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Abstract 12 

Geospatially explicit information of soil-landscape resources of Ethiopia is lacking or fragmented for 13 

much of the country. Recently, massive soil data were collected, however these are limited to 14 

properties related to soil fertility and valid for the topsoil only. Understanding the country’s soil-15 

landscape resources, including their qualities and constraints beyond the topsoil, remains key 16 

information for systematic and reliable scaling up of evidence-based agricultural best practices 17 

including soil fertility management recommendations. The objective of this study was to produce a 18 

coherent dataset of the major soil-landscape resources of 30 highland woredas (districts), 19 

contributing to the Agricultural Growth Program of the Government of Ethiopia. The study started 20 

with an exploratory survey to identify the major (most common) soils occurring across the 21 

landscapes followed by a full survey to assess the distribution of the identified major soils. 22 

Representative soil profiles were characterised from soil pits and classified as Reference Soil Groups 23 

(RSGs), with prefix qualifiers (PQs), according to the World Reference Base for soil resources (WRB). 24 

A large number of soil profiles was classified from auger observations. Observed soil classes at both 25 

RSG and RSG+PQ level were combined with spatial explanatory variables (covariates), representing 26 
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the soil forming factors in the landscapes, and their relationships were modelled and validated by 27 

random forest. A multitude of tree models was trained using each profile for calibration in 28 

approximately two third and cross-validation in approximately one third of the models. Cross-29 

validation showed that RSGs were predicted with a reasonable overall purity of 0.58 and RSGs+PQ 30 

were predicted with a purity of 0.48. The most relevant covariate in the models was the 31 

Geomorphology and Soils map of Ethiopia at 1: 1 M scale disaggregated into soil-landscape facets. 32 

Next models were used to predict soil classes across woredas which resulted in a 250 m resolution 33 

raster map of the most probable major soils. This raster map was generalised into a polygon map of 34 

major soil-landscape resources. The purity of this final map was estimated to be 0.54 for RSGs and 35 

0.45 for RSGs+PQ. Soil properties relevant for agricultural interpretation, such as depth, drainage, 36 

texture, pH, CEC and organic carbon and nutrient contents, were mapped according to the RSGs 37 

depicted on the soil-landscape resources map with a RMSE/mean ratio of on average 42%. We 38 

conclude that soil expert knowledge and conventional soil-landscape survey combined with random 39 

forest modelling results in an attractive hybrid approach. The approach proves cost-effective and 40 

sufficiently accurate and can be used to inform scaling up of evidence-based agricultural best 41 

practices.  42 

 43 

Keywords: soil survey, WRB, digital soil mapping, disaggregation, agricultural best soil fertility 44 

management practice  45 

 46 

Short running title: Mapping major soils in Ethiopia using random forest 47 

 48 

 49 

1 Introduction 50 
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As part of the Growth and Transformation Plan, and more specifically the Agricultural Growth 51 

Program1, the Ethiopian Government aims at doubling crop production in the foreseeable near 52 

future. This is essential in face of a population increasing with 2.5 to 3% per year (World Bank, 2018) 53 

while, at the same time, natural resources, and particularly soil-landscape resources, are degrading 54 

at an annual rate of 3% (Berry, 2003). Soil fertility has been identified as one of the key challenges to 55 

double crop production because, while high in absolute terms (Hengl et al., 2017; Murphy, 1959), soil 56 

fertility is deficient relative to, high crop nutrient demands in Ethiopia (GYGA, 2018). However, soil 57 

fertility is declining at an estimated annual rate of some 30 kg N ha-1 and 15-20 kg P ha-1 due to 58 

unsustainable practices and soil erosion progressing at an annual rate of some 300 km2 of arable land 59 

and 1 billion tonnes of topsoil (Berry, 2003). To address these soil related challenges, the Ministry of 60 

Agriculture and the Agricultural Transformation Agency established the Ethiopian Soils Information 61 

System (EthioSIS) implementing the Soil Fertility Road Map. Among others, EthioSIS aims to (i) 62 

establish databases comprising national and regional soil and land resources; (ii) conduct surveys and 63 

soil fertility mapping to reformulate fertiliser recommendations; and (iii) develop tools for 64 

development of integrated soil fertility management technologies. This study contributes in 65 

particular to the first EthioSIS’ aim by establishing geospatial data of soil-landscape resources (soil 66 

classes occurring within the landscape). These data, together with detailed soil fertility data, are 67 

important information to assess nutrient deficiencies as the gap between crop nutrient demand and 68 

soil nutrient supply thereby addressing aims ii and iii. Information on nutrient deficiencies, 69 

coherently assessed across widely variable conditions using proven agronomic models such as 70 

WOFOST (van Diepen et al., 1989) and QUEFTS (Smaling and Janssen, 1993), is needed to formulate 71 

crop and site-specific fertiliser recommendations and key hereto are geospatial data of soil-72 

                                                 
1 Abbreviations: AfSP: Africa Soil Profiles database, AGP: Agricultural Growth Program, CASCAPE: 
capacity building for scaling up of evidence-based best practices in agricultural production in 
Ethiopia, EthioSIS: Ethiopia Soil Information Service, IB: in the bag, OOB: out of bag, PQ: prefix 
qualifier, RF: random forest, RMSE: root mean square error, RSG: Reference Soil Group, RSG+PQ: 
Reference Soil Group with one first prefix qualifier, SoTer: Soil and Terrain database, SRTM DEM: 
Shuttle Radar Topography Mission based Digital Elevation Model, WRB: world reference base for soil 
resources 



4 
 

landscape resources including its qualities and constraints. A particularly important soil quality, 73 

codetermining crop potentials and fertiliser use efficiencies and thereby suitable integrated soil 74 

fertility management packages (Sanginga and Woomer, 2009; Vanlauwe et al., 2010), is the root zone 75 

plant-available water holding capacity. This quality is constrained by rootable depth (Leenaars et al., 76 

2018) and assessed by soil-landscape resources which are characterised over the entire profile 77 

depth. The added value of evaluating soil-landscape resources, in addition to currently available soil 78 

fertility parameters from the topsoil only, is illustrated by Figure 1 showing crop performance on two 79 

black soils of similar fertility in the topsoil but of contrasting depths. The crop on the deep black soil 80 

(Vertisol) is still growing whereas the crop on the shallow black soil (Leptosol) has already wilted due 81 

to limited soil water availability. Indeed, topsoil data alone do not suffice to assess the efficiency of 82 

crop response to fertiliser inputs which is confirmed, based on the interpretation of data generated 83 

by the Africa Soil Information Service (AfSIS) project, by Tamene et al. (2017) who recommend to use 84 

soil resource data for that purpose. Soil-landscape resources can be surveyed and mapped cost-85 

efficiently by soil experts making low-cost field observations, minimising the number of costly soil 86 

analyses, combined with digital soil mapping techniques, minimising the number of field 87 

observations needed and replacing time and cost-intensive manual delineation of map units and 88 

manual attribution of soil classes. Maps of the major soil-landscape resources provide an adequate 89 

basis for defining site-specific fertiliser nutrient recommendations, at high resolution if combined 90 

with detailed soil fertility data, and subsequent generalisation into, manageable, spatial fertiliser 91 

product domains (Elias et al., 2019). In other words, maps of the extent and distribution in the 92 

landscape of the major soils, including their properties, reflect the very basic information to generate 93 

and communicate crop and site-specific recommendations for integrated soil fertility management 94 

and, thus, to inform scaling up of evidence-based agricultural best practices. 95 

 96 

a) b) 97 

<Insert Figure 1a, 1b> 98 
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 99 

The CASCAPE project (capacity building for scaling up of evidence-based best practices in agricultural 100 

production in Ethiopia) intervenes in 30 high-potential woredas (districts) in support to the AGP of 101 

the Government of Ethiopia. The present study is an initiative of the CASCAPE project and 102 

contributes particularly to EthioSIS. Specific objectives of this study are to: 103 

• Develop a coherent geospatial dataset of the major soil-landscape resources at reconnaissance 104 

scale (approximately 1: 250,000) to inform upscaling of evidence-based agricultural best 105 

practices in 30 woredas in support to the AGP; 106 

• Survey, map and validate the major soil resources, and associated soil properties, of 30 woredas 107 

in a cost-effective hybrid approach combining expert soil knowledge and conventional soil-108 

landscape survey approaches with digital soil mapping techniques. 109 

 110 

 111 

2 Methods 112 

The study area comprised 30 high-potential woredas with a total area of 26,820 km2 located in the 113 

Ethiopian Highlands (Figure 2) and distributed over four main administrative regions (Tigray, Amhara, 114 

Oromia and the SNNPR). The soil-landscape of the Ethiopian Highlands is distinctly different from 115 

much of the soil-landscapes in the African continent. This is particularly due to the elevation of these 116 

highlands as a result of the rising of Ethiopia over the last 75 million years and the dominant parent 117 

material of flood basalts which started to form around 30 million years ago. These basalts reach a 118 

thickness of nearly 1 km and were deposited on top of limestone underlain by sandstones and 119 

metamorphic pre-Cambrian rocks. Volcanic eruptions caused important but somewhat local deposits 120 

of ash on top of the basalts (FAO, 1984; Billy, 2015; Abbate, 2015; Elias, 2016). Much of the poorly to 121 

imperfectly drained depressions on the plateaus are covered by thick alluvium. Eventually, the 122 

Ethiopian Highlands were bisected by the Great Rift Valley and currently much of the landscape is 123 

composed of rolling to broken-hilly plateaus at an altitude of around 2000 m above sea level with 124 
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little of its surface falling below 1500 m. The plateaus are deeply and steeply dissected by several 125 

major rivers causing inevitable large scale erosion. Large calderas tower above the plateaus with the 126 

summits reaching heights of up to 4550 m. The predominant climate of the Ethiopian Highlands is 127 

tropical monsoon, with important summer rains and lesser short rains in spring, with temperatures 128 

well below those at similar proximity to the equator and with alpine character at higher altitudes. 129 

Annual rainfall in the highlands is on average some 1500 mm and increases from below 800 mm in 130 

the north and east to over 2000 mm in the southwest (Elias, 2016). Potential evaporation is well 131 

below 1000 mm annually. This gives an annual rainfall surplus throughout the vast majority of the 132 

highlands (Fazzini et al., 2015) which results in the formation of deeply, but not necessarily highly, 133 

weathered soils. The variability of soil forming factors in the highlands is reflected in the variability of 134 

soils including Vertisols, Nitisols, Luvisols and important areas of Leptosols and further some 135 

