
 

On the complexity of model complexity: Viewpoints across the geosciences 

Baartman, J. E. M., Melsen, L. A., Moore, D., & van der Ploeg, M. J. 

 

This is a "Post-Print" accepted manuscript, which has been Published in "Catena" 

 

This version is distributed under a non-commercial no derivatives Creative Commons 

 (CC-BY-NC-ND) user license, which permits use, distribution, and 

reproduction in any medium, provided the original work is properly cited and not 

used for commercial purposes. Further, the restriction applies that if you remix, 

transform, or build upon the material, you may not distribute the modified material. 

Please cite this publication as follows: 

Baartman, J. E. M., Melsen, L. A., Moore, D., & van der Ploeg, M. J. (2020). On the 

complexity of model complexity: Viewpoints across the geosciences. Catena, 186, 

[104261]. https://doi.org/10.1016/j.catena.2019.104261 

You can download the published version at: 

https://doi.org/10.1016/j.catena.2019.104261 

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.catena.2019.104261


1 

Title: 1 

On the complexity of model complexity: viewpoints across the geosciences 2 

  3 

Authors: 4 

Jantiene EM Baartman1, Lieke A Melsen2, Demie Moore1, Martine J van der Ploeg1,2 5 

 6 

1 Soil Physics and Land Management Group, Wageningen University, Wageningen, The 7 

Netherlands 8 

2 Hydrology and Quantitative Water Management Group, Wageningen University, 9 

Wageningen, The Netherlands 10 

 11 

Corresponding author: 12 

Jantiene E.M. Baartman 13 

Soil Physics and Land Management Group (SLM) 14 

Wageningen University, Wageningen, The Netherlands 15 

Postal address: PO Box 47; 6700 AA Wageningen, The Netherlands 16 

Visitors’ address: Droevendaalsesteeg 4, 6708 PB, Wageningen, The Netherlands 17 

  18 

E-mail: jantiene.baartman@wur.nl 19 

Telephone: +31 317 486131 20 

 21 

  22 

*Revision, Unmarked
Click here to download Revision, Unmarked: Manuscript_Baartman et al_model complexity_R2.docx

mailto:jantiene.baartman@wur.nl
http://ees.elsevier.com/catena/download.aspx?id=565223&guid=e77aa68e-2ea3-4f3a-8a0c-7fe28493b46b&scheme=1


2 

Abstract 23 

It is the core task of geoscientists to gain insight into the complex systems of nature. 24 

Yet, complexity may be perceived very differently and a plethora of models with different 25 

degrees of complexity is available. How do we, geoscientists, decide what model 26 

complexity is warranted? Does this differ among disciplines? And, how do we even define 27 

model complexity? We developed a short questionnaire to investigate the geoscientific 28 

community’s views on complexity in models. The response was overwhelming, with 618 29 

completed responses. The results show that the number of processes explicitly included 30 

and the number of interactions / feedbacks incorporated were seen as important 31 

determinants of complexity. Confidence was not per se higher in the simulations of a 32 

complex model compared to a simple one. Interestingly, neither gender, the discipline 33 

within the geosciences, nor career stage or work sector, explained the characterization of 34 

model complexity. The results of the questionnaire demonstrate that there is no general 35 

consensus on how model complexity is perceived or should be defined, and that formal 36 

definitions are not broadly or generally accepted. In an environment seeking greater 37 

collaboration and interdisciplinarity, these results indicate the need for conscious 38 

dialogue about this topic among different model users. 39 

 40 

Keywords: model complexity, geosciences, perception, questionnaire 41 

  42 
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1. Introduction 43 

Nature is complex and if geoscientists are ever to understand its intricate feedbacks 44 

there is a need for increased collaboration across fields/disciplines of geosciences (Paola 45 

et al. 2006, Liu et al. 2007, Van der Ploeg et al. 2017). Unfortunately, that seems to be 46 

easier said than done for various reasons, including: 1) Interdisciplinary work is more 47 

difficult to fund (Bromham et al. 2016), 2) Different approaches exist to address 48 

complexity, reductionist and synthesist/hierarchical (Paola 2011, Kleinhans et al. 2005), 49 

the choice  often driven by data availability (Grayson and Blöschl, 2000), 3) Scaling of 50 

environmental processes is possible only if they can be described by the same set of 51 

equations, which is often not the case (Roth, 2008, Van der Ploeg 2017), 4) Model 52 

selection may be driven by familiarity (Addor and Melsen, 2018). While these and 53 

multiple other factors make collaboration within and across disciplines challenging, it is 54 

our view that different approaches to addressing complexity, in addition to being a topic 55 

on its own, exacerbates the other challenges, and therefore is an important starting 56 

point in the quest for increased collaboration in geosciences.  57 

 58 

Choices about the level of complexity are an inevitable part of the scientific realm, 59 

controlled by, among other things, funding and available time. While it is the core task of 60 

geoscientists to gain insight into this complex system, such differences may lead to 61 

problems when applying for funding, or working together on a research project, and may 62 

