
The mechanics of soft 
porous solids: 

from hydrogel dynamics to 
fibrin compression

Melle Punter

M
elle P

u
n

ter
T
h
e m

ech
a
n
ics o

f so
ft p

o
ro

u
s so

lid
s

2020



Propositions 

 

1. From volume measurements on the (de)swelling dynamics 

of synthetic hydrogels in polymer solutions, the 

poromechanical properties of the hydrogel network and the 

diffusivity of the polymers within the hydrogel can be 

inferred.  

(this thesis) 

2. The poromechanical properties of soft (bio)polymer 

networks bonded to the plates of a commercial rheometer 

can be inferred from force measurements in a single ramp 

compression test.  

(this thesis) 

3. When the professional practice of a scientific discipline 

becomes engaged in political activism based on its own 

scientific findings, then this practice cannot credibly claim 

to strive for objectivity and thereby robs itself of its 

scientific prestige.  

4. Although the materialistic approach to science has yielded 

an impressive amount of scientific knowledge, it cannot be 

concluded that this approach is the sole source of truths 

about reality.  

5. Without a conscious exercise of the virtue of temperance, a 

society will find itself fighting fat-rich food instead of 

gluttony.  

6. When a society does not acknowledge the existence of 

timeless truths, then this society is bound to have a brief 

lifetime.  

 

Propositions belonging to the thesis, entitled 

 

The mechanics of soft porous solids: from hydrogel dynamics to 

fibrin compression 

 

Melle Tijmen Punter 

Wageningen, 3rd of Februari 2020 

 



The mechanics of soft
porous solids:

from hydrogel dynamics to fibrin
compression

Melle Tijmen Punter



Thesis committee

Promotor
Prof. Dr B.M. Mulder
Professor of Theoretical Cell Physics
Wageningen University & Research
Group leader Theory of Biomolecular Matter
AMOLF, Amsterdam

Other members
Prof. Dr E. (Erik) van der Linden, Wageningen University & Research
Prof. Dr D. (Daniel) Bonn, University of Amsterdam
Prof. Dr E. (Erik) van der Giessen, University of Groningen
Prof. Dr K.P. (Krassimir) Velikov, Unilever, University of Amsterdam

This research was conducted under the auspices of the Graduate School VLAG
Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences

The mechanics of soft
porous solids:

from hydrogel dynamics to fibrin
compression

Melle Tijmen Punter

Thesis
submitted in fulfilment of the requirements for the degree of doctor

at Wageningen University
by the authority of the Rector Magnificus

Prof. Dr A.P.J. Mol,
in the presence of the

Thesis Committee appointed by the Academic Board
to be defended in public

on Monday 3 Februari 2020
at 1:30 p.m. in the Aula.



Thesis committee

Promotor
Prof. Dr B.M. Mulder
Professor of Theoretical Cell Physics
Wageningen University & Research
Group leader Theory of Biomolecular Matter
AMOLF, Amsterdam

Other members
Prof. Dr E. (Erik) van der Linden, Wageningen University & Research
Prof. Dr D. (Daniel) Bonn, University of Amsterdam
Prof. Dr E. (Erik) van der Giessen, University of Groningen
Prof. Dr K.P. (Krassimir) Velikov, Unilever, University of Amsterdam

This research was conducted under the auspices of the Graduate School VLAG
Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences

The mechanics of soft
porous solids:

from hydrogel dynamics to fibrin
compression

Melle Tijmen Punter

Thesis
submitted in fulfilment of the requirements for the degree of doctor

at Wageningen University
by the authority of the Rector Magnificus

Prof. Dr A.P.J. Mol,
in the presence of the

Thesis Committee appointed by the Academic Board
to be defended in public

on Monday 3 Februari 2020
at 1:30 p.m. in the Aula.



Melle Tijmen Punter
The mechanics of soft porous solids: from hydrogel dynamics to fibrin compression
222 pages.

PhD thesis, Wageningen University, Wageningen, The Netherlands (2020)
With references, with summaries in Dutch & English

ISBN 978-94-92323-35-4
DOI https://doi.org/10.18174/511147

Deo gratias



Melle Tijmen Punter
The mechanics of soft porous solids: from hydrogel dynamics to fibrin compression
222 pages.

PhD thesis, Wageningen University, Wageningen, The Netherlands (2020)
With references, with summaries in Dutch & English

ISBN 978-94-92323-35-4
DOI https://doi.org/10.18174/511147

Deo gratias



Contents

Page

Chapter 1 Introduction 1
1.1 The history of mechanics: a topical and concise overview . . . . . . 2
1.2 Hydrogels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3 Biomechanics and fibrin fibers . . . . . . . . . . . . . . . . . . . . 19
1.4 Porous matter in industry . . . . . . . . . . . . . . . . . . . . . . . 23
1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Chapter 2 The swelling and compression of hydrogels in concentrated
polymer solutions 27
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Swelling and compression experiments . . . . . . . . . . . . . . . . 30
2.3 Relaxational dynamics model . . . . . . . . . . . . . . . . . . . . . 33
2.4 Poroelastic model . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.5 Conclusions and discussion . . . . . . . . . . . . . . . . . . . . . . 60
2.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Chapter 3 Poroelasticity of (bio)polymer networks during compression:
theory and experiment 90
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . 96
3.3 Theoretical framework . . . . . . . . . . . . . . . . . . . . . . . . 97
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.5 Conclusions and discussion . . . . . . . . . . . . . . . . . . . . . . 106
3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

CONTENTS vii

Chapter 4 Plate-sphere compression 136
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.2 Perturbation expansion around an incompressible solid . . . . . . . 140
4.3 Plate-sphere compression . . . . . . . . . . . . . . . . . . . . . . . 143
4.4 Conclusions and discussion . . . . . . . . . . . . . . . . . . . . . . 147
4.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Chapter 5 Scoop syneresis 152
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.2 Syneresis experiments: materials, methods and results . . . . . . . . 154
5.3 Two-cylinders model . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.4 Filter paper clogging . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.5 Validation experiments . . . . . . . . . . . . . . . . . . . . . . . . 171
5.6 Double network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.7 Conclusions and discussion . . . . . . . . . . . . . . . . . . . . . . 177

