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Assessment of the impact of variation in chloroplast and mito-
chondrial DNA (collectively termed the plasmotype) on plant 
phenotypes is challenging due to the difficulty in separating 
their effect from nuclear-derived variation (the nucleotype). 
Haploid-inducer lines can be used as efficient plasmotype 
donors to generate new plasmotype–nucleotype combina-
tions (cybrids)1. We generated a panel comprising all possible 
cybrids of seven Arabidopsis thaliana accessions and exten-
sively phenotyped these lines for 1,859 phenotypes under 
both stable and fluctuating conditions. We show that natural 
variation in the plasmotype results in both additive and epi-
static effects across all phenotypic categories. Plasmotypes 
that induce more additive phenotypic changes also cause more 
epistatic effects, suggesting a possible common basis for both 
additive and epistatic effects. On average, epistatic interac-
tions explained twice as much of the variance in phenotypes 
as additive plasmotype effects. The impact of plasmotypic 
variation was also more pronounced under fluctuating and 
stressful environmental conditions. Thus, the phenotypic 
impact of variation in plasmotypes is the outcome of multi-
level nucleotype–plasmotype–environment interactions and, 
as such, the plasmotype is likely to serve as a reservoir of vari-
ation that is predominantly exposed under certain conditions. 
The production of cybrids using haploid inducers is a rapid and 
precise method for assessment of the phenotypic effects of 
natural variation in organellar genomes. It will facilitate effi-
cient screening of unique nucleotype–plasmotype combina-
tions to both improve our understanding of natural variation 
in these combinations and identify favourable combinations 
to enhance plant performance.

Chloroplasts and mitochondria play essential roles in metabolism, 
cellular homeostasis and environmental sensing2,3. Their genomes 
contain only a limited set of genes whose functioning requires tight 
coordination with the nucleus through signalling pathways that mod-
ulate nuclear and organellar gene expression3,4. Plasmotype variation 

can be strongly additive, such as in the case of chloroplast-encoded 
herbicide tolerance5, or can manifest itself in complex cytonuclear 
interactions as non-additive, nonlinear effects (epistasis) such as 
found for secondary metabolites6. The phenotypic consequences 
of epistasis can be detected when a plasmotype causes phenotypic 
effects in combination with some, but not all, nuclear backgrounds. 
Recent studies suggest that cytonuclear epistasis is the main route 
through which variation in the plasmotype is expressed6–12, and that 
additive effects are both rare and of marginal effect.

Plasmotypic variation is relevant from both an agricultural and 
an evolutionary perspective13–15, but to understand or utilize it, it is 
necessary to separate nuclear from mitochondrial and chloroplas-
tic effects. Reciprocal cross designs, where nucleotypes segregate 
in different plasmotypic backgrounds, have been used to identify 
plasmotype-specific quantitative trait loci6,10, but are limited to just 
two plasmotypes. A larger number of plasmotypes can be studied 
using back-cross designs where plasmotypes are introgressed into 
different nuclear backgrounds11,16–18, but back-crossing approaches 
are lengthy and any undetected nuclear introgressions may con-
found the results.

To precisely and rapidly address the contribution of organellar 
variation to plant phenotypes, we explored the use of a haploid-
inducer (HI) line available in Arabidopsis (GFP-tailswap)1,19. When 
pollinated with a wild-type (WT) plant, the GFP-tailswap nuclear 
genome is lost from the zygote through uniparental genome elimi-
nation. This generates haploid cybrid offspring with a paternally 
derived nuclear genome and maternally (GFP-tailswap) derived 
mitochondria and chloroplasts (Fig. 1). These haploid plants pro-
duce stable diploid (doubled haploid) offspring following genome 
duplication or restitutional meiosis19. We set out to test the use of 
this approach to investigate how plasmotypic variation affects plant 
phenotypes and to what extent this variation manifests itself as 
either additive variation or cytonuclear epistasis.

