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Global climate change and food insecurity are major concerns of the 21st century. 
Agricultural production should increase by 60–110% to meet the projected food demands of 
the word population by 2050 (McGuire 2012). However, the rates of global crop production 
are still far below the mentioned requirements and most studies predict a future decline in 
grain yield of major crops due to climate change (Ray et al. 2013; Wiltshire et al. 2013). 
Rainfed farming systems are drastically affected by climatic conditions, with water scarcity 
and increasing temperature being the most important limiting factors for crop productivity 
and, ultimately, for food security worldwide (Daryanto et al. 2013). Efforts to ensure food 
supply will require accelerating the development of climate resilient crop varieties. This is 
particularly necessary for crops that provide staple food grain in developing countries and 
semi-arid regions of the world. 

Plant breeding can play a crucial role in enhancing crop productivity and adaptation to 
climate change. The main goal of breeding programs is to efficiently identify and select the 
best-performing genotypes as potential cultivars or as parental material to improve crop 
performance in future generations (Falconer and Mackay 1996; Bernardo 2010). For this, new 
selection techniques based on modern approaches to quantitative genetics have to be adopted 
by breeding programs in order to accelerate genetic progress. Advances in high-throughput 
genotyping technologies and the increasing cost-effective access to high-density genomic data 
have facilitated the adoption of a novel form of marker-assisted selection known as genomic 
selection (GS). This genetic evaluation method has already revolutionized animal breeding 
over the past decade and is gaining momentum in crop breeding. In GS, phenotypic and 
genome-wide marker data from a reference (or training) population is used to predict genetic 
merit of selection candidates that have only been genotyped but not phenotyped (Meuwissen 
et al. 2001). As a result, selection efficiency can potentially increase, reducing phenotyping 
costs and generation interval. Moreover, additional opportunities for GS in crops are provided 
by current developments in high throughput phenotyping technologies. The success in the 
incorporation of genomics as breeding tool depends on an appropriate statistical analysis of 
the phenotypic and genetic data generated in crop breeding programs. 

1.1.  Phenotypic analysis in plant breeding 

Adequate phenotyping has been the basis of conventional plant breeding and is also an 
essential element in the implementation of GS. Crop breeding programs rely on the evaluation 
of phenotypic performance data typically obtained from series of field experiments known as 
multi-environment trials (MET). These trials are conducted to assess test genotypes and 
predict their performances across a target population of environments (TPE), which is 
assumed to be representative of future production environments where the newly bred 
varieties will be grown (Comstock 1977). Most agronomic traits with economic importance, 
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such as grain yield, are quantitative and complex, meaning that phenotypes are determined by 
numerous genes with small effects and highly influenced by environmental factors. This 
originates two potential challenges that can complicate selection decisions in plant breeding. 
These challenges are: spatial variation within trials and differential genotype performance 
across trials, namely genotype-by-environment interaction (G×E). Both phenomena must be 
accounted for in MET analysis for a proper assessment of genotypic values. 

1.1.1.  Spatial analysis of field trials 

Environmental or non-genetic effects are firstly manifested at individual-trial level as a 
consequence of variable growing conditions typically caused by soil heterogeneity and 
agronomic practices. Ignoring these sources of spatial variability in phenotypic analysis can 
introduce bias in parameter estimation and prediction of genetic merit. For this reason, 
adjusting phenotypes for spatial trends has been largely recognized as an important 
prerequisite for an appropriate assessment of genotypic performance in plant breeding 
experiments. The classical approach to minimize the impact of field heterogeneity has been 
based on blocking and randomization by means of using designed experiments. More 
advanced experimental designs have been specially developed for plant breeding trials, where 
many genotypes, usually hundreds, are evaluated with low levels of replication (John and 
Williams 1995; Cullis et al. 2006; Williams et al. 2014). However, relying only on design 
factors may not be sufficient to capture all sources of environmental effects. Several methods 
that explicitly model spatial trends a posteriori have been proposed to improve the efficiency 
of field trial evaluations (e.g., Cullis and Gleeson 1991; Zimmerman and Harville 1991; 
Piepho et al. 2008b). Mixed model methodology has become very popular for the analysis of 
MET data in plant breeding, mainly due to its flexibility, computational efficiency and ability 
to easily handle unbalanced data (Smith et al. 2005; Piepho et al. 2008a). Accordingly, spatial 
analysis based on mixed models has been increasingly adopted as a natural extension. Under 
this approach, Gilmour et al. (1997) developed an influential and sophisticated spatial method 
for the analysis of crop breeding trials. They proposed to identify different components of 
field variation and to account for each one of these by including specific terms in the spatial 
model. The process of model building requires several steps and is guided by diagnostic 
graphics of residuals and by comparing the goodness of fit of alternative candidate models 
using different spatial terms. The approach of Gilmour et al. (1997) and simplified versions of 
it have been successfully used and reported by several studies (e.g., Qiao et al. 2004; 
Dutkowski et al. 2006). However, its adoption as a routine method of spatial analysis in series 
of plant breeding trials may be still hindered by the intensive intervention and specialist skills 
required. Efficient spatial methods that are easy to understand and simple to implement in 
routine analysis of plant breeding trials are still required. 
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1.1.2.  G×E analysis 

Besides spatial variation within trials, G×E plays a prominent role in determining genotypic 
performance across trials. The presence of G×E implies that genotypes respond differently to 
the environmental conditions of a TPE. The effectiveness of selection strategies under these 
circumstances will depend on the characteristics of G×E patterns. The breeder may attempt to 
exploit G×E by selecting for genotypes with specific adaptation to particular environments 
within the TPE. This strategy is likely to be relevant only in presence of repeatable G×E 
effects, which are typically associated with predictable—or fixed—environmental factors 
(e.g. soil type). Conversely, if the main divers of G×E patterns are unpredictable 
environmental components, such as year-to-year climatic variation, the most feasible 
approach is to select for broadly-adapted genotypes with superior overall performance across 
the TPE, minimizing in this way the impact of G×E (Atlin et al. 2011). 

In order to reduce uncertainty in the identification of genotypes with broad or specific 
adaptation, the use of efficient and flexible methods for G×E analysis is required. For this 
task, mixed model analysis is currently the method of choice in plant breeding since it 
provides a flexible framework to account for differences in the genetic variances across 
environments as well as the lack of perfect genetic correlation among environments, which 
are the two sources for G×E. Different forms of G×E can be fitted under the mixed model 
approach, from those analogous to variance components models (Talbot 1984; Cullis et al. 
1996) to more complex alternatives including unstructured and multiplicative mixed models 
(Piepho 1997; Smith et al. 2001b). Within this framework, explicit environmental information 
can also be incorporated as covariates to study G×E and to predict genotypic performance 
(van Eeuwijk et al. 1996; Denis et al. 1997). 

1.2.  Genomic selection in plant breeding 

Plant breeders have relied historically on phenotypic selection, using trait phenotypes as 
proxies for the genetic merits of selection candidates. This started to change in the last 
decades with the advances in molecular genetics techniques, which allowed the discovery of 
several polymorphic markers in the genome. The availability of molecular markers opened 
the possibility to combine phenotypes and DNA information for selection of superior 
genotypes through what is generally known as marker-assisted selection (MAS). Initial 
attempts to implement MAS in plant breeding were based on quantitative trait loci (QTL) 
mapping and, more recently, on genome-wide association studies (GWAS). Both methods 
consist in identifying and selecting markers judged to be linked to causative genes or QTLs 
according to significance tests of their estimated effects. The subset of identified candidate 
markers is then used to assist prediction of genotypic performance for the target trait. 
Conventional MAS based on linkage studies has been more suitably implemented for traits 
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controlled by a small number of major genes (Dekkers and Hospital 2002; Xu and Crouch 
2008). However, the gains in genetic progress have been much lower than originally expected 
for complex quantitative traits of economic importance, which are mostly determined by 
numerous small-effect genes, with some occasionally having large effects (Bernardo 2008; 
Heffner et al. 2009). The main conceptual challenge to conventional MAS resides in that 
QTLs are actually unknown. As a result, the process of finding out which markers are linked 
to QTLs induces errors, which are generally magnified in analysis of highly polygenic traits 
using many markers. This is because, in QTL mapping and GWAS, loci with small effects 
that do not exceed some significance threshold are implicitly set to have zero effect. However, 
a small effect does not necessarily mean lack of effect; therefore, some useful information 
may be unfairly discarded due to lack of power to detect small-effect QTLs. At the same time, 
a proportion of the genetic variance that could be explained by the removed markers is likely 
to be wrongly attributed to the few loci that passed the formal statistical test, overestimating 
their effects (Melchinger et al. 1998; Schön et al. 2004). The resulting lack of power and bias 
may decrease prediction accuracy. 

These limitations of conventional MAS were overcome by adopting an innovative 
approach to MAS, known as genome-wide MAS or simply GS (Meuwissen et al. 2001). The 
core strategy of GS is to avoid pre-selection of markers based on detection thresholds and to 
assume that all markers are potentially linked to QTLs controlling the trait of interest. Hence, 
markers with small effect will be included, while no bias in estimated QTL effects will be 
induced by cause of the detection process. An additional conceptual difference is that the goal 
of GS is to predict genotypic or breeding values (BVs) of selection candidates, but without the 
explicit intention of identifying QTLs or drawing inferences regarding their biological nature. 
Finally, it is important to note that the GS approach requires many markers covering all the 
genome in order to work effectively. In that sense, the transition from conventional MAS to 
GS has been facilitated in practice by recent developments in genotyping technologies, 
particularly Single Nucleotide Polymorphism (SNP) genotyping, which have made possible 
the availability of affordable dense marker assays. 

1.2.1.  Genomic prediction methods 

As mentioned above, GS is based on using all markers simultaneously to derive genomic 
predictions (GP) of unphenotyped genotypes. This creates a statistical challenge for the 
implementation of GP models since the number of parameters that must be estimated (i.e., the 
marker effects) is typically far larger than the observations used for estimation (i.e., the 
phenotyped individuals). The most common approach to address this challenge is to fit 
marker effects as random and apply some type of regularization. Several GP methods have 
been proposed for this, including a range of Bayesian regression models varying in the 
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particular prior distribution assumed for the marker effects (Gianola 2013) as well as non-
parametric and semi-parametric approaches (de los Campos et al. 2010; Gonzalez-Recio et al. 
2014). Simulation studies have shown that Bayesian methods are advantageous when the trait 
is assumed to be influenced by few QTLs with large effects (e.g. Meuwissen et al. 2001; 
Habier et al. 2007; Daetwyler et al. 2010). However, differences in predictive performance 
among GP methods tend to disappear when the target trait is highly polygenic (e.g., Wimmer 
et al. 2013; Wang et al. 2015). Under this scenario, a GP method based on best linear 
unbiased prediction (BLUP; Goldberger 1962), known as genomic BLUP or G-BLUP 
(VanRaden 2008), has been proven to perform similar (e.g. Yang et al., 2010, Clark et al., 
2011) or even better than Bayesian approaches (Daetwyler et al. 2010; Heslot et al. 2013). G-
BLUP makes use of the classic Mixed Model Equations (Henderson 1973; 1975) to obtain 
direct predictions of genetic merit by relying on a genetic similarity matrix computed from 
genome-wide markers. This genomic relationship matrix (G) is intended to approximate the 
additive-genetic resemblance between individuals at QTLs. 

In theory, accurate estimates of genetic similarities, and therefore of predictions, can be 
obtained from genomic information if markers and unknown QTLs are in complete linkage 
disequilibrium (LD) (Habier et al. 2009). However, in the most frequent situation of 
incomplete LD, using only relationships from G may result in loss of some proportion of the 
genetic variance explained by the model. When training genotypes and selection candidates 
are related through pedigree, markers can capture genetic relationships as well as co-
segregation of alleles within families regardless of populational LD (Habier et al. 2013). 
These sources of genetic information are also accounted for by traditional additive-genetic 
relationships derived from pedigree data. Consequently, incorporating information from 
pedigree into genomic models may be a useful strategy to assist predictions in structured 
breeding populations by simultaneously accounting for familial relationships not fully 
captured by markers. This alternative has not yet been explored extensively in plan breeding 
applications. 

The implicit assumption of G-BLUP is that SNP effects are normally distributed with a 
constant variance and equal contribution to the trait variation, which is consistent with the 
infinitesimal model of quantitative genetics (Fisher 1918). The mentioned properties of G-
BLUP make it more robust statistically and faster to compute when compared to other GP 
methods, resulting in a more attractive alternative for routine implementation (Gianola et al. 
2014). Moreover, the mixed model formulation enables a straightforward extension of G-
BLUP to the multivariate context. One important application of multivariate G-BLUP in plant 
breeding is to combine information of several correlated traits in a joint multi-trait analysis for 
increasing the accuracy of GP. In addition, G×E interactions can be explicitly modeled within 
the G-BLUP framework to improve predictions in multi-environment evaluations. However, a 
potential limitation of G-BLUP is that assuming equal variance for all marker effects may be 
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simplistic biologically since, in reality, loci are expected to contribute differently to the 
genetic control of a trait. An option to account for heterogeneous locus-specific variances is to 
use a G matrix that incorporates weights reflecting the genetic variance captured by each SNP 
(Zang et al. 2010; Wang et al. 2012; Su et al. 2014). This approach is able to accommodate 
deviations from the infinitesimal model, as with Bayesian GP methods, while still maintaining 
the simplicity in implementation of BLUP-based models. The SNP weighting approach has 
not been studied empirically so far in the context of plant breeding. 

1.2.2.  Evaluation of genomic predictions 

Ideally, the potential success of a GP method for increasing genetic gain will depend on 
how well predicted genotypic values approximate the true genotypic values. However, in 
empirical studies using real data, the true genotypic values are unknown. Consequently, the 
performance of the GP methods is evaluated in practice by comparing predicted values to the 
realized values, with the latter being typically represented by raw observations or pre-adjusted 
phenotypes. 

Cross-validation technique is usually used in GS studies because it provides a robust and 
nonparametric method for assessing and comparing GP models. In this method, the data are 
split into a training data set (TS) and a validation data set (VS). The TS, including genotypes 
and phenotypes, is used to estimate parameters of the GP model. These parameters are then 
used to compute predicted values for individuals in the VS based on genotype data only. The 
most common measure used to summarize the performance GP models is the Pearson’s 
correlation, which indicates the strength of the linear association among predicted and 
realized values. However, other evaluation criteria can provide additional information on 
predictive performance, including measures of bias and accuracy (Vitezica et al. 2011; 
González-Recio et al. 2014). 

1.3.  Sorghum as a strategic global crop 

One of the important and viable strategies to mitigate the impact of climate change is to 
develop superior genetic resources in crops that are inherently adapted to harsh growing 
conditions. Because of its drought-tolerance ability, sorghum [Sorghum bicolor (L.) Moench] 
is particularly important as staple cereal crop in semi-arid regions of the world. More than 
70% of the world’s total production of sorghum comes from small-scale farmers in drier 
regions of Asia and Africa where the crop is grown with limited input of water and nutrients, 
making it one of the major food sources in drought-prone environments (Talwar et al. 2013). 
Sorghum is the world’s 5th most important cereal crop and is also produced for feeding and 
bioenergy purposes all over the world. It expanded partly as an “emergency crop” in times 
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when drought and erratic rainfall make maize production difficult or not feasible (Paterson 
2008). A distinctive feature of sorghum that contributes to its ability to withstand drought 
stress is known as stay-green character. This trait, manifested as delayed leaf senescence, is 
the ability of a plant to retain active green tissue during grain-filling stage under water-
limiting conditions, improving yield. The wide agro-climatic adaptation of sorghum enabled 
its expansion from West Africa into temperate regions of China, the Americas and Australia. 
Important producer countries include the United States and Australia, where grain sorghum is 
primarily grown for livestock feed. It is also used as a feedstock for producing ethanol, with 
sorghum being the second most important grain-based bioethanol crop after maize in the US 
(Dahlberg et al. 2011). Finally, there is also a growing interest in Europe for production of 
biomass-type sorghum as substitute of maize for biogas plants (Shiringani et al. 2010; Cai et 
al. 2013). 

Sorghum breeding is primarily oriented to the development of hybrid varieties. Hybrids 
grown by farmers are typically produced and sold by the private industry. This activity is 
complemented by public breeding programs focused on the development of parental inbred 
lines, which are then used by seed companies for production of commercial hybrids. A crucial 
step in sorghum breeding is to assess the genetic value of parental lines on the base of their 
performance in single-cross combinations with tester genotypes. This progeny testing method, 
known as test-cross evaluation, is used to estimate the general combining ability or breeding 
values of inbred parents. Selection of lines based on test-cross performance demands 
extensive phenotyping resources since breeding programs typically evaluate thousands of 
lines using several testers in multi-environment field trials. For this reason, the 
implementation of GP in sorghum breeding is a promising strategy for selection of new 
untested parental lines, reducing cost and time required in early stages of the hybrid breeding 
pipeline. Even though GS has been successfully implemented in other major cereals, such as 
wheat and maize (e.g., Albrecht et al 2014; Sukumaran et al. 2017), empirical studies 
investigating the efficiency and potential benefits of GS in sorghum are still very limited. 

1.4.  Aim and outline of this thesis 

The overall purpose of this thesis was to assess different statistical modeling strategies using 
phenotypic, pedigree and genomic information for improving genetic evaluation of complex 
traits in sorghum. The studies were carried out within the mixed model framework using 
BLUP methodology by considering large experimental data sets from a public sorghum 
breeding program for parental lines in Australia. 

Chapter 2 presents the evaluation of a novel method that uses two-dimensional smoothing 
to account for spatial variation in plant breeding field trials. The new approach was assessed 
in comparison with the conventional and most competitive spatial method by considering the 
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improvement in precision and the prediction of genotypic values. The study is illustrated with 
a series of large and partially replicated trials belonging to early-stage breeding testing. 

In Chapter 3, a first empirical study is provided on the implementation of genomic models 
for across-environment prediction of parental breeding values in sorghum. The Chapter 
investigates the impact of combining pedigree and genomic information on the quality of 
prediction for productivity and adaptability traits. For this, kinship matrices using different 
combinations of pedigree and marker-based relationships were explored in order to optimize 
predictive results. BLUP models using a blended pedigree-genomic matrix were applied to an 
extensive dataset consisting of advanced testing of female parent lines based on multi-year 
and multi-location testcross evaluation. 

Chapter 4 extends the study of Chapter 3 to the multi-trait genomic prediction context. 
This research evaluates the ability of multi-trait analysis to improve genomic predictions of 
grain yield and drought-adaptation capacity by exploiting information from correlated 
secondary traits. The optimal combination of traits was determined empirically by evaluating 
predictive performances of alternative multi-trait models in different prediction scenarios. In 
addition, the benefits of including genealogical information into multi-trait genomic models 
through a combined pedigree-genomic matrix are reported for the first time in plant breeding. 

Chapter 5 deals with genomic prediction for broad and specific adaptation in a subdivided 
TPE. Specifically, grain yield performances in drought-stress and non-stress environments 
were considered as the breeding targets of adaptation. The effect of modeling G×E on 
predictive ability and bias of multi-environment genomic prediction was assessed by 
comparing different structures for the genetic covariance between environments. The Chapter 
also explores how accounting for heterogeneous variances of SNP effects can affect genomic 
prediction of grain yield. This was accomplished by using a BLUP method based on 
individual-SNP weighting. 

Chapter 6 concludes presenting a general discussion. The main contributions of this thesis 
are summarized and discussed in a broader perspective, including practical implications and 
opportunities for further progress in sorghum and crop breeding. 

 



 

 

 

 

 

 



 

 

 
 
 
 
Chapter 2 

Modelling spatial trends in sorghum breeding 
field trials using a two-dimensional P-spline 
mixed model 
 
Velazco J.G., Rodríguez-Álvarez M.X., Boer M.P., Jordan D.R., Eilers P.H.C., Malosetti M., 
van Eeuwijk F.A. 
Theor Appl Genet (2017) 130:1375–1392. 

 
 
Abstract:  
Adjustment for spatial trends in plant breeding field trials is essential for efficient evaluation and 
selection of genotypes. Current mixed model methods of spatial analysis are based on a multi-step 
modelling process where global and local trends are fitted after trying several candidate spatial 
models. This paper reports the application of a novel spatial method that accounts for all types of 
continuous field variation in a single modelling step by fitting a smooth surface. The method uses two-
dimensional P-splines with anisotropic smoothing formulated in the mixed model framework, referred 
to as SpATS model. We applied this methodology to a series of large and partially replicated sorghum 
breeding trials. The new model was assessed in comparison with the more elaborate standard spatial 
models that use autoregressive correlation of residuals. The improvements in precision and the 
predictions of genotypic values produced by the SpATS model were equivalent to those obtained 
using the best fitting standard spatial models for each trial. One advantage of the approach with 
SpATS is that all patterns of spatial trend and genetic effects were modelled simultaneously by fitting 
a single model. Furthermore, we used the same flexible model to adequately adjust for field trends in 
every site and for different traits. This strategy reduces potential parameter identification problems and 
simplifies the model selection process. Therefore, the new method should be considered as an efficient 
and easy-to-use alternative for routine analyses of plant breeding trials. 
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2.1.  Introduction 

Efficient phenotypic and genomic selection schemes in plant breeding programs rely on 
accurate assessment of the phenotypic performance of genotypes in field experiments (Qiao et 
al. 2004; Lado et al. 2013; Bernal-Vasquez et al. 2014; Sarker and Singh 2015). Plant 
breeding trials usually involve a large number of test entries covering large areas where 
spatial variation is likely to be an obstacle to reliable prediction of genetic values. This is 
particularly challenging in early generation variety trials conditioned by the use of limited 
replication of genetic material.  

A number of sophisticated experimental designs, such as those enabling the recovery of 
inter-block information (Yates 1940; Patterson et al. 1978; John and Williams 1995) or 
partially replicated designs (Cullis et al. 2006; Williams et al. 2014), have been developed to 
correct for part of the field trend. However, efficient approaches to account for more complex 
environmental variation require complementing experimental designs with appropriate 
models of analysis (Basford et al. 1996; Qiao et al. 2000; Smith et al. 2002). Several spatial 
methods have been suggested to improve the precision of phenotyping. The most commonly 
used spatial models consider the correlation between residuals from neighboring plots to 
adjust for local trend or small-scale variation. These spatial methods include nearest neighbor 
analyses (Bartlett 1978; Wilkinson et al. 1983), and mixed model analyses using first-order 
autoregressive (AR1) functions (Cullis and Gleeson 1991) or other spatial covariance 
structures (e.g. Zimmerman and Harville 1991; Piepho and Williams 2010). Polynomials have 
been also used on top of experimental design features to account for additive and non-additive 
trends along row and column directions (Edmondson 1993; Federer 1998). Fertility trends in 
early generation variety trials have been modelled by fitting one-dimensional cubic smoothing 
splines within blocks (Durbán et al. 2001). Durbán et al. (2003) applied semiparametric 
models for spatial analysis of field experiments and presented graphical and analytical model 
selection criteria.  

Within the mixed model framework, Gilmour et al. (1997) proposed an elaborate 
procedure for spatial analysis of agricultural variety trials. Their approach starts by fitting a 
two-dimensional separable AR1 model by default to account for local trend. Eventually, 
extraneous variation resulting from trial management practices may be accommodated with 
additional model terms, while global trends reflecting large-scale variation across the field are 
modelled by one-dimensional polynomials or splines in the direction of rows and/or columns. 
The authors suggested a sequential model-fitting scheme to identify the most suitable spatial 
model. The procedure relies on graphical diagnostic tools and requires several modeling 
choices to be tried. Stefanova et al. (2009) extended this modeling process by including more 
formal diagnostics to facilitate model selection. However, the above mentioned approach is 
not without limitations. First and foremost, the proposed multi-step procedures may not be 
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attractive for routine analysis of large series of trials since it requires a high level of hands-on 
intervention. Furthermore, there exists a risk of over-fitting the spatial data when the number 
of candidate models involved in the model selection process increases. Finally, convergence 
failures due to parameter identification problems may occur when trying to fit different spatial 
terms simultaneously (Dutkowski et al. 2006; Müller et al. 2010; Piepho et al. 2015). 

Multidimensional regression spline methods represent a flexible alternative to account for 
complex variation structures. They allow the modeling of smooth multidimensional (or 
interaction) surfaces (e.g. Ruppert et al. 2003; Currie et al. 2006; Wood 2006). Regression 
splines are efficient curve-fitting functions composed of polynomial pieces, generally 
quadratic or cubic, that are joined at points called “knots”. An interesting method using 
splines is based on two-dimensional P-splines (2D P-splines) as proposed by Eilers and Marx 
(1996, 2003), and its formulation in the linear mixed model framework (Eilers 1999; Currie 
and Durbán 2002). P-splines combine regression splines and a roughness penalty, which is the 
key component. This penalization is tuned by one or more smoothing parameters that control 
the degree of smoothness of the fitted spatial surface to prevent over-fitting. The connection 
between P-splines and mixed models provides attractive advantages. It enables the use of 
efficient algorithms for inference and prediction. Furthermore, the optimal smoothing 
parameters are automatically estimated by restricted maximum likelihood (REML; Patterson 
and Thompson 1971) as ratios of variance components. 

Some applications of 2D P-spline models have been reported for spatial analysis of field 
trials. Cappa and Cantet (2007) and Cappa et al. (2011, 2015) used these models within a 
Bayesian approach to account for global trends in forest genetic trials. These studies 
considered a single smoothing parameter that controls the smoothness of the spatial effects in 
the direction of both rows and columns, imposing isotropic smoothing. In agricultural 
experiments, Taye and Njuho (2008) proposed using P-splines in two dimensions to adjust for 
global trend and to model local variation with Papadakis and kriged covariates. The authors 
compared P-spline models assuming additive trends or interaction between trends and 
emphasized the importance of choosing between both model settings. A different approach to 
spatial analysis of field trials using 2D P-spline mixed models was recently proposed by 
Rodríguez-Álvarez et al. (2016a). They introduced a novel spatial model that adjusts for both 
global and local trends simultaneously. The authors called this model SpATS, an acronym for 
Spatial Analysis of field Trials with Splines. The new spatial method makes use of the P-
spline ANOVA representation of the smooth surface according to Lee et al. (2013). The 
distinctive feature of the SpATS model is an attractive decomposition of the spatial surface 
into additive one-dimensional trends and two-dimensional interaction trends. Furthermore, the 
model assigns a different smoothing parameter to each spatial component, allowing for 
anisotropic smoothing. This parametrization enables a flexible modeling of the spatial 
surface, where each component has a straightforward interpretation.  
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For the present research, we considered a series of multi-environmental trials from a 
sorghum [Sorghum bicolor (L.) Moench] breeding program in eastern Australia. These trials 
belong to initial stages of evaluations, where a large number of breeding lines (approximately 
1000) were tested in each experiment using partially replicated designs. Furthermore, studies 
regarding the implications of performing spatial analysis in sorghum genetic trials are limited 
in the literature. Consequently, this dataset serves to illustrate a situation when a flexible and 
efficient spatial analysis tool is specially required. 

This paper reports an application of the SpATS mixed model to adjust for all types of field 
trend in early generation sorghum breeding trials. We use a one-step modeling approach to 
spatial analysis by fitting a general SpATS model to analyze the whole series of trials. This 
approach is assessed in comparison with more elaborate and trial-specific spatial models 
identified according to the method of Gilmour et al. (1997). Both methods are compared in 
terms of variance component estimates, the improvement of precision and correlation of 
predicted genotypic effects. The new spatial model has been fitted using a tailor-made R 
package (R Development Core Team, 2016) called SpATS (Rodríguez-Álvarez et al. 2016b), 
which is publicly available from CRAN (https://cran.r-project.org/package=SpATS) 

2.2.  Materials and methods 

2.2.1.  Data set 

In this study, we used data from 21 sorghum breeding trials conducted at 12 different 
locations in eastern Australia between 2005 and 2008. The dataset is part of the public 
germplasm enhancement program managed by the University of Queensland and 
Queensland’s Department of Agriculture and Fisheries. A total of 3947 backcross 
recombinant inbred lines (BC-RILs) were evaluated as male parents in test-cross hybrid 
combinations with a single female tester. The BC-RILs were derived from crosses between an 
elite inbred line and a range of exotic sorghum lines. Detailed descriptions of the breeding 
population used in this paper can be found in Jordan et al. (2011) and Mace et al. (2013). The 
set of trials is considered to represent the target population of environments in the Australian 
sorghum cropping region.  

Each trial was laid out as a rectangular array using resolvable p-rep designs (Cullis et al. 
2006). Table 1 summarizes information related to the individual trials, including the field 
layout and the number of genotypes per location. Plots were 5 m wide along rows by 1.5 or 2 
m long down the columns, with two rows of plants in each plot. The p-rep designs consisted 
of 30% of the test-cross hybrids having two replicates (p = 30%) while the remaining 70% of 
the genotypes were unreplicated. Across all trials, a total of 10 commercial varieties were 
included as check entries with additional levels of replication. Allocation of the replicated test 

https://cran.r-project.org/package=SpATS
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genotypes was based on an optimality measure determined by the average pairwise prediction 
error variance and assuming a pre-specified spatial model (Cullis et al. 2006). The search 
algorithm is constrained so that the replicated hybrids occurred once in each half of the trial, 
which established two resolvable blocks in all the designs.  