in essence hamper scientific progress to better understand nature. 63 

 64 

Understanding nature often involves use of numerical models, ranging from simple linear 65 

equations to complicated frameworks of multiple models including feedbacks and 66 

emergent behaviour, crossing scales and disciplines. Frameworks for best practice in 67 

environmental model use exist  (Jakeman et al., 2006), including a sceptical review of 68 

the model at every step of development and application. Given that all geoscientists 69 

study a complex system, the Earth, and different aspects of that complex system, it is 70 

not surprising that a plethora of models with different degrees of complexity exists. It is 71 
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conceivable and understandable that different disciplines apply models for different 72 

applications or purposes (Desjardins et al., 2018), such as forecasting (e.g. Weerts et 73 

al., 2011), what-if scenario analysis (e.g. Panagos et al., 2015; Grum et al., 2017) or for 74 

improved process understanding (e.g. Paola and Leeder, 2011; Veldkamp et al., 2017), 75 

this can result in different perceptions of model complexity. However, in light of the need 76 

for increased collaboration, these differing perceptions of complexity raise a number of 77 

questions. How do we, geoscientists, make our decisions on what degree of model 78 

complexity is warranted or justified? Does this differ among disciplines? And, how do we 79 

even define model complexity? These questions, and more, need answers in order to 80 

understand current perspectives and develop approaches that allow for more 81 

interdisciplinary collaboration. Moreover, increased clarification and understanding of 82 

how current approaches differ, and the reasoning behind them, may further the ability of 83 

the geoscience community to address the complexity of nature. 84 

 85 

Therefore we set out to learn how geoscientists, whose disciplines essentially describe 86 

the same part of the Earth system but who often choose different approaches to both 87 

measuring and modelling, view complexity in models. To do so we developed a short 88 

questionnaire which was distributed through social media and geoscientific mailing lists. 89 

Our starting hypothesis was that perceptions regarding model complexity would differ by 90 

discipline. The response was overwhelming, with 200 responses on the first day and 91 

more than 600 fully completed within one month. In addition, we received multiple 92 

responses from authors in various geoscience disciplines, who had published their 93 

viewpoint on complexity, further reflecting the relevance of this discussion. This paper 94 

presents our findings, starting with an overview of the various definitions of model 95 

complexity that we received and could find in the literature, and then reporting on the 96 

findings of the questionnaire. Discussion of the results is organized around two related 97 

questions: 1) Addressing complexity across the geoscience realm – what can we learn 98 

from each other? and 2) Which gaps - if any - need to be bridged to better address 99 

complexity and increase interdisciplinary collaboration? 100 
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 101 

2. Definitions of and dealing with model complexity 102 

What became quickly evident when reviewing what we received in response to the 103 

questionnaire and found in the literature was that a multitude of definitions for and 104 

approaches to model complexity exist, within and between disciplines. As noted by Lloyd 105 

(2001) and Guthke (2017) a strict definition of model complexity does not exist. 106 

Therefore, this section does not aim to offer a complete overview of definitions across all 107 

disciplines of the geosciences. Rather, we present a variety of examples of how model 108 

complexity is viewed in this discipline of research, to set the stage for our study. 109 

Interestingly, in addition to the many existing definitions of model complexity, we noted 110 

many publications in which authors refer to model complexity without actually providing 111 

their definition for it. Perhaps authors assume their definition is the generally shared 112 

one. As the rest of this section will show, this assumption generally does not hold.  113 

 114 

For ecological modelling purposes, García-Callejas and Araújo (2016) mention the, in 115 

their opinion, “loose definition” of model complexity, as: having to perform a larger 116 

number of operations to obtain the desired outcome for data that are more difficult to 117 

comprehend. Within the context of Earth observational networks Baatz et al. (2018) 118 

define it differently: inclusion of multiple disciplines (or processes) and ecosystem 119 

compartments may increase model complexity. 120 

 121 

Within hydrology, model complexity is defined more than once in terms of process and 122 

spatial complexity (Seibert et al. 2019). Process complexity addresses the number of 123 

hydrological processes that the model explicitly represents. Spatial complexity addresses 124 

the degree of spatial discretization and connectivity (Clark et al., 2016), such as 125 

“spatially explicit models with different degrees of spatial discretization and connectivity, 126 

and spatially implicit lumped hydrologic models”. Shoups and Hopmans (2006) use 127 

slightly different wording and include temporal complexity; model complexity is defined 128 
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by them in terms of: amount of relevant hydrological processes and the spatial and 129 

temporal discretization of a numerical simulation model. 130 

 131 

In the context of pyrolysis Bal and Rein (2013) posit that an increase in complexity 132 

depends on inclusion of a higher number of mechanisms, resulting in a higher number of 133 

parameters on physical properties (effective properties), mathematical constants, 134 

experimental constants and calibration factors. In their view increasing complexity leads 135 

to increasing uncertainty. The appropriate level of complexity is a trade-off between 136 

reducing the error of prediction and the increase of uncertainty of the prediction. 137 

