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Abstract
da Silva, V.H. (2019). Structural variants in the great tit genome and their effect

on seasonal timing. Joint PhD thesis between Wageningen University & Research,

the Netherlands and Swedish University of Agricultural Sciences, Sweden

The biodiversity of our planet has been increasingly endangered by human actions.

This nature biodiversity is strictly correlated with genomic diversity of all the species

in the ecosystem. Thus, a broader understanding on the genome of wild species may

be extremely useful to understand selection and plasticity in the natural species of

our changing world. The great tit (Parus major) is a songbird that has been exten-

sively explored in ecological and evolutionary studies, shedding light on the effects

of the global warming on nature. The seasonal timing of the great tit has been

shifting under the global warming, but the knowledge on particular genes associ-

ated with timing is still limited. Although the effect of single nucleotide changes on

the breeding timing of great tits has been investigated, the effect of more complex

structural variants is largely unknown. In fact, the genomic structural variability

was never explored in detail in these species. The aim of this thesis was to detect,

map, characterize and associate, with seasonal timing, structural variants that are

present in the great tit genome such as copy number variations (CNVs) and inver-

sions. First, this thesis presents a genome-wide map of CNV regions in the great tit

genome, showing how these variants are associated with genomic architecture that

underlies their molecular formation. Great tit CNVs, in accordance to reported in

several mammalian species, are enriched at evolutionary breakpoints. Although it

supports the importance of CNVs during speciation like is described in mammals, a

remarkable difference is that neuronal related genes may play a central role on the

great tit speciation. Second, CNVs were associated with breeding timing. Although

no strong association was found, suggestive associations such as a copy number gain

in a gene related to circadian clock deserves further investigation. Finally, this thesis

investigate in detail the genomic complexity of a large (≈64 Mb) and widespread

(≈5%) inversion in the Chromosome 1A. Interestingly, this inversion is a recessive

lethal selfish structural rearrangement (i.e. breaks the Mendel’s law). The inversion

is inherited twice more than expected from male carriers but are normally inherited

from female carriers, suggesting that a meiotic drive mechanism during spermato-

genesis maintains this large inversion in great tit populations.
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Chapter 1

Introduction



10 Introduction

1.1 Genetic diversity as the pillar of species con-

servation

1.1.1 Biodiversity and climate change

One of the most important challenges for humankind is the maintenance of biodi-

versity on our planet, given that species are disappearing at an alarming rate and

may need intervention to guarantee their survival Frankham et al. (2009). There

are a number of negative interactions between humans and the environment such

as pollution and deforestation, which can harm an ecosystem and consequently the

ecology of species. Ecology can be defined as the interaction between organisms

and their environment whereas evolution is the heritable change in populations of

organisms over generations. Ecology and evolution are strictly related themes and

the majority of the scientific questions in one area to some extent will touch another

one.

As genetic diversity is the substratum for evolution, diversity is an essential pil-

lar in conservation genetics. Changes in the environment are the main driver of

natural selection, where individuals with higher chance to reproduce have a higher

fitness. Consequently, specific genetic variants from adapted animals will increase in

future generations which can lead to a lower amount of genetic diversity. Therefore,

species may start to disappear through changing ecosystems as a consequence of

this damaged biodiversity.

The environment is constantly changing due to natural ecological processes. How-

ever, in the last decades many human activities such as deforestation (Zemanova

et al., 2017), gas emission (Meinshausen et al., 2009); in great part coming from

animal production (Koneswaran & Nierenberg, 2008) and industrialization (Mgbe-

mene et al., 2016); caused fast and profound shifts in natural habitats. These human

activities lead to a phenomenon that is increasingly studied, climate change. The

effects of climate change on natural populations has been extensively studied in a

wide range of species, which usually have their phenology affected by these environ-

mental changes. The phenology of several species has been shifting and resulting in

a mismatch between interconnected species belonging to the same ecosystem (Visser

& Both, 2005). Therefore, a deeper understanding of the genetic variability, which

directly reflects the biodiversity, may assist in future efforts to prevent ecological im-

balance or even species extinction. In fact, the resettlement of individuals increases

the genetic diversity and adaptive potential in species with a disrupted ecosystem,

and may be a crucial step for their conservation (Coates et al., 2018).
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1.1.2 Ecology and evolution of great tits

Box 1. Great tit: the model species

The great tit (Parus major) is a territorial songbird that occupies a

wide range of habitats (van Balen, 2002) being found from North Africa

across temperate Eurasia as well as into large parts of tropical South East

Asia (Portenko & Wunderlich 1984, Figure 1.1). The great tit is a widely

studied species in ecology and evolution that has been used as a model

species to understand reproduction (Smith et al., 1989), learning/cognition

(Cauchoix et al., 2017) and the effects of human activities on their behaviour

(Corsini et al., 2017).

Figure 1.1: Distribution of Parus major species around the globe. Adapted

from (BirdLife, 2019).

Studies on the great tit shed light on how the life cycle of natural species has

been shifting under climate change (Visser & Both, 2005). For example, seasonal

phenotypes, like e.g. egg-laying date during a breeding season, have been used to

understand the relationship between warmer/colder seasons and breeding timing
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(Schaper et al., 2011). However, the pace of change in phenology is clearly different

in species that present trophic interactions with great tits, such as the caterpillar

peak biomass date (Visser et al., 1998). This mismatch between newborn chicks and

the date of the biomass peak of the caterpillars, which is the main food for the chicks,

has generate questions about the effects of climate change in ecosystems.

Given the importance of great tit as a model species in ecology and evolution,

more advanced molecular techniques have been developed and implemented to study

this species. An important advancement was the publication describing a reference

genome to the great tit, which in addition explored evolution of cognition by exam-

ining the species genome and methylome (Laine et al., 2016). The reference genome

for the great tit allowed gene annotation and consequently evolutionary studies with

genomic information. The great tit genome has a total number of 33 chromosomes,

which harbors more than 4 millions SNPs. The knowledge on the great tit genome

and the SNPs across the chromosomes was crucial to the development of a custom

high density SNP array (Kim et al., 2018), which is able to successfully genotype

more than 500 thousand single nucleotide polymorphisms (SNPs) per sample. It

allowed genome-wide association studies (GWAS) to clarify the genetic basis of

breeding timing (Gienapp et al., 2017) and beak size in great tits (Bosse et al.,

2017). The breeding timing in birds is a seasonal trait that is reflected by the laying

date of the first egg in a breeding season (i.e. egg-laying dates). Therefore, Gien-

app et al. 2017 performed an environment-dependent SNP based GWAS to capture

genes underlying variation in breeding timing. However, they found no genes that

are strongly associated with egg-laying date in great tits, evidencing the polygenic

and plastic nature of timing. On the other hand, Bosse et al. 2017 showed by selec-

tive sweep analysis, that the longer beaks are associated with a specific haplotype of

the COL4A5 gene, which is also positively associated with fledgling production (i.e.

proxy for fitness). Interestingly, great tits from UK have longer beaks than those

from the Netherlands, which suggests a recent human-driven selection for longer

beaks in this species caused by more artificial feeding in UK than in the rest of

Europe.

The recent effort to better understand the genetic and epigenetic variation in great

tits is an important next step to comprehend how this species is responding to our

changing world and how their populations may increase or decrease on the years to

come. Moreover, molecular studies performed in great tit can assist similar efforts

on other wild species. However, apart from the considerable advancements on the

understanding of the great tit genome using SNPs and their respective haplotypes,

structural variants (SVs) such as translocations, duplications/deletions and inver-

sions have been poorly explored in this species. Fortunately, with the release of the

great tit reference genome (Laine et al., 2016), the use of sequencing and genotyping

(i.e. high density SNP array, (Kim et al., 2018)) to the identification of SVs was
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facilitated. There are an increasing number of software available to detect SVs of

which can use more than one algorithm in order to improve specificity and sensitiv-

ity (Ye et al., 2016). On the other hand, by using SNP arrays, one of the SV types

which focuses on genome duplications and deletions named copy number variation

(CNVs) can be uncovered by signal intensity and heterozygosity level of their over-

lapping SNP probes. Also, different SNP array based algorithms are available to

the identification of CNVs, which show different success rate, average stability rate,

sensitivity, consistence and reproducibility (Zhang et al., 2014b).

1.2 Genomic structural variants and biodiver-

sity

1.2.1 Biological effects and evolutionary footprints of structural vari-

ants

Research on genomic variants usually focuses on single nucleotide changes (Casci,

2010), but recently it has become clear that the complexity of the genome goes

much further. Apart from single nucleotides, variants in the genome structure also

underlie an important part of the evolutionary history (Katju & Bergthorsson, 2013)

and are associated with a wide range of phenotypes (Weischenfeldt et al., 2013) in

humans, livestock and wild species.

In humans, structural variants such as CNVs have been linked to different kinds

of mental disability by causing disorders in the nervous system (Lee & Lupski,

2006), with obesity (D'Angelo & Koiffmann, 2012), cancer predisposition (Shlien &

Malkin, 2010), hemophilia (Antonarakis et al., 1995) and several other diseases and

syndromes (for a review see Zhang et al. (2009)). Studying CNVs is also important

to understand the evolutionary history of humans as CNVs in genes underpinning

inflammatory response and cell proliferation may underlie phenotypic differentiation

of humans and chimpanzees (Perry et al., 2008). Susceptibility to diseases that are

still not curable, such as the acquired immunodeficiency syndrome (AIDS), rely on

CNVs. The importance of CNVs to understand AIDS was shown by a meta-analysis

that included more than nine independent studies that indicated that an increase

in the number of copies of the CCL3L1 gene decrease the risk of a HIV-1 infection

(Liu et al., 2010).

In livestock, CNVs have also been associated with different diseases, syndromes and

morphological phenotypes (Clop et al., 2012) such as e.g. the pea-comb phenotype

in chicken (Wright et al., 2009). Moreover, quality-related production traits such as

meat tenderness have been associated with CNVs (da Silva et al., 2016), which in



14 Introduction

is known to underlie a widespread effect on gene expression in muscle (Geistlinger

et al., 2018). Mainly in cattle, several studies have shown how CNVs have shaped

the current breeds through natural and artificial selection (Keel et al., 2016; Upad-

hyay et al., 2017). CNVs are also important to the mutation dynamics of CpG

dinucleotides leading to a higher genomic ‘flexibility’ in the evolution of chickens

(Pértille et al., 2019). In fact, CNVs overlap CpG sites more than expected than

change in other birds, such as the great tit (Chapter 2 of this thesis).

There is a growing effort to explore the evolutionary importance of CNVs in natural

populations. For example, in house-mouse three conserved genes endured major

population-specific duplications (Pezer et al., 2015). Other studies also exist in

plasmodium (Simam et al., 2018), stickleback (Chain et al., 2014) and pine (Prunier

et al., 2017) in which CNVs confer adaptability to a highly diverse/novel ecological

environments that are rapidly changing. However, albeit some studies explored the

role of CNVs to adaptation under fast environmental changes, the direct association

of CNVs with intraspecific phenotypes and fitness components is poorly explored

in the literature. Apart from CNVs, the fitness effect of the inversions have been

increasingly explored in different species.

In human evolution, inversions had a fundamental role as more than 1,000 inver-

sions diverge between human and chimpanzee genomes (Hellen, 2015). Moreover,

the history of different human civilization is partially reflected by inversions. For

example, different human populations show a distinct frequency for a pericentric

inversion in chromosome 9 (Hsu et al., 1987). Although, the effect of inversion

on human diseases is still limited (Puig et al., 2015), neurodegenerative diseases

have associated with polymorphic inversions (Pittman et al., 2006), which in turn

can cause a predisposition to other disease-related structural rearrangements (Puig

et al., 2015).

Polymorphic inversions have been associated with a number of traits in Drosophila,

ranging from body size to male mating success (reviewed in (Hoffmann & Rieseberg,

2008)), which can considered as a proxy for fitness. Moreover, the speciation in

a major human malaria vector (Anopheles funestus) is associated with inversions

(Ayala et al., 2011), evidencing the importance of inversions to better understand

the recent evolution of widespread disease vectors. Moreover, the mating strategy

in different wild birds is associated with inversions, such as the male morphs in ruff

(Philomachus pugnax ) (Lamichhaney et al., 2016) or the disassortative mating in

white-throated sparrow (Zonotrichia albicollis) (Tuttle et al., 2016).

Although the inherent role of different SVs has been increasingly explored, the strat-

egy used for detection and classification of SVs is not trivial. The methods to detect

CNVs are still evolving and need to be interpreted carefully. Moreover, even ignor-

ing the technical challenges, the biological variability among structural variants is
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stunning by itself. Different classes of structural variants can share definitions and

mechanisms of formation (Carvalho & Lupski, 2016), which confer another layer of

complexity to their study.

1.2.2 Methods to detect structural variants

Several methods have been used to discover structural variants in the genome. These

greatly differ in resolution and false negative-positive rates (Alkan et al., 2011). The

three methods are fluorescent in situ hybridization (FISH), different array types

and Next generation sequencing (NGS). FISH was a pioneer method that is able

to karyotype large structural variants (≈500 kb to 5 Mb, Trask (1998)). However,

for the discovery of shorter variants the development of microarrays was crucial.

There are two types of microarrays primarily represented by array comparative

genomic hybridization (CGH) and SNP arrays. CGH compares the hybridization

of two labelled samples (i.e. test and reference) to a set of hybridization targets,

which are typically long oligonucleotides or bacterial artificial chromosome (BAC)

clones. SNP array platforms are also based on hybridization, but the hybridization

is performed per sample and intensities measured in several samples are clustered

to detect signal deviations in each sample (Alkan et al., 2011). Most of the SNP

array based software use the relative probe intensity signal (log R ratio - LRR) from

each probe to estimate deviations in the number of copies. The interpretation and

filtering of these signals have been evolving and more recently the frequency of the

B allele (BAF) has been also integrated in some algorithms in order to improve

sensitivity and activity of the CNV calls (Yau & Holmes, 2008). One of the most

widely used algorithms that considers both LRR and BAF is implemented in the

PennCNV (Wang et al., 2007) software, which has been pointed to have the best

consistency with a CGH gold standard (≈24 million probes per sample, Zhang et al.

2014b).

The use of next-generation sequencing (NGS) technologies opened new possibilities

to study structural variants. NGS technologies are able to produce millions of reads

that can be used to construct a de-novo reference genome or be mapped onto an

existent reference genome. Algorithms that use NGS read information to identify

structural variants can be generally classified into read-pair (RP), split-read (SR),

read-depth (RD) and assembly (review in Ye et al. 2016). RP is based on the fact

that mapping distance between two reads in a pair will differ if a deletion/insertion

is present. Moreover, some RP based software such as Break Dancer (Chen et al.,

2009) can gather reads with abnormal insert size and orientation to uncover possible

inversions and translocations. Otherwise, SR method uses the information of reads

that split at the breakpoint of a structural variant. These split reads map separately,

and/or in a reverse orientation, to the reference genome, which provides location,
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size and assist in the classification of the identified variants. RD is not based on

the genomic location of the read pairs or split reads but otherwise on the number of

reads overlapping certain genomic regions. Therefore, duplicated or deleted regions

can be identified due to their significantly higher or lower read coverage. Finally,

assembly based methods usually perform a local assembly on the missing read-pairs

and therefore variants are called from the assembled contigs. However, although an

increasing number of software to detect structural variants from sequencing data has

been described in the literature, several computational and bioinformatics challenges

remain (Tattini et al., 2015). Moreover, the underlying costs in NGS can be still

prohibitive for large populations.

1.2.3 Genomic architecture underlies structural variant formation

The understanding of the molecular basis of a wide range of phenotypes, across

several species, has evolved quickly. An increasing number of studies has shown the

tremendous plasticity and dynamic nature of the genome. However, genomic vari-

ability can implicate in complex gene structures that are challenging to fully expose.

The high complexity of a genome is usually linked with structural variants which

sometimes can be confusing in their definitions, e.g. limit length to distinguish inser-

tions/deletions (INDELs) and copy number variations (CNVs) or length, repetitive

nature and mobility of a translocation to be considered a transposon (denominated

transposition instead). In general, translocations, changes in copy number and in-

versions overlap, to a reasonable extent, the majority of the classes of structural

variants that are reported in the literature.

Translocations are chunks of the genome moved from one genomic location to an-

other, which can be balanced or unbalanced depending whether genetic material is

lost or added at the translocated region (Harewood et al., 2017). Thus, an unbal-

anced translocation is followed by a copy number change. Formally, changes in copy

number may be generally classified as CNVs if they encompass more than 1kb (or

>50 bp in some definitions (Clop et al., 2012), which usually can be identified by

NGS but not by SNP-arrays) or as INDELs if shorter than 50 bp in size (or <50

bp in some definitions (Sehn, 2015)). In fact, INDELs might be not even generally

classified as SVs (Ye et al., 2016). In turn, CNVs that are located in reverse orien-

tation can underlie the formation of inversions (Palacios et al., 2017) by providing

substrate to non-allelic homologous recombinations (NAHR, Hoffmann & Rieseberg

(2008); Carvalho & Lupski (2016)). There are also some evidence that small in-

versions and nonrecurrent CNVs can be also formed by microhomology-mediated

break-induced replication (MMBIR) (Hastings et al., 2009) and fork stalling and

template switching (FoSTeS) (Zhang et al., 2009).



1.2 Genomic structural variants and biodiversity 17

Nomenclature in structural variants also encompass terms such as segmental dupli-

cations (SDs, also known as low copy repeats - LCRs), which represent the homolo-

gous regions in the genome; or transposable elements which account for a substantial

fraction of copy number changes and are also known as ‘jumping genes’. Segmen-

tal duplications, in essence, are CNVs that were fixed in a given species and may

collaborate to the expansion of gene families. Otherwise, transposable elements

can insertionally mutate the genes in which they land (Chen et al., 2005; Batzer

& Deininger, 2002) and underlie the formation of additional variants as deletions,

duplications, inversions, or translocations (Sen et al., 2006; Bailey et al., 2003).

Given the interdependence among all different structural variant classes and their

sharing mechanisms of formation, it may be informative to explore different classes

of structural variants jointly also because one class can be intrinsically associated

to another. The same group of replication-based mechanisms (RBMs) can produce

different SVs classes of which in turn can be part of a specific genomic architecture,

which endures a specific or multiple RBMs (Figure 1.2). For example, repetitive

elements in the genome can be rich in adenine-timine (AT-rich intervals) or in CpG

sites (i.e. which can be methylated), which are associated with regions prone to

break (Franchitto, 2013) and with a high recombination rate (Singhal et al., 2015),

respectively. It is known that AT-rich intervals are enriched for rare variants (Car-

valho & Lupski, 2016) (multiple origins), likely formed by break-induced replication

(BIR) mechanisms such as non-homologous end joining (NHEJ), whereas CpG to

more common CNVs (Chapter 2 of this thesis) which tend to be formed by ho-

mologous recombination (e.g. NAHR). Thus, different RBMs are more prevalent at

certain genomic architecture leading to a higher incidence of a specific SV. However,

even considering the genomic architecture behind complex genomic rearrangements

they can be mistaken for simple rearrangements, such as changes in copy number,

due to technical challenges and the limited resolution capabilities of the methods

used in structural variation detection (Carvalho & Lupski, 2016).
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Figure 1.2: Representation of the main structural variant (SV) concepts

in the genome. SVs can be formed through replication-based mechanisms (RBMs)

such as non-allelic homologous recombination (NAHR) and non-homologous end joining

(NHEJ). These two repair mechanisms can generate different kinds of structural variants

during replication due to their instability in more complex regions (e.g. in low-copy re-

peats - LCRs) (Carvalho & Lupski, 2016). There are evidence that CNVs and inversions

may be also formed by microhomology-mediated break-induced replication (MMBIR)

and fork stalling and template switching (FoSTeS) (Hastings et al., 2009; Zhang et al.,

2009). Transposons lead to increased template switching and can consequently promote

SV formation (Mayle et al., 2015). AT-rich repeats may be prone to break during repli-

cation (Carvalho & Lupski, 2016; Zhang & Freudenreich, 2007; Fungtammasan et al.,

2012; Franchitto, 2013), promoting SV formation (Carvalho et al., 2013; Deem et al.,

2011). Transcription start and end sites are enriched with CpG islands and both features

have been associated with recombination in birds (Singhal et al., 2015).

1.3 Thesis Overview

This thesis explores the structural variants in the genome of a well-studied songbird

in ecology and genomics. Popularly known as the great tit, Parus major has been

investigated for several decades at long-term study sites in the Netherlands and

United-Kingdom. Here, using birds from these sites, I explore mainly two classes of

structural variants in the great tit genome: CNVs and inversions. I first describe

these structural variants, followed by exploring the possible associations with sea-

sonal measurements such as egg-laying date. In chapter 2 I detected CNVs in

a great tit population from the Netherlands and performed a detailed characteri-
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zation of the genomic architecture, including other structural variant classes such

as SDs and transposons, which might underlie CNVs in great tits. Although the

biological and technical challenges were evident, it was possible to assess the CNV

inheritance patterns and calling confidence in our data-set (e.g. the high number of

false negatives calls). Moreover, CNVs were enriched at evolutionary breakpoints,

which in turn are enriched for neuron and cardiac related genes. In chapter 3 I

performed a genome-wide association study (GWAS) with egg-laying dates as an

individual trait and CNVs. For this, I used the populations from the Netherlands

and United-Kingdom. For the population from the Netherlands I used the CNVs

detected in chapter 2 and for the population from United-Kingdom I used the

same methods described in chapter 2 to infer CNVs. CNVs within genes related to

circadian clock and reproduction were identified, evidencing the possible effects of

CNVs on breeding time. However, CNV-GWAS with quantitative phenotypes have

a not well-defined ‘gold standard’ in the literature (e.g. strategy to define a ‘CNV

locus’ when multiple overlapping CNV calls have distinct breakpoints), sometimes

including studies that make use of commercial software (i.e. black boxes). Therefore,

I incorporated the CNV-GWAS methodology, which was developed in chapter 3,

into an open-source R/Bioconductor (Huber et al., 2015) package that is described

in chapter 4. The package, called CNVRanger, will allow other researchers to

perform a CNV-GWAS with a digestible and clear methodology. Moreover, the CN-

VRanger package includes additional features to deal with downstream analysis of

CNVs including methods for summarization (e.g. concatenation of CNV calls into

regions) and association with gene expression. To go beyond CNVs, in the chapter

5 I explored a very large inversion present in ≈5% of the Dutch population which

encompasses 90% of Chromosome 1A. The inversion harbors complex breakpoints

and evidences a possible gene flux in the center. In the chapter 6 I show that this

large inversion is lethal in homozygotes but it is on balancing selection by a meiotic

drive mechanism (i.e. a ‘selfish gene’).
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Abstract

Understanding variation in genome structure is essential to understand phenotypic

differences within populations and the evolutionary history of species. A promis-

ing form of this structural variation is copy number variation (CNV). CNVs can

be generated by different recombination mechanisms, such as non-allelic homolo-

gous recombination, that rely on specific characteristics of the genome architecture.

These structural variants can therefore be more abundant at particular genes ulti-

mately leading to variation in phenotypes under selection. Detailed characterization

of CNVs therefore can reveal evolutionary footprints of selection and provide insight

in their contribution to phenotypic variation in wild populations. Here we use geno-

typic data from a long-term population of great tits (Parus major), a widely studied

passerine bird in ecology and evolution, to detect CNVs and identify genomic fea-

tures prevailing within these regions. We used allele intensities and frequencies from

high-density SNP array data from 2,175 birds. We detected 41,029 CNVs concate-

nated into 8,008 distinct CNV regions (CNVRs). We successfully validated 93.75%

of the CNVs tested by qPCR, which were sampled at different frequencies and sizes.

A mother-daughter family structure allowed for the evaluation of the inheritance

of a number of these CNVs. Thereby, only CNVs with 40 probes or more display

segregation in accordance with Mendelian inheritance, suggesting a high rate of false

negative calls for smaller CNVs. As CNVRs are a coarse-grained map of CNV loci,

we also inferred the frequency of coincident CNV start and end breakpoints. We ob-

served frequency-dependent enrichment of these breakpoints at homologous regions,

CpG sites and AT-rich intervals. A gene ontology enrichment analyses showed that

CNVs are enriched in genes underpinning neural, cardiac and ion transport path-

ways. Great tit CNVs are present in almost half of the genes and prominent at

repetitive-homologous and regulatory regions. Although overlapping genes under

selection, the high number of false negatives make neutrality or association tests on

CNVs detected here difficult. Therefore, CNVs should be further addressed in the

light of their false negative rate and architecture to improve the comprehension of

their association with phenotypes and evolutionary history.
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2.1 Introduction

Genetic variants in the genome have been selected over the course of evolution

based on their adaptive value under changing environmental conditions but are also

affected by random drift (Lynch et al., 2016). These variants range from single nu-

cleotide changes to complex rearrangements in structure (Vitti et al., 2013), which

modulate gene expression (Pastinen, 2006; Williams et al., 2007; Bryois et al., 2014)

leading to ample phenotypic variation in wild populations (Šťov́ıček et al., 2014;

Vu et al., 2015; Conover et al., 2016). Structural variants show different degrees

of complexity, and include copy number variations (CNVs), inversions, insertions,

translocations, fissions and fusions (Yalcin et al., 2012; Zhao et al., 2016). A bet-

ter understanding of these structural variants is essential for detecting important

genomic features under selection and their association with phenotypes. In fact,

CNVs are known to be major mutations that encompasses more nucleotides than

single nucleotide polymorphisms (SNPs) (Redon et al., 2006b) and underlie differ-

ences within populations and between closely related species such as human and

chimpanzee (Perry et al., 2008).

Although complex rearrangements in the genome which involves combined events

like inversions and translocations can be technically challenging and costly to fully

characterize (Alkan et al., 2011), CNVs are more easily assessed and be an indication

of complex variants (Carvalho et al., 2013). Moreover, CNVs are the raw material

for gene family expansion and diversification (Perry, 2008), which ultimately lead to

repetitive regions that have an important role in evolutionary breakpoints (Sankoff,

2009). CNVs are usually defined as genomic intervals larger than 1 kilobase (kb)

containing deletions or duplications, which can be studied using widely available

SNP arrays (Yau & Holmes, 2008). Despite their limited resolution, these SNP

arrays are cost effective for studies in large populations (Perkel, 2008) and CNVs

can be uncovered by signal variability and heterozygosity level in overlapping SNP

probes (Yau & Holmes, 2008).

Species-specific SNP arrays have been used extensively to study CNVs and their

association with phenotypes and evolutionary history, in domestic animals (Clop

et al., 2012; da Silva et al., 2016), humans (Perry et al., 2006, 2008) and natural

populations (Prunier et al., 2017). In mammals, CNVs has been associated with

production traits (Prinsen et al., 2017) and pathogen resistance (Liu et al., 2011).

Deletions or duplications of genes underpinning inflammatory response and cell pro-

liferation are involved in the phenotypic differentiation of humans and chimpanzees

(Perry et al., 2008). An interesting example of phenotypic variation as a result of

CNV is the pea-comb phenotype in chicken which is caused by a CNV in intron 1

of SRY-Box 5 (SOX5, (Wright et al., 2009)). Interestingly, the number of repeats
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quantitatively affects this phenotype when in heterozygous state (Moro et al., 2015).