We illustrate the spatial analyses with two traits: grain yield (t/ha) and plant height (cm). 
Data were not available for grain yield at trial HER08 and for plant height at trial SPR08 
(Table 1). The proportion of missing plots ranged between 3% and 29%. 

Table 1 Description of experimental layout and mean values of grain yield (GY) and plant height (PH) for each 
trial in the sorghum breeding dataset 

Trial Year Location Rows Columns Plots Genotypes Mean GY 
(t/ha) 

Mean PH 
(cm) 

BIL05 2005 Biloela 55 28 1540 1136 4.10 104 

DAB05 2005 Dalby Box 76 20 1520 1167 3.05 91 

DYS05 2005 Dysart 77 20 1540 1079 1.31 95 

HER05 2005 Hermitage 77 20 1540 1202 7.65 113 

JIM05 2005 Jimbour 44 20 880 682 4.60 105 

BIL06 2006 Biloela 81 20 1620 1060 6.70 115 

CEP06 2006 Cecil Plains 48 30 1440 953 3.24 95 

DAB06 2006 Dalby 62 20 1240 823 2.00 101 

GON06 2006 Goondiwindi 72 20 1440 957 6.58 117 

HER06 2006 Hermitage 74 20 1480 1075 8.75 109 

BIL07 2007 Biloela 86 20 1720 998 2.78 104 

CLE07 2007 Clermont 34 40 1360 768 3.03 112 

DYS07 2007 Dysart 44 40 1760 938 2.82 113 

HER07 2007 Hermitage 70 25 1750 1012 5.39 104 

BIL08 2008 Biloela 80 20 1600 1010 4.33 123 

DAB08 2008 Dalby Box 64 20 1280 947 6.67 133 

DAL08 2008 Dalby 62 20 1240 903 6.48 132 

HER08 2008 Hermitage 80 20 1600 1012 - 133 

KIL08 2008 Kilcummin 75 20 1500 899 3.36 131 

LIV08 2008 Liverpool Plains 66 20 1320 980 10.06 125 

SPR08 2008 Springsure 46 20 920 753 3.87 - 

2.2.2.  The SpATS model 

In this section we present a brief description of the SpATS model; for a thorough treatment of 
the model specifications we refer to the original study by Rodríguez-Álvarez et al. (2016a). 

Consider that observations in each sorghum breeding trial were obtained from plots 
arranged as a rectangular grid, where plot positions are collected in vectors of row (r) and 
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column (c) coordinates. Under the SpATS model, field trends are modelled by a smooth 
bivariate function of the spatial coordinates, f (r, c), represented by 2D P-splines. As said, this 
technique optimizes the fitted surface by penalizing or shrinking the spatial effects. The 
magnitude of the penalization over the fitted trend is determined by the smoothing 
parameters. These terms control the balance between smoothness of the fitted surface and 
fidelity to the spatial data. For instance, larger values of the smoothing parameters result in 
smoother spatial gradients, while smaller values produce rougher fitted trends. Following the 
approach of Rodríguez-Álvarez et al. (2016a), additional terms were included in the SpATS 
model to account for other sources of environmental variation and genotype effects in our 
sorghum breeding trials. 

Thus, the SpATS mixed model for each trial is given by 

 y = Xβ + Xsβs + Zss + Zuu + Zgg + e, (1) 

where the vector y contains the phenotypic observations (grain yield or plant height) arrayed 
as rows within columns, β is a vector of fixed terms including the intercept, a check variety 
effect and a resolvable block effect, and X is the associated design matrix. The fixed 
(unpenalized) term Xsβs and the random (penalized) component Zss form the mixed model 

expression of the smooth spatial surface, i.e.,  f (r, c) = Xsβs + Zss, where the vector of 

random spatial effects s has a covariance matrix S. The vector u comprises the mutually 
independent sub-vectors of random row and column effects accounting for discontinuous field 
variation, with design matrix Zu = [Zr| Zc] and covariance matrix U = diag(σr

2Ir, σc
2Ic). The 

vector g contains the random genotypic effects of test-cross hybrids and Zg is the associated 
design matrix. We assumed independent genotypic variance, i.e., g ~ N(0, G), with G = σg

2 Ig. 

The vector e consist of spatially independent residuals with distribution e ~ N(0, σe
2I ). This 

term, also called nugget, represents the measurement error from each plot. 

The SpATS model adopts the P-spline ANOVA (PS-ANOVA) formulation proposed by 
Lee et al. (2013) to represent the 2D P-splines in the mixed model framework. Detailed 
descriptions of the design matrices Xs and Zs and the covariance matrix S under this 
formulation are given in Lee et al. (2013) and Rodríguez-Álvarez et al. (2016a). In this paper, 
we present the main result of the PS-ANOVA parameterization, which is the decomposition 
of the smooth surface into a sum of linear components and univariate and bivariate smooth 
functions, such that 

 f (r, c) = βs1r + βs2c + βs3rc�������������
Xsβs

+  f1(r) + f2(c) + h3(r)c + rh4(c) + f5(r, c)�������������������������
Zss

, (2) 

where the spatial surface is represented by: linear trends across the row (βs1) and column (βs2) 

positions and a linear interaction trend (βs3); two main smooth trends across rows [ƒ1(r)] and 
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columns [ƒ2(c)]; two linear-by-smooth interaction terms, where the slope of a linear trend 
along one covariate (c or r) is allowed to vary smoothly as function of the other covariate 
[h3(r) or h4(c), respectively]; and ƒ5(r, c) is the pure smooth-by-smooth interaction between 
column and row trends.  

Under this representation, the vector of random spatial effects s contains five mutually 
independent sub-vectors sk, with k = 1, ..., 5 referring to the additive and interaction random 
components in [2]. Then, the spatial covariance matrix S is a direct sum of matrices Sk, that is 
S = blockdiag(S1, …, S5), where each block Sk depends on a specific smoothing parameter 
λsk (see Rodríguez-Álvarez et al. 2016a for details). Within the mixed model framework, each 
smoothing parameter is determined by REML as the ratio between the residual variance and 
the corresponding variance of spatial effects, i.e., λsk= σe

2∕σsk
2 . Therefore, the smoothness of 

the spatial surface is tuned by five distinct parameters, applying anisotropic smoothing. The 
parameterization provides the SpATS model with flexibility to account for both global trends 
and local variation in the field. Furthermore, the decomposition of f (r, c) enables a more 
explicit interpretation of the main patterns of spatial variation. 

2.2.2.1.  Implementation of the model 

The SpATS model with anisotropic smoothing based on the PS-ANOVA approach by Lee et 
al. (2013) was fitted with the R package (R Development Core Team, 2016) SpATS 
(Rodríguez-Álvarez et al. 2016b), which is publicly available from CRAN (https://cran.r-
project.org/package=SpATS). The spatial surface in model [1] was fitted using cubic B-spline 
bases and second-order penalties, which are commonly used settings in the P-spline 
framework. Across trials, we used 11 and 31 equally-spaced knots for the P-splines in the 
column and row directions, respectively. In this way, we set approximately one knot for every 
two rows or columns. Then, the spatial surface contains a total of 425 model parameters to be 
estimated. These quantities were chosen in order to provide enough flexibility to the spatial 
surface. Within the penalized smoothing context, the exact choice of the number of knots is 
not critical once a certain minimum number of knots is exceeded (Ruppert et al. 2003; Eilers 
et al. 2015). This number can be equal to the number of rows and columns, i.e., the number of 
data points in each dimension, or even more. The only limiting factor would be the 
computational time: the larger the number of knots, the larger the computational effort. It is 
important to remark that the use of a large number of knots provides flexibility, but in 
practice, the smoothing parameters are responsible for optimizing the fit to the data.  

The estimation procedure implemented in the R-package SpATS provides REML-based 
variance components and computes the empirical best linear unbiased estimates (BLUEs) of 
fixed effects and the empirical best linear unbiased predictors (BLUPs) of random effects. An 
important by-product of the procedure is that, for each random effect of the model, an 
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associated effective dimension is computed. The practical implications of the latter concept are 
considered in the following sections.  

2.2.2.2.  The effective dimension of the fitted spatial surface 

The effective dimension (ED) or effective number of parameters of the model is a central 
concept within the P-spline methodology. It is a measure of complexity of the model 
components and is mainly a function of the smoothing parameters (Eilers et al. 2015). The 
effective dimension of a model is computed as the trace of the hat matrix H. If we focus on 
the spatial part of the SpATS model [1], we have that   

f̃ (r, c) = Xsβs�  + Zss̃ = Hβ y + Hs y, 

where Hβ is hat matrix of the fixed component, with effective dimension EDβ = trace(Hβ) = 
rank(Hβ), which is always a constant. More importantly, the total effective dimension of the 
random (penalized) component of the spatial surface is EDs = trace(Hs), where Hs is known as 
the smoother matrix. In this context, the sum of the diagonal elements of Hs expresses the 
number of parameters effectively involved in the modelling of the spatial surface. From the 
PS-ANOVA decomposition used in the SpATS model, we have that Hs=∑ Hsk

5
k=1 , with k = 1, 

..., 5 referring to the additive and interaction smooth components of the spatial trend as 
detailed in [2]. Thus, we can decompose EDs as the sum of partial effective dimensions 
associated to each spatial component 

EDs= trace(Hs)=∑ trace(Hsk)
5
k=1 =∑ EDsk

5
k=1 . 

Specifically, when a smoothing parameter λsk= σe
2 σsk

2�  → ∞, then EDsk→ 0; while for a 

value of λsk= σe
2 σsk

2�  → 0, EDsk approaches the maximum value. The upper bound for EDsk is 
determined by the number of knots used to fit the smooth surface. Therefore, EDsk serves as a 
reverse indicator of the smoothness of the corresponding component, i.e., the higher the 
degree of smoothness (larger value of λsk), the smaller the number of EDsk (see Rodríguez-
Álvarez et al. 2016a for details).  

Consequently, the total effective dimension EDs can be interpreted as a measure of the 
magnitude of field variation, with larger values indicating more intense spatial patterns. 
Additionally, the partial effective dimensions EDsk are indicative of the relative importance of 

each spatial component in [2]. In this case, the magnitudes of specific EDsk will quantify the 
contribution of the main and interaction spatial trends to the fitted surface, reflecting the 
complexity of the spatial patterns. 
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2.2.2.3.  Generalized heritability based on the genetic effective dimension 

As previously mentioned, an effective dimension connected to each variance component of 
the SpATS model is computed. The effective dimension associated to the genotypic effects 
(EDg) is particularly interesting for plant breeding. EDg = trace(Hg) is a measure of the degree 
of shrinkage imposed on the genotypic effects, where Hg is the hat matrix for genotypes. In 
this case, Hg depends on the regularization parameter λg = σe

2/σg
2 and transforms the 

observations into predicted genotypic values, such that Hgy = Zgg� (see Rodríguez-Álvarez et 
al. 2016a for details). Therefore, EDg decreases as shrinkage of genotypic effects increases. 
Given the properties of the genetic effective dimension, Rodríguez-Álvarez et al. (2016a) 
proposed a novel expression of heritability: 

H2=
EDg

ng − l
 

where ng is the number of genotypes and l is the number of zero eigenvalues of Hg. The 
authors showed that this definition corresponds to the generalized heritability introduced by 
Oakey et al. (2006). Furthermore, in the specific situation when genotypic effects are assumed 
independent (i.e., ignoring pedigree/marker information), and by ignoring the zero 
eigenvalues, the following equivalence can be stablished:  

H2 = EDg

ng
 = 1 − PEV������

σg
2 , 

where PEV������ stands for average prediction error variance of genotype BLUPs.  

Note that the right hand term corresponds to the generalized heritability developed by 
Welham et al. (2010) and is also equivalent to the heritability given by Cullis et al. (2006). 
Given that our study does not incorporate a genetic relationship matrix, we can profit from the 
latter equivalence to perform a straightforward comparison between the heritability estimated 
by the SpATS model and that obtained from the standard mixed models.  

2.2.3.  Standard models 

Under the standard mixed model framework, we started by fitting a non-spatial model. This 
baseline model included a random and independent genotypic effect for the test-cross hybrids, 
a fixed effect for check varieties, a fixed resolvable block effect accounting for the 
randomization design and the spatially independent error term e ~ N(0, 𝜎𝜎𝑒𝑒2I ). Then, the non-
spatial model was extended by searching for the most appropriate spatial model for each case 
following the approach of Gilmour et al. (1997). The latter model is referred to as the best 
standard spatial (BSS) model.  
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The general representation of the BSS model can be formulated as 

 y = Xβ + Xsβs + Zss + Zuu + Zgg + ξ + e, (3) 

where Xβ contains the same fixed terms as the non-spatial model. The term Xsβs, in this case, 

may include linear trends aligned with rows and/or columns to account for global variation, 
while Zss contains the random part of one or two one-dimensional cubic smoothing splines 
indexed by row or column positions (see Verbyla et al. 1999 for details). This latter term 
accounts for non-linear additive global trends. Zuu, Zgg, and e are defined as in the SpATS 
model [1]. Finally, ξ is the vector of spatially correlated residuals modelling local trend, with 
distribution ξ ~ N(0, R). The matrix R = σξ2[AR1(ρc)⊗AR1(ρr)] represents the Kronecker 

product of first-order autoregressive processes across columns and rows, respectively, and  σξ2 
is the spatial residual variance. 

Following Gilmour et al. (1997), the search for the BSS model was based on diagnostic 
graphics such as the sample variogram and related plots of residuals. Comparisons between 
candidate models with the same fixed effects were assessed by the REML likelihood ratio test 
(REML-LRT). Fixed spatial terms were included in the BSS model when judged significant 
according to Wald-F test. It is important to note that the BSS model for each trial and trait 
may represent a simplified version of the full model [3], where the reduced model results 
from omitting one or more superfluous spatial components. 

The standard mixed models were fitted using the ASReml-R package (Butler et al. 2009). 

2.2.4.  Comparison of spatial methods  

The SpATS model was compared with the non-spatial and the BSS models in terms of 
meaningful parameters for plant breeding application. The following estimates were 
considered for comparison: 

• Genetic variance (σg
2) and spatially-independent residual variance (σe

2). 

• Generalized heritability. Estimated following Rodríguez-Álvarez et al. (2016a) for the 
SpATS model and according to Cullis et al. (2006) for the standard models. These 
measures are interpreted as broad-sense heritability, which serves as a descriptive 
measure of the precision of a trial, i.e., of the ability to detect genotypic differences 
among test-cross hybrids. 

• Pearson correlations of predicted genotypic values between environments. Given that 
genotype-by-environment interaction has the same effect on the magnitudes of these 
correlations for the three models, any increase in their values relative to the non-
spatial model will indicate the improvement of precision caused by the spatial models 
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(Qiao et al. 2004; Müller et al. 2010). Only correlations between pairs of environments 
presenting at least 30 common genotypes were considered.  

• Spearman rank correlations between predicted genotypic values from the different 
models in the same environment. Calculated to compare whether the rankings of 
genotypes obtained from SpATS and from the standard models differed. 

2.3.  Results 

2.3.1.  Spatial analysis with SpATS 

We start with a detailed treatment of the spatial analysis using the SpATS model, illustrated 
with two contrasting trials regarding the intensity and structure of spatial variability. Table 2 
presents the EDs of the univariate and bivariate spatial smooth components (see equation [2]), 
and their relative contribution to the fitted surface for grain yield in trials DYS05 and DAB08. 
The magnitudes of the total EDs indicate that the spatial variation was more intense in 
DYS05. This is reflected by the higher EDs or fitted parameters required to model the 
underlying field trend (111.2 ED in DYS05 vs 2.1 ED in DAB08). According to the partial 
EDs, DYS05 also exhibited a higher complexity in the structure of the spatial surface, where 
the smooth-by-smooth interaction between trends accounted for most of the field variation 
(87% of the total EDs). In contrast, the environmental trend at DAB08 was smoother and less 
complex as it presented a lower total EDs and was mostly captured by main smooth effects 
across row positions. The zero values of EDs associated to the linear-by-smooth interactions 
in DAB08 indicate that these terms were not necessary to model the spatial surface. 

Table 2 Spatial effective dimensions (EDs) of the smooth surface components fitted by the SpATS model and its 
relative contribution (%) for grain yield in two example trials 

Spatial smooth terms 
DYS05  DAB08 

EDs %   EDs % 
Additive trends f1(r) 3.0 3   1.4 67 

 f2(c) 4.2 4  0.2 10 
Interaction trends h3(r)c 1.9 2  0.0 0 

 rh4(c) 5.5 5  0.0 0 
 f5(r, c) 96.6 87  0.5 24 

 Total 111.2 100   2.1 100 

Fig. 1 shows the graphical representations of the fitted spatial trend f (r, c) and the spatially 
independent residuals e for the two example trials, as obtained from the SpATS package. Note 
that the pictures of the spatial trend use a finer grid than that of the field plots; the P-splines 
makes their computation possible. The spatial surfaces display an irregular patchy pattern in 
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DYS05 and a rather smooth gradient across the field in DAB08. The shape of an evident 
patch of fertility present in DYS05 was best modelled by considering interactions between 
column and row trends, as indicated by the partial EDs (Table 2). Likewise, the previous 
interpretation of the spatial trend based on the EDs in DAB08 coincides with the plot of the 
fitted surface, which essentially exhibits a one-dimensional gradient across rows. 

 
Fig. 1 Fitted spatial trend and spatially independent residuals from the SpATS model for grain yield in trials 
DYS05 (top) and DAB08 (bottom) plotted against row and column positions. Scales of grain yield variation 
expressed in t/ha 

The inspection of the plots of residuals in Fig. 1 suggests that the spatial patterns have been 
effectively removed in both trials by the 2D P-spline surface; hence, these residuals could be 
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considered as true random noise. Other plots of residuals and formal tests could also be used 
to diagnose outliers, model assumptions or remaining spatial trends after fitting the spatial 
model. For the latter purpose, an interesting alternative is the variogram computed from the 
independent residuals, as proposed by Piepho and Williams (2010). This nugget-based 
variogram can also be obtained with the R-package SpATS. The ranges of grain yield 
variation (in t/ha) explained by the fitted trends reflect the magnitude of spatial effects in each 
trial. The comparison between the scales of spatial and residual site variations provides a clear 
idea of the relative importance of field trends in these trials. For instance, the range of yield 
variability due to spatial trends in DYS05 was of similar magnitude to that caused by the 
spatially independent error, while the amount of variation resulting from the latter term was 
about tenfold the spatial variability in DAB08 (Fig. 1). Again, the higher relevance of spatial 
trends for trial DYS05, was also indicated by the total EDs presented in Table 2. 

In Table 3, we specify the spatial terms of the BSS models for grain yield in DYS05 and 
DAB08. The connection between these results and those from the analysis with the SpATS 
model (Table 2) is not straightforward since the parameterization of both spatial models is 
different. Assuming that extraneous variations have been adjusted by both models, here we 
stress the differences in modelling global and local trends. For instance, according to the 
standard spatial analysis, in DYS05 there was only a main global trend in the direction of 
rows while the column and interaction trends detected by SpATS were apparently modelled 
as two-dimensional autocorrelated residuals by the BSS model. The main trend across row 
positions in DAB08 (see Table 2 and Fig. 1) seems to be modelled, under the standard 
approach, by a small autocorrelation across rows and by a value of 𝜌𝜌𝑐𝑐 close to 1. The latter 
autocorrelation suggests that the trend across columns is actually confounded with the random 
row effects (Piepho and Williams 2010; Piepho et al. 2015). Finally, the ratios of spatial 
variance to residual variance (σξ2/σe

2) were 2.0 for DYS05 and 0.3 for DAB08, indicating a 
higher intensity of spatial variation in the former trial (Dutkowski et al. 2002; Zas 2006). The 
latter results coincide with the interpretation based on the total effective dimensions of the 
spatial surfaces given in Table 2. 

Table 3 Spatial terms, estimates of autocorrelations and variance components for spatially dependent (σξ2) and 
independent residuals (σe

2) from the best standard spatial (BSS) models fitted to grain yield data in two example 
trials 

Trial BSS modela ρr ρc σξ2 σe
2 

DYS05 R+Spl(r)+AR1xAR1+n 0.87 0.67 0.103 0.064 

DAB08 R+AR1xAR1+n 0.24 0.96 0.201 0.611 
a R: random row effects; Spl(r): cubic smoothing spline indexed by row positions; 
AR1xAR1: correlated residual modelled as two-dimensional first-order 
autoregressive process; n: spatially independent residual (or nugget variance). 
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The effective dimensions associated to the fitted spatial trends (EDs) for all trials and both 
traits are given in Fig. 2. For simplicity, the partial EDs for the five smoothing terms of the 
SpATS model are grouped as: EDs of the additive smooth trends and EDs of the interactions 
between trends. 

Fig. 2 Effective dimensions (EDs) 
associated to additive and interaction 
trends of the spatial surfaces fitted by the 
SpATS model for grain yield (a) and plant 
height (b) in the sorghum breeding trials. 
Note: data were not available for grain 
yield at HER08 and for plant height at 
SPR08 
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The intensity of spatial variation and the complexity of the fitted surfaces were highly 
variable across sites and traits. For instance, the environmental trends for grain yield at 
DYS05 and BIL05 or HER05 for plant height present a large number of EDs and a significant 
contribution of the trend interaction terms, indicating strong and complex patterns of field 
variation. Others cases, such as DAB08 for grain yield and LIV08 for yield and plant height, 
show lower total EDs, reflecting smoother spatial surfaces that were mainly described by 
additive one-dimensional trends. In general, the intensity of spatial variation for grain yield 
was higher than for plant height, with median total EDs of 31 and 10, respectively. In most 
instances, the smooth trend interactions represented the major components of the spatial 
surface. This is reflected by the median EDs associated to interaction effects, which were 82% 
and 79% of the total EDs for yield and plant height, respectively. The latter results highlight 
the importance of modelling interactions between row and column trends and reveals complex 
structures of field variation in the sorghum dataset. 

2.3.2.  Standard spatial analysis 

A summary of the main features of the BSS models fitted to the sorghum dataset is reported 
in Table 4. Details of the BSS model identified in each of the 20 trials for both traits are 
presented in Table 5. 

Table 4 Number of times the best standard spatial (BSS) models for the 20 trials included terms accounting for 
global and local trends, and median of estimated spatial parameters 

      
Grain 
yield 

Plant 
height 

Number of trials including: 
     Global trend terms 15 11 

   Correlated residuals (AR1xAR1) 17 17 
   Nugget effect 

 
17 14 

Median of spatial parameters:    
  ρr 

  
0.82 0.87 

  ρc 
  

0.73 0.69 
  Proportion (%) of correlated errora 52 25 
a Relative to the sum of correlated and independent residual variances 

The results in Table 4 show that most of the trials required terms accounting for global 
trends, local variation and nugget effect. Autocorrelations (ρ) along rows and columns were 
predominantly large and similar for both traits, as reflected by their median. Over 80% of the 
autocorrelation coefficients were larger than 0.60, indicating strong spatial variation that 
could be interpreted as a combination of large-scale gradients and patchy patterns according 
to the standard approach. When considering the models with nugget, the importance of the 
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spatial variance relative to the spatially independent residual variance was generally higher 
for grain yield. The predominance of random noise in plant height measurements indicates 
that this trait was less influenced by spatial effects in the field. This is consistent with the 
generally lower effective dimensions of the spatial surfaces estimated for plant height (see 
Fig. 2). Furthermore, there was a strong positive correlation between the σξ2/σe

2 ratio and the 
total EDs across the whole dataset (r = 0.69). 

Table 5 Details of the best standard spatial (BSS) models in each trial for grain yield (GY) and plant height 
(PH) 

Trial BSS model for GYa  BSS model for PHa 

BIL05 Lin(r)+AR1xAR1+n  Lin(r)+AR1xAR1+n 

DAB05 R+AR1xAR1+n  Lin(c)+AR1xAR1+n 

DYS05 R+Spl(r)+AR1xAR1+n  Lin(r)+AR1xAR1+n 

HER05 Lin(r)+Spl(c)+AR1xAR1+n  Spl(r)+Lin(c)+AR1xAR1+n 

JIM05 C+AR1xAR1+n  R+AR1xAR1+n 

BIL06 Spl(c)+AR1xAR1+n  C+AR1xAR1 

CEP06 R+AR1xAR1+n  Spl(c)+AR1xAR1+n 

DAB06 C+Spl(r)+AR1xAR1+n  AR1xAR1+n 

GON06 Spl(c)+AR1+n  R+C+AR1 

HER06 R+Spl(r)+Lin(c)  R+C+Lin(c)+AR1xAR1+n 

BIL07 Lin(c)+AR1xAR1+n  R+Spl(c) 

CLE07 R+Lin(r)+AR1xAR1+n  Lin(c)+AR1xAR1+n 

DYS07 Spl(c)+AR1xAR1+n  Lin(c)+AR1xAR1+n 

HER07 R+Spl(r)+Spl(c)+AR1xAR1+n  Lin(r)+AR1xAR1+n 

BIL08 R+C+Spl(c)  C  

DAB08 R+AR1xAR1+n  Lin(c)+AR1+n 

DAL08 R+C+Lin(c)  C 

HER08  ̶  AR1 

KIL08 R+Lin(r)+AR1xAR1+n  AR1xAR1+n 

LIV08 R+C+AR1xAR1+n  AR1xAR1+n 

SPR08 Spl(c)+AR1xAR1+n   ̶ 
a Spl(·): cubic smoothing spline indexed by row (r) or column (c) positions; Lin(·): linear regression on row (r) or 
column (c) positions. R: random row effects; C: random column effects; AR1 and AR1xAR1: correlated residuals 
modelled as one- and two-dimensional first-order autoregressive process, respectively; n: spatially independent 
residual (nugget effect). Note that all the models included a fixed block effect 

2.3.3.  Comparison of SpATS and the standard method 

The estimates of trial genetic variability from SpATS and the BSS models were generally 
similar for both traits (Fig. 3). Small differences were evident for grain yield at some 
environments, where the estimates increased or decreased from one model to the other 
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without a clear tendency. More marked discrepancies were observed between the genetic 
variances from the non-spatial model and those from both spatial models for grain yield (not 
shown). This suggests that ignoring the adjustment for spatial trends in yield data can lead to 
either overestimating or underestimating the genetic variability. 

 
Fig. 3 Comparison of genotypic variability estimated by the BSS and the SpATS models, expressed as 

coefficient of variation (CV), for grain yield (○) and plant height (●). The diagonal line indicates identical values 

 
Fig. 4 Comparison of spatially independent residual variance (σe

2) from the BSS and the SpATS models, 
expressed as percentage (%) of the residual variance in the non-spatial model, for grain yield (○) and plant height 
(●). The diagonal line indicates identical values. The labelled data point corresponding to plant height at trial 
HER05 (HER05-PH) is mentioned in the text 
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The SpATS model and the BSS models reduced the spatially independent residual variance 
compared with error variance of the non-spatial model in both traits (Fig. 4). In general, the 
relative decreases in σe

2 were larger for grain yield, with the spatial models achieving a mean 
reduction by 49% for grain yield and by 22% for plant height. These reductions reflect the 
ability of both methodologies to account for field variation not adjusted by the randomization-
based model. Exceptionally, the adjustment of spatial trend for plant height caused a large 
decrease in 𝜎𝜎𝑒𝑒2 at trial HER05. Note that field trend in this case was particularly important, 
presenting the highest total EDs for plant height and a major contribution of interaction effects 
(see Fig. 2). In general, the BSS models estimated smaller values of 𝜎𝜎𝑒𝑒2 compared to the 
SpATS model. The spatially independent component from SpATS and the BSS models 
represented, on average, 66% and 60% of the residual variance from the non-spatial model, 
respectively. 

 
Fig. 5 Comparison between estimates of heritability from the non-spatial and SpATS models (a), and from 
SpATS and the BSS models (b) for grain yield (○) and plant height (●). The diagonal lines indicate identical 
values. The labelled data point corresponding to plant height at trial HER05 (HER05-PH) is mentioned in the 
text 

Figure 5a shows the changes in the estimates of trial heritability from the non-spatial 
model to the SpATS model. The spatial method increased the heritability in most instances, 
with levels of improvement in precision being generally higher for grain yield. Not 
surprisingly, a remarkable increase in heritability was also achieved for plant height in 
HER05 after fitting trends with SpATS. Trial heritabilities estimated by both spatial methods 
were very consistent for plant height (Fig. 5b). However, more variation in the estimates was 
observed for grain yield, where similar or slightly higher heritabilities were obtained with the 
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SpATS model in most trials. Finally, notice that heritabilities were, in general, lower for grain 
yield, which was the trait affected by stronger spatial variation (as inferred from the total EDs 
in Fig. 2). 

The Pearson correlations of genotype BLUPs between environments obtained from the two 
spatial methods were, on average, slightly higher than those obtained from the non-spatial 
model in both traits (Fig. 6). The mean correlations for grain yield increased from 0.04 to 0.10 
and 0.09 after applying the BSS models and SpATS, respectively (Fig. 6a). For plant height, 
both spatial models caused a mean increase of 0.05 in the correlations, changing from 0.46 to 
0.51 (Fig. 6b). At the same time, the spatial methods reduced the variation of estimated 
correlations for the latter trait. The higher mean correlations between environments in plant 
height reflect a lower influence of genotype-environment interaction. 