Nevertheless, choices in model complexity are often subjective. 138 

 139 

Wainwright and Mulligan’s book on Environmental Modelling (2013) define five types of 140 

model complexity, 1. Process complexity, 2. Spatial complexity, 3. Temporal complexity, 141 

4. Process inclusivity, 5. Integration of feedback loops. In their view, an optimal model is 142 

one that contains enough complexity to explain observed phenomena or emergent 143 

behaviour. 144 

 145 

Instead of defining model complexity directly, Larsen et al. (2016) focus on a clear 146 

definition of the detail that is needed to appropriately address complexity. They 147 

distinguish between representational detail - such as the number of state variables, 148 

processes, interactions, and spatiotemporal extent, and computational detail - such as 149 

spatiotemporal resolution, and mechanistic versus phenomenological description. Model 150 

complexity in this definition then refers to high computational detail.  Along the same 151 

line of thought, Getz et al. (2018) present a complexity typology for ecological models, 152 

and categorize them according to three types of complexity: 1. Process complexity, 153 

which refers to the amount of detail for the (in)dependent variables, and includes 154 

transformations, deterministic vs stochastic processes and scale; 2. Structural 155 

complexity, referring to the amount of detail for the functions that describe the 156 

dependence of the independent variables on the dependent variables, and includes 157 
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spatiotemporal patterns, feedback mechanisms, traits and hierarchy; and 3. Utility 158 

complexity, which refers to the purpose for which the model is going to be used, such as 159 

exploratory, management and/or fidelity. These three complexities then make up a 3D 160 

matrix in which models can be placed. 161 

 162 

In addition to the definitions of complexity, ways to quantify the level of complexity have 163 

been proposed as well. Sivakumar and Singh (2012) demonstrate the correlation 164 

dimension method to identify the catchment system complexity for streamflow data. 165 

Snowling and Kramer (2001) present an index of complexity, in which the number of 166 

state variables, number of processes flowing to or from a state variable, the number of 167 

parameters, and the number of mathematical operations are used to rank the models 168 

relative to each other. Shoups et al. (2008) discuss model complexity control within the 169 

discipline of hydrology. Complexity control in general consists of 1. Specification of 170 

model structures with varying degree of complexity, and 2. A check on the ability of the 171 

specified models to echo observations. In their paper they describe a few complexity 172 

definitions, which can be tied to statistical theory. One of these is Aikaike’s information 173 

criterion (Aikaike 1970), in which model complexity is defined as the number of 174 

parameters related to data availability. A disadvantage of this method is the underlying 175 

assumption of infinite observations. Another method that addresses this and works for 176 

finite observations is structural risk minimization proposed by Cherkassky and Mulier 177 

(2007). It includes the Vapnik-Chervonenkis dimension, which is related to a model’s 178 

data fitting flexibility, as an expression of model complexity. So, even though definitions 179 

to quantify model complexity can be helpful in ranking models, the multitude of available 180 

ways to do this quantification still makes a comparison of complexities challenging.  181 

 182 

If models are to be used for management or policy, a different way of addressing the 183 

needed level of complexity can be to involve stakeholders right from the start in a 184 

‘shared vision model.’ This was done for regulation of flows and water levels in the Lake 185 

Ontario and the St.Lawrence River, USA/Canada (Pete Loucks, personal communication). 186 
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Interestingly, we did not find or receive any other references that dealt with defining 187 

complexity where stakeholders were involved. 188 

 189 

It goes without saying that the multitude of definitions for and approaches to model 190 

complexity creates problems or at least challenges for scientists to collaborate or 191 

advance across or within geoscience disciplines. We also think that the efforts to clarify 192 

or propose new definitions and approaches to this topic, and the rapid and enthusiastic 193 

response to our questionnaire, indicate that this is a recognized challenge. The question 194 

is, how to move forward and accomplish the vision contained in the words of Grand 195 

(2000) in “Creation: Life and how to make it”: Complexity is that which contains high 196 

information content with high utility, if it only contains high information content (or high 197 

amounts of involved processes) it is merely complicated. 198 

 199 

3. Methods 200 

 201 

3.1 Questionnaire 202 

To assess the opinion of as many people as possible, both in and outside academia, we 203 

developed a short questionnaire using SurveyMonkey software. Based on expert 204 

recommendations, the questionnaire was kept short, i.e. possible to fill out within 5-10 205 

minutes, in order to get many replies. The questionnaire was pilot-tested using a panel 206 

of 10 people from both within and outside our institute and ranging in age / career 207 

development stage. The main changes after testing included rephrasing of some of the 208 

questions to make them clearer / less ambiguous, changing the number of options to 209 

select from in answering the question from one to multiple options (e.g. for field of 210 

work), addition of answer options that were suggested by the test panel and adding the 211 

opportunity to give additional comments at the end of the questionnaire. It was then 212 

launched in mid-October 2018 to personal contacts and science networks using email 213 

lists of the community that were known to us, such as ‘geomorph-list’, Gilbert Club 214 

mailing list, About Hydrology list (see reference section for links to these lists), and 215 
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through social media (twitter, LinkedIn). The questionnaire was closed after almost one 216 

month on 12 November 2018. 217 

 218 

The complete questionnaire can be seen in the supplementary material. It was split into 219 

two parts, one with background questions and one with questions related to people’s 220 

opinion on model complexity. Questions in part one were related to work sector (i.e. 221 

academia, public sector, private sector), career stage (from (under)graduate 222 

student/intern to company owner/emeritus professor), primary field of work/discipline 223 