Although CNVs are increasingly recognized as source of phenotypic variation, other

aspects of CNVs as their inheritance, genomic distribution and rate of false positive

or negatives lacks further investigation in large populations.

CNVs usually follow a Mendelian inheritance pattern (Locke et al., 2006), but also

de novo mutations have been shown to be functionally relevant and to be associated

with a number of diseases (Veltman & Brunner, 2012). Structural rearrangements,

like CNVs, result from a number of distinct recombination mechanisms (for a re-

view see (Carvalho & Lupski, 2016)). Such mechanisms like non-allelic homologous

recombination or break induced replication prevails at regions in the genome ex-

hibiting specific architecture like segmental duplications and common fragile sites,

respectively. Moreover, structural mutability is associated with hypomethylation

(Li et al., 2012; Harris et al., 2013) and CpG islands and transcription start and

end sites have been shown to be associated with high recombination rates in birds

(Singhal et al., 2015).

We identified and studied CNVs in a natural population of great tits (Parus ma-

jor). The great tit is a widely studied passerine bird species in ecology that, in the

past decades, has provided important insights into speciation (Kvist et al., 2003),

phenology (Perrins, 1970; Visser et al., 1998; Buse et al., 1999), behavior (van der

Meer & van Oers, 2015; Fidler et al., 2007) and microevolution (Husby et al., 2011).

After completion of the great tit genome sequence (Laine et al., 2016), a customized

high density 650k SNP array was developed enabling more detailed genomic studies

in this species. We present a CNV analysis in the great tit genome using intensi-

ties and allele frequencies from this SNP array. We annotated functional features,

accessed mother-daughter inheritance and characterized the genomic architecture

underlying different molecular mechanisms, which in turn are known to give rise to

different CNV classes. Our study lays the foundations for future studies on complex

genetic variants in this population, to better understand genetic variation under

global warming and association with shifting seasonal phenotypes.

2.2 Material and methods

Genotype calling and population description

Blood samples of great tits (Parus major) were collected from our long-term study

populations on the ‘Veluwe’ area near Arnhem (52◦02’ N, 5◦50’ E, the Netherlands).

Whole blood samples were stored in either 1 ml Cell Lysis Solution (Gentra Puregene

Kit, Qiagen, USA) or Queens buffer (Seutin et al., 1991). DNA was extracted by
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using the FavorPrep 96-Well Genomic DNA Extraction Kit (Favorgen Biotech corp.).

DNA quality and DNA concentration were measured on a Nanodrop 2000 (Thermo

Scientific).

A total of 2,648 great tits were genotyped using a custom made Affymetrix® great

tit 650K SNP chip at Edinburgh Genomics (Edinburgh, United Kingdom). SNP

calling was done following the Affymetrix® best practices workflow by using the Ax-

iom® Analysis Suite 1.1. Nine individuals with dish quality control value of <0.82

were discarded. The length of the probes is 70 bp and more information is available

in the raw data submitted to gene expression omnibus (GEO, GSE105131).

Input construction and individual CNV calling

We applied the files denominated ‘summary’, ‘calls’ and ‘confidences’, built dur-

ing SNP genotyping, to obtain the inputs for CNV detection. These files were

used to generate canonical clusters (Peiffer, 2006) by the PennCNV (version 08 Feb

2013) function ‘generate affy geno cluster.pl’, which allowed the estimation

of the relative signal intensities (i.e. LRR) and relative allele frequencies (B allele

frequency, BAF) by the ‘normalize affy geno cluster.pl’ PennCNV function.

Using individual BAF values we then estimated the population BAF for each SNP

marker, with the ‘compile pfb.pl’ PennCNV function.

As the CG ratio content around each SNP marker is known to influence the signal

strength (Diskin et al., 2008), their relative content (1 Mb window) was estimated

using the ‘nuc’ BEDTools function (Quinlan & Hall, 2010). Therefore, we used

the ‘genomic wave.pl’ PennCNV function to adjust individual raw LRR signal

values.

To identify the individual CNVs, we applied the ‘detect cnv.pl -test’ for all 31

autosomes. The raw CNVs were filtered out if smaller than 1 kb or supported by

less than 3 SNPs. Birds with LRR standard deviation >0.30 or BAF drift >0.02

were also filtered out. A total of 2,175 birds had at least one CNV call after quality

control.

Establishment of CNV hotspots and CNV frequency

The genomic regions with at least one individual CNV mapped were defined by

the ‘reduce’ function from GenomicRanges Bioconductor/R package (version 1.28,

(Lawrence et al., 2013)) and then defined as CNVRs. The frequency of each CNVR

was estimated based on the number of samples mapped at the genomic interval

comprised by the CNVR.
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We inferred the frequency of all CNV start and end positions and extend by 5 kb up

and downstream these breakpoints. These genomic intervals are defined throughout

the text as CNV breakpoint windows and their coordinates were compared with

functional and repetitive intervals in the great tit genome.

CNV validation by quantitative PCR

Primers were designed using Primer3plus (Untergasser et al., 2007) and qual-

ity testing was performed with NetPrimer (http://www.premierbiosoft.com/

netprimer).

Samples to be validated were checked for quality based on the amount of dsDNA,

which was measured with Qubit® Fluorometer. Subsequently, in each sample we

used four different concentrations to determine primer efficiency: 15ng, 7.5ng, 3.8ng

and 1.9ng of DNA. Reactions were joined in a final volume of 12.5µl, containing

3.75µl DNA, 6.25µl 2X reaction buffer (MESA Blue from Invitrogen®), 1.25µl for-

ward primer (2µM) and 1.25µl reverse primer (2µM). Samples with CNV and diploid

(2n, reference samples) were tested with the designed primer sets. Measurements

were performed with the Applied Biosystems® 7500 real-time PCR system. Cycle

thresholds (log2 Ct) were corrected based on the efficiency of each primer. ∆Ct

was calculated as Ct from the sample with a specific CNV minus Ct of the diploid

(2n) reference sample (D’haene et al., 2010). The reference sample was given by a

random bird with 2n state on the tested region.

Identification of repetitive regions in the great tit genome

To identify masked regions in the reference genome and their respective functionality

we applied RepeatMasker (Smit et al., 2013-2015) version open-4.0.6 using the de-

fault mode run with cross match version 0.990329. The query species was assumed

to be ‘aves’. The regions identified were classified as retroelements, RNA-related

regions, DNA transposons and in-tandem repeats. Subclassification to define the

families within each class was also described when available for a specific class. For

simplification, we considered three general families in retrotransposons (short inter-

spersed nuclear elements [SINEs], long interspersed nuclear elements [LINEs] and

long terminal repeats [LTRs]) and in-tandem repeats (satellites, regions of low com-

plexity and simple repeats). Uncertain family classification was neglected in DNA

transposons (e.g. “hAT?” was considered “hAT”).

To identify homologous regions in the great tit genome we used a protocol described

elsewhere (Khaja et al., 2006), which applied the megablast greedy algorithm (Zhang

et al., 2000) on the great tit reference genome build 1.1 (Laine et al., 2016). We
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performed all possible comparisons among autosomes and each one against itself to

identify inter and intra chromosomal duplications, respectively. We subset regions

larger than 1 kb and >90% in sequence similarity, which suggest regions containing

recent segmental duplications (Khaja et al., 2006). We filtered out all homologies

with more than 10% of its size containing unknown nucleotides (“N”) or/and with

less than 1 kb of know nucleotides: adenine (A), cytosine (C), thymine (T) or

guanine (G).

Functional features and patterns in great tit genome

Thus, we identified genomic intervals containing [CG]n (n = 1) and TSSs (defined

the gene promoters as regions starting 300 bp upstream and ending 50 bp down-

stream each gene start position, always considering the transcription orientation in

each gene). We also identified regions rich in AT ([AT/TA]n or [AA/TT ]n, where n

≥ 4), due to their role on recombination by break induced replication (Franchitto,

2013). CpG sites and AT-rich intervals were converted into reference genomic ranges

(build 1.1, Laine et al. 2016) by ‘vmatchPattern’ function in GenomicRanges Bio-

conductor/R package (version 1.28, Lawrence et al. 2013). The overlap expected by

chance was obtained by simulating genomic tiles of 10 kb with ‘randomizeRegions’

function in regioneR Bioconductor/R package (version 1.80, Gel et al. 2015).

Gene annotation and enrichment analysis

We used gene annotation version 101 from the general feature format (GFF) file

from National Center for Biotechnology Information (NCBI) great tit genome

1.1 (https://www.ncbi.nlm.nih.gov/assembly/GCF_001522545.2). From 17,545

unique gene names, 16,541 were assigned to autosomal chromosomes which were

then used to the subsequent enrichment steps. Gene names were converted to En-

trez Ids and subsequently enriched with ‘enrichKEGG ’ function to identify KEGG

pathways; and ‘enrichGO ’ function to identify GO gene sets overrepresented in all

CNVRs and in CNV breakpoint windows present in four birds or more. Both func-

tions, implemented in the ClusterProfiler bioconductor R package (version 3.4.1,

Yu et al. 2012), used human as the organism (org.Hs.eg.db bioconductor R package

version 3.4.1, 2017-Mar29, Carlson 2017) due to high accuracy in gene and pathway

annotation. The p-values were adjusted by Benjamini and Hochberg method (FDR,

Benjamini & Hochberg 1995). The gene background to enrichment of CNV break-

point windows included just genes up to 5 kb from SNPs (reflecting every 10 kb

window around SNPs). To infer the enrichment expected by chance using the same

number of genes, we randomly sampled 6,812 genes (total number of unique gene

names overlapping CNVRs) 10,000 times and followed the same enrichment process.
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Thus, for each significant KEGG pathway in CNVRs, we compared the number of

protein/gene names in CNVRs with random enrichments. Therefore, the permuta-

tion p-value was based in the number of times that a random enrichment obtained

equal more protein/gene names linked to a specific process (times/10,000).

Identification of Syntenic blocks and evolutionary breakpoints

We used the chicken (Gallus gallus, Gallus gallus-5.0) and zebra finch (Taeniopygia

guttata, taeGut3.2.4) genomes to find sequence synteny with the great tit genome

build 1.1 (Laine et al., 2016). All FASTA files were used in the ‘FindSynteny ’

and ‘AlignSynteny ’ functions, which are both implemented in the R/Bioconductor

package DECIPHER (Wright 2016, version 2.6.0). The synteny blocks were merged

by overlap with ‘reduce’ function (GenomicRanges Bioconductor/R package, version

1.28, Lawrence et al. 2013). We classified the resulting output into (i) syntenic

blocks, (ii) evolutionary breakpoints and (iii) evolutionary breakpoint regions as

described previously (Ruiz-Herrera et al., 2006).

2.3 Results

CNV identification, frequency assignment and inheritance

We performed a CNV analysis in great tit genomes using a high density SNP array

intensities and allele frequencies from 2,077 females and 98 males. After quality

control, 41,029 CNVs were identified which were subsequently merged into 8,008

distinct CNV regions (CNVRs).

The CNVRs cover 28.09% (259.50 millions of base pairs - Mb) of the great tit

autosomes. The relative coverage by CNVRs for the different chromosomes ranged

from 20.18% for chromosome 14 to 89.30% for chromosome 25LG2. The absolute

genomic length overlapped by CNVRs varied from 0.36 Mb for chromosome LGE22

to 40.06 Mb for chromosome 2. The CNVRs had variable sizes ranging from 1.01

kb to 2.83 Mb with a mean size of 32.40 kb. The number of birds with CNVs

mapped onto a given CNVR ranged from 1 (0.04%) to 623 (28.63%) of the 2,175

birds analyzed. We found 263 CNVRs to occur in more than 1% of the population

(≥ 21 birds) and denote them as ‘polymorphic CNVRs’ as previously suggested

(Itsara et al., 2009).

To investigate CNV inheritance, we used a mother-daughter structure available for

381 mothers and their 625 daughters in this population. We found 460 CNV calls

that overlap at least 1 base pair (bp) in the same state (gain or loss) between
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a mother and at least one of her respective daughters, representing only 6.83%

of all 6,733 CNVs identified in the mothers. Thereafter, we classified all CNVs in

mothers depending on the number of probes by CNV and found a positive correlation

between probe number and inheritance ratio (Pearson’s correlation coefficient =

0.62 and p-value ≈ 1.68e−7). Considering an expected Mendelian inheritance of

50% (all sires in normal state), only CNVs supported by 40 probes or more reach

this Mendelian expectancy (for most of the probe groups, Figure 2.1a). Also,

CNVs within polymorphic CNVRs showed higher inheritance ratios (367 out of

3,035, 12.09%) but comparable positive correlation with probe number (Pearson’s

correlation coefficient = 0.60 and p-value ≈ 4.254e-06, Figure 2.1b).

Breakpoint variability of overlapping CNVs can unravel molecular mechanisms in

their formation and inheritance patterns, which in turn rely on specific patterns in

genome architecture (Carvalho & Lupski, 2016). However, there is an unavoidable

technical bias in genomic breakpoints of CNVs based on SNP probe intensities

(Fadista et al., 2010; Redon et al., 2006b), making it challenging to estimate the

frequency of CNV loci. To avoid coarse-grained CNVR breakpoints, which can

harbor several CNVs with distinct breakpoints, we tried to improve our description

of the breakpoint variability using the number of CNVs sharing the same start or

end positions (Figure 2.2). We extended each of these breakpoints by 5 kb up and

downstream to establish genomic windows of 10 kb (CNV breakpoint windows).

This resulted in 45,372 breakpoint windows identified in 1 to 355 birds. The total

of these windows represents 254.14 Mb of the genome, which the large majority

(224.38 Mb) reflects rare events (frequency = 1).

Copy number inference by quantitative PCR

To obtain insight in the false discovery rate of our method to identify CNVs, we

validated 16 CNVs in our great tit population using quantitative PCR (qPCR). We

selected 6 rare and 10 frequent CNV calls based on CNV incidence, size and state.

Concerning incidence, we selected CNVs identified in only one bird, those present in

two and those present in four to five birds (all with exactly the same breakpoints).

Within each frequency class we tried to choose different sizes of events. Concerning

state, in each frequency class we ensured the inclusion of at least one CNV belonging

to each of the most common states (1n and 3n). The size of the CNVs chosen for

validation ranged from 1.06 to 77.12 kb, and are located within CNVRs ranging from

1.06 to 494.36 kb. The number of SNPs supporting these CNVs ranges from 3 to 19.

The gain or loss of specific genomic intervals, detected by PennCNV, was confirmed

by qPCR for 15 of these 16 CNVs (93.75%). However, we observed discrepancies in

the copy number based on PennCNV and qPCR. Considering exactly the same state

(i.e. copy number between one and four), 9 out of the 16 CNVs (56.25%) showed
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Figure 2.1: CNV inheritance in mother-daughter family structure. We in-

ferred the percentage of CNVs in mothers overlapping CNVs at the same state (gain or

loss) in their respective daughters. The x -axis indicates distinct groups of CNVs which

were classified based on the number of SNP probes supporting each of them. CNVs sup-

ported by 50 SNP probes or more are grouped together. In the y-axis the percentage of

inherited CNVs represents the ratio between all CNVs and inherited ones in each probe

group. The number of CNVs per group is reflected by the dot size. A: All CNVRs. B:

Polymorphic CNVRs (≥ 21 birds, at least 1% of the population with CNVs identified).

the same number of copies using these two methods.
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Figure 2.2: CNVR example and the strategy to estimate the frequency of

CNVs which are sharing breakpoints. The frequency for a given genomic interval is

given by the number of CNVs starting or ending at certain SNP probes. All the windows

around the breakpoints have 10 kb and may have one frequency for the common start

positions and one for the end positions.

Repetitive and functional intervals in CNVs

We evaluated five different sequence features in the great tit genome for their overlap

with CNV breakpoint windows: (I) Homologous regions, (II) Interspersed repeats

and low complexity DNA sequences, (III) CpG sites, (IV) Transcription start sites

(TSSs) and (V) AT-rich regions.

It has been shown that homologous regions reflect segmental duplications and pro-

mote CNV formation (Khurana et al., 2010). In order to study this in great tits

we identified large homologous regions (≥ 1 kb and at least 90% sequence identity)

using megablast (Zhang et al., 2000). We identified 3.44Mb of the automosomes as

homologous regions (0.37%), representing 1,111 intra- and 879 inter-chromosomal

homologies respectively (Table 2.1). The breakpoints observed at very low frequency

(≤ 2) are not correlated with the occurrence of homologous sequences whereas the

more frequent ones (>3) show progressively more overlap with homologous regions

(Figure 2.3A). The sequence identity of the homologies is also correlated with break-

point frequency. Homologous regions with higher sequences identity tend to overlap

more with CNV breakpoints with a frequency equal or more than four (Figure 2.4),
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in agreement with previous studies in human and chimpanzee describing an excess

of CNVs at regions with high sequence homologies (Perry et al., 2008).

Table 2.1: Homologous regions in the great tit genome with more than 90% of sequence

identity and respective proportions of intra and interchromosomal homologies.

Homology Number of regions Total size (Mb) Similarity (+-SD)

Intrachromosomal 1111 2.66 92.97+-2.26

Interchromosomal 879 1.58 92.78+-2.1

All 1512 3.44 92.89+-2.25

Figure 2.3: Overlap of CNV breakpoints with repetitive regions in the

genome. CNV breakpoints with 10 in frequency or more are grouped together. A:

Homologous regions with more than 90% in similarity and 1 kb. B: Masked regions as

retroelements, RNA-related regions, DNA transposons and in-tandem repeats.

In addition to the homologous regions, we identified repetitive elements masked

by RepeatMasker (Smit et al., 2013-2015). These elements represent 6.16% (56.92

Mb) of the total length of the great tit autosomes. We found 400,503 masked

regions, representing mainly retroelements (145,689; 43.06 Mb), in-tandem repeats

(240,115; 11.54Mb) and DNA transposons (13,374; 1.95 Mb). All frequencies of CNV

breakpoints (Figure 2.2) overlap masked regions more than expected by chance, but

there was no correlation between the overlap and frequency (correlation coefficient

= 0.16, p-value = 0.66, Figure 2.3B).

Noteworthy is that although homologous and masked regions show substantial over-

lap, their distribution differs. Intervals covered by both features (i.e. intersection)

are considerably smaller than the regions overlapped in each of them. From 1,512 ho-

mologous regions, 1,302 (3.13 Mb; 91%) overlap intervals masked by RepeatMasker
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Figure 2.4: Colocalization of CNV breakpoints (10 kb windows with ≥4 in

frequency) and homologous regions binned by sequence identity. The y-axis

depicts the ratio between observed and expected number of overlaps (based on 10,000

randomic simulations) between CNV breakpoints and homologous regions. Homologous

regions are placed in one of the bin classes in the x -axis which are based on inter-

or intrachromosomal percent identities. Permutation p-values are based on the num-

ber of random simulations that obtained more overlaps than observed (*≤ 0.05 and

***≤0.001).

(Smit et al., 2013-2015) by at least 1 bp. From 397,537 masked regions, 2,594 (1.24

Mb; 2.18%) overlap homologous regions by at least 1 bp. However, only 985 kb is

covered by both (31.5% and 1.73% of the total length in homologous and masked

regions respectively).

Genomic regions which are rich in CpG sites and TSSs show a high recombination

rate in birds (Singhal et al., 2015). Thus, we inferred these two features to un-

derstand the association of highly recombinant regions with CNVs. We identified

6,861,240 CpG sites in the great tit autosomes, ranging from 12,725 on chromosome

LGE22 to 845,266 on chromosome 2. All CNV breakpoints windows contain more
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CpG sites than expected by chance and the number of sites increases along with

the breakpoint-frequency (correlation coefficient = 0.59, p-value = 0.00017, Figure

2.5A). Similarly, TSSs have positive overlap correlation with CNV breakpoint fre-

quencies (up to 50% of breakpoints with frequency ≥15 overlap with TSSs, Figure

2.5B). Results from CpG sites and TSSs are expected to be comparable given the

known high prevalence of CpG islands at TSSs (Singhal et al., 2015; Derks et al.,

2016).
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AT-rich intervals have been reported at genomic regions known to be prone to break-

age, thereby allowing complex rearrangements (Carvalho et al., 2013). Thus, we

identified 629,840 AT-rich intervals, of which the majority is 8 bp in size but that

can be up to 100 bp in size. CNV breakpoint frequencies have a strong negative

correlation with AT-rich intervals (Figure 2.5C).

To verify a possible technical bias underlying the observed correlations, we evaluated

the correlation between signal variability in SNP probes outside our CNVRs and

the GC ratio of the region. The GC ratio could be relevant because it can lead

to a so-called GC wave (Diskin et al., 2008), which is a well-known bias in the

detection of CNVs from SNP-arrays (causing variation in hybridization intensity).

We inferred the Log R Ratio (LRR) values in non-CNV probes and estimated its

standard deviation median for each tile of 10 kb in the genome. We correlated these

medians with the GC ratio and found a very low positive correlation coefficient

(0.02; p-value=0.059) with the LRR standard deviation (SD) median. This low

correlation is expected because we corrected all LRR values for this GC wave before

CNV detection.

Gene enrichment and functional analysis

The genomic coordinates of all 8,008 CNVRs identified overlap with 6,857 of the

16,541 annotated unique genes (41.45%) for great tit (build 1.1 Laine et al. 2016).

Using these overlapping genes we performed an enrichment analysis looking for path-

ways (Kyoto encyclopedia of genes and genomes, KEGG) and gene ontology (GO)

gene sets prevailing in genes located within (i) CNVRs and (ii) CNV breakpoints

seen in at least four birds.

Proteins of genes overlapping CNVRs were significantly overrepresented for 15

KEGG biological pathways (Table 2.2, which are mostly related to neuronal and

cardiac processes. All significant KEGG pathways were compared with 10,000 ran-

dom enrichments and we found all processes enriched in CNVRs with permutation

p-value ≤ 0.001. In accordance with KEGG results, we found 77 GO gene sets

mostly related with neuronal, cardiac and ion transport pathways. The GO gene

sets with lowest p-values where synaptic membrane, postsynapse and postsynaptic

membrane respectively.

In order to determine if similar enrichment is also reflected in more frequent CNVs,

we performed the gene enrichment using the CNV breakpoint windows (frequency

≥4, subset analyzed in the Figure 2.4). These CNV breakpoints overlap 1,012 genes

which are enriched for five KEGG pathways and six GO gene sets, as presynaptic

active zone, homophilic cell adhesion and neuron recognition. From these 1,012

genes, a subset of 68 overlap homologous regions in the great tit genome, 18 have
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Table 2.2: Biological pathways enriched at CNVRs in the great tit genome.

ID Description Number of proteins Ajusted p-value Protein ratio

hsa05412 Arrhythmogenic right ventricular cardiomyopathy (ARVC) 59 5.15×10−6 0.728

hsa04020 Calcium signaling pathway 126 1.16×10−4 0.583

hsa04360 Axon guidance 127 3.99×10−4 0.57

hsa04724 Glutamatergic synapse 78 8.2×10−4 0.609

hsa04514 Cell adhesion molecules (CAMs) 75 8.2×10−4 0.638

hsa04925 Aldosterone synthesis and secretion 60 8.2×10−4 0.61

hsa04713 Circadian entrainment 67 3.1×10−3 0.604

hsa00220 Arginine biosynthesis 19 3.15×10−3 0.826

hsa04970 Salivary secretion 48 1.34×10−2 0.615

hsa04022 cGMP-PKG signaling pathway 105 1.73×10−2 0.591

hsa05410 Hypertrophic cardiomyopathy (HCM) 55 1.73×10−2 0.536

hsa04740 Olfactory transduction 29 1.73×10−2 0.674

hsa05010 Alzheimer’s disease 78 3.84×10−2 0.545

hsa04750 Inflammatory mediator regulation of TRP channels 60 4.92×10−2 0.561

hsa05414 Dilated cardiomyopathy 57 4.92×10−2 0.564
ID = pathway identification code; Description = pathway name; Number of proteins = number of protein names with genes

overlapping CNVRs; Adjusted p-value = enrichment FDR corrected p-value; Protein ratio = ratio between protein names with

genes in CNVRs and all protein names assigned to a specific pathway.

SNP alleles previously described as under selection (Laine et al., 2016) and five

overlap homologous regions and are under selection concomitantly.

Genome Synteny with zebra finch and chicken at great tit CNVRs

We compared the great tit genome with the genomes of chicken and zebra finch

to identify synteny blocks. For the great tit-chicken comparison, we found 13,437

blocks in synteny ranging in size from 181 bp to 2.15 Mb. The number of blocks

varied from 11 on chromosome LGE22 to 1,921 on chromosome 2. For the great

tit-zebra finch comparison, we found 5,141 synteny blocks ranging in size from 182

bp to 6.19 Mb. The number of blocks varies from 18 on chromosome LGE22 to 605

on chromosome 2.

We then inferred to what extent the identified CNVs overlap with evolutionary

breakpoints and whether this overlap differs from overlap with regions randomly

chosen within the genome. We found 3,090 CNVRs (38.58%) overlapping evolu-

tionary breakpoints (with chicken and zebra finch concomitantly), a number that is

consistently higher than expected by chance (p-value 9.99e-05). We observed 7,022

genes overlapping the evolutionary breakpoints, which are enriched for biological

pathways mostly related to neuronal and cardiac processes. At least eight genes

that have previously been reported (Volker et al.) to be located at CNV regions in

chicken and four in zebra finch overlap evolutionary breakpoints.



38 CNVs and genomic architecture

2.4 Discussion

Most studies have focused on single nucleotide changes when studying genetic associ-

ations with phenotypes and evolution. However, also variation in genomic structures

such as CNVs are shown to be associated with a wide range of phenotypes (Clop

et al., 2012; Weischenfeldt et al., 2013) and evolutionary phenomena like speciation

(Perry et al., 2006, 2008; Paudel et al., 2015) and adaptation (Kondrashov, 2012;

Qian & Zhang, 2014). We here therefore used a high density SNP array to identify

CNVs as well as their inheritance and architecture in the great tit genome. We

detected CNVs covering a large percentage (28.09%) of the great tit genome. Be-

cause CNV identification based on SNP Affymetrix arrays are prone to high false

discovery rates, we used the mother-daughter family structure of our data to access

relative CNV confidence. The relative number of inherited events is higher for CNVs

supported by more SNP probes, especially for CNVs with more than 40 probes. The

low inheritance of the shorter CNVs suggests a relative high false negative call rate.

On the other hand, most of the CNVs tested by qPCR were successfully validated

(15/16) and all of these had less than 25 probes suggesting a low false positive call

rate of the Affymetrix array. Regarding the exact number of copies, the disparity

between SNP-array and qPCR results can be explained by the inherent resolution

of each technology. SNP-array data have limited power to infer the exact number of

copies whereas qPCR may be considered a gold standard and consequently is more

reliable to infer the number of copies.