 
Fig. 6 Correlations of genotype BLUPs between environments from each model for grain yield (a) and plant 
height (b) 

For illustration purpose, Fig. 7 presents the BLUPs of genotype effects from SpATS and 
the BSS models for grain yield in the example trials DYS05 and DAB08. Differences in the 
rankings were small for both environments. However, changes in the order of genotypes were 
more evident at DYS05 (Fig. 7a), an environment where, as previously noted, the nature of 
spatial variation was more complex. The predicted rankings established by both spatial 
methods were also consistent for the rest of the dataset, with mean Spearman correlations 
across trials of 0.970 for grain yield and 0.989 for plant height. As expected, the rankings of 
genotype were more dissimilar between SpATS and the non-spatial models. Rank correlations 
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for yield between these models ranged from 0.500 at DYS05 (where EDs = 111.2) to 0.926 at 
DAL08 (where EDs = 0.0), with a mean value of 0.802. In the case of plant height, 
correlations were generally higher, varying from 0.767 at HER05 (where EDs = 64.8) to 0.988 
at DAL08 (where EDs = 0.4) and a mean value of 0.944. 

 
Fig. 7 Genotype BLUPs from the BSS model and the SpATS model and Spearman rank correlations (ρ) for grain 

yield in trials DYS05 (a) and DAB08 (b) 

As suggested by one of the reviewers, we tried to implement a single-step model fitting 
strategy with the standard method by using the full model [3] across our dataset. Convergence 
problems were evident in 8 and 10 trials out of 20 for grain yield and plant height, 
respectively. It was possible to decrease the rate of failure by relaxing convergence criteria. 
However, given that we know that the full model was a misspecified one, tuning strategies 
should not be used to get convergence. The failures to converge reflected identifiability 
problems for the situation where the AR1xAR1 structure, global trend terms and the nugget 
are included in the same model. In contrast, the SpATS model did not suffer from this 
confounding difficulty; the three types of field variation were fitted in a stable way. 

2.4.  Discussion 

2.4.1.  Spatial analysis with SpATS 

This study presented the SpATS model as a suitable alternative to the standard spatial 
models for the adjustment of field trends in sorghum genetic trials. We reported a first 
application of the new spatial model to a real and extensive plant breeding field testing. This 
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method fits a smooth surface to account for all sources of continuous environmental variation. 
The mixed model representation of SpATS features the joint modelling of additive one-
dimensional trends plus interactions between trends in the row and column directions. 
Moreover, the model specification assigns different degrees of smoothing to each additive and 
interaction effect by means of specific smoothing parameters. These weighting terms, which 
are automatically tuned by REML-based variance components, shrink irrelevant effects to 
optimize the fit of the spatial surface.  

We have stressed the practical importance of the effective dimension of the model as an 
integral part of spatial analysis with SpATS. This study highlights how EDs can be used to 
interpret the intensity and the structure of spatial variation. The EDs is a very appealing tool to 
quantify the magnitude of spatial effects, reflecting the amount of smoothing of the spatial 
surface and allowing an easy identification of the main patterns of field heterogeneity. 
Furthermore, the genetic effective dimension was used to compute a generalized heritability 
in the context of the analysis with SpATS (Rodríguez-Álvarez et al. 2016a). This novel 
expression of heritability is valid for more general situations commonly found in plant genetic 
trials, e.g., when data is unbalanced and/or when residuals are spatially correlated. Equivalent 
definitions of generalized heritability were also proposed by Cullis et al. (2006) and Welham 
et al. (2010) in the context of standard mixed model analyses.  

In order to subject the new method to a hard evaluation, we analysed large-scale sorghum 
breeding trials arrayed as partially replicated (p-rep) designs (Cullis et al. 2006). These 
experiments are characterised by the absence of traditional blocking factors, allowing very 
few or no design features to be retained in the randomization-based model. Moreover, the use 
of partially replicated experiments assumes that field trend affecting unreplicated genotypes 
can be properly predicted by the spatial model (Payne 2006). Consequently, the analysis of p-
rep designs requires the inclusion of spatial parameters as an essential add-on component for 
an efficient testing of genetic material. The results of our study demonstrate the effectiveness 
of SpATS to account for spatial trend and predict adjusted genotypic values under these 
circumstances.  

The SpATS model adjusts a continuous surface across the whole field. A more refined 
modelling could consider discontinuity in the spatial trends by fitting a different surface 
within each block. Even though the former approach is more conservative, we consider it 
reflects the structure of trial design and should be a realistic model for most commonly used 
experiments in plant breeding. Furthermore, the smoothness of the spatial surface fitted by 
SpATS is controlled by five different terms, providing enough flexibility for an appropriate fit 
of the spatial trend. 
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2.4.2.  Comparison of SpATS and the standard method: parametrization 

The SpATS model presents similarities with the full formulation of the standard spatial model 
(see eq. 3). Both models contains two one-dimensional spline terms, each one fitted as the 
sum of a fixed linear trend and a random non-linear component. In addition, discontinuous 
spatial trends are accounted for by random row and column effects in both cases. However, 
there is a major difference between both models when accounting for the remaining spatial 
variation. The standard model fits a separable AR1 process, whereas SpATS uses P-spline 
interaction terms. 

This difference in parametrization affects the way in which SpATS and the standard 
methods model field variation. Under the standard mixed model approach, gradients across 
the field can be adjusted by blocking factors and by one-dimensional polynomials or splines 
along rows and columns. However, more complex two-dimensional gradients that do not 
align well with row and column directions are expected to affect field trials as well. The 
structure of spatial variation found in our dataset (Figure 2) and in previous studies of 
agricultural and forest field trials demonstrate that fitting only additive gradients in one 
dimension may result in insufficient modelling of global trend (Federer 1998; Fu et al. 1999; 
Taye and Njuho 2008). It is in principle possible to extend the standard spatial model with 
additional fixed terms, like a linear-by-linear interaction term (Federer 1998), and random 
terms,  like a smoothing spline interaction term, but these extensions were never used under 
the standard approach and are prone to cause problems (Gilmour 2000). In this research, we 
showed that the SpATS model is able to account for intricate patterns of large-scale variation 
by explicitly modelling the interactions between global trends along rows and columns.  

A common practice in spatial analysis is to fit an autoregressive model, originally proposed 
to adjust for local trend, and assume that it is flexible enough to also account for global trend 
(Zimmerman and Harville 1991; Dutkowski et al. 2006; Piepho et al. 2008b). A more 
conservative approach considers that the underlying spatial correlation is likely to hold only 
within blocks and that large-scale trend is partially accounted by blocking factors (Williams et 
al. 2006; Piepho and Williams 2010). However, continuous non-stationary trends across the 
whole field can be better fitted by specific spatial terms in the model, as was suggested in the 
seminal paper by Gilmour et al. (1997). Following their approach, we found that additional 
terms accounting for global variation could not have been ignored in most of the sorghum 
trials and for both traits (see Table 4). Several studies using real and simulated data have 
shown that underfitting global trend may cause the variance of treatment differences to be 
underestimated (Zimmerman and Harville 1991; Brownie et al. 1993; Brownie and Gumpertz 
1997). This false improvement in precision can be particularly negative in plant breeding 
trials as it reduces the efficiency of selection decisions. Furthermore, Brownie and Gumpertz 
(1997) reported that local trend is overestimated in presence of unaccounted large scale trend. 
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Given that global and local model terms are actually “competing” to fit part of the same 
spatial variation, the estimated covariance parameters will vary according to the global terms 
included in the spatial model. This inconsistency in the estimates of autocorrelations was also 
observed in our study during the search of the BSS models (not shown). The aforementioned 
situation raises the issue of parameter identification when both global and local trend are 
trying to be fitted. Therefore, spatial parameters should be interpreted with special care under 
the standard approach. Conversely, the new spatial method based on 2D P-splines simplifies 
the problem of spatial model identification by always modelling all types of field trend as a 
single continuous process. This unified modelling avoids the necessity of distinguishing 
between global and local trend. Both forms of continuous variation are simultaneously fitted 
by the flexible interaction surface with anisotropic smoothing. As a result, SpATS provides a 
straightforward representation of the spatial trend that is easy to interpret. Moreover, the 
ANOVA-type decomposition of the smooth surface facilitates the characterization of the 
spatial trend, providing additional insight into the structure of field variation. 

Another difference between both spatial methods was evident regarding the estimation of 
the residual variance. In our dataset, the standard spatial models exhibited a clear tendency to 
estimate smaller spatially independent components than the SpATS model (Figure 4). The 
same discrepancy was reported by Rodríguez-Álvarez et al. (2016a) in a simulation study 
where they analysed data generated according to different autoregressive models with nugget. 
These authors showed that, when the autocorrelations are large (ρr = ρc= 0.9), the SpATS 
model provides relatively accurate estimates of the random error variance, whereas the 
autoregressive model tends to underestimate this term. The possibility of confounding the 
spatial component with the nugget variance when fitting autoregressive models in field trials 
was also reported by Cullis et al. (1998) and extensively discussed in Piepho et al. (2015). 
Given the large autocorrelations estimated in most of our sorghum trials, we may suggest that 
SpATS performed generally better in identifying the true spatially independent residuals, 
while the BSS models were actually modelling part of the random error as spatially correlated 
data. 

This potential confounding of parameters in autoregressive and other non-linear spatial 
models with nugget causes frequent convergence problems (e.g., Dutkowski et al. 2006; 
Müller et al. 2010; Liu et al. 2015; Rodríguez-Álvarez et al. 2016a). When convergence 
cannot be reached, one could fall back to alternative models without nugget effects (Müller et 
al. 2010; Leiser et al. 2012). This strategy is far from attractive given that the potential best 
fitting model would be deliberately ignored. Furthermore, our research (Table 3) and other 
studies demonstrated that a spatially independent component accounting for measurement 
error is frequently required (e.g., Cullis et al. 1998; Qiao et al., 2000; Liu et al. 2015). In 
contrast to the standard spatial modelling approach, the SpATS model always fits a random 
error variance on top of the spatial surface and, in our experience, it always converges readily; 
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see also Rodríguez-Álvarez et al. (2016a). As a reviewer suggested, in addition to the 
identifiability issues mentioned above for the standard approach, it cannot be excluded that 
the difference in convergence performance between SpATS and the standard models may be 
related to the standard method using a covariance structure that is non-linear in the variance 
parameters, while the covariance structure of SpATS is linear in the parameters. Further study 
is required here. 

2.4.3.  Comparison of SpATS and the standard method: performance 

The comparison between SpATS and the best fitting standard spatial models revealed a 
similar performance for the evaluation criteria considered in this paper. Besides the 
differences discussed above, both methods caused similar reductions in the spatially 
independent residual variance compared with the error of the non-spatial model. These 
changes indicate the magnitudes of spatial variation adjusted by the spatial models for both 
traits. The generally large decreases in the random error component (>30%) obtained for grain 
yield reflect that strong spatial trends affected this trait in most trials (Stroup et al. 1994; Yang 
et al. 2004). The lower reductions observed for plant height could be related to the dominant 
presence of random environmental variation (see Table 3). Interestingly, the same inferences 
can be drawn by considering the higher EDs that were usually associated with grain yield 
trends (Fig. 1). The larger number of parameters effectively estimated by SpATS to better 
approximate the underlying spatial surface reflected the higher intensity of field trends for 
grain yield data. The ability of the EDs to indicate the relative importance of spatial variation 
was evidenced by the strong positive association between the number of EDs and the ratio of 
spatial to spatially independent variance from the standard models. 

In general, the estimates of genetic variance from the SpATS model were comparable to 
those obtained by the BSS models. The inconsistencies between both models observed in 
some cases may result from the impossibility to clearly identify the genetic and the 
environmental variation in presence of spatial correlation. Several simulation studies have 
shown that unadjusted patchiness in the field may inflate the genetic variance (e.g., Loo-
Dinkins 1990; Magnussen 1993, 1994). This identification problem was apparent across 
candidate BSS models, where the autoregressive models ignoring the nugget estimated higher 
trial genetic variances than the better-fitting models using nugget (data not shown). The 
overestimation of genetic variation when adjusting autoregressive models without nugget was 
also reported by Dutkowski et al. (2002) in tree breeding trials and by Rodríguez-Álvarez et 
al. (2016a) using simulated data. In addition, the latter authors showed that SpATS produced 
more accurate estimates of genetic variance, which were highly consistent with those obtained 
from the best fitting standard model including the nugget. However, more extensive 
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assessments of the SpATS model would be still necessary with respect to the validity of 
estimates when spatial variation is present. 

Several studies considered the changes in heritability to measure the impact of alternative 
models on the efficiency of plant breeding evaluations (e.g. Smith et al. 2001b; Welham et al. 
2010; Sarker and Singh 2015). Following this approach, we used the generalized heritability 
to compare the performance of the SpATS model and the standard spatial models. The 
adjustment of spatial trends with the new spatial model led to levels of heritability equivalent 
to the standard models in all the sorghum trials. The increases in grain yield heritability 
compared to the randomization-based model were broadly consistent with the results from 
standard spatial analysis of sorghum breeding trials in West Africa (Leiser et al. 2012). The 
improvement in precision, measured as the increase in the correlation of genotype predictions 
between environments, were generally the same for both spatial methods. Similar magnitudes 
of improvements through standard spatial analysis were previously reported by Leiser et al. 
(2012) in sorghum, but smaller increases have been achieved for wheat, sugar beet and barley 
breeding trials (Qiao et al. 2004; Müller et al. 2010).  

The analysis with SpATS affected the predictions of genotypic values, since the ranking of 
genotypes changed after modelling spatial trends. A bigger impact on genotype ranks was 
usually observed in cases where the fit of a smooth surface produced larger increases in 
broad-sense heritability. Our results showed high consistency in the ranking of genotypes 
predicted by the SpATS model and the BSS models for all cases. This indicates that the use of 
the new spatial method would hardly produce changes in selection decisions compared to the 
more refined spatial models. The consistent but small changes in predicted rankings may be a 
consequence of the differences discussed above related to how both spatial methods 
accommodate global and local trends. 

2.4.4.  Comparison of SpATS and the standard method: modelling strategy 

In this paper, we used a single-step modelling strategy to perform the definite spatial analysis 
in each trial. Furthermore, the same SpATS model was applied for individual-trial analysis 
across the whole dataset. This approach differs from the common multi-step modelling 
procedure based on sequential fitting of alternative spatial models for each trial. The latter 
practice may be a limitation for efficient routine application given that several model selection 
steps are required to arrive at a final spatial model. To perform the standard spatial analysis in 
the present paper, we inspected alternative AR1 models. However, the number of potential 
candidate models increases if other spatial covariance structures are also considered. A 
strategy to simplify the model selection process may be to restrict the number of candidate 
spatial models, potentially reducing the efficiency of analysis. A remarkable attempt to 
maximize efficiency of plant breeding trials through standard spatial analysis was reported by 
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Leiser et al. (2012), who fitted 91 different models for each trial to identify the best models in 
17 environments. Unfortunately, these efforts for further modelling usually result in modest 
benefits relative to simpler models. Alternative spatial methods based on kriging are also 
time-consuming and difficult to apply in practice (Zas 2006; de la Mata and Zas 2010).  

Our approach using SpATS accounted for all types of spatial variation by fitting a single 
model rather than using a multi-step modelling procedure. Under this simplified strategy, 
model selection steps required to identify the appropriate spatial correlation and/or global 
trend terms are not needed; both local and global trends are automatically modelled in a single 
step by the smooth surface. The SpATS approach relies on the estimation procedure to 
effectively reduce the influence of the smooth surface components that are not needed. This 
implicit model selection is automatically tuned by specific smoothing parameters (or 
penalties) and is reflected in the EDs. Accordingly, after convergence, the EDs of unimportant 
components will tend to zero, meaning that these terms are not contributing to the complexity 
of the spatial model. The new method also simplifies the practice of using diagnostic 
graphics, such as variograms, to guide model selection. The reason is that the selections steps 
required to fit global and local trends under the standard method are reduced to one with 
SpATS, and thus the diagnostic plots associated to those steps are essentially skipped. 
Random row and column effects were fitted by default in our SpATS model, as discontinuous 
spatial effects were also present in most cases (data not shown). The inclusion of these effects 
in a default spatial model is justified by the frequent existence of non-smooth effects caused 
by blocking factors or extraneous variation (e.g., Piepho and Williams 2010; Liu et al. 2015). 
We set the same number of equally-spaced knots in each dimension of the 2D P-spline for 
every trial. These quantities were chosen to be so many as to ensure ample flexibility to the 
smoother. Other studies on spatial analysis with P-splines reported that models using different 
numbers of knots produced similar fits and results (Cappa and Cantet 2007; Cappa et al. 
2010). Moreover, Eilers et al. (2015) demonstrated that, once a sufficient number of knots has 
been chosen, optimizing their quantity is not worthwhile because the smoothing parameters 
will regulate the smoothness of the fit to optimize the bias-variance trade-off. 

For the present research, we have used a general SpATS model considering the design and 
treatment factors of our dataset. However, it is noteworthy that the mixed model formulation 
of SpATS enables more refined model building/selection according to specific situations. For 
instance, having an ED of zero is equivalent to an associated variance component being zero. 
It implies that we could use any tests that evaluate the relative fit of a variance model (e.g., 
REML-LRT, AIC) to perform model selection.  

The results from this study showed that the SpATS model performed comparably to more 
refined and site-specific spatial models. One advantage of the novel method is that all types of 
continuous spatial variation and genetic effects can be modelled simultaneously in a single 
modelling step. As Dutkowski et al. (2006) pointed out, this approach should be superior to 
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fitting all terms in a multi-step process as it will avoid parameter identification problems 
derived from confounding spatial heterogeneity with genetic heterogeneity due to aggregation 
of related genotypes. An additional benefit is that the SpATS model may be useful to improve 
the efficiency of two-stage analysis of multi-environment trials (MET). The reason is that the 
same flexible model can be fitted in the first stage to account for the spatial surfaces of all the 
trials, obtaining adjusted genotype means to be used in the second stage. The gain in speed of 
analysis using the new method results from the fact that less computational steps would be 
needed to identify an appropriate spatial model for each trial. 

2.5.  Conclusion 

The SpATS model provided a flexible and efficient alternative to account for spatial patterns 
in the sorghum breeding field trials. The performance of the new model was equivalent to the 
more elaborate standard spatial models when considering the improvement in precision and 
the predictions of genotypic values. The suitability of SpATS was consistent across trials and 
traits exhibiting different magnitudes of heritability and complexity of spatial variation. A 
major advantage of the new model over existing techniques is that global and local trends are 
jointly modelled by the smooth surface. Moreover, we used a general SpATS model to 
adequately fit all experiments, which avoids the examination of several candidate models for 
each trial. Given the results of this study, the use of the new method should be considered as a 
simple and effective strategy to optimize the practical application of spatial analysis in plant 
breeding trials. 
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Abstract:  
Selection based on genome-wide markers has become an active breeding strategy in crops. Genomic 
prediction models can make use of pedigree information to account for the residual polygenic effects 
not captured by markers. Our aim was to evaluate the impact of using pedigree and genomic 
information on prediction quality of breeding values for different traits in sorghum. We explored 
BLUP models that use weighted combinations of pedigree and genomic relationship matrices. The 
optimal weighting factor was empirically determined in order to maximize predictive ability after 
evaluating a range of candidate weights. The phenotypic data consisted of testcross evaluations of 
sorghum parental lines across multiple environments. All lines were genotyped and full pedigree 
information was available. The performance of the best-predictive combined matrix was compared to 
that of models fitting the component matrices independently. Model performance was assessed using 
cross-validation technique. Fitting a combined pedigree-genomic matrix with the optimal weight 
always yielded the largest increases in predictive ability and the largest reductions in prediction bias 
relative to the simple G-BLUP. Under this approach, the weight that optimized prediction varied 
across traits. The benefits of including pedigree information in the genomic model were more relevant 
for traits with lower heritability, such as grain yield and stay-green. Our results suggest that the 
combination of pedigree and genomic relatedness can be used to optimize predictions of complex 
traits in crops when the additive variation is not fully explained by markers. 
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3.1.  Introduction: 

Selection based on dense genome-wide markers has become a revolutionary alternative to 
traditional genetic evaluations for improving quantitative traits in crops (Jannink et al. 2010; 
Crossa et al. 2017). This selection technique exploits the association between high-density 
markers and unknown causative genes to predict genetic merit or breeding value (BV). 
Genomic prediction (GP) is expected to increase accuracy of evaluations by capturing large 
and small allelic effects across the genome simultaneously (Meuwissen et al. 2001). These 
effects are estimated using phenotypic and genotypic data from a reference breeding 
population, and then integrated to predict genome-assisted BVs of untested selection 
candidates that have been only genotyped. The implementation of this prediction method can 
potentially lead to higher rates of genetic gain and lower phenotyping costs compared to 
classical phenotypic or pedigree-based selection. 

The underlying requirement for obtaining optimal genomic predictions is that available 
markers or haplotypes of markers are in complete linkage disequilibrium (LD) with 
quantitative trait loci (QTLs) of interest. Consequently, a major assumption is that the full 
additive genetic variance can be accurately explained by markers (Goddard 2009). When this 
condition is not met due to incomplete LD with causative genes, accuracy of prediction is 
expected to decline (Habier et al. 2007; Goddard et al. 2011). In such cases, pedigree 
information may be incorporated into GP models to account for the residual polygenic 
variance not captured by markers, and to reduce empirical bias of predictions. Pedigree and 
genome-wide markers can offer different, yet complementary, information on genetic 
relatedness among individuals. While pedigrees represent expected average relationships 
describing potential transmission of genes, genomic data provides observed realized 
relationships. The latter are expected to be more accurate because markers can trace alleles, 
capturing random Mendelian sampling and unknown ancestral relationships not considered in 
the pedigree. Nevertheless, the inclusion of a residual genealogical effect in prediction models 
might account for potential LD patterns not explained by markers at population and family 
levels. Consequently, the joint use of pedigree and genomic information may provide better 
estimates of genetic similarities between genotypes, affecting predictive performance. 

The benefits of exploiting pedigree and marker data in plants have been previously 
reported in the context of QTL and association mapping (Bink et al. 2002; Parisseaux and 
Bernardo 2004; Malosetti et al. 2007). In sorghum, Jordan et al. (2004) demonstrated that 
combining pedigree information with mapped markers facilitated the identification of genetic 
regions under selection in a breeding population. Within the GP framework, several 
approaches to combine genealogy with genomic data have been reported. Bayesian regression 
and semiparametric models were firstly implemented in crops (de los Campos et al. 2009; 
Crossa et al. 2010). Alternative models based on best linear unbiased prediction (BLUP) have 
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been used in maize and wheat (Albrecht et al. 2011; Burgueño et al. 2012; Sukumaran et al. 
2017). These BLUP models include two mutually independent genetic effects, one depending 
on a pedigree-based relationship matrix (A) and one depending on a genomic relationship 
matrix (G). A similar approach based on BLUP integrates pedigree and genomic relatedness 
into a single matrix. This strategy has been applied in the context of animal genetic 
evaluations (VanRaden 2008; Goddard et al. 2011; Gao et al. 2012), but it has not been 
implemented so far in plants. Different models combining pedigree and genome-wide markers 
have also been proposed for specific situations where not all individuals in the reference 
population are genotyped (Legarra et al. 2014; Liu et al. 2014; Fernando et al. 2016). 

Compatibility between A and G may be an issue when jointly used in prediction models. It 
is important to consider that genetic relationships in both matrices are in different scales with 
reference to the base population (Legarra et al. 2014). Therefore, the use of a compatible scale 
for pedigree and genomic relationships should be considered when estimating and interpreting 
genetic variances and derived measures, such as heritability and expected response to 
selection. Different scaling methods have been implemented to achieve the same base 
population for A and G (Vitezica et al. 2011; Christensen 2012). These corrections are aimed 
at accounting for the non-randomness of genotyping due to previous selection decisions.  

Sorghum [Sorghum bicolor (L.) Moench] is the 5th most important cereal crop worldwide 
after wheat, maize, rice and barley. Its drought-tolerance ability makes it a strategic crop for 
sustainable grain production in the perspective of climate change and increasing food 
demand. Early-stage breeding of hybrid sorghum involves the development of elite inbred 
lines, which will be subsequently used as parents of commercial hybrids. Initial selection of 
superior parental lines is typically based on their additive genetic values estimated from 
testcross performance trials. Genomic selection could be beneficial for reducing time and field 
testing resources during the testcross evaluation step, increasing efficiency of hybrid 
development. Despite the new opportunities offered by GP methods to accelerate genetic 
progress in sorghum, empirical studies are still limited compared to other crops (Kulwal 
2016). A first implementation of GP in sorghum was reported for biomass traits in a global 
germplasm collection (Yu et al. 2016). In a more recent study by Hunt et al. (2018), genomic 
models were applied for prediction of testcross yield performance in the context of individual 
trial analysis. 

For the present research, we considered a multi-year and multi-location testcross 
evaluation of sorghum parental lines using several testers and including different production 
and adaptability traits. The dataset belongs to a public breeding program in Australia where 
identification of superior parental lines is typically based on extensive phenotyping of 
progeny performance. This interesting case study was used to explore the potential of 
combining pedigree, markers, and phenotypic data for optimization of genomic prediction in 
sorghum. 
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The objectives of this article were to explore the impact of combining pedigree and 
genomic information on the quality of BV predictions, and to determine the combinations of 
information that optimize predictive performance for different traits. For these purposes we 
applied BLUP models using a blended kinship matrix constructed as a weighted combination 
of matrices A and G, where different weights were tried in search of improved prediction 
quality. 

3.2.  Materials and Methods: 

3.2.1.  Phenotypic data 

The dataset is part of the sorghum breeding program for female parental lines conducted by 
the University of Queensland and the Department of Agriculture and Fisheries in Queensland, 
Australia. Female lines are evaluated in hybrid combination with different male testers across 
multiple environments. Testcross performance is then used to estimate the general combining 
ability (GCA) or BV of parental lines.  

The phenotypic records used in this study consisted of 26 testcross performance trials 
where a total of 646 female lines were tested across 12 locations over a period of 7 years 
between 2008 and 2014. This trial series comprises a representative sample from a target 
population of environments covering the main sorghum cropping region in Australia. 
Phenotypes of 2645 testcross hybrids were used to assess female lines in crosses with one to 
five different testers. These male parents were chosen to express contrasting levels of yield 
potential and stay-green capacity (Jordan et al. 2012). In each trial, between 110 and 315 lines 
were evaluated and 3 to 5 testers were used. Across the dataset, more than 50% of the lines 
were crossed with at least 3 different testers and grown in at least 9 environments. The sets of 
testcrosses entering evaluation were designed to provide a degree of connectivity between 
lines and testers across trials. Each experiment was laid out as a resolvable partially replicated 
design (Cullis et al. 2006), where 30% of the testcross hybrids had two replicates and 
commercial varieties were included with additional replication. The number of testcrosses in 
each trial varied between 247 and 858. We considered four productivity and adaptability traits 
routinely measured by the program: grain yield (GY), stay-green (SG), plant height (PH) and 
flowering time (FT). Stay-green is a drought resistance trait that expresses as delayed leaf 
senescence in environments where water-stress conditions occur (Borrell et al. 2014). In this 
dataset, the stay-green trait was expressed in 9 trials and observations were available for 603 
lines. 
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3.2.2.  Pedigree and genotypic data 

Inbred parent lines were derived from pedigree breeding methods resulting in a highly 
structured breeding population. The 646 female lines are basically grouped into 74 full-sib 
families including different numbers of siblings. Genealogical information on the tested lines 
and 499 ancestors tracing back 28 generations was available to compute the pedigree-based 
relationship matrix A. 

All the female lines were genotyped using an integrated DArT and genotyping-by-
sequencing (GBS) methodology involving complexity reduction of the genomic DNA to 
remove repetitive sequences using methylation sensitive restriction enzymes prior to 
sequencing on Next Generation sequencing platforms (DArT, www.diversityarrays.com). The 
sequence data generated were then aligned to the most recent version (v3.1.1) of the sorghum 
reference genome sequence (Paterson et al. 2009) to identify SNP (Single Nucleotide 
Polymorphism) markers. SNPs with minor allele frequency lower than 2.5% or more than 
20% of missing values were discarded. Missing genotypes were imputed based on random 
sampling from marginal allele distributions using the R package synbreed (Wimmer et al. 
2012). After quality filtering, 4781 evenly-spaced SNPs were retained to compute the 
genomic relationship matrix G. 

3.2.3.  Phenotypic analysis 

A weighted two-stage approach was used for the analysis of phenotype data. In the first stage, 
each trial was individually analyzed to account for design factors and spatial field variation. 
In the second stage, spatially-adjusted testcross means from the first stage were used to 
compute adjusted line means across testers and environments. 

For the analysis of each trial we applied a novel spatial method that adjusts for all types of 
field trends in a single modelling step by fitting a smoothed surface (Rodríguez-Álvarez et al. 
2018a). We used the same flexible spatial model to analyze the whole series of trials and all 
traits. Velazco et al. (2017) showed that this approach performs as well as the more elaborate 
spatial methods, which are typically based on a specific multi-step modelling for each trial 
and trait. The general spatial model used across trial-trait combinations is defined as 

 yijkl = μ + (L×T)i + Bj + Rk + Cl + f(r, c)kl + eijkl, (1) 

where the plot observation yijkl was modeled by fitting fixed effects for: the overall mean (μ), 
the i-th line × tester hybrid (L×T) and the j-th block (B); and random effects for: the k-th row 
(R) and the l-th column (C). The term  f(r, c) is a smooth function of row (r) and column (c) 
plot coordinates representing the fitted spatial surface, which simultaneously accounts for 
global and local trends (see Rodríguez-Álvarez et al. 2018a; Velazco et al. 2017 for details). 
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Finally, e is the random spatially independent residual representing measurement error in each 
plot. All random effects were assumed independent, homoscedastic and normally distributed 
with zero mean.  