Chapter 6 General discussion 179
6.1 Hydrogel dynamics in polymer solutions . . . . . . . . . . . . . . . 180
6.2 Compression of (bio)polymer gels . . . . . . . . . . . . . . . . . . 182
6.3 Plate-sphere compression . . . . . . . . . . . . . . . . . . . . . . . 185
6.4 Scoop syneresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Appendices 188

Chapter A Dimensonal analysis 188
A.1 Complete physical relations . . . . . . . . . . . . . . . . . . . . . . 188
A.2 A frictionless pendulum . . . . . . . . . . . . . . . . . . . . . . . . 189
A.3 The Π-theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
A.4 A pendulum with friction . . . . . . . . . . . . . . . . . . . . . . . 192

Samenvatting 193

Summary 197

Acknowledgements 199

References 200



Contents

Page

Chapter 1 Introduction 1
1.1 The history of mechanics: a topical and concise overview . . . . . . 2
1.2 Hydrogels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3 Biomechanics and fibrin fibers . . . . . . . . . . . . . . . . . . . . 19
1.4 Porous matter in industry . . . . . . . . . . . . . . . . . . . . . . . 23
1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Chapter 2 The swelling and compression of hydrogels in concentrated
polymer solutions 27
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Swelling and compression experiments . . . . . . . . . . . . . . . . 30
2.3 Relaxational dynamics model . . . . . . . . . . . . . . . . . . . . . 33
2.4 Poroelastic model . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.5 Conclusions and discussion . . . . . . . . . . . . . . . . . . . . . . 60
2.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Chapter 3 Poroelasticity of (bio)polymer networks during compression:
theory and experiment 90
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . 96
3.3 Theoretical framework . . . . . . . . . . . . . . . . . . . . . . . . 97
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.5 Conclusions and discussion . . . . . . . . . . . . . . . . . . . . . . 106
3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

CONTENTS vii

Chapter 4 Plate-sphere compression 136
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.2 Perturbation expansion around an incompressible solid . . . . . . . 140
4.3 Plate-sphere compression . . . . . . . . . . . . . . . . . . . . . . . 143
4.4 Conclusions and discussion . . . . . . . . . . . . . . . . . . . . . . 147
4.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Chapter 5 Scoop syneresis 152
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.2 Syneresis experiments: materials, methods and results . . . . . . . . 154
5.3 Two-cylinders model . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.4 Filter paper clogging . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.5 Validation experiments . . . . . . . . . . . . . . . . . . . . . . . . 171
5.6 Double network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.7 Conclusions and discussion . . . . . . . . . . . . . . . . . . . . . . 177

Chapter 6 General discussion 179
6.1 Hydrogel dynamics in polymer solutions . . . . . . . . . . . . . . . 180
6.2 Compression of (bio)polymer gels . . . . . . . . . . . . . . . . . . 182
6.3 Plate-sphere compression . . . . . . . . . . . . . . . . . . . . . . . 185
6.4 Scoop syneresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Appendices 188

Chapter A Dimensonal analysis 188
A.1 Complete physical relations . . . . . . . . . . . . . . . . . . . . . . 188
A.2 A frictionless pendulum . . . . . . . . . . . . . . . . . . . . . . . . 189
A.3 The Π-theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
A.4 A pendulum with friction . . . . . . . . . . . . . . . . . . . . . . . 192

Samenvatting 193

Summary 197

Acknowledgements 199

References 200



Chapter 1

Introduction

1.1 The history of mechanics: a topical and concise overview 2

It is a privilege to be in a position to study the mechanical aspects of porous struc-
tures, because it is a rich and vast topic. Probably, the most common porous structure
we encounter in daily life is the soil on which we stand. The soil provides the basis
for all buildings due to its mechanical rigidity. At the same time, due to its porosity
it provides both a home for the soil fauna and it absorbs rainfall, thereby allowing
crops to grow. Within the home, we find porous water beads for decoration and a
porous sponge to clean. When a dry water bead is put into water, it typically takes
hours for the bead to swell. For a much larger sponge put in water, on the other hand,
it can take only seconds to be filled. This difference in penetration time depends on
the pore size and the elasticity of the materials. The water bead consists of a polymer
network with tiny pores that cause a relatively low permeability, that is, the ease with
which fluid can travel through a porous material. Moreover, with increasing elastic
modulus of the polymer network, that is, the resistance associated to deformation of
the network, the swelling time of a water bead decreases. The permeability and the
elastic modulus are important examples of the poromechanical properties of materi-
als. In this thesis, we mainly focus on the development of theoretical models which
allow for the experimental determination of these properties. In particular, using the
theory of poromechanics we model the dynamics of soft porous solids.

As we focus on the mechanical aspects of porous materials, we start the introduc-
tion by giving a topical and concise overview of the history of mechanics, and we
pay special attention to the history of the theory of porous media. After sketching
the historical background, we cover the scientific origin and the applications of the
materials on which our theoretical models have been tested: synthetic hydrogels and
fibrin gels. We end the introduction by providing an outline of the following research
chapters.