We evaluated the overlap pattern of CNVs with five genomic features that have

known role in structural variation formation and recombination: (i) Homologous

regions, or segmental duplications, which support CNV formation through non-

allelic homologous recombination (Sharp et al., 2005; Carvalho & Lupski, 2016). (ii)

Repetitive features like transposable elements and retrotransposons which account

for a substantial fraction of copy-number differences (Schrider et al., 2013; Dennen-

moser et al., 2017) and mutually explain recent and ongoing phenotypic adaptation

(Schmidt et al., 2010). (iii) Functional CpG and (iv) TSSs that harbor high re-

combination rate in birds (Singhal et al., 2015). (v) AT-rich regions are prone to

break and subsequently produce complex rearrangements (Carvalho & Lupski, 2016;

Zhang & Freudenreich, 2007; Fungtammasan et al., 2012; Deem et al., 2011; Car-

valho et al., 2013). All these five genomic features display non-random overlap with

CNVs and their breakpoint frequencies.

Homologous regions, at least one kb in size and with at least 90% of sequence iden-

tity, reflect recent segmental duplications in the genome (Khurana et al., 2010) and

can increase the chance of a triplication event in subsequent generations by more

than 100-fold (Liu et al., 2014). Thus, apart from positive selection or drift, the
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CNV frequency may have increased due to a higher rate of rearrangement at these

genomic intervals. We find a significant positive correlation between, CNV break-

points seen in at least four birds, and regions containing segmental duplications.

How similar these genomic homologies are, is also determinant for CNV formation

and can reveal its evolutionary history (Perry et al., 2008). Over time, duplicated

regions that are fixed decrease in identity, which consequently decreases the chance

of recombination mechanisms, such as non-allelic homologous recombination, to act

upon them (Bailey & Eichler, 2006). Therefore, CNVs arising from this mechanism

are relatively rarer at duplications with lower homology. This is reflected by the

increasingly overlap of CNV breakpoints (frequency ≥4) and homologous regions

with higher sequence identity.

Most of homologous regions overlap repetitive elements masked in the genome, like

transposable elements. However, both features display different genomic length

distribution and coverage. Repetitive elements cover around ten times more nu-

cleotides, but are usually smaller in length when compared with overlapping ho-

mologous regions. In addition, masked regions overlap CNV breakpoint windows

more than expected by chance but do not differ between breakpoint frequencies like

homologous regions. The number of transposable elements in the great tit genome

is comparable with other bird genomes, but they cover a relatively smaller fraction

of the whole genome sequence length. The relative coverage in great tit is 1.24%

whereas other bird species vary from 4.1 to 9.8% (Hillier et al. 2004; Warren et al.

2010; Zhang et al. 2014a, for a review see Kapusta & Suh 2016). The coverage of

transposable elements found here for the build 1.1 is comparable to previous version

of the genome (2.06 Mb in this study and 1.95 Mb previously in Laine et al. 2016).

Remarkably, transposable elements in great tit genome display distinct CpG hyper-

methylation between tissues, albeit their expression is correlated only with non-CpG

methylation (Derks et al., 2016).

We also evaluated whether the CNV breakpoints are positively correlated with the

presence of functional sequences like CpG sites and TSS. It has been shown that

in birds recombination prevails at transcription start or end sites and CpG islands

(Singhal et al., 2015). The overlap of CpG sites and TSSs with CNV breakpoints in-

creases with breakpoint frequencies in this great tit population. This result suggests

a higher CNV mutation rate at these regions, although it is complex to disentangle

mutation rate from selection of the CNVs at these regions.

AT-rich intervals have repeatedly been reported as common fragile sites (Carvalho

& Lupski, 2016; Zhang & Freudenreich, 2007; Fungtammasan et al., 2012), which

are more prone to break induced replication (Franchitto, 2013). This mechanism

has a high risk of undergoing template switching (Carvalho et al., 2013; Deem et al.,

2011), resulting in complex structural variants. Therefore, as AT-rich intervals are
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expected to easily break during meiosis, each meiosis breakage might produce CNVs

with distinct breakpoints and gene content in the population (Carvalho & Lupski,

2016). CNV breakpoint frequencies in this great tit population are negatively cor-

related with AT-rich sites, in agreement with the expectancy that lower number of

CNVs will share breakpoint positions among individuals in fragile sites throughout

genome.

We also performed a functional enrichment for genes within (i) CNVRs and (ii) CNV

breakpoints seen in at least four birds. A large proportion of the great tit genes over-

laps with CNVRs (41.76%) and these CNV breakpoints (6.12%). Although CNVRs

overlap almost seven times more genes, pathways in CNVRs as well as in these CNV

breakpoints were enriched to neuronal processes and structure like axion guidance

and glutamatergic synapse; cardiac or muscular processes like arrhythmogenic right

ventricular cardiomyopathy and calcium signaling. Interestingly, genes related to

neuronal functions were previously shown to be under positive selection in great tit

(Laine et al., 2016). Moreover, a comparative CNV analysis among different bird

species such as chicken, turkey and common quail found a gain in leucine rich re-

peat and fibronectin type III domain containing 5 (LRFN5 ), which is involved in

presynaptic differentiation, to occur just in quails (Skinner et al., 2014). In this

great tit population, LRFN5 is located within CNVR7101 (frequency ≥5.4%) that

harbor gains and losses. Calcium signaling, that is also enriched in great tit CNVRs,

is a key process in neuronal physiology mainly due to its role on neuron buffering

(Blaustein, 1988) and in muscle activity by troponin-tropomyosin complex (Stew-

art & Levy 1970, for a review on calcium signaling see Clapham 2007). However,

the high rate of false negative of the CNVs identified here hampered efforts to find

which genes are under selection, or that display high LD with SNP alleles at genes

previously found to be under selection (Laine et al., 2016).

We identified a median of 12 CNVs per bird, which is comparable to 11.75 found

by Skinner et al. (Skinner et al., 2014) that evaluated different bird species, which

in turn is comparable to the situation in mammals (Skinner et al., 2014). The same

study also claimed that CNVRs in birds could have a slightly higher association

with genes than in mammals, but the limited number of samples prevented a more

robust conclusion at that time. Here we found 66% of the CNVRs harboring genes,

value that increases to 78.3% when considering only polymorphic CNVRs. These

proportions are comparable with the 70% that has been found previously (Skinner

et al., 2014). Therefore, the large population analyzed here plus the prevalence of

bird CNVs on genes may explain the striking proportion of 41.45% great tit genes

with CNVs.

To shed light on the evolutionary implications of CNVs and their associated genomic

architecture, we compared the great tit genome with the genomes of two other
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birds: chicken and zebra finch. As expected, because of the higher evolutionary

proximity we found a higher degree of synteny between the two songbirds, great

tit and zebra finch. The overrepresentation of CNVs at evolutionary breakpoints

suggests a critical role in speciation. Moreover, we found biological pathways that are

related to neuronal and cardiac processes enriched in both CNVs and evolutionary

breakpoints. Syntenic regions among zebra finch and chicken with known CNVs

harbor at least nine genes that are at evolutionary breakpoints. These genes are

involved in signalling and neuronal pathways.

2.5 Conclusions

CNVs can be challenging to detect and interpret using SNP arrays due to biological

and technical variability. The qPCR validation and the intrinsic genomic architec-

ture of the CNVs identified here point to a substantial number of false negatives.

The genomic features enriched in CNVs (homologous regions, masked regions, CpG

sites, TSSs and AT-rich intervals) support specific mechanisms of the formation of

CNVs. Moreover, CNVs are enriched at evolutionary breakpoints, neuron and car-

diac related genes and a subset harbors SNP alleles under selection (Laine et al.,

2016). Therefore, we expect the CNVs identified here to be valuable for future

studies on the great tit genome, but the non-random distribution and inheritance

patterns of CNVs indicate that they should be interpreted in the light of their ge-

nomic architecture and false negative rate.
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Abstract

Timing of breeding is a life-history trait that has clear effects on reproductive suc-

cess, especially in species living in seasonal environments. In songbirds, such as

great tits (Parus major), there is genetic variation in egg-laying date but the un-

derlying genomic variation is poorly understood. Recently, the association between

egg-laying date and single nucleotide polymorphisms (SNPs) has been studied, but

whether structural variants, such as copy number variation (CNV), explain variation

in egg-laying date has not yet been explored. Therefore, we explored the relationship

between CNVs and egg-laying date for two long-term study population of great tits

(in the Netherlands and the United-Kingdom) but we did not find such an associa-

tion. However, two association analyses, which independently used (i) CNVs and (ii)

their raw intensity signals (i.e. log R ratios), concomitantly highlighted suggestive

regions harboring genes related to egg-laying dates. These genes are associated with

traits that may play a role in seasonal timing such as circadian clock, reproductive

success and mammalian pregnancy.



3.1 Introduction 45

3.1 Introduction

Organisms living in seasonal environments need to time their breeding so that it co-

incides with the often short period when conditions, often set by food availability, are

favourable (Hau, 2001; Visser et al., 2006; Mungúıa-Rosas et al., 2011). This seasonal

timing (or phenology) is in most species temperature dependent. Increasing temper-

atures due to global climate change have repeatedly led shifts in phenology but these

shifts are often occurring at different rates across species at different trophic levels

(Visser & Both, 2005). These results in phenological mismatches between trophic

levels (Thackeray et al., 2016) and consequently to selection on consumer phenology

(Visser et al., 1998). A textbook example of phenological mismatch is between peak

caterpillar abundance and egg-laying date of the great tit (Parus major, Visser et al.

2012), a songbird that has been extensively studied in ecology and evolution and

has excellent genomic resources (Laine et al., 2016; Kim et al., 2018). Due to the

mismatched egg-laying date is under directional selection in great tits but because

egg-laying date is a complex trait, affected by both genetic and environmental fac-

tors (Noordwijk et al., 1980; Gienapp et al., 2005; Wilkin et al., 2007), the response

to this selection is difficult to forecast. The heritability of egg-laying dates ranges

from low to moderate (i.e. h2 from 0.14 to 0.4) depending of the average tempera-

ture in the spring preceding a breeding season (Husby et al., 2011; Gienapp et al.,

2017). Insight into the genomic variation underlying phenotypic variation in egg-

laying date will contribute to a better understanding on how animals in the wild can

adapt to their changing world. Therefore, identification of the genetic variants that

are associated with timing of egg-laying will help our understanding of the molecular

mechanisms underlying breeding timing in great tits, and the way selection may act

on this mechanism.

Genome-wide association study (GWAS) is a common method to link phenotypic

variation to genomic variation, and evolutionary studies usually focus on genotypes

at single nucleotide polymorphisms (SNPs) as the source of genomic variation (Morin

et al., 2004). However, structural variants have been increasingly linked with a wide

range of phenotypes in humans (Ionita-Laza et al., 2009), livestock (Clop et al., 2012)

and wild populations (Prunier et al., 2017). Among these structural variants, copy

number variations (CNVs) are commonly studied and can be classified as deletions

or duplications of genomic intervals larger than one kilobase (kb, Feuk et al. 2006).

In the great tit, the association of genetic variants with egg-laying date has been

addressed by a SNP-based GWAS in an environment-dependent manner (Gienapp

et al., 2017) whereas CNVs in this species were only used to investigate genomic

architecture (da Silva et al., 2018). Moreover, as the SNP-based GWAS (Gienapp

et al., 2017) have not convincingly found genes associated with egg-laying date,

CNVs might be worth exploring as an alternative source genetic variability.
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Pioneering studies of CNV associations with phenotypes have been performed on

psychiatric disease risk in humans (Joober & Boksa, 2009; Chao et al., 2009; Morrow,

2010; Levy et al., 2012; Green & MacLeod, 2016; Kendall et al., 2017) and the

medical importance of CNVs on cognition is clear (Kirov, 2015). Moreover, several

other human traits and diseases, such as HIV susceptibility (Gonzalez, 2005) and

Hemophilia (Antonarakis et al., 1995) have been also linked with changes in copy

number, which, with further validation, could be used for diagnosis and personalized

medical treatments. In livestock animals several diseases, such as osteopetrosis in

cattle (Meyers et al., 2010) and intersex syndrome in sheep (Pailhoux et al., 2001),

as well as production traits such as meat tenderness (da Silva et al., 2016) and milk

production (Xu et al., 2014) in cattle have also been associated with CNVs. Thus,

breeding programmes in different livestock species may increasingly make use of

CNV information to decrease the incidence of genetic disorders and speed up the

genetic gain.

Although well studied in humans and livestock, to the best of our knowledge, studies

on phenotype-CNV associations are rare in other wild species (e.g. Prunier et al.

2017) and have never been performed in great tits. Thus, in wild species, understand-

ing the effects of CNVs on ecologically relevant phenotypes (e.g. breeding timing)

could improve our understanding of the genetics underlying natural phenotypic vari-

ation. CNV-related genetic variation may not be detected in a traditional GWAS,

unless strong CNV-SNP linkage-disequilibrium exists, and this problem has been

particularly ignored in the molecular ecology/ecological genetics literature. The low

number of CNV association studies in wild animals may be partially attributable to

a lack of ‘gold-standard’ CNV-GWAS protocols, because CNVs can show a complex

technical/biological variability. Most studies make use of heterogeneous in-house

association strategies or generic paid software (i.e. ‘black boxes’). Moreover, cur-

rent efforts are largely focused on rare variants, which may have limited effect on

the fitness of wild species. Thus, to address these limitations we implemented fur-

ther developments to the comprehensive open-source R/Bioconductor package CN-

VRanger, which may allow digestible, customized and reproducible CNV-GWAS.

Thus, we used this package to explore population-specific associations of CNVs

with egg-laying date using long-term studies of wild great tit populations from both

the Netherlands and the United Kingdom.
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3.2 Material and methods

Population description and genotype-CNV calling

We used great tits from long-term study sites in the Veluwe area in the Netherlands

(NL) and Wytham Woods in the United Kingdom (UK). A total of 2,648 birds from

NL and 1,736 from UK were genotyped at Edinburgh Genomics (Edinburgh, United

Kingdom) on a custom made Affymetrix® great tit 650K SNP chip (Kim et al.,

2018). We identified CNVs in these populations based on SNP probe intensities

(log R ratios - LRRs) and allele frequencies (B allele frequencies - BAFs) with

the PennCNV software (Wang et al., 2007). Detailed procedures for genotyping

and CNV detection/filtering are described in our previous CNV study on the NL

population (da Silva et al., 2018). After quality control, we identified a total of

2,175 NL and 1,349 UK birds with at least one CNV. From all birds with CNV

information, 2,133 NL and 268 UK birds were also phenotyped for egg-laying date

and therefore used for the genome-wide association analysis with CNVs.

We compared the great tit CNV data-sets identified in the NL (da Silva et al.,

2018) and two independent studies in the UK population (i.e. (i) reported here

and (ii) CNVs previously reported in an independent study by Kim et al. 2018).

To display the genomic intersection (i.e. common genomic intervals overlapped

by CNVs) we used GRange objects (Lawrence et al., 2013), harboring CNV ranges

belonging to each respective data-set, into the UpSet function that is implemented in

the ComplexHeatmap Bioconductor/R package (version 1.20, Gu et al. 2016).

Gene annotation and enrichment analysis

We used gene annotation version 101 from the general feature format (GFF) file

from National Center for Biotechnology Information (NCBI) great tit genome 1.1

(https://www.ncbi.nlm.nih.gov/assembly/GCF_001522545.2). Of the 17,545

unique gene names, 16,541 could be assigned to autosomal chromosomes which were

then used in the enrichment analysis. To identify KEGG pathways for all CN-

VRs identified in the UK population (the NL population was previously analyzed

in da Silva et al. 2018), great tit gene names were converted to human Entrez Ids

with bitr/bitr kegg and subsequently analysed for enrichment with enrichKEGG

functions. These functions were implemented in the ClusterProfiler Bioconductor/R

package version 3.4.1 (Yu et al., 2012). We used Homo sapiens as the organism in the

enrichment analysis (i.e. org.Hs.eg.db Bioconductor/R package version 3.7, Carlson

2017) due to a high accuracy in gene and pathway annotation. The p-values were

adjusted by false discovery rate (FDR), also known as the Benjamini and Hochberg
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method (Benjamini & Hochberg, 1995).

Linkage-disequilibrium between SNPs and CNVs

We used previously inferred SNP genotypes, which were filtered in the NL population

(for details on SNP genotype calling see da Silva 2019 et al. IN REVIEW) to scan for

linkage-disequilibrium (LD) between SNPs and CNV segments. The method to infer

CNV segments is explained in detail in the section about genome-wide association.

First, we identified all SNPs in a genomic window of 1 Mb up- and downstream

from each CNV segment breakpoint (i.e. start and end, respectively). Then, the

r2 and adjusted p-values (i.e. q-values) for each pairwise comparison between CNV

segments and neighbouring SNPs were obtained with the calculateLDSNPandCNV

function in the CNVrd2 Bioconductor/R package (Nguyen et al., 2014). As a default,

the q-value for each comparison was determined based on the number of tests per

CNV segment.

Genome-wide association with egg-laying date

Because mean egg-laying dates differ between years (as it is strongly affected by

spring temperature, Gienapp et al. 2005) and among habitats, we fitted the following

model to all recorded egg-laying dates (i.e. birds with and without genotypes)

and used the year and area estimates from this model to ‘pre-correct’ the recorded

phenotypes of the genotyped individuals:

yi,j = µ+ βj + βa + pei + ε

with yi,j being the phenotype of individual i in year j, µ the overall intercept, βj and

βa the fixed effects for year (as factor) and area (Buunderkamp-NL, Westerheide-

NL, Roekelse Bos-NL, Hoge Veluwe-NL, Oosterhout-NL or Wytham Woods-UK),

respectively and pei the random permanent environmental effect of individual i. We

performed this two-step approach, instead of fitting year and area directly in the

GWAS models that are described below, because not all individuals in all years

were genotyped, which could have led to inaccuracy and/or bias in the estimates for

year-area combinations with few genotyped individuals.

To identify phenotypic variation associated specifically with CNVs, we constructed

association models that used PCA results based on CNV genotypes, in addition to

pedigree information. By doing so, we ensured that results are not caused by any

population structure/relatedness, which, if ignored, could cause spurious associa-

tions between specific CNVs and the phenotype. The use of a genomic relationship

metric as PCA, in addition to non-genomic family information, may be relevant as

the pedigree information is not available for all of the analyzed birds, limiting the
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accuracy of estimates of variance caused by family structure. For the PCA analysis,

we used the snpgdsPCA function in SNPRelate R/Bioconductor package version

1.10.2 (Patterson et al., 2006; Zheng et al., 2012) for all autosomes. As we assumed

that gain and losses will rarely share a common origin, both were considered dif-

ferent loci in the PCA analysis even when overlapping. Resulting eigen vectors one

and two were used in the models mentioned below.

Given our previous evidence that CNV calling in the NL great tit population has a

high rate of false negatives (da Silva et al., 2018), most of the CNV regions may have

underestimated frequencies. This high rate of ‘false negative CNVs’ make association

analyses difficult and may generate unreliable p-values. To address this problem,

we performed a two-step association analysis. First, we used only the intensity

strength from each SNP probe underlying CNVs (i.e. the same LRR values used for

the CNV identification) in a linear mixed model that considered any known pedigree

information. Then, the LRR results were compared with CNV states using the same

model. We used LRR and CNV based models collectively, i.e. considering p-values

from both models simultaneously for all CNV segments, to decrease the number of

spurious associations.

As individual CNVs can display distinct breakpoints due to both biological and

technical reasons (Abyzov et al., 2011; Alkan et al., 2011), and nearby probes may

reflect the same CNV, we established CNV segments to be used as the loci in the

association analysis. To construct these CNV segments, we first assigned the corre-

sponding CNV state for each of the SNP probes overlapping a CNV call. Thus, we

estimated the CNV frequency in each probe and selected only those with frequency

above 5%. Then, these selected probes were used to construct CNV segments based

on CNV-genotype similarity. In other words, the percentage of the birds with a

given CNV state between subsequent probes defined the boundaries of each CNV

segment in this population (minimum similarity of 90%). A simplification of the

concept using 75% as the threshold is exemplified in the Figure 3.1.

A raw p-value was generated independently for each probe for each model. Raw

p-values were corrected using genomic inflation. The probe with the lowest raw

p-value was chosen to represent each corresponding CNV segment. We applied

the Benjamini and Hochberg method (FDR, Benjamini & Hochberg 1995) on the

assigned raw p-values to obtain q-values for each CNV segment.

We first identified suggestive associations in the LRR based model (q-value <0.1)

which also have a significant association in the CNV based model (assigned raw

p-value <0.05). Raw instead of q-values were used from the CNV based association

for the following reasons: (i) a high rate of false negative CNVs may generate

biased q-values in the CNV based association and (ii) independent association tests

pointing to the same trend (i.e. LRR and CNV based models) inadvertently confer
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Figure 3.1: Concatenation of CNV segments. Example with a threshold of 75%

for similarity between subsequent SNP probes.

robustness to the conclusions. The GWAS was performed separately for the great

tit populations from (i) Netherlands (NL) and (ii) United Kingdom (UK).

LRR based model:

y′i,j = µ+ agei + pei + eigen1i + eigen2i + LRRi + ai + ei,j

CNV based model:

y′i,j = µ+ agei + pei + eigen1i + eigen2i + CNVi + ai + ei,j

y′i,j being the pre-corrected phenotype of individual i in year j, µ the overall in-

tercept, agei the age of individual i (as factor, 1st year breeder versus older), pei
the random permanent environmental effect of individual i, eigen1i and eigen2i the

eigen vectors one and two from a CNV-based PCA analysis, CNVi as the num-

ber of copies at the CNV segment or the log R ratio (LRR) at the representative

probe (i.e. LRR and CNV based models) and ai the sparse relatedness matrix cal-

culated from pedigree (i.e. non-genomic family information). The model was fitted

with the relmatLmer function from lme4qtl R package (Ziyatdinov et al., 2018).

The GWAS procedure described in this study is implemented in the development

branch of the CNVRanger R/Bioconductor package (version 0.99.18, Geistlinger

& da Silva 2019). Therefore, the results presented in this study can be easily

with the cnvGWAS function, from the CNVRanger package, by using the parame-

ter method.to.run=lmm.
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3.3 Results

CNVs across great tit populations in the Netherlands and the United-

Kingdom

Using a high density custom SNP array, we previously identified CNVs in 2,175 birds

from a Dutch great tit population (da Silva et al., 2018). In this study, we used the

same methods to detected additional CNVs in 1,349 birds from Wytham Woods,

Oxford, UK. After quality control, we found 20,828 CNVs which were subsequently

merged into 6,450 CNV regions (CNVRs) in the UK population.

The CNVRs in the UK population cover 25.55% (235.72 Mb) of the autosomes.

Coverage for different chromosomes ranged from 20.45% of chromosome 3 to 76%

of chromosome 25LG1. The sizes of the CNVRs were variable ranging from 1 kb to

2.88 Mb with a mean size of 36.54 kb. The number of birds with CNVs mapped onto

a given CNVR ranged from 1 (0.07%) to 357 (26.46%) of the 1,349 birds with at

least one CNV identified. We found 148 CNVRs that occur in more than 1% of the

population (> 13 birds) which we denote as ‘polymorphic CNVRs’, as previously

suggested (Itsara et al., 2009).

The CNVRs from the UK population overlapped 7,338 of the 16,541 genes in the

great tit genome (build 1.1, Laine et al. 2016). CNVRs showed enrichment for cell

signaling, neuronal development and cardiac functions (Table 3.1), in accordance

with the CNVRs identified in the NL population (da Silva et al., 2018).

Table 3.1: KEGG pathways significantly enriched for genes overlapping CNVRs in the

UK great tit population.

ID Description q-value

hsa04514 Cell adhesion molecules (CAMs) 0.0129

hsa04740 Olfactory transduction 0.0129

hsa05410 Hypertrophic cardiomyopathy (HCM) 0.0246

hsa04360 Axon guidance 0.0246

hsa04392 Hippo signaling pathway - multiple species 0.0246

hsa04921 Oxytocin signaling pathway 0.0452

hsa05412 Arrhythmogenic right ventricular cardiomyopathy (ARVC) 0.0452

hsa04720 Long-term potentiation 0.0452

hsa04925 Aldosterone synthesis and secretion 0.0467

From 6,450 CNVRs found in the UK population, 2,227 (28.96%) did not overlap

with CNVRs identified in NL birds. From 8,008 CNVRs previously found in the NL
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population, a total of 3,754 (21.33%) did not overlap with CNVRs identified in the

UK population.

Although a considerable number of CNVRs are population-specific, most of them

are unique or low-frequency CNVRs. There was only one polymorphic CNVR which

was uniquely found in NL population. This unique population-specific polymorphic

CNVR is located on Chromosome 4 (at ≈54.63-54.73 Mb, CNVR 6317). This CNVR

is present in 30 NL birds (1.38%) and there are no genes mapped to this genomic

region.

A subgroup of the UK birds included here was also previously analyzed in an inde-

pendent study (Kim et al., 2018), where the same custom array as well as the same

software (i.e. PennCNV, Wang et al. 2007) was used to generate the CNV calls. We

compared four different CNV data-sets reported in great tits, i.e. (i) CNVs identi-

fied in the NL population (da Silva et al., 2018); (ii) the UK population analyzed

in this study; (iii) the UK population with and (iv) without the filtering criteria

defined in Kim et al. 2018 (Figure 3.2). Approximately 26.17 Mb of the great tit

genome harbors at least one CNV in all four data-sets.

Linkage-disequilibrium between CNVs and SNPs

Before performing the CNV-GWAS, we checked the linkage-disequilibrium (LD) be-

tween CNVs and SNPs. The justification for this step is that high LD among the

two types of polymorphism would imply that a SNP-based GWAS should be suffi-

cient to detect associations caused by CNVs. In contrast, if LD is low, then using

CNV genotypes adds new information to a GWAS. We used CNV-SNP genotypes

identified in the NL population to understand the LD between these two poly-

morphism types in the great tit genome (i.e. CNV and SNP genotypes that we

previously published in da Silva et al. 2018 and da Silva 2019 et al. IN REVIEW,

respectively). We performed a total of 292,583 CNV-SNP comparisons to infer LD

(Figure 3.3). In general, the LD between these variants is low as SNP genotypes

rarely tag CNV states. Only one comparison had an r2 value above 0.5, indicating

strong LD between SNPs and CNVs on Chromosome 1A, but not elsewhere. The

CNV segment with the highest number of significant comparisons, as well as the

highest r2 value for a single comparison, is located within a tentative breakpoint of

a large inversion on chromosome 1A (explored in detail elsewhere da Silva 2019 et al.

IN REVIEW). In total 5,806 comparisons were significant after multiple correction

(q-value ≤ 0.05), albeit displaying relatively low r2 values. These comparisons rep-

resent 57 CNV segments (13.25% of all segments with frequency ≥ 1%), which have

a median of five significant SNP-CNV comparisons each. The number of significant

comparisons among CNV segments ranged from 1 to 1,249. The majority of SNPs
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Figure 3.2: Comparison among CNV data-sets, reported in great tits, from

different studies and populations. ‘Kim2018-UK’ represents all CNVs reported in

the UK population by Kim et al. 2018. ‘Kim2018-UKclean’ represents a subset of the

same CNV data-set after a strict filtering performed by Kim and colleagues (the filtering

was based on the standard deviation of cluster distances). ‘daSilva2018-NL’ includes all

CNVs previously reported by us in a NL population (da Silva et al., 2018). ‘daSilva2019-

UK’ represents the CNV data-set identified here, but in the same UK population used

in Kim et al. 2018. CNVs from ‘daSilva2018-NL’ and ‘daSilva2019-UK’ data-sets were

filtered as described in da Silva et al. (2018).

near CNVs are not in LD with these CNVs. Nevertheless, SNPs closer to CNVs are

more likely to have significant r2 values (correlation coefficient = -0.57 and p-value

< 0.0001).