Cambisols, Regosols, Alisols, Andosols, Phaeozems, Calcisols, Fluvisols and Planosols (FAO, 1984; 136 

Jones et al., 2013; Hengl et al., 2017b). Almost all these soils have very high CEC, generally exceeding 137 

36 cmolc kg-1 due to high contents of clay and organic carbon (generally over 40% and 1.5%, 138 

respectively), the high activity nature of the clay and local occurrences of allophane, while the vast 139 

majority also has high base saturation indicative for fertile soils. Indeed, soil fertility in the Ethiopian 140 

Highlands is generally very high, with a large soil nutrient supply to crops, but deficient relative to the 141 

even higher crop nutrient demand. The latter is driven by potential crop transpiration, as limited by 142 

the actual availability of (soil) water, and sets the reference for any soil fertility management 143 

strategy. Simulated water-limited yield potentials, assuming sufficient nutrients, reach levels in the 144 

Ethiopian Highlands of some 6 to over 17 t ha-1 for maize and 4 to nearly 10 t ha-1 for wheat 145 

depending on the specific combination of climate and soil. Corresponding yield gaps, relative to 146 

actual yields, vary between 4 and 15 t ha-1 for maize and 2.5 to 7.5 t ha-1 for wheat (GYGA, 2018) and 147 

the overall challenge is to narrow these gaps by crop and site specific agricultural practices.  148 

 149 
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In this study we i) surveyed soil resources, ii) mapped soil resources and iii) validated the soil 150 

resources map, all in relation to the geomorphic landscape, followed by iv) mapping and validation of 151 

soil properties associated with the soil-landscape resources map, for 30 highland woredas.  152 

 153 

2.1 Soil survey  154 

The study started with an exploratory soil survey at kebele level (sub-districts in a woreda) to 155 

identify, characterise and classify the major soils that could be expected to occur across the woreda. 156 

Major soils were defined as soils that are most common in the surveyed area and map-able at the 157 

scale of operation. These soils can be classified at different levels of classification in accordance with 158 

the major soils of the world (Driessen and Dudal, 1989; Driessen et al., 2001). The exploratory survey 159 

at kebele level was followed by a full survey at woreda level to verify the identified and classified 160 

soils across the full woreda landscapes. The reason to start the survey with an exploratory survey at 161 

kebele level was that woredas are large areas (approximately 894 km2 on average and varying 162 

between 168 and 2507 km2) with important parts  difficult to access whereas kebeles are about 30 163 

times smaller (approximately 29.5 km2 on average in a range between 4 and 94 km2).  164 

 165 

For each of the 30 woredas two to four kebeles were selected based on their accessibility and 166 

representativeness for agricultural land according to expert local knowledge and for woreda 167 

landscapes, resulting in a total of 112 kebeles. To guide the exploratory survey, the map of the 168 

Geomorphology and Soils of Ethiopia (FAO, 1984) was used as a base map (Figure 2) together with 169 

elevation and a slope map derived from an adjusted SRTM DEM (Vågen, 2010).  170 

 171 

<Insert Figure 2> 172 

 173 

Having an adequate base map is a first key step for a surveyor to build a conceptual model of soil-174 

landscape relations (Minasny and McBratney, 2016) and design a survey scheme. The base map that 175 
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we used, delineates geomorphic landscape units for the entire country at a scale of 1: 1 M and 176 

represents the soil associations distinguished at that scale. This base map is thus not spatially explicit 177 

about soil-landscape relations. However, the soil associations are described in the associated report 178 

(see Figure 3) by landscape facets that occur within each landscape unit together with the 179 

corresponding soil units and phases (FAO, 1984). These soil units are classified according to the 180 

legend of the FAO/Unesco Soil Map of the World (FAO, 1974). We used the descriptions to decide 181 

about the localisation of soil observations within each of the landscape units. The same map is also 182 

available as the Soil and Terrain (SoTer) database for north-eastern Africa (FAO, 1998) where soil 183 

units, associated with unmapped terrain components, are classified according to the revised legend 184 

(FAO, 1988).  185 

 186 

Soil observations were made in first instance by looking at the landscape and at road cuts and surface 187 

features such as stoniness, colour and vegetation, trying to recognise the variability expected from 188 

the base map, followed by 743 auger point observations (25 per woreda). The auger points were  189 

distributed over and within the landscape units indicated by the base map attempting to cover the 190 

most important landscape facets, georeferenced using GPS and briefly described to a depth of 120 191 

cm, unless restricted by hard rock or an impenetrable layer, according to a form prepared from the 192 

Guidelines for Soil Description (FAO, 2006). Master horizons were distinguished and described by 193 

depth interval, coarse fragments content, texture, colour, consistency, root presence and diagnostic 194 

features. The auger points were tentatively classified in the field as Reference Soil Groups (RSGs) 195 

with one prefix qualifier (PQ) according to the World Reference Base for soil resources (WRB), 2nd 196 

edition (IUSS Working Group WRB, 2007. The 3rd edition of WRB (IUSS Working Group WRB, 2015) 197 

was not yet available at the time of exploratory survey. The major soils were identified from these 198 

tentative field classifications at kebele level. These soils were assumed to be the most common in the 199 

surveyed area and map-able at targeted scale. Note that it’s only after the mapping procedure that 200 

the true major, most common and map-able, soils are known. 201 
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 202 

Subsequently, representative soil profiles were selected, characterised in detail and classified. This 203 

was done for 204 profile pits (about 7 per woreda). Locations were not evenly distributed over the 204 

kebeles, but rather over the identified major soils. The master horizons with subordinate 205 

characteristics were designated to a depth of at least 180 cm (bedrock permitting) and described in 206 

detail using a form prepared for this purpose according to the Guidelines for Soil Description (FAO, 207 

2006). Diagnostic horizons, properties and materials were identified and the profiles were 208 

preliminarily classified in the field according to WRB (IUSS Working Group WRB, 2007), specifying the 209 

RSG with its prefix and suffix qualifiers. These classifications were later validated with soil analytical 210 

data and corrected if needed. 211 

 212 

Each horizon was sampled and analysed for selected soil properties by the Soil and Plant laboratory 213 

of the Water Works Design and Supervision Enterprise in Addis Ababa using standard laboratory 214 

procedures required for soil classification (van Reeuwijk et al., 2002): particle size distribution (sand, 215 

silt, clay content) by hydrometer method (Bouyoucos) with the fractions defined according to USDA 216 

standards (clay<0.002<silt<0.05<sand<2 mm), bulk density of the fine earth from core samples, pH-217 

H2O in a 1: 2.5 soil: water solution and pH-KCl in a 1: 2.5 soil: KCl (1M) solution, electric conductivity 218 

in 1: 2.5 soil: water solution, cation exchange capacity in a 1M NH4OAc solution buffered at pH-H2O 219 

of 7 (Black), exchangeable bases with Ca and Mg by atomic absorption spectrometry and K and Na by 220 

flame photometry, organic carbon content by the method of Walkley-Black, total nitrogen by the 221 

method of Kjeldahl. Analysed for only the topsoil are available phosphorus by the method of Olsen, 222 

extractable micro nutrients (Fe, Mn, Zn, Cu) by the DTPA method and available sulphur. We used the 223 

soil analytical data to verify and possibly adjust the preliminary field classifications of the soil profiles 224 

(soil pits) that were representative for the identified major soils and to characterise these major soils, 225 

classified as RSGs and RSGs with a prefix qualifier (RSGs+PQ or soil units), in detail. The classifications 226 

of the tentatively classified auger observations were adjusted accordingly where necessary.  227 
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 228 

Following the exploratory survey at kebele level a full survey was conducted to verify the distribution 229 

and extent of the major soils across the entire woredas. Soil profile observations were collected by 230 

additional augering beyond the kebele level along transects defined based on the base map. For this 231 

purpose, we updated the base map by disaggregating it into spatially explicit soil units and by 232 

replacing soil units classified according to the legend of the soil map of the world (FAO, 1974) by soil 233 

units (RSGs+PQ) identified during the exploratory survey. The landscape units depicted on the map 234 

were first disaggregated into spatially explicit landscape facets which are distinguished by FAO (1984) 235 

as part of landscape transects that represent the soil-landscape (soil association) within each 236 

landscape unit based on relative position and slope class (see Figure 3). Relative positions could not 237 

be distinguished based on explicit criteria, whereas slope classes could, and we used relative 238 

elevation as a proxy. We assessed relative elevation in a 5 km radius and slope from the 239 

hydrologically adjusted SRTM DEM (Vågen, 2010), which we resampled from 90 m to 250 m, and 240 

then mapped classes of relative elevation (low, medium, high) and slope, whereby the slope classes 241 

were defined according to the current standards of the Guidelines for soil description (FAO, 2006). 242 