(e.g. hydrology, soil science, geomorphology etc.), age class and gender. Questions in 224 

the second part related to (i) the use of models, (ii) opinions on what models are or can 225 

/ should do, (iii) how people characterise complexity in models, (iv) the relation between 226 

model complexity and uncertainty, (v) factors that impact the decision to use a 227 

simpler/more complex model and (vi) opinions on how to use model complexity and 228 

factors that warrant using (more) complex models. Questions were designed as 5-point 229 

Likert scale questions (5 scales from strongly disagree to strongly agree), questions for 230 

which only one answer could be chosen and questions where multiple answers could be 231 

selected. For details, see the complete questionnaire in the supplementary material. 232 

 233 

3.2 Data analysis 234 

A total of 682 responses to the questionnaire was collected. Out of these 682, 618 235 

respondents filled out the complete questionnaire. Since all questions were compulsory 236 

to fill out in order to continue to the next question, incomplete responses indicated 237 

respondents that had quit the questionnaire at some point. For consistency, we only 238 

used the 618 complete questionnaire results for the analysis; the 64 incomplete 239 

responses were omitted.   240 

 241 

The SurveyMonkey webtool provided the questionnaire results both in Excel format and 242 

in CSV format. The data from the complete sample of respondents was analyzed using 243 

Excel (discussed in Results Section 4.1). Analysis of the responses of different sub-244 
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groups of the sample was conducted using R version 3.4.3 (R Core Team, 2013; 245 

discussed in Results Section 4.2). Responses to questions were split into groups based 246 

on responses to other questions. For example, the responses to the question ‘How would 247 

you characterize complexity?’ were split based on the discipline of the respondent. If 248 

respondents had filled out more than one option - for example, two disciplines such as 249 

hydrology and soil science - their response is accounted for in the sub-groups of both 250 

disciplines.  251 

 252 

A total of 47 different combinations of groups and answers were assessed, representing 253 

all sensible combinations of general questions and model complexity questions. For each 254 

combination, bar plots were created, which were visually inspected to identify patterns in 255 

the response. If any patterns were identified, the relationship was statistically tested 256 

with the Chi-squared Test of Independence. This test was chosen because it is non-257 

parametric and can be applied to categorical (nominal) data. The obtained p-values have 258 

been interpreted in line with the most recent guidelines in statistics as discussed in 259 

Wasserstein et al. (2019) and are reported with the results. We therefore refrain from 260 

any further reporting on whether relations are ‘significant’. 261 

 262 

4. Results 263 

 264 

4.1 Questionnaire results 265 

 266 

4.1.1 Background questions 267 

The majority of the respondents work in research, either in academia (67%) or in the 268 

public sector at a research institute (19%), while almost 6% work in consultancy. Over 269 

60% of the respondents were rather young (25-34 and 35-44 years old) and two-thirds 270 

(69%) were male versus 29% female. The career stage of the respondents corresponded 271 

with their relatively young age, with over half being graduate (MSc and PhD) students 272 

and post-docs in academia. None the less, senior researchers and assistant and 273 



11 

associate professors together made up 25% of the respondents. Outside academia, 274 

respondents were mainly mid-career (31%) and senior (32%) researchers/consultants, 275 

with a fair representation of juniors (19%). 276 

 277 

Regarding field of work, respondents were allowed to select multiple answers. More than 278 

half of the respondents (54%) did so, indicating that they do not relate their work 279 

strictly to one discipline. Where only one answer was given, most people worked in 280 

hydrology, followed by geomorphology, soil science and environmental sciences (Fig. 1, 281 

dark coloured part of the bars). The light coloured part of the bar in Fig. 1 indicates the 282 

total number of respondents who selected that field of work in combination with any 283 

other. 284 

 285 

>> Fig. 1 approximately here 286 

 287 

In terms of model use, the majority of respondents work with models daily or weekly (27 288 

and 35% respectively), while 20% use a model regularly (e.g. once a month on 289 

average). Respondents use models in various ways. Application of existing models was 290 

the most common use, with the purpose of investigating processes and their outcomes 291 

being the most frequently selected reason. Application of models for scenario analysis 292 

was the next most selected purpose. Model application to support policy and 293 

management was the least selected although still 32% of the respondents use models 294 

for this purpose.  295 

 296 

Modellers’ degree of (dis)agreement with a number of statements about model (use) in 297 

general (i.e. not yet about model complexity) are displayed in Fig. 2. Overall there was a 298 

tendency towards agreement with the statements. In line with the answers to the 299 

previous question on model use, respondents tended to (strongly) agree with the view 300 

that models are tools to investigate processes and their outcomes (95%; agree and 301 

strongly agree combined). There was also agreement on the view that models are 302 
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exploratory tools (87.3%), with slightly less agreement (83.9%, agree and strongly 303 

agree combined) on the view that models are a set of theories / used for hypothesis-304 

testing. The statement that models represent / predict reality was either not clear, or 305 

respondents did not have a strong opinion. Just over one third of the replies were neutral 306 