1.1 The history of mechanics: a topical and concise
overview

To situate this thesis in the whole of the body of scientific knowledge, we give an
overview of some of the historical developments which led to the main theoretical
framework which has been applied in this thesis: the theory of linear poroelasticity.
For the sake of brevity and relevance, we mainly focus on two important lines which
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1.1 The history of mechanics: a topical and concise overview 3

run within the voluminous history of mechanics; lines which lead from the ancient
origins of mechanics to the modern theory of poroelasticity. The first line is the devel-
opment of the concept of impetus, the assertion that a moving object actually contains
a certain quantity of movement in itself, instead of the idea that the movement of the
thing is perpetuated by its surroundings. The first line leads to the modern concepts
of inertia, linear momentum and (kinetic) energy: foundations of the modern theory
of poroelasticity. Second, we follow the evolution of the theories on the static equi-
librium of objects, which is historically closely connected to the principle of virtual
work or velocities, and can be illustrated by the classical lever problem: the determi-
nation of the equilibrium configuration of, for example, a balance. Treatments of this
problem have been preparatory for modern mechanics, culminating in the conserva-
tion of angular momentum. Early work on the lever problem contained the germ for
the principle of virtual work: an extremely flexible and versatile minimization prin-
ciple which nowadays is still used to derive the momentum balance for continuous
bodies, a foundation of continuum mechanics [1, 2].

1.1.1 Origins of the science of mechanics

Modern textbooks in physics, of which mechanics is a major subdiscipline, tend to
give practically no coverage of the history of mechanics [3, 4], and neither do most
doctoral theses. With this historical overview we deviate slightly from this tradition
and try to give a not too folklorish account of the history of mechanics [5, p. 53],
where we draw upon the work of historians of science. Indeed, historical awareness
helps one to understand why science is what it is in the present day, and the knowl-
edge of history allows one to appreciate and to scrutinize modern science, both in its
scientific and in its social aspects.

At the start of this historical overview, one of the founding fathers of science should
be acknowledged: Aristotle [6] (384–322 BC). Aristotle founded the famous Lyceum
in Athens and he was a giant in natural philosophy whose thinking is relevant even
today [7] in, for example, the philosophical interpretation of quantum mechanics [8].
In particular, we’d like to expound a little on his physica.

Interesting conceptual parallels can be drawn between Aristotle’s physics, that of
Isaac Newton (1642–1727), and that of Albert Einstein (1879–1955). Aristotle dis-
tinguished between natural motion and violent motion. Natural motion is that of

1.1 The history of mechanics: a topical and concise overview 4

bodies when ‘left to themselves’, whereas violent motion is caused by an external
agent, e.g., a rock is violently moved by someone who throws it. The place to which
each body naturally moves is for Aristotle determined by the more or less heavy el-
ements of earth, water, air and fire present in the body, or, in modern language, the
density of the body. Natural motion occurs vertically and brings the body to its nat-
ural place, where it remains. Violent motion, on the other hand, displaces an object
from its natural place: a stone is displaced by throwing it higher up on a mountain,
for instance. In his turn, Newton considers the motion of a body left to itself to be a
rectilinear uniform motion through space, that is to say, Newton’s law of inertia spec-
ifies the ‘natural motion’ of the body. External agents, however, can cause a ‘violent
motion’ by exerting a net force on a body, thereby causing it to accelerate and change
its state of motion [9, pp. 27,28]. Aristotle’s treatment of the dynamics of the place
of a body seems analogous to Newton’s treatment of the dynamics of the velocity of
a body. For Aristotle, a natural motion leads to a definite place of a body which it
keeps, whereas for Newton a body naturally keeps its velocity. For Aristotle a violent
motion changes the place of the body whereas for Newton the velocity of the body
is changed. This reflects a fundamental difference between the modern concept of
motion and that of Aristotle [10, pp. 5–9]. Furthermore, Einstein altered Newton’s
concept of ‘natural motion’ by posing that without external forces a body moves on a
geodesic in space-time, i.e., an object naturally retains its four velocity when moving
freely through space-time.

As a side note, during Aristotle’s reflections on the vacuum he already formulated the
essence of Newton’s first law: a body in vacuum will either stay at rest or will move
indefinitely until it collides with something. In the vacuum, however, he supposed a
body could not reach its natural place, causing Aristotle to regard the vacuum as an
impossibility and his reflections to remain only a thought [11, p. 22].

In modern times, Aristotle’s physics is often said to be simply incorrect or it is given
very little credit [12]. The fact remains, however, that Aristotle’s physics gave an
account of the motion of objects in agreement with, and restricted to, the capabilities
of common observation: it was an accurate qualitative account with a restricted range
of validity [9, p. 24]. The qualitative nature of his treatment is not surprising, as
the concepts he uses in his physics are not differentiated from concepts having a
more general significance [11, p. 20]. In the words of Rovelli [9, p. 23]: Aristotelian
physics, or more specifically Aristotle’s theory of local movement, is to be considered
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as “...a correct and non-intuitive approximation of Newtonian physics in the suitable
domain (motion in fluids) in the same technical sense in which Newton’s theory is an
approximation of Einstein’s theory”.

Impetus

For the concept of inertia, the historic thread runs all the way from Aristotle to New-
ton. Without a vacuum, Aristotle considered the (violent) motion of a body to be
perpetuated by the surrounding air, after the object is released by the external agent
that moves the body. The surrounding air was supposed to have an immaterial fac-
ulty which allowed the air to maintain the movement of the body. This supposition
follows from the notion that air is naturally apt to be moved and to move other things.
For example, air is easily set in motion and wind moves all other things [13, p. 125].
John of Alexandria, also known as Philoponus (5–6th century AD), is an early nat-
ural philosopher who is known to deviate from this explanation. He claimed that
when an object is thrown it incorporates a certain power of self-movement, and that
the medium through which the object moves hinders the object, rather than that the
medium perpetuates the movement of the object [11, p. 47]. In this way he gave
an explanation of motion of objects without an external cause, and, importantly, he
applied these notions to both natural and violent motion, as well as terrestrial and
celestial motion [13, p. 126]: the movement of objects on earth and the movement of
celestial objects, e.g., the sun.