54 Association of CNVs with breeding timing

Figure 3.3: CNV-SNP linkage-disequilibrium analysis. A-) Distribution of r2

values for pairwise comparisons of CNV segments and SNPs. The x -axis depicts the

distance of neighbor SNPs from the center of each CNV segment. B-) Correlation

coefficient of the number of significant SNP-CNV pairwise comparisons (p-value ≤ 0.05).

Egg-laying date association with CNVs

CNVRs are a coarse-grained map of CNV loci and are a valid approach for summa-

rizing CNVs in a population. However, using CNVRs as loci in a GWAS usually

leads to an oversimplification of the actual individual CNV genotypes. Thus, we

performed a genome-wide association using CNV segments (?) concatenated based

on genotype similarity of subsequent probes among all birds (i.e. from both NL and

UK populations). First, we verified the CNV genotype per SNP probe to identify a

total of 369 probes (Figure 3.4) for which at least 5% of the birds show overlap with

a CNV (177 of the total of 3,524 birds, of which 2,175 are from NL and 1,349 from

UK). These probes generated 42 distinct CNV segments, which have 12.76 kb in

average ranging from 1 bp (only one probe) to 83.47 kb and are supported by 8.78

probes in average ranging from 1 to 63. Although CNV segments (i.e. CNV loci)

were jointly inferred, the association analysis was carried out separately for the NL

and UK populations.

The NL population has 2,133 birds which were phenotyped for egg-laying date and

that had at least one CNV detected. In total 13 CNV segments display a suggestive

q-value < 0.1 in the LRR based association. From these 13 CNV segments, five

showed a significant raw p-value < 0.05 in the CNV based association. These five

CNV segments are located on chromosomes 1, 2, 10 and 27, respectively (Figure 3.5

and Table 3.2).
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Figure 3.4: QQ-plots with the raw p-values for each of the 369 SNP probes

supporting the CNV segments used as the CNV loci in the genome-wide

associations. A-) LRR based association. B-) CNV based association.

Table 3.2: Five CNV segments above the suggestive thresholds in the CNV association

with egg-laying date in a Dutch great tit population (q-value<0.1 in the LRR based

association and raw p-value<0.05 in the CNV based association).

chr start end CNV birds q-value (lrr based) raw p-value (cnv based) genes

2 885391 942971 284 0.0976 0.0135 MYL3,TMIE

27 637857 668662 412 0.0987 0.0253 KPNB1,NPEPPS

1 98147555 98184039 827 0.0476 0.0341 none

10 19090667 19096193 194 0.0976 0.0392 ITGA11

10 1658760 1724249 284 0.0976 0.0458 STRA6,CCDC33

The CNV segment located on chromosome 1 (98.15-98.18 Mb) does not overlap

any annotated gene. The CNV segment on chromosome 2 (0.88-0.94 Mb) over-

laps two genes, coding for Myosin light chain 3 (MYL3 ) and Transmembrane In-

ner Ear (TMIE ) respectively. We found two CNV segments on chromosome 10

(1.66-1.72 Mb and 19.09-19.10 Mb) which overlap with the Integrin Subunit Alpha

11 (ITGA11 ), Stimulated By Retinoic Acid 6 (STRA6 ) and Coiled-Coil Domain

Containing (CCDC33 ) genes. The CNV segment on chromosome 27 (0.63-0.67 Mb)

overlaps the Karyopherin Subunit Beta 1 (KPNB1 ) and Aminopeptidase Puromycin

Sensitive (NPEPPS ) genes. The UK population has 268 birds which were pheno-

typed for egg-laying date and that had at least one CNV detected. Among all five

suggestive CNV segments found in the NL population, using the same threshold

only the segment on chromosome 1 (98.15-9818 Mb, which does not overlap any

annotate genes) was also suggestive in the UK population.
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Figure 3.5: Genome-wide association of egg-laying date with CNVs from

a population of great tits in the Netherlands. CNV segments with more than

5% in frequency display the q-values for the LRR based association. The red and

blue lines represent 0.05 and 0.1 thresholds, respectively. Red dots represent five CNV

segments which obtained concomitantly suggestive q-value (<0.1, blue line represented

in the figure) in the LRR based association and significant raw p-value (<0.05, not

represented in the figure) in the CNV based association.

3.4 Discussion

Breeding time is associated with the fitness in bird species (Perrins, 1970; Grüebler

& Naef-Daenzer, 2010; Gienapp & Bregnballe, 2012). However, the plastic nature of

seasonal timing has challenged efforts to find genetic variants underlying the ample

phenotypic variation. Gienapp et al. (2017) recently addressed the genome-wide

SNP associations of breeding time in great tits in an environment-dependent manner.

However, the effect of structural variants, such as CNVs, has not yet been explored

and these might reveal independent regions that are important to disentangle the

genomic architecture of breeding time. Thus, to justify an association analysis using

CNVs only, it is important to explore the linkage-disequilibrium (LD) between SNPs

and CNVs.

CNVs are challenging to detect and interpret using SNP arrays due to technical and

biological variability (Abyzov et al., 2011; Alkan et al., 2011). Technical variability

can be linked to the platform, array design, and the software used for the CNV

detection, among others (Carter, 2007; Zhao et al., 2013; Winchester et al., 2009).

SNP arrays that are optimized for CNV identification (i.e. a higher number of
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probes at known CNV regions) might display an improved reliability. However,

they can be costly to design and produce. Specifically for the custom-made SNP

array used in this study (Kim et al., 2018), we detected the main source of bias to

be the high number of false negative CNVs (da Silva et al., 2018). Therefore, using

this information, we applied a hybrid strategy of association (i.e. CNVs and LRRs)

which may reduce the bias caused by this high incidence of false negative CNVs in

our data-set. Our strategy can partially tackle this bias because LRR values should,

to some extent, reflect the CNVs (Yau & Holmes, 2008) that failed to be identified

with the PennCNV software (Wang et al., 2007). On the other hand, LRR values

can be noisy and generate false positives. Thus, as we identified a high number of

false negatives in our NL CNV data-set, the combination of both approaches may

help to find real associations here (and to remove false ones).

The biological variability of CNVs is likely to be mainly due to their usually complex

breakpoints and also because they may possess multiple allelic states (i.e. it is

usually difficult to determine the exact number of copies in regions that are especially

repetitive). Furthermore, complex regions of the genome can harbor several CNVs

with distinct origins, caused by different breakpoints. Thus, to partially tackle this

biological variability we defined CNV loci based on the genotype similarity of nearby

probes to generate CNV segments. Using this strategy we assume that CNVs with

different origins affecting the same gene would have a comparable biological effect,

which might be not true if overlapping CNVs affect different genomic features (e.g.

different number of introns and exons).

Previous studies in humans have found that CNVs are less likely than SNPs to be

in high LD with flanking SNPs (Schrider & Hahn, 2010). In accordance, we found

low LD between CNVs and SNPs, which justifies performing a GWAS using CNV

genotypes. Therefore, CNVs may provide different genetic information and could

potentially point to independent genomic regions that are associated with egg-laying

date. In fact, none of the top genomic regions found in the previously SNP based

GWAS (Gienapp et al., 2017) were reflected on the results of the present study.

The CNV-GWAS performed here identified five regions that may be relevant for

egg-laying date in the NL population of great tits, one of which also seen in the

UK population with the same directional effect (i.e. CNV-birds usually have later

egg-laying dates in comparison with 2n-birds). The UK population has less than

300 phenotyped birds, which limits the power to detect associations and explains

the low number of relevant CNV segments in comparison with the NL population.

Four out of the five highlighted CNV segments are located within genes, making it

likely that they affect gene expression.

The CNV segment located on chromosome 1 does not overlap with any annotate

genes, but it is the only segment that was independently found in both populations.
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The indirect effect on genes that are located nearby cannot be discarded (e.g. a CNV

which is overlapping an enhancer), but requires further investigation. The segment

on chromosome 2 overlaps the TMIE gene, which is required for maturation of sen-

sory hair cells in the cochlea and associated with recessive non-syndromic deafness

(DFNB) (Naz et al., 2002; Mitchem et al., 2002). Two segments that are located

on chromosome 10 overlap two genes that are associated with progesterone levels in

the pregnant cervix in mammals (ITGA11, Ji et al. 2011) which is crucial in sexual

mammalian reproduction and could therefore play a role in avian breeding timing.

The last CNV segment on chromosome 27 overlaps KPNB1, which mediates the

circadian clock function (Lee et al., 2015). Circadian clocks are linked to seasonal

timing by providing reference for photoperiodic time measurement and most likely

also by associations with circannual rhythms (Helm & Visser, 2010). Although we

describe possible CNV associations with egg-laying dates in great tits, the results

presented here should be treated carefully. Robust association of CNVs with quan-

titative phenotypes is not a trivial task, lacking a clear well defined ‘gold standard’

(i.e. given the above-mentioned technical and biological limitations). In addition,

the known high false negative rate reported for the CNV calling in this study might

not fully be tackled by our hybrid GWAS strategy.

3.5 Conclusions

Seasonal timing is a complex polygenic trait that can be affected by environmental

factors like spring temperature, altitude and food availability (Noordwijk et al.,

1980; Gienapp et al., 2005; Wilkin et al., 2007) making it a challenge to unravel the

underlying genetic variation. Nevertheless, this study provides a first glance of the

role of more complex variants such as CNVs by exploring their effect on egg-laying

date of great tit species, known to be shifting due to global warming (Visser et al.,

2006).
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Abstract

Copy number variation (CNV) is a major type of structural genomic variation that is

increasingly studied across different species for association with diseases, production

traits, and evolutionary footprints. Established protocols for experimental detection

and computational inference of CNVs from SNP array and next-generation sequenc-

ing data are available. However, only limited options exist for further interpretation

of CNV data and integration with gene expression and quantitative phenotypes. We

present the CNVRanger R/Bioconductor package which implements a comprehensive

toolbox for structured downstream analysis of CNVs. This includes functionality for

summarizing individual CNV calls across a population, assessing overlap with func-

tional genomic regions, and genome-wide association analysis with gene expression

and quantitative phenotypes.
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4.1 Introduction

Copy number variation (CNV) is a frequently observed deviation from the diploid

state due to duplication or deletion of genomic regions (Conrad et al., 2010).

CNVs can be experimentally detected based on comparative genomic hybridization,

and computationally inferred from SNP-arrays or next-generation sequencing data.

These technologies for CNV detection have in common that they report, for each

sample under study, genomic regions that are duplicated or deleted with respect to

a reference genome. Such regions are denoted as CNV calls in the following and are

typically the starting point for subsequent downstream analysis.

In previous work, we developed, described, and applied functionality for analyzing

CNVs across a population, including association analysis with gene expression and

quantitative phenotypes (da Silva et al., 2016; Geistlinger et al., 2018; da Silva et al.,

2018). To allow straightforward application to similar datasets, we generalize these

concepts and provide refined implementations in the CNVRanger R/Bioconductor

package.

4.2 Features

4.2.1 Reading and accessing CNV data

The CNVRanger package reads CNV calls given in a general file format, provid-

ing at least chromosome, start position, end position, sample ID, and integer copy

number for each call (Fig. 4.1A). Once imported into R, the CNV data is stored

for efficient representation and manipulation in Bioconductor (Huber et al., 2015)

data structures as implemented in the GenomicRanges (Lawrence et al., 2013) and

RaggedExperiment (Morgan & Ramos, 2017) packages.
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4.2.2 Summarizing individual CNV calls across a population

For the analysis of CNVs in a population study, CNVRanger implements three

frequently used approaches for defining recurrent regions (Fig. 4.1B). The

CNVRuler (Kim et al., 2012) method trims low-density areas that would otherwise

inflate the size of the resulting CNV region, by default trimming region margins that

are covered by <10% of the total number of calls within a region. The reciprocal

overlap (RO) procedure merges calls with sufficient mutual overlap (Conrad et al.,

2010). For example, an RO of 0.51 between calls A and B requires A to overlap at

least 51% of B, and B to also overlap at least 51% of A. Particularly in cancer,

it is important to distinguish driver from passenger mutations, i.e. to distinguish

meaningful events from random background aberrations. The GISTIC (Beroukhim

et al., 2007) method identifies those regions of the genome that are aberrant more

often than would be expected by chance, with greater weight given to high ampli-

tude events (high-level copy-number gains or homozygous deletions) that are less

likely to represent random aberrations.

4.2.3 Overlap analysis with functional genomic regions

Once recurrent CNV regions have been defined, CNVRanger allows to assess whether

and to which extent these regions overlap with functional genomic regions such as

genes, promoters, and enhancers (Fig. 4.1C). As a certain amount of overlap can

be expected just by chance, an assessment of statistical significance is needed to

decide whether the observed overlap is greater (enrichment) or less (depletion) than

expected by chance. CNVRanger therefore builds on the regioneR package (Gel

et al., 2015), which implements a general framework for testing overlaps of genomic

regions based on permutation sampling. We use the package to repeatedly sample

random regions from the genome, matching size and chromosomal distribution of

the CNV regions. By recomputing the overlap with the functional features in each

permutation, statistical significance of the observed overlap can be assessed.

4.2.4 CNV-expression association analysis

The CNVRanger package implements association testing between CNV regions and

RNA-seq read counts based on edgeR (Robinson et al., 2010), which applies gener-

alized linear models based on the negative-binomial distribution while incorporating

normalization factors for different library sizes. For CNV regions with only one CN

state deviating from the 2n reference group, this reduces to the classical 2-group

comparison as previously described (Geistlinger et al., 2018). For multi-allelic CNVs
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(e.g. 0n, 1n, 2n), edgeR’s ANOVA-like test is applied to test for significant expres-

sion differences in any non-diploid group with respect to the 2n group. Assuming

distinct modes of action, we distinguish between (i) local effects (cis), where ex-

pression changes coincide with CNVs in the respective genes, and (ii) distal effects

(trans), where CNVs supposedly affect trans-acting regulators such as transcription

factors (Fig. 4.1D). Due to power considerations and to avoid detection of spurious

effects, stringent filtering of (i) not sufficiently expressed genes, and (ii) CNV re-

gions with insufficient sample size in groups deviating from 2n, is carried out when

testing for distal effects. Local effects have a clear spatial indication and the number

of genes locating in or close to a CNV region of interest is typically small; testing for

differential expression between CN states is thus generally better powered for local

effects and less stringent filter criteria can be applied.

4.2.5 CNV-phenotype association analysis

Specifically developed for CNV calls inferred from SNP-chip data, CNVRanger allows

to carry out a probe-level genome-wide association study (GWAS) with quantitative

phenotypes (Fig. 4.1E). CNV calls from other sources such as sequencing data are

also supported by using the start and end position of each call as the corresponding

probes. As previously described (da Silva et al., 2016), we then construct CNV

segments from probes representing common CN polymorphisms (CNPs, allele fre-

quency >1% as default), and carry out a GWAS as implemented in PLINK (Purcell

et al., 2007) using a standard linear regression of phenotype on allele dosage. For

CNV segments composed of multiple probes, the segment p-value is chosen from

the probe p-values, and multiple testing correction is carried out using the FDR

method (Benjamini & Hochberg, 1995) per default. This is similar to a common

approach used in differential expression analysis of microarray gene expression data,

where typically the most significant probe is chosen in case of multiple probes map-

ping to the same gene. Results can then be displayed as for regular GWAS via a

Manhattan plot.
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Abstract

Chromosome inversions have clear effects on genome evolution and have been as-

sociated with speciation, adaptation and the evolution of the sex chromosomes. In

birds, these inversions may play an important role in hybridization of species and

disassortative mating. We identified a large (≈64 Mb) inversion polymorphism in

the great tit (Parus major) that encompasses almost 1,000 genes and more than

90% of Chromosome 1A. The inversion occurs at a low frequency in a set of over

2,300 genotyped Dutch great tits with only 5% of the birds being heterozygous for

the inversion. In an additional analysis of 29 resequenced birds from across Europe

we found two heterozygotes. The likely inversion breakpoints show considerable ge-

nomic complexity, including multiple copy number variable segments. We identified

different haplotypes for the inversion, which differ in the degree of recombination in

the center of the chromosome. Overall, this remarkable genetic variant is widespread

among distinct great tit populations and future studies of the inversion haplotype,

including how it affects the fitness of carriers, may help to understand the mecha-

nisms that maintain it.
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5.1 Introduction

Inversions are structural intra-chromosomal mutations resulting in the reversal of

gene/sequence order. Chromosomal inversions represent an important class of poly-

morphism that are of particular interest in evolutionary studies (Hoffmann & Riese-

berg, 2008; Kirkpatrick, 2010). Numerous studies have shown inversions to be im-

portant factors in speciation and adaptation (reviewed in Hoffmann & Rieseberg

2008). Studies of hominin evolution indicate a crucial role of inversions in the

process, with more than one thousand inversions arising in both the human and

chimpanzee lineages since they shared a common ancestor (Hellen, 2015). Red fire

ants (Solenopsis invicta) provide an interesting example of how inversions can pro-

mote adaptation; whether or not ant colonies contain a single queen or multiple

queens depends on which inversion genotype is present the colony. The two so-

cial forms are genetically isolated (Keller & Ross, 1998; Wang et al., 2013). In

passerines, inversions are significantly more common in clades with more sympatric

species, which suggests that inversions may often evolve or be maintained because

they suppress recombination between the genomes of hybridizing species (Hooper

& Price, 2017). In both the white-throated sparrow (Zonotrichia albicollis) and the

ruff (Calidris pugnax ), morphs with different sexual behaviours are determined by

inversions (Küpper et al., 2015; Lamichhaney et al., 2016; Tuttle et al., 2016). The

inversion in the white-throated sparrow is very large, harboring ≈1,000 genes, and

lethal in homozygous state (Tuttle et al., 2016).

To explain how inversions are maintained in a population it is important to under-

stand the different mechanisms underlying selection on inversions. There can be

meiotic drive if the inversion harbors alleles that alter segregation distortion (Kirk-

patrick, 2006). Selective advantages can also occur when an inversion affects the

expression of advantageous genes located within or closely linked to the inversion

(Puig et al., 2004). The effect of the inversion on gene expression is well documented

in red fire ants (Wang et al., 2008, 2013; Nipitwattanaphon et al., 2013; Lucas et al.,

2015; Huang et al., 2018). In this species, gene expression differences between the

monogyne and polygyne social forms are greatest in the inversion, suggesting that

the inversion plays a key role in morphological and behavioural differences between

the two forms. In addition, selective advantages of an inversion can be the result

of recombination disruption in heterozygotes, which can preserve advantageous al-

leles. Moreover, reduced crossing-over within the inversion is associated with higher

recombination rate elsewhere in the genome (Stevison et al., 2011), which in turn

can modulate selection (McGaugh et al., 2012).

In many cases, recombination is suppressed between an inverted haplotype and the

wild haplotype. As a result of this lack of recombination in heterozygous inversion
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carriers, strong linkage disequilibrium between loci within the inverted region can

rapidly build up. Although the lack of recombination can maintain advantageous

variants without disruption throughout generations (i.e. supergenes, reviewed in

Thompson & Jiggins 2014), there are also possible costs associated with the sup-

pression of recombination. Each of the inversion haplotypes will behave as a single

heritable entity that can help to retain certain alleles in the population even when

they are subject to purifying selection (i.e. deleterious recessive alleles can be main-

tained if they are found within inversion polymorphisms by a “hitchhiking” effect,

Kirkpatrick 2006). As a consequence, deleterious recessive alleles can accumulate

in regions of low recombination, such as an inversion, as they are no longer effec-

tively removed by purifying selection. Moreover, throughout evolution an inversion

becomes structurally more complex than the non-inverted counterpart and often ex-

periences a degenerative process (Tuttle et al., 2016). This degenerative process has

been reported to be associated with a size increase in young supergenes (Stolle et al.,

2018). In general, an increase in the number of gene copies can alter trans- and cis-

gene expression, which might generate novel phenotypic variation (Geistlinger et al.,

2018).

Inversions may harbor complex genomic rearrangements at their breakpoints (Cal-

vete et al., 2012), given that inversion breakpoints are more likely to happen at

complex parts of a chromosome (Carvalho & Lupski, 2016). Apart from changing

the gene order, inversions also often involve gene duplications that can lead to ge-

netic novelty and subsequent adaptation (Furuta et al., 2011). In mosquitoes from

the species complex Anopheles gambiae, haplotypes involving structural rearrange-

ments at the breakpoint of a paracentric inversion have shed light on the origin

and evolution of their malaria vectorial capacity (Sharakhov et al., 2006). The

presence of repetitive regions at inversion breakpoints is recurrent and in both in-

versions and repetitive regions can share the same mechanism of formation, such as

non-allelic homologous recombination (NAHR) (Carvalho & Lupski, 2016; Kehrer-

Sawatzki & Cooper, 2008). Understanding structural variations linked to inversion

breakpoints may help to clarify the possible functionality and evolutionary history

of inversions.

Genetic markers like SNPs and sequence data can be used to identify inversions

polymorphism given the distinct population genetic structure caused by LD patterns

within inversions. Thus, methods that are based on principal components analysis

(PCA) can detect the unusual genetic structure of inversions (Ma & Amos, 2012).

In this study, we describe a 64.2 Mb putative inversion on Chromosome 1A in

great tits (Parus major), a widely studied songbird in ecology and evolution (Kvist

et al., 2003; Visser et al., 1998; Husby et al., 2011) with a broad range of genomic

resources such as a high density SNP array (Kim et al., 2018), reference genome and

methylome analysis (Laine et al., 2016) as well as copy number variation (CNV)



5.2 Material and methods 69

maps (da Silva et al., 2018; Kim et al., 2018).

5.2 Material and methods

5.2.1 Population description, genotyping and sequencing.

A total of 2,322 great tits were genotyped using a custom made Affymetrix® great

tit 650K SNP chip (Kim et al., 2018) at Edinburgh Genomics (Edinburgh, United

Kingdom). SNP calling was done following the Affymetrix® best practices workflow

by using the Axiom® Analysis Suite 1.1. After sample filtering, 26 birds with dish

quality control (DQC, Nicolazzi et al. (2014)) <0.82 and SNP call rate <95% were

discarded. SNPs with minor allele frequency (MAF) <1% and call rate <95% were

removed. Only autosomes were used in this study. After filtering, 2,296 birds and

514,799 SNPs were kept for subsequent analysis. The genotyped birds were from

our long-term study populations on the ‘Veluwe’ area near Arnhem, the Netherlands

(52◦02’ N, 5◦50’ E). More information regarding the origin of the birds and the

in vitro DNA procedures are described by da Silva et al. (da Silva et al., 2018).

The raw genotype data used in this study was submitted to GEO (GSE105131).

Filtered genotypes and the source code to perform all analyses described below are

available at Open Science Framework (OSF, https://osf.io/t6gnd/?view_only=

821507ec135b44778d8b80254c24633b).

In addition to the birds genotyped on the SNP chip, we also used sequence data from

29 birds (10 from the Wytham Woods population in Oxford (UK), 19 birds sampled

from 15 other European populations). Each bird was sequenced at an average depth

of around 10x using paired-end sequencing libraries. Details of sequencing analysis,

as well as information regarding the origin and sample quality of each bird are

provided elsewhere (Laine et al., 2016).

5.2.2 Identification and characterization of a large inversion on Chro-

mosome 1A.

Population structure between SNP-typed individuals was explored using a principal

components analysis (PCA) approach, previously applied for the study of inversions

(Ma & Amos, 2012), using the snpgdsPCA function in SNPRelate R/Bioconductor

package (v. 1.10.2) (Patterson et al., 2006; Zheng et al., 2012). Each autosome was

analysed separately.

Following PCA, we estimated the fixation index (FST ) in a SNP-wise fashion, using

the Fst function available in snpStats R/Bioconductor package (v. 1.26.0) (Clay-
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ton, 2015) to compare birds in different clusters identified by visual inspection (i.e.

subpopulations) of PCA plots. As SNP heterozygosity is expected to be higher

within the inversion in carriers (i.e. birds with two different inversion haplotypes),

the ratio of heterozygous birds (i.e “AB”) for each SNP was assigned within each

subpopulation. The SNP-wise FST and heterozygosity values were used to define

the likely breakpoints of the inversion.

Pairwise D′ values, (Lewontin & Kojima, 1960) using all birds, were calculated

to assess the linkage disequilibrium. To aid visualization of the patterns revealed

by the SNP data, SNPs were pruned to retain loci with MAF >0.4 and an LD

threshold of 0.05 (using genomic windows with a maximum size of 500 kb). Pruning

was performed with the snpgdsLDpruning and snpgdsLDMat functions within the

SNPRelate R/Bioconductor package (v. 1.10.2) (Zheng et al., 2012). A total of

214 SNPs was retained and used in the LD analysis plot. We produced a graphical

representation of the LD map using the LDheatmap function from the LDheatmap R

package (v. 0.99-2) (Shin et al., 2006). The function used to infer LD in this study

makes use of the expectation-maximization (EM) algorithm (Excoffier & Slatkin,

1995), which is able to infer LD from unphased data. In addition, the R2 (Zaykin

et al., 2008) estimator was used for comparison with results from D′ because each

estimator may respond differently to low frequency alleles (Wray, 2005).

5.2.3 Inference of structural complexity at Chromosome 1A.

We used copy number variation (CNV) data obtained from SNP intensity infor-

mation from the same Dutch great tit population, as described previously (da Silva

et al., 2018), to evaluate if certain CNVs are associated with normal/inverted phases.

Moreover, we identified CNVs in the 29 resequenced birds from different European

populations (Laine et al., 2016)). First, we used the .bam file of each sample, con-

taining reads mapped onto the reference genome build 1.1 using BWA (Li & Durbin,

2009), to extract map locations with samtools (Li et al., 2009) as described in CNV-

seq manual (Xie & Tammi, 2009a). CNVs were called with the default parameters of

CNV-seq (Xie & Tammi, 2009b). CNV-seq uses coverage information to calculate a

log2 transformed ratio between the subject samples (inv-norm only, because inv-inv

birds were absent from the dataset) and wild-type samples (norm-norm). A positive

ratio is associated with copy-number gain (duplication), while a negative ratio is

associated with copy-number loss (deletion).

In addition, we used Lumpy (Layer et al., 2014) with default parameters, incorpo-

rated in the speedseq pipeline (Chiang et al., 2015) to predict the exact breakpoints

of the CNV events and to predict inversion events from sequence data. Information

from split and discordant mapped reads was used to describe the structure of a CNV
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complex in one of the inversion breakpoints (details in the supplementary section

3.4- Patterns in split reads supporting the CNV complex).

5.2.4 Inversion detection by PCR-RFLP.

As genotyping with SNP array can be time consuming and expensive, we designed

an alternative method to type the Chromosome 1A inversion, based on a PCR fol-

lowed by a restriction enzyme digestion (PCR-RFLP). For this, we used the SNP

with the second highest FST value (i.e. AX-100689781) because it almost perfectly

captures the inversion (99.32% of the inv-norm birds have AB genotype and 98.95%

of the norm-norm birds have the AA genotype). The SNP with the highest FST

value did not allow distinguishable fingerprints in silico because there are no re-

striction enzymes which differentially cut the two alleles. Instead, we choose SNP

AX-100689781 which is located close to the downstream breakpoint of the inver-

sion, at position 65,878,384 in the great tit genome build 1.1 (Laine et al., 2016)

(details in the supplementary section primer design and enzyme search). This SNP

is located within the first intron of the gene PIK3C2G. We genotyped 42 birds by

PCR-RFLP which had also been genotyped with the SNP-chip.