We then allocated soil units, and associated phases, to each of the resulting landscape facets as 243 

described by FAO (1984). This latter step was slightly time intensive and required soil expert 244 

knowledge due to the interpretation still needed for relating the relative elevation classes with the 245 

relative positions, and soils, distinguished by FAO (1984) and for defining soils for landscape facets 246 

that are steeper or less steep than as distinguished by FAO (1984). Soil units, classified according to 247 

the legend of the FAO/Unesco Soil Map of the World (FAO, 1974), were replaced by soil units, 248 

classified according to WRB (IUSS Working Group WRB, 2007), by extrapolating the georeferenced 249 

classifications collected during the exploratory survey from the kebele level extent to the woreda 250 

level extent. This extrapolation was done using a digital soil mapping approach, exactly similar to the 251 

approach described in section 2.3, whereby the disaggregated map mentioned above served as a 252 

covariate. Besides extrapolating RSGs and RSGs+PQ, we also extrapolated the qualifiers, including 253 
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diagnostic qualifiers, independently. We then produced an updated base map with a legend 254 

indicating the landscape unit, the landscape facet, the 3 most probable RSGs+PQ and the 3 most 255 

probable qualifiers.  256 

 257 

<Insert Figure 3> 258 

 259 

In total 1329 additional auger points were made across the 30 woredas (about 45 per woreda), which 260 

were georeferenced, briefly described using a field form prepared from the Guidelines for soil 261 

description (FAO, 2006) and classified as RSG+PQ with reference to the earlier identified and 262 

classified major soils. Tentative field classifications were made, despite the fact that soils cannot be 263 

properly classified from (disturbed) auger observations because proper soil classification requires 264 

detailed soil pit observations and soil analytical data. Nevertheless, auger observations permitted to 265 

assess easily observable soil characteristics as a basis to verify diagnostic features and confirm the 266 

soil classes and qualifiers anticipated from the updated base map. Soil profiles were also classified 267 

according to local nomenclatures. This permits to correlate soils classified according to WRB with 268 

local soil names and more importantly to effectively communicate with farmers about soil and soil-269 

related management. This match is not perfect because local soil names are commonly based on 270 

landscape features and topsoil characteristics (Mulders et al., 2001) whereas RSGs and RSGs+PQ are 271 

classified rather based on subsoil diagnostics. 272 

 273 

Eventually, a total of 2276 soil profile point observations was realised during the survey including 204 274 

pit observations and 2072 auger observations (743 augerings at kebele level and another 1329 at 275 

woreda level). Added to these were 282 reliably classified profiles from the Africa Soil Profiles (AfSP) 276 

database (Leenaars et al., 2014; 2014b), to a large extent from outside the woredas but located in 277 

the highlands, and 37 virtual profiles representing Leptosols randomly located in undersurveyed, 278 

inaccessibly steep, parts of the landscapes where the orginal base map indicates Lithosols, making a 279 
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total of 2595 profiles. See Figure 4 for the location of soil profile observations in 4 woredas including 280 

the 4 x 4 kebeles selected for the exploratory survey.  281 

 282 

<Insert Figure 4> 283 

 284 

The soil profile data were compiled under a common standard, ready for use, following a tailor made 285 

template prepared from an extended version of the AfSP database (Leenaars et al., 2014). This 286 

database arranges all data entries as observations and measurements by specifying the soil object 287 

(defining the soil in 4D), property, method and value, including the unit of measure or the dictionary 288 

associated with the value, together with the lineage. (Also see Batjes et al., 2017). Numeric soil 289 

property data were standardised according to data conventions of AfSP and descriptive soil property 290 

data according to the conventions of the Guidelines for soil description (FAO, 2006) and, where 291 

lacking, according to AfSP conventions copied from SoTer conventions (van Engelen and Wen, 1995).  292 

 293 

2.2 Soil modelling and mapping  294 

The spatial distribution of major soils across the landscapes at woreda level was modelled and 295 

mapped with random forest. Random forest modelling is a popular machine learning technique for 296 

digital soil mapping (Grimm et al., 2008; Hengl et al., 2015; Heung et al., 2014) in line with the future 297 

direction of soil mapping as described by Minasny and McBratney (2016) and Brevik et al. (2016). We 298 

developed two random forest models: one to model and map RSGs and one for RSGs+PQ (soil units 299 

or RSGs with one first prefix qualifier). These models were trained with the classifications of the 300 

collected 2595 georeferenced soil profile observations projected onto a stack of 139 spatial 301 

explanatory layers, the covariates. These covariates represent the spatial variability within the 302 

landscape of the soil forming factors (climate, organisms, relief, parent material and time, as well as 303 

management explicitly mentioned here as the only factor directly influenced by humans) that are 304 

drivers of soil spatial variation. The covariates included terrain variables derived from the SRTM DEM 305 
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(Vågen, 2010), climatic variables from WorldClim (Hijmans et al., 2005) and MODIS imagery including 306 

derived land cover and vegetation index maps (AfSIS, 2015) as well as thematic maps such as the 307 

original and disaggregated version of the Geomorphology and Soils map of Ethiopia (FAO, 1984) and 308 

each of the covariates was resampled to a spatial resolution of 250 m.  309 

 310 

Random forest is a so-called ensemble method, meaning that a model is composed of a multitude (a 311 

forest) of decision tree models (Breiman, 2001; Strobl et al., 2009). We trained forests with 500 tree 312 

models. Each tree model randomly splits the input dataset (n = 2595) in a calibration and a validation 313 

set. This split is made randomly for each model. The calibration set contains (by default) 314 

approximately 63% of the input dataset and the validation set 37%, which implies that each soil 315 

profile point observation served calibration 315 times and validation 185 times. The validation set is 316 

typically referred to as the ‘out-of-bag’ dataset (OOB). The calibration set, which could be called the 317 

‘in-the-bag’ (IB) dataset, is used to construct the tree model. The algorithm does this by splitting the 318 

calibration set into two nodes (subsets) in such a way that these two nodes are as homogenous as 319 

possible with respect to the observed soil classes that are contained in each node. Each of the two 320 

nodes is then further split into two new and even more homogenous nodes. This splitting process 321 

continues until a stopping criterion is met. Splitting is done on basis of covariate values. For each 322 

split, the random forest algorithm randomly selects a subset of covariates that it will evaluate (by 323 

default equal to the square root of the number of covariates in case of a categorical target variable 324 

such as a soil class). From this subset, in our study consisting of 11 or 12 covariates, the optimal 325 

covariate is selected in such a way that a maximum purity is achieved in the two new nodes.  326 

 327 

Random forest allows to assess the relevance of each covariate over all trees in the forest. We used 328 

the ‘permutation accuracy importance’ measure for this purpose (Strobl et al., 2009). Basically it 329 

measures the decrease in prediction accuracy when the values of one covariate are randomly 330 

permuted (hereby breaking the association with the target variable as if the covariate is excluded 331 
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from the model) and then adding this permuted covariate together with the unpermuted covariates 332 

to the model to predict the target variable (Strobl et al., 2009). The decrease in accuracy is large for 333 

important covariates that correlated strongly with the target variable and small for less important 334 

covariates that are less strongly correlated. This reduced the risk of model overfitting. 335 

 336 

The two trained random forest models were subsequently applied to the covariate stack to predict 337 

(map) RSGs and RSGs+PQ across the 30 woredas at a spatial resolution of 250 m (429,120 pixels). For 338 

each pixel in the map, the algorithm produces one prediction for each tree model in the forest. In our 339 

case, with two forests, each pixel received 500 predictions of RSG and 500 of RSG+PQ. (We 340 

summarised these predictions in soil class specific probability maps). The final prediction for a pixel is 341 

then the most frequently predicted RSG and RSG+PQ and the outcome at this stage are two raster 342 

maps of major soils predicted as RSGs and as RSGs+PQ.  343 

 344 

In a next step, these two raster maps were generalised to two polygon maps, because raster maps 345 

are too granular to support the envisaged final purpose of the soil maps. Unique combinations of the 346 

predicted major soils (RSGs and RSGs+PQ) with landscape facets formed the basis of the aggregation 347 

of individual pixels to ‘spatially homogeneous’ polygons. This aggregation implied a certain level of 348 

generalisation whereby isolated pixels (or two connected pixels) of divergent soil-facet combinations 349 

were eliminated from the map. The resulting soil-facet polygons were subsequently related to the 350 

coarse scaled polygons of the map of geomorphic landscape units (FAO, 1984). The imprecise 351 

delineation of these landscape units was adjusted to match the delineations of the soil-facet map by 352 

applying a majority-minority rule to the intersected soil-facet polygons. The two resulting final maps 353 

represent unique combinations for each of the woredas of the geomorphic landscape unit, landscape 354 

facet and major soil, with the major soil classified as RSG and as RSG+PQ. The legend further 355 

indicates the 2nd and 3rd most probable RSGs and RSGs+PQ. 356 

 357 
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2.3 Soil map validation  358 

The accuracy of the raster maps was assessed through cross-validation with independent data. This 359 

cross-validation is an integral part of the random forest algorithm which makes use of the OOB 360 

dataset for this purpose. Remember that for each tree model, 37% of the input data was randomly 361 

selected and set aside (put ‘out-of-bag) and that these OOB data are not used to build (calibrate) the 362 

model. Instead, these OOB data serve as a test sample to assess the prediction accuracy of that 363 

particular model. Once a tree model is built using the calibration data, it is used to predict the target 364 

variable (soil class) at the locations of each of the OOB observations. In this way, each profile 365 

observation of our input dataset served approximately 185 times as an OOB observation (37% of 500 366 

trees) and received 185 independent, OOB, predictions. The final prediction at the location of a given 367 

OOB observation is then taken, in case of a categorical target variable as in this study, as the most 368 

frequently predicted class. This gave us an independent prediction of the RSG and RSG+PQ at the 369 

location of each of the 2595 profile observation in the input dataset. These independent predictions 370 

were then compared to the observed RSGs and RSGs+PQ and accuracy measures were computed 371 

from this comparison. 372 

 373 

We followed Brus et al. (2011) for the selection of accuracy measures for categorical soil maps. We 374 

computed the overall purity as a measure for the overall accuracy, here defined as the fraction (0 - 1) 375 

of the input data for which the OOB predicted class equals the observed class.  The overall purity is 376 

composed of the map unit purity and class representation also referred to as the user’s accuracy and 377 

the producer’s accuracy, respectively. The map unit purity is defined as the fraction of OOB 378 

predictions of a particular class that is similar to the observed class (e.g. the fraction of predicted 379 

Luvisols that is observed as Luvisols). The class representation is defined as the fraction of an 380 

observed class that is correctly OOB predicted (e.g. the fraction of observed Luvisols that is predicted 381 

as Luvisols). 382 

 383 
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The polygon maps generalised from the raster maps could not be independently validated with the 384 

OOB predictions from the random forest procedure. This means that no objective measure of the 385 

accuracy of the polygon maps could be provided. Instead of evaluating the overall purity, we 386 

evaluated the ‘overall  correspondence’ or naive accuracy by comparing soil classes observed at all 387 

the profile point locations with soil classes depicted on the final polygon maps. The overall 388 

correspondence was computed from this comparison as the fraction (0 - 1) for which the observed 389 

soil class corresponded with the depicted soil class. All profile point locations were used for this 390 

purpose, however excluding those profiles that were added from the AfSP database or that were 391 

virtual and not located within the woredas (n = 2291), which implies that this overall correspondence 392 

gives an optimistic estimate of the map accuracy since the map is not independent from the training 393 

data.  394 

  395 

We estimated the overall purity of the final polygon maps, which were generalised from the raster 396 

maps, assuming that the ratio (fraction) of the overall purity (OP) relative to the overall 397 

correspondence (OC) is similar for polygon maps (pOP/pOC) and raster maps (rOP/rOC). For this, we 398 

assessed the overall correspondence of the raster map (rOC) and estimated the overall purity of the 399 

polygon map (pOP) from pOP = pOC x rOP/rOC.  400 

  401 

2.4 Mapping of derived soil properties and map validation  402 

Soil classes are regarded as carriers of soil information which we illustrated by producing maps for a 403 

selection of soil properties relevant for agricultural interpretation. Selected were depth to bedrock 404 

and drainage class (observed from the soil profile as a whole) and textural fractions, bulk density, pH, 405 