After Philoponus, this conception of motion was preserved by the Arabic philoso-
phers, e.g., Avicenna. Perhaps it was through them that this concept arrived in the
Latin West [14, p. 40], though this is not completely clear [13, p. 129]. In the Latin
West, the first ones to formulate a clear conception of impetus were Buridan and Al-
bert of Saxony (14th century AD) within the ‘Parisian school’ of natural philosophy.
Buridan poses, similar to Philoponus, that air resists motion rather than furthering it,
and he concludes that a projectile is moved by a ‘force’ which is impressed into it, the
force being greater if the object is more massive [13, p. 134]. The following passage
gives a good impression of Buridan’s thoughts on motion

“Therefore, it seems to me it should be said that a motor in moving a
body impresses in it a certain impetus or a certain motive power capable
of moving this body in the direction in which the mover moves it, either
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up or down or laterally or circularly. By the same amount that the motor
moves the same body more swiftly, by that same amount is more pow-
erful the impetus which is impressed in it. And it is from this impetus
that the stone is moved after that which hurls it ceases to move; but on
account of the resisting air and the gravity of the stone which inclines
it contrary to the way which the impetus has power to move it, the im-
petus is continually weakened. Therefore, the movement of the stone
will become continually slower. At length this impetus is so diminished
or destroyed that the gravity of the stone prevails over it and moves the
stone down to its natural place... I can throw a stone farther than I can a
feather, and iron or lead fitted to hand farther than a piece of wood of the
same size. I say that the cause of this is that the reception of all forms
and natural dispositions is in matter and by reason of matter. Therefore,
the greater quantity of matter there is the more that body can receive of
this impetus and the more intensely can it receive it. Now in a dense
and heavy body there is more of first matter than in a rare and light one.
Therefore, a dense and heavy body receives more of the impetus and
does so more intensely... . A feather, moreover, receives such a weak
impetus that immediately it is destroyed by the resistance of the air. And
so likewise if one moves equally swiftly by hurling a light piece of wood
and a heavy piece of iron of the same shape and volume, the iron will
move farther because there is impressed in it a more intense impetus...”.
[14, pp. 40,41]

This passage clearly suggests that his impetus was a qualitative notion which comes
close to the modern concepts of linear momentum [5, p. 56] and energy [15, p. 194].
Similar to Philoponus, Buridan and Albert of Saxony applied these concepts to both
terrestrial and celestial motions [11, pp. 48-51], foreshadowing Newton who will do
similarly three centuries later. The influence of Buridan and Albert allowed the con-
cept of impetus to become a well known scholastic doctrine in the 16th century [13,
p. 138]. Subsequently, Galileo Galilei (1564–1642) went on to formulate a physics
of impetus which is thought to be a logical successor of the medieval account of
impetus [16, p. 27], even though Galilei dismissed the foundation of Aristotelian
physics [13, pp. 140,141]. After Galilei, the concept of impetus lives on in the works
of scholars like Joseph Moxon (1627–1691), for instance. But their use of the word
impetus occurs in a rather different philosophical context than with the Scholastics.
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Gradually, the concept loses its Scholastic meaning and becomes something more
like the modern day impulse [13, pp. 142,143], until Newton finally described the
quantity of motion as momentum, the product of the inertial mass of the body and
velocity [14, p. 40]. At the same time, Gottfried Leibniz (1646–1716) formulated a
precursor to the modern notion of kinetic energy under the name vis motrix, although
it was not yet clearly distinguished from linear momentum [11, pp. 219-221].

The principle of virtual work

Figure 1.1: A curved rigid
lever is supported by a pole
at S. The lever consists of
two massless rods of length
l1 and l2, the acute an-
gle between the rods θt be-
ing fixed, and has two ob-
jects of mass m1 and m2

attached at its ends. The
gravitational acceleration g

pulls both masses down-
wards, causing the system
to rotate around S. When
the lever rests in equilib-
rium, what is the angle θ1
between the first rod and the
vertical?

The principle of virtual work is a very general prin-
ciple that manifests itself in many different forms and
flavours: the principle of virtual displacement, the princi-
ple of virtual velocities, etc. It has undergone quite some
changes through history, culminating in the variational
principles which are fundamental to modern theoretical
physics [17]. Modern versions of the principle of vir-
tual work are used to derive, for example, the force bal-
ance for a continuum body from the principle of virtual
power [1, pp. 20,21].

Let us illustrate the principle of virtual work with the
following example, which we describe in modern terms.
Consider the rigid curved lever in Figure 1.1, hanging
on the top S of a frictionless pointed pole around which
the lever can rotate. The lever consists of two connected
massless rods of length l1 and l2, making a fixed acute
angle of θt, with two objects of mass m1 and m2 be-
ing attached at the ends of the lever. The weight of
the masses makes the lever rotate in opposite directions,
thereby varying the angle θ1 between the lever and the
vertical. Given the magnitude of the masses, the dimen-
sions of the lever and the acute angle, one may ask at
what angle θ1 the lever will rest in equilibrium. Using
the principle of virtual work, one can derive the condition that θ1 satisfies in equilib-
rium.
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We consider the work done by the gravitational force on the lever-mass complex
when it undergoes a small virtual rotation around the angle θ1 which the lever makes
with the vertical. The work which this virtual rotation produces, is called the virtual
work performed on the system. The principle of virtual work states that, when the
lever is in equilibrium, the virtual work must vanish for any small virtual rotation.
This requirement provides a condition for the value of θ1 in equilibrium, and thus
determines the rest configuration of the lever. Let the rotation change the angle θ1 by
a value ∆θ. The work ∆W performed by the gravitational force due to the virtual
rotation is thus given as

∆W =F 1 ·∆x1 + F 2 ·∆x2,

=m1gl1 (cos(θ1 +∆θ)− cos(θ1)) +m2gl2 (cos(θ2 −∆θ)− cos(θ2)) ,

(1.1)

where we defined θ2 = θt − θ1, see Figure 1.1. F i = mig = −migẑ is the grav-
itational force, with ẑ pointing in the positive vertical direction, and ∆xi is the dis-
placement of a mass, with i = 1, 2. Expanding equation (1.1) as a Taylor series in
∆θ, and requiring the virtual work to vanish up to first order for any value of the
variation ∆θ, we obtain the following condition

m1l1 sin(θ1) = m2l2 sin(θ2), (1.2)

which is the well known statement that the moments of the forces acting on a body
in static equilibrium cancel each other, namely, the law of the lever. This example
shows explicitly that the ‘equation of motion’ in equation (1.2) can be found from the
requirement that the virtual work vanishes at first order in the variation, the principle
that is used in any variational technique up to this day.