For each PCR-RFLP reaction we used 6µl of DNA (10ng/µl). The PCR was per-

formed with OneTaq 2X mastermix (New England Biolabs) and 1µl of primermix

(primer sequences are given in the supplementary section primer design and enzyme

search). The PCR program had steps of: 95◦C for 5 min, 34 cycles of 95◦C for 30

seconds, 55◦C for 45 seconds, 72◦C for 90 seconds and a final elongation step of

72◦C for 10 min. The digestion reaction was done for 5 hrs at 37◦C using 3µl of

the PCR product, 0.4µl of the enzyme SspI (10U/µl, New England Biolabs), 1µl

of the SspI buffer 10X and 5.6µl of sterile deionized water (MQ). The PCR-RFLP

was analyzed on a 3% agarose gel. The restriction fragments were checked on the

Geldoc XR+(Biorad) gel documentation system with the software Image Lab (v.

5.2.1).

5.3 Results

5.3.1 Population structure for Chromosome 1A reveals a large inver-

sion.

We found a large putative inversion on Chromosome 1A. Based on visual inspection

of the principal component analysis (PCA) (Patterson et al., 2006), we classified

the clustering patterns separately for each autosome in the great tit genome (Sup
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Figure 5.6). Plots for whole chromosomes may reveal obvious substructure if the

inversion is relatively large. Although additional chromosomes display some popu-

lation structure (e.g. chromosomes 5 and 7, Sup Figures 5.6 and 5.7), the variation

within PCA clusters is greater, and the FST values across these chromosomes less

conclusive, relative to the patterns seen on Chromosome 1A. Moreover, this unusual

PCA pattern, which was most likely reflecting an inversion, was briefly reported

elsewhere (Bosse et al., 2017). Therefore, the remainder of this paper considers

the likely inversion polymorphism on Chromosome 1A. Chromosome 1A displayed

clear population structure for the first eigenvector (Figure 5.1a, First and Second

eigenvectors explain 2.28 and 0.50% of the variance, respectively), with two sub-

populations that are genetically distinct. The larger subpopulation comprises 2,179

birds and the smaller one contains only 117. Among these 117 birds, ten display in-

termediate values in Eigenvector One. Analysis of the ten birds’ genotypes indicates

that they are carrying a distinct haplotype, derived from the inversion, rather than

representing a distinct inversion genotype from the rest of these birds (e.g. the ten

being heterozygotes and the remainder being homozygous for the inversion haplo-

type). The genotypes and LD patterns in the center of the inversion are discussed

in detail in a subsequent section (i.e. Linkage-disequilibrium and haplotypes across

the inversion).
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Figure 5.1: A) PCA: based on the SNPs located on Chromosome 1A, a principal

component analysis revealed two distinct subpopulations. The distinction is given by

Eigenvector One, which gave the initial evidence of inversion carriers. B) FST : these

two subpopulations display highly differentiated SNPs across the whole of Chromosome

1A, except at regions near to telomeres. C) Heterozygosity: each subpopulation

exhibits a particular heterozygosity level across the Chromosome 1A. The inv-norm

subpopulation has many SNPs with high heterozygosity within the region bounded by

the tentative breakpoints given by FST analysis (≈3 to 68 Mb, delimited by the red

dashed lines). The purple dashed line represents the maximum expected in norm-norm

birds. SNPs above this threshold are considered informative.

We obtained high FST values between the two PCA plot subpopulations across al-

most the whole of Chromosome 1A except for the most distal SNPs on the chromo-

some (Figure 5.1b). The heterozygosity level in each of these subpopulations across
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Chromosome 1A is also strikingly different (Figure 5.1c). The heterozygosity level

for the smaller subpopulation is greater than for the larger subpopulation, except

for markers close to the telomeres. This suggests that the smaller subpopulation

contains birds heterozygous for the inversion polymorphism. The heterozygosity

patterns are consistent with the pattern shown by the FST analysis, in terms of

where the inversion is located on the chromosome. In addition, the FST values of

the SNPs located on Chromosome 1A have a significantly different distribution than

SNPs in the rest of the genome (Wilcoxon rank sum test with continuity correction

p-value ≈ 0.0002).

The PCA, FST and heterozygosity results support the existence of a pericentric

inversion in the smaller PCA subpopulation (117 birds). This putative inversion

comprises ≈90% of the length of the chromosome (≈64.2 Mb) and is present only in

heterozygous state in this great tit population (given the PCA clustering in addition

to the high levels of heterozygosity of the SNPs at Chromosome 1A in inv-norm birds,

Figure 5.1a-c).

5.3.2 Linkage-disequilibrium and haplotypes across the inversion.

We used the unphased SNP genotypes from all birds to characterize linkage-

disequilibrium (LD) across Chromosome 1A by calculating D′ (Lewontin, 1964).

As expected for regions with low recombination, a large LD block which overlaps

the whole inversion was identified (Figure 5.2a). This LD block is not present in

norm-norm birds (Figure 5.2b), suggesting that recombination is only restricted in

birds heterozygous for the inversion. On the other hand, when R2 is used as a mea-

sure of LD inference, an LD block is only observed in the middle of the chromosome

(from position ≈24.6 to 48.8 Mb, Figure 5.2c). This R2 LD block overlaps the region

that causes the two distinct genotype distributions among the 117 inv-norm birds

(Figure 5.2d).
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Figure 5.2: The pairwise linkage-disequilibrium on the Chromosome 1A. A)

D′ measured in 2,296 great tits. B) D′ measured in 2,179 norm-norm birds. Figures

in the lower panels (C and D) support possible recombination events in the center of

the inversion. In other words, possible recombination in the center of the inversion

is supported by the distinct genotype distribution in comparison with the rest of the

inversion and confirmed by R2. As R2 metric has reduced power to detect LD among

SNPs with low allele frequency, the LD is reflected only in the center of the inversion.

C) R2 measured in 2,296 great tits reveals an LD block only in the middle of the

chromosome. The full inversion does not show elevated LD, due to the limitation of R2 at

dealing with low frequency SNP alleles outside the center of the inversion. D) Genotype

frequency of informative SNPs (heterozygosity > 0.6) across Chromosome 1A in the

inv-norm subpopulation. The vertical dotted line roughly indicates the genomic region

of middle block which harbors a higher number of birds with “AA” genotypes when

compared to the rest of the inversion. Along with the LD pattern from R2 method, the

genotype frequencies suggest a different genetic structure at the center of the inversion.
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Allele phasing was not possible in the inv-norm birds as the phasing was clearly

random in inv-norm birds (data not shown). Therefore, a detailed analysis of genetic

diversity within the different inversion haplotypes was not possible. Instead, we

used genotype information to explore putative inversion haplotypes. In the center

of the inversion (a 20-55 Mb window was used, which is a 5 Mb up- and downstream

extension of the LD block in the center due to uncertainty over the precise breakpoint

locations), the genotype frequencies (i.e. the ratio of genotypes “AA”, “AB” and

“BB”, where “A” is the major and “B” the minor allele in the general population)

is substantially different between the ≈10% of the inv-norm birds (ten birds, Figure

5.10) and the remainder of the inv-norm birds. The number of “AA” SNP genotypes

(i.e. homozygous for the major allele, which is rare in the inversion) in these ten

birds is greater than in the other inv-norm birds. A total of 107 birds (91.4%) have

between 4 and 30 (mean = 11.61, standard deviation = 4.95) SNPs with genotype

“AA” while the remaining 10 birds have substantially more “AA” genotypes (range

= 146-1,382; mean = 892.4; standard deviation = 394.2; Figure 5.3). To a certain

extent the ten birds with distinct haplotypes can also be distinguished from the other

inv-norm birds, by the PCA analysis due to their intermediate values in eigenvector

one (0.053 to 0.076). These ten birds are from four different areas in Netherlands

(2 birds from Buunderkamp; 3 birds from Westerheide; 2 birds from Roekelse Bos;

2 birds from Hoge Veluwe and one birds from an unknown location).
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Figure 5.3: Genotype distribution within/outside the center of the inversion

(20-55 Mb) in inversion carriers. The number of genotypes is represented on a log2
scale to improve the visualization but untransformed values are shown on the upper

x -axis. Based on the number of “AA” genotypes it is possible to identify inv-birds

birds which harbour a different genotype distribution at the center of the inversion and

therefore possibly have different inversion haplotypes (black bars among the dashed

lines).
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5.3.3 Complex genomic structure at the inversion breakpoint.

Inversion breakpoints can provide insight in the evolutionary history of the inver-

sion (Sharakhov et al., 2006). The downstream breakpoint of the Chromosome 1A

inversion harbors a previously identified CNV region, ‘2802’, located at position

64.83-67.67 Mb (Figure 5.4a, da Silva et al. 2018). Of all 2,296 birds analyzed for

the inversion, 2,021 were also previously analyzed for copy number variations. This

includes 1,921 birds classified as norm-norm and 100 as inv-norm. Among the norm-

norm birds, 217 harbor CNVs at the inversion breakpoint (11.29%) whereas 1,704

have two copies as expected in the diploid state. By contrast, 96% of the inv-norm

birds have an individual CNV call mapped at the CNVR 2802. At this CNVR,

94.8% of all individual CNV calls are gains.
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Figure 5.4: CNVs in the inversion breakpoint. A) CNV frequency across the

Chromosome 1A and the genomic interval of the previously identified CNV region ‘2802’

(≈64.83-67.67 Mb, da Silva et al. (2018)), which is located at the inversion breakpoint.

B) FST values across the chromosome. A red circle is highlighting the SNP used to

the PCR-RFLP analysis. C) A CNV in the inversion breakpoint is present in the vast

majority of inv-norm birds whereas is rarely found in norm-norm birds. D) Digestion

pattern of the PCR-RFLP at the SNP AX-100689781. The black bars represent the

expected gel patterns alongside each of the two observed patterns in each subpopulation

(i.e. norm-norm and inv-norm). Distinct copy number genotypes are evidenced by

the allele intensities in the gel after electrophoresis. The values above each gel picture

depicts the fingerprint name and the degree of confidence to tag a specific karyotype state

(i.e. percent of the birds with concordant inversion genotype between SNP array and

PCR-RFLP). Green was used in highly confident profiles, blue in the medium confidence

one and red for B4, which has high heterozygosity (expected in inv-norm) but was only

identified in two norm-norm birds. To differentiate between fingerprints note the distinct

intensities of subsets of bands; between B1 and B2 the greatest difference is mainly at

the 300/169 bp bands and between B3 and B4 the greatest difference is between the

469/300 bp bands.
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5.3.4 Inversion detection with PCR-RFLP.

We looked for SNPs with the highest FST possible, which concomitantly allowed

different DNA fingerprints of their SNP genotypes to be obtained by restriction di-

gest. For the SNP with the second highest FST value (Figure 5.4b), “AA” and “AB”

genotypes (i.e. associated with norm-norm and inv-norm karyotypes, respectively),

our genotype assay produced two distinct in silico profiles when the PCR fragments

were digested by the enzyme SspI (Figure 5.4d, represented by the black bars).

In a diploid region, we would expect a profile with four bands (i.e. “AB”) in an

inv-norm bird whereas a profile with two bands (i.e. “AA”) would be norm-norm.

However, as the SNP is placed in a repetitive region (i.e. containing a CNVR and

segmental duplications), the obtained profiles are more complex. We obtained in-

stead four different profiles, which differ in the intensity in each of the four possible

fragments (Figure 5.4d). Profile B3 was only identified in inv-norm samples whereas

the profiles B1, B2 and B4 were mostly, but not exclusively observed in norm-norm

samples. However, birds with the profile B2, in 90% of the cases, are norm-norm and

in 10% inv-norm. Unexpectedly, the profile B4, which shows high heterozygosity as

in the inversion, was only identified in two norm-norm birds (0% of confidence, i.e.

expected to be found in inv-norm but only found in norm-norm birds). The SNP is

located in the first intron of the PIK3C2G gene.

5.3.5 Assessing breakpoint complexity from sequencing data.

We classified 29 birds for the inversion from distinct European populations by whole

genome resequencing (Laine et al., 2016) based on the presence of the CNV com-

plex at the breakpoint. A total of 27 birds were classified as norm-norm and two as

inv-norm. We used sequencing data from the two inv-norm birds, one from France

and another from Belgium, to characterize CNVs across the inversion. At the down-

stream breakpoint, we detected a CNV (gain state) in both birds in agreement with

the results from the Dutch great tit population, which suggests a high correlation of

the inversion with a gain state at the downstream breakpoint (Figure 5.4c). None

of the other 27 resequenced birds without the inversion showed CNVs at this region.

The CNVs that we identified in the two inv-norm resequenced birds point to a sub-

stantial increase in the number of copies instead of only a single copy gain. The log2
values from CNV-seq at that region suggest around ten copies in the inverted phase

involving three CNVs that are part of the same structural complex (the regions be-

tween 65.87-65.90, 67.56-67.58 and 67.64-67.65 Mb, which together comprise ≈50.43

kb). In addition, we identified an increase of around 100 copies in a region upstream

to the CNV complex (63.44-63.46 Mb, ≈20 kb), which in turn is followed by an in-

crease of around ten copies (63.46-63.56 Mb, ≈100 kb). It is unclear if these events
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are part of the same complex (Sup Fig 4 shows the estimated number of copies in

each of the above mentioned CNV regions). Considering only the three CNVs which

are part of the complex, the inverted Chromosome 1A is at least 500 kb larger than

the reference (i.e. the normal non-inverted) haplotype. However, summing the CNV

complex with other upstream CNV regions that are also only present in sequenced

inv-norm birds (i.e. a region with ≈100 copies followed by other regions with ≈10

copies), suggests that the inverted chromosome may be up to 3.5 Mb larger than

the normal chromosome.

As split reads from sequencing data are useful to reveal complex rearrangements in

the genome, we evaluated their pattern in the CNVR. We identified split reads in

this region that support a complex genomic rearrangement involving different CNVs.

Split reads and discordantly mapped paired reads show that this region contains a

complex rearrangement of three intervals which are arranged in a different order and

orientation when compared to the reference genome (supplementary section patterns

in split reads supporting the CNV complex, Figure 5.5).

Figure 5.5: Representation of the whole Chromosome 1A with the complex

structural rearrangement in the downstream breakpoint of the inversion.

Blocks in grey represent the inversion region whereas those in black are genomic re-

gions outside the inversion. CNVs identified by sequencing in the two inv-norm birds

which were sequenced are labeled as CNV1-3 for simplicity. Horizontal curly brackets

define the structural complex which encompasses CNVs 1-3. The above chromosomal

representation displays the chromosome as shown in the reference genome (Laine et al.,

2016). The below representation displays the expected genomic structure in the inver-

sion. CNVs are relatively larger than their real length for schematic purposes.

In addition, Lumpy (Layer et al., 2014) was used to predict the exact breakpoints

of the inversion. We were unable to infer the whole inversion event from sequencing
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data, but interestingly one large inversion was unique to the two inv-norm samples

that were sequenced. The inversion boundaries are from 62.15 to 63.55 Mb, with a

length of 1.4 Mb on the reference genome. For the two inv-norm samples, 9 (sample

name = 233) and 8 (sample name = 973) reads supported this 1.4 Mb inversion event.

The coordinates of the inversion start lies within a single copy region, while the

coordinates of the inversion end are located in the CNV complex (65.87-67.65 Mb).

Therefore, we hypothesize that at least one of the inversion breakpoints is within

the large complex; however, the precise coordinates are difficult to predict.

5.3.6 Gene content and functionality at the inversion breakpoint.

Genomic regions around the inversion breakpoints can have a different structure and

nucleotide diversity compared to the rest of the inversion (Andolfatto et al., 2001;

Branca et al., 2011; Hoffmann & Rieseberg, 2008). The CNV complex overlaps 32

genes associated with a broad range of phenotypes in other species (for details on

the phenotypes associated with each gene see supplementary section 3.3 Genes over-

lapping the CNVR at the CNV complex). It is perhaps noteworthy that three genes

(BPGM, CALD1 and PIK3C2G) could potentially be broken in the inverted haplo-

type, given that sequencing data shows CNVs only partially overlapping them.

5.4 Discussion

Here we have described a large putative inversion on Chromosome 1A of the great

tit (Bosse et al., 2017) that covers more than 90% of the chromosome and contains

almost 1,000 genes. The inversion is present in 5% of the analyzed Dutch population

as well as in two out of 29 resequenced individuals from other European populations;

one carrier was from Belgium and the other from France, indicating that the inver-

sion is present in other great tit populations as well. In this study, the inversion was

analyzed with a SNP array and by shotgun sequencing. Although the most likely

explanation for suppressed recombination is an inversion (Kirkpatrick, 2010), we

acknowledge that methods such as FISH (Bishop, 2010) and long read sequencing

(Shao et al., 2018) need to be used to confirm the inversion hypothesis. It is feasible,

though unlikely given the size of the region, that suppressed recombination leading

to chromosomal divergence could arise without a chromosomal inversion (Bergero

et al., 2007, 2008, 2013; Natri et al., 2013). For clarity in this discussion we refer to

the putative inversion found here simply as inversion.

In the Dutch population, among the 2,296 birds analyzed after filtering, no ho-

mozygous bird was found. Given that very large inversions can cause homozygous

lethality in songbirds (Tuttle et al., 2016), we investigated if this great tit population
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has significantly fewer homozygous inverted birds than expected. However, given

the low frequency of the inversion, and assuming Hardy-Weinberg Equilibrium, we

would expect less than two homozygous inverted birds and it is thus unclear whether

the complete absence of homozygotes is due to a deleterious recessive effect of the

inversion or whether homozygotes are present in the population but not sampled

in this study. A possible lethal effect of this inversion could be tested by exploring

the frequency of genotypes among offspring of mated carriers. Given the structural

complexity and large size of this inversion, a relevant biological effect could be ex-

pected. A CNV complex located at the downstream breakpoint encloses 32 genes

involved in a wide range of biological processes, which could significantly change

the amounts of the transcripts/proteins due to copy number changes in the genes

located at the CNV complex. Future studies of this inversion polymorphism will

be directed to test the lethality hypothesis and to measure the relative fitness of

wildtype homozygotes, inversion carriers and inversion homozygotes. Indeed, this

future goal was one motivation for developing a cheap and quick method (based on

PCR-RFLP) to more easily type inversion karyotypes.

To identify the inversion without SNP array data, we selected the SNP with high-

est FST value that concomitantly would produce a PCR-RFLP profile capable of

distinguishing between inversion carriers and non-carries. The selected SNP is lo-

cated at the first intron of the PIK3C2G gene, which is within the CNV complex

at one of the putative inversion breakpoints. Along with PIK3C2G, several other

genes are also located in the CNV complex and these genes have crucial roles in

a broad range of processes from cell cycle to gene silencing (supplementary section

3.3 Genes overlapping the CNVR at the CNV complex). Resequenced birds showed

a high number of copies within that genomic region (≈10 copies in two inv-norm

birds). Moreover, the PCR-RFLP gel intensities support at least four genotypes

(three for norm-norm and one for inv-norm birds). Thus, this substantial copy

number change in inv-norm birds could underlie distinct patterns in gene expression

and consequently phenotypic variation. Interestingly, such complex rearrangements

at inversion breakpoints have a key evolutionary roles in other species e.g. an effect

on malaria vectorial capacity in mosquitoes (Sharakhov et al., 2006).

A CNV complex located at the breakpoint seems to be older than the inversion.

Assuming a single origin for this complex, the CNV sequences may be older than

the inversion given that it is present in virtually all inv-norm birds whereas it occurs

at low frequency in norm-norm birds. More than 10% of the norm-norm birds have

at least one CNV overlapping the CNV complex. In addition, a repetitive structure

is usually found at inversion breakpoints underlying their mechanisms of formation

(such as non-allelic homologous recombination - NAHR, Hoffmann & Rieseberg

(2008); Carvalho & Lupski (2016)). Thus, it is possible that the inversion is a

result of the CNV sequences, which underpinned the mechanism of the inversion
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formation. However it remains possible that CNVs are present in the inversion only

due to a ‘hitchhiking’ effect and thus did not necessarily contribute to the inversion’s

formation. The hypothesis that CNVs might have underpinned the formation of

the inversion remains speculative and needs further investigation. Considering the

size of all CNVs associated with the inversion (i.e. complex with ≈10 copies and

another complex of ≈10 copies with an additional region with ≈100 copies, identified

by sequencing) the inverted chromosome is estimated to be approximately 3.5 Mb

larger than the reference sequence reported in genome build 1.1. The greater length

of chromosomes harboring the inversion is in line with the hypothesis of degenerative

expansion in young supergenes (Stolle et al., 2018). However, genetic variation is

not only present in the CNV complex but also at the center of the inversion.

Allele phasing in inv-norm birds is challenging because phasing strategies like BEA-

GLE assume Hardy-Weinberg equilibrium Browning & Browning (2007); this as-

sumption is often violated at inversion genotype-informative SNPs (i.e the vast ma-

jority of the genotype-informative SNPs significantly deviate from HWE). Thus, we

used the genotype distribution (i.e. the proportions of “AA”, “AB” and “BB” geno-

types) to partially explore the haplotypes in the inversion. There are at least two

(and perhaps three or more) putative inversion haplotypes, which are reflected by

the number of AA genotypes at the center of the inversion (located at ≈20-55 Mb

of the Chromosome 1A, Figure 5.3, note the log scale and three distinct groups). In

the LD analysis, only the R2 metric reflected the variation within inv-norm birds

due to SNPs in a block in the center of the inversion. The R2 method has a con-

straint to deal with low frequency alleles (Wray, 2005) whereas D′ is not highly

dependent upon allelic frequencies (Hedrick, 1987). Interestingly, in the inv-norm

population, the frequency of the less common genotype in the informative SNPs at

the R2 LD block (Figure 5.2a) is not as low as in the rest of the inversion (Figure

5.2b). Thus, the distribution of allele frequencies in the inv-norm birds may ex-

plain why the R2 metric does not describe elevated LD, outside the center of the

inversion, and is consistent with the hypothesis of a higher recombination rate in

the center. In other words, because the two different LD measures are not equally

sensitive to rare alleles, and because the allele frequencies seem to be different in

the center of the inversion than elsewhere, one metric finds a pattern that the other

misses. Presumably this is because occasional recombination has caused allele fre-

quencies and LD patterns to be slightly different in the center than in the rest of the

inversion. Due to the expected very low rates of recombination within the inversion

in heterozygotes (Kirkpatrick, 2010), we did not expect multiple haplotypes for the

inversion. However, on timescales of 105 generations or longer, even this limited

recombination works as an important source of variation within inversions (Kirk-

patrick, 2010). Indeed, gene conversion and multiple crossing overs, at least far from

the breakpoints, are possible within inversions (Andolfatto et al., 2001; Hoffmann
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& Rieseberg, 2008; Korunes & Noor, 2018). Thus, rare recombination events may

explain distinct haplotypes found in the center of the inversion. Moreover, as CNVs

can underlie mechanisms of formation and be prone to errors, independent inversion

events and errors during meiosis cannot be discarded.

It is unclear whether the inversion has any phenotypic effects. Nevertheless, the

CNVs identified by sequencing at the CNV complex directly overlap at least three

genes, including CALD1 involved in smooth muscle contraction (Walsh, 1994),

BPGM underlying oxygen sensing in blood cells (Petousi et al., 2014) and the above

mentioned PIK3C2G gene (the other 29 genes overlap a CNVR in the same region

but do not overlap partially CNVs identified by sequencing). In other songbird

species, such as zebra finches (Taeniopygia guttata), sperm morphology and motility

is associated with an inversion in the Z Chromosome (Kim et al., 2017). Moreover,

inversions in zebra finches can have strong additive effects on several morphological

traits and increase mortality rates (Knief et al., 2016). In white-throated sparrows,

which display different plumage morphs and sexual behavior, a large inversion in-

volving up to 1,000 genes and lethal in its homozygous state, has a profound role in

disassortative mating (Tuttle et al., 2016). However, there is no evidence of distinct

morphs in great tit. Thus, if the inversion is underlying any kind of mate choice it

may be reflected by a more subtle trait or behaviour.

5.5 Conclusions

Apart from songbirds, large inversions can underlie a number of phenotypes in na-

ture, ranging from mimicry and crypsis in butterflies and moths (Nadeau et al.,

2016) to meiotic drive in mice (Lyon, 2003). Our detailed characterization of the

variability and complexity of this large inversion provides the foundation for further

studies aiming to discover the phenotypic effects and the evolutionary role of this

inversion.
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5.6 Supplemental material

5.6.1 Supplemental figures

Figure 5.6: PCA for all autosomes in the great tit genome build 1.1.
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Figure 5.7: A-) FST across the Chromosome 5. B-) FST across the chromosome 7.
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Figure 5.8: Cluster patterns, using all informative SNPs on Chromosome 1A, in each

of the possible diploid karyotypes of a chromosome-wide inversion (i.e. norm-norm in

dark blue, inv-norm in brown and inv-inv in orange, from left to right). The x -axis is

the count trend of each karyotype for homozygous SNPs for the alternative allele in the

normal phase. The y-axis is the count trend of each karyotype for heterozygous SNPs.

Therefore, the expectations presented in the upper panel are based on the following

assumptions: (i) inv-norm birds should have higher number of heterozygous SNPs across

the chromosome 1A in comparison with inv-inv or norm-norm and (ii) inv-norm birds

should have an intermediate number of homozygous SNPs for the minor allele in norm

(i.e. “BB”) in comparison with inv-inv or norm-norm. A) Expected clustering patterns.

B) Cluster results from 2,296 great tits which were colored based on the classification

from PCA analysis.
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Figure 5.9: The x -axis represents the genomic coordinates of the CNV complex (i.e.

downstream the inversion breakpoint) whereas the y-axis display the log2 ratio that

reflects the relative copy number across the complex (relative to a norm-norm bird).

Thus, the anti-log of the log2 ratio can be roughly interpreted as the absolute number

of copies (i.e. if log2 ratio = 3.333, then the anti-log is 23.333 = ≈10 copies). A and B

show respectively a female from France and a male from Belgium, which were classified

as inv-norm based on sequencing data.

Figure 5.10: We used 4,124 informative SNPs (i.e. heterozygosity >0.6 in the inv-norm

subpopulation), which are located in the center of the Chromosome 1A (20-60 Mb), to

display the different inversion genotypes distributions in a heatmap. The SNP geno-

types are represented by white (“BB”), light orange (“AB”) and dark orange (“AA”),

respectively. The distinct number of “AA” genotypes in the center of the inversion sug-

gests different haplogroups in approximately 10% of the inv-norm birds (i.e. ten birds).