Seven different Arabidopsis accessions were selected for our 
experiment: six that represent a snapshot of natural variation (Bur, 
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C24, Col-0, Ler-0. Sha and WS-4) and Ely, an accession with a large-
effect mutation in the chloroplast-encoded PsbA gene20. This muta-
tion results in reduced photosystem II (PSII) efficiency20,21 and was 
included to evaluate the consequence of a strong plasmotype effect 
in our test panel. We first generated haploid inducers for all seven 
plasmotypes (Fig. 1a) and then used each inducer to generate cybrid 
offspring for all seven nucleotypes (Fig. 1b,c). Cybrid genotypes will 
henceforth be denoted as nucleotypeplasmotype (that is, ElyBur denotes a 
cybrid with Ely nucleotype and Bur plasmotype). Wild-type nucleo-
type–plasmotype combinations were also regenerated in this way 
(hereafter referred to as self-cybrids—that is, BurBur, C24C24 and so 
on) for subsequent comparison to their WT progenitors. The geno-
types of all haploid cybrids were verified by whole-genome rese-
quencing. This led to the exclusion of BurC24 and BurBur, which were 
identified as containing the same nucleotypic de novo duplication 
of 200 kb, probably derived from a spontaneous duplication in a 
Bur-WT progenitor used in creating these cybrids (see Methods 
and Extended Data Fig. 1). With the exception of ElySha, for which 
we obtained seeds at a later stage, we acquired doubled haploid 
seeds from all haploid cybrids resulting in a test panel of 46 cybrids 
and 7 WT progenitors. As with ElySha, BurC24 and BurBur were subse-
quently recreated and the complete panel will be submitted to the 
European Arabidopsis Stock Centre (www.arabidopsis.info). To 
visualize the genetic variation between lines within our panel we 
generated neighbour-joining trees for the nuclear, mitochondrial 
and chloroplast genomes (Extended Data Fig. 2 and Supplementary 
Figs. 1–3). The nucleotypes were found to be approximately equi-
distant, while the Ler, Ely and Col plasmotypes appear to be more 
closely related to each other than to the other plasmotypes.

We phenotyped the cybrid panel under constant environmental 
conditions for absolute and relative growth rate, biomass accumu-
lation, epinastic leaf movement, PSII efficiency (ΦPSII), non-pho-
tochemical quenching (NPQ) and elements thereof (ΦNO, ΦNPQ, qE 

and qI), a reflectance-based estimate of chlorophyll, flowering time, 
germination, pollen abortion and primary metabolites. To simulate 
the more variable conditions that are frequently encountered in the 
field, we also screened the panel under fluctuating light for all the 
above-mentioned photosynthesis-related phenotypes, and assayed 
germination rates under osmotic stress and after a controlled dete-
rioration treatment. Counting individual metabolite concentrations 
and single time points in the time series separately, we collected in 
total 1,859 phenotypes (Supplementary Data 1 and Supplementary 
Table 4). To avoid over-representation of highly correlated and 
non-informative phenotypes, we selected a subset of 92 pheno-
types (Methods and Supplementary Table 2) comprising 24 from 
constant-growth conditions, 32 from fluctuating or challenging 
environmental conditions and 36 primary metabolites for further 
analysis (Extended Data Fig. 3 and Supplementary Table 2).

Comparison of six self-cybrids to their genetically identical WT 
progenitors for these 92 phenotypes did not reveal significant phe-
notypic differences (Supplementary Table 1), from which we infer 
that uniparental genome elimination is a robust method for genera-
tion of cybrids. To determine the relative contributions of nucleo-
type, plasmotype and their interaction to the observed phenotypic 
variation, we estimated the fraction of broad-sense heritability 
(H2, also called repeatability22) explained by each. Across the entire 
panel the average contribution to H2 of nucleotype, plasmotype and 
nucleotype–plasmotype interaction was 65.9, 28.0 and 6.1%, respec-
tively (Supplementary Tables 2 and 3 and Supplementary Data 2). 
Most of the plasmotype-derived additive variation was caused by 
the Ely plasmotype, arising from the psbA mutation. When this 
plasmotype was excluded from the analysis, the nucleotype, plas-
motype and their interaction accounted for 91.9, 2.9 and 5.2% of 
genetic variation, respectively (Supplementary Tables 2 and 3 and 
Supplementary Data 2). Thus, while nucleotype-derived additive 
variation is the main genetic determinant of the cybrid phenotype, 
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Fig. 1 | Generation of a cybrid test panel. a, Generation of a new haploid-inducer (HI) line with a new plasmotype. The HI expresses a GFP-tagged CENH3/
HRT12 in a cenh3/htr12 mutant background. A cross between a WT (female) and a HI (male) results in a hybrid F1. A diploid F1 is selected in which no 
genome elimination has occurred. Self-fertilization generates an F2 population in the plasmotype of the WT mother, from which an F2 plant is selected 
that is homozygous for the cenh3/htr12 mutation and carries the GFP-tailswap transgene. This F2 plant is a new HI line and can serve as a plasmotype 
donor when used as a female in crosses. Vertical bars represent the nucleotype and ovals represent the plasmotype. HI centromeres (indicated in green, 
signifying GFP-tagged CENH3/HTR12 proteins as encoded by the GFP-tailswap construct) cause uniparental genome elimination. b, HI lines can function 
as plasmotype donors when used as a female parent. In this case, uniparental genome elimination (red arrow) leads to a haploid offspring plant with the 
nucleotype of the WT male parent but the plasmotype of the HI mother. c, Full diallel of all nucleotype–plasmotype combinations for which cybrids were 
generated. The broken diagonal line highlights the WT nucleotype–plasmotype combinations generated by crossing WT plants and plasmotype donors 
with the plasmotype of the WT (self-cybrids). BurBur, BurC24 and ElySha appear faded because they were not included in the phenotyping experiments but 
have subsequently been recreated.
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