The development of the principle of virtual work through history has centered itself
around the lever problem [11]. Possibly, the most basic form of the principle can be
found with Aristotle where the effect of a force is considered to be not only depen-
dent on its magnitude, but also by the motion associated with this force [18, p. 44].
The first known to investigate the law of the lever quantitatively was Archimedes
(287-212 BC). After him, Hero (2nd century AD) derived the principle of virtual ve-
locities from the law of the lever, although some historians say it is exactly the other
way around [18, p. 56]; in any case it is contained in his work [18, p. 57]. Both in
Arabic and Latin writers, one can find (implicit) virtual work principles. Most no-
tably, Jordanus (13th century AD) proved equation (1.2) for the case θt = 180° [18,
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p. 86], which is the simplest case of the law of the levers where equilibrium requires
the ratio of the masses to be inversely proportional to the ratio of their distance to
the turning point S, independently of θ1. He did so, however, without knowledge
of modern concepts like mass, work and vectors, for instance. In this derivation, he
used the principle gravitas secundum situm, which contained an implicit notion of
the principle of virtual work [11, pp. 20,38,40,44,46].

Later, we see the principle of virtual work returning in Simon Stevin’s (1548–1620)
work on statics [11, p. 127], and the principle of virtual velocity in the work of Galilei
(1564–1642) on hydrostatics [11, p. 143]. An important advance in the concept of
virtual work was made by René Descartes (1596–1650), who stressed its infinites-
imal character [11, p. 156]. The durability of this insight can be witnessed in the
above example of the curved lever. With Newton (1642–1727), we do not see a clear
incidence of the principle of virtual work, although he does seem to refer to a concept
near to the modern concept of power [18, p. 194]. After Newton, the concept of vir-
tual work is perpetuated in, among others, the works of John Bernoulli (1667–1748),
this will be discussed in the following section.

1.1.2 From continuum mechanics to the theory of poromechanics

Poromechanics, the mechanical theory for porous bodies, is a subdiscipline of the
broader field of continuum mechanics, including all materials from fluids to solids
to gels. The basis for the theory of continuum mechanics was laid in the 18th and
19th century. The well known scientists of this time mostly held a corpuscular world-
view: the world was thought to be made up of particles interacting via at-a-distance
forces, it was a very Newtonian worldview. Not surprisingly, several attempts were
made to derive the mechanical behaviour of a continuous body from a corpuscular
theory, where the body transmits forces by contact instead of at-a-distance forces.
Ironically, among all these endeavors an essentially phenomenological approach of
Augustin-Louis Cauchy (1789–1857) has stood the test of time gloriously. Many
other approaches were flawed, and caused ‘the elastic constant controversy’: the dis-
pute on whether the number of elastic constants of an isotropic material is either one
or two [19, pp. 216–218]. The number of elastic constants of an isotropic material
turned out to be two and can be taken as, for instance, the couple of the shear mod-
ulus G and the bulk modulus K, or as the longitudinal modulus M and the Poisson
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ratio ν, or as Lamé’s first parameter Λ and the Young’s modulus E. These different
constants quantify the response of a material to specific deformations. For example,
the shear modulus determines the stress response to a shear deformation, the Young’s
modulus and the Poisson ratio give, respectively, the normal force and the degree
of lateral expansion of a compressed material that is laterally unconstrained, while
the longitudinal modulus gives the compressive normal force of a material that is
laterally constrained.

Cauchy’s phenomenological approach is widely used in applied mathematics and the
engineering sciences up to this day, including this thesis. Presently, there exists no
general corpuscular theory for continua, although for specific materials first-principle
theories do exist, e.g., the statistical theory of liquid solutions [20, ch.1]. In the
absence of a first-principles theory, one needs to postulate a so-called constitutive
relation, peculiar to a specific material, to relate the Cauchy stress tensor to what
causes stress in the material: the deformation gradient in a solid body, for instance.
In general, this constitutive relation is not unique, although it can be constrained
by certain principles, e.g., the principle of material frame-indifference [21, p. 8].
In spite of this non-uniqueness problem, for small deformations around the natural
configuration of the material, the constitutive relation is linear. In chapter 2, 3 and
4 the material response of the solid (part of the) material is modelled as being linear
elastic, which is by far the most investigated constitutive relationship.

The modern relevance of the theory of continuum mechanics can possibly be framed
as a reappraisal of Aristotle’s philosophy. Contrary to other Hellenistic philoso-
phers, e.g., Heraclitus (540–480 BC), who fashioned an atomistic worldview, Aris-
totle (384–322 BC) was the first known to disregard the concepts of atoms and the
void, and to foster the concept of a continuum instead [22, pp. 1,2]. Only in the
time of Descartes did the concept of the atom resurface. This gave rise to the cor-
puscular worldview, especially through Newton, and resulted in a fruitful path of
inquiry. As explained above, however, the continuum worldview has proven also to
be highly fruitful. Roughly speaking, corpuscular approaches still dominate the field
of physics, while continuum approaches dominate the field of engineering.

