het in een regenmeter, per toeval,
duizenden druppels in een regen-val?
Of op asfalt als een waterval?

Hoeveel regen er valt, is niet te valideren.
Maar na de regen-zonde-val, volgt noodgeval.
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O thesis my thesis

O Thesis, my Thesis, our lonely trip is done,
Our theories weather’d every rack the prize we sought is won.
The bell comes near, ‘hore est,’ I hear, the people all exculting,
While follow ears with answers filled, the questions grim and daring;

But O heart, heart, heart!
O the fleeting drops of dread,
Where on the desk my Thesis lies,
It’s pages cold un-read.

O thesis, my thesis! Endure this lonely spell;
Endure! for you my insight lives - for you the wine now spills,
For you the title and ribbon’d hats - for you the room a-crowding,
For you they came, t’interested mass, their eager int’lects churning,

Here thesis! Dear thesis!
A place upon the shelf,
It is some dream that on the desk,
You’ve fallen cold and dead.

My thesis has some answers, more daring questions still,
My child awaits now readers, afraid they never will,
Uncover theories safe and sound, its voyage closed and done,
From fearfull trip now membership of science circles won.

Exult O Chairs! And ring! O Bell!
But I with muddled head,
Walk from the desk my thesis lies,
It’s pages cold un-read.

after ‘O Captain, my Captain’ by Walt Whitman
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Dankwoord
Mag je nog Interessante Tijden meemaken! (eng: May You Live in Interesting Times) is
een ironisch gezegde waarbij je iemand rampspoed en onzekerheid toewenst. De on-
derliggende gedachte is dat het vele malen beter is om een rustig en voorspelbaar leven
te hebben. Een quote in dezelfde trant is ‘Geluk is nooit groots’ (eng: Happiness is never
grand), waarbij wordt gesteld dat alle emoties die komen kijken bij voor- en tegenspoed
niet opwegen tegen een stabiele gelukzaligheid.
We leven in interessante tijden. Je kan er van alles van vinden, maar dat verandert er niet
zoveel aan. Een van de voordelen van onzekere tijden, is dat het makkelijker is om te zien
waar je dankbaar voor bent. Zeker op een moment waarop je eigen baan stabiel is, je we-
derzijds verloofd bent en, toch ook nog noemenswaardig, je proefschrift hebt afgerond.
Een proefschrift is een persoonlijke beproeving. Echter, een ander populair metafoor over
de wetenschap is evenzeer waar: je staat op de schouders van reuzen.
In mijn opsomming van reuzen, is er maar een plek waar ik kan beginnen: mijn ouders,
Henk en Ellen, en mijn broer Jelle. Wanneer je geboren wordt, zijn dat natuurlijk letter-
lijk reuzen, maar dat is hier te simpel. Lieve pappa, jij bent voor mij de koning van het
relativeren. Als ik een ding mag noemen dat ik van jou geleerd heb, is het wel om dingen
in perspectief te plaatsen. Lieve mamma, van jou heb ik meegekregen hoe belangrijk het
is om dingen te ondernemen met volledige passie. Beste broer, het is lastig te beschrijven
hoeveel makkelijker je het mij hebt gemaakt door dingen voor lange tijd altijd als eerste
uit te vinden. Je blijft toch altijd mijn voorbeeld.
Dan spring ik vooruit in de tijd en wil ik graag Vera Liem bedanken. We kennen elkaar
op dit moment langer wel dan niet. Tijdens mijn studietijd is er niemand waarop ik zo
heb kunnen terugvallen als op jou. Als ik benoem wat ik van jou heb meegekregen is het
‘noblesse oblige’ of ‘vrijwillig is niet vrijblijvend’.
Dan is er een reeks aan docenten en professoren waarbij de relatie tot het volbrengen
van mijn proefschrift een stuk duidelijker is. Daarbij wil ik beginnen bij Prof. Savenije en
Prof. van de Giesen die mij geinspireerd hebben op de TU Delft voor de hydrologie. Ook
mijn thesisbegeleider, Thom Bogaard, wil ik niet vergeten. Zijn advies: je hebt wel de
capaciteiten om een promotie te gaan doen, maar misschien moet je eerst een paar jaar
bij Deltares gaan werken.
In dit rijtje van leermeesters horen ook mijn promotoren thuis. Albrecht, van jou neem
ik in het bijzonder mee hoe je complexe problemen en vraagstukken kan omzetten naar
praktische problemen die aan te pakken zijn. Remko, van jou neem ik mee dat ‘je nog
geen reden ziet voor paniek.’
Ik begon dit dankwoord met een verwijzing naar de ‘interesting times’ waarin we leven.
Er is één iemand die mij onveranderlijk hoopvol laat zijn over een gelukzalige toekomst.
Marloes liefste schat, ik ben ontelbaar dankbaar voor je bestaan.
Vrienden, familie, collega’s, bestuursgenootjes, huisgenoten, studiegroepjes, IMPREX-
ers, thesis-klankborden, Delftsche Zwervers en altviooldocenten, voor iedereen geld dat
ik op de een of andere manier zonder jullie dit proefschrift niet zou hebben kunnen maken.
Reuze bedankt.
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Propositions

1. The study of the operational aspects of hydrological forecasting
is a distinctive specialization in hydrologic science.
(this thesis)

2. Lake water level measurements can inform about upstream hy-
drological system states, but are less reliable for updating these
modelled states than discharge measurements.
(this thesis)

3. Since many computational science studies are not reproducible
(Peng, 2011), dropping the distinction between ‘hard’ and ‘soft’
science in favour of ‘reproducible’ and ‘non-reproducible’ science
would deflate the ego of the ‘hard’ sciences.

Peng, R. D. (2011). Reproducible research in computational science. Science,
334(6060), 1226-1227.

4. Replacing the unwritten rule of four papers in a PhD thesis in
favour of communicating the minimum requirement of ‘one or two
publishable chapters’ (Doctoral degree regulations; Appendix 6)
will increase originality of PhD research while reducing work load
related stress.

Doctoral degree regulations Wageningen University (Nov. 2019).

5. The high number of PhD students with psychiatric disorders
(Levecque et al., 2017) is depressing.

Levecque, K., Anseel, F., De Beuckelaer, A., Van der Heyden, J., & Gisle,
L. (2017). Work organization and mental health problems in PhD students.
Research Policy, 46(4), 868-879.

6. The added value of PhD peer groups to formal mentoring (Lewin-
ski et al., 2017) is evidence that PhD candidates can play roles
in science that are traditionally reserved for senior scientists.

Lewinski, A. A., Mann, T., Flores, D., Vance, A., Bettger, J. P., & Hirschey,
R. (2017). Partnership for development: A peer mentorship model for PhD
students. Journal of Professional Nursing, 33(5), 363-369.



7. Global commercial tech companies cannot be trusted to provide
free hydrological forecasts as public service, as their objective, by
their nature, is to make profit.

8. Efficiency is for machines, while the essence of human life is to
waste time meaningfully.

Propositions belonging to the thesis, entitled

Interpolate, Simulate, Assimilate: operational aspects of improving
hydrological forecasts in the Rhine basin

Bart van Osnabrugge
Wageningen, 12 May 2020