(34.9%), with slightly more in agreement (36%) and slightly less in disagreement 307 

(29.1%). A similar spread can be seen for the statement that models objectively 308 

represent our current state of knowledge. Strong agreement was expressed with the 309 

view that models support decision-making (85.6%, agree and strongly agree combined). 310 

More variation exists regarding the statement that models are useful when data is 311 

absent, with a small majority in agreement (49%, versus 27.1% disagreement). Most 312 

respondents (69.5%) agreed with the somewhat bold statement that ‘all models are 313 

wrong, but some are useful’ (a statement generally attributed to statistician George 314 

Box). 315 

 316 

>> Fig. 2 approximately here 317 

 318 

4.1.2 Model complexity questions 319 

Modellers were asked how they would characterize complexity in a model, with multiple 320 

selection of options allowed (14 options were given, plus the option ‘other, please 321 

specify’). Results are shown in Fig. 3. Clearly, the number of processes explicitly 322 

included and the number of interactions / feedbacks incorporated were seen as most 323 

relevant in terms of model complexity. A second group of answers selected relatively 324 

often was the representation of processes that act over multiple temporal or spatial 325 

scales, the number of input variables and the non-linearity of processes included. The 326 

length of the code, the ease of use of the model (e.g. GUI) and computer calculation 327 

time were not considered very important as characterising model complexity. Also, 328 

respondents did not think the data at one’s disposal compared to the required data was 329 

important for model complexity. The most commonly mentioned factor by respondents 330 

(n=49, about 8%) that chose the “Other” option related to number of parameters.  331 
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 332 

>> Fig. 3 approximately here 333 

 334 

Answers to the question of whether increasing model complexity results in increased or 335 

decreased uncertainty revealed a clear message: only 3% of the respondents thought 336 

uncertainty would decrease with increasing model complexity, and 15% thought it would 337 

increase. Also striking is the number of respondents who consider complexity and 338 

uncertainty to be unrelated (19%). The largest percentage of respondents, replied that 339 

‘it depends’, either on the duration, frequency and quality of available observations / 340 

measurements (25%) or on the number of different variables and states that are 341 

observed / measured (19%). (Data presented in following section, Fig. 7) 342 

 343 

The most important factor indicated for deciding whether to use a simple or more 344 

complex model was the research question at hand (Fig. 4). Secondly, the availability of 345 

input data was considered important, while the level of understanding of the system and 346 

the spatial and/or temporal scale at which the model would be applied were considered 347 

of less importance. In line with replies to the previous question, model runtime was not 348 

deemed very important at all, nor was the reputation of the model or the experience 349 

with the model in the respondent’s organisation.  350 

 351 

>> Fig. 4 approximately here 352 

 353 

Finally, the community’s opinions about how to deal with model complexity as 354 

represented by degree of (dis)agreement with seven statements, showed a high degree 355 

of agreement with two statements, agreement with two others and clear disagreement 356 

with the remaining three (Fig. 5). The greatest agreement (84% ‘strongly agree’ and 357 

‘agree’ combined, and less than 5% disagreeing) was with the statement that 358 

explanation of rationale for model selection in reports would increase understanding of 359 

relevance and usability of results. This was closely followed by the degree of agreement 360 
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that reduced complexity models can be as useful as complex models to increase our 361 

understanding of environmental processes (79% agreement, with a slightly larger 362 

number of respondents disagreeing). A majority agreed that discussion of model 363 

complexity should be a priority, with less than 10% disagreeing but a larger percentage 364 

of neutral replies. New observation techniques are seen as a justification to allow us to 365 

increase model complexity by more than 50% of respondents, while increased computer 366 

power was not seen as a good reason to do so by 50% of the respondents. The greatest 367 

amount of disagreement was with the statements that you can have more confidence in 368 

the simulations of a complex model as compared to a simple one (>60% disagree and 369 

<10% agree), and that models would be improved by making them more complex (95% 370 

disagree or neutral).  371 

 372 

>> Fig. 5 approximately here 373 

 374 

4.2 Data analysis results  375 

In this section, we present the results from relating answers to the different questions to 376 

each other in order to explore which factors influence one’s characterization of model 377 

complexity.  378 

 379 

4.2.1 Discipline  380 

Our starting hypothesis was that the way model complexity is characterized can be 381 

related to the discipline of the modeller. Fig. 6 shows the response to complexity 382 

characterization, by research discipline. No clear pattern is revealed: The number of 383 

processes explicitly included in the model, and the number of feedbacks / interactions 384 

included are still the main characterization of complexity for the majority of the research 385 

disciplines. One exception is spatial planning, which places more value on 386 

“representation of processes over several scales” than “number of processes explicitly 387 

included”. Some other minor differences can be found, such as “calculation time” being 388 

slightly more important in meteorology compared to other disciplines, but here we have 389 