Below, we will describe in more detail the developments leading to the theory of
poromechanics, also pointing out the connection with the classical concepts of impe-
tus and the principle of virtual work.
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The 18th and 19th century

After Newton, scientists of the 18th century started to study not only point particles,
but also whole bodies [23, pp. 6,7], e.g., a body of water, air, wood, iron, etc. Here,
the historical lines of impetus and the principle of virtual work converge. On the
one hand, in the line of impetus these scientists performed fundamental work in fluid
mechanics which was based on the conservation of linear and angular momentum.
On the other hand, in the line of the principle of virtual work it developed variational
principles. One key contributor to this movement was Leonhard Euler (1707–1783)
who, probably inspired by Jean-Baptiste d’Alembert (1717–1783), introduced the
notion of internal pressure. With this notion, and using Newton’s principle of linear
momentum, he was the first to write down the field equations of motion for a perfect
fluid: a frictionless fluid [24, ch.2]. Later, as noted above, Cauchy generalized Euler’s
notion of pressure to the Cauchy stress tensor, which is used up to this day to specify
the general state of stress in a continuum, both for fluids and solids [24, ch.3]. In
modern notation, the balance of linear momentum per unit of volume in a body, that

Figure 1.2: An infinitesimal cubic volume element in a material body where the Cauchy
stress tensor σ specifies the stresses acting on the faces of the cube. At each face the
surroundings exert a traction tn̂ = σTn̂, with n̂ the outward normal vector to the surface.
As the Cauchy stress tensor is symmetric σ = σT, the tractions do not exert a net torque
on the cube.
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is, Newton’s second law for a continuum, is written as

∇ · σ + ρf = ρ
∂2U

∂t2
, (1.3)

where σ is the Cauchy stress tensor, ρ the mass density, f the external force per unit
of mass, and U(x, t) the displacement of a part of the body at position x at time
t. The first term gives the resultant force density acting on an infinitesimal volume
element from contact with the surrounding part of the body, the second accounts for
all non-contact forces (gravity, electrical, etc.), and the right hand side is the force
density required for acceleration. The balance of angular momentum implies that the
Cauchy stress tensor is symmetric σ = σT. By Cauchy’s theorem, the force per unit
area on any infinitesimal surface area in the body with normal vector n̂, namely, a
traction, is expressed as t = σTn̂, see Figure 1.2 for the tractions on an infinitesimal
cubic volume element in Cartesian coordinates.

With the notion of the Cauchy stress tensor many important contributions could be
made to the theory of continuum mechanics. Among others, Adhémar de Saint-
Venant (1797–1886) deserves mentioning, in particular for his introduction of Saint-
Venant’s principle. This principle states that for a body with high aspect ratio(s) in its
geometrical dimensions, e.g., a slender rod, it is not the exact force distribution ap-
plied to the ends of the rod which determines the deformation of the body ‘far away’
from the ends, but only the average force and the torque [24, ch.6]. This important
principle will be used in chapter 3, where we consider a disk-like cylindrical gel com-
pressed between two plates parallel to the ends of the cylinder, while the curved area
of the cylinder remains free. Instead of requiring the radial and tangential stress at
the free surface to vanish pointwise, we only require it to vanish when averaged over
the free surface. In this way, we find a solution which is bound to fail near the free
boundary, but is a good approximation far away from it - far away being a few times
the axial length of the gel since this is the dimension over which we average the stress
at the free boundary.

With regard to the porous nature of materials, in 1762 Euler was the first to speak
about the pores of a material which would give rise to the elasticity of a material [20,
pp. 57,58]. Although his treatment was far from satisfactory, he did make a dis-
tinction between ‘rough’ and ‘subtile’ matter in a body, which we now, respectively,
identify as matrix and fluid [23, p. 24]. In modern terms, a porous material is defined
as a material made of a deformable matrix/network/solid phase whose pores are filled
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The 18th and 19th century
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Figure 1.2: An infinitesimal cubic volume element in a material body where the Cauchy
stress tensor σ specifies the stresses acting on the faces of the cube. At each face the
surroundings exert a traction tn̂ = σTn̂, with n̂ the outward normal vector to the surface.
As the Cauchy stress tensor is symmetric σ = σT, the tractions do not exert a net torque
on the cube.
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∂2U

∂t2
, (1.3)
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with fluid, be it (any combination of) air, water or oil, for instance. Due to the con-
nectedness of the pores of the material the fluid can flow through the matrix. A major
step in the direction of poromechanical theory was the contribution of Darcy, with the
famous law carrying his name. Before that, however, both Reinhard Woltman (1757–
1837) and Achille Delesse (1817–1881) are to be credited with the introduction of
the concept of a volume fraction: the discrimination between the volume of space
which a porous solid Vs encompasses and the volume that the interpenetrating fluid
Vf occupies, summing up to the total volume Vt = Vs + Vf of a volume element in
the porous material, see Figure 1.3 for an example. This gives the volume fraction of
the solid and the fluid as φi = Vi/Vt, with 1 = φs + φf . Importantly, Delesse found
the volume fraction to be equal to the area fraction of the two phases, the area frac-
tion being defined as the ratio of the area of solid or fluid to the total area of a plane
cut of the porous material [25, p. 213]. Besides the concept of volume fraction, the
introductions of viscosity by Jean Poiseuille (1797–1869) and Claude-Louis Navier
(1785–1856) were important precursors to Darcy, because it quantified the resistance
for fluid to flow through a tube [20, pp. 58,59], which is closely related to the flow
through a porous material. In fact, as a first approximation one can consider a porous
material as a collection of parallel tubes [26].

Henry Darcy (1803-1856), being born in Dijon, investigated the supply systems of
drinkable water to the cities, in particular he studied this in his own hometown [20,
pp. 59,60]. In this work Darcy proposed a law for laminar fluid flow through a
porous medium that came to be known as Darcy’s law, and that reads in modern
form [27]

φf (vf − vs) = −k

η
(∇p− ρfg) , (1.4)

with vi the local average velocity of the solid or fluid, k the permeability of the
porous solid, η the dynamic viscosity of the fluid, p the fluid pressure, ρf the mass
density of the fluid and g the gravitational acceleration. It proposes the average
flow of fluid relative to the average velocity of the solid to be simply proportional
to the local gradient of the fluid pressure corrected for the hydrostatic pressure, that
is, it is proportional to the fluid overpressure. Equation (1.4) can be regarded as
a linear response relation between the fluid mass flux and the fluid pressure for a
porous material. In modern approaches, Darcy’s law can be derived with a non-
equilibrium thermodynamics approach [28, ch.3], or, if the fluid-filled pore itself can
be considered as a continuum, by averaging the laminar flow of a Newtonian fluid
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through the pores over a volume called the representative volume element [20, ch.3].