The spatial analyses were implemented within the REML-based mixed model framework 
using the R-package SpATS (Rodriguez-Álvarez et al. 2018b). 

In the second stage, spatially-adjusted testcross means from all trials where jointly 
modelled by 

 yijk = μ + Li + Tj + Ek + LTij + LEik + TEjk + LTEijk + eijk, (2)  

where in this case yijk represents the adjusted mean estimated by best linear unbiased 
estimation (BLUE) of the i-th female line crossed with the j-th tester in the k-th environment, 
which was fitted by a main line genetic effect (L), a main tester effect (T), a main 
environmental effect (E) and all possible interactions between these effects. The residual 
followed eijk ~ N (0, R), where R is a diagonal matrix with elements equal to the squared 
standard errors of each mean yijk estimated by model (1) in the first stage (Frensham et al. 
1997). The analysis using diagonal weights instead of the full genotypic covariance matrix 
from each trial is preferable in practice because of its computational efficiency and 
comparable results (Möhring and Piepho 2009; Welham et al. 2010). Since trials were 
considered random, all the interactions involving E were random. Heterogeneous variances 
for the latter effects were allowed to improve goodness of fit of the model in each trait, as 
evaluated by the Akaike Information Criterion. In this stage, the effects L and T were also 
taken as fixed. However, given that not all lines were testcrossed with all testers, the 
interaction effect LT was considered random to estimate line means across testers (Bernal-
Vazquez et al. 2014). 

3.2.4.  Prediction models 

Different parental or GCA models based on BLUP were applied to predict breeding values of 
female lines from progeny performance. These models differed in the amount of pedigree and 
genomic information used for predictions. 

The prediction models used in our study assume that available SNPs may not explain all 
additive genetic variance. The general model formulation can be defined as: 

 yL = 1μ + Zg + e, (3)  

where the vector yL contains the BLUEs of line effects (L̂i) from model (2), 1 is a vector of 

ones with associated general mean μ, Z is a design matrix allocating line BLUEs to unknown 
genetic effects, g is the vector of total additive genetic effects and e is the vector of residuals. 
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Random residuals were assumed e ~ N (0, R), where R is a diagonal matrix with elements 
equal to the squared standard errors of genotypic BLUEs from the second stage of phenotypic 
analysis. This matrix accounts for differences in precision of estimated line means. 

Total additive genetic effects were assumed g ~ N (0, Kσg
2), where K is a combined kinship 

matrix exploiting pedigree and genomic information. This matrix is constructed as K = wA + 
(1 − w)Gs, where A is the numerator relationship matrix among lines computed from the full 
pedigree and Gs is a scaled genomic relationship matrix based on the SNP data (see details 
below). The weighting factor w represents the fraction of total additive variance (σg

2) that is 

not captured by markers, such that wσg
2 is the amount of residual polygenic variance explained 

by genealogical relationships. In this model, referred here as K-BLUP, the weight can take 
any value between 0 and 1. It should be noted that G and A are not orthogonal; therefore, the 
interpretation of w should be considered with caution. 

For our study, a sequence of eight values of w from 0.1 to 0.8, with increments of 0.1, was 
explored to assess the impact on predictions. For the sake of comparison, the extreme cases w 
= 0 and w = 1 were also considered. Note that the latter case corresponds to the traditional 
pedigree-based model, A-BLUP, which relies only on familial information. Alternatively, 
assuming w = 0 results in the conventional G-BLUP model (VanRaden 2008), where 
predictions are exclusively conditional on marker-based similarities. 

An equivalent formulation of the K-BLUP model is as follows: 

yL = 1μ + Zm + Za + e, 

where the total additive genetic effects in (3) are decomposed into a vector of genomic 
additive effects (m) and a vector of residual polygenic effects (a), such that g = m + a, with 
respective variances σg

2 = σm
2  + σa

2 . In this model both types of genetic effects are assumed 

mutually independent with distributions m ~ N(0, Gsσm
2 ) and a ~ N(0, Aσa

2), where σm
2  = (1 − 

w)σg
2 and σa

2 = wσg
2. This parametrization, referred in the rest of the article as AG-BLUP, 

presents two differences compared to the K-BLUP model: first, the AG-BLUP model requires 
the fitting of two relationship matrices (A and G) to combine pedigree and genomic 
information, while this information is condensed into a single matrix in K-BLUP; second, 
under AG-BLUP, the magnitude of w is driven by the data in order to maximize the 
(restricted) likelihood of the model, as opposed to pre-specified weights used within the K-
BLUP method. The performance of AG-BLUP was also compared to that of the best-
predictive K-BLUP model. 

The Gs matrix used in our models was rescaled to make it compatible with A in reference 
to the same base breeding population. The adjustment was based on fitting Gs to A by 
applying Gs = a + bG, where G is the unscaled genomic matrix as computed with the first 
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method of VanRaden (2008), and the parameters a and b are estimated by equating the 
average levels of inbreeding and the overall relationships in A and G (Vitezica et al. 2011; 
Christensen et al. 2012). The added constant a accounts for old relationships among non-
genotyped ancestral lines in the pedigree, while b is a scaling term accounting for the 
reduction in the genetic variance of genotyped lines relative to the pedigreed base population 
(see Legarra et al. 2014 for details). 

Given the variance components from prediction models, the narrow-sense heritability (h2) 
of line means was obtained as: h2 = σg

2 (σg
2 + σe

2)� , where σe
2 is the residual variance 

comprising non-additive genetic effects and true errors associated with mean line estimates. 

Models in the second stage of phenotypic analysis as well as prediction models were fitted 
using the average information REML (AI-REML) algorithm as implemented in the mixed 
model package ASReml-R (Butler et al. 2017). 

3.2.5.  Model validation 

The quality of predictions from each model was evaluated using a five-fold cross-validation 
technique. We considered two different strategies for splitting the data into training (TS) and 
validation sets (VS). These strategies emulate different selection schemes: one based on 
within-family predictions (W-fam) and one based on among-family predictions (A-fam). In 
W-fam, 20% of lines from each full-sib family formed the VS, i.e., predicted lines belong to 
families that were (tested) in the TS. In A-fam, we sampled 20% of whole families to 
construct the VS, i.e., predicted lines belong to full-sibs families that were not present in the 
TS. With this setting we examined contrasting levels of genetic relatedness between TS and 
VS: high for W-fam and low for A-fam. Each splitting scenario was repeated 20 times using 
the same random seed throughout all models. The line BLUEs from phenotypic analysis (yL) 

were regarded as the realized genetic values of lines and used for validation of prediction 
models. 

3.2.6.  Prediction quality evaluation 

Model performances were assessed using multiple criteria. In this research, predictive ability 
was taken as the primary criterion for identifying the best prediction model. However, 
measures of empirical bias and accuracy were also considered, as they offer complementary 
information that should be taken into account when evaluating the predictive performance of 
models. Predictive ability was measured as the Pearson’s correlation (rPA) between predicted 

additive values g� and realized values yL in the validation set. Bias of predictions was 

investigated by regressing yL on g� , where a coefficient of regression b = 1 designates an 
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empirically unbiased predictor, while b < 1 indicates inflation of the variance of genotype 
predictions or over-predictions. The mean squared error of prediction (MSEP) from the linear 
regression was also measured as an indicator of prediction accuracy, which incorporates 
concepts of both bias and precision. The evaluation of models was based on average values 
over the 20 replicates when using within-family or across-family relatedness for prediction. 
Significance of pairwise differences in predictive ability among prediction models was 
assessed by the Hotelling-Williams t-test (Steiger 1980), which is the appropriate test when 
comparing two correlations that are not independent as a result of sharing a common variable 
(yL in our case).  

3.3.  Results 

3.3.1.  Heritability and effect of scaling genomic relationships 

Table 1 presents the narrow-sense heritabilities (h2) for all traits estimated from BLUP models 
using only pedigree relationships, using only genomic relationships or combining both 
sources of information. We also show the influence of scaling the genomic matrix on the 
estimates of h2. In general, heritabilities varied from relatively low in grain yield to high in the 
case of plant height. Models using the combined matrix K increased h2 for most traits 
compared to A-BLUP and G-BLUP. These changes in heritability reflect the ability of the 
models to capture genetic variation in the breeding population. Note that the weight w used to 
construct K in each case was defined to maximize the likelihood, being the resulting K-BLUP 
model equivalent to fitting the model AG-BLUP. Finally, using the scaled genomic matrix Gs 
in G-BLUP and K-BLUP increased heritability estimates for all traits relative to the 
heritabilities obtained using the conventional genomic matrix. 

Table 1 Estimates of narrow-sense heritability for grain yield (GY), stay-green (SG), plant height (PH) and 
flowering time (FT) from prediction models using only the pedigree-based matrix (A-BLUP), using only the 
unscaled (G) or the scaled (Gs) genomic matrix, and using the combined K matrix (K-BLUP) 

amaxLL: weight that maximized the REML log-likelihood in each case; for GY: w = 0.54 with G and w = 0.48 
with Gs, for SG: w = 0.43 with G and w = 0.38 with Gs, for PH: w = 0.19 with G and w = 0.16 with Gs, for FT: w 
= 0.34 with G and w = 0.29 with Gs. 
 
 

Model GY   SG   PH   FT 
G Gs  G Gs  G GS  G GS 

A-BLUP (w = 1) 0.40 0.40  0.61 0.61  0.70 0.70  0.63 0.63 

G-BLUP (w = 0) 0.28 0.34  0.41 0.46  0.72 0.77  0.62 0.67 

K-BLUP (w = maxLL)a 0.43 0.46  0.56 0.59  0.78 0.82  0.72 0.76 
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3.3.2.  Impact of combining pedigree and genomic relationships on prediction quality 

Fig. 1 shows the patterns of variation in prediction quality measures of BLUP models when 
using different weights (w) to construct the combined relationship matrix K. 

 
Fig. 1 Predictive abilities, regression coefficients and MSEP from BLUP models using different weights (w) to 
construct the combined matrix K for grain yield (GY), stay-green (SG), plant height (PH) and flowering time 
(FT) predictions within (blue) and among (green) families. The weight w = 0 correspond to the simple G-BLUP 
model. The horizontal lines indicate a regression coefficient b = 1 

In both prediction scenarios, predictive ability for GY and SG improved as the weight 
placed on pedigree information increased from w = 0 up to 0.4 ≤ w ≤ 0.6. The use of higher 



Chapter 3: Combining pedigree and genomic information 
 

49 
 

weights caused decreasing trends in rPA for both traits. The largest relative increases in 

predictive abilities were observed for GY, with K-BLUP achieving 7% and 8% of 
improvement compared to G-BLUP (w = 0) for within- and among-family predictions, 
respectively. For PH and FT, rPA was generally maximized by using lower weights (w ≤ 0.2) 

in both prediction scenarios. Any further increase in w slightly changed rPA within families 

and was clearly detrimental for among-family predictions. Using a combined pedigree-
genomic matrix provided more limited benefits for PH and FT, representing less than 2% of 
relative gains in rPA over using only marker information.  

In most cases, placing increasing weights on pedigree relationships reduced bias of 
predictions relative to predictions based on genomic relationships alone (w = 0). Moreover, 
the addition of genealogy information was more effective in reducing inflation of predictions 
when these were based on among-family relatedness. The only exception was observed for 
FT, where higher values of w gave more biased among-family predictions.   

The use of increasing weights to form the K matrix reduced MSEP for GY, reaching the 
lowest values at w = 0.5 in both prediction scenarios. The opposite tendency was observed for 
the other traits, with higher accuracies obtained when more weight was assigned to genomic 
relationships and with accuracy of PH predictions being less sensitive to changes in w. 

The optimal weighting factors for each trait and prediction scenario are given in Table 2. 
These weights were determined in order to maximize predictive ability of K-BLUP after 
examining the variation in rPA over the set of candidate weights, as shown in Fig. 1. The best-

predictive weights based on cross-validation were generally similar to the weights that 
maximized the log-likelihood of the model for each trait in the entire breeding population (see 
footnotes to Table 1). 

Table 2 Optimal weights (w) used to construct the combined matrix K for prediction of grain yield (GY), stay-
green (SG), plant height (PH) and flowering time (FT) under within- and among-family prediction scenarios 

Prediction scenario GY SG PH FT 
Within families 0.6 0.4 0.2 0.2 
Among families 0.5 0.5 0.2 0.1 

3.3.3.  Performance of prediction models 

Table 3 presents the measures of prediction quality from the BLUP models using pedigree 
and/or genomic information for all traits and both cross-validation scenarios. Independent of 
the prediction model, predictive abilities were significantly lower and predictions tended to be 
more biased when among-family information was used. The pedigree-based BLUP model, 
considered here as the benchmark, always gave the lowest rPA and the highest MSEP. 
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Table 3 Mean values (and SD of 20 replicates) for predictive ability (rPA), relative increment of rPA (∆ rPA), 
regression coefficient (Bias) and mean squared error of predictions (MSEP) from BLUP models using different 
relationship matrices for grain yield (GY), stay-green (SG), plant height (PH) and flowering time (FT) prediction 
within and among families. The best values for each evaluation criterion are boldfaced 

Trait Quality criterion A-BLUP G-BLUP AG-BLUP K-BLUPa 

Within-family prediction 
GY rPA 0.299 (0.011) 0.323 (0.013) 0.339 (0.014) 0.345 (0.014) 

 
∆ rPA(%) 0 8.1 13.4 15.3 

 Bias (b) 0.963 (0.040) 0.924 (0.045) 0.924 (0.043) 0.948 (0.045) 

 MSEP 0.217 (0.002) 0.214 (0.002) 0.211 (0.002) 0.210 (0.002) 

SG rPA 0.437 (0.010) 0.475 (0.007) 0.490 (0.009) 0.494 (0.009) 

 
∆ rPA(%) 0 8.6 12.1 13.0 

 Bias (b) 0.988 (0.030) 0.953 (0.024) 0.952 (0.025) 0.963 (0.025) 

 MSEP 0.514 (0.005) 0.388 (0.004) 0.401 (0.005) 0.400 (0.005) 

PH rPA 0.420 (0.011) 0.574 (0.011) 0.579 (0.010) 0.581 (0.009) 

 
∆ rPA(%) 0 36.6 37.8 38.3 

 Bias (b) 0.997 (0.032) 0.935 (0.024) 0.944 (0.023) 0.949 (0.021) 

 MSEP 30.4 (0.4) 24.8 (0.5) 24.6 (0.5) 24.4 (0.4) 

FT rPA 0.394 (0.015) 0.489 (0.011) 0.497 (0.014) 0.500 (0.013) 
 ∆ rPA(%) 0 24.0 26.1 26.8 
 Bias (b) 0.964 (0.045) 0.933 (0.029) 0.937 (0.030) 0.944 (0.027) 
 MSEP 0.774 (0.011) 0.697 (0.011) 0.693 (0.013) 0.690 (0.013) 

Among-family prediction 
GY rPA 0.184 (0.037) 0.230 (0.027) 0.243 (0.028) 0.249 (0.030) 

 
∆ rPA(%) 0 25.0 31.9 35.1 

 Bias (b) 0.858 (0.181) 0.788 (0.094) 0.828 (0.094) 0.853 (0.104) 

 MSEP 0.231 (0.004) 0.227 (0.004) 0.225 (0.004) 0.224 (0.004) 

SG rPA 0.365 (0.030) 0.413 (0.022) 0.426 (0.019) 0.437 (0.016) 

 
∆ rPA(%) 0 12.9 16.7 19.5 

 Bias (b) 1.007 (0.121) 0.925 (0.055) 0.958 (0.061) 0.998 (0.050) 

 MSEP 0.552 (0.014) 0.417 (0.010) 0.432 (0.009) 0.434 (0.007) 

PH rPA 0.235 (0.044) 0.468 (0.022) 0.469 (0.021) 0.477 (0.022) 

 
∆ rPA(%) 0 99.1 99.4 102.9 

 Bias (b) 0.791 (0.155) 0.865 (0.051) 0.884 (0.056) 0.902 (0.055) 

 MSEP 35.0 (1.0) 29.0 (0.9) 28.9 (0.9) 28.6 (0.9) 

FT rPA 0.156 (0.064) 0.374 (0.020) 0.352 (0.031) 0.376 (0.023) 
 ∆ rPA(%) 0 139.6 125.2 140.6 
 Bias (b) 0.448 (0.196) 0.748 (0.047) 0.708 (0.066) 0.747 (0.051) 
 MSEP 0.929 (0.042) 0.802 (0.019) 0.823 (0.030) 0.801 (0.021) 

a 
Using K matrices constructed with the specific optimal weights given in Table 2 

Statistically significant increases of rPA were obtained by models exploiting genomic 

relationships alone or combined with pedigree in most cases (Table 3). Exceptionally, the 
differences with A-BLUP became significant for GY predictions within families only when 
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genealogy information was included in the genomic model. In general, the use of genome-
wide information caused larger relative gains in rPA for among-family predictions. The 

inclusion of marker-based relationships had a higher impact on improving rPA for PH and FT, 

which were the traits with higher heritabilities. Models combining information from A and G 
consistently outperformed the basic G-BLUP in predictive ability. These improvements were 
statistically significant only for SG in both prediction scenarios. The highest predictive 
abilities were always achieved with K-BLUP and this model exhibited the lowest MSEP in 
most situations. Moreover, including a residual polygenic component through the optimal K 
matrix produced the largest reductions of bias relative to G-BLUP in most cases. Although 
differences between AG-BLUP and K-BLUP were significant only for FT predictions among-
families, the latter model was slightly superior in predictive ability and prediction bias across 
all traits and both cross-validation schemes. The relative benefit of using the best-predictive K 
matrix was more evident when predictions relied on among-family information. 

3.4.  Discussion 

Advances in genotyping technology have facilitated the implementation of genomic selection 
for several plant species. However, for some strategic cereal crops, especially sorghum, 
efforts are still needed to attain a full insight into the prospects of this genetic evaluation 
method. Here we present a first comprehensive study addressing the potentialities of 
exploiting pedigree and genome-wide marker information to enhance prediction of parental 
BVs in sorghum. The idea of combining different kinship matrices for genomic prediction has 
also been introduced in the context of reproducing kernel Hibert spaces regression using 
multiple kernels (de los Campos et al. 2010; Gianola and Schön 2016). This method provides 
a flexible framework, including the possibility of using non-linear combinations of kinship 
matrices (Corrada Bravo et al. 2009; Gianola and de los Campos 2008). Our research is based 
on the BLUP method as it is easy to understand, compute and implement in available mixed 
model softwares. Moreover, several studies have shown that this method performs 
comparably to other models, such as the Bayesian alternatives, for prediction of complex 
quantitative traits in crops (e.g. Heslot et al. 2012; Wimmer et al. 2013).  

Results showed that the use of genomic information consistently improved predictive 
ability and accuracy of prediction in sorghum relative to the classical pedigree-based method. 
This is expected because the G matrix accounts for Mendelian segregation of alleles, 
distinguishing between full-sib lines that are more or less related than expected due to random 
chance. Therefore, genomic-estimated BVs of unphenotyped full-sibs will reflect genetic 
differences caused by Mendelian sampling, while these sibs will have identical pedigree-
based BVs reflecting only mid-parent genetic contributions. Similarly, specific pairs of lines 
from unrelated families may share more alleles than expected by chance and will have 
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realized relationships different from zero. These features make the G matrix potentially more 
informative than A to better approximate genetic relationships between parental lines. The 
advantage of replacing pedigree by genomic-based similarities in prediction models has also 
been reported for other crops (e.g., Albrecht et al. 2011; Burgueño et al. 2012; Auinger et al 
2016). Less conclusive results regarding the relative value of A and G for prediction in 
sorghum were reported by Hunt et al. (2018). However, their study is not strictly comparable 
to the present research due to different predictive contexts. Hunt et al. (2018) used phenotypes 
of testcross progenies derived from crosses with a common tester. Consequently, the total 
genetic value of hybrids was predicted since general and specific combining ability effects 
could not be distinguished. In contrast, our study aimed to predict the additive genetic merit 
of parental lines given that the availability of testcross data using several testers allowed 
averaging out most dominance deviations. Moreover, predictions reported by Hunt et al. 
(2018) were based on separate analyses of individual trials, whereas we obtained across-
environments predictions using multi-environment trial analysis.  

Before combining pedigree and genomic information in our prediction models, marker-
based relationships were adjusted to take into account the difference in scale between A and 
G. While relationships in A are defined in relation to the founder population of the pedigree, 
the reference population for relationships in G is automatically set to the genotyped 
individuals when current allele frequencies are used (VanRaden 2008; Hayes et al. 2009). 
Therefore, if the population genotyped has undergone drift or strong selection, which is 
usually the case in plant breeding programs, its average breeding value will be different and 
the genetic variance would be expected to be reduced relative to the founder breeding 
population (Legarra et al. 2014). Several studies using real and simulated data have shown 
that re-scaling the G matrix improved predictions to a mild degree when not all individuals in 
the reference population were genotyped (Forni et al. 2011; Vitezica et al. 2011; Christensen 
et al. 2012). In contrast, the adjustment of G in our work, where genotypes were available for 
the entire training population, did not affect predictions (not shown). However, the rescaling 
did affect the magnitude of genomic variances, and thus changed heritability estimates (Table 
1). These heritabilities derived from the adjusted G are thought to reflect a compatible scale 
for genomic and pedigree-based estimates of genetic variability. Consequently, the correction 
of G provided a clearer theoretical framework for interpretation of parameter estimates when 
pedigree and SNP information are used simultaneously. Even though inconsistencies between 
the theory underlying classical polygenic models and recent genomic approaches have 
received increasing attention in animal breeding, this topic has been largely overlooked in 
crop applications. 

In order to investigate the benefits of adding pedigree information into G-BLUP, we used a 
kinship matrix based on a weighted linear combination of pedigree and marker-based 
relationships, constructed as K = wA + (1 − w)G. VanRaden (2008) and Goddard et al. (2011) 
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proposed deterministic methods to predict the appropriate w based on the error variance of the 
true genomic relationships or on the effective number of independent chromosomal segments, 
respectively. These methods and subsequent suggested alternatives provide variable 
theoretical estimates, and these can be substantially different from optimal data-dependent 
weights (Ilska et al. 2017). Here, we adopted an analytical approach where the best-predictive 
w was empirically defined for each trait and cross-validation scenario after evaluating the 
changes in prediction quality over a sequence of candidate weights. The same approach was 
used applying a semi-parametric Bayesian method (Rodríguez-Ramilo et al. 2014) and in the 
context of multiple-trait prediction (Momen et al. 2017) in animal species. Our results in 
sorghum showed a general agreement between the best-predictive weights based on cross-
validation and the weights that maximized the fit of the model to the entire breeding 
population. This suggests that the goodness of fit can be used as guiding tool to attain an 
optimal prediction model. Our study demonstrates, however, that the best-fitting model may 
not produce the best predictive performance. This topic will be specifically addressed later in 
the present section when discussing the differences between K-BLUP and AG-BLUP.  

In our research, the optimal weighting factor w varied across traits. This implies that the 
optimal similarity matrix, from a predictive perspective, is actually trait-specific. According 
to the optimal weights for PH and FT (Table 2), a large proportion of the total additive 
variation in these traits was captured by SNPs (between 80% and 90%). This is expected since 
our sorghum breeding population is highly structured, with strong family relationships and 
small effective population size. Consequently, the genetic variance explained by markers 
might not only be a result of SNPs located on causative genes or in LD at population level, 
but it might mainly depend on SNPs capturing familial relationships between lines (Habier et 
al. 2007). For GY and SG, lower amounts of additive genetic variance were explained by 
markers (between 40% and 60%) and higher weights on pedigree were generally required to 
optimize predictions. The lower levels of variance accounted for by markers may be due to 
the more complex genetic information driving these low-heritability traits, which was not 
totally captured by imperfect coverage of available SNPs. The higher importance of including 
pedigree information for GY and SG is reflected by the larger predictive improvements 
achieved from using K-BLUP instead of G-BLUP (Table 3). One reason may be that, when 
some markers are not in LD with QTLs, the addition of pedigree information contributes to 
capturing associations between causative alleles due to common ancestral identity, improving 
predictions. Furthermore, besides residual LD patterns explained by family structure, Jensen 
et al. (2012) pointed out that an additional polygenic component can also take into account 
potential LD across chromosomes. In agreement with our results, Liu et al. (2011) found that 
higher weights placed on pedigree information were required to optimize predictions of traits 
with lower heritabilities in dairy cattle. The use of trait-specific optimal weights has not only 
been recommended for genomic selection in animals (Liu et al. 2011; Gao et al. 2012), but 
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also in wheat (Ashraf et al. 2016). In the latter study, identification of the optimal weighting 
terms was based on likelihood curves. The authors pointed out that differing weights had 
relatively small effect on improving the likelihood. We arrived at similar deductions when the 
weights were tuned to maximize predictive ability. Our results show that, despite specific 
values of w were identified for each trait, a weighting factor between 0.4 and 0.5 would 
generally perform well across traits, with predictive performance being clearly sub-optimal 
only for FT predictions across families (Fig. 1). It should be considered, however, that these 
results are partly dependent on the marker density used. 

In this paper we compare a BLUP model blending pedigree and genomic information into 
a single matrix K with an equivalent model that fits A and G separately. While the latter 
approach has been previously used for genomic prediction in crops, the K-BLUP method had 
not been explored until now for plant breeding applications. Results show that the benefits of 
using K-BLUP instead of AG-BLUP were generally marginal but fairly consistent across 
traits and prediction scenarios. The predictive performance of AG-BLUP is expected to be 
sub-optimal compared to that of K-BLUP. The reason is that the weight used by AG-BLUP 
for prediction is the one that best fits the genotypes and phenotypes of the TS. However, this 
w is not necessarily an accurate estimator of the weight that optimizes prediction of 
phenotypes in the VS. Therefore, the likelihood-based w may contain some information that is 
only relevant for the reference lines, but with little predictive value for the validation lines. 
On the other hand, within the K-BLUP approach, w is empirically derived to optimize 
prediction of lines in the VS. Then, the resulting best-predictive weight makes no direct 
reference to the TS data, but it seems to be closer to the w that best approximates the genetic 
variability among validation lines. This would explain why K-BLUP slightly increased 
predictive ability and reduced over-prediction relative to AG-BLUP in all cases. Our results 
are consistent with those obtained by Ilska et al. (2017) in chicken, who found that the 
increased goodness of fit in the training set was accompanied by decreased accuracy and 
higher bias of predictions in the validation set.   

Besides the difference in predictive performance, the fact that information from the two 
sources is conveyed by fitting a single relationship matrix provides additional benefits 
regarding model applicability. In our study, computational time was reduced by more than 
35% when fitting K instead of A plus G (not shown). In addition, K-BLUP is likely to 
produce more stable results when using small training sets since fewer variance components 
have to be estimated. We applied relatively simple prediction models, but differences in 
computational burden and stability between AG-BLUP and K-BLUP are prone to increase 
when more elaborate models are used. For instance, when prediction models include 
interactions of genotypes with environmental factors or when multi-trait prediction is aimed. 
Finally, the use of a blended matrix prevents from potential convergence problems resulting 
from collinearity between pedigree-estimated genetic effects and genomic effects when A and 
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G are fitted separately, which may also deteriorate the quality of predictions (Legarra et al. 
2008).   

In our study, the main criterion used to define the optimal weighting factor for K-BLUP 
was the predictive ability. Given that all selection candidates belong to the same generation, 
we considered that this was the criterion to maximize, since prediction bias should not be too 
strong. It is noteworthy that, in this research, the highest predictive ability and the smallest 
empirical bias were rarely achieved by the same model (Table 3). However, inflation or over-
prediction (b < 1) should also be considered when searching for the best predictor. For 
instance, inflation of genomic predictions can be detrimental for genetic gain since the genetic 
merit of new genotyped lines would be overestimated when compared to older lines that have 
undergone testcross field evaluations. Our results revealed that including pedigree 
information through the blended matrix K always caused the largest reductions in the 
inflation produced by G-BLUP. Reduced bias of predictions obtained by increasing the 
weight on familial relationships has also been reported in animal genomic evaluations (Liu et 
al. 2011; Gao et al. 2012). In addition, the lowest MSEP were mostly achieved by K-BLUP in 
our research. The minimization of MSEP has been recommended as an appropriate evaluation 
criterion for the comparison of prediction models since it considers both bias and precision 
(Vitezica et al. 2011; González-Recio et al. 2014).  

We evaluated model performance when within-family or across-family information was 
used for prediction. For all models, predictions were clearly better when full-sib relationships 
were exploited. The value of using information from close relatives for prediction in 
structured populations is consistent with previous studies in animal and plant breeding (e.g. 
Wientjes et al. 2013; Schopp et al. 2017). Across traits, the decline in predictive ability was 
less marked for models including G when predictions were based on relationships among 
families (a mean decrease of 21% vs 40% for A-BLUP). This reflects the capacity of marker 
information to capture populational LD, which becomes particularly relevant when 
predictions rely on more distant genetic relatedness (Habier et al. 2007). As shown in Table 3, 
however, the relative benefit of using genomic information for among-family prediction was 
less evident for GY and SG. The latter finding emphasizes the contribution of additive genetic 
relationships and tempers that of LD for predicting traits with lower heritability.  