15 

to note that not all disciplines were equally represented and meteorology was the most 390 

underrepresented discipline. Also the Chi-square test confirms that no clear relationship 391 

exists between discipline and the definition of complexity (p=0.99), although the test is 392 

slightly less robust due to the high number of dimensions involved (10 fields, 14 393 

complexity-answers). 394 

 395 

>> Fig. 6 approximately here 396 

 397 

The results of the questionnaire therefore do not support our hypothesis. Also the 398 

response to the question of whether increased model complexity leads to increased or 399 

decreased model uncertainty, did not reveal clear patterns related to the discipline of the 400 

modeller, as can be seen in Fig. 7. There is a general agreement that model uncertainty 401 

does not decrease with increasing complexity. A relatively higher percentage of spatial 402 

planners believes that model uncertainty increases with increased complexity, whereas a 403 

relatively higher fraction of water quality modellers state that this depends on the 404 

variables and states of which observations are available. The Chi-square test confirms 405 

that no clear relationship exists between discipline and the perceived relation between 406 

model complexity and model uncertainty (p=0.65). 407 

 408 

>> Fig. 7 approximately here  409 

 410 

4.2.2 Other factors 411 

Fig. 6 shows that the way one would characterize model complexity is not necessarily 412 

influenced by the discipline of the modeller, despite different disciplines having different 413 

model uses (spatial planners work on average more for policy support, and 414 

meteorologists do, on average, less with scenario-analysis). None of the other factors 415 

investigated (age, gender, career stage, work sector, model experience) showed distinct 416 

differences in how one would characterize model complexity, except for a few small 417 

points. For example, “Number of input variables” as characterization of model complexity 418 
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decreases with increasing model experience, perhaps indicating that an experienced 419 

modeller knows how and where to collect the required input data and does not relate 420 

that to complexity of the model itself.  421 

 422 

A general lack of clear patterns also holds true for the question: “Which of the following 423 

do you think most impact your decision to select/use a simpler or more complex 424 

model?”, but we did observe one trend. Even though the Chi-square test indicates that 425 

no clear relationship exists between age and how to decide on warranted model 426 

complexity (p=0.63), some patterns are visible in individual answers. Whereas “The 427 

research question at hand” is by far the most selected answer among all groups, there 428 

was an interesting decline in selection of the options “Reputation of the model” and 429 

“Runtime” with increasing age. “Runtime” was selected by 9.3% of the respondents <25 430 

years of age, 5.6% of the respondents between 25-34, between 2.0 and 2.7% for 431 

respondents in the age groups between 35 and 64, and 0% for respondents >64. 432 

Consistent with this finding, we also observe a decline in “calculation time” as 433 

characterization of complexity with increasing age (from 26.6% of the respondents 434 

below 25 years old selecting this option, to 5.3% of the respondents >64 selecting it). 435 

This suggests that, apparently, older modellers are less impatient for models to produce 436 

fast output and/or have a different reference as to what is fast or slow (e.g. compared to 437 

how long a model would run more than a decade ago).  438 

“Reputation of the model” was selected by 7.0% of the respondents <25, between 2.9 439 

and 4.0% for all respondents between 25 and 64, and 0% by respondents >64. Model 440 

reputation might be more important for younger researchers since they cannot rely on 441 

their own track record and publishing using a model with a good reputation is perhaps 442 

easier than publishing with an obscure or new model.  443 

 444 

As shown in Fig. 7, the majority of the respondents do not believe that model 445 

uncertainty decreases with increased model complexity, irrespective of the discipline of 446 

the respondent. There is, however, a relation visible between frequency of model use, 447 
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and the belief that model uncertainty will decrease with increasing complexity, which 448 

also seems to be confirmed by the statistical test (Chi-square p-value is 0.076, although 449 

some caution should be taken in interpreting this value given the low number of 450 

respondents with limited modelling experience). Whereas 40% of the respondents that 451 

have used a model once (n=5) selected ‘decrease’, this number declines with increasing 452 

model use frequency; 7% for people who use models rarely (n=17) to 2.7% for people 453 

using models daily (n=174). This response can thus be related to experience with 454 

modelling. Furthermore, and in line with the ‘decrease’-answer, the ‘decrease’-group 455 

agrees, compared to the other groups, more with the statement “I have more confidence 456 

in the simulations of a complex model compared to a simple model”. Compared to the 457 

other groups, a larger portion of the ‘decrease’-group agrees with the statement that 458 

“Increased computer power is a good reason to increase model complexity ”. These 459 

results seem to imply that more experience with a model leads to more caution, or 460 

perhaps even suspicion, towards model complexity and increasing model complexity.  461 