Figure 1.3: Scanning electron microscopy im-
age of a fibrin fiber network (the structural
component of blood clots, see section 1.3.1).
Consider a volume element of total volume
Vt where the fluid and the network encom-
pass, respectively, a volume Vf and Vn, with
Vt = Vf + Vn. For a representative volume
element of linear dimension l, which is much
smaller than the macroscopic size of the net-
work L but much larger than the pore size,
i.e., 1µm � l � L, the local volume frac-
tion of fluid and network in the porous mate-
rial is given as φi = Vi/Vt. Scanning electron
microscopy image taken from [29].

The dimension of this volume element
l should typically be an order of mag-
nitude larger than the dimension of both
the fluid-filled pores and the solid phase.
At the same time, the size of the vol-
ume element should be small compared
to the macroscopic size of the porous
body L, such that (l/L)2 � 1 [30]. The
concept of a representative volume ele-
ment also allows to properly define the
concept of a volume fraction, see Fig-
ure 1.3. Currently, ongoing research is
pursued to extent Darcy’s law for iner-
tial effects in the fluid flow, and for rar-
efied gasses [31]. Interestingly, one year
before Darcy formulated his law, Fick
experimentally discovered another lin-
ear response relationship describing the
mass flux of dissolved particles due to a
concentration gradient. Fick’s law was
in turn inspired by Fourier’s law of heat
conduction, where the heat flux also sat-
isfies a linear response relationship [23,
pp. 97-99]. All three laws, Darcy’s,
Fick’s and Fourier’s, have proven to be fruitful theoretical assumptions and are used
extensively up until today.

Finally, the first to pioneer a more theoretical continuum mechanics approach to
poromechanics was Josef Stefan (1835–1893). He investigated mixtures of three
components and was the first to employ herein the concept of volume fraction [25,
p. 215]. Many other contributions deserve mentioning, but for this thesis we focus,
for example, not on temperature-dependent effects, so we ignore those otherwise rel-
evant contributions. In all investigations we assume the temperature throughout the
porous body to be constant, since either the thermal diffusion time scale is much
smaller than the gel dynamics time scale (chapter 2 and 5), or temperature related
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effects are expected to be small (chapter 3). Moreover, the general thermodynami-
cal theory of mixtures still poses open questions [20, p. 65], making it a story on its
own.

From the 20th century to the present day

With these foundations of poromechanical theory from the nineteenth century in
mind, we arrive at a period characterized by geomechanics, i.e., the study of the
mechanics of soil and rocks, starting at the beginning of the 20th century, after which
the modern theory of poromechanics was developed. In the 20th century, one can
roughly distinguish between two main schools of thought: one is more empirically
oriented and founded by Karl von Terzaghi (1883–1963), whilst the other is more
theoretically oriented, with Paul Fillunger (1883–1937) as its first notable adherent.
Terzaghi and Fillunger were both professors at the technical university of Vienna,
and they got caught up in a scientific and personal conflict which ended with the
woeful suicide of Fillunger [23]. This tragic event probably also hampered the more
theoretical school of thought in geomechanics [25, p. 218].

A major contribution from Terzaghi is where he split the Cauchy stress tensor of
a porous material in two parts: the pressure of the fluid and an additional stress
due to the solid, the Terzaghi effective stress. The rationale behind this distinction
is that the solid imbibes the fluid and therefore it inherits the pressure of the fluid,
causing a nonzero stress in the solid even when it is not strained, that is, when it is in
its stress-free conformation. When correcting the solid stress for the fluid pressure,
one finds the stress in the solid due to, for example, strain in the solid material.
Considering a porous material as the superposition of a solid and a fluid continuum
with, respectively, Cauchy stress tensor σs and fluid stress tensor σf = −p1, the
Terzaghi effective stress is defined as σ′ = φs (σs − σf), giving the Cauchy stress
tensor of the porous material σ as [27]

σ = σ′ − p1, (1.5)

where typically σ′ would be the stress in the material due to the elasticity of the
solid.

An important follower of Terzaghi was Maurice Biot (1905–1985). He developed
a theory of linear poroelasticity which is used up to this day, see for instance [32].
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In the line of Fillunger, Clifford Truesdell (1919–2000), the founder of the modern
rational mechanics school, laid the foundation of the modern theory of mixtures on
which the modern theory of porous media is build [25, pp. 218–221]. de Boer and
Coussy made important contributions to the formation of a rational framework in-
corporating finite strain and thermodynamical effects [20, p. 70]. For the purposes
of this thesis, however, the distinction between the more empirical and theoretical
school is irrelevant, since in the quasi-static linear poroelastic limit, they agree. In
this limit, acceleration is neglected, ∂2U/∂t2 = 0, and we neglect any buoyancy ef-
fects, ρ = ρf . By combining equation (1.3), (1.4) and (1.5), one obtains the following
balance of linear momentum

∇ · σ′ = −η

k
φf (vf − vs) , (1.6)

which shows how fluid flow through the solid causes a stress response in the solid
material, and vice versa. The Terzaghi effective stress is of the form of a linear
elastic solid, with the elastic constants specifying the response of the porous material
at a (hypothetical) vanishing fluid pressure.