CEC, exchangeable bases, organic carbon and nutrient contents (measured from samples taken from 406 

individual soil profile horizons or depth intervals). We attributed these properties to the RSGs using 407 

the available soil profiles data and specified, for each property and each RSG, the mean, median, 408 
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minimum, maximum and standard deviation. Each soil property was mapped by attributing its mean 409 

value to the RSGs depicted on the polygon map of major soil-landscape resources.  410 

 411 

Data preparation prior to attribution included (i) conversion of censored values for depth to bedrock 412 

(e.g. > 100 cm) to absolute values for depth to bedrock (explained hereafter), (ii) conversion of 413 

drainage classes (V, P, I, M, W, S, E) to ordinal values for drainage (1, 2, 3, 4, 5, 6, 7) and (iii) 414 

conversion, by fitting mass preserving splines (Bishop et al., 1999), of soil analytical data originally 415 

measured and compiled for variable depth intervals to soil analytical data expressed according to 416 

two standard depth intervals (0 - 30 cm and 30 - 100 cm).  417 

 418 

Censored data on depth to bedrock are highly valuable but not unambiguously interpreted. We 419 

translated censored values to absolute values by comparing censored values reported for depth to 420 

bedrock with the class values reported for rootable depth (classes according to FAO, 2006). The 421 

average was taken from the censored depth value and the bottom depth value of the rootable depth 422 

class in case the censored depth corresponded with the rootable depth class (e.g. > 70 cm 423 

corresponding with the class of 50 - 100 cm results in an estimated absolute value of 85 cm). The 424 

censored depth value was excluded from the attribution in case that the censored depth exceeded 425 

the bottom depth indicated by the rootable depth class (e.g. > 70 cm compared to the class of 30 - 50 426 

cm). Also excluded were censored depth values for profiles that lacked a reported class value for 427 

rootable depth. 428 

 429 

The accuracy of soil property maps was assessed by comparing the values of the soil property map 430 

with values of the soil property observed or measured at corresponding profile point locations. 431 

Assessed were the mean error, root mean square error and the relative root mean square error (in 432 

%) relative to the average value reported per RSG. We also assessed the Pearson correlation 433 
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coefficient (r) between mapped and observed property values as well as the overall purity of the 434 

drainage class map.  435 

 436 

 437 

3 Results 438 

The results are reported in detail by Leenaars et al. (2016) and are available2 under a Creative 439 

Commons license (CC-BY 4.0). Detailed results have also been included in the work of Elias (2016).  440 

 441 

3.1 Soil survey  442 

Soil profile data collected during the survey were compiled according to conventions of the AfSP 443 

database (Leenaars et al., 2014). The profiles (2595) were georeferenced and classified as RSG+PQ 444 

according to WRB and the majority also according to local nomenclatures. The match between RSGs 445 

and local soil names (53) is not reported here and proved not univocal, not in the least because the 446 

local names were in different languages. Table 1 lists the RSGs which were identified from soil profile 447 

observations together with a selection of soil properties observed or measured for each RSG. Depth 448 

of soil and drainage class were not reported for Acrisols. Soil analytical data were not available for 449 

Alisols, Andosols and Arenosols since, apparently, no representative soil profile had been sampled for 450 

analysis, and described in detail, for any of these RSGs. Apparently, these RSGs were identified and 451 

classified directly from auger observations based on the expert knowledge of the experienced 452 

surveyors, e.g. for Alisols considering parent material (Trachyte, Rhyolite), elevation (> 2,300 masl.), 453 

high annual rainfall, presence of acid tolerant crops, colour (dark reddish brown) and presence of an 454 

Argic horizon with much Manganese concretions (Abebe, 2007). 455 

 456 

                                                 
2 www.isric.org/projects/capacity-building-scaling-evidence-based-best-practices-agricultural-
production-ethiopia 
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<Insert Table 1> 457 

 458 

Table 1 shows that RSGs do not differ significantly between each other for most of the soil properties 459 

except for specific RSGs which are different for specific properties. Leptosols, Regosols and Calcisols 460 

are relatively shallow, Gleysols, Phaeozems, Planosols and Vertisols are relatively less well drained 461 

and Acrisols, Gleysols, Nitisols and Planosols have relative low base saturation. Clay content, CEC, 462 

exchangeable bases, organic carbon and nutrient contents are generally high to very high for all 463 

RSGs. Sulphur content seems low but this may be due to the laboratory method used and 464 

exchangeable K also seems quite low.  465 

 466 

RSGs identified from field work are, in order of importance considering the number of observation 467 

points, Vertisols, Luvisols, Nitisols, Leptosols and Cambisols (Table 2). These RSGs represent 82% of 468 

the soil profiles observed. Other RSGs observed are Regosols, Fluvisols, Alisols, Planosols and 469 

Andosols, together representing 15% of the observations, and the remaining 3% of the observations 470 

are classified as Arenosols, Phaeozems, Gleysols, Acrisols and Calcisols.  471 

 472 

The original 1: 1 M version of the base map used for the exploratory survey at kebele level appeared 473 

valuable for guiding surveyors across the major landscapes and detect the soils occurring at kebele 474 

level. The exploratory survey was insufficient though to detect the variability in soils at woreda level 475 

and Alisols, Andosols and Arenosols were not identified. The updated 1: 250,000 version of the base 476 

map prepared for the full survey at woreda level did not depict these unidentified soils but proved 477 

effective after all in guiding the surveyors across a wider variability in spatially explicit soil-landscape 478 

resources. This resulted in the detection of additional soil-landscape combinations and the 479 

identification of additional soils. The updated base map was independently validated using profile 480 

observations collected during the full survey beyond the kebele level and had an overall purity of 481 

only 0.44. The same base map had an overall purity at kebele level of 0.58 when independently 482 
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validated using the OOB procedure and the profile observations collected at kebele level. A major 483 

weak point of the base map, both the original and updated version, was the delineation of the 484 

landscape units which is imprecise.  485 

 486 

3.2 Soil models and maps  487 

Of the 139 covariates, the Geomorphology and Soils map of Ethiopia (FAO, 1984) disaggregated to 488 

soil-landscape facets (FAO84_soilF) proved to be the most relevant for modelling of the soil 489 

variability across the woreda landscapes, exceeding the relevance of stacks of satellite data. The 490 

permutation index in Figure 5 shows a mean decrease in accuracy of near 25% if this map would be 491 

removed (permuted) as a covariate in the random forest modelling of RSGs. This covariate is 492 

particularly important to explain soil variability occurring within geomorphic landscapes at the, 493 

relatively, short distance scale of the topo-sequence. The accuracy decreases with another 23% if the 494 

Geomorphology and Soils map itself (geo_legacy_agg) would be removed. This covariate is 495 

particularly important to explain long distance soil variability occurring at the scale of the country 496 

and this study.  497 

 498 

<Insert Figure 5> 499 

 500 

Polygonised, the RSGs mapped show an order of importance at the locations of observation which is 501 

near similar to that of the RSGs observed. Vertisols, Nitisols, Luvisols, Leptosols and Cambisols are 502 

predicted for 87% of the points (Table 2) followed by Alisols, Regosols, Planosols and Andosols (9%). 503 

Arenosols, Fluvisols, Phaeozems, Acrisols, Gleysols and Calcisols are predicted at 4% of the points 504 

only. The order of importance considering the area mapped is dominated by Nitisols, Vertisols and 505 

Leptosols, representing 83% of the area mapped, followed by Luvisols (10%) and, near negligible, 506 

small areas (0.4 to 1.8% each) of Planosols, Alisols, Regosols, Cambisols, Andosols and Arenosols 507 

(Table 2). Negligible is the area mapped as Acrisols, Calcisols, Fluvisols, Gleysols or Phaeozems, each 508 
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occupying less than a half permille (< 0.05%) of the total area. Apparently, the predictions in terms of 509 

area differ considerably from the predictions at point locations. These figures suggest that Nitisols, 510 

and to a lesser extent Vertisols and Leptosols, seem to be overrepresented on the map at the cost of 511 

Luvisols, Cambisols and most of the other RSGs. The apparent underrepresentation of Luvisols is 512 

possibly due to the fact that Luvisols genetically, morphologically and laterally grade towards 513 

Vertisols and Nitisols and these soils are not always easily distinguished. The relative position of each 514 

of these soil classes along the topo-sequence is not unambiguously clear with Vertisols - Nitisols - 515 

Luvisols observed, from relatively low to high position, in one landscape and Vertisols - Luvisols - 516 

Nitisols in another and doesn’t necessarily coincide with schematic sequences as proposed by 517 

Driessen et al. (2001). This is probably due to variations in parent material along the topo-sequence 518 

which disturb the pedological sequence. The large representation of Leptosols on the map exceeds 519 

the relative number of observations which is well explained by the fact that Leptosols occupy the 520 

highest and steepest, least accessible landscape positions. Cambisols, Regosols and Fluvisols were 521 

observed frequently but are strongly underrepresented on the map. This may well be due to the fact 522 

that these soils are developed in relatively young parent materials and this soil-landscape 523 

relationship is apparently inadequately modelled due to spatial covariates which do not adequately 524 

reflect such young landscape areas with unclear characteristics. The Fluvisols are likely confused with 525 

Vertisols in the lower landscape positions and the Regosols with Leptosols in higher landscape 526 

positions. Cambisols can be expected within close distance to most other Reference Soil Groups. 527 