3.5.  Conclusion 

This paper provides a first empirical evidence based on sorghum breeding data that the use of 
genomic relationships alone, even with relatively low marker density, can give better 
predictions of parental BVs than the pedigree-based model. We also investigated how the use 
of different combinations of pedigree and genomic information affected prediction quality. 
Our results showed that using a kinship matrix integrating both sources of information yielded 
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better predictive performance than G-BLUP for different traits and prediction scenarios. 
Identification of the optimal weighting factor used to combine familial and marker-based 
relationships was driven by the search for maximizing predictive ability. Under this approach, 
the weight that optimizes predictions differed between traits. These weights were generally 
consistent with the weights that optimized model fitting to the entire dataset. The impact of 
including genealogy information to improve genomic predictions was stronger for traits with 
lower heritability, such as grain yield and stay-green. Findings of this paper might be relevant 
for other breeding programs with limited genotyping resources and when lowly heritable traits 
are the main targets of selection. 
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Abstract: 
Grain yield and stay-green drought adaptation trait are important targets of selection in grain sorghum 
breeding for broad adaptation to a range of environments. Genomic prediction for these traits may be 
enhanced by joint multi-trait analysis. The objectives of this study were to assess the capacity of multi-
trait models to improve genomic prediction of parental breeding values for grain yield and stay-green 
in sorghum by using information from correlated auxiliary traits, and to determine the combinations of 
traits that optimize predictive results in specific scenarios. The dataset included phenotypic 
performance of 2645 testcross hybrids across 26 environments as well as genomic and pedigree 
information on their female parental lines. The traits considered were grain yield (GY), stay-green 
(SG), plant height (PH) and flowering time (FT). We evaluated the improvement in predictive 
performance of multi-trait G-BLUP models relative to single-trait G-BLUP. The use of a blended 
kinship matrix exploiting pedigree and genomic information was also explored to optimize multi-trait 
predictions. Predictive ability for GY increased up to 16% when PH information on the training 
population was exploited through multi-trait genomic analysis. For SG prediction, full advantage from 
multi-trait G-BLUP was obtained only when GY information was also available on the predicted lines 
per se, with predictive ability improvements of up to 19%. Predictive ability, unbiasedness and 
accuracy of predictions from conventional multi-trait G-BLUP were further optimized by using a 
combined pedigree-genomic relationship matrix. Results of this study suggest that multi-trait genomic 
evaluation combining routinely measured traits may be used to improve prediction of crop 
productivity and drought adaptability in grain sorghum. 
  



Chapter 4: Multi-trait genomic prediction 
 

58 
 

4.1.  Introduction 

Water scarcity in rain-fed cropping systems is a major challenge to a world of increasing food 
demand (UNCTAD, 2011). In this context, grain sorghum (Sorghum bicolor L. Moench) is a 
cereal crop that can play an important role for sustainable farming, as it is particularly 
resilient to stress conditions caused by drought and erratic rainfall (Paterson et al. 2009). This 
crop is a staple food in semi-arid regions of the world and is used for feed globally (Acquaah 
2012). Grain yield is the primary trait in sorghum, as it is a key measure of crop productivity 
and profitability of farmers. Another important trait is stay-green, a complex drought-
adaptation mechanism associated with increased yield in environments where post-flowering 
drought occurs frequently (Borrell et al. 2000; Jordan et al. 2003). Accordingly, most efforts 
for increasing genetic progress in grain sorghum should concern both characteristics (Jordan 
et al. 2012; Borrell et al. 2014). Further improvement in productivity and drought adaptability 
requires knowledge-based selection strategies that efficiently exploit available phenotypic and 
genotypic information in sorghum breeding programs. 

Selection of complex quantitative traits can be based on statistical methods that combine 
phenotypes and high-density marker data to predict genetic merit. This form of marker-
assisted selection, known as genomic selection (Meuwissen et al. 2001), has been successfully 
implemented in animal and plant breeding (Meuwissen et al. 2016; Crossa et al. 2017). 
Several genomic prediction methods have been developed, including Bayesian regression 
(Gianola et al. 2009) and semiparametric approaches (de los Campos et al. 2010). An 
alternative method for genomic prediction within the linear mixed model framework is termed 
genomic best linear unbiased prediction or G-BLUP (VanRaden 2008). This method is 
usually preferred in practice because it is simple to implement and computationally less 
demanding than competing procedures (Gianola et al. 2014). Moreover, G-BLUP is expected 
to perform similar to other models for prediction of complex agronomic traits such as grain 
yield (Heslot et al. 2012; Wimmer et al. 2013), which are typically affected by a large number 
of small-effect genes (Schön et al. 2004). Independent of the model used, one of the main 
features of genomic selection is that genetic merit can be predicted for selection candidates 
that have not yet been phenotyped. This application is particularly promising for reducing 
evaluation cost and generation interval in the sorghum breeding pipeline, where parental lines 
of commercial hybrids are currently selected on the base of extensive field progeny testing. 
Moreover, development of female lines as well as hybrid seed production is based on the use 
of cytoplasmic-genetic male sterility, which requires extra time and human resources. Despite 
the potential of genomic selection to increase rates of genetic gain in sorghum, studies on the 
application of genomic models are limited compared to other cereal crops, such as maize, 
wheat and rice (Kulwal 2016). A first genomic selection study in grain sorghum was reported 
by Hunt et al. (2018) for prediction of test-cross performance in individual trials. Velazco et 
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al. (2019b) investigated different genomic models including pedigree information for across-
environment prediction of parental breeding values in productivity and adaptability traits. 

Most of genomic selection studies, including the ones mentioned above, have been based 
on separate analysis of individual traits. However, selection decisions in plant breeding 
programs typically rely on several measured characters. The joint analysis of multiple traits 
(MT) can increase the accuracy of genetic evaluations relative to single-trait (ST) analysis by 
exploiting information from correlated characters (Henderson and Quaas 1976). The potential 
gain in accuracy depends on the strength of genetic and environmental correlations between 
traits. The benefit is expected to increase for lowly heritable traits, when analyzed together 
with strongly correlated traits of higher heritability (Thompson and Meyer 1986). 
Additionally, MT models are able to reduce selection bias or culling bias introduced by 
contemporary or sequential selection on correlated traits, which are ignored by ST analysis 
(Mrode 2005). The extension of MT analysis into the context of genomic prediction methods 
has been studied using real and simulated data (e.g., Calus and Veerkamp 2011; Jia and 
Jannink 2012). MT genomic models can be used to combine information from correlated 
traits and from relatives in an efficient way. When the breeder is interested in response to 
selection of a single target trait, other secondary or auxiliary traits can be incorporated in the 
prediction model to provide additional information on the primary character. Consequently, 
more phenotypes recorded on the reference population can be potentially exploited to assist 
predictions of the target trait in the testing population. 

Genome-based MT analysis has been applied for breeding in hybrid crops of other major 
cereals like maize, rice and wheat (e.g., dos Santos et al. 2016; Wang et al. 2017; Schulthess 
et al. 2018). In sorghum, MT genomic prediction has been implemented only in biomass-type 
genotypes using a pre-breeding population (Fernandes et al. 2018). Here, we present a first 
study on the potential of exploiting trait associations for genomic prediction in advanced 
breeding material of grain sorghum. Our research is developed in the context of prediction for 
broad adaptation using testcross performance data across dryland sorghum production 
environments in Australia. 

The aims of this study were to investigate if multi-trait analysis improves across-
environment genomic predictions for grain yield and stay-green in sorghum, and to identify 
the combinations of traits that optimize results in different prediction scenarios. To attain 
these objectives, the optimal combination of traits was empirically determined for each 
scenario by evaluating the gain in prediction quality of alternative MT models relative to the 
ST model. In addition, we explored if the performance of best-predictive MT genomic models 
can be further enhanced by incorporating pedigree information. 

 



Chapter 4: Multi-trait genomic prediction 
 

60 
 

4.2.  Material and Methods 

4.2.1.  Data 

The dataset used in this study is part of the sorghum breeding program of female parental 
lines conducted by the University of Queensland and the Department of Agriculture and 
Fisheries in Queensland, Australia. The phenotypic records consisted of 26 testcross 
performance trials where a total of 646 female lines were tested in hybrid combinations across 
12 locations between 2008 and 2014. Phenotypes of 2645 testcross hybrids were used to 
assess female lines performance across a target population of environments (TPE) covering 
the main sorghum cropping region of Australia. The series of trials belongs to an advanced 
stage of yield testing (AYT), where measurements are taken from relatively large plots. More 
details on field layout and structure of the dataset are given in Velazco et al. (2019b). Four 
productivity and adaptability traits routinely measured in advanced testing were considered 
for this study: grain yield (GY), stay-green (SG), plant height (PH) and flowering time (FT). 
GY is the main target trait with direct economic value driving selection. SG is an integrated 
drought-adaptation trait that is expressed as delayed leaf senescence, which is a consequence 
of improved water balance in the plant under post-flowering drought stress (Borrell et al. 
2014). This functional SG phenotype is also considered an important trait since it is 
associated with enhanced crop productivity in water-limited seasons (Jordan et al. 2003; 
2012). Given that SG expression depends on the occurrence of terminal drought conditions, 
records of this trait were available at 9 trials and for 603 lines in the present dataset. While PH 
and FT are mainly selected in earlier breeding stages to reduce extreme variation, these traits 
are considered in advanced testing to ensure appropriate agronomic type for commercial 
production (Jordan et al. 2011). 

All the female lines were genotyped using an integrated DArT and genotyping-by-
sequencing (GBS) methodology involving complexity reduction of the genomic DNA to 
remove repetitive sequences using methylation sensitive restriction enzymes prior to 
sequencing on Next Generation sequencing platforms (DArT, www.diversityarrays.com). The 
sequence data generated were then aligned to the most recent version (v3.1.1) of the sorghum 
reference genome sequence (Paterson et al. 2009; McCormick et al. 2018) to identify SNP 
(Single Nucleotide Polymorphism) markers. SNPs with minor allele frequency lower than 
2.5% or more than 20% of missing values were discarded. Missing genotypes were imputed 
based on random sampling from marginal allele distributions using the synbreed package 
(Wimmer et al. 2012) in R (R Core Team, 2018). After quality filtering, 4781 evenly-spaced 
SNPs remained for analysis. 

Inbred parent lines were derived from pedigree breeding methods resulting in a highly 
structured breeding population. Pedigree data was available for the female lines and 499 
ancestors tracing back 28 generations. 
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4.2.2.  Single-trait analysis  

Univariate analysis of each trait was performed within the REML-based mixed model 
framework using a stage-wise approach. In the first stage, adjusted testcross means were 
computed per trial after correcting for design factors and spatial field variation. For this, we 
used a novel flexible method for spatial analysis of individual trials based on P-splines (see 
Rodríguez-Álvarez et al. 2018a; Velazco et al. 2017 for details). The specific model applied in 
the first stage is described in Velazco et al. (2019b).  

In the second stage, spatially-adjusted testcross means from each trial were jointly 
analyzed to estimate line means across testers and environments. The model is as follows: 

yijk = μ + Li + Mj + Ek + LMij + LEik + MEjk + LMEijk,                         (1) 

where yijk represents the best linear unbiased estimation (BLUE) of the i-th female line 
crossed with the j-th male tester in the k-th environment, which was fitted by a random line 
effect (Li), a fixed male tester effect (Mj), a fixed environmental effect (Ek), and all possible 
interactions between these factors. Since line effects were considered random, all the 
interactions involving Li were random, while MEjk was fixed. Note that LMEijk includes the 
error of genotype mean. All random effects were assumed independent homoscedastic and 
normally distributed with zero mean. 

Due to shrinkage properties of BLUP (Robinson 1991), random line effects are contracted 
towards the mean of the line population. Given that not all lines were crossed with the same 
number of testers or evaluated in the same number of trials, the amount of shrinkage is 
different for each BLUP of Li. Moreover, using BLUP(Li) as response variable in the genomic 
prediction model is problematic because it would result in double shrinkage of predicted 
breeding values. Therefore, to eliminate shrinkage in line BLUPs before the genomic 
prediction stage, we applied the deregression procedure of Garrick el al. (2009). This 
correction relies on individual reliabilities of BLUP(Li), as obtained by inverting the 
coefficient matrix of the mixed model equation (Meyer 1989).  

The following G-BLUP model was used to predict parental breeding values of female lines 
from progeny performance: 

y = 1μ + Zg + e,                                                              (2) 

where the vector y contains deregressed BLUPs of  Li derived from the second stage; 1 is a 
vector of ones with associated general mean μ; Z is a design matrix allocating deregressed 
BLUP(Li) to genomic effects; g is the vector of additive genomic effects with distribution g ~ 
N(0, Gσg

2), where σg
2 is the additive genomic variance and G is the genomic relationship 

matrix as computed with the first method of VanRaden (2008); and e is the vector of residuals 
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assuming e ~ N(0, Dσe
2), where σe

2 is the residual variance and D is a diagonal weighting 
matrix accounting for heterogeneous residual variances due to differences in individual 
reliabilities of deregressed BLUP(Li) (Garrick et al. 2009; VanRaden 2008). 

Given the variance components from the single-trait prediction model, the narrow-sense 
heritabilities (h2) of line means were obtained as: h2 = σg

2 (σg
2 + σe

2)� . Note that σe
2 comprises 

non-additive genetic effects and true errors associated with line mean estimates. 

4.2.3.  Multi-trait analysis 

For joint analysis of multiple traits, models (1) and (2) were extended using multivariate 
mixed models. We present a general formulation for any combination among traits T = (GY, 
SG, PH, FT). The multi-trait case of model (1) can be represented in vector notation as: 

yijk = μ + Li + Mj + Ek + LMij + LEik + MEjk + LMEijk,                        (3) 

where in this case yijk is a vector collecting spatially-adjusted BLUEs of multiple traits T from 

separate univariate analyses in stage one; and Li, LMij, LEik, LMEijk are the vectors of multi-
trait random effects with respective assumed distributions Li ~ MVN(0, IL ⨂ ΣL), LMij ~ 
MVN(0, ILM ⨂ ΣLM), LEik ~ MVN(0, ILE ⨂ ΣLE), LMEijk ~ MVN(0, ILME ⨂ ΣLME), where Σq, 
for q = L, LM, LE, LME, is a covariance matrix among traits and ⨂ is the Kronecker product 
operator. For all random effects, the matrix Σq was modelled as unstructured, allowing for 
unequal variances across traits and specific covariances for each pair of traits. 

The multi-trait G-BLUP model was defined as: 

yT = 1TμT + ZTgT + eT, 

where the subscript refers to traits T; yT is now a multi-trait vector of deregressed BLUP(Li), 

ordered as lines within traits, obtained from joint multivariate analysis using model (3); gT is 

the vector of multi-trait additive genomic effects with distribution gT ~ MVN(0, G ⨂ Σg); and 

the multivariate residual effects were assumed eT ~ MVN[0, (Ie ⨂ Σe)DT], where matrix DT has 

diagonal elements containing weights based on individual reliabilities of deregressed 
BLUP(Li) for each trait, as obtained from the second stage of multi-trait analysis (model 3). 
The covariance matrices among traits for additive genomic effects (Σg) and residuals effects 
(Σe) were assumed unstructured. 

We also considered multi-trait prediction models fitting a kinship matrix that combines 
pedigree and genomic information. For this, we extended the BLUP method advocated by 
Velazco et al. (2019b) to the multi-trait context. The method, referred as K-BLUP, uses a 
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combined kinship matrix formed as K = wA + (1 − w)Gs, where A is the numerator 
relationship matrix among lines computed from the full pedigree data and Gs is a scaled 
matrix G that is compatible with A in reference to the base breeding population (Vitezica et 
al. 2011; Christensen 2012). The weighting term w can be interpreted as the fraction of 
additive genetic variance that is not captured by SNPs and is explained by familial 
relationships. In this case, the vector gT has distribution MVN(0, K ⨂ Σg), and collects 

additive genomic effects as well as residual polygenic effects. Under our approach, the 
optimal w is empirically determined in order to maximize predictive ability after evaluating a 
sequence of candidate weights within the range 0 < w < 1. To assess the benefits of including 
additional pedigree information, the best-predictive multi-trait model using conventional G-
BLUP (i.e., setting w = 0) was compared to the equivalent optimized multi-trait K-BLUP 
model. 

4.2.4.  Model fitting 

Spatial analyses in the first stage were performed with the R package SpATS (Rodríguez-
Álvarez et al. 2018b), which is publicly available from CRAN (https://cran.r-
project.org/package=SpATS). Uni- and multivariate models in the second and the genomic 
prediction stages were fitted by REML using the average information algorithm as 
implemented in ASReml-R (Butler et al. 2017). We used the correlation form 
parameterization of the unstructured covariance matrix available in ASReml-R to obtain 
direct estimates of trait correlations and corresponding standard errors. 

4.2.5.  Prediction scenarios 

To assess the value of multi-trait genomic analysis in sorghum, we considered the general 
predictive strategy where a single trait is the primary target of prediction (selection) and other 
auxiliary characters are used to potentially improve predictions of the target trait. Predictive 
performance of MT models was evaluated through five-fold cross-validation, where 80% of 
lines were randomly assigned to the training lines set (TLS) and the remaining 20% formed 
the validation lines set (VLS). We explored two potential scenarios for MT prediction. One 
scenario assuming that (new) lines in the VLS have not been evaluated in the field for any 
trait; therefore, phenotypes of auxiliary traits (and the target trait) were available only for the 
TLS (Aux@TL). A second MT prediction scenario assumes that lines of the VLS have been 
evaluated in the field, but for traits other than the target; therefore, phenotypes of auxiliary 
traits were available for both TLS and VLS (Aux@TL+VL). For comparison, we also 
considered ST prediction, where only records of the target trait in VLS are used for prediction 
(Figure 1). 

https://cran.r-project.org/package=SpATS
https://cran.r-project.org/package=SpATS
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Fig. 1 Five-fold cross-validation schemes representing three prediction scenarios: ST, where only data of the 
target trait in the training lines set (TLS) are used for prediction in the validation lines set (VLS); Aux@TL, 
where data of auxiliary traits in TLS are included for prediction of the target trait in VLS; and Aux@TL+VL, 
where data of auxiliary traits in both TLS and VLS are included for prediction of the target trait in VLS. 

The first MT prediction scenario was studied for two cases: when GY or SG was the trait 
of interest. However, the Aux@TL+VL scenario was considered only for SG as target trait. 
Given that one of the main purposes of the trial series used in this study is to obtain 
representative measurements of GY productivity, the fact that lines are field-tested for other 
traits, but not for GY, would imply atypical circumstances seriously affecting GY during an 
experiment. Moreover, extremely reduced or aborted grain production affects normal canopy 
development; hence, data of traits such as PH or SG should be discarded or considered with 
extreme caution. For these reasons, the Aux@TL+VL scenario was not considered when GY 
was the target of prediction, as it would represent an unrealistic or exceptional situation in the 
context of an advanced stage of sorghum testing. 

4.2.6.  Validation of genomic prediction 

In each prediction scenario, the performances of all possible MT models combining two, three 
and the four traits were compared to that of the ST model, with the latter taken as benchmark. 
The response variables used for validation of genomic predictions were consistent with the 
models applied for analysis: yT and y were used to validate g�T and g�, respectively. Model 

validation was evaluated by considering the predictive ability, unbiasedness and accuracy of 
predictions in the VLS. Predictive ability was measured as the Pearson’s correlation (rPA) 

between g�T (g�) and yT (y). Unbiasedness of genomic predictions was measured by the 

regression coefficient (b) of yT (y) on g�T (g�), where b = 1 indicates an empirically unbiased 

predictor. Accuracy of predictions was assessed by computing the mean squared error of 
prediction (MSEP) from the linear regression. The evaluation of prediction models was based 
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on average values over 20 replicates of each cross-validation scenario using the same random 
seed for all models.  

4.3.  Results 

The narrow-sense heritability estimates using ST G-BLUP are given in Table 1 along with the 
additive genetic and residual correlations between traits estimated by MT G-BLUP. 

Heritability estimates ranged from 0.36 to 0.76, with GY presenting the lowest h2. The 
heritability of SG was higher than that of GY, but lower than those of PH and FT. Additive 
genetic correlations were significant only for GY with SG and PH, while FT was statistically 
uncorrelated with the other traits. Significant residual correlations were estimated between 
GY and the rest of the traits as well as between PH and FT. 

Table 1 Heritabilities (diagonal; in parentheses), additive genetic (above diagonal) and residual (below diagonal) 
correlationsa for grain yield (GY), stay-green (SG), plant height (PH) and flowering time (FT). 

Trait GY SG PH FT 

GY (0.36) 0.52 0.66 -0.01 

SG 0.36 (0.50) 0.03 -0.02 

PH 0.71 0.04 (0.76) -0.07 

FT -0.48 0.04 -0.29 (0.65) 
a Boldfaced correlations are significant based on approximate 
95% confidence interval (Holland 2006). 

 

Figure 2 shows measures of predictive performance from MT G-BLUP when additional 
information from auxiliary traits in the TLS was used to predict GY or SG (Aux@TL 
scenario). MT models that included PH data alone or combined with other auxiliary traits 
increased predictive ability for GY, compared with the ST model. The highest predictive 
ability represented a 16% increase and it was achieved by combining GY, SG and PH 
information. Regression coefficients (b) for all models were below 1 for GY, which indicates 
overestimation of genomic predictions. The average empirical bias of GY predictions from 
the ST model was slightly reduced only by the MT model including PH alone as auxiliary 
trait. The relative decrease (%) in MSEP by MT models was consistent with their increases in 
predictive ability; MT G-BLUP exploiting PH information had a greater impact on improving 
accuracy of genomic prediction for GY. When SG was the target of prediction, ST G-BLUP 
outperformed MT G-BLUP models in predictive ability. Even though prediction models 
incorporating GY data in the TLS reduced the absolute deviation of b from 1, these models 
tended to over-predict additive genetic values for SG (b < 1). The inclusion of auxiliary traits 
in TLS produced higher MSEP relative to using only SG data for prediction. 
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Fig. 2 Mean values (and SD of 20 replicates) for predictive ability, regression coefficient and relative MSEP 
from single- and multi-trait G-BLUP models using different combinations of grain yield (GY), stay-green (SG), 
plant height (PH) and flowering time (FT) data in the training lines set for prediction of GY (left) or SG (right). 

Different results were found for SG predictions when MT G-BLUP models used auxiliary 
trait records on both TLS and VLS (Figure 3). Under this prediction scenario, all MT models 
including GY as auxiliary trait improved predictive abilities for SG. Relative increases of up 
to 19% in predictive ability were observed for MT models adding combined GY-PH or GY-
PH-FT information from TLS and VLS. Moreover, predictions from these models tended to 
be less biased than those from ST G-BLUP and over-prediction was eliminated. Finally, 
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MSEP for SG was consistently reduced when GY information on VLS was incorporated by 
MT G-BLUP models. 

Fig. 3 Mean values (and SD of 20 
replicates) for predictive ability, 
regression coefficient and relative 
MSEP for SG predictions from 
single- and multi-trait G-BLUP 
models using different combinations 
of grain yield (GY), stay-green (SG), 
plant height (PH) and flowering time 
(FT) data only in the training lines set 
(Aux@TL), and in both the training 
and validation lines sets 
(Aux@TL+VL). 

 

After evaluating predictive performance of G-BLUP method, we explored the use of a 
combined pedigree-genomic matrix K for optimization of multi-trait genomic prediction. 
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Table 2 presents results from the best-predictive MT G-BLUP models and from the optimized 
MT K-BLUP models for the scenarios where MT analysis outperformed ST analysis 
(Aux@TL for GY and Aux@TL+VL for SG). In these prediction scenarios, the optimal use 
of combined trait information, from a predictive perspective, resulted from exploiting genetic 
correlations among GY, SG and PH (Figs. 2 and 3). When GY was the target trait, validation 
results of MT G-BLUP were improved by MT K-BLUP (with K using w = 0.25) for all 
evaluation criteria to a marginal extent. Under the prediction scenario for SG, bias and MSEP 
from multi-trait models were slightly higher when K (using w = 0.30) was used instead of G. 
However, an additional 10% gain in predictive ability was obtained by MT K-BLUP in this 
scenario. 

Table 2 Predictive abilities (rPA), regression coefficients (Bias) and relative MSEP from single-trait G-BLUP 
and K-BLUP, and from the best-predictive multi-trait G-BLUP and K-BLUP models for GY prediction using 
auxiliary traits data on training lines (Aux@TL) and for SG prediction using auxiliary traits data on both training 
and validation lines (Aux@TL+VL). The best value for each evaluation criterion is boldfaced. 

Prediction 
scenario 

Quality 
criterion 

Single-trait Multi-traita 

G-BLUP K-BLUP 
 

G-BLUP K-BLUPb 

GY: (Aux@TL) rPA 0.363 (0.013) 0.373 (0.014) 
 

0.420 (0.013) 0.429 (0.015) 

 Bias (b) 0.958 (0.037) 0.965 (0.037) 
 

0.951 (0.034) 0.967 (0.039) 

 MSEP (%) 0 (1.1) −0.7 (1.1) 
 

−6.0 (1.3) −6.6 (1.6) 

SG: (Aux@TL+VL) rPA 0.482 (0.013) 0.508 (0.015) 
 

0.574 (0.008) 0.630 (0.009) 
 Bias (b) 1.052 (0.035) 1.074 (0.036) 

 
1.017 (0.019) 1.038 (0.022) 

 MSEP (%) 0 (1.6) 2.7 (1.6) 
 

−13.7 (1.2) −12.0 (1.2) 
aMulti-trait models combining GY, SG and PH information. 
bUsing K = wA + (1 − w)Gs with optimal weights w = 0.25 and w = 0.30 for GY and SG prediction, respectively. 

4.4.  Discussion 

This study intended to establish the value of using multi-trait analysis to improve across-
environment genomic predictions for grain yield and stay-green in sorghum by exploiting 
information from auxiliary traits. Our approach to predict is consistent with selection for 
broad adaptation, where the set of trials is considered to be representative of the TPE. To 
determine the efficiency of this predictive method, multi-trait BLUP models were evaluated 
in terms of prediction quality measures for two cases: when the target trait and auxiliary traits 
were recorded only on relatives of the predicted lines; and when records of auxiliary traits 
were also available for the predicted lines per se. Multi-trait BLUP can be seen as a 
generalized (linear) selection index, with the additional abilities to account for unbalanced 
information from any set of relatives while properly adjusting for fixed effects in the data 
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(Lynch and Walsh 1998; Mrode 2005). In our index, and from mixed model theory, data of 
several traits were optimally weighted based on the multi-trait genetic and residual covariance 
matrices in order to maximize accuracy of predicted genetic merit by BLUP estimation. An 
important decision is which auxiliary traits to include in a multi-trait model. In this article, we 
examined all possible combinations of available traits, and the optimal multi-trait BLUP 
model for each prediction scenario was empirically determined on the base of predictive 
outcomes. 

The present study considered the general situation where the breeding objective is to 
improve a single character with economic value (GY or SG), while other traits would 
contribute to that genetic goal. This is equivalent to assigning a relative economic weight of 1 
to the target trait and 0 weights to auxiliary traits in a selection index. It is worth mentioning 
that, in a real breeding program, SG is unlikely to be considered as an independent target of 
selection since its economic value is linked to its positive effect on GY and reduced lodging 
under stressing conditions. Our research could be easily extended to the case of simultaneous 
improvement for GY and SG by constructing an index with non-zero economic weights for 
both traits. This would give predictive results that are intermediate of those presented in our 
research, with variations depending on the relative economic weights assigned (not shown). 
Given that defining the appropriate relative economic value of GY and SG is beyond the 
scope of the present study, here we presented the evaluation of multi-trait prediction for a 
target trait at a time, without losing generality of results. 

4.4.1.  Multi-trait genomic prediction for grain yield 

Genetic correlations between traits estimated in this research are consistent with previous 
results showing strong associations of GY with SG, PH and FT in sorghum hybrids (Jordan et 
al. 2003). In our case, additive parental effects of GY were only correlated with additive 
effect of SG and PH, whereas associations between GY and FT were basically explained by 
residual effects. In addition, the estimated heritability for GY in our study was lower than for 
the rest of the traits. Based on these findings, and according to multivariate BLUP and 
selection index theories, prediction of breeding values for GY should mainly benefit by 
utilizing additional information from SG and PH, while introducing an uncorrelated trait, such 
as FT, would reduce prediction efficiency due to incorporation of sampling error. These 
expectations were corroborated by our predictive results from cross-validation when records 
of auxiliary traits were available for the training lines (Figure 2). Multi-trait models 
combining GY-SG-PH information produced the highest improvements in predictive ability 
for GY, representing up to 18% increase relative to ST G-BLUP (Table 2). These results are 
somewhat more promising than those previously reported for GY prediction in wheat 
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(Rutkoski et al. 2016; Sun et al. 2017), maize (Lyra et al. 2017) and rye (Schulthess et al. 
2016), which found null increases in predictive ability under equivalent prediction scenarios. 