A) Ten inv-norm birds selected randomly. B) Ten inv-norm birds displaying a distinct

genotype distribution at the center of the inversion. C) Ten norm-norm birds selected

randomly.
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5.6.2 Supplementary methods

5.6.3 Classification confirmation for inversion carriers

Although PCA analysis is expected to produce clusters that distinguish inversion

karyotypes due to genetic differentiation (i.e. both phases with the inversion, only

one or absence of the inversion in both), we confirmed the inversion karyotypes using

two sources of information. (i) Number of heterozygous SNPs and (ii) number of

homologous SNPs for the minor allele in the normal phase, which are expected to

form independent clusters for each inversion genotype in a scatter (XY) plot. For

this confirmation strategy, we only used SNPs with heterozygosity value >0.6 in the

subpopulation with higher values at eigenvector one (i.e. classified as inv-norm by

PCA analysis). Therefore, we reclassified the birds as (i) norm-norm, (ii) inv-norm

and (iii) inv-inv based on the XY plot for comparison with PCA classification.

Selection of the SNP used in the RFLP-PCR

All the SNPs supporting the inversion in the chromosome 1A were ranked by FST

value. Thus, possible RFLP-PCR essays were simulated with the R/Bioconductor

package DECIPHER (Wright, 2016). The SNP AX-100689781 had the second high-

est FST value overall, but had the higher FST value among possible assays and was

then carried forward for the subsequent primer design and enzyme search.

Primer design and enzyme search

In order to design a primer pair and pick a restriction enzyme which is able to

differentiate genotypes at SNP AX-100689781, we first imported the reference se-

quence genome build 1.1 (Laine et al., 2016) with readDNAStringSet function from

Biostrings R/Bioconductor package (v. 2.44.2) (Pagès et al., 2017). The sequence

around the SNP was extracted and then written with writeXStringSet function,

which is also available in Biostrings package. The candidate restriction enzyme was

selected using the group-specific signatures pipeline available in the R/Bioconductor

package DECIPHER manual (Wright, 2016). The primers were designed using

Primer3plus (Untergasser et al., 2007) and their quality was tested by NetPrimer

(http://www.premierbiosoft.com/netprimer. The full nucleotide sequence of the

amplicon (615 bp) can be copied directly from <NCBI>. The genotype-specific cut-

ting patterns on the PCR amplicon (i.e. generated with the primers in Sup Table

5.1) after digestion by the SspI enzyme is exemplified in the Sup Figure 5.11. The

DNA of the selected animals was checked for quality and quantity with Qubit®
Fluorometer.
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Table 5.1: Primers used in the PCR-RFLP analysis.

Sequence

Forward GCCAGGCTCCTTAACATTTTG

Reverse TCAGAGGGAACTGGATCTGC

5.6.4 Supplementary results

Identification of the inversion carriers

We performed an additional test which relies on the assumption that informative

SNPs should cluster birds with the same karyotype, based on the relative number

of heterozygous SNPs and SNP genotypes homozygous for the minor allele in the

normal phase (Sup Figure 5.8a). Thus, we classified the samples into (i) no inversion

as norm-norm (ii) one inverted phase as inv-norm and (iii) two inverted phases as

inv-inv (not found in this population) as in the PCA test. The test reflected the

PCA clustering results and we therefore classified 117 birds as inv-norm and 2,179

as norm-norm (Sup Figure 5.8b).

Quality of the SNPs used in the LD analysis

To make sure that the high incidence of “AA” genotypes in the center of the in-

version for some inv-norm birds is not due to low quality markers, we compared

the consistency of genotypes in the reference genome animal which was genotyped

twice. We split chromosome 1A into 500 tiles (≈140kb each) and estimated the

percentage of concordant genotypes in both assays for each tile. We could not find

any indication of low quality SNPs within the R2 LD block (i.e no lower genotyping

quality in the center of the chromosome, t-test p-value = 0.84).

Genes overlapping the CNVR at the CNV complex

The SNP within the CNV complex, used for inversion detection by PCR-RFLP

(high FST value within the inversion), is placed at the first intron of the PIK3C2G

gene which has crucial role on signaling pathways (Rozycka et al., 1998). Neverthe-

less, the CNV complex in the inversion breakpoint is a gene-rich genomic interval

that encompasses 32 genes (16 with known gene names) that are related to a wide

range of processes (Sup Table 5.2). These genes or its paralogs translate proteins

involved in the cell cycle (PDE3A, RERG and PIK3C2G) (Begum et al., 2011; Zhao

et al., 2017; Rozycka et al., 1998), protein trafficking (PIK3C2G) (Rozycka et al.,
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Figure 5.11: Restriction enzyme digestion of the PCR amplicon considering a 2n state

on the target region (diploid). As the region being analyzed mostly deviates from 2n,

the real patterns may diverge in signal intensity as well. As the GG and AG genotypes

represent mostly norm-norm and inv-norm respectively, norm-norm and inv-norm birds

are expected to show two and four fragments respectively.
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1998), muscle contraction (CALD1 ) (Walsh, 1994), recurrent translocation in can-

cer (LMO3 ) (Chambers & Rabbitts, 2015), spliceosome activity (STRAP) (Seong

et al., 2005; Chari et al., 2008), brain development (PLEKHA5 ) (Yamada et al.,

2012), glucose metabolism (IAPP) (Mulder et al., 1996), oxygen sensing in blood

cells (BPGM ) (Petousi et al., 2014), fat production (MGST1 ) (Littlejohn et al.,

2016), signalling (EPS8 and RERGL) (Lanzetti et al., 2000; Colicelli, 2004), solute

transport (SLC15A5 ) (Hoglund et al., 2011), synapse formation and apoptosis (PT-

PRO) (Jiang et al., 2017; Liang et al., 2017), energy metabolism (DERA), (Salleron

et al., 2014) and even pigmentation by affecting Polycomb activity (AEBP2 ) (Gri-

jzenhout et al., 2016; Kim et al., 2011), which is a key process in gene silencing

(Golbabapour et al., 2013).

To make sure the higher rate of informative SNPs at the CNV complex is not driven

by low quality genotypes at this region, we compared the percentage of consistent

genotypes at the complex with the genotypes in other regions of the chromosome

1A. We found no significant difference (t-test, p-value = 0.75), what suggests that

the number of false positives in this region is not higher than other regions in the

chromosome 1A.
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Table 5.2: Genes overlapping the CNV complex at the downstream breakpoint of the

inversion.

Chromosome Start End Width Name

chr1A 64843171 64844337 1167 LOC107204104

chr1A 64861670 64908113 46444 LOC107205143

chr1A 64874841 64878856 4016 IAPP

chr1A 64919923 64938780 18858 LOC107205182

chr1A 64947738 64989258 41521 LOC107204204

chr1A 64999708 65223576 223869 PDE3A

chr1A 65224970 65233165 8196 LOC107205022

chr1A 65236702 65339065 102364 LOC107205021

chr1A 65274559 65279283 4725 LOC107205023

chr1A 65355652 65396498 40847 LOC107204113

chr1A 65516912 65560642 43731 AEBP2

chr1A 65577008 65743662 166655 PLEKHA5

chr1A 65862206 66091155 228950 PIK3C2G

chr1A 66109620 66118841 9222 RERGL

chr1A 66427883 66437729 9847 LOC107204286

chr1A 66557323 66617748 60426 LMO3

chr1A 66647333 66649964 2632 LOC107204290

chr1A 66674727 66682085 7359 MGST1

chr1A 66709327 66739543 30217 SLC15A5

chr1A 66789556 66833259 43704 DERA

chr1A 66836525 66844259 7735 STRAP

chr1A 66845766 66857357 11592 LOC107204111

chr1A 66873268 67003015 129748 EPS8

chr1A 67004993 67150264 145272 PTPRO

chr1A 67023437 67032017 8581 LOC107204503

chr1A 67191246 67291500 100255 RERG

chr1A 67330974 67366580 35607 LOC107204153

chr1A 67377799 67401512 23714 LOC107204567

chr1A 67400647 67409947 9301 LOC107204566

chr1A 67410594 67581825 171232 CALD1

chr1A 67622020 67640854 18835 LOC107204149

chr1A 67646418 67680793 34376 BPGM
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Patterns in split reads supporting the CNV complex

We manually checked the reads overlapping CNVs which are located nearby to the

downstream breakpoint of the inversion (Sup Table 5.3). Interestingly, we found

read pairs at the breakpoints of the CNVs 1, 2 and 3 to support their structural

rearrangement into a CNV complex (Sup Figure 5.12). However, although the in-

version breakpoint is relatively clear in the SNP-array based results (Figure 5.1),

CNVs identified with sequencing data indicate that the inversion breakpoint may

be placed at the CNV complex. These CNVs belonging to the CNV complex are

nearby to gaps in the reference genome, which adds another layer of complexity to

the interpretation of these variants. Moreover, it is not completely clear how the

≈ 10 copies of the complex are distributed across the genome (e.g. in tandem or

not). Thus, the actual boundaries of the inversion might differ from the breakpoints

found in SNP array results.

Table 5.3: Sequencing coverage in two inv-norm birds

CNV id CNV location PHRED quality French coverage Belgium coverage

CNV1 65.87-65.90 8677.93 112.832 86.658

CNV2 67.56-67.58 8352.07 110.254 102.649

CNV3 67.64-67.65 8677.93 113.469 103.582

CNVup1 63.44-63.46 9274.26 2105.23 2074.36

CNVup2 63.46-63.56 6293.79 83.6796 68.7332
French coverage = read depth of the sequenced sample from a French population

(id = 233, 1A average coverage = 13.15); Belgium coverage = read depth of the

sequenced sample from a Belgium population (id = 973, 1A average coverage =

9.55)
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Abstract

Recessive lethal variants can be maintained in large populations by genetic drift,

balancing selection through a heterozygote advantage or segregation distortion. We

recently reported a large (≈64 Mb) and widespread (≈5% in frequency) inversion

on Chromosome 1A of the great tit (Parus major). Here, we show that this in-

version is recessive lethal as the offspring of 13 wild carrier-by-carrier mating pairs

is composed by 62.5% of heterokaryotypes and 37.5% non-carriers while no ho-

morokaryotypes were found. Moreover, carrier-by-carrier pairs had 20% less eggs

hatched in comparison with carrier-by-normal and normal-by-normal pairs. In pairs

where the father is the carrier, we found twice more carrier offspring than expected

by Mendelian law (≈67%, 69 from 103), suggesting that the inversion is a selfish

arrangement when transmitted by a male. To maintain the inversion around its

observed frequency of ≈2.5%, and taking the segregation distortion strength into

account, the carriers should have a fitness disadvantage of ≈12.7%. In the current

data set of 612 birds the fitness disadvantage for carriers (i.e. lower number of

fledged offspring) is not significant and a larger data-set may be needed to demon-

strate such an association. Therefore, the large recessive lethal inversion in the great

tit has been maintained by segregation distortion but the molecular mechanism and

the fitness disadvantage that is preventing it to have a higher frequency need further

research.
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6.1 Introduction

Inversions are intra-chromosomal genetic variants that result in a reversal gene or-

der and play a crucial role in the evolutionary history of several species (reviewed

in (Hoffmann & Rieseberg, 2008)). Inversions can provide a fitness advantage to

the carriers, which may promote, but does not always lead to fixation (Jones et al.,

2012; Kapun et al., 2016). The mechanisms underlying the maintenance of poly-

morphic inversions include overdominance, epistasis/coadaptation and associative

overdominance (reviewed in (Faria et al., 2019)). In some cases, an inversion can

become a recessive lethal variant by disrupting an essential gene (i.e. deleterious

effect at the breakpoints) or by harboring a recessive allele (e.g. single nucleotide

polymorphisms or copy number variations at essential genes). Inversions which are

homozygous lethal tend to be purged out but they can be maintained when heterozy-

gotes have a fitness advantage over the non-carriers. Lethal alleles under balancing

selection have been identified in natural (Ekblom, 2016) and livestock populations

(Derks et al., 2018), which usually reaches a frequency plateau after a sufficient

number of generations.

Although fitness advantage can drive the maintenance of lethal variants under

Mendel’s law of equal segregation, some alleles can deviate from Mendel inheri-

tance and show a different rate of transmission than alternative alleles (Sandler &

Golic, 1985). Thus, these variants can exert advantage in the intragenomic con-

flict instead, leading to a fitness advantage to the carrier itself (Sandler & Novitski,

1957). Unequal allele segregation can have a profound evolutionary impact because

‘selfish’ variants can be maintained across generations even if they have a selective

disadvantage to their carriers (review on the evolutionary impacts of meiotic drive

in (Lindholm et al., 2016)). Segregation distortion, or meiotic drive, can involve

biological processes that are strictly linked to females or males. Elements associated

with chromosome structure as centromeres and telomeres can exploit female meiosis

asymmetry of some species to promote its preferential inclusion in ova (Fishman &

Kelly, 2015; Chmátal et al., 2014; Didion et al., 2015). Otherwise, the male-related

meiotic drive is usually linked to their sperm dynamics. In males, drive elements can

obtain a higher transmission rate by killing the sperm that lacks the meiotic variant

(Wu et al., 1988; Merrill, 1999; Larracuente & Presgraves, 2012) or by improving

the motility of carrier sperms (Sutter & Lindholm, 2016; Kim et al., 2017).

In birds, inversions are associated with traits or behaviours related to reproduction

such as male morphology (Lamichhaney et al., 2016), improved sperm motility (Kim

et al., 2017) and disassortative mating (Tuttle et al., 2016). In ruffs (Philomachus

pugnax ), a nested inversion is associated with different male morphs, i.e. indepen-

dents (dominant), satellites (submissive) and feathers (mimicry female plumage),
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which may lead to three different reproductive strategies (Lamichhaney et al., 2016).

The white-throated sparrow (Zonotrichia albicollis) displays disassortative mating

among morphs, which in turn are defined by a large inversion encompassing more

than 1,000 genes that is recessive lethal (Tuttle et al., 2016). In the zebra finch

(Taeniopygia guttata) the majority of the genetic variation in sperm morphology is

caused by an inversion polymorphism, which is located in the Z Chromosome (Kim

et al., 2017). These results in zebra finch support that meiotic drive is maintain-

ing this sex-linked inversion because heterozygous males have the fastest and most

successful sperm.

Here we used great tits (Parus major) to investigate meiotic drive and fitness as-

sociated with a large and widespread putative inversion, which encompasses almost

1,000 genes and is located on the Chromosome 1A of these species (a detailed anal-

ysis on this inversion can be found in (da Silva et al., 2019)).

6.2 Material and methods

6.2.1 Sample description and inversion profiling

A total of 2,296 birds were previously genotyped (da Silva et al., 2019) at Edin-

burgh Genomics (Edinburgh, United Kingdom) on a custom made Affymetrix®
great tit 650K SNP chip (Kim et al., 2018) and then classified for the inversion.

In addition, 134 birds (55 chicks, 6 mothers and 73 fathers) were profiled by a

PCR-RFLP diagnostic assay (PCR-RFLP profiles are described in detail elsewhere

(da Silva et al., 2019)). In the end, a total of 229 females and 182 males belonging

to 306 different mating pairs with fitness-related seasonal measurements recorded

were used to investigate the inversion effects on fitness. These pairs are classified

as 11 carrier-by-carrier, 146 carrier-by-normal (17 carrier (male)-by-normal and 129

carrier (female)-by-normal) and 149 normal-by-normal.

To investigate whether the inversion follows what is expected in a recessive lethal

variant, we used 56 chicks from the 11 carrier-by-carrier mating pairs, which had

13 broods profiled for the inversion (two pairs had both a first and a replacement

clutch in the same year). Moreover, to detect any sign of segregation distortion (i.e.

meiotic drive) in the inversion, we analyzed 27 carrier-by-normal mating pairs (total

of 30 broods), 12 carrier (male)-by-normal and 15 carrier (female)-by-normal, which

had a total of 105 chicks profiled for the inversion by a PCR-RFLP diagnostic assay

(da Silva et al., 2019).
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6.2.2 Testing for extra-pair offspring

A substantial proportion of the offspring are not sired by the social male in great tits.

Thus, extra-pair paternity rate may be important to clarify real father-offspring re-

lationships to properly investigate the inversion inheritance. After DNA extraction

PCR was performed using five microsatellite DNA loci: PmaTAGAn71, PmaGAn27,

PmaTGAn33, PmaC25, and PmaD105, as described elsewhere (Saladin et al., 2003).

Separation of the PCR fragments took place using an ABI 3130 Genetic Analyzer

(Thermo Fisher Scientific, Waltham, MA). The capillary electrophorese results of

the ABI were analyzed with the software GeneMapper 5.0 (Thermo Fisher Scien-

tific, Waltham, MA) to determine the sizes of the amplification products. A chick

was categorized as extra pair if three or more loci mismatched with the social fa-

ther.

6.2.3 Inversion association with fitness components

Seasonal measurements such as egg-laying dates, clutch size, number of hatched eggs

and number of fledged chicks have been recorded in our long-term study great tit

populations on the ‘Veluwe’ area close to Arnhem (52◦02’ N, 5◦50’ E, the Nether-

lands) since the 1955. In this study area nest boxes are widely available so almost

the entire population breed in boxes and can be monitored.

The mean of the seasonal measurements (i.e. fitness components) differ between

years (as they are strongly affected by spring temperature and other environmental

variables, (Gienapp et al., 2005)) and among areas. We therefore fitted the following

model to all fitness components for the entire population (i.e. birds with and without

genotypes):

yi,j = µ+ βj + βa + pei + ε

with yi,j being a fitness component i in year j, µ the overall intercept, βj and

βa the fixed effects for year (as factor) and area (Buunderkamp-NL, Westerheide-

NL, Roekelse Bos-NL, Hoge Veluwe-NL or Oosterhout-NL), respectively and pei the

random permanent environmental effect of mother i. We then used the year and

area estimates from this model to correct the fitness components of the genotyped

individuals for year and area effects. We performed this two-step approach, instead

of fitting year and area directly in the linear mixed models that are described below,

because not all individuals in all years were genotyped (and for some year/area

combinations only very few individuals), which could have led to inaccuracy and/or

bias in the estimates for year-area combinations by using only the few mating pairs

that have full family and inversion genotype information available.

We used a linear mixed model to detect the association strength between our four
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fitness-related measures and the inversion haplotype of the respective mating pairs.

As there were no homozygous inversions detected (da Silva et al., 2019), we only have

birds which are heterozygous for the inversion (carriers) or those that are non-carriers

in this analysis. Therefore, we compared (i) egg-laying date, (ii) clutch size, (iii)

number of hatched eggs and (iv) number of fledged chicks among all three possible

mating pairs combinations for the inversion: (i) carrier-by-carrier, (ii) carrier-by-

normal and (iii) normal-by-normal.

y′i,j = µ+ invi + agei +motheri + fatheri + ei,j

y′i,j being the fitness component corrected for year and area effects in the mating pair

i in year j, µ the overall intercept, invi the mating pair combination (i.e. carrier-

by-carrier, carrier-by-normal or normal-by-normal), agei the age of the mother (the

age of the father is mostly unknown), motheri is the random effect of the mother

and fatheri is the random effect of the father from each respective brood.

The association between fitness components and mating pairs can expose how the

combination of the inversion genotype in the parents affect these seasonal mea-

surements. However, the individual association with fitness might be also useful

to better understand what is maintaining this inversion and can be more easily

plugged into subsequent simulations. Thus, we associated the inversion genotype

of each individual with the fitness component that would best reflect fitness among

our measurements (i.e. number of fledged chicks).

y′i,j = µ+ invi + agei + sexi + pei + ei,j

y′i,j being the number of fledged birds corrected for year and area effects in the bird i

in year j, µ the overall intercept, invi the bird genotype (i.e. carrier or non-carrier),

agei the age bird if available, sexi the sex of the bird and pei random effect of the

individual.

The models were fitted with the lmer function from lme4 R package (version 1.1-21,

Bates et al. (2015)). The models were fitted using REML and the p-values derived

using the Wald chisquare test with Anova function implemented in the car R package

(Fox & Weisberg, 2011). A post-hoc test to explore differences between means in

different mating pairs while controlling the family error rate was carried with the

Tukey method (Tukey, 1949), which is implemented in the emmeans function from

the R package emmeans (version 1.3.3, (Lenth, 2019)).

6.2.4 Simulations on drift-selection and statistical power of the fitness

association

To investigate fitness advantage/disadvantage of heterozygotes that would be needed

to explain the maintenance of a variant with the same singularities of the inversion
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(i.e. recessive lethal and selfish and with frequency of 2.5%), we empirically simu-

lated drift-selection scenarios. In all tested scenarios (i) the fitness of the homozygote

was set to zero and (ii) the gamete proportions transmitted to each subsequent gener-

ation were intentionally weighted to account for the observed segregation distortion

in males (the inversion is inherited in 70% of the offspring instead 50% in carrier

males whereas maintained under Mendelian law for carrier females). We used the ef-

fective population size of 5.7x105 individuals, as previously estimated from pairwise

sequential Markovian coalescent analysis (Laine et al., 2016). We modified the source

code of Shiny/R package driftR (https://cjbattey.shinyapps.io/driftR/) to

perform the drift-selection simulation as described above.

Next, we estimated the number of birds that would be required to find the fitness

difference as predicted by the drift-selection simulation that is described above. The

observed data-set (i.e. observed number of fledged birds) and the above described

model was used to simulate an association analysis with simr R package (version

1.0.5, Green & MacLeod (2016)), which can predict the sample size required to

significantly expose the expected effect of this inversion on individual fitness. In the

model used for the simulation, the fixed effect of the inversion genotype (i.e. carrier)

was modified, as suggested in powerSim function from simr R package (version 1.0.5,

Green & MacLeod (2016)), to reflect the expected fitness advantage/disadvantage

of heterozygotes that were obtained by drift-selection simulation.

6.3 Results

6.3.1 Inheritance patterns of a recessive lethal variant

In inversion carrier-by-carrier pairs we expect 66.65% of the chicks to be carriers and

33.35% to be non-carriers (i.e. here defined as ‘normal’) assuming an inheritance

model where the inversion is a fatal recessive allele. The 11 carrier-by-carrier pairs,

which produced 13 broods, had 62.5% (35 chicks) of the offspring as carrier and

37.5% (21 chicks) as normal, in agreement with homozygous lethality.

6.3.2 Inheritance patterns displaying segregation distortion

The carrier-by-normal pairs are expected to have half of the offspring as carriers

and the other half as normal if we assume that the inversion follows the Mendelian

inheritance. In carrier-by-normal pairs, the inversion inheritance clearly deviates

from what is expected for a genetic variant following the Mendelian law (i.e. 50%

carriers and 50% normal chicks). We found that the offspring in these pairs follows
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Mendelian inheritance only when the mother is the carrier. In this case, from 102

chicks, 50 (49%) are normal and 52 (51%) are carriers. By contrast, when the father

is the carrier, from 103 chicks, 34 (33%) are normal and 69 (67%) are carriers.

Note however that not all offspring will be sired by the social male. We therefore

determined which of the offspring of the carrier males were extra-pair offspring and

found that 14 out of 34 were extra-pair, and these were all normal offspring. Thus,

the percentage of carrier chicks of carrier males is 77.5%.

6.3.3 Association of the inversion with fitness

We evaluated the effect of the combination of the inversion genotype in mating pairs

on two traits; (i) egg-laying dates and (ii) clutch size; and two fitness measurements;

(i) number of hatched eggs and (ii) number of fledged chicks. Only the number of

hatched eggs was significantly lower in carrier-by-carrier (5.9 eggs in average) in com-

parison with carrier-by-normal (7.38 eggs) and normal-by-normal (7.37 eggs) pairs

(Tukey multiple comparison p-values 0.0026 and 0.001, respectively, Figure 6.1). In

fact, the ratio between clutch size and the number of hatched eggs is clearly different

among carrier-by-carriers and the other two pair classes, which further supports the

homozygous lethality of the inversion.
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Figure 6.1: Association of fitness-related measurements with mating pair

classes. A lower number of hatched eggs was observed in carrier-by-carrier in compar-

ison with carrier-by-normal and normal-by-normal mating pairs (p-values 0.0026 and

0.001, respectively). All ‘carrier’ birds harbor a large inversion on the Chromosome

1A, for which they are heterozygous. All ‘normal’ birds are non-carriers. The inversion

is fatal in homozygous condition. The number of hatched eggs is significantly higher

in mating pairs with at least one non-carrier (i.e. normal-by-normal and carrier-by-

normal) compared to carrier-by-carrier. None of the other fitness-related measurements

significantly differ between mating pair classes.

Although we found no direct association between mating pair classes and the ma-

jority of the fitness-related measurements, fitness advantage/disadvantage may be

expressed at individual level. Thus, we additionally associated individual genotypes

(i.e. carrier or normal) with the measurement that would be best reflect fitness, i.e.

their number of fledged chicks. In accordance with the results using mating pair

classes, being carrier is also not significantly associated with the number of fledged

chicks (p-value = 0.55).
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To quantify the expected fitness advantage/disadvantage caused by the inversion on

the carriers, we simulated a drift-selection scenario in which an allele follows all the

inversion singularities (i.e. 2.5% in frequency plateau, recessive lethality and selfish-

ness). The inversion frequency in the population should reach a plateau around the

observed frequency of 2.5% in approximately 400 generations after its formation,

when the relative fitness disadvantage of the carriers is assumed to be approxi-

mately 12.7% (Figure 6.2a). In a drift-selection scenario that the carriers have no

fitness disadvantage but the inversion is equally selfish, the allele frequency should

be much higher than what is observed in our population (≈14.5% in frequency,

Figure 6.2b).

Figure 6.2: Drift and selection of the inversion in great tit species. The y-axis

is the frequency of the inversion allele under a drift-selection scenario that considers its

selfish nature (i.e. 70/30 inheritance ratio) and recessive lethality (homozygotes have

relative fitness, i.e. w, set to 0). A-) Assuming the w disadvantage of the carriers to

be ≈-12.7%. B-) Assuming w carriers and non-carriers to be equal, which shows the

expected increase in the inversion frequency due to drift alone.

As we have a limited number of birds concomitantly profiled for (i) the inversion and

(ii) number of fledged offspring, the expected relative fitness disadvantage of 12.7%

might be undetectable with our current statistical power. Therefore, we estimated

the sample size that would be required to reach a significant association. Using
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results and settings from the drift-selection simulation, we used the linear mixed

model used for the individual fitness association under different simulated sample

sizes. In order to reach a reasonable statistical power, i.e. around 80%, it would be

necessary to obtain more birds than what is available in our current data-set. The

statistical power that is expected by the sample size of our current data-set (612

birds) is in median 69.50% (95% confidence interval of 1,000 simulations ranging

from 66.54 to 72.32% in power). Extending invi by one level in the model, the power

should be in median 100% (95% confidence interval of 100 simulations ranging from

99.63 to 100% in power). Thus, we extended the number of samples within each

level of invi to accommodate from 300 (roughly the data-set available in this study)

to 600 observations. By using a data-set of ≈730 birds would be possible to achieve

a statistical power around 80%.

6.4 Discussion

The large inversion investigated in this study is located on the Chromosome 1A of the

great tit genome and encompasses almost 1,000 genes. It is widespread over different

European populations and has an observed carrier frequency of approximately 5% as

well as high structural complexity, which evidences recombination in the center that

supports that the inversion is more than 105 generations old (da Silva et al., 2019).