Figure 6 shows the final map of major soil-landscape resources for Omonada woreda as an example 528 

of the map for 30 woredas. 529 

 530 

<Insert Figure 6> 531 

 532 
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The RSGs mapped for each woreda vary considerable between the different woredas, and regions, 533 

throughout the country, as is shown by Table 2 which summarises the relative map areas (%) 534 

occupied by each of the RSGs for each of the woredas.  535 

 536 

<Insert Table 2> 537 

 538 

3.3 Soil map validation  539 

Accuracy statistics of the soil maps are presented in Table 3. Reported are the overall purity for the 540 

raster maps and deducted estimates of the overall purity for the polygon maps. The so-called overall 541 

correspondence is given for both the raster and polygon versions of the maps. A distinction is made 542 

for RSGs and RSGs+PQ.  543 

 544 

<Insert Table 3> 545 

 546 

The overall purity for RSGs is 0.58 and drops to 0.49 for RSGs+PQ. These accuracies are very 547 

reasonable and well in line with accuracies that are typically reported for soil class maps developed 548 

with statistical methods (Grinand et al., 2008; Kempen et al., 2009; Kempen et al., 2012b; Holmes et 549 

al., 2015, Heung et al., 2016) but also for soil class maps developed with conventional methods 550 

(Kempen et al., 2012). The overall correspondence is 0.84 for RSGs and 0.81 for RSGs+PQ. Evidently, 551 

the correspondence largely exceeds the purity. The polygon map, generalised from the raster map, 552 

shows a correspondence of 0.79 for RSGs and 0.74 for RSGs+PQ. This suggests that the accuracy of 553 

the polygon map is some 94% of that of the raster map for RSGs and 91% for RSGs+PQ. The purity 554 

estimated for the polygon map, as deducted from preceding figures, is 0.54 for RSGs and 0.45 for 555 

RSGs+PQ. Altogether, the random forest model clearly captured the RSGs fairly well but had some 556 

difficulties in capturing the larger variability associated with RSGs+PQ. 557 

 558 
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Table 4 gives the full OOB validation matrix indicating the map unit purities as well as the class 559 

representations of observed versus predicted RSGs. Calcisols, Alisols and Andosols are the map units 560 

showing highest map unit purity followed by Luvisols, Phaeozems and Vertisols. The map units for 561 

Calcisols, Alisols and Andosols were very small in size though. Alisols and Vertisols are the observed 562 

classes that are best represented by the map followed by Nitisols, Arenosols, Luvisols, Andosols and 563 

Leptosols.  564 

 565 

<Insert Table 4> 566 

 567 

3.4 Soil property map and validation  568 

The soil properties summarised in Table 1 for each RSG were mapped through the RSGs depicted on 569 

the soil-landscape resources map. Figure 7 illustrates this for drainage class, pH-H2O, extractable zinc 570 

and available P. At the national scale, drainage, pH and available P seem to be correlated and to 571 

increase from the southwest to the north and east whereas extractable zinc shows a contrary trend.  572 

 573 

a)  b) 574 

c)  d) 575 

<Insert Figure 7a, 7b, 7c, 7d> 576 

 577 

The overall purity of the drainage class map is 0.64 which is considered very adequate. Drainage class 578 

was, even though an ordinal variable, further included with the numeric variables. The accuracy 579 

statistics of the 24 soil property maps are reported in Table 5, both for the maps as a whole and each 580 

RSG separately. The accuracy of the maps of depth and drainage could not be assessed for Acrisols, 581 

because these properties were not recorded for Acrisols, and neither for Calcisols and Gleysols 582 

because the area on the map depicting Calcisols and Gleysols does not correspond with any point 583 

observation on depth and drainage. The accuracy of the soil analytical property maps could not be 584 
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assessed for Acrisols, Andosols, Alisols, Arenosols, Gleysols and Regosols for similar reasons. 585 

Andosols, Alisols and Arenosols were not sampled and Acrisols, Gleysols and Regosols were mapped 586 

in areas which do not correspond with any sampled point observation.  587 

 588 

The accuracy of the property maps is altogether quite reasonable and varies among the different soil 589 

properties and the different RSGs. Relative RMSE (relative to the average property value reported for 590 

each RSG) is on average 42% which is considered an acceptable small error but varies between 9 and 591 

166%. Soil properties particularly accurately mapped by RSGs (in terms of relative RMSE) are 592 

drainage, clay, bulk density, pH and CEC. Particularly inaccurate are depth, exchangeable K and 593 

extractable Zn. The apparent inaccuracy of the depth map is due to the large relative RMSE reported 594 

for depth in the area mapped as Leptosols. The depth map further appears accurate though. Relative 595 

good Pearson correlations, between mapped and observed soil property values, are shown for 596 

drainage, depth, pH and sum of exchangeable bases and particularly bad correlations for 597 

exchangeable K and especially extractable S. The correlation is low though when considering all 598 

selected properties with an average coefficient of 0.38. Bias or mean error is generally very small.  599 

 600 

<Insert Table 5> 601 

 602 

 603 

4 Discussion and conclusions 604 

Expert soil knowledge, used in a conventional soil-landscape survey approach, was combined with 605 

random forest, currently one of most popular digital soil mapping techniques, into a hybrid approach 606 

to produce a geospatial dataset of the major soil-landscape resources of 30 Ethiopian Highland 607 

woredas at an accuracy which is adequate and in a manner which is time and cost effective. This 608 

dataset includes tables with newly collected soil property data for 2276 georeferenced soil profiles 609 

classified according to WRB, compiled together with data and classifications for a few hundred 610 
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profiles added from the Africa Soil Profiles database, and maps of the major soil-landscape resources 611 

(maps of RSGs, with associated soil properties, and of RSGs+PQ depicted in combination with major 612 

landscapes and landscape facets). This dataset can be included in the Ethiopian Soil Information 613 

Service (EthioSIS), and also in the World Soil Information Service (WoSIS)3, in support to scaling up of 614 

agricultural best practices in Ethiopia, and beyond.  615 

 616 

The final map of major soil-landscape resources is a polygon map, generalised from raster, depicting 617 

RSGs according to geomorphic landscape features at a targeted scale of 1: 250,000 (apparent scale of 618 

approximately 1: 150,000). The map accuracy, expressed by the overall purity, was estimated to be 619 

0.54. This estimate was deducted from the, independently assessed, overall purity of 0.58 of the 620 

raster version of the map and the, so-called, overall correspondence of 0.79 of the polygon map and 621 

0.84 of the raster map. Major soil-landscape resources were also defined and mapped as RSGs+PQ 622 

and the overall purity of both the polygon and raster map was slightly lower with 0.45 and 0.49, 623 

respectively. Apparently, higher precision comes at the cost of lower accuracy and we expect that 624 

the accuracy would become very low if we had adhered to the rules for creating map legends, 625 

suggested by IUSS Working Group WRB (2015), implying for our targeted scale to use the first 3 626 

applicable principal qualifiers (RSGs+3PQ). Besides the overall purity, evaluating the predicted most 627 

probable soil class, we could had assessed the entropy as an additional measure of accuracy by 628 

evaluating the relative probabilities of the most and less probable soil classes. We considered this too 629 

much detail and not necessarily more informative, not in the least because less probable soils are, by 630 

definition, minor soils. The overall purity is basically a measure of the accuracy of the model 631 

predictions at independent OOB cross validation points. This cross validation is an integral part of the 632 

random forest modelling procedure which we consider a major advantage of the procedure. 633 

Alternatively, additional survey would be needed for soil map validation, with a probability sampling 634 

design providing unbiased estimates of the accuracy expressed as the areal fraction of the map 635 

                                                 
3 www.isric.org/explore/wosis 
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correctly predicted (Brus et al., 2011), however, additional survey is time and cost intense. Soil map 636 

production using the random forest procedure is also very time and cost effective compared to 637 

alternative more conventional approaches, such as the Soil and Terrain (SoTer) approach, which 638 

requires manual or automated (e.g. Dobos et al., 2005) delineation of landscape features at the 639 

appropriate scale and manual attribution of soil classes. Summarising, overall purities for the RSG 640 

maps are very reasonable and in line with purities that are typically reported for soil class maps 641 

developed with either statistical or conventional methods, while the latter are substantially more 642 

time- and cost intense. Some 4290 to 17,160 profile point observations would have been required to 643 

map the 30 woredas at a targeted scale of 1: 250,000 using a conventional approach with 1 to 4 644 

observations per cm2 on the paper map (11,920 to 47,680 profile observations at the apparent scale 645 

of 1: 150,000) whereas we used only 2595 profile observations.   646 

 647 

Evidently, the accuracy of the map depends much on the adequacy of the survey data and covariates. 648 

As an example, we used a legacy soil-landscape map, disaggregated into spatially explicit soil-649 

landscape facets, as covariate in the random forest modelling procedure and this covariate 650 

contributed very much to the accuracy of the final map. This result highlights the importance of 651 

including readily available information on soils and landscapes in the covariates which coincides with 652 

the experience from other digital soil mapping efforts that conventional legacy soil maps, of 653 

adequate quality, prove to best represent spatial variability of soil classes and properties compared 654 

to other covariates (Hengl et al., 2014; Kempen et al., 2019). In fact, and more generally speaking, 655 

legacy soil maps can be effectively updated and further improved using DSM techniques possibly 656 

enhancing scale, precision and accuracy, as illustrated by e.g. Kempen et al. (2009; 2015), 657 

Zeraatpisheh et al. (2019), Moller et al. (2019), and updating of the classification to new standards 658 

comparable to the approach applied in this study. The importance of adequate survey data is 659 

illustrated by the example wherein we assessed the extrapolative capacity of a random forest model 660 

trained with data collected during the explorative survey at kebele level (947 profiles) to predict RSGs 661 
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at woreda level. The prediction accuracy at kebele level was 0.58 but extrapolated to the woreda 662 

level, as validated by observations made during the full survey beyond the kebele level, reduced to 663 

only 0.44. The survey data at kebele level were apparently inadequate to inform random forest 664 

predictions at woreda level. It is therefore recommended to conduct the exploratory survey directly 665 

at the targeted level (scale and extent) and to use a legacy soil-landscape map, disaggregated into 666 

spatially explicit soil-landscape facets, as a base map from the start. For preparing the base map we 667 

recommend not to use random forest to replace legacy soil units by soil units classified according to 668 

WRB, like we did,  and rather maintain the legacy soil units. Map accuracy depends not only on the 669 

modelling approach, the covariates, the base map and the quantity and distribution of the survey 670 

data but also on the quality and reliability of the survey data (the classifications) itself. The latter is 671 

the most critical and possibly weakest point in the entire workflow and requires expert knowledge 672 

and ample experience. Reference Soil Groups, and prefix and suffix qualifiers, may be assessed from 673 

diagnostic features, largely reflecting soil forming processes, interpreted and diagnosed on the basis 674 

of detailed field observations complemented with the necessary soil analytical data. Alternatively, it 675 

is difficult to classify soils correctly from auger observations which were meant to determine or 676 

confirm in-field variability of soil characteristics possibly similar or comparable to characteristics yet 677 

observed in detail from yet classified soils. For instance, it is not obvious to distinguish Vertisols 678 