The differences in response from using MT analysis are highly dependent of the 
experimental data and the genetic target of prediction. In our research, the inclusion of PH 
information in multi-trait models appeared to be essential for improving predictive ability, 
unbiasedness and accuracy of GY predictions. This may be attributed to the fact that PH 
presented the strongest additive genetic correlation and the largest difference in heritability 
with GY. The key role of these two factors for benefiting from multi-trait prediction of low-
heritability traits has been demonstrated by simulation studies in plant and animal breeding 
contexts (Jia and Jannink 2012; Guo et al. 2014). In addition, the present study assumes that 
the genetic target of selection is across-environment breeding value, which depends on overall 
heritabilities and trait correlations across the TPE. It should be considered, however, that the 
levels of heritability and correlations are variable among experiments due to the influence 
genotype-by-environment interaction, which may induce variability of predictive results in 
specific trials. 

4.4.2.  Multi-trait genomic prediction for stay-green 

Our validation results were different for SG prediction when only MT information on the 
training set was used. As expected from considering heritabilities and additive genetic trait 
correlations, predictive performance of the ST model was generally better than those of MT 
models. This may be explained because SG was genetically correlated only with GY, but this 
trait had the lowest heritability (Table 1). Under these circumstances, information from PH 
and FT could not be borrowed to predict SG, while GY data would be genetically less 
informative than the target trait itself. On the other hand, predictive results for SG were 
favoured by multi-trait genomic models when GY information was available for both the 
training lines and the predicted lines per se. This was reflected by increases in predictive 
ability and reductions in bias and MSEP of SG predictions (Figure 3). 

The comparison of both prediction scenarios for SG allowed an empirical assessment of 
the value of two different sources of information from correlated traits. When auxiliary traits 
are only available for the training set, the estimates of covariance parameters among traits in 
Σg, which are then used for prediction, contain information from the training lines 
exclusively. Alternatively, if records of auxiliary traits are also available for the validation set, 
better parameter estimates in Σg can be obtained for prediction of the target trait. This is not 
only because more data is used for parameter estimation, but mainly because the extra 
information contained in estimated trait correlations is directly sourced from the predicted 
lines. Our results for SG suggest that, when this extra information is exploited, the strength of 
correlations among traits is more important than the relative levels of trait heritability. This 
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would explain why SG predictions were improved by multi-trait G-BLUP using GY data, 
even when this trait had lower heritability than the target trait. Moreover, predictive 
performance of the MT model combining SG, GY and PH indicates that, despite SG and PH 
were uncorrelated, additional information from PH could be transmitted via GY to further 
enhance predictions of SG (Figure 3). 

Similar benefits of exploiting information from secondary traits in the validation set have 
been reported in crops for other traits, but not for SG (Ruskoski et al. 2016; Lado et al. 2018; 
Fernandes et al. 2018). Even though the link between stay-green trait and yield stability has 
been demonstrated in sorghum, maize and wheat (Jordan et al. 2012; Christopher et al. 2008; 
Gregersen et al. 2013), the predictive use of SG-GY association in cereals had not been 
studied yet in the context of genomic selection. 

4.4.3.  Combining pedigree and genomic information for multi-trait prediction 

This study explored if additional genealogical information from pedigree could further 
improve multi-trait genomic prediction. Merging pedigree and marker-based relationships has 
been shown to be beneficial for single-trait prediction in animals (e.g., Rodríguez-Ramilo et 
al. 2014; Ilska et al. 2017) and more recently in plant breeding (Velazco et al. 2019b). In the 
context of multi-trait analysis, models relying exclusively on SNP information may give 
distorted estimates of genetic variances and correlations between traits, mainly due to 
incomplete linkage disequilibrium (LD) of markers with causal loci (de los Campos et al. 
2015; Gianola et al. 2015). Pedigree information can be used to account for residual polygenic 
effects not traced by SNPs, capturing LD patterns between loci that are due to common 
ancestral identity. Our study showed that better predictions of GY and SG were obtained by 
multi-trait models using a weighted combination of A and G instead of G alone (Table 2). 
Multi-trait K-BLUP produced the highest increase in predictive ability (of about 30%) for the 
SG prediction scenario, where trait correlations seemed to play a more important role in 
model performance. This result suggests that the K matrix optimized estimates of genetic 
correlation between traits, from a predictive perspective. The same approach has been applied 
to infer trait correlations from multi-trait prediction models in chicken (Momen et al. 2017). 

Here, we used a different optimal weight w to construct K according to the trait of interest 
for prediction (w = 0.25 and w = 0.30 to predict GY and SG, respectively). This is in line with 
the idea that genetic (genomic) similarities between relatives are actually trait-specific 
(Fernando and Gianola 2018), which contrasts with the assumption of a common relationship 
matrix used in standard multi-trait G-BLUP. A more elaborate multi-trait G-BLUP model 
using trait-dependent weights has been recently proposed by Karaman et al. (2018) as a 
computationally less demanding alternative to multi-trait Bayesian methods. In this BLUP 
model, weights used to compute G are derived from posterior trait-specific (co)variance 
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estimates of SNP effects, which are obtained from a previous Bayesian analysis. The authors 
found, based on simulations, that the benefits of their weighting method were generally not 
significant for the low-heritability trait that more closely fitted an infinitesimal model (using 
500 QTLs). Alternatively, our multi-trait K-BLUP uses a more straightforward approach that 
assumes a common weight across the genome, while still relaxing the assumptions of 
conventional multi-trait G-BLUP by allowing the similarity matrix to vary across traits in 
order to optimize prediction of the target. Given the complexity of traits and the highly 
structured breeding population used for this study, genomic predictions are likely to rely more 
on familial relationships and less on information from specific SNPs in LD with QTL (Habier 
et al. 2007). In this context, the BLUP-based multi-trait models applied here are expected to 
perform well compared to more refined alternatives (Jia and Jannink 2012; Haile et al. 2018). 

4.4.4.  Implications of multi-trait genomic prediction for grain sorghum breeding 

While genotyping costs are being constantly reduced, the efficient use of phenotypic data 
becomes more relevant for plant breeding programs, since field phenotyping is still costly and 
labor-intensive. This work has shown, for the first time, how phenotypes of several traits 
routinely measured in grain sorghum breeding can be efficiently utilized through multi-trait 
analysis to assist genome-based selection for a target trait. We demonstrated empirically that 
genomic prediction of parental breeding values for GY benefits mainly from using PH as 
auxiliary trait. This trait is particularly promising in practice, since PH phenotype can be 
potentially measured in all trials, as opposed to SG, which can only be phenotyped under 
specific environmental conditions. In addition, high throughput field phenotyping 
technologies are expected to increase accuracy of PH measurement in sorghum (Wang et al. 
2018), which could favor GY selection indirectly through multi-trait prediction. 

The potential of exploiting genetic association between GY and PH predictively brings a 
new perspective regarding selection strategies in advanced sorghum testing. Our results imply 
that, despite strong selection for appropriate height is generally imposed in early stages of 
breeding, multi-trait evaluation could be implemented for increasing the capacity to use 
remaining genetic variation in PH when selecting for GY. That is, selection based on multi-
trait models is able to directly use the variation in GY that is not associated with PH, and can 
simultaneously exploit GY variability indirectly through the available variation in PH (within 
the acceptable range). 

Based on findings from this study, when SG is the target of prediction, most advantage 
from multi-trait genomic analysis can be obtained only if predicted lines have been 
phenotyped for GY. This may be beneficial when the interest is to predict the genetic aptitude 
for drought-adaptation in lines that have been field-tested for GY performance but could not 
yet experience post-flowering water stress. Such scenario is compatible with selection for 
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broad adaptation across the TPE, which is generally the best approach to deal with the largely 
unpredictable occurrence of drought in the Australian sorghum region (Chapman et al. 2000). 

Expression of functional SG can also be a consequence of reduced sink demand relative to 
source, due to low grain production at plant level (Henzell and Gillieron 1973; Duncan et al. 
1981). For this reason, Borrell et al. (2014) pointed out that simultaneous selection for SG and 
GY should be applied in sorghum breeding programs to correct for functional SG that is 
actually driven by low sink demand. This correction can be automatically performed by joint 
analysis of both traits using multi-trait genomic models. For instance, in our case, selection of 
parental lines for broad adaptation would be based on a predicted genetic score that is 
optimally derived by combining three sources of information: direct information from own 
GY breeding value in well-watered environments, and indirect information from SG and GY 
breeding value of relatives in water-limited environments. 

4.5.  Conclusions 

This study demonstrates, based on extensive breeding data, that there is potential to improve 
genome-based predictions of grain yield and stay-green traits in grain sorghum by using 
multi-trait genomic analysis. Results suggest that better predictive abilities and accuracies for 
GY prediction are obtained when PH information on the training lines is included in multi-
trait genomic models. When SG is the target, the quality of predictions is likely to improve 
only if GY performance data is available for both the training and the predicted lines per se 
since, in this case, direct information from SG-GY genetic correlations is exploited 
predictively through multi-trait analysis. 

This article also shows, for the first time in plant breeding, how a similarity matrix using 
trait-specific combinations of pedigree and marker-based relatedness can further enhance 
multi-trait genomic prediction. Collectively, our results imply useful properties of multi-trait 
BLUP to evaluate alternative prediction schemes for genetic improvement of crop 
productivity and drought adaptability in grain sorghum. Given that the traits considered in this 
study are commonly measured in cereal breeding programs, findings presented here can be 
also relevant for practical implementation in other major crops. 
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Abstract: 
This paper reports the first study exploring genomic prediction for adaptation of sorghum to drought-
stress (D-ET) and non-stress (W-ET) environment types. The objective was to evaluate the impact of 
both modelling genotype-by-environment interaction (G×E) and accounting for heterogeneous 
variances of marker effects on genomic prediction of parental breeding values for grain yield within 
and across environment types (ET). The impact of modelling G×E was investigated by considering 
different structures for the genetic covariance matrix between environments in BLUP-based prediction 
models. To study the benefits of accounting for heterogeneous variances of single nucleotide 
polymorphism (SNP) effects, different weights for individual SNPs were used when constructing the 
genomic relationship matrix. The BLUP models used a kinship matrix combining pedigree and 
genomic information, termed K-BLUP. The dataset comprised testcross yield performances of 
sorghum parental lines under D-ET and W-ET conditions, pedigree data and genotypes of lines on 
4.8K SNPs. In general, modelling G×E increased predictive ability and reduced empirical bias of 
genomic predictions for broad adaptation across both ETs compared to models that ignored G×E by 
fitting a main genetic effect only. Genomic predictions for specific adaptation to D-ET or to W-ET 
were also improved by K-BLUP models that used data from both ETs and explicitly accommodated 
G×E, relative to prediction models that used data from the targeted ET exclusively or models that used 
all the data but assumed no G×E. Allowing for SNP-specific variances through weighted K-BLUP 
produced marked increments (between 43 % and 72%) in predictive ability of genomic prediction for 
grain yield in all adaptation scenarios. We conclude that G×E as well as locus-specific variances 
should be accommodated in genomic prediction models to improve adaptability of sorghum to 
variable environmental conditions. 
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5.1.  Introduction 

Enhanced productivity and adaptability of crops to variable environmental conditions are 
increasing demands for sustainable food supply in light of projected global population growth 
and climate change (Wiltshire et al. 2013; Lesk et al. 2016). More frequent drought events 
and erratic rainfall are expected to become major factors affecting crop yields in dryland 
farming systems (Daryanto et al. 2017). For that reason, genetic improvement of crops for 
adaptation to climatic fluctuations may play a central role in achieving stable food production 
in the future. 

Plant breeding programs of major field crops rely on extensive multi-environment trials 
(MET) conducted under dryland conditions with the aim of adequately sampling 
environmental variation in a target population of environments (TPE) where new varieties 
will be grown. Two main strategies have been traditionally considered by crop breeders when 
dealing with selection under variable environments: to select genotypes based on broad 
adaptation across the entire TPE, or to select for specific adaptation of genotypes to a targeted 
subset of environments within a subdivided TPE. The relative benefit of both strategies is 
influenced by the magnitude and repeatability of genotype by environment interactions 
(G×E), which will define the effectiveness of selecting for differential performance of 
genotypes in the TPE. The definition of the breeding strategy for adaptation as well as the 
implicit possibility of subdividing the TPE are key analytical challenges that have been 
thoroughly discussed in the conventional plant breeding context (e.g., Cooper and Hammer 
1996; Piepho and Möhring 2005; Atlin et al. 2011). The same challenges are renewed from 
the genomic selection perspective (Heslot et al. 2015; Malosetti et al. 2016). In this case, 
important questions are how the stratification of the TPE, the use of it to design the training 
sets and the modelling of G×E affect the quality of genomic predictions for broad and specific 
adaptation. These topics are addressed in the present article through investigating prediction 
for adaptation of sorghum to drought and well-watered environments in Australia. 

Sorghum is a major global crop particularly well adapted to risky production environments 
where marginal and unstable rainfall patterns are likely to occur. In the Australian cropping 
region, seasonal variation in water supply is the main cause of yield variability, typically 
associated with inconsistent patterns of G×E (Chapman et al 2000; Hammer et al. 2014). This 
fact has traditionally favored selection strategies focused on improving for broadly adapted 
genotypes (Cooper and Hammer 1996; Borrell et. al. 2006). Attempts to increase 
predictability of G×E patterns can be based on the explicit use of environmental data as 
covariates to model genotypic responses (e.g., van Eeuwijk et al. 1996; Heslot et al. 2014). 
An alternative strategy is to rely on environmental information to define specific environment 
types (ET) and the use these to classify trials sampling a TPE. Chapman et al. (2000) and 
Hammer et al. (2014) applied this approach in sorghum to characterize the intensity and 
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timing of water limitation within the TPE by using crop simulation models. The authors 
suggested that selection strategies to improve adaptation should be based on ETs rather than 
geographic locations.  

Post-flowering water deficit is the most common and critical type of drought affecting 
sorghum yield in Australia and worldwide (Jordan et al. 2012; Hammer et al. 2014). This 
limiting condition triggers the phenotypic expression of a drought-adaptation mechanism 
known as stay-green, which emerges as the ability of some genotypes to retain active green 
leaves under drought stress during grain filling (Borrell et al. 2014a). Accordingly, the 
manifestation of stay-green phenotype in sorghum can be seen as an integral indicator of 
terminal water deficit conditions occurring in a specific environment. In our study, we used 
the presence or absence of stay-green expression to classify trials as two distinct types of 
environment within the TPE: post-flowering drought environment (D-ET) or water-sufficient 
environment (W-ET), respectively. This stratification of the TPE was then applied to evaluate 
genomic predictions according to three hypothetical breeding targets: specific adaptation to 
terminal water-stress environments, specific adaptation to non-stress environments and broad 
adaptation across both types of environments. 

An efficient analysis of MET data is essential for informed assessment of G×E and for 
accurate estimation of broad and specific adaptation in plant breeding. Many modeling 
approaches have been proposed during the last decades for the analysis of MET in crop 
breeding (as reviewed by e.g. DeLacy et al. 1996; Smith et al. 2005). Statistical methods 
accounting for G×E have been updated to incorporate the increasing availability of genetic 
marker information. Mixed models accounting for marker by environment interaction were 
initially used in crops for identification of QTLs with across- and within-environment effects 
(Boer et al. 2007; van Eeuwijk et al. 2010). In the framework of genomic selection, a best 
linear unbiased prediction method using marker-based relationships, termed G-BLUP 
(VanRaden 2008), has been applied to model G×E  in wheat breeding (Burgueño et al. 2012; 
Lopez-Cruz et al. 2015; Oakey et al. 2016). Methods for multi-environment genomic 
prediction have been also developed within semi-parametric and Bayesian approaches 
(Cuevas et al. 2016; 2017). 

G-BLUP method is commonly used in plant breeding because it is simple to implement 
and produce competitive results for prediction of complex quantitative traits (Heslot et al. 
2012; Gianola et al. 2014). However, its predictive performance is expected to decline when 
genetic control of the target trait departs from an infinitesimal model, since G-BLUP assumes 
equal variance for all marker effects. Bayesian methods can relax this assumption by allowing 
unequal variances across the genome, but at the expenses of important increases in 
computational burden and predictions that are sensitive to prior specification (Lehermeier et 
al. 2012). An alternative to combine benefits of both methodologies is to apply a BLUP-based 
prediction model that is able to account for heterogeneous variances of SNP effects by 
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incorporating weights in the genomic relationship matrix (Zhang Z. et al. 2010; Wang et al. 
2012; Su et al. 2014; Zhang X. et al. 2016). Although this approach has been implemented for 
genomic prediction in animals, studies evaluating its potential in plant breeding are still 
lacking. Here, we use the SNP weighting approach to account for locus-specific variances of 
marker effects for grain yield across and within ETs. 

The objective of this research was to evaluate the effectiveness of modelling genotype by 
ET interaction and of accounting for heterogeneous variances of SNP effects to improve 
genomic prediction of parental breeding values for broad and specific adaptation in sorghum. 

5.2.  Materials and Methods 

5.2.1.  Experimental data 

The phenotypic data used in this research comprised testcross evaluations of 603 female 
parental lines. These were evaluated in hybrid combination with male testers across 26 field 
trials covering 12 locations during a period of seven years. The female lines are developed by 
the sorghum germplasm enhancement program of the University of Queensland and the 
Queensland’s Department of Agriculture and Fisheries in Australia, which licenses these lines 
to commercial breeding programs to be used as breeding material or as hybrid parents. The 
MET dataset was considered to be representative of environmental conditions experienced by 
the main sorghum production region in Australia and defined here as the TPE. 

In all trials where phenotypic variation for the stay-green trait was observed, it was 
visually rated on a 1-9 scale at maturity. The scores assessed the percentage of the canopy 
death with a score of 1 representing plots with 90-100% of the plant canopy being alive and a 
score of 9 representing plots with 90-100% of the plant being dead. Previous studies have 
shown leaf senescence to be highly correlated with the degree of post-flowering drought 
stress experienced by the plant. This information was used in our study as an environmental 
descriptor to subdivide the MET dataset according to two distinct ETs within the TPE: post-
flowering drought ET (D-ET), for trials where stay-green expressed; and water-sufficient ET 
(W-ET), for trials where no manifestation of stay-green was observed. In the present series of 
trials, 9 were classified as D-ET and 15 as W-ET. The trials under D-ET conditions occurred 
in five of the seven years at seven different locations. The mean grain yield in D-ET trials was 
24% lower than in W-ET trials. Similar levels of yield reduction caused by drought have been 
reported for rice and wheat in a meta-analysis study (Zhang et al. 2018). All the lines were 
tested under both ETs with different levels of replication due to data imbalance. Further 
details on the general structure of the dataset can be found in Velazco et al. (2019b). 

All female lines were genotyped using an integrated DArT and genotyping-by-sequencing 
(GBS) methodology involving complexity reduction of the genomic DNA to remove 
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repetitive sequences using methylation sensitive restriction enzymes prior to sequencing on 
Next Generation sequencing platforms (DArT, www.diversityarrays.com). The sequence data 
generated were then aligned to the most recent version (v3.1.1) of the sorghum reference 
genome sequence (Paterson et al. 2009; McCormick et al. 2018) to identify SNPs. After 
running standard quality filtering, genotypes on 4782 SNP markers remained for the analyses. 
In addition to genomic data, genealogical information tracing back 28 generations was 
available for all the lines from deep pedigree data. 

5.2.2.  Phenotype analysis 

Prior to the implementation of genomic prediction models, field plot data from the testcross 
progeny trials were analyzed using a two-stage approach to estimate adjusted line means in 
each ET (D-ET and W-ET). Spatial analysis of each field experiment in the first stage was 
performed as described in Velazco et al. (2019b). In the second stage, spatially-adjusted best 
linear unbiased estimates (BLUE) of testcross hybrid means from individual trials were 
combined for analysis using the following model: 

yijkl = μj + LEij + MEkj + LMEikj + T(E)l(j) + LT(E)il(j) + MT(E)kl(j) + LMT(E)ikl(j),    (1) 

where yijkl is the spatially-adjusted BLUE for grain yield of the i-th line crossed with the k-th 
tester in the l-th trial belonging to the j-th ET, µj is the general mean for the j-th ET, LEij is the 

effect of the i-th line in the j-th ET, MEkj is the effects of the k-th male tester in the j-th ET, 

LMEikj is the ik-th line-by-tester cross effect in the j-th ET, T(E)l(j) is the effect of the l-th trial 

nested within the j-th ET, LT(E)il(j) is the il-th line-by-trial interaction effect within the j-th 

ET, MT(E)kl(j) is the kl-th tester-by-trial interaction effect within the j-th ET, and LMT(E)ikl(j) is 

the ikl-th line-by-tester-by-trial interaction effect within the j-th ET. All the effects were 
considered fixed except for T(E) and all its interactions, which were assumed random and 
independent normally distributed with zero mean. Heterogeneous variances across ETs were 
allowed for the random effects. Even though lines are conceptually random, they were taken a 
fixed at this stage to avoid double shrinkage of line effects in the genomic prediction stage. 

5.2.3.  Genomic prediction models 

Genomic predictions for broad adaptation across ETs and for specific adaptation within ETs 
were performed with BLUP models differing in the genetic covariance matrix between ETs 
and in the weights used to build the environment-dependent relationship matrix among lines. 
The general model formulation is: 

y = 1μ + Zgg + e,                                                        (2) 
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where y = (yʹD, yʹW)ʹ is a vector of line BLUEs for yield under D-ET and W-ET from the 
combined analysis with model (1); 1 is a vector of ones with associated ET-specific general 
means µ = (µD, µW)ʹ; g = (gʹD, gʹW)ʹ is a multi-environment vector of total additive genetic 

effects or genomic estimated breeding values (GEBV), with corresponding incidence matrix 
Zg relating y to g; and e is a vector of random residuals distributed as e ~ N(0, R), where R is 
a diagonal matrix with elements computed as in Smith et al. (2001a). This matrix accounts for 
differences in reliability of estimated line means in each ET resulting from within-ET 
variance heterogeneity and unequal number of testers and trials used in line evaluation. The 
distribution of total additive genetic effects for individual ETs was assumed to follow a 
separable form as g ~ N (0, ΣE ⨂ KE), where ΣE is the genetic variance-covariance matrix 

between ETs, KE is the environment-dependent kinship matrix among lines, and ⨂ is the 

Kronecker product operator. The forms of ΣE and the derivations of KE are described below. 

5.2.3.1.  Structures for matrix ΣE 

The matrix ΣE, of order 2 × 2, has diagonal elements representing the genetic variances within 
each ET and the off-diagonal element representing the genetic covariance between both ETs. 
In order to assess the effect of modeling genotype-by-ET interaction on genomic predictions, 
four models assuming different structures for ΣE were considered: 

- Model G: genetic effects were modeled using ΣEσg
2, where ΣE is a matrix with all ones and 

σg
2 represents the common genetic variance for both ETs, which is also the covariance 

between ETs. This model is equivalent to fitting a main line effect across all trials, ignoring 
line-by-ET interactions, i.e., assuming that the TPE is not subdivided into ETs. 

- Model GE: using a uniform or compound symmetry structure for ΣE, which assumes the 
same genetic variance in both ETs and a distinct term for the genetic covariance between 
ETs. This model is equivalent to the standard variance component model with a main line 
effect plus a line-by-ET interaction effect.  

- Model GEH: a more general formulation of model GE using an unstructured form for ΣE, 
which also assumes genetic covariance between ETs but, in this case, allowing for 
heterogeneous genetic variances across ETs. This parameterization enables the most flexible 
modelling of genotype-by-ET interaction. 

- Model ID: using a diagonal structure with heterogeneous variances for ΣE, which allows for 
a distinct genetic variance in each ET but not for genetic covariance between ETs. This 
model assumes independence of line effects between ETs and is analogous to conducting a 
separate analysis for each ET. The ID model was considered only for genomic prediction of 
specific adaptation to a targeted ET. 
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5.2.3.2.  Computation of environment-dependent kinship matrices KE 

In this study, we used estimated variances of individual SNP effects for grain yield within D-
ET, within W-ET and cross both ETs to build three different environment-dependent kinship 
matrices: KD, KW and KB, respectively. The kinship matrix KE, with E = D, W, B, combines 
pedigree and genomic information in the following form: 

KE = wA + (1 − w)GE,                                                        (3) 

where A is the numerator relationship matrix among lines based on the full pedigree, GE is an 

environment-dependent genomic relationship matrix computed from the SNP marker data, 
and the parameter w represents the proportion of total additive genetic variance that is not 
captured by SNPs and is accounted for by genealogical information contained in A. Under the 
BLUP method using this merged pedigree-genomic matrix, denoted K-BLUP, the value of w 
is empirically determined based on cross-validation in order to optimize predictive ability (see 
Velazco et al. 2019b for details). Based on results from the latter study for grain yield 
prediction, we used w = 0.6 for the present research.  

The genomic matrix GE used to construct KE was computed according to VanRaden 
(2008): 

GE = ZDEZʹλ,                                                                (4) 

where λ = 1∕(2∑ pi(1 − pi)) is a scaling factor based on the minor allele frequency pi of SNP 

i summed over all loci, Z is a matrix of centered genotypes for each line, and DE is a diagonal 
matrix of weights for the variances explained by each SNP in a particular environmental 
context. The environment-dependent SNP weights included in DE were derived from (purely) 

genomic breeding values (GBVs) of lines within D-ET (m�D), within W-ET (m�W), or across 
both ETs (m� B), where m� B = 0.5m�D + 0.5m�W. For this derivation, we applied the procedure 
proposed by Wang et al. (2012), which can be generally describe, for E = D, W, B, as follows:  

a) Environment-dependent GBVs (m� E) were predicted with conventional G-BLUP by fitting 
an unweighted matrix, termed G, which was computed using an identity matrix I instead of 
DE in (4); 

b) Predicted SNP effects (u�E) were derived from m� E as: u�E = λIZ'G-1m� E; 

c) Individual variances of SNP effects (σ�ui,E
2 ) were then estimated as: σ�ui,E

2 = u�iE
2 2pi(1 − pi); 

d) The SNP variances were standardized and used to build DE. 
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Accordingly, the obtained weighting matrices DD, DW and DB were used as in (4) for 

computation of corresponding genomic matrices GD, GW and GB, and these were finally 

included in (3) to build KD, KW and KB, respectively. According to Wang et al. (2012), 
weights can be re-computed in order to optimize predictions by iterating either on SNP effects 
alone (i.e., by looping to step b) or on GBVs and SNP effects (i.e., by looping to step a). We 
obtained optimal model performances using SNP weights from the first iteration and these are 
the predictive results reported in our study. For illustration purpose, individual SNP variances 
or weights used in GB are represented graphically in the Appendix. 

To evaluate the impact of accounting for heterogeneous SNP variances, we also considered 
predictions based on the unweighted kinship matrix, denoted simply as K, which was formed 
using the unweighted G matrix—by setting DE = I. Note that the use of this genomic matrix 

implies that all SNPs are assumed to explain the same amount of genetic variance, which is 
equivalent to the conventional G-BLUP (using the first method in VanRaden 2008). 

Narrow-sense heritability of grain yield in each ET was estimated for the different models 
as the ratio of additive-genetic variance to total variance. Note that these estimates are 
approximations of the true unknown heritabilities and are presented in this study only as a 
measure of the ability of the models to capture genetic variation. Additionally, the goodness 
of fit of the different models was assessed using the Akaike Information Criterion (AIC). 

5.2.4.  Evaluation of genomic prediction for broad and specific adaptation 

Genomic prediction models were evaluated through cross-validation technique, where the 
realized genotypic values of lines (y) were used as predictands to validate GEBVs (g�). 
Validation of predictions was framed in terms of the different breeding objectives for 
adaptation, where the target genetic values were either yD or yW when selecting for specific 

adaptation and yB when selecting for broad adaptation, with yB = 0.5yD + 0.5yW being the 

overall mean across both ETs. Accordingly, the selection targets yD, yW and yB were predicted 

by the respective GEBVs g�D, g�W and g�B. The GEBVs in g�B are given directly by model G, 

whereas they were obtained as g�B = 0.5g�D + 0.5g�W for the other models. Note that yB and g�B 

were computed in the form of a selection index for broad adaptation by combing line 
performances in each ET (Piepho and Möhring 2005; Kelly et al. 2007). In this study, we 
used the same relative index weight of 0.5 for both ETs. 

We implemented a five-fold cross-validation scheme where data of multi-environment 
yield performance from the 80% of randomly sampled lines formed the training set (TS), 
while data from the remaining 20% of lines were retained as validation set (VS). This 
partitioning of the data corresponds to a model evaluation for genomic prediction of new 
lines, which have not been field-tested yet. Prediction models were compared on the base of 
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predictive ability and unbiasedness of predictions in the VS. Predictive ability was calculated 
as the correlation between GEBVs and realized genotypic values. Empirical bias of genomic 
predictions was determined as the regression coefficient of realized genotypic values on 
GEBVs. For each prediction scenario, we present average results over 20 random replications 
of the cross-validation scheme. The Hotelling-Williams t-test for dependent correlations 
(Steiger 1980) was applied to determine statistical differences in predictive ability for 
pairwise comparisons of among prediction models. 

5.3.  Results 

5.3.1.  Parameter estimates and model fits 

Table 1 presents estimates of heritabilities for each ET, genetic correlations between ETs and 
goodness of fit values from the K-BLUP models considered in this study. Independent of the 

Table 1 Grain yield heritability estimates (h2) for drought (D-ET) and water-sufficient (W-ET) environmental 
types, additive genetic correlations between D-ET and W-ET (rg), and Akaike Information Criterion (AIC) 
values from K-BLUP models using different kinship matrices and genetic covariance structures between ETs. 