Thus, this observed carrier frequency is likely stable, given that this inversion is not

young enough to be still increasing towards its frequency plateau (i.e. it is unlikely

that the inversion is younger than 400 generations, Figure 6.2a). A stable frequency

far from fixation, after a number of generations, is expected for a deleterious variant

under balancing selection Derks et al. (2018), which therefore may be the case for

this inversion in the great tit genome.

In a model where the inversion can occur in homozygous state, a cross between two

carriers should generate 25% of homozygous carriers. However, this was not observed

in our data given that we obtained approximately 65% of heterozygous carriers and

35% of non-carriers from carrier-by-carrier pairs. Moreover, the number of hatched

eggs is approximately 20% lower in carrier-by-carrier in comparison with other mat-

ing pairs, which is close to what is expected for a recessive lethal variant where at

least 25% of the eggs in a clutch do not have a viable embryo. Thus, our results

support that the lack of homozygotes in our population (da Silva et al., 2019) is

because the inversion is actually lethal in homozygous state, precluding homozygote

offspring in carrier-by-carriers. A comparable inversion in white-throated sparrows,

which is also very large and comprises around 1,000 genes, may rarely happen in

homozygous state Tuttle et al. (2016). However, in great tits it is still unclear if

homozygous birds exist in nature in such extreme low rates. As the inversion en-
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compasses a large number of genes, it can be challenging to find a candidate gene to

explain the homozygous lethality of this inversion. However, based on sequencing

data, there are three genes in the inversion downstream breakpoint of the inversion

that could be potentially broken (da Silva et al., 2019) (i) Bisphosphoglycerate Mu-

tase (BPGM ), (ii) Caldesmon 1 CALD1 and (iii) Phosphatidylinositol-4-Phosphate

3-Kinase Catalytic Subunit Type 2 Gamma (PIK3C2G). BPGM underlies oxygen

sensing in blood cells Petousi et al. (2014) and the levels of oxygen have an impor-

tant role on embryonic differentiation (Simon & Keith, 2008). Functional domains

of the Caldesmon protein are necessary for the development of the early embryo

as homozygous recessive mice do not develop (Deng et al., 2013). PIK3C2G gene

could be also a candidate gene to explain the inversion lethality given that knockouts

of other genes in the PI3K family lead to embryonic lethality in mouse (Bi et al.,

1999). Thus, future studies focusing on these potential genes could clarify the actual

molecular mechanism behind the homozygous lethality of the inversion.

It may be challenging to narrow down to the gene, or genes, which actually underlie

the lethality of the inversion. However, the recessive lethality of the inversion is

clearly reflected by the significant decrease in the number of hatched eggs in carrier-

by-carriers. Thus, to surpass the disadvantage of being lethal, the inversion should

confer a fitness advantage to the carriers or otherwise break Mendel’s law. There

are known examples of haplotypes harboring inversions in other species, such as the

t-haplotype in mouse (Kelemen & Vicoso, 2018), which shows meiotic drive and

therefore breaks Mendel’s law (i.e. the transmission of the haplotype containing

inversions is favoured and is therefore designated as a ‘selfish gene’). Thus, it was

important to determine if the inversion shows any sign of meiotic drive reflected

on the offspring ratios. To answer this question, we analyzed 27 carrier-by-normal

mating pairs, which have in total 105 birds profiled for the inversion. In carrier-

by-normal pairs that have female as carrier, the offspring proportions support a

normal Mendelian inheritance. By contrast, pairs in which the male is the car-

rier, the number of carrier offspring is approximately twice higher than expected

by Mendelian inheritance, suggesting that the inversion can behave as a ‘selfish’

arrangement. Therefore, it is plausible to assume a sperm-related meiotic drive

mechanism underlying the segregation distortion of this inversion.

There are a growing number of genetic variants that selfishly interfere on gamete

production to increase their own rate of transmission (Lindholm et al., 2016), which

can rely on a female- or male-specific biological mechanism. In males, segregation

distortion can be achieved by a molecular mechanism that kills sperms lacking the

selfish variant (Bravo Núñez et al., 2018). A truncated version of the RanGAP gene

protein in drosophila, which is produced by gametes harboring a selfish gene, kills

developing wild-type spermatids through an interaction with a wild-type specific

satellite (Larracuente & Presgraves, 2012). Interestingly, the RANGAP1 gene in
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great tits is located at the center of the Chromosome 1A, within the inversion

genomic interval that is recombinant in 10% of the carriers da Silva et al. (2019).

As the rate of extra-paternity pairs (EPP) in carrier (male)-by-normal pairs seems

to be within the range that was previously reported for great tits (i.e. around

14%, (Blakey, 2008)), there is no evidence of sperm competition among the social

carrier males and real sires (e.g. high extra-paternity rate could suggest lower semen

quality in carriers). The actual mechanism of segregation distortion of this inversion

still needs to be clarified, but our current results indicate that meiotic drive plays

a central role in the maintenance of this recessive lethal inversion. However, the

observed meiotic drive ratios may lead the inversion to a higher frequency than

what is observed in our great tit population.

Drift-selection simulation (Wright, 1931) is a useful tool to understand the evolu-

tionary dynamics of a genetic variant over time. By defining the fitness for each

genotype as well the effective population size, drift should be taken into account

to display the likely change in frequency over time. Specifically for the inversion,

homozygotes should have fitness equal to zero, as they are unable to survive, and

weighed gamete inheritance in each generation should be considered to account for

the segregation distortion. We found that the inversion is expected to reach a stable

frequency around 14.5% if no fitness disadvantage exists in heterozygotes. Thus, as

the inversion is old enough to have reached its frequency plateau (da Silva et al.,

2019), a fitness disadvantage should be present to explain the inversion frequency

that is around 2.5% (da Silva et al., 2019).

Given that the 1A inversion may confer a fitness disadvantage to its carriers, a fitness

component is expected to be associated with this variant. However, given that 25%

of the carrier-by-carrier offspring is expected to be non-viable, the fitness associated

to each of the possible mating pair combinations may be more informative than in-

dividual genotypes to understand the fitness advantage of this inversion. Therefore,

we separately compared four fitness-related measurements (i.e. egg-laying dates,

clutch size, number of hatched eggs and number of fledged chicks) among each

of the three possible mating pairs (i.e. carrier-by-carrier, carrier-by-normal and

normal-by-normal). However, excepting the number of hatched eggs, which exposes

the inversion recessive lethality, all other fitness components were not significantly

associated with mating pair inversion genotypes. In addition to mating pairs, we

checked if our best proxy for fitness, the number of fledged chicks, was associated

with being a carrier. The results were similarly negative as fledgling is not associated

with the inversion, even in our model that considers the sex of the carrier. How-

ever, as our drift-selection scenario supports fitness disadvantage in heterozygotes,

is important to understand the statistical power of our analyses to see if more birds

would be required to find such an association.
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To understand the effect of the inversion on heterozygotes, we used a linear mixed

model to associate the carrier/non-carrier with the number of fledged chicks. How-

ever, the fixed effect that was observed for the inversion, on the number of fledged

chicks, is more than four times lower than predicted by drift-selection simulation

and clearly not significant. Assuming that the fixed effect predicted by the drift-

selection simulation may be reflected on the number of fledged chicks, a reasonable

statistical power may be achieved with a larger data-set. However, as drift-selection

simulation considered a scenario where both sexes are present in comparable pro-

portions, this difference between observed and expected fixed effect could be due to

the limited sample size or to the unequal rate between male/female carriers in our

association data-set. Otherwise, the expected fitness difference between carriers and

non-carriers could be due to a completely different fitness component, which is not

available in our population or was not captured by our experimental design. For

example, a hypothetical higher probability to mate in a given breeding season in

non-carriers could impose them a considerable fitness disadvantage, but the number

of fledged birds would still not differ between carriers and non-carriers.

6.5 Conclusion

It is unclear if this inversion is associated with any phenotype related to mating be-

haviour, such as inversions linked with different morphs in ruffs and white-throated

sparrows (Tuttle et al., 2016; Lamichhaney et al., 2016). Therefore, association

studies other than number of fledged chicks as well as deeper understanding about

the inversion sequences related to its respective meiotic drive system may assist in

the discovery of the actual biological mechanism maintaining this large and complex

inversion.



Chapter 7

General discussion
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7.1 Introduction

Great tit (Parus major) is a songbird that has been widely used as a model species in

ecology and evolution. Structural variants (SVs) have been increasingly explored in

wild populations to better understand the evolution and ecology of different species.

In this thesis, I have performed a detailed study of SVs in the great tit genome.

However, the high technical and biological variation present in SVs posed challenges

for their study. SVs can be complex due to the combination of different structural

rearrangements (e.g. changes in copy number, inversions and translocations). How-

ever, changes in copy number (i.e. copy number variations - CNVs) are relatively

easier to detect and may highlight more complex regions in the genome. Although

easier to study, CNVs are also prone to technical variation, which can lead to a

substantial number of false positive and negative CNV calls. Thus, I will discuss

here how a detailed analysis of the genomic architecture underlying CNVs was used

to deal with part of this technical variation. Moreover, I will discuss here how the

ratio between expected and obtained CNV inheritance was also used to quantify and

better classify the technical variation present in this CNV study. The understanding

of technical variation in a CNV study is essential to perform subsequent analyses

such as CNV-based genome-wide association studies (GWAS). However, the bio-

logical variation that is usually present in CNVs can be also challenging to deal

with and interfere with the GWAS results. Overlapping CNVs can have different

breakpoints and copy number states, which may complicate their classification into

loci. Thus, an oversimplification of CNV loci may lead to wrong association results.

I will discuss here how the CNV-based GWAS method proposed in this thesis was

used to tackle part of this inherent biological variation in CNVs. Therefore, I will

discuss here how this method was used to better understand the effect of CNVs on

the seasonal timing in great tits. Moreover, I discuss here how the same CNV-based

GWAS method can be used to study other fitness components and phenotypes in a

species-independent manner. Although more accessible, CNVs represent only part

of all SVs in a genome. Therefore, I discuss the identification and characterization

of a large inversion in the great tit genome and how CNVs may be underlying it.

Finally, I explore the recessive lethality and the selfish nature of this remarkable

large inversion in the great tit genome.
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7.2 Genomic architecture and inheritance reflects

the confidence of CNV detection

The majority of the studies aiming to identify CNVs disregard the genomic archi-

tecture that is expected to be associated with these variants. Certain features in

the genome are known to underlie CNV formation (Carvalho & Lupski, 2016) and

are therefore expected to be enriched at CNV regions (CNVRs). Genomic features

such as CpG islands, segmental duplications (LDs) and AT-rich segments can be

generally defined as local genomic architecture, which underlies a region-specific

replication efficiency. Replication-based mechanisms (RBMs) are less stable when

replicating repetitive regions of the genome, which may promote the formation of

new structural variants in these genomic regions (Carvalho & Lupski, 2016). For

example, a non-allelic homologous recombination (NAHR) can occur between two

intervals of the genome that have high sequence homology but are not alleles. Low

copy repeats (LCRs) are highly homologous sequence elements that more often en-

dure NAHR events, which in turn underlie the higher structural variability present

within and in the vicinity LCRs. LCRs with lower similarity tend to be older than

highly similar LCRs as each copy has longer been following an independent evolu-

tionary path (Chaudhry et al., 2018). The higher incidence of CNVs at more recent

LCRs is known in humans and was important to further understand the role of

structural variants in the human-chimpanzee speciation (Perry, 2008). In great tits,

LCRs that are enriched at or in the vicinity of CNVs show at least 98% identity

(Chapter 2, Figure 2.4), confirming the expectation that recombination mech-

anisms, such as NAHR, may become less frequent as identity between sequences

decreases. Therefore, a robust permutation overlap analysis between CNVs and the

genomic features expected to be underlying their formation, i.e. such as LCRs, can

be used to improve the knowledge on the molecular evolution of species as well as

to assist in the assessment of false negative-positive assessment in CNVs.

By knowing the mechanisms underlying CNV formation, it is possible to tag ge-

nomic intervals that have a higher chance of harboring structural variations. If the

CNVs identified in a study overlap such genomic features associated with CNV for-

mation more than expected by chance, the CNV data-set under study may have an

acceptable false-positive rate (i.e. CNV calls are not randomly distributed across

the genome). In this thesis I have identified and compiled a collection of features

associated with the formation of structural variants to understand their genomic

colocalization with CNVs in the great tit genome. Apart from (i) LCRs, genomic

features such as (ii) Interspersed repeats and low complexity DNA sequences, (iii)

CpG sites, (iv) Transcription start sites (TSSs) and (v) AT-rich regions were also

analyzed by overlap permutation to understand if CNVs usually colocate with these
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features. It was interesting to note that the overlap of CNVs with all the analyzed

genomic features quite deviates from what is expected by chance.

The frequency of a CNV in a population is an important factor to consider before

looking into their overlap with certain genomic architecture. For example, it is

known that non-recurrent CNVs (i.e. rare arrangements) are enriched at genomic

regions that are prone to break (Carvalho & Lupski, 2016), which is reflected by

the inverse relationship between CNV frequency and overlap count with AT-rich

sequences in great tits (Chapter 2 of this thesis). Non-recurrent, or de novo,

mutations have been shown to be functionally relevant (Veltman & Brunner, 2012),

but CNVs usually follow Mendelian inheritance (Locke et al., 2006). Thus, if family

information is available, analyses on the CNV inheritance can also confer more

reliability to a CNV study by highlighting CNVs which are following the Mendelian

law. We found a significant correlation between CNV inheritance ratio and their

number of underlying SNP probes. As most of CNVs follow Mendelian inheritance,

the higher proportion of inherited CNVs in calls supported by a higher number of

probes show that a lower false negative-positive ratio may be achieved in regions

with a higher SNP probe density. However, the use of independent platforms may

be important to overcome this, and other, platform related bias and disentangle

technical and biological variation (Li & Olivier, 2013).

Due to high variability and sometimes low resolution of the different methods and

platforms that are able to detect CNVs (Li & Olivier, 2013), the use of more than one

platform is desirable to better understand the false negative-positive ratio in a CNV

data-set. This is sometimes denominated as ‘validation’ and can be accomplished

by quantitative PCR (qPCR) (D’haene et al., 2010) or genome sequencing (Xie &

Tammi, 2009a) when using a SNP array as the primary platform. The CNV data-

set identified in our great tit population, with a species-specific high density SNP

array (Kim et al., 2018), had a group of CNVs validated by qPCR that obtained

a high validation rate (>90%, Chapter 2). However, as the inheritance patterns

show that CNVs supported by a lower number of SNP probes tend to have an

unexpected lower inheritance ratio, it is likely that the number of false negative

CNVs is much higher than the false positives, at least in short CNVs. Although

intraspecific genomic architecture is useful to define expected CNV distribution in

a genome, existent interspecific genomic similarity (i.e. ‘synteny’ between species)

can also tag genomic regions that are prone to harbor CNVs.
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7.3 Interspecific evolutionary breakpoints are en-

riched in CNVs

Speciation, by which populations evolve by genetic selection into distinct species, is

the evolutionary process responsible for the remarkable biodiversity on our planet.

The genomic variation among species can then be explored by comparative genomics

(Hardison, 2003), which shed a light on the association between phenotypic evolu-

tion (i.e. traits differing between species) and molecular evolution of the genome.

The comparison among the genomes of different species can reveal genomic inter-

vals, large gene-containing segments, that can be species-specific as well as intervals

from a common ancestor. The genomic intervals that are conserved between species

reflect the ‘synteny’ between their genomes (Sankoff, 2009). By contrast, genomic

intervals flanking these syntenic regions harbor evolutionary breakpoints, which ex-

pose changes in the genome likely caused by speciation (Ruiz-Herrera et al., 2006).

Repetitive elements are common at these evolutionary breakpoints (Longo et al.,

2009), supporting that CNVs play a central role in speciation. Thus, the expected

and observed overlap between CNVs and evolutionary footprints can be used to

check the reliability of CNVs and their colocalization with evolutionary breakpoints

in multiple pairwise comparisons between species.

The evolutionary breakpoints between great tit and chicken as well as zebra finch

both overlap with CNVRs more than expected by chance, fitting the expected en-

richment at these regions. In fact, homologous synteny blocks and evolutionary

breakpoint regions reflect different evolutionary histories by harboring remarkably

distinct types of genetic variation and gene profile (Larkin et al., 2009). Syntenic

regions are enriched with conserved genes related to the development of the cen-

tral nervous and other organ systems in mammals (Larkin et al., 2009). By con-

trast, evolutionary breakpoints may act as a major structural variability reservoir

that underlies adaptive phenotypes (Larkin et al., 2009). Interestingly, evolutionary

breakpoints in great tit, and consequently CNVs, are enriched with genes related

to neuronal and cardiac processes. Therefore, phenotypic differences in the ner-

vous system as well as in certain organs, such as the heart, may play a central role

specifically in the bird speciation. Albeit selection drives speciation, the biodiversity

within the same species is also propelled by selection. Thus, intraspecific genomic

variation is also relevant to clarify the evolutionary history of a species. Thus, in-

traspecific genomic variation associated with certain traits cannot be detected by

comparative genomics. Otherwise, genome-wide association studies (GWAS) are

able to detect genetic variants that may underlie differences among individuals in a

population (Visscher et al., 2017). Therefore, the study of phenotypes and fitness

components, e.g. the egg-laying date in birds, might be able to reveal how changes
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in copy number underlie intraspecific biodiversity in great tit.

7.4 Methods in CNV-based genome-wide associ-

ation studies

CNV effects on phenotypes have been increasingly studied but open-source software

to perform association analyses with CNVs are rare and mainly focused on case-

control associations (Kim et al., 2012; Barnes & Plagnol, 2017; Larsen et al., 2018).

Although most of the software available for CNV association are case-control based,

there are a few options to associate quantitative traits with CNVs. A software im-

plemented in Java that allows the analysis of quantitative phenotypes is CONAN

(Forer et al., 2010), but the software focuses on the human genome and is only avail-

able upon request. R is a language and environment for statistical computing and

graphics (R Core Team, 2019), which has been used to orchestrate high-throughput

genomic analysis in large part by packages available at the Bioconductor repository

(Huber et al., 2015). Thus, using Bioconductor packages and architecture as a foun-

dation to construct a new R package, for a high-throughput genomic analysis, can

improve the integration among currently available and future pipelines and their

performance. The CNVasso (Subirana et al., 2011) R package allows quantitative

phenotypes and includes good model flexibility. However, CNVasso currently does

not discuss exiting methods to define CNV loci and does not make use of the Bio-

conductor architecture to deal with CNV calls, like is done by e.g. GenomicRanges

(Lawrence et al., 2013) and RaggedExperiment (Morgan & Ramos, 2019).

In Chapter 4 we further developed an existing CNV-based association strategy

(da Silva et al., 2016; Geistlinger et al., 2018), which was used to perform the study

presented in Chapter 3, into a R/Bioconductor package (Chapter 4) to allow

the reproducibility of the observed results as well as provide a new freely available

tool to the scientific community. The package was named after CNVRanger and

provides a wide set of functions to deal with (i) concatenation of CNV loci and

their association with (ii) phenotypes and (iii) gene expression. In addition, the

CNVRanger package allows genome-wide association of raw intensity signals (i.e.

Log R Ratios) with quantitative phenotypes, instead CNV calls directly, which can

be used along the results from CNV calls to improve the reliability of the results

in CNV data-sets containing a high number of false negatives (e.g. such as the

great tit data-set explored in Chapter 2). Moreover, this first core version of

the CNVRanger package described in Chapter 4 lays the foundation to better

translate well-established analyses in SNPs to CNVs in the future. For example,

future versions of the package may allow linear mixed models in the association

with phenotypes (already available in a development branch in github and used for
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the CNV-GWAS applied in Chapter 3) as well as relevant analyses in evolutionary

studies such as V st (i.e. to compare different populations, (Redon et al., 2006a)).

Therefore, in a nutshell, CNVRanger aims to continuously integrate and standardize

populational analysis of CNVs into the Bioconductor environment.

7.5 Association of CNVs with phenotypes

CNVs underlie a large proportion of the genetic variability in humans and different

livestock and wild species (Zarrei et al., 2015; Upadhyay et al., 2017; Prunier et al.,

2017). In fact, the percentage of the genome that is encompassed by CNVs is usually

higher than SNPs (Shlien & Malkin, 2009). Thus, phenotypic variability coming

from CNVs allows natural or artificial selection towards more adapted or intended

traits. As it has been shown that CNVs can confer adaptability in rapidly changing

environments (Simam et al., 2018; Chain et al., 2014; Prunier et al., 2017), genetic

variation in seasonal timing of reproduction, which has been shifting under global

warming (Kentie et al., 2018), may be also associated with CNVs. The association

between CNVs and seasonal timing may assist the understanding of (i) how climate

change could shape genomic diversity and (ii) possible genetic variants associated

with phenotypic plasticity in timing.

In birds, seasonal timing of reproduction is recorded as egg-laying dates. There-

fore, in Chapter 3, I have explored the association of CNVs with egg-laying dates

in two different natural populations of great tits from the Netherlands (NL) and

the United-Kingdom (UK) to understand how changes in copy number might affect

breeding timing. In accordance with the expectation for a highly polygenic trait such

as egg-laying dates, there was no strong association between a specific CNV and egg-

laying dates in great tits. A similar result was found by an environment-dependent

SNP-based GWAS in the same population from the Netherlands (Gienapp et al.,

2017), in which the variation in egg-laying dates could not be explained by specific

SNPs. Although both approaches (i.e. SNP- and CNV-based GWAS) support that

timing is largely polygenic, the top associated regions are not coincidental. In fact,

the linkage-disequilibrium (LD) between CNVs and SNPs in the great tit genome

is low (Chapter 3), suggesting that each polymorphism type can underlie distinct

phenotypic variability. Albeit no strong association between seasonal timing and

genetic variants is known in great tit, Chapter 3 describes few CNVs displaying

a suggestive association with egg-laying dates are associated with circadian clock,

reproductive success and mammalian pregnancy (Chapter 3). Thus, the colocaliza-

tion of suggestive CNVs and interesting genes reveal regions to be further explored

in the study of the genetic basis of seasonal timing in great tits. Moreover, CNVs

represent only part of all structural variation present in a genome, thus other rear-
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rangements as inversions also deserve further research.

7.6 Beyond CNVs: the inherent complexity of in-

versions

CNVs are widely explored because they can be more easily inferred in comparison

with other structural variants in the genome. However, more complex structural

rearrangements, such as inversions, have been increasingly associated with fitness

components and speciation events (Hoffmann & Rieseberg, 2008; Knief et al., 2016).

Inversions can be challenging to detect because contrary to a CNV, there is no change

in signal intensity when a genomic interval is in a reverse orientation. Thus, the

methods to enable the detection of inversions cannot be based on signal intensities

but instead make use of the fact that inversions will follow a different evolution-

ary path in comparison with their collinear homologous regions (Faria et al., 2019).

This is expected because the recombination between an inversion and its respec-

tive collinear arrangement is severely impaired, which, after enough generations,

may lead to distinct allele frequencies at several SNPs encompassed by an inversion

(Kirkpatrick, 2010). As inversions have a different allele profile, analysis such as

principal component analysis (PCA) may assist in the identification of inversions

(Kirkpatrick, 2010). In Chapter 5, we explored a large inversion on Chromosome

1A of great tits using PCA, SNP heterozygosity and LD patterns. As expected

for an arrangement that is unable to perform recombination with its collinear ho-

mologous locus, the PCA, the heterozygosity and LD metrics clearly distinguished

carriers and normal birds (Chapter 5, Figure 5.1).

Long-term suppression of recombination may lead to gene loss as demonstrated in

the degenerated sexual Chromosome Y (Skaletsky et al., 2003), or in the case of birds

the W Chromosome. However, young inversions tend to follow a process referred

to as expansion degeneration, in which gene gain precedes gene loss (Stolle et al.,

2018). The large and widespread inversion on Chromosome 1A, which encompasses

almost 1,000 genes and is described in detail in the Chapter 5, is in agreement

with the expansion degeneration hypothesis as it harbors a higher number of copies

in at least two different intervals that are close to the downstream inversion break-

point. Moreover, one of these CNV regions (‘CNVR 2802’, which was detected in

the genome-wide CNV detection performed in Chapter 2) can reasonably tag the

inversion as more than 95% of the carriers hold copy gains in that region. However,

although relatively young when in comparison with a degenerated sexual chromo-

some, the inversion should be at least 105 generations old due to the evidence of

a rare recombination event in the center. This recombination event is assumed

to be responsible for the alternative inversion haplogroups in the inversion center
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as described in Chapter 5, which accounts for approximately 10% of the carriers

identified in the great tit population analyzed. Even though the recombination be-

tween inversions and the collinear arrangement is rare, it is known to happen more

frequently far from the breakpoints. However, the mechanisms underlying such a

recombination event are poorly known and further research is needed.

In Drosophila, a cosmopolitan inversion shows gene exchange in the center (Hasson

& Eanes, 1996) and its patterns of diversity and linkage disequilibrium at different in-

version regions evidenced coadaptation for different geographical clines (Kennington

et al., 2006). Therefore, distinct inversion ‘haplogroups’ can hold together favorable

combinations of alleles that act together to lead to adaptive shifts. Low nucleotide

diversity reflect genomic regions with low rates of meiotic crossing-over, as is the

case around most inversion breakpoints. Interestingly, gene conversion exists within

inversions of two Drosophila species hybrids even near inversion breakpoints (Ko-

runes & Noor, 2018). Thus, nucleotide differences among ‘haplogroups’ as well their

frequency in a population can unravel the evolutionary history of an inversion.

The existence of such a large and complex inversion, in approximately 5% of the

great tits, posed questions about the possible phenotypic effects as well as biological

mechanisms maintaining it in such a substantial frequency. The hypothesis that

the inversion is the result of genetic drift is disputable (see Chapter 5) because (i)

there is a high number of genes affected, increasing the chance of a phenotypic effect,

(ii) homozygotes were not found, suggesting otherwise a recessive lethal variant.

Moreover, apart from all the minor SNP alleles found to be close to fixation across

the inversion, the CNV tagging the inversion (i.e. a CNV located within ‘CNVR

2802’) was shown to be partially overlapping three important genes. Therefore, these

genes could be disrupted in carriers, which would lead to important phenotypic

implications. Given possible phenotypic effects of the inversion, in Chapter 6 I

have investigated the association of the inversion with seasonal measurements (e.g.

egg-laying dates and number of fledged chicks) to search for fitness advantage and

deviations from Mendelian inheritance (i.e. indicating a selfish gene).

7.7 A recessive lethal and selfish inversion

A lack of homozygotes for the inversion was the first indication that it could be a

recessive lethal arrangement. However, given the observed inversion allele frequency

of ≈2.5%, the number observed homozygotes might be zero just due to the low like-

lihood of sampling these individuals. To properly identify recessive lethal variants

by observed/expected genotype frequency ratios, the allele frequency of the variant

needs to be considerable or the sample population needs be large. For example,

in pigs more than 24,000 animals were used to scan for recessive lethal variants in
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the pig genome (Derks et al., 2017). Thus, to overcome the statistical limitation of

using expected genotype proportions in a population with limited size, the offspring

ratios and the number of hatched eggs in carrier-by-carrier mating pairs were instead

explored. The homozygous lethality of the inversion in great tit was supported by

the fact that no homozygotes from these carrier-by-carrier matings were found and

the proportion of heterozygous was approximately 65% (i.e. fitting a model for a

recessive lethal gene). Moreover, the number of hatched eggs in carrier-by-carriers is

significantly lower, suggesting that homozygous embryos cannot be properly formed

or have their development halted at some later stage (Chapter 6). However, to dis-

close the molecular mechanisms involved in the inversion lethality further studies on

the development and gene expression of different embryonic stages in homozygotes

should be performed.