(Chromic) from Vertic Cambisols or Vertic Luvisols and Nitic Luvisols from Luvic Nitisols as all these 679 

soils may be reddish-brown to brownish-red in colour, deep, clayey and sticky throughout. This 680 

difficulty combined with the fact that the majority of observations was made by auger, distinguishing 681 

only 1 prefix qualifier, certainly had an important impact on the map accuracy. This may also explain 682 

why the inclusion of prefix qualifiers, even though enhancing precision, resulted in larger errors and 683 

hence lower map accuracy. The accuracy would likely be enhanced by higher level grouping of soil 684 

observations with comparable field characteristics but this would negatively impact precision. In-field 685 

classification according to an easier classification system may result in more reliable data (classes) 686 

which would likely contribute to a higher accuracy. The majority of auger observations was also 687 
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classified according to local (farmers) nomenclatures. When done in consultation with a local land 688 

user, this may prove a reliable entry to in-field soil classification. Local soil names, plus possible 689 

within-name variability identified from augering till greater depth, may serve as a relative easy basis 690 

for surveying, and mapping, of soil resources whereby the local soil names can be characterised in 691 

detail and classified according to WRB. Another advantage of such approach would be the enhanced 692 

communicability towards farmers and extension workers without jeopardising the relevance and 693 

communication with the scientific community. We assessed, but not reported, the correlation 694 

between RSGs and local soil names which proved incomplete and not straightforward.  695 

 696 

A soil class represents a collection of soil properties that are interrelated with each other as the 697 

result of similar soil formation beyond the topsoil translating into a collection of soil qualities. These 698 

qualities define the functions that a soil can provide, e.g. for supporting agricultural productivity or 699 

ecosystem services, and the management practices required to enhance those functions. Soil class 700 

maps represent the spatial variability of these collections at the scale of operation. This is illustrated 701 

by a number of soil property maps representing the mean values associated with each RSG. The 702 

accuracy of the soil property maps seems reasonable but is different for different properties. The 703 

inaccuracy, here expressed by the relative RMSE (relative to the mean), is on average 42% and varies 704 

between 9% for bulk density and 166% for extractable zinc. Different RSGs prove not very different in 705 

terms of the selected soil properties except for specific properties that are typical or diagnostic for 706 

specific RSGs. For example, soil nutrient parameters may be similar for different RSGs but other soil 707 

properties such as drainage, depth, sum of exchangeable bases or pH are different for different RSGs 708 

and show relative good correlations between observed and mapped property values. These 709 

differences determine differences in aeration, rootability, acidity and fertility and therewith 710 

differences in crop response to fertiliser nutrients. Trivial but key for producing soil property maps 711 

from soil class maps is that a representative soil profile is described in detail and sampled for 712 

laboratory analysis for each of the identified soil classes (RSGs). Evidently, soil properties can also be 713 
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mapped directly using DSM techniques, instead of using the soil classes as carriers, but such 714 

approach requires sufficient point data on the properties of interest, including analytical point data. 715 

In this study however we collected only a small number of soil samples and instead a large number of 716 

soil classifications, from auger observations, which allowed us to map soil properties at limited 717 

laboratory costs.  718 

 719 

Accurate soil-landscape resources maps can be produced efficiently for additional woredas in 720 

Ethiopia. It is recommended to apply a similar approach for future surveys under similar 721 

circumstances using the following steps: 1) prepare a base map for the woreda which indicates 722 

hypothetical soil classes according to landscape facets disaggregated from the Geomorphology and 723 

Soils map of Ethiopia. Distinguish and map landscape facets based on slope class and relative 724 

elevation (low-mid-high) within 5 km distance, 2) define the minimum number of observations 725 

required for the targeted scale and prepare a survey plan following the base map, 3) conduct an 726 

exploratory survey following the base map throughout the woreda, thus not starting at the kebele 727 

level, to identify major soil classes, 4) characterise and classify soil profiles, from detailed soil pit 728 

descriptions, which are representative for the identified soil classes and define diagnostic 729 

characteristics which are recognisable from an auger, 5) continue with the survey throughout the 730 

woreda following the same base map to verify the distribution of the identified soil classes, explicitly 731 

linking the classifications of the observation points with the classifications of the soil pits and where 732 

needed making additional soil pit observations for additionally identified soil classes, 6) confirm and 733 

where needed correct the field-assessed classifications using soil analytical results first for soil pits 734 

and then the related auger observations, 7) compile the soil data strictly according to the standards 735 

of the targeted database template, 8) prepare spatial covariates representative for soil forming 736 

factors including management, 9) model and independently validate soil-landscape relations using 737 

DSM (random forest) with georeferenced soil classifications as input and the base map as one of the 738 

covariates. Consider producing maps of the diagnostic qualifiers to add them to the covariate stack 739 
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for predicting RSGs, 10) apply the validated model to produce a map at high resolution and, if 740 

needed, generalise the map into a polygon map following geomorphic landscape features, 11) map 741 

soil properties according to the soil-landscape resources map. Additional survey can be conducted 742 

for additional map validation if considered necessary and time and budget permitting.  743 
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Table 1 

 

Property  R
SG

 

A
cr

is
o

ls
 

A
lis

o
ls

 

A
n

d
o

so
ls

 

A
re

n
o

so
ls

 

C
al

ci
so

ls
 

C
am

b
is

o
ls

 

Fl
u

vi
so

ls
 

G
le

ys
o

ls
 

Le
p

to
so

ls
 

Lu
vi

so
ls

 

N
it

is
o

ls
 

P
h

ae
o

ze
m

s 

P
la

n
o

so
ls

 

R
e

go
so

ls
 

V
e

rt
is

o
ls

 

A
ll 

Soil profile                                   

Depth  AVG - 115 98 94 39 95 101 108 26 117 110 118 119 36 113 98 

(cm) SD - 21 18 21 8 13 22 14 17 26 24 19 12 16 29 48 

 n - 60 13 25 - 41 2 - 264 266 258 2 33 48 277 1289 

Drainage  AVG - 4.9 5.0 6.9 - 5.1 5.2 3.3 6.4 4.9 4.7 3.3 3.0 6.6 3.1 4.9 

(class)  SD - 0.6 0.0 0.3 - 0.9 1.1 1.9 0.7 0.6 0.7 0.8 0.4 0.6 1.1 1.4 

 n - 62 15 25 - 41 2 - 248 265 261 2 32 50 276 1279 

Soil depth interval (0-30 cm)                              

Clay AVG 57 - - - 57 43 34 45 48 47 57 49 42 38 55 50 

(g/100g) SD 3 - - - - 10 8 6 9 12 12 6 6 5 10 12 

BD  AVG 1.04 - - - 1.32 1.26 1.24 1.08 1.21 1.13 1.15 1.23 1.04 1.29 1.22 1.17 

(kg/dm3) SD 0.01 - - - - 0.13 0.18 0.06 0.08 0.10 0.09 0.10 0.02 0.04 0.12 0.12 

pH-H2O AVG 4.3 - - - 7.8 6.4 7.2 4.8 6.7 5.6 5.4 6.6 5.0 7.2 6.8 6.0 

(-)  SD 0.1 - - - - 1.0 1.1 0.4 1.0 0.8 0.4 1.1 0.5 0.8 0.9 1.0 

CEC  AVG 36.9 - - - 49.4 39.7 37.5 39.7 52.2 39.9 42.2 46.3 31.4 33.9 49.1 42.8 

(cmolc/kg) SD 2.4 - - - - 6.4 4.0 7.5 6.6 8.5 6.4 4.5 4.9 6.4 9.1 8.8 

ExBases  AVG 17.3 - - - 45.2 31.6 29.7 16.3 46.9 29.0 25.8 38.1 16.3 22.9 41.2 31.8 

(cmolc/kg) SD 0.0 - - - - 8.9 3.0 2.7 6.6 9.9 6.1 8.7 3.4 5.6 9.8 11.1 

BSat  AVG 47 - - - 91 80 79 41 90 73 61 82 52 68 84 74 

(%) SD - - - - - - - - - - - - - - - - 

OrgC AVG 19.1 - - - 11.3 13.9 16.8 23.4 16.9 21.9 21.6 16.4 16.6 12.7 16.5 19.6 

(g/kg) SD 0.3 - - - - 4.0 9.4 14.6 7.5 8.8 7.6 7.0 7.7 1.2 7.0 9.5 

TN AVG 2.24 - - - 1.21 1.60 1.67 2.51 1.79 2.07 1.90 1.47 1.78 1.39 1.69 1.90 
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(g/kg) SD 0.10 - - - - 0.47 0.74 1.52 0.78 0.72 0.61 0.43 0.81 0.23 0.59 0.77 

Av P AVG 10.6 - - - 22.5 14.2 18.0 8.4 16.9 11.4 8.5 12.8 6.1 13.8 13.3 12.1 

(mg/kg)  SD 1.9 - - - - 4.5 6.6 1.6 3.5 6.2 5.7 7.4 3.1 1.0 7.3 6.6 

Exch K AVG 0.32 - - - 0.89 0.66 0.44 0.27 1.32 0.77 0.76 1.22 0.32 0.29 0.56 0.71 

(cmolc/kg)  SD 0.04 - - - - 0.63 0.36 0.02 0.51 0.53 0.60 0.25 0.11 0.19 0.32 0.52 

  n - - - - 1 16 4 - 4 48 56 1 2 - 71 203 

Extr S  AVG 1.37 - - - 1.06 0.88 1.05 0.72 1.03 1.14 0.94 0.90 0.41 0.65 0.88 1.00 

(mg/kg)  SD 0.73 - - - - 0.40 0.46 0.68 0.36 0.60 0.42 0.42 0.06 0.03 0.28 0.48 

  n - - - - 1 16 4 - 4 47 55 1 2 - 71 201 

Extr Zn  AVG 4.4 - - - 7.3 4.1 0.9 8.3 0.5 7.0 4.4 6.4 8.3 0.7 2.1 4.5 

(mg/kg)  SD 5.0 - - - - 7.4 0.8 5.7 0.1 8.3 5.9 11.3 2.3 0.8 4.7 6.7 

  n - - - - 1 15 4 - 4 46 56 1 2 - 67 196 

Soil depth interval (30-100 cm)                