Kinship 
matrix Model h2 rg AICa 

D-ET W-ET 
K  G 0.47 0.47 1.00 244 

 GE 0.50 0.50 0.94 240 

 GEH 0.63 0.41 0.97 221 

 ID 0.53 0.23 0.00 302 

KB G 0.43 0.43 1.00 57 

 GE 0.48 0.48 0.90 39 

 GEH 0.60 0.36 0.95 8 
  ID 0.57 0.31 0.00 106 

KD  G 0.46 0.46 1.00 59 

 GE 0.51 0.51 0.90 36 

 GEH 0.63 0.38 0.96 0 

 ID 0.60 0.32 0.00 111 

KW G 0.46 0.46 1.00 56 

 
GE 0.51 0.51 0.91 37 

 
GEH 0.63 0.38 0.96 1 

 ID 0.61 0.32 0.00 108 
a Value expressed as difference relative the best-fitting model (with AIC = 0). 

kinship matrix used, the model allowing estimation of a separate genetic variance for each ET 
and genetic correlation between ETs (GEH) gave better fits compared to models imposing 
equal genetic variances across ETs (G and GE) or assuming genetic independence between 
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ETs (ID). According to the best-fitting model GEH, grain yield heritability in D-ET was 
higher than in W-ET and genetic performances of lines in both ETs were highly correlated (rg 
= 0.95–0.97) for all kinship matrices. The use of environment-dependent SNP weights caused 
important improvements in goodness of fit for all structures of ΣE, as reflected by marked 
decreases in the AIC values. However, small changes in parameter estimates from the 
different models were produced by weighting the kinship matrix, with more pronounced 
variation in estimated heritabilities only in the case of model ID. 

5.3.2.  Genomic prediction for broad adaptation 

Predictive ability and empirical bias of genomic predictions for broad adaptation across ETs 
are shown in Table 2. In general, models GE and GEH improved predictive ability compared 
to model G, which ignores the stratification of the TPE for prediction of broadly adapted 
genotypes. These improvements were always significant (p < 0.05) and slightly magnified 
when weighted kinship matrices were used, representing a mean relative increase of 10% in 
predictive ability. More important and highly significant gains in predictive ability (p < 0.001) 
were generally achieved by weighting the kinship matrix for individual SNP variances, with 
an average increment of 62% across models of ΣE. K-BLUP models incorporating marker 

effect information from a specific ET—through KD or KW—tended to produce marginally 
better results than models using across-ETs marker information—through KB—, although 
these differences were not significant. 

Table 2 Predictive ability and empirical bias (regression coefficient) of genomic predictions for broad adaptation 
across drought and water-sufficient environmental types (ETs), obtained from K-BLUP models using different 
kinship matrices and genetic covariance structures between ETs. Mean values over 20 replicates of a five-fold 
cross-validation scheme. 

Model 

Kinship matrix 

Mean KB KB KD KW 

Predictive ability 
G 0.342 0.537 0.547 0.549 0.494 
GE 0.364 0.591 0.600 0.602 0.539 
GEH 0.374 0.592 0.605 0.607 0.545 

Mean 0.359 0.573 0.584 0.586  
Empirical bias 

G 0.993 1.177 1.189 1.189 1.137 
GE 0.735 0.931 0.928 0.931 0.881 
GEH 0.816 1.052 1.043 1.045 0.989 

Mean 0.848 1.054 1.053 1.055  
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Almost unbiased genomic predictions for broad adaptation were obtained by model G 
using the unweighted K, while models GE and GEH with the same kinship matrix increased 
bias and led to overestimation or inflation of GEBVs, as indicated by regression coefficients 
lower than 1. Accounting for heterogeneous SNP variances with matrices KB, KD or KW 
reduced bias of GEBVs for both GE and GEH models and removed inflation of predictions 
for the latter. Finally, differences in regression coefficients for a specific model of ΣE were 
very small among weighted kinship matrices. 

5.3.2.  Genomic prediction for specific adaptation 

Table 3 shows the results on model performance for specific genomic predictions within D-
ET. Overall GEBVs across ETs obtained from model G always gave the lowest predictive 
abilities for specific adaptation to D-ET, independently of the applied kinship matrix. Models 
GE and GEH, which explicitly account for genotype-by-ET interaction and produce ET-
specific GEBVs, resulted in significant increments of predictive ability in D-ET (p < 0.01), 
representing an average improvement of 17% relative to model G. Even though model ID 
made use only of D-ET data for training and prediction, its predictive abilities were 
significantly higher than those of model G (p < 0.01) and lower but statistically comparable to 
models GE and GEH when using the same kinship matrix. A general increment of 72% was 
obtained in predictive ability for D-ET by applying SNP-specific weights in K-BLUP, 
compared to the mean performance of models based on the original matrix K. The use of 
different sets of weights did not cause significant differences in predictive ability between 
models, although weighting specifically for SNP effects in D-ET gave generally better results. 

 Table 3 Predictive ability and empirical bias (regression coefficient) of genomic predictions for specific 
adaptation to D-ET, obtained from different K-BLUP models using different kinship matrices and genetic 
covariance structures between ETs. Mean values over 20 replicates of a five-fold cross-validation scheme. 

Model 

Kinship matrix 

Mean KB KB KD KW 

Predictive ability 
G 0.265 0.468 0.485 0.479 0.424 
GE 0.325 0.548 0.563 0.559 0.498 
GEH 0.324 0.544 0.562 0.558 0.497 
ID 0.317 0.538 0.555 0.551 0.490 

Mean 0.308 0.524 0.541 0.537  
Empirical bias 

G 1.040 1.386 1.425 1.403 1.314 
GE 0.828 1.039 1.046 1.047 0.990 
GEH 0.783 1.043 1.035 1.032 0.973 
ID 0.800 1.081 1.071 1.065 1.004 

Mean 0.863 1.137 1.144 1.137  
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Model G gave less biased GEBVs relative other structures of ΣE when unweighted K-
BLUP was used to predict yield in D-ET (Table 3). However, GEBVs from this model 
showed the largest biases under weighted K-BLUP and resulted in marked under-prediction 
of line performances. In contrast, the use of weighted kinship matrices in models GE, GEH 
and ID reduced bias and eliminated inflation of genomic predictions for D-ET. 

Table 4 Predictive ability and empirical bias (regression coefficient) of genomic predictions for specific 
adaptation to W-ET, obtained from different K-BLUP models using different kinship matrices and genetic 
covariance structures between ETs. Mean values over 20 replicates of a five-fold cross-validation scheme. 

Model 

Kinship matrix 

Mean KB KB KD KW 

Predictive ability 
G 0.309 0.422 0.419 0.430 0.395 
GE 0.295 0.434 0.430 0.438 0.399 
GEH 0.296 0.438 0.441 0.450 0.406 
ID 0.284 0.400 0.390 0.403 0.369 

Mean 0.296 0.424 0.420 0.430  
Empirical bias 

G 0.930 0.960 0.945 0.966 0.950 
GE 0.646 0.774 0.752 0.760 0.733 
GEH 0.874 1.068 1.055 1.066 1.016 
ID 1.148 1.164 1.141 1.151 1.151 

Mean 0.900 0.991 0.973 0.986  

When specific adaptation to W-ET was the target of prediction, the performances of 
different models for ΣE were statistically similar in terms of predictive ability if the 
unweighted K was fitted (Table 4). Differences were significant only between models ID and 
GEH (p < 0.05) under weighted K-BLUP. In contrast to results for D-ET, predictive abilities 
of K-BLUP using model G were not significantly different from those of the models 
producing ET-specific GEBVs, while model ID gave the lowest predictive abilities for W-ET 
with all kinship matrices. In line with the findings on prediction for broad adaptation and for 
specific adaptation to D-ET, differences in predictive ability between weighted and 
unweighted K-BLUP models were highly significant for yield prediction in W-ET. The 
average improvement rate was 43% in this case; lower than for the other prediction scenarios. 
Predictive abilities were generally higher when the marker information used to scale the 
kinship matrix was derived from the same W-ET. For this targeted ET, predictive ability of 
genomic predictions was optimal with K-BLUP fitting KW and model GEH. 

    As shown in Table 4, regression coefficients from model G were always the closest to 1, 
although this model caused inflation of GEBVs for W-ET in all cases. Accounting for 
genotype-by-ET interaction with model GE resulted in even stronger inflation. However, this 
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problem was diminished by accommodating heterogeneous genetic variances for individual 
ETs with model GEH. Empirical bias was generally lower for most K-BLUP models 
accommodating locus-specific variances, with the combined use of matrix KD and model 
GEH giving the most unbiased and not inflated genomic predictions in W-ET.    

5.4.  Discussion 

This study investigated the ability of different genomic models to predict multi-environment 
GEBVs of sorghum parental lines for grain yield by evaluating testcross hybrid performance 
under drought-stress and non-stress environments. Models considered here for multi-
environment genomic evaluation accommodated different genetic covariance structures to 
model G×E  and accounted for homogeneous or heterogeneous variances of individual SNP 
effects while incorporating additional information from pedigree. These features were fully 
implemented within a unified BLUP-based framework. 

Previous genomic selection studies in sorghum have focused on within-trial (Hunt et al. 
2018) or across-trial predictions (Velazco et al. 2019a; 2019b). This has been the common 
approach in other crops as well (e.g., Burgueño et al. 2012; Albrecht et al. 2014; Oakey et al. 
2016). For the present research, we adopted an alternative approach where the MET series 
sampling the TPE was stratified according to two types of environments—or mega-
environments—, D-ET and W-ET, and each one of these was assumed to be represented by a 
random sample of trials. Accordingly, our study focused on multi-environment GEBVs that 
are conditioned on the ETs. In the terms discussed by McLean et al. (1991), these predictors 
are then applicable to an intermediate inference space, which is broader than the narrow 
inference space of specific predictions within trials. At the same time, our intermediate space 
GEBVs apply to a narrower inference space relative to global across-trial predictions. 
Nevertheless, the obtained ET-specific genomic predictions result more informative since 
they make direct reference to the targets of adaptation studied. Many studies have investigated 
the effects of modeling G×E in the context of GP, but none had yet reportedly compared 
broad vs specific adaptation strategies. 

5.4.1. Impact of modeling genotype-by-ET interaction: 

Genomic analysis indicated that the most realistic descriptions of the genetic covariance 
between ETs were obtained using the unstructured matrix of model GEH (Table 1). This 
covariance model revealed that line performances under D-ET were genetically more 
informative than under W-ET, as reflected by the differences in within-ET heritabilities. A 
possible explanation for differences in heritability is that, in terminal-stress environments, the 
additive-genetic variation of grain yield in the testcross hybrids is magnified as a consequence 
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of the genetic variability in stay-green expression among hybrids. This would not be the case 
under adequate water conditions, where genetic differences in stay-green are expected to have 
no impact on yield. In addition, the best-fitting model of ΣE indicated that additive-genetic 
effects for yield in both ETs were highly and positively correlated. These results may indicate 
that most of the genetic variation for yield in wet environments is also contributing to yield 
under drought environments, but with additional genetic variability in the latter case resulting 
from varying drought adaptation capacity of genotypes. Previous studies by Jordan et al. 
(2012) and Borrell et al. (2014b) suggested that stay-green trait had limited or no penalty on 
yield under water-sufficient conditions, which would be in line with the consistency of yield 
performance across ETs found in our study. It should be noted, however, that the high genetic 
correlation between D-ET and W-ET may be partly a consequence of the environmental 
classification used. Given that for this research trials were grouped considering only the 
presence or absence of stay-green, D-ET may include trials where the stay-green phenotype 
was scored but the levels of drought stress were insufficient to cause changes in genotype 
rankings for yield, with respect to non-stress environments. The genetic correlation between 
ETs is expected to be lower if D-ET is defined only by trials where stay-green expression is a 
clear determinant of genetic differences in yield. 

From a practical perspective, the presence of strong genetic correlation between ETs also 
implies the possibility of exploiting across-ET information for genomic prediction. When 
considering prediction for broad adaptation, our result showed that accommodating genotype-
by-ET interaction through models GE or GEH improved predictive ability compared to 
modeling only a main genetic effect across ETs, as with model G (Table 2). These 
improvements for across-environment prediction of untested lines are similar in magnitude to 
those previously reported in barley using pure genomic models (Malosetti et al. 2016) and 
slightly better than those found in wheat using equivalent models that combined pedigree and 
marker information (Burgueño et al. 2012; Sukumaran et al. 2017). Besides predictive ability, 
we also considered the empirical bias of predictions since this measure may indicate the 
systematic tendency of a model to under- or over-predict GEBVs in a specific environment, 
with over-prediction or inflation of GEBVs being particularly detrimental for genetic gain in 
the long term (Aguilar et al. 2010; Velazco et al. 2019b). Our study showed that the best 
combinations of predictive ability and unbiasedness were generally achieved when genotype-
by-ET interaction and heterogeneous genetic variances across ETs were accommodated in K-
BLUP models. Collectively, these results suggest that even when the genetic correlation 
between ETs was high, accounting for a subdivided TPE in genomic analysis might be a 
better strategy than ignoring this subdivision when targeting prediction of broadly adapted 
sorghum lines. In agreement with our findings, Piepho and Möhring (2005) also demonstrated 
that considering a stratified TPE in BLUP models can maximize the expected response to 
selection for broad adaptation, even when the G×E component is not large. 
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For prediction of specific adaptation, the relative performance of K-BLUP models varied 
according to the targeted ET. The main contrasts in predictive performance were observed 
between model G and model ID, with the latter outperforming the former in D-ET and the 
opposite occurring in W-ET (Tables 2 and 3). The reason for this may be that model ID uses 
only data from the target ET as training set, while model G uses data from both ETs, 
assuming that all the data are equally informative for prediction in the targeted ET. Therefore, 
in the case of prediction for D-ET, GEBVs from model ID were exclusively based on training 
data from the genetically more informative ET. In contrast, GEBVs from model G were also 
based on the low-heritability data from W-ET, which seemed to deteriorate predictions for D-
ET. For the same reason, predictions in W-ET benefited by borrowing genetic signal from the 
high-heritability D-ET data with model G, as opposed to predictions that were exclusively 
derived from the less informative W-ET data using model ID. 

Besides these two alternative models, we found that models GE or GEH were generally 
better options to improve specific predictions for both ETs. The superiority in performance 
may be explained by how these models combine information from both ETs to assist 
prediction in the targeted ET by applying an optimal weighting of the training data. The 
weighting procedure, which is inherent in BLUP-based estimation, has been cleverly 
described by Piepho and Möhring (2005) for the context of prediction within a subdivided 
TPE. In our case, the weights depended on the amount of genetic information provided by 
each ET, which was determined by the heritabilities in individual ETs and the genetic 
correlation between ETs. Piepho and Möhring (2005) showed that applying this automatic 
weighting, by contemplating a subdivided TPE in BLUP analysis, increased the expected 
response to selection for specific adaptation when compared to models that use all the data 
but ignore the subdivision (as with our model G) or models that use only data from the 
targeted environment (as with our model ID). Their expectations were corroborated 
empirically in the present study when inspecting predictive ability and bias of multi-
environment genomic predictions. In addition, our results demonstrate that the benefits of 
using multi-environment models over genetic main effect models also depend on the 
difference in genetic information content between the target and the non-target environments, 
and not only on the genetic correlation between environments, as previously suggested by 
Atlin et al. (2000) and Dawson et al. (2013). 

In our study, prediction for broad adaptation was based on a selection index that gave the 
same relative weight of 0.5 to both ETs, implying that line’s testcross performances under 
post-flowering drought and non-drought conditions are equally important for the breeder. 
However, these index weights could differ between ETs according to informed selection 
decisions. For instance, the weights could be defined considering information on long term 
frequency of drought events within a particular TPE (Atlin et al. 2011) or on economic risk 
assessment of drought-related yield loss (Zhang et al. 2019). Jordan et al. (2012) suggested 
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that selecting for yield under terminal drought may be broadly beneficial for improving 
sorghum yield in Australia. This implies that more relative weight should be given to D-ET 
when targeting broad adaptation. Even though the definition of user-supplied weights is 
beyond the scope of the present research, it should be noted that, as previously mentioned, a 
higher weight is automatically given to D-ET data in our case by the K-BLUP models 
accommodating genotype-by-ET interaction. 

Finally, the delineation of ETs in our study was based on a direct indicator of water stress 
experienced by the crop in extensive unmanaged field trials. It is important to mention, 
however, that the complementation with indirect environmental indicators of drought patterns 
(Chenu et al. 2011; Bustos-Korts et al. 2019) as well as with managed drought screening 
(Cooper et al. 2014) could be helpful to better define ETs and optimize selection. Moreover, 
when environmental variables are available, this information can be exploited directly by 
genomic models to predict not only for new lines but also for new environments (Malosetti et 
al. 2016; van Eeuwijk et al. 2019). 

5.4.2.  Impact of accounting for heterogeneous SNP variances: 

This is the first study in plant breeding that explores how accounting for the genetic variance 
captured by each SNP in BLUP models can affect the quality of genomic predictions. We 
derived weights for locus-specific variances from GBVs of lines using the procedure of Wang 
et al. (2012). These weights were then used to obtain GEBVs incorporating additional 
pedigree information through a combined pedigree-genomic matrix. The integration of 
pedigree and marker-based information with K-BLUP has been shown to increase predictive 
ability and reduce bias of single- and multi-trait genomic predictions relative to conventional 
G-BLUP when the additive genetic variance is not fully captured by SNPs (Velazco et al. 
2019a; 2019b). The method we used here for estimation of SNP weights is based on a fully-
fledged mixed model procedure, as opposed to alternative weighting approaches that require 
Bayesian analysis (Zhang et al. 2010; Su et al. 2014). The SNP weights can be optimized 
predictively through an iterative process, as proposed by Wang et al. (2012). In the present 
research, only one iteration was required for optimal predictive results, while more iterations 
were actually detrimental (not shown). A similar finding was reported by Zhang et al. (2016) 
in a simulation study where prediction accuracy decreased after the first iteration for the most 
“complex” trait determined by 500 minor-effect QTLs. The authors attributed this decline to 
the fact that SNPs with large effects are emphasized while small-effect SNPs are excessively 
shrunk with successive iterations and re-computations of weights. The same could be argued 
in our case for grain yield considering that this complex polygenic trait is controlled by many 
genes with small effects (Melchinger et al. 1998; Schön et al. 2004). 
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Our results showed that accommodating heterogeneous variances of SNP effects had a big 
impact on improving genomic predictions for yield across and within ETs in sorghum. The 
marked gains in predictive performance imply that assuming SNP-specific variances gave 
better descriptions of the additive genetic variation among lines than assuming a common 
distribution for all markers. Previous simulation studies using Bayesian and weighting 
methods have suggested that allowing for SNP variance heterogeneity is likely to be more 
beneficial when traits are influenced by a few large-effect QTLs (Zhang et al. 2010; 
Daetwyler et al. 2010; Zhang et al. 2014). This seems to not be the case in our study, where 
weighting for SNPs produced important increases in predictive ability, even when individual 
SNPs explained less than 0.6 % of the genetic variation in yield (see Appendix). Accordingly, 
the benefit is apparently a consequence of considering the varying contribution of loci to the 
genetic variance, irrespective of the presence of major genes. In addition, it should be 
considered that the levels of gains from using SNP weighting might be partly determined by 
the relatively small size of the training population and the low-density panel used (less than 
5K SNPs). The improvements are expected to be diluted with increased number of reference 
lines genotyped and high-density marker information. 

For this research, we derived three sets of environment-dependent SNP weights by 
considering yield in D-ET, in W-ET and across ETs as different traits. We found that weights 
derived from ET-specific marker effects did optimize predictive ability and unbiasedness in 
all adaptation scenarios. However, the small differences obtained from changing sets of SNP 
weights indicate that the strategy to obtain weights based on environmental types was not 
crucial in our research. This was somewhat expected considering that the additive-genetic 
correlation between D-ET and W-ET was very high. Environment-dependent SNP weights 
are likely to have more impact on genomic prediction for specific adaptation in situations 
where the expression of yield QTLs changes more markedly across environments. 

So far, the approach used in plant breeding to incorporate marker-specific information into 
genomic prediction models has been based on including additional effects for the markers 
identified as significant in a previous genome-wide association study (GWAS). However, the 
existing studies applying this approach on real data have reported no improvements or even 
worse predictive results for grain yield relative to conventional G-BLUP in maize and rice 
(Bustos-Korts et al. 2016; Spindel et al. 2016). Using the same approach, Rice and Lipka 
(2019) found that prediction accuracies were frequently lower for complex traits simulated 
from maize and sorghum diversity panels. One possible explanation for these results is that, 
by including a select group of highly significant marker as separate effects in BLUP models, 
the selected SNPs with larger effects receive less or no regularization (if they are considered 
fixed) compared to the non-significant SNPs with smaller effects. The implicit emphasis 
given by these prediction models to the SNPs with larger effects is expected to be beneficial 
for prediction of traits affected by major QTLs, but not for traits that are mainly controlled by 
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many small-effect QTLs. This has been demonstrated by Bernardo (2014) using simulations 
and corroborated empirically by the previously mentioned studies. Furthermore, it should be 
considered that the effect of each SNP is estimated individually in GWAS. As a result, the 
sum of SNP effects may overestimate QTL effects if several linked markers are actually 
capturing the effect of the same QTL (Su et al. 2014). Finally, the definition of the selected 
group of significant markers—and consequently the definition of the prediction model—will 
change according to the significance threshold chosen for GWAS, which is usually arbitrary 
(Bush and Moore 2012). As shown in the studies by Bustos-Korts et al. (2016) and Sarinelli et 
al. (2019) using wheat data, GWAS can fail to identify significant SNPs for grain yield when 
stringent thresholds are used, precluding the use of locus-specific information under this 
strategy.  

In contrast to the GWAS-based approach, the SNP weighting method used in the present 
article estimates all marker effects simultaneously, and it does not require pre-selection of 
SNPs based on significance tests from extra GWAS analysis. Instead, a continuous gradient 
of weights is applied to all SNPs across the genome reflecting the relative contributions of 
each locus to the genetic variation of the trait. Our results have demonstrated that the 
weighted BLUP models were effective to improve genomic prediction for yield in sorghum. 
These models could be extended to include information on large QTLs affecting other traits 
that have been associated with improved drought adaptation, such as nodal root angle and 
stay-green (Mace et al. 2012; Borrell et al. 2014b). Further research is required to explore the 
possibilities of combining these sources of information in a multi-trait modelling framework.  

An alternative weighting approach was proposed by Zhang et al. (2014) in which only the 
“most important” markers are weighted according to external results from publicly available 
GWAS. A potential drawback of this method results from assuming that significant QTL 
regions identified by previous independent studies are universally applicable, ignoring 
specificities of target breeding population such as the extent of LD or the interactions of 
QTLs with the genetic background (Vadez et al. 2011; Sandhu et al. 2018). This may partly 
explain the marginal increases in predictive ability obtained by Zhang et al. (2014) in rice 
when applying external weights. Although the weights used in our research are certainly 
conditional on dataset used, they are expected to be more suitable for prediction in the 
specific population of genotypes and environments that is relevant for the breeding program. 
Moreover, the reliability of these weights can be constantly improved by including updated 
phenotypic information, with the additional possibility of utilizing phenotypes of 
ungenotyped lines connected through pedigree (Zhang et al. 2016). 
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5.5.  Conclusion 

Results indicate that genomic prediction for broad adaptation across post-flowering stress 
(D-ET) and non-stress (W-ET) environments in sorghum can be enhanced by considering a 
subdivided TPE and addressing genotype-by-ET interaction explicitly with multi-environment 
models (GE or GEH). Specific adaptation to a targeted ET may be better predicted if genetic 
information from the non-targeted ET is borrowed through multi-environment genomic 
models, when compared to using only information from the targeted ET or to borrowing 
across-ET information through a main genetic effect model. 

Our study also showed that accounting for heterogeneous variances of SNP effects with 
weighted K-BLUP models can be very effective in maximizing predictive ability and 
reducing bias of genomic predictions for grain yield. The levels of improvements may be only 
slightly dependent on the environmental context in which SNP weights were derived, mainly 
because of the strong correlation of line performances under post-flowering drought and non-
drought conditions in sorghum. 

Appendix 

Genetic variance captured by each SNP, expressed as proportion of the total variance in grain 
yield. 
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6.1.  Introduction 

Further improvement in productivity and adaptability of crops requires the adoption of 
innovative methodologies to improve the efficiency of genetic evaluation in modern breeding 
programs. Genomic selection is a new method for improving quantitative traits that promises 
to overcome the limitations of traditional phenotypic selection and conventional MAS by 
exploiting genome-wide marker information to predict genetic merit. GS has been thoroughly 
studied in major cereal crops such as wheat and maize and its routine use in breeding 
programs is now a reality. This is not the case for grain sorghum where the implementation of 
GS has not been extensively explored yet. 

The present thesis provides a first comprehensive insight into some challenges and 
opportunities for the implementation of GS in grain sorghum. The research questions were 
focused on investigating different statistical modelling strategies for improving predictive 
performance of genomic models. Specifically, this thesis investigated the benefits of: 
combining pedigree and genomic information (Chapter 3; Velazco et al. 2019b); exploiting 
information from multiple traits (Chapter 4; Velazco et al. 2019a); modelling G×E (Chapter 
5); and accounting for heterogeneous variances of SNP effects (Chapter 5). Because genetic-
marker effects are ultimately estimated from the phenotype, the appropriate analysis of 
phenotypic data is a key prerequisite for the implementation of GS. For this reason, Chapter 2 
(Velazco et al. 2017) focused initially on the spatial adjustment of phenotypic variation in 
field trials. 

The entire research of this thesis was carried out using real data sets from an ongoing 
sorghum breeding program. Consequently, an important motivation was to develop analytical 
strategies that considered the structure of typical sorghum breeding data while making use of 
the information that is routinely generated by the breeding program. 

6.2.  Simplified spatial analysis of plant breeding trials 

The presence of spatial variation in field trials has long been recognized as a critical issue that 
can affect evaluation and selection of genotypes if not properly taken into account. This has 
been demonstrated in the contexts of conventional and genomic-based plant breeding (e.g., 
Qiao et al. 2004; Bernal-Vasquez et al. 2014). The importance of accounting for field trends is 
reflected by the large numbers of spatial analysis methodologies that have been developed, as 
reviewed in Chapter 2. The most commonly used methods, including the one proposed by 
Gilmour et al. (1997), are based on modelling field trends as spatial correlations among plots 
by fitting a specific covariance structure for the residuals in a mixed model. Within this 
approach, several modeling choices have to be made since different options for the spatial 
covariance structure exist, which can be fitted either in one or two dimensions, and the 
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inclusion of additional model terms may be also considered to account for the remaining 
trends not captured by spatial correlations. In order to define the spatial model for analysis, a 
multi-step model-building strategy is used, where several candidate models are tried in search 
for the best-fitting spatial model. As a result of this strategy, the standard spatial method 
demands intensive modelling and in-depth analysis of each trial. This may not be the most 
efficient practice when multiple trials have to be analyzed one at a time. 

Chapter 2 of this thesis compared the performance of the standard spatial method of 
Gilmour el al. (1997) to that of a new simplified approach based on the SpATS mixed model 
(Rodríguez-Álvarez et al. 2018a). Analyzing a series of early-generation sorghum breeding 
trials, it was shown that the standard and the novel methods produce equivalent results 
regarding improvements in heritability and predictions of genetic effects. However, the main 
advantage of the spatial analysis with SpATS is that it allowed a simplified modeling strategy. 
This is a consequence of two distinctive features of SpATS model. First, large- and small-
scale trends are simultaneously modeled by the smoothed spatial surface in a single modeling 
step. Conversely, under the standard method, both types of trends are fitted independently by 
including different model terms in a sequential multi-step modeling procedure. Second, the 
same SpATS model can be used to analyze different trials since the flexible spatial surface is 
automatically tuned by the smoothing parameters in order to optimize the balance of model 
fitting and parsimony in each case (Eilers et al. 2015). This contrasts with the conventional 
method, where the optimal spatial model has to be explicitly identified by the user in each 
trial after scrutinizing a number of model choices. 

The gain in efficiency of analysis from using the new spatial method can be illustrated with 
our case study: for spatial analysis of 21 trials and two traits, more than 300 candidate models 
were tried in total under the standard method (not shown), while virtually the same results 
were obtained by fitting one SpATS model to analyze whole dataset. This reduction in 
required computational steps makes the spatial method based on SpATS a more suitable 
alternative for efficient routine analysis of large series trials in plant breeding programs. In 
addition, SpATS has been proved to be computationally more robust than models based on an 
autoregressive covariance structure (Rodríguez-Álvarez et al. 2018a). Finally, if a diagnostic 
assessment is required, SpATS provides explicit estimate of the spatial surface that can be 
graphically represented and easily interpreted, as shown in Chapter 2. This diagnostic may be 
also complemented with outlier detection analysis using the extracted spatially independent 
residuals of the model. Given the good performance of SpATS in Chapter 2, this method was 
adopted to correct for spatial trends in the subsequent studies of Chapters 3, 4 and 5. 