In most of the cases, the function of a gene cannot be determined by simply iden-

tifying amino acid motifs in their proteins (Iredale, 1999) or by examining closely

related family members (Hall et al., 2009). Alternatively, gene knockout can be

used to uncover the phenotypic effects of a candidate gene mutation. Until recently,

gene editing was a task that has considerable technical challenges involved. How-

ever, CRISPR-Cas9 has been shown to be a cost-effective and easy-to-use method

to precisely and efficiently modify genomic loci of a wide array of cells and organ-

isms (Doudna & Charpentier, 2014). Thus, CRISPR-Cas9 could be an alternative

to generate modified bird embryos that are homozygous or heterozygous at a spe-

cific candidate gene (Paquet et al., 2016). By producing homozygous embryos, their

development could be studied in detail. Otherwise, heterozygous embryos could be

used to generate adult birds, which can be crossed to reveal if their offspring have vi-

able homozygous or not. However, as the inversion encompasses almost 1,000 genes,

the testing of all these genes can become costly and exhaustive. A gene from PI3K

family that leads to embryonic lethality in mouse (Bi et al., 1999) is likely disrupted

in the inversion (Chapter 6). As a preliminary test before designing a gene editing

essay for this gene, the offspring ratio from pairs for which both parents are non-

carriers and have a CNV call located at the ‘CNVR 2802’ could also be analyzed

(i.e. such as was done for the carrier-by-carrier offspring in Chapter 6). If the off-

spring ratio of these pairs are similar to results observed in carrier-by-carriers, three

likely disrupted genes within this CNVR, including PIK3C2G gene, will become the

main candidates to explain the inversion recessive lethality. Additionally, the other

29 genes overlapped by ‘CNVR 2802’ can be also considered as candidates.

Lethal alleles tend to be purged from a population if their fitness is lower or sim-

ilar to the homologous ancestral allele. By contrast, if a lethal allele has a fitness

advantage, it could be maintained in the population by balancing selection (Derks

et al., 2018). In addition, independently from fitness advantage, an allele can be

maintained in a population by meiotic drive (Chevin & Hospital, 2006). Meiotic
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drive, or segregation distortion, is a phenomenon in which a given genetic variant

is inherited more than expected by the Mendelian law (i.e. the chance to be in-

herited is higher than 50% and therefore labeled as a ‘selfish gene’). Mechanisms

underlying meiotic drive can include an unbalanced production of the lethal allele

during the spermatogenesis or a motility advantage of the carrier sperm. Therefore,

in Chapter 6, the offspring from carrier-by-normal mating pairs was analyzed to

explore deviations from expected genotype ratios. In carrier-by-carrier pairs where

the father was the carrier, the proportion of offspring carries was approximately 70%

instead of the 50% that is expected in a variant following Mendelian law. Therefore,

the maintenance of the inversion may be at least partially explained by its selfish

nature, which can increase the inversion frequency even when a mild heterozygous

fitness disadvantage is followed by a homozygous lethality.

There are known mechanisms of meiotic drive where the carrier gamete overcomes

the competition by killing the alternative gametes, reviewed in (Bravo Núñez et al.,

2018)). Alternatively, the meiotic element can confer motility advantage for gametes

that harbor it, such is the case in zebra finch where the heterozygotes males for a

supergene have the fastest and most successful sperm (Kim et al., 2017). The selfish-

ness of the great tit inversion discussed in Chapter 6 has probably a sperm-related

mechanistic background because in carrier-by-normal pairs for which the mother

is the carrier, the inversion inheritance simply follows Mendelian law. Therefore,

the sperm quality and proportion of the sperms harboring the inversion allele may

help to clarify which biological mechanism is underlying the meiotic drive of this

inversion. Moreover, the analysis of the inversion inheritance pattern specifically for

birds with the alternative ‘haplogroups’ in the center of the inversion could clarify

if the gene underlying the meiotic drive is located in this regions. It is interest-

ing to note that a gene underlying meiotic drive in Drosophila, i.e. RANGAP1, is

also located in the center of the Chromosome 1A in the great tit genome. Albeit

the mechanism or genes that are selfishly maintaining the inversion in the great tit

is still unknown, therefore deserving further investigation, the results explored in

Chapter 6 strongly support that the inversion is indeed a selfish variant.

Although a selfish arrangement, the inversion selfishness is unable to solely explain

its observed frequency (Chapter 6). A drift-selection simulation accounting for

the inversion recessive lethality and selfishness obtained a stable frequency around

2.5% (i.e. observed frequency) only when heterozygotes had a fitness disadvantage

around 12.7%. Therefore, apart from the obvious disadvantage of having 25% less

offspring in carrier-by-carrier matings, the heterozygous may have a disadvantage

in some fitness-related measurement such as the number of fledged birds. However,

we could not find such an association between the inversion and lower number of

fledged birds. Although it is true that our statistical power might be not sufficient

to unravel such an association, it may be important to consider that this inversion
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might affect the fitness of the carriers through other fitness related measures or

behaviours. For example, inversions in different bird species have been associated

with their mating system (Tuttle et al., 2016; Küpper et al., 2015; Lamichhaney

et al., 2016; Tuttle et al., 2016), which could be also affected at some extend by this

inversion in great tit.

7.8 Structural variants are needed to understand

biodiversity

Although SNPs are primarily used to show how the genetic variation is reflected

by evolution (e.g. phylogenetic trees, (Morin et al., 2004; Leaché & Oaks, 2017)),

structural variants have been proven to be responsible for a substantial part of this

evolutionary history in several species (Wellenreuther et al., 2019). Therefore, a

better understanding about all different classes of structural variants can be an useful

tool to further understand biodiversity in nature. Consequently, ample genomic

knowledge on the structural variants affecting the biodiversity on our planet can

help in future conservation programs (Khan et al., 2016), as the pace of extinction

in a number of species accelerates (Ceballos et al., 2015; Collins et al., 2018).

Under a world that is changing due to the climate change, structural variants such

as CNVs have been shown to be responsible for adaptability to environments that

are rapidly changing (Chain et al., 2014; Prunier et al., 2017; Simam et al., 2018).

In great tit, the breeding timing has been shifting due to the global warming (Visser

& Both, 2005), which makes such seasonal measurements good candidates to be

associated with structural variants in the genome. Although it is still inconclusive if

any CNV is associated with breeding timing (Chapter 3), a number of interesting

genes overlap CNVs suggestively associated with egg-laying dates (i.e. p-value<0.1).

For example, the KPNB1 gene mediates the circadian clock function (Lee et al.,

2015) and is therefore an obvious candidate to account for variation in breeding

timing.

Inversions may have a central role on biodiversity by making use of non-canonical

mechanisms during their evolution. Most of the regions of the genome can freely

recombine during the pairing of homologous chromosomes but inversions are an ex-

ception (Sturtevant, 1921; Kirkpatrick, 2010). An inverted sequence is unable to

perform recombination with its respective allelic homologous sequence as a differ-

ent sequence order prevents proper pairing. This mechanism allows genetic variants

within an inversion to work as an inheritance ‘unit’, which can be maintained unbro-

ken across generations (Faria et al., 2019). The impaired recombination in inversions

can allow a more complex biological system such as a selfish gene (Hammer et al.,
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1989), which may promote its own inheritance during the gametogenesis. Although

the general importance of selfish genes for evolution and ecology is still not well

known (Lindholm et al., 2016), an increasing number molecular mechanisms of seg-

regation distortion have been reported in a different number of species (Lindholm

et al., 2016; Bravo Núñez et al., 2018). Nevertheless, the identification of selfish rear-

rangement in the genome can be tricky or nearly impossible if they already reached

fixation in a given species (Bravo Núñez et al., 2018).

7.9 Thesis overview and future steps

Future efforts to improve CNV mapping in the great tit genome could make a broader

use of more precise detection methods such as NGS. Although the CNVRs mapped

with SNP array reflects genomic architecture as expected, their frequency is prone

to be underestimated due to the apparent high number of false negatives. Thus,

a CNV-dataset with more precise CNVR frequencies can facilitate future efforts

to associate copy number change with phenotypes and/or fitness components in the

great tit. Regarding the large inversion on Chromosome 1A, further characterization

of ‘haplogroups’ might be essential in studies looking for the actual ‘selfish’ element

that should be present in this inversion. For example, if the gene or genes underlying

meiotic drive are located at the center of the inversion, it is likely that the alternative

inversion ‘haplogroup’ is not a selfish arrangement. Moreover, the exploration of

sperm morphology and motility in carriers, as well as the inversion quantification

in their semen (by using e.g. quantitative Sanger or PCR), can shed light on which

stage of the spermatogenesis the segregation distortion occurs.
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L. (2009). Copy Number Variation in Intron 1 of SOX5 Causes the Pea-comb

Phenotype in Chickens. PLoS Genet., 5 , e1000512.

Wright, E. (2016). Using decipher v2.0 to analyze big biological sequence data in r.

The R Journal , 8 .

Wright, S. (1931). Evolution in Mendelian Populations. Genetics , 16 , 97–159.

Wu, C. I., Lyttle, T. W., Wu, M. L., & Lin, G. F. (1988). Association between a satel-

lite DNA sequence and the Responder of Segregation Distorter in D. melanogaster.

Cell , 54 , 179–89.

Xie, C., & Tammi, M. T. (2009a). CNV-seq, a new method to detect copy number

variation using high-throughput sequencing. BMC Bioinformatics , 10 , 80. doi:doi:

10.1186/1471-2105-10-80.



REFERENCES 149

Xie, C., & Tammi, M. T. (2009b). CNV-seq, a new method to detect copy number

variation using high-throughput sequencing. BMC Bioinformatics , 10 , 80. doi:doi:

10.1186/1471-2105-10-80.

Xu, L., Cole, J. B., Bickhart, D. M., Hou, Y., Song, J., VanRaden, P. M., Sonstegard,

T. S., Van Tassell, C. P., & Liu, G. E. (2014). Genome wide CNV analysis reveals

additional variants associated with milk production traits in Holsteins. BMC

genomics , 15 , 683. doi:doi: 10.1186/1471-2164-15-683.

Yalcin, B., Wong, K., Bhomra, A., Goodson, M., Keane, T. M., Adams, D. J., &

Flint, J. (2012). The fine-scale architecture of structural variants in 17 mouse

genomes. Genome Biol., 13 , R18.

Yamada, K., Nomura, N., Yamano, A., Yamada, Y., & Wakamatsu, N. (2012).

Identification and characterization of splicing variants of PLEKHA5 (Plekha5)

during brain development. Gene, 492 , 270–275. doi:doi: 10.1016/j.gene.2011.10.

018.

Yau, C., & Holmes, C. C. (2008). CNV discovery using SNP genotyping arrays.

Cytogenetic and genome research, 123 , 307–12. doi:doi: 10.1159/000184722.

Ye, K., Hall, G., & Ning, Z. (2016). Structural Variation Detection from Next

Generation Sequencing. Journal of Next Generation Sequencing & Applications ,

01 . doi:doi: 10.4172/2469-9853.S1-007.

Yu, G., Wang, L.-G., Han, Y., & He, Q.-Y. (2012). clusterProfiler: an R Package

for Comparing Biological Themes Among Gene Clusters. Omi. A J. Integr. Biol.,

16 , 284–287.

Zarrei, M., MacDonald, J. R., Merico, D., & Scherer, S. W. (2015). A copy number

variation map of the human genome. Nature Reviews Genetics , 16 , 172–183.

doi:doi: 10.1038/nrg3871.

Zaykin, D. V., Pudovkin, A., & Weir, B. S. (2008). Correlation-Based Inference for

Linkage Disequilibrium With Multiple Alleles. Genetics , 180 , 533–545.

Zemanova, M. A., Perotto-Baldivieso, H. L., Dickins, E. L., Gill, A. B., Leonard,

J. P., & Wester, D. B. (2017). Impact of deforestation on habitat connectivity

thresholds for large carnivores in tropical forests. Ecological Processes , 6 , 21.

doi:doi: 10.1186/s13717-017-0089-1.

Zhang, F., Khajavi, M., Connolly, A. M., Towne, C. F., Batish, S. D., & Lupski,

J. R. (2009). The DNA replication FoSTeS/MMBIR mechanism can generate

genomic, genic and exonic complex rearrangements in humans. Nature Genetics ,

41 , 849–853. doi:doi: 10.1038/ng.399.

Zhang, G. et al. (2014a). Comparative genomics reveals insights into avian genome

evolution and adaptation. Science (80-. )., 346 , 1311–1320.



150 REFERENCES

Zhang, H., & Freudenreich, C. H. (2007). An AT-Rich Sequence in Human Com-

mon Fragile Site FRA16D Causes Fork Stalling and Chromosome Breakage in S.

cerevisiae. Mol. Cell , 27 , 367–379.

Zhang, X., Du, R., Li, S., Zhang, F., Jin, L., & Wang, H. (2014b). Evaluation of

copy number variation detection for a SNP array platform. BMC bioinformatics ,

15 , 50. doi:doi: 10.1186/1471-2105-15-50.

Zhang, Z., Schwartz, S., Wagner, L., & Miller, W. (2000). A Greedy Algorithm for

Aligning DNA Sequences. J. Comput. Biol., 7 , 203–214.

Zhao, M., Wang, Q., Wang, Q., Jia, P., & Zhao, Z. (2013). Computational

tools for copy number variation (CNV) detection using next-generation sequenc-

ing data: features and perspectives. BMC Bioinformatics , 14 , S1. doi:doi:

10.1186/1471-2105-14-S11-S1.

Zhao, W., Ma, N., Wang, S., Mo, Y., Zhang, Z., Huang, G., Midorikawa, K., Hi-

raku, Y., Oikawa, S., Murata, M., & Takeuchi, K. (2017). RERG suppresses cell

proliferation, migration and angiogenesis through ERK/NF-κB signaling path-

way in nasopharyngeal carcinoma. J. Exp. Clin. Cancer Res., 36 , 88. doi:doi:

10.1186/s13046-017-0554-9.

Zhao, X., Emery, S. B., Myers, B., Kidd, J. M., & Mills, R. E. (2016). Resolv-

ing complex structural genomic rearrangements using a randomized approach.

Genome Biol., 17 , 126.

Zheng, X., Levine, D., Shen, J., Gogarten, S. M., Laurie, C., & Weir, B. S.

(2012). A high-performance computing toolset for relatedness and principal

component analysis of SNP data. Bioinformatics , 28 , 3326–3328. doi:doi:

10.1093/bioinformatics/bts606.

Ziyatdinov, A., Vázquez-Santiago, M., Brunel, H., Martinez-Perez, A., Aschard,

H., & Soria, J. M. (2018). lme4qtl: linear mixed models with flexible covariance

structure for genetic studies of related individuals. BMC Bioinformatics , 19 , 68.

doi:doi: 10.1186/s12859-018-2057-x.



Summary



152 Summary

Knowledge on the evolutionary ecology of wild species allows insights on how ongoing

climate change is affecting the biodiversity on our planet. A key effect of climate

change is that species at different trophic levels shift their phenology at a significantly

different pace. These differential shifts lead to selection for earlier timing at the

species higher up in the food chain, such as insectivorous birds. The great tit

(Parus major) is an insectivorous songbird that has been used as a model species

for ecology and evolution. To understand how this species may genetically respond

to the selection on timing we need to understand the degree and nature of its genomic

variation. Recently, the reference great tit genome has been developed and explored

using a variety of high-throughput platforms, allowing a detailed characterization

of genomic structural variations as presented in this thesis that goes beyond the

already explored SNP variation.

Chapter 2 presents the results of a genome-wide copy number variation (CNV)

detection strategy based on a species-specific high-density SNP array, which gener-

ated a CNV-map for the great tit genome, which was partially validated by quanti-

tative PCR (qPCR). By using the available family structure (i.e. mother-offspring)

the inheritance patterns were analyzed showing that in particular larger CNVs are

inherited as expected by Mendel’s law. CNVs are expected to follow Mendelian

inheritance, and therefore the general deviation from the Mendelian inheritance in

shorter CNVs show that CNV confidence is length-dependent in our data-set (i.e.

shorter CNVs identified in mother have a higher chance be missed by our method

in the offspring). However, as qPCR showed a high validation rate for distinct CNV

lengths, it is likely that CNVs identified in this study have a higher rate of false

negatives than false positives. CNVs are frequency-dependently associated with a

number of genomic features that underlie their formation. Overlap with genomic

features such as CpG sites and transcription start sites (TSSs) confirmed a non-

random distribution of the identified CNVs. Moreover, CNVs may have a crucial

role in evolution as they are enriched around evolutionary breakpoints in different

species, including in the great tit genome.

By knowing the limitations of the CNV map developed in Chapter 2, in Chapter

3 CNVs were used to better understand the genetic contribution of structural vari-

ations in seasonal timing. Breeding timing can be studied by the egg-laying date

in a breeding season, which is a relevant fitness-related seasonal measurement com-

monly used as a proxy for timing. Because great tit CNVs are likely to contain a

high rate of false negatives, several CNV regions (CNVRs) may have their frequency

underestimated. To overcome this problem to some extent, a hybrid CNV-GWAS

approach was used in which CNVs and raw signal intensities (i.e. log R ratio - LRR)

were jointly associated with egg-laying date measurements. As expected, egg-laying

dates are largely polygenic and therefore not strongly associated with any CNV in

particular. However, suggestively associated regions harboring genes related to cir-
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cadian clock and in mammals to pregnancy, highlight relevant candidates for future

research.

Methods to associate CNVs with quantitative phenotypes are not extensively de-

veloped and documented in the literature. In Chapter 4 we therefore present a

R/Bioconductor package that integrates the methods used in Chapter 3 to allow

higher reproducibility of our results through an open-source CNV-GWAS software

that is freely available for the scientific community. Moreover, CNVRanger also

implements a list of functions to allow CNV summarization and association with

gene expression.

In Chapter 5 all somatic chromosomes were further explored by PCA, FST and

heterozygosity. A large inversion located at Chromosome 1A, which overlaps 90%

of its size, was identified and explored in detail. In agreement with other inversions

reported in the literature, this inversion is structurally complex and has signals of

degeneration expansion, which is common in young supergenes, such as a high inci-

dence of CNVs close to the breakpoints. The inversion is widespread across different

European populations at a frequency of ≈5%. Furthermore, the inversion can be

divided into at least two different haplogroups, which are distinguishable by their

completely different genotype distribution around the center of the chromosome.

Finally, the lack of homozygotes among all birds (>2,000) explored in Chapter 5

suggested a possible recessive lethal effect for this inversion that was then investi-

gated in Chapter 6.

Chapter 6 explores the inheritance patterns and fitness effects of the inversion de-

scribed in Chapter 5. Offspring ratios as well as number of hatched eggs in carrier-

by-carrier mating pairs support that the inversion is indeed lethal in homozygous

state. Thus, a deviation from Mendel’s law (e.g. segregation distortion) or a fitness

advantage may exist that result in maintaining such a lethal variant (i.e. balancing

selection). Segregation distortion was explored by examining the difference between

expected and observed offspring ratios in carrier-by-normal pairs. In pairs where

the male is the inversion carrier, the inversion is inherited twice more often than

the normal variant, suggesting a male related segregation distortion. However, a

drift-selection simulation indicates that a fitness disadvantage should be present in

carriers to explain both the observed inversion frequency and the segregation distor-

tion. None of the fitness components explored here is associated with the inversion,

which suggests that the fitness component affected by this inversion might not be

captured by the experimental design used in this thesis.

Structural variants can reveal important genes in speciation and intraspecific se-

lection, but they can be extremely challenging to explore (Chapters 2 and 5).

Although clearly polygenic, the association of CNVs with seasonal measurements

should be further investigated, mainly in genes within suggestive CNVs (Chapter
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3). Future studies should also clarify the molecular mechanisms maintaining the

segregation distortion as well as which fitness-related measurements can explain the

expected fitness disadvantage of such an exceptional structural rearrangement on

Chromosome 1A of great tit.
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Om inzicht te krijgen in hoe klimaatsverandering de biodiversiteit op onze aarde

bëınvloedt moeten we de evolutionaire ecologie van wilde populaties bestuderen.

Eén van de belangrijkste gevolgen van klimaatsverandering is dat soorten hun feno-

type aanpassen, maar dat soorten op de verschillende trofische niveaus dat met een

verschillende snelheid doen. Dit verschil in snelheid leidt tot selectie voor vroegere

seizoenstiming bij soorten hoger in de voedsel keten, zoals insecten etende vogels.

De koolmees (Parus major) is zo’n insecten etende zangvogel en is een modelsoort

voor ecologische en evolutionaire studies. Om te begrijpen hoe soorten genetisch

reageren op selectie van timing moeten we begrijpen wat de mate en soort genomis-

che variatie is die hieraan is gekoppeld. Recent is het referentie genoom van de

koolmees beschreven waarbij gebruik gemaakt is van een variëteit aan geavanceerde

platformen. Dit heeft het mogelijk gemaakt om een gedetailleerde karakterisering

van genomische structurele variatie in koolmees te bestuderen, zoals in dit proef-

schrift gedaan wordt, die verder gaat dan de reeds onderzochte SNP variatie.

In Hoofdstuk 2 worden de copy nummer variatie (CNV) resultaten gepresenteerd

van een genoomwijde detectie strategie gebaseerd op een hoge dichtheid SNP array

voor de koolmees. Dit heeft geresulteerd in een CNV kaart van het koolmeesgenoom

die gevalideerd is met behulp van een kwantitatieve PCR (qPCR). Door gebruik te

maken van de familiestructuur (o.a. moeder-nakomeling) kon de overerving van

CNVs worden bestudeerd waarbij hoofdzakelijk grote CNVs overerven in overeen-

stemming met de wet van Mendel. Omdat alle CNVs de Mendeliaanse overerving

zouden moeten volgen geeft de afwijking hiervan bij kleinere CNVs aan dat de be-

trouwbaarheid van het detecteren van CNV lengte afhankelijk is in onze dataset

(dus dat met onze methode kleinere CNVs gevonden in de moeders een hogere kans

hebben om gemist te worden in de nakomeling). Alhoewel de qPCR resultaten een

hoge mate van validatie lieten zien, is het aannemelijk dat de gevonden CNVs in deze

studie een hoger percentage vals negatieve dan vals positieve laten zien.. Overlap

met deze kenmerken zoals CpG eilanden en transcriptie startplaatsen (TSSs) beves-

tigt een niet random distributie op het genoom van de gevonden CNVs. Ook kunnen

CNVs een belangrijke evolutionaire rol spelen omdat deze verhoogd aanwezig zijn

in de buurt van evolutionaire breekpunten in het genoom van verschillende soorten

waaronder ook de koolmees.

In Hoofdstuk 3 wordt de in Hoofdstuk 2 ontwikkelde CNV kaart gebruikt, met

in achtneming van de beperkingen van deze kaart, om de genetische bijdrage aan de

variatie in seizoensgebonden timing bij koolmezen beter te begrijpen. Doordat de

gevonden CNVs in het koolmeesgenoom mogelijk een hoge mate van vals negatieve

bevatten zijn de CNV regio’s (CNVRs) mogelijk in hun frequentie onderschat. Om

dit probleem te omzeilen is een hybride CNV-GWAS procedure toegepast waarbij

de CNV en de ruwe data (Log R ratio - LRR) samen geassocieerd werden met de

ei-legdatum. Zoals verwacht is de ei-legdatum een eigenschap die door een groot
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aantal genen bepaald wordt en is dan ook niet sterk geassocieerd met een specifieke

CNV. De gebieden met een suggestieve associatie bevatten genen gerelateerd aan

de biologische klok en zwangerschap bij zoogdieren. Dit zijn daarmee mogelijk

kandidaten voor toekomstig onderzoek.

De methoden om CNVs en kwantitatieve kenmerken te associëren zijn beperkt

of slecht gedocumenteerd in de literatuur. In Hoofdstuk 4 presenteren we een

R/Bioconductor pakket om de methoden die gebruikt zijn in Hoofdstuk 3 te in-

tegreren om zo tot een betere reproduceerbaarheid van de resultaten te komen. Dit

open-source CNV-GWAS software pakket, genaamd CNVRanger, is vrij toeganke-

lijk. CNV opsomming en associatie met genexpressie is een van de gëımplementeerde

functies van CNVRanger.

In Hoofdstuk 5 worden de chromosomen verder bestudeerd met behulp van PCA,

FST en heterozygotie. Een grote inversie op chromosoom 1A, die 90% van het

chromosoom omvat, is gëıdentificeerd en beschreven. In overeenstemming met de

inversies beschreven in de literatuur is deze inversie structureel complex en bevat

signalen van degeneratieve expansie, iets dat gebruikelijk is bij jonge supergenen,

zoals een verhoogde incidentie van CNVs dicht bij de breekpunten. De inversie

komt verspreid voor binnen de Europese populaties met een frequentie van ongeveer

5%. Bovendien kan de inversie verdeeld worden in tenminste twee verschillende

haplogroepen, die te onderscheiden zijn op basis van een compleet verschillende

genotype distributie rond het midden van het chromosoom. Binnen alle geteste

vogels (>2000) werden geen homozygoten aangetroffen. Dit suggereert een mogelijk

recessief lethaal effect voor deze inversie.

In Hoofdstuk 6 worden het overervingspatroon en de fitness effecten van de inver-

sie zoals beschreven in Hoofdstuk 5 verder onderzocht. Het percentage eieren dat

uitkomt bij een kruising tussen twee dragers, is duidelijk verlaagd wat aangeeft dat

de inversie in homozygote staat lethaal is. Voor een lethale variant om in de pop-

ulatie te blijven bestaan moeten de heterozygoten een fitnessvoordelel hebben wat

dan leidt tot gebalanceerde selectie. Segregatie vervorming werd verder bestudeerd

door het verschil te bepalen in verwacht versus geobserveerde ratio van nakomelingen

met en zonder de inversie in kruisingen tussen een drager en een normale wild type

ouder. In de paringen waar het mannetje drager is van de inversie werd de inversie

tweemaal zo vaak overgeërfd dan de normale variant. Dit suggereert een mannelijk

gerelateerde segregatie vervorming. Een gesimuleerd drift-selectie scenario geeft aan

dat er een fitness nadeel aanwezig moet zijn in dragers om zowel de geobserveerde

inversie frequentie als de segregatie vervorming te verklaren. Maar geen van de fit-

ness componenten die bestudeerd zijn, is geassocieerd met de inversie. Structurele

varianten kunnen genen bevatten die belangrijk zijn voor soortvorming en intraspec-

ifieke selectie (Hoofdstuk 2 en 5). De associatie van CNVs en de gekoppelde
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genen met seizoensmetingen, is duidelijk polygeen (Hoofdstuk 3). Toekomstige

studies zijn noodzakelijk om meer inzicht te krijgen in het moleculair mechanisme

verantwoordelijk voor de waargenomen segregatie vervorming en de reden voor het

verwachte fitness nadeel van deze enorme structurele herschikking op chromosoom

1A van koolmees.
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