Clay AVG 60 - - - 52 44 40 52 - 54 64 61 59 34 59 55 

(g/100g) SD 2 - - - - 10 5 14 - 13 13 8 1 3 11 14 

BD  ME 1.05    1.30 1.25 1.26 1.19 - 1.13 1.12 1.20 1.19 1.19 1.24 1.17 

(kg/dm3) SD 0.01    - 0.10 0.17 0.04 - 0.09 0.08 0.04 0.03 0.07 0.13 0.11 

pH-H2O AVG 4.5 - - - 7.9 6.6 7.4 5.1 - 5.5 5.3 6.8 5.3 7.5 7.2 6.1 

(-)  SD 0.4 - - - - 1.1 1.0 0.5 - 1.0 0.5 1.1 0.5 0.9 0.9 1.2 

CEC  AVG 35.0 - - - 43.2 39.4 36.7 38.0 - 40.9 39.4 50.4 48.2 36.0 50.6 42.7 

(cmolc/kg) SD 2.4 - - - - 7.5 3.8 6.8 - 11.5 6.8 5.8 7.8 8.6 10.7 10.6 

ExBases  AVG 18.9 - - - 41.3 30.1 30.5 16.2 - 29.4 23.1 41.4 28.5 28.1 44.8 31.9 

(cmolc/kg) SD 1.2 - - - - 10.2 4.4 2.6 - 12.8 8.0 9.5 8.5 13.2 11.5 13.5 

BSat  AVG 54 - - - 96 76 83 43 - 72 59 82 59 78 89 75 

(%) SD - - - - - - - - - - - - - - - - 

OrgC AVG 19.1 - - - 11.3 13.9 16.8 23.4 16.9 21.9 21.6 16.4 16.6 12.7 16.5 19.6 

(g/kg) SD 0.3 - - - - 4.0 9.4 14.6 7.5 8.8 7.6 7.0 7.7 1.2 7.0 9.5 

TN AVG 1.07 - - - 0.40 0.91 0.83 0.59 - 1.21 0.99 0.94 0.68 0.70 1.18 1.09 

(g/kg) SD 0.10 - - - - 0.34 0.28 0.31 - 0.51 0.40 0.14 0.02 0.04 0.56 0.56 

Av P AVG - - - - - 8.0 - - - 9.8 13.8 - - 14.5 18.1 11.8 

(mg/kg)  SD - - - - - - - - - 3.2 - - - - 7.2 5.0 
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Exch K AVG 0.23 - - - 0.93 0.56 0.55 0.27 - 0.60 0.66 1.01 1.09 0.20 0.52 0.60 

(cmolc/kg)  SD 0.05 - - - - 0.64 0.51 0.12 - 0.38 0.70 0.33 0.74 0.14 0.40 0.51 

  n - - - - 1 16 4 - 0 48 56 1 1 - 69 196 

Extr S  AVG - - - - - 1.06 - - - 0.97 1.19 - - 0.63 0.99 0.97 

(mg/kg)  SD - - - - - - - - - 0.42 - - - - 0.39 0.37 

Extr Zn  AVG - - - - - 8.1 - - - 5.6 4.7 - - 0.1 1.8 4.7 

(mg/kg)  SD - - - - - - - - - 3.3 - - - - 1.8 3.4 

  n - - - - 0 0 0 - 0 8 3 0 0 - 4 15 
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Table 2 

 

All 30 woredas R
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All. Observations counted (%)  -> 0.3 3.0 2.0 1.3 0.2 8.1 3.2 0.4 13.5 21.4 17.5 1.1 2.3 4.0 21.7 0.0 100 

All. Predictions counted (%)   -> 0.4 3.2 1.8 1.5 0.1 4.9 1.3 0.2 13.9 20.3 21.6 0.6 2.0 2.3 25.9 0.0 100 

All. Area mapped (%)         -> 0.0 1.5 0.5 0.4 0.0 0.9 0.0 0.0 26.2 10.5 30.4 0.0 1.8 1.1 26.5 0.1 100 

                   

University Woreda                  

Mekele Alamata - - - - - 2.3 0.2 - 55.8 - - - - - 42.0 - 100 

Mekele Ambalage - - - - - 8.4 - - 86.1 - - - - - 5.4 - 100 

Mekele Endamehone - - - - - 0.3 - - 93.4 - - - - - 6.5 - 100 

Mekele Ofla - - - - - 0.5 0.2 - 93.7 - - - - - 5.6 0.2 100 

Mekele Rya Azebo - - - - - 3.8 0.0 - 36.0 - - - - - 60.3 - 100 

Bahir Dar Bure - - - - - - - - 30.3 3.5 44.7 - - - 21.6 - 100 

Bahir Dar Dera - - - - - 0.0 0.1 - 45.4 23.0 0.8 - - - 30.6 0.3 100 

Bahir Dar Jebitenan - - - - - - - - 19.2 0.2 39.6 - - - 41.1 - 100 

Bahir Dar Mecha - - - - - - - - 15.0 6.3 39.2 - - - 39.8 - 100 

Bahir Dar South Achefer - - - - - - - - 15.0 29.0 26.4 - - - 29.8 - 100 

Addis Ababa Bako Tibe - - - - - - - - 0.2 8.0 56.8 - - 0.1 34.9 - 100 

Addis Ababa Bedcho - - - - - - - - 0.1 7.9 0.3 - - - 91.8 - 100 

Addis Ababa Gimbichu - - - - - - - - 18.5 4.4 - 0.0 - - 77.1 - 100 

Addis Ababa Girar Jarso - - - - - 2.9 - - 37.5 12.9 0.2 - - - 46.6 - 100 

Addis Ababa Munesa - 23.5 - - - - 0.0 - 9.3 23.4 3.7 0.1 33.1 - 7.0 - 100 

Jimma Bedele Zuriya 0.1 - - - - 0.9 - - 0.1 8.0 75.6 - - 0.5 15 - 100 
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Jimma Dedesa - - - - - 0.1 - - - 18.7 72.7 - - 0.0 8.5 - 100 

Jimma Gera - 3.2 - - - 0.0 - 0.0 0.5 29.3 66.6 - 0.5 - - - 100 

Jimma Limu Seka - - - - - 0.0 - - 2.6 1.0 89.4 - - - 7.1 - 100 

Jimma Omonada - 0.2 8.2 - - - - - 8.3 13.5 50.0 - 3.1 - 16.8 - 100 

Haramaya Girawa - - - 0.1 0.1 0.8 - - 65.2 4.3 0.2 - - 0.6 28.8 - 100 

Haramaya Habro - - - - - 0.1 - - 27.8 1.2 20.0 - - 10.6 39.3 1.3 100 

Haramaya Haromaya - - - 7.0 - 0.9 0.0 - 14.5 2.3 0.2 - - 28.1 45.9 1.2 100 

Haramaya Kombolicha - - - 23.3 - 1.0 0.1 - 43.9 10.5 0.7 - - 5.1 15.3 - 100 

Haramaya Meta - - - - - 7.7 - - 50.9 2.9 0.0 - - 4.2 34.3 - 100 

Hawasa Bule - 8.2 - - - 0.4 - - 0.5 87.9 2.9 - - - - - 100 

Hawasa Cheha - - - - - - - - 9.6 11.0 40.1 - 4 - 35.2 - 100 

Hawasa Enemor Ener - - - - - - - - 10.0 9.9 44.9 - 4.6 - 30.7 - 100 

Hawasa Malga - 42.9 - - - - - - - 45.7 11.1 - - - - - 100 

Hawasa Misirak Azerenet Ber - - - - - - - - 1.9 66.1 18.2 - 2.6 - 11.2 - 100 
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Table 3 

 
 

RASTER POLYGON 
 

n RSG RSG+PQ n RSG RSG+PQ 

Overall purity 2594 0.58 0.49 2291 0.54  0.45 

Overall correspondence 2294 0.84 0.81 2291 0.79 0.74 

 

  



62 
 

Table 4  
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TO
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Acrisols 2 0 0 0 0 6 0 0 0 3 0 0 0 0 0 0.18 11 

Alisols 0 61 0 0 0 0 1 3 3 13 1 0 0 0 0 0.74 82 

Andosols 0 0 33 0 0 2 1 0 6 2 0 0 0 1 2 0.7 47 

Arenosols 0 0 0 22 0 1 1 0 3 3 2 0 0 5 2 0.56 39 

Calcisols 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 2 

Cambisols 5 0 3 0 0 61 5 0 15 9 6 2 0 3 17 0.48 126 

Fluvisols 0 0 0 0 0 5 14 0 0 0 7 1 0 0 8 0.4 35 

Gleysols 0 0 0 0 0 0 0 0 0 0 1 0 3 0 0 0 4 

Leptosols 0 1 7 2 2 47 6 0 205 21 14 0 0 25 30 0.57 360 

Luvisols 2 12 1 3 0 14 4 1 31 344 58 2 4 12 39 0.65 527 

Nitisols 0 4 0 3 0 17 11 2 44 87 314 1 8 17 52 0.56 560 

Phaeozems 0 0 0 0 0 4 1 0 0 1 0 10 0 0 0 0.62 16 

Planosols 0 0 0 0 0 1 1 4 2 5 3 1 27 0 9 0.51 53 

Regosols 0 0 1 0 0 3 1 0 11 3 6 0 1 25 9 0.42 60 

Vertisols 0 1 8 3 0 48 38 1 31 63 41 11 17 16 394 0.59 672 

Class repr. 0.22 0.77 0.62 0.67 0.5 0.29 0.17 0 0.58 0.62 0.69 0.36 0.45 0.24 0.7 0.58 - 

TOTAL 9 79 53 33 4 209 84 11 351 554 453 28 60 104 562 - 2594 
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Table 5 

 

Property R
SG

 

A
cr

is
o

ls
 

A
lis

o
ls

 

A
n

d
o

so
ls

 

A
re

n
o

so
ls

 

C
al

ci
so

ls
 

C
am

b
is

o
ls

 

Fl
u

vi
so

ls
 

G
le

ys
o

ls
 

Le
p

to
so

ls
 

Lu
vi

so
ls

 