More recently, Verbyla et al. (2018) showed that interaction surfaces based on tensor cubic 
smoothing splines can be fitted using a commercial mixed model software. However, they 
propose to use the smooth surface to model treatment and temporal effects, while residuals 
are still modeled using the standard approach with a separable variance–covariance structure. 
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In addition, Selle et al. (2019) demonstrated how the standard spatial model and a flexible 
model similar to SpATS can be fitted using full Bayesian analysis with the open-source R 
package INLA (www.r-inla.org). This implementation enables modelling several trials 
simultaneously. The authors cautioned, however, about the potential limitations of INLA 
method due to excessive computational demand when the number of trial-specific parameters 
increases. 

6.3.  Combining different sources of information for genomic prediction 

Chapters 3, 4 and 5 investigated the effect of exploiting different sources of information when 
implementing genomic prediction for productivity and adaptability traits in sorghum. The 
Chapters considered data from early breeding stages aiming at the development of elite inbred 
lines, which will eventually serve as parents of commercial hybrids. At this stage, selection of 
parental lines is primarily based on their additive genetic values—or general combining 
abilities—estimated from testcross hybrid performance trials. Accordingly, the breeding 
values of parental lines were the genetic targets of prediction examined in these studies. 

6.3.1.  Information from pedigree and markers 

In Genomic selection, complex quantitative traits are predicted by statistical models that 
utilize information from dense genome-wide markers. These markers are expected to be 
associated with the trait of interest through SNPs that are either located at causal loci or in 
linkage disequilibrium (LD) with causal genes, or through markers tracing familial 
relationships (Dekkers 2004; Habier et al. 2007). A derived implicit assumption when using 
purely genomic models is that markers explain all the additive-genetic variation of the target 
trait. However, because finite numbers of markers are used in real situations and markers are 
typically in imperfect LD with QTLs, genomic models inevitably fail to fully capture the 
genetic variation (de los Campos et al. 2013; de los Campos et al. 2015). This phenomenon 
was termed “missing heritability” when first realized in GWAS of human height using 
identified associated markers (Visscher 2008; Maher 2008). Yang et al. (2010) showed that 
even when all available SNPs were fitted simultaneously still a proportion of the genetic 
variance for this trait remained unexplained. This observation has been also reported for 
several complex traits in GS studies of animal breeding (e.g., Haile-Mariam et al. 2013). The 
consequence in practice is that this “missing genetic variance” cannot be used by genomic 
models, affecting the potential predictive performance that could be achieved by GS (Dekkers 
2007). In Chapter 3 (Velazco et al. 2019b), information from traditional pedigree 
relationships was included in genomic prediction models to account for the residual polygenic 
variance not captured by SNP markers. The impact of using additional pedigree information 
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in genomic models was investigated by evaluating the quality of predictions for different 
traits in sorghum. 

Results showed that markers alone did not explain the full additive-genetic variance and a 
combination of genomic and pedigree information was required to optimize predictive ability 
and reduce prediction bias for all traits and prediction scenarios studied. In this research, 
genomic predictions were optimized by BLUP models fitting a combined kinship matrix K = 
wA + (1 − w)G, termed here K-BLUP. Previous studies have suggested theoretical 
calculations to derive a unique optimal value of w based on general assumptions (VanRaden 
et al. 2008; Goddard et al. 2011). In contrast, Chapter 3 proposed a more straightforward 
approach where specific weights are identified empirically for each trait and prediction 
scenario in order to maximize predictive ability using cross-validation. This predictive 
strategy using K-BLUP also differs from the common approach used so far in plant breeding, 
which is based on models that fit both A and G separately (e.g. Albrecht et al. 2011; 
Sukumaran et al. 2017). Under the latter approach (referred as AG-BLUP), the weight w is 
implicitly set to optimize model-fitting in the training data, but it is not purposely defined to 
maximize predictive performance in the validation set, as in K-BLUP method. Differences 
favoring K-BLUP over AG-BLUP were marginal. However, the main advantage of K-BLUP 
is that less variance parameters have to be estimated since a single relationship matrix is 
fitted. This may be attractive in practice since less computational time is required and more 
stable results are expected, mainly when working with small training samples. 

Results from Chapter 3 demonstrated that integrating pedigree and genomic relationships 
can be an effective strategy to improve genomic prediction in sorghum compared to 
conventional G-BLUP. This is in line with previous studies in animal breeding (Liu et al. 
2011; Rodríguez-Ramilo et al. 2014). Interestingly, the inclusion of pedigree information in 
our study was more beneficial for grain yield, which was the trait with the lowest heritability 
and is also the main target trait for sorghum breeding. It should be considered that only 40%-
50% of the additive-genetic variance was captured by the ~4.8K SNPs available. In this case, 
the pedigree information seemed to have been particularly valuable to account for familial 
additive relationships, which is an important factor affecting prediction of largely polygenic 
traits (Habier et al. 2007; Habier et al. 2013). Obviously, the results are conditioned by the 
low marker density available in this study. The contribution of pedigree data to improve the 
performance of genomic models is likely to decrease if more markers are used. However, the 
method presented in this Chapter may be a suitable option for breeding programs of many 
crops where dense genotyping is still costly or even prohibitive. Although improvements in 
the quality of prediction can be moderate, including pedigree information to assist genomic 
models should always be considered since any benefit obtained would come without extra 
cost. 
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6.3.2.  Information from correlated traits 

In a following step exploring strategies for efficient implementation GS in sorghum, the 
integration of information from multiple traits was considered in Chapter 4 (Velazco et al. 
2019a). The simultaneous analysis of different traits has long been recognized as a method to 
increase accuracy of genetic evaluation (Henderson and Quaas, 1976; Thompson and Meyer 
1986). Multi-trait analysis is receiving renewed attention in the context of genomic prediction 
since more phenotypic records on the training population can be potentially used to predict 
breeding values. In addition, by exploiting relationships among relatives, individuals that are 
not phenotyped for all the traits of interest can still be included in multi-trait genomic 
analysis, further augmenting the volume of data that can be available for training prediction 
models. The amount of multi-trait information that can be actually used to assist prediction 
will depend on the correlations between traits and the heritabilities of the traits. It has been 
shown in simulation studies that benefits from multi-trait genomic analysis relative to single-
trait analysis are expected for traits with low heritability when genetically correlated with 
traits of higher heritability (Calus and Veerkamp 2011; Jia and Jannink 2012; Guo et al. 
2014). The potential advantage of multi-trait genomic prediction has been investigated 
empirically in cereal crops such as maize, rice and wheat with dissimilar results (e.g., dos 
Santos et al., 2016; Wang et al., 2017; Sun et al. 2017). In Chapter 4, a first study on this topic 
was presented for grain sorghum. 

The Chapter focused on the possibility of using information from secondary or auxiliary 
traits to improve predictions for a primary target trait. A predictive assessment was adopted to 
identify the best multi-trait genomic model by trying all possible combinations of available 
traits in search for optimized prediction quality. Previous studies in crops have usually 
evaluated multi-trait models that included available auxiliary traits all together (e.g. Rutkoski 
et al. 2016; Sun et al. 2017; dos Santos et al. 2016). Moreover, Wang et al. (2017) suggested 
that larger gains in predictive ability might be obtained as more auxiliary traits are included in 
multi-trait genomic analysis. Results in Chapter 4 showed that including all auxiliary traits 
may not be the best option and actually combining specific subsets of traits can give better 
predictions. For instance, we found that using information from plant height alone was more 
effective for improving grain yield predictions than adding also information from stay-green 
and flowering time. The idea of using a selected subset of informative traits instead of all 
available traits has also been proposed for attaining optimal detection power in multi-trait 
QTL mapping (Cheng et al. 2013).  Despite the definition of optimal multi-trait models in our 
study was purely based on a predictive approach, results confirm that the potential to 
exploiting information from correlated traits for genomic prediction can be inferred in 
principle by considering populational estimates of heritabilities and correlations among traits. 
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An important finding of this study was that the availability of plant height records for the 
training lines can be effectively exploited in sorghum to assist prediction of grain yield 
breeding values for new lines. This is a direct consequence of plant height being a trait with 
high heritability and presenting strong additive-genetic correlation with the lowly-heritable 
grain yield trait. Given that, in advanced line testing trials, plant height is routinely measured 
to control for agronomic type, any improvement in precision of plant height phenotyping 
could be beneficial for GS of yield in sorghum. In this respect, the implementation of new 
field phenotyping techniques may represent a promising tool to obtain more detailed 
measurements and integrate information over space and time that is potentially useful for 
prediction (van Eeuwijk et al.2019). 

The improvements in genomic prediction for yield reported in Chapter 4 are a consequence 
of using information on auxiliary traits in the training population that is transmitted from 
relatives through genetic relationships. This can be referred to as “indirect” information from 
auxiliary traits. Such situation is compatible with a scenario where (new) predicted lines have 
not been field-tested for yield or any other trait (scenario Aux@TL; Figure 6.1). Previous 
studies on multi-trait genomic prediction of grain yield have considered the scenario where 
selection candidates are indeed observed for auxiliary traits, but not yield (Rutkoski et al. 
2016; Sun et al. 2017). This situation could apply to very early stages of testing—where 
reliability of yield evaluation is actually quite doubtful—or when the target trait is too 
expensive to be measured directly at a large scale, such as baking quality traits in wheat (Lado 
et al. 2018). Our study did not consider such scenario for grain yield since, in advanced 
testing stages of cereal crops, direct measurement of grain yield is still the gold standard and 
indirect selection for this trait may be difficult to justify in practice. 

When the target trait for multi-trait genomic prediction was stay-green, the study showed 
that large improvements in predictive ability, unbiasedness and accuracy could only be 
achieved when grain yield records were also available for the predicted lines (scenario 
Aux@TL+VL; Figure 6.1). In this case, the improvements are a consequence of exploiting 
“indirect” information plus “direct” information on auxiliary traits that is sourced directly 
from the selection candidates per se. The fact that yield was crucial to assist in the prediction 
of stay-green suggests that, when “direct” information on auxiliary traits is used, the 
improvement in prediction depends on the strength of genetic correlations between traits, 
regardless of differences in trait heritabilities. This speculation has been recently confirmed in 
a simulation study by Runcie and Cheng (2019), who demonstrated that, under Aux@TL+VL 
scenarios, prediction accuracy improved whenever genetic correlations among traits were 
large. 
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Figure 6.1 Schematic representation of multi-trait prediction scenarios Aux@TL, where data of auxiliary traits 
in the training lines set (TL) are included for prediction of the target trait in the validation lines set (VL), and 
Aux@TL+VL, where data of auxiliary traits in both TL and VL are included for prediction of the target trait in 
VL. The arrows represent the different sources of information used for prediction. 

Chapter 4 also demonstrated how the K-BLUP method developed in Chapter 3 can be 
extended to improve the performance of multi-trait genomic prediction. Results showed that 
using a weighted combination of pedigree and SNP information was particularly beneficial 
for prediction of stay-green when using “direct” information from grain yield. We 
hypothesize that this is a consequence of obtaining better estimates of additive-genetic 
correlations between traits when both sources of information are used simultaneously, 
compared to using only markers. Gianola et al. (2015) showed that genetic correlations and 
purely genomic correlations are actually distinct parameters. The authors argue that part of the 
genetic correlation resultant from pleiotropy and LD among QTL is likely to be partially or 
totally “missed” due to imperfect LD between SNP and QTL. In addition, LD between SNPs 
can inflate the pleiotropy effects of QTL, distorting genetic correlations. In the case of our 
study, the inclusion of pedigree information in multi-trait genomic models seemed to have 
contributed to account for the portion of pleiotropy and LD between QTL that was not traced 
by SNP markers. Besides speculations on correlation parameter estimates, results for 
prediction of stay-green in sorghum showed that using a blended pedigree-genomic matrix 
was useful in practice to increase predictive ability of multi-trait genomic models. 
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6.3.3.  Information from correlated environments 

Based on classical theory of quantitative genetics, the same trait in different environments can 
be considered as different correlated traits (Falconer and Mackay 1996). Within this approach, 
genotype-by-environment interaction (G×E ) may be addressed as a particular form of multi-
trait analysis where genetic correlations between environments can be exploited to increase 
accuracy of genotypic evaluation. The analysis of G×E is central in plant breeding since it 
allows an appropriate modeling of differential responses of genotypes across a set of target 
environmental conditions (i.e., across the TPE). These differential responses provide the 
breeder with essential information to identify and select genotypes with superior performance 
in a subset of environments (specifically adapted) or across the entire TPE (broadly adapted). 
In Chapter 5, the impact of modelling G×E was investigated in the context of GS for broad 
and specific adaptation of sorghum lines. This research was conducted in the context of a 
subdivided TPE where the subdivision delineated two types of environments (ET): drought-
stress (D-ET) and non-stress (W-ET) environments. The delineation of selection 
environments based on environmental types rather than geographic locations has been 
suggested to cope with highly unpredictable occurrence of drought, which is the main driver 
of yield variability for sorghum in Australia (Chapman et al. 2000; Borrell et al. 2006; 
Hammer et al. 2014). 

Different models for multi-environment genomic prediction were explored in order to 
address relevant questions regarding GS for adaptability in sorghum. When aiming at 
prediction for broad adaptation, we investigated whether the subdivision of the TPE should be 
ignored, by using a main genetic effect model, or exploited, by using prediction models that 
explicitly accommodated line-by-ET interaction. The study showed that the latter option was 
generally a better strategy to predict for broadly adapted lines across the TPE. In particular, 
allowing for genetic correlation between ETs and unequal genetic variances for each ET 
optimized predictive ability and unbiasedness of genomic predictions. The benefits of 
accounting for G×E even when predicting for overall performance across environments have 
been also demonstrated by previous studies in conventional and genomic-based breeding 
(e.g., Kelly et al. 2007; Malosetti et al. 2016). 

When investigating specific adaptation, an important question was if genomic models 
trained with data from the target ET exclusively can give better predictions than models that 
also use data from the non-targeted ET for training. We found that only for prediction in 
drought environments using data from the targeted ET alone could be a suitable option. This 
may be related to the fact that the heritability of grain yield under drought was higher than 
grain yield under non-stress conditions. Then including data from the W-ET may not be too 
informative to improve prediction in D-ET. However, the best predictive results for specific 
adaptation to both ETs were always obtained when line-by-ET interaction was accounted for 
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by fitting a compound symmetry or an unstructured matrix to model the genetic covariance 
between ETs. Based on the study by Piepho and Möhring 2005, it could be argued that, in our 
case, the superiority of these BLUP-based genomic models is likely to be a consequence of 
their ability to optimally combine information from the training data of both ETs to improve 
predictions for the target ET. 

From a practical point of view, results of Chapter 5 generally suggest that the stratification 
of the TPE in drought stress and non-stress environments should be considered and line-by 
ET interaction should always be modelled to predict either for specific or broad adaptation of 
sorghum. It is worth noting that selecting lines for specific adaptation to drought or to non-
stress conditions exclusively may not be a realistic option for sorghum breeding in Australia, 
where improving for broad adaptability has been traditionally the preferred strategy (Borrell 
et al. 2006; Jordan et al. 2012). However, the specific adaptation scenarios were considered in 
this Chapter to attain an empirical assessment of how informative yield performance under 
drought-stress environments is for prediction of yield under non-tress conditions, and vice 
versa. This information could be useful to assign different weights to each source of data 
when selecting sorghum lines for improved adaptation, for instance using a selection index. 

6.3.4.  Information from SNP-specific variances 

In addition to studying the impact of modeling G×E, Chapter 5 also explored how accounting 
for heterogeneous variances of SNP effects in BLUP models may affect genomic prediction 
for grain yield in sorghum. Conventional G-BLUP method assumes that, given the same allele 
frequency, all marker effects across the genome have equal variance (Goddard 2009). This is 
consistent with the “infinitesimal model” of quantitative genetics, where a very large number 
of genes with small effects is assumed to contribute equally to the trait of interest. Several 
empirical studies have demonstrated that the implicit assumption of G-BLUP can work well 
for many complex traits of economic interest in plant breeding, which are usually lowly 
heritable and largely polygenic in nature, such as grain yield (e.g. Heslot et al. 2012; Wimmer 
et al. 2013). Nevertheless, it has been shown that quantitative traits are actually controlled by 
a finite number of genes (Hayes & Goddard 2001), and the true genetic architecture of any 
trait is expected to deviate from the assumptions of the infinitesimal model to some extent. 

In Chapter 5, potential departures from the infinitesimal model were accommodated by 
allowing for unequal variances of SNP effects within BLUP-based method. For this, weights 
accounting for estimated SNP-specific variances were used in the computation of the genomic 
relationship matrices. Results showed that using SNP weighting in K-BLUP had a strong 
impact on increasing predictive ability and reducing empirical bias of genomic prediction for 
yield in all the adaptation scenarios studied. Predictive results as well as the marked 
improvements in goodness-of-fit of models using weighted K suggest that SNPs contributed 
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differently to the additive-genetic variation of grain yield among lines. The observed benefits 
are somewhat surprising for this trait since assuming heterogeneous SNP variances is 
expected to be particularly advantageous in presence of major QTLs affecting a trait (Habier 
et al. 2007; Wimmer et al. 2013). However, in the study of Chapter 5 each SNP explained less 
than 0.6% of the genetic variance, which is far below the threshold of 10% previously 
suggested as required for declaring a major QTL in plants (Bernardo 2014). Then, one 
possible explanation for the predictive benefits of weighting SNPs may be related to the fact 
that a low marker density was used in our study. With high marker density, the shrinkage that 
is imposed to SNP effects in conventional BLUP models is compensated because more SNPs 
are likely to support the same QTL (Habier et al. 2013). When working with low marker 
density, as in our case, the weights seem to play an important role in compensating for 
shrinkage by explicitly accounting for the differential contribution of SNPs to the genetic 
variation of the trait. Previous studies in animal breeding have reported that a weighted G 
matrix can produce better genomic predictions than the original unweighted G using real and 
simulated data (e.g. Su et al. 2014; Zhang et al. 2016). Here, we presented a first study 
confirming the benefits of using the SNP weighting approach for genomic prediction in plant 
breeding. 

Several methods have been proposed to derive the weighting factors used to compute G. 
Most methods are based on using external weights, either from significant SNPs identified in 
a previous GWAS (de los Campos et al. 2013; Zhang et al. 2014) or from the posterior 
variances of marker effects estimated by Bayesian analysis (Zang et al 2010; Su et al. 2014). 
Our study used an alternative approach based on the iterative procedure developed by Wang 
et al. (2012). In this case, SNP weights are directly derived within the linear mixed model 
framework by converting GEBV into SNP effects and these weights are optimized iteratively 
to achieve higher predictive ability. Previous comparisons of weighting methods have shown 
minor differences in predictive performance (e.g., Wang et al. 2012; Su et al. 2014). The main 
advantage of the weighting method applied to K-BLUP in Chapter 5 is that weights are 
obtained without requiring additional GWAS or Bayesian analysis. In this Chapter, locus-
specific variances were assumed since weights were applied to individual SNPs. An 
alternative is to assign common weights for groups of SNPs, where SNPs can be grouped 
based on a fixed length of genomic region, or based on a fixed number of adjacent SNPs. 
Some studies have shown that the group-marker weighting can reduce bias of GEBV and 
slightly increase prediction accuracy compared to single-marker weighting, apparently due to 
a reduction in the uncertainty of estimated weights (Su et al. 2014; Zhang et al. 2016). These 
studies used high-density SNP chips (> 45K SNPs); the differences between both weighting 
approaches still need to be investigated under lower marker densities. 

Finally, a suitable feature of the method used in Chapter 5 is that the weighted K matrix 
can be directly used in different linear mixed models, providing a flexible framework for 



Chapter 6: General Discussion 
 

106 
 

model formulation. Furthermore, the SNP weights are based on information that is relevant 
for genomic prediction not only in the target breeding population but also in the TPE of 
interest. For instance, we computed environment-dependent weights derived from estimated 
SNP effects for yield under drought and under non-stress environments, which were the 
specific environmental condition of interest for improving adaptation. Although computing 
environment-dependent SNP weights had negligible effect on predictions in our study, mainly 
due to the high additive-genetic correlation between D-ET and W-ET, more benefits could be 
expected from this approach for genomic prediction in a TPE with stronger G×E effects. 

In summary, results from Chapter 5 have proved that combining pedigree and genomic 
information while accounting for locus-specific variances with weighted K-BLUP can be very 
effective in increasing prediction quality of parental breeding values and should be 
implemented for improving grain yield productivity of sorghum through GS. 

6.4.  Perspective and future research 

This thesis explored statistical modelling strategies to cope with different challenges 
encountered in modern plant breeding. Although the research presented in this thesis was 
performed using data from sorghum and the discussion of results was mainly concentrated on 
sorghum breeding, the methodologies and outcomes of this thesis are generally relevant for 
other crops as well. In addition, the results of the analyses presented in this study provide a 
framework for future research; some directions are suggested in the following paragraphs. 

An important initial step in the plant breeding pipeline is the appropriate analysis of 
genotypes’ performance in individual field trials. Chapter 2 showed how the new method for 
spatial adjustment of field trends, SpATS, can be applied to simplify the analysis of series of 
plant breeding trials while obtaining competitive results when compared to the more elaborate 
conventional method. This study focused in on modelling spatial correlations for traits that 
were measured at a single time. However, due to recent developments in high throughput 
phenotyping techniques, the breeder is increasingly having access to series of repeated 
measurements of the same trait over time. Data is also collected at multiple times in breeding 
trials of perennial crops, such as sugarcane or forage grasses, where genotypes are harvested 
repeatedly during the experiment (Pastina et al. 2012; Piepho and Eckl 2014). For these 
situations, an interesting area of research would be the extension of the SpATS method to 
account for spatial correlation as well as the temporal correlation induced by the repeated 
measures nature of the data. Smoothing spatio-temporal data using a three-dimensional P-
spline function has been previously proposed in the literature (e.g., Lee and Durbán 2011). 
However, more research is still needed to adapt this methodology to the specificities of plant 
breeding trials. 



Chapter 6: General Discussion 
 

107 
 

The rest of the research presented in this thesis focused on evaluating different modelling 
strategies to improve genomic predictions of parental breeding values in sorghum (Chapters 
3, 4 and 5). This topic is particularly relevant for sorghum and other hybrid crops since the 
implementation of GS opens the possibility to perform early selection of parental lines on the 
basis of GEBV instead of using testcross progeny testing, reducing time and cost of field 
evaluation. Chapter 3 started by exploring the relative value of using genomic information 
instead of traditional pedigree-based information for prediction of breeding values. It was 
demonstrated that replacing A by G in prediction models was always beneficial to improve 
predictive ability for different traits. However, the best predictive results were achieved when 
both relationship matrices were combined optimally. It should be noted that the results are 
dependent on the quality of information contained in A and G. We used a deep and well-
curated pedigree, and thus little improvement in the information provided by A can be 
attained. A remaining question is, however, if the complete pedigree or a reduced number of 
generations should be used to optimize predictive ability of combined models. Additionally, 
for computation of G all available SNPs were used, following a pure GS approach, i.e., 
assuming that all markers are in LD with at least one QTL controlling the trait of interest. 
However, an alternative opportunity for research may be to evaluate the effect of computing 
G using SNPs that were previously selected based on their effects on the trait of interest, as 
assessed from GWAS. While this option may not be attractive for grain yield, the use of pre-
selected SNPs could be more suitable for other traits, such as stay-green and flowering time, 
for which significant QTL regions have been identified in sorghum (Mace et al. 2013; Borrell 
et al. 2014b). 

Chapter 4 investigated if genomic predictions for yield and drought adaptability in 
sorghum can be further improved by exploiting information from several traits simultaneously 
through joint multi-trait analysis. We concluded that this methodology is effective to increase 
the quality of predictions for both traits when plant height information is also incorporated in 
multi-trait genomic models. The research considered traits that are routinely measured in 
sorghum—and other crops—breeding programs using traditional phenotyping procedures. In 
recent years, remote sensing and hyperspectral imaging have facilitated low-cost and efficient 
collection of data on a large number of genotypes for many “new” traits that are associated 
with yield, such a spectral vegetation indices and canopy temperature (Montesinos-López et 
al. 2017). Future research should investigate the application of the multi-trait approach 
developed in Chapter 4 to make use of these new phenotypes as auxiliary traits to predict 
yield and stay-green in sorghum. 

While Chapters 3 and 4 considered multi-environment genomic prediction across the 
whole TPE, Chapter 5 also addressed predictions for specific types of environments within a 
subdivided TPE. The latter Chapter provided a first insight on how information from yield 
performance in drought stress and non-stress environments can be used to improve GS for 
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adaptability in sorghum. The main outcome of the research is that G×E  should be modelled 
in genomic models not only for predicting specific adaptation, but also for broad adaptation 
across the TPE. A potential limitation of this study lays on the classification of the 
environmental types since we used only the presence of stay-green phenotype as a general 
indicator of drought conditions. This classification may be masking stronger G×E effects 
because the variations in the degree of drought stress within D-ET are ignored. More refined 
conclusions on sorghum adaptation may be obtained in future studies by using better 
definitions of environmental types, for instance, based on direct characterization of water 
availability patterns (Bustos-Korts et al. 2019; Rincent et al. 2019). 

Interestingly, important improvements in prediction of grain yield were achieved when 
heterogeneous variances of SNP effects were accounted for in genomic analysis (Chapter 5). 
This finding suggests that using the SNP weighting method can be an effective strategy to 
optimize predictive performance when working with low marker density, even for traits that 
are largely polygenic in nature. Our study on weighted K-BLUP was restricted to the use of 
grain yield data alone. An interesting extension of this method would be to include 
information from other traits associated with yield in a multi-trait analysis. For this, multi-trait 
models should accommodate not only heterogeneous variances of SNP effects for each trait, 
but also heterogeneous covariances of SNP effects between traits. The multi-trait weighting 
approach has been recently implemented in G-BLUP for the animal breeding context using 
simulated data (Karaman et al. 2018). However, the performance of this approach still 
remains unexplored for real applications in plant breeding. 

In summary, results from this thesis show promising prospects for the use of GS in 
sorghum breeding programs. One of the major obstacles for the deployment of GS in existing 
breeding programs is still the high investment costs required. In this context, the adoption of 
the modeling methodologies implemented in this thesis may be valuable to make efficient use 
of all sources of available information, contributing to close the gap between prospects and 
real application of GS. 
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Summary 
 
The increasing global food demand in the context of climate change is a major concern of the 
21st century. Developing crop varieties with improved adaptability to variable environmental 
conditions might be crucial to ensure food supply. Sorghum [Sorghum bicolor (L.) Moench] 
is a staple cereal crop in semi-arid regions of the world and is also grown worldwide as feed 
and bioenergy crop. Its drought-tolerance ability makes it a strategic crop for sustainable grain 
production. Modern approaches to quantitative genetics and statistical models such as 
genomic-assisted breeding techniques offer new opportunities for further improvements in 
crop productivity and adaptability. Compared to other major cereal crops such as maize and 
wheat, the application of these approaches remains largely unexplored for grain sorghum. The 
motivation of this thesis is to implement statistical models that exploit information from 
phenotypic, pedigree and genomic data for improving genetic evaluation and selection in 
sorghum breeding. 

Chapter 2 assessed the performance of a novel method for spatial analysis of plant 
breeding field experiments based on two-dimensional smoothing with P-splines. This method 
was evaluated in comparison with the conventional spatial models by considering the 
improvement in precision and predictions of genetic effects in early generation sorghum 
breeding trials. The Chapter shows that both spatial methods produced equivalent 
performance. Differences in model parameterization as well as the advantages of the new 
spatial approach for routine application are discussed. 

In Chapter 3, the impact of using pedigree and genomic information on prediction quality 
was explored for different traits in sorghum. For this, the Chapter proposes to use BLUP 
models fitting weighted combinations of pedigree and genomic relationship matrices, where 
the best-predictive combination is identified empirically in each prediction scenario. Results 
showed that the use of a merged pedigree–genomic matrix always improved predictive ability 
and unbiasedness of prediction relative to conventional G-BLUP, mainly for the traits with 
lower heritabilities. Based on these outcomes, the inclusion of pedigree information in 
genomic models is recommended to optimize predictions when the additive variation is not 
fully explained by markers. 

Chapter 4 presents an extension of the study in Chapter 3 to the context of multi-trait 
genomic prediction. Specifically, we assessed the capacity of multi-trait models to improve 
genomic prediction for grain yield and stay-green in sorghum by using information from 
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correlated auxiliary traits. In general, results showed that genomic prediction for both target 
traits can be enhanced by combining information from specific sets of traits. Predictions from 
conventional multi-trait G-BLUP were also optimized by combining pedigree and genomic 
information.  

Chapter 5 investigated the effect of modelling genotype-by-environment interaction (G×E) 
on genomic prediction for grain yield in drought-stress and non-stress environments. Results 
indicated that accommodating G×E in genomic models was beneficial to improve the quality 
of prediction for specific adaptation as well as for broad adaptation to both types of 
environments. This Chapter also tested if better genomic predictions can be obtained by 
accounting for heterogeneous variances of marker effects. We found that weighting individual 
markers based on estimated locus-specific variances produced important improvements in 
predictive performance of genomic models, even for a largely polygenic trait such as grain 
yield. 

To conclude, this thesis deals with different challenging aspects that may affect genetic 
evaluation in modern sorghum breeding. Specifically, several statistical modeling strategies 
making use of different sources of information have been proposed and assessed. The findings 
presented in this thesis are expected to contribute to increase the efficiency of selection 
schemes not only for sorghum but for crops in general. 
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