 462 

Given that this is a special issue on women in geoscience, we also investigated 463 

differences between men and women on the perception of model complexity. Only a few 464 

minor differences were found. On the question ‘How would you characterize model 465 

complexity?’, the number of processes and the number of feedbacks/interactions are the 466 

two most chosen characteristics for both genders. However, from the female 467 

respondents a slightly higher fraction selected ‘feedbacks/interactions’, while from the 468 

male respondents, a higher fraction selected ‘processes’. Furthermore, scenario analysis 469 

and process investigation are the most frequent model uses for both genders. It should 470 

be noted however, that female respondents are underrepresented and that neither 471 

gender is equally distributed over career stage, discipline, and work sector, making it 472 

difficult to directly relate the described (minor) differences to gender alone. Generally, it 473 

can be concluded that gender does not influence characterization and perception of 474 

model complexity. Indeed, neuro-imaging of 1400 human brains revealed that 475 

male/female brain patterns cannot be distinguished from one another (Joel et al. 2015). 476 
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 477 

Summarizing, we find that the characterization of model complexity and the relation 478 

between model complexity and model uncertainty can to some extent be related more to 479 

model experience and age than to gender. 480 

  481 

4.2.3 Additional comments from respondents  482 

At the end of the questionnaire, respondents were given the opportunity to provide 483 

additional comments. Multiple people commented that, in many cases, their answer to 484 

many of the questions would be ‘it depends’, and feedback given on the questionnaire 485 

included that people expected a (clearer) definition of both ‘a model’ in general and 486 

‘model complexity’ in particular to be given. Several comments included a phrased 487 

definition of complexity: Quite a number of people commented in several ways that data 488 

availability is a key point. For example, ‘It doesn't matter that we can simulate all these 489 

complex, interacting processes if we don't have the data to parameterize the model’. 490 

Several comments related to model complexity mentioned that model parsimony is 491 

important and that a model should be as simple as possible, but not simpler. There were 492 

also multiple comments stating that increasing model complexity should only be done if 493 

it leads to improved results. A particular comment illustrating the ‘it depends’ position 494 

was  ‘the main point about model complexity is in the balance between the goal of the 495 

model (i.e., what answer at what scale is desired (specific case/generic) and what will be 496 

done with it (policy/decision support vs. testing proof of principle) and the uncertainty in 497 

data/knowledge available (can we provide input, assess sensitivity and uncertainty, do 498 

we have data to validate model(components)?)’. 499 

 500 

Additional points of attention that were raised included: Open access to model code, that 501 

is needed to generalise models and to improve their code; that we did not include 502 

assessment of regional origin or cultural background / formation of modellers, which 503 

could well be a factor distinguishing differences in opinions on model complexity; the 504 

‘trilemma’ of model choice: complexity versus precision versus communicability, which 505 
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can be related to both the need for open access of code and the use of the model 506 

(outcomes), e.g. for policy making. A remark on simple versus complex models was that 507 

he/she thought that complex models are needed to build good simple models and that 508 

simple models often follow complex models, because simplification is only possible if you 509 

can say something about the effect of simplification. 510 

 511 

5. Discussion 512 

 513 

As already noted, contrary to our hypothesis - perceptions regarding model complexity 514 

differ between disciplines within geoscience - we found no differences between 515 

geoscience disciplines. It is important to note that our survey results indicate the 516 

questionnaire mainly reached academia, and thus we cannot tell how model complexity 517 

is perceived by other groups of stakeholders working with models. The responses show 518 

very heterogeneous perceptions of model complexity, and seem to be more individual 519 

than related to science discipline or modeller type. In our opinion, this is even more 520 

worrisome than a difference in perception between disciplines because individual 521 

scientists often work within the same discipline and may implicitly assume their 522 

definition of model complexity is everyone’s definition. As an author team this is 523 

something we can attest to; despite having more or less similar backgrounds, during 524 

discussions we often had different ideas of some of the definitions discussed. 525 

 526 

What we can learn from each other is that although many of us may tend to think there 527 

are huge differences in perception of model complexity across science disciplines, in 528 

reality a colleague in the same office may view model complexity differently compared to 529 

our own perception. This also relates to one of the critiques mentioned in the comments 530 

given at the end of the questionnaire - the lack of a given definition of model (use) and 531 

model complexity in the questionnaire. As noted, we deliberately did not include a 532 

definition of model complexity, because it was not our aim to focus or restrict ourselves 533 

to discussing a particular definition; rather, we wanted to investigate modellers’ opinions 534 
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about complexity and investigate if and how they differed, e.g. between scientific 535 

disciplines. It is possible, however, that the questionnaire design was in line with our 536 

own definition of complexity and, therefore, not flexible enough to capture all definitions. 537 

The heterogeneity in responses demonstrates that the definition of complexity does not 538 

necessarily differ between disciplines, but does differ among individuals. The comments 539 

on the questionnaire seem to show that the definition of complexity includes many ‘it-540 

depends’-booleans, which can explain why so many definitions are present in the 541 

literature. 542 

 543 

What needs to be changed? From the high number of responses to our questionnaire and 544 

the various definitions of model complexity present in the literature, model complexity is 545 

clearly a topic that resonates within the geoscience community. Many of the authors 546 

notifying us of their publication on the topic were very opinionated about which definition 547 

we should be using in general. Such passionate opinions were also noticed by Guthke 548 