N
it

is
o

ls
 

P
h

ae
o

ze
m

s 

P
la

n
o

so
ls

 

R
e

go
so

ls
 

V
e

rt
is

o
ls

 

A
ll 

Soil profile                                

Depth ME - -0.6 -4.1 -4.3 - -3.1 24.1 - 15.9 -1.7 -8.4 6.9 0.0 4.6 -12.5 -1.5 

(cm) RMSE - 21 16 28 - 35 24 - 39 31 36 7 21 25 42 36 

r = 0.69 rRMSE - 18 16 30 - 36 24 - 150 27 28 6 18 69 32 74 

  n - 60 13 25 - 41 2 - 264 266 258 2 33 48 277 1289 

Drainage  ME - 0.0 0.0 -0.1 - 0.0 1.6 - -0.3 0.0 0.1 -0.3 0.2 0.0 0.4 0.1 

(class) RMSE - 0.7 0.0 0.5 - 0.8 1.6 - 1.0 0.8 0.9 0.3 0.7 0.6 1.5 1.0 

r = 0.72 rRMSE - 14 0 7 - 15 31 - 16 15 19 9 24 9 48 26 

  n - 62 15 25 - 41 2 - 248 265 261 2 32 50 276 1279 

Soil depth interval  (0-30 cm)                

Clay ME - - - - 0.00 0.56 -0.79 - -2.97 -0.89 -1.10 -6.50 -1.64 - -3.41 -1.78 

(g/100g) RMSE - - - - 0.0 9.8 8.2 - 7.6 11.0 12.2 6.5 4.1 - 11.5 11.2 

r = 0.39 rRMSE - - - - 0 23 24 - 16 23 21 13 10 - 21 22 

BD ME - - - - 0.00 -0.01 -0.05 - 0.04 0.01 -0.02 -0.09 0.02 - 0.00 -0.01 

(kg/dm3) RMSE - - - - 0.00 0.15 0.20 - 0.07 0.10 0.12 0.09 0.04 - 0.09 0.11 

r = 0.39 rRMSE - - - - 0 12 16 - 6 9 11 7 4 - 7 9 

pH-H2O ME - - - - 0.00 -0.26 -0.07 - -0.42 -0.12 -0.02 -0.34 0.57 - -0.08 -0.09 

(-)  RMSE - - - - 0.0 1.2 1.2 - 1.1 0.7 0.6 0.3 0.6 - 0.9 0.8 

r = 0.61  rRMSE - - - - 0 19 16 - 17 13 11 5 12 - 14 13 

CEC  ME - - - - 0.00 -1.66 -0.51 - -6.91 -1.70 0.54 -0.11 8.48 - -2.38 -1.28 

(cmolc/kg) RMSE - - - - 0.0 4.7 4.5 - 8.2 8.0 8.3 0.1 9.9 - 8.9 8.1 

r = 0.39 rRMSE - - - - 0 12 12 - 16 20 20 0 32 - 18 19 

ExBases ME - - - - 0.00 -3.47 -0.88 - -9.28 -1.17 -0.87 0.22 12.33 - -1.85 -1.52 
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(cmolc/kg) RMSE - - - - 0.0 8.3 3.4 - 13.0 9.1 7.6 0.2 14.9 - 10.4 9.2 

r = 0.56  rRMSE - - - - 0 26 12 - 28 31 29 1 92 - 25 29 

OrgC ME - - - - 0.00 1.07 -1.05 - 0.11 0.66 0.24 8.41 0.66 - -0.44 0.18 

(g/kg)  RMSE - - - - 0.0 4.0 6.6 - 5.7 9.1 8.0 8.4 4.6 - 6.8 7.5 

R = 0.38  rRMSE - - - - 0 29 39 - 34 42 37 51 28 - 41 39 

TN ME - - - - 0.00 0.16 -0.09 - 0.15 0.05 0.12 0.58 -0.14 - -0.09 0.03 

(g/kg) RMSE - - - - 0.00 0.48 0.46 - 0.59 0.76 0.72 0.58 0.36 - 0.55 0.65 

r = 0.30 rRMSE - - - - 0 30 28 - 33 36 38 40 20 - 33 35 

Av P ME - - - - 0.00 0.35 -1.67 - -3.22 -0.88 -0.40 0.29 3.12 - 1.26 0.09 

(mg/kg) RMSE - - - - 0.00 4.66 5.90 - 7.14 6.23 4.74 0.29 5.65 - 6.62 5.87 

r = 0.42  rRMSE - - - - 0 33 33 - 42 55 56 2 92 - 50 52 

Exch K ME - - - - 0.00 -0.08 -0.13 - -0.68 -0.07 0.05 -0.02 0.39 - 0.08 0.01 

(cmolc/kg) RMSE - - - - 0.00 0.54 0.23 - 0.89 0.55 0.63 0.02 0.62 - 0.38 0.53 

r = 0.10 rRMSE - - - - 0 83 52 - 67 71 83 1 193 - 69 76 

  n - - - - 1 16 4 - 4 48 56 1 2 - 71 203 

Extr S ME - - - - 0.00 0.14 -0.22 - -0.15 0.02 -0.03 0.28 0.25 - 0.03 0.01 

(mg/kg) RMSE - - - - 0.00 0.43 0.26 - 0.33 0.45 0.62 0.28 0.41 - 0.35 0.46 

r = 0.20  rRMSE - - - - 0 49 25 - 32 39 65 31 100 - 40 49 

  n - - - - 1 16 4 - 4 47 55 1 2 - 71 201 

Extr Zn ME - - - - 0.00 -0.82 -0.12 - 0.01 0.68 1.46 -5.09 -4.47 - 0.14 0.49 

(mg/kg) RMSE - - - - 0.00 5.93 0.75 - 0.27 9.14 6.54 5.09 5.50 - 4.54 6.48 

r = 0.31 rRMSE - - - - 0 145 81 - 52 131 149 79 66 - 211 166 

  n - - - - 1 15 4 - 4 46 56 1 2 - 67 196 

Soil depth interval  (30-100 cm)                           

Clay ME - - - - 0.00 1.00 1.35 - - -0.96 -1.56 -11.9 -1.53 - -3.05 -1.72 

(g/100g) RMSE - - - - 0.0 10.1 5.8 - - 12.3 13.6 11.9 1.5 - 13.4 12.8 

r = 0.42 rRMSE - - - - 0 23 14 - - 23 21 20 3 - 23 22 

BD ME - - - - 0.00 -0.01 -0.01 - - 0.01 0.01 0.01 -0.01 - -0.03 -0.01 

(kg/dm3) RMSE - - - - 0.00 0.11 0.19 - - 0.09 0.13 0.01 0.01 - 0.10 0.11 

r = 0.39 rRMSE - - - - 0 9 15 - - 8 12 1 1 - 8 9 

pH-H2O ME - - - - 0.00 -0.35 -0.04 - - -0.19 -0.02 -0.15 0.58 - -0.10 -0.11 
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(-)  RMSE - - - - 0.0 1.2 0.9 - - 0.9 0.6 0.2 0.6 - 0.9 0.9 

r = 0.70 rRMSE - - - - 0 19 12 - - 16 11 2 11 - 13 14 

CEC  ME - - - - 0.00 -2.72 1.32 - - -3.21 1.99 -1.49 7.69 - -2.26 -1.18 

(cmolc/kg) RMSE - - - - 0.0 4.9 4.3 - - 10.0 9.8 1.5 7.7 - 10.7 9.7 

r = 0.41 rRMSE - - - - 0 13 12 - - 25 25 3 16 - 21 22 

ExBases ME - - - - 0.00 -3.27 2.35 - - -2.26 -0.11 5.96 8.24 - -2.94 -1.77 

(cmolc/kg) RMSE - - - - 0.0 7.9 4.4 - - 10.4 10.0 6.0 8.2 - 12.7 10.8 

r = 0.60  rRMSE - - - - 0 26 14 - - 35 43 14 29 - 28 34 

OrgC ME - - - - 0.00 1.15 1.08 - - 1.00 -0.45 -2.68 0.10 - -1.05 -0.15 

(g/kg)  RMSE - - - - 0.0 3.1 2.4 - - 5.1 4.3 2.7 0.1 - 4.4 4.4 

r = 0.27 rRMSE - - - - 0 37 29 - - 43 44 29 2 - 40 41 

TN ME - - - - 0.00 0.09 0.10 - - 0.09 -0.02 -0.08 -0.02 - -0.13 -0.02 

(g/kg) RMSE - - - - 0.00 0.33 0.20 - - 0.53 0.44 0.08 0.02 - 0.49 0.47 

r = 0.23 rRMSE - - - - 0 36 24 - - 44 44 9 3 - 42 42 

  n - - - - 1 16 4 - 0 48 56 1 1 - 69 196 

Av P ME - - - - - - - - - 0.43 -2.06 - - - -3.81 -1.20 

(mg/kg) RMSE - - - - - - - - - 1.90 3.37 - - - 9.17 5.16 

r = 0.34 rRMSE - - - - - - - - - 19 24 - - - 51 32 

  n - - - - 0 0 0 - 0 8 3 0 0 - 4 15 

Exch K ME - - - - 0.00 -0.10 -0.12 - - -0.10 0.09 0.09 -0.11 - 0.03 0.00 

(cmolc/kg)  RMSE - - - - 0.00 0.54 0.42 - - 0.35 0.72 0.09 0.11 - 0.38 0.51 

r = 0.18  rRMSE - - - - 0 96 77 - - 59 109 9 10 - 73 83 

  n - - - - 1 16 4 - 0 48 56 1 1 - 69 196 

Extr S ME - - - - - - - - - 0.04 -0.30 - - - 0.05 -0.02 

(mg/kg) RMSE - - - - - - - - - 0.40 0.45 - - - 0.29 0.38 

r = -0.14 rRMSE - - - - - - - - - 41 38 - - - 30 38 

Extr Zn ME - - - - - - - - - 0.30 2.17 - - - -0.18 0.55 

(mg/kg) RMSE - - - - - - - - - 2.99 2.66 - - - 1.36 2.58 

r = 0.60  rRMSE - - - - - - - - - 53 57 - - - 74 60 

  n - - - - 0 0 0 - 0 8 3 0 0 - 4 15 

All rRMSE - 16 8 18 0 37 28 - 39 37 41 16 36 39 42 42 
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