(2017) regarding the use of model complexity in groundwater hydrology. Although we 549 

did not find a difference between male and female perception of model complexity, from 550 

our literature search and responses received, male authors seem to be more concerned 551 

than female authors about the need for a strong definition. Seeing the makeup of the 552 

model user community within geoscience, a unified definition still seems a long way off.  553 

 554 

At the same time, other scientists call for reduced model complexity and exploratory 555 

modelling approaches. Exploratory modelling arises from the realization that simple 556 

processes can lead to complex phenomena (Larsen et al. 2014). Identifying the 557 

underlying processes by using simple models and connecting different components of the 558 

system is employed frequently to learn more about the processes and feedbacks, for 559 

example, for ecology (e.g., Tilman, 1994), hydrology (e.g., Porporato, D'Odorico, Laio, & 560 

Rodriguez‐ Iturbe, 2003), and geomorphology (e.g., Saco, Willgoose, & Hancock, 2007). 561 

However an opposite view, the notion that we first need to know the entire system 562 
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before we can simplify our models (i.e. that simple models follow more complex ones), 563 

also exists as expressed in one of the comments to the questionnaire. 564 

 565 

Guthke (2017) argues there is a need to define a defensible range of complexity, in 566 

terms of specific model goals and available observations, thereby bridging a goal 567 

oriented model complexity choice and a statistically motivated choice of model 568 

complexity. In addition to this suggestion, Larsen et al. (2016) present several potential 569 

strategies to decide on the level of detail (recall their definition of complexity), 570 

considering state variables, spatiotemporal dimension, spatial extent, boundary 571 

conditions, resolution, and representation of coupling. Such strategies, in combination 572 

with their presented decision tree may be instrumental in guiding discussions between 573 

involved actors about what level of detail representing model complexity is useful. Such 574 

discussion on model complexity has been noted as important by the respondents to the 575 

questionnaire. In light of the increasing call and need for interdisciplinary collaboration, 576 

these discussions must happen. 577 

 578 

6. Conclusions 579 

The evidence strongly suggests that the ultimate choice of how complex a model needs 580 

to be is determined by the actors involved. Therefore, we think it is better to not attempt 581 

to develop yet another, “better”, definition of model complexity. Combining the insights 582 

from the questionnaire with the multitude of definitions in the literature, we think and 583 

conclude that aiming for a single definition of model complexity is neither feasible nor 584 

desirable. 585 

 586 

Instead we deem it of much greater importance that geoscientists, in order to 587 

collaborate and communicate more effectively, clearly state and discuss how they 588 

address model complexity, in research proposals, projects, and publications. Just as data 589 

management has received increased attention, and data management plans are 590 

increasingly recognized as being for the common good, a model complexity management 591 
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plan could aide consortia of researchers and others in their progress towards 592 

understanding the complexity of nature. Therefore, following Grand’s advice, rather than 593 

making things more complicated by just adding another definition of complexity to the 594 

list, we aim for high information content with high utility, and suggest a practical 595 

approach to dealing with model complexity: never assume that a definition is generally 596 

accepted, always be explicit about your assumptions, ask about others’ perspectives and 597 

be clear about the approach you are taking and why. In this way, we can avoid, or at 598 

least greatly reduce, complications with complexity. 599 

 600 
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Highlights: 

- Response to our questionnaire was overwhelming with >600 complete responses 

- No difference in perception of model complexity was found between disciplines 

- Definitions and perceptions of model complexity were very heterogeneous 

- Model complexity is clearly a topic that resonates within the geoscience community 

- So: be explicit about your assumptions and clear about the approach you take and 

why 
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Figure captions 1 

 2 

Fig 1: Distribution of field of work of respondents. Dark coloured part of bar indicates 3 

number of respondents selecting only one field of work. Light coloured bar indicates the 4 

total number of times that field of work was selected in combination with another field of 5 

work. 6 

 7 

Fig. 2: Respondents replies to statements about models. 8 

 9 

Fig. 3: Respondents’ opinion regarding characterization of complexity in a model. Note 10 

that the total percentage exceeds 100% because respondents were allowed to select 11 

multiple options. 12 

 13 

Fig. 4: Respondents’ replies to what most impacts their decision to select / use a simpler 14 

or more complex model. Note that the total percentage exceeds 100% because 15 

respondents were allowed to select multiple options. 16 

 17 

Fig. 5: Respondents replies to statements about model complexity.  18 

 19 

Fig. 6:  Response to the question “How would you characterize model complexity?” 20 

divided over the different disciplines. Note that the total of the percentages exceeds 100 21 

since respondents were allowed to select multiple answers. Each bar indicates the 22 

percentage of that particular discipline that chose a specific option.  23 

 24 

Fig. 7. Response to the question “Does increasing model complexity lead to increased or 25 

decreased uncertainty in the model results?” divided over the different disciplines. The 26 

bars per discipline add up to 100, since each respondent could only select one answer. 27 

 28 
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