Interestingly, this limit of the linear poroelastic theory agrees with the gel dynamics
theory for small deformations of a gel network [33], see section 1.2 for the definition
of a gel. In this gel dynamics theory the force balance for a gel is derived through a
form of the principle of virtual work. Under a variation of the deformation gradient
in the hydrogel network, the resulting variation of the Helmholtz free energy of the
network is required to vanish up to first order in the variation, that is, the free energy
is minimized [33, pp. 3–6]. In this variation the fluid pressure enters as a Lagrange
multiplier, needed to conserve the volume of the hydrogel, which stems from the
(approximate) incompressibility of the fluid. The Terzaghi effective stress can be
identified with the contribution of the hydrogel network to the free energy. This
is reasonable, because the free energy of the network can be viewed as a surplus
to the free energy of the fluid, similar to that the Terzaghi effective stress can be
regarded as a surplus to the pressure that the penetrating fluid carries over to the
network [27, pp. 5-6]. Next, assuming Darcy’s law as a kind of linear response
relation, the gel dynamics equations are obtained [33, p. 7]. Interestingly, the same set
of equations can be obtained from a dissipative form of the principle of virtual work,
called Onsager’s variational principle [33–38]. In this approach one minimizes the
so-called dissipation function which is a measure of the quantity of energy dissipated
per unit of time for the dynamics of the gel. It has contributions from the friction
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between the viscous fluid flowing through the hydrogel network, and from the forces
required to deform the network.

Concluding, for small deformations of the gel network the gel dynamics equations are
of the exact same form as the equations of motion in quasi-static linear poroelastic
theory. Therefore, we effectively treat the experimental systems of hydrogels (chapter
2), fibrin gels (chapter 3) and a model low fat mayonnaise (chapter 4) as porous
media. In the next sections we will consider these experimental systems by delving
into their background, relevance and applicability.

1.2 Hydrogels

In chapter 2 we treat the response of hydrogels on diffusing colloidal particles which
can penetrate the hydrogel from the surroundings. Here, we introduce the varieties
of hydrogels and the historical background of their application.

A hydrogel is understood to be a three-dimensional polymer network that can im-
bibe in its swollen equilibrium state a large amount of water, relative to its dry vol-
ume [39]. The hydrophilicity of hydrogels is due to the presence of chemical groups
such as hydroxylic- (−OH), carboxylic- (−COOH), amidic- (−CONH−), primary
amidic- (−CONH2) and sulphonic (-SO3H) groups in the polymer backbone chain
and/or the lateral chains [40]. There exists an enormous variety of hydrogels. They
can be composed of natural or synthesized polymers, or a hybrid combination of the
two. The polymers can be cross-linked chemically, that is, with covalent bonds, or
they can be cross-linked physically, that is to say, with non-covalent bonds like hy-
drophobic and ionic interactions. Homopolymer hydrogels are composed of a single
kind of monomer, whereas copolymer and multipolymer hydrogels are composed of,
respectively, two or more kinds of monomer. Moreover, when swollen with water the
monomers can be non-ionizable, ionizable and they may be ampholytic and zwitteri-
onic. The pore size of a hydrogel determines the time scale on which it can change
its volume by imbibing or expelling water. So-called non-porous hydrogels have a
pore size of the same order of magnitude as the monomers of which the polymers are
composed, namely, the pore size is typically 1–10 nm. Additionally, microporous and
macroporous hydrogels have pore sizes ranging from, respectively, 10–100 nm and
0.1–1 µm [40]. The gels we study in chapter 2 and 3 can be classified, respectively,
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as microporous synthetic hydrogels and macroporous biopolymer hydrogels.

The term ‘hydrogel’ was already coined in, at least, the year 1894; by then it denoted
a colloidal gel of inorganic salts [39, 41]. The term ‘gel’ is even older, as sol-gel
chemistry was already used by Thomas Graham (1805–1869), who is known as the
father of physical chemistry, to make silica gels [42, p. 1]. This kind of gels is well
known from, for example, the beads used in parcels to keep their contents dry dur-
ing transportation. The study of the physical properties of polymeric gels resides
mainly around the middle of the 20th century with the work of Paul Flory (1910–
1985), Maurice Huggins (1897–1981) and Leslie Treloar (1906–1985) [43–48]. The
first industrial-size application of polymeric hydrogels was by Wichterle & Lim in
1960 [49]. They searched for materials suitable for alloplastic and prosthetic use be-
cause plastic prosthesis can cause mechanical irritation and irritant substances may
diffuse from the plastic into the surrounding tissue of the patient. Therefore, they
aimed for a material which could somewhat mimic human tissue. It was required to
have high water content, to be inert against biological processes and to be perme-
able for metabolites [49]. A main application they found for synthesized poly(2-
hydroxyethyl methacrylate) (pHEMA) hydrogels were contact lenses [50, p. 31].
Subsequently, research into hydrogel applications took off [51] and hydrogels are
now present in the domestic sphere through, for example, disposable diapers [52],
cosmetics [53, 54] and watering beads for plants. Also, hydrogels have found ap-
plication in the medical sphere with applications like tissue engineering [55], bone
regeneration [56], wound healing [57] and drug delivery [58]. Given these medical
applications, one needs little imagination to see that the deformation of hydrogels
in response to diffusing colloidal particles from their surroundings is an interesting
and worthwhile topic of study. Some of the newest (prospective) fields of hydro-
gel application lie in metamaterials [59], agriculture [60–62] and wastewater treat-
ment [63].

After Wichterle & Lim, many new paths were openend in the field of hydrogel re-
search. These paths can be described in terms of generations as follows, where we
paraphrase a review by Buwalda et al. [39]. For two decades after Wichterle & Lim’s
main discovery in 1960, the first generation of hydrogel research was aimed mainly
at chemically cross-linked synthetic polymers of which pHEMA, poly(vinyl alcohol)
(PVA) and poly(ethylene glycol) (PEG, also called PEO) are common examples. In
the seventies a second generation of physically cross-linked hydrogels entered the
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as microporous synthetic hydrogels and macroporous biopolymer hydrogels.
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stage which were responsive to their environmental conditions like the pH and the
temperature. A third generation of hydrogels arose in the middle of the nineties com-
prising yet other crosslinking methods like stereocomplexation, inclusion-complex
formation, model-ligand coordination and peptide interactions. The most recent gen-
eration is that of ‘smart’ hydrogels. An example of smart hydrogels are double net-
work hydrogels where a combination of physical, covalent and ionic bonds is utilized
such that their mechanical stability and release kinetics can be controlled. In a way,
the model light mayonaise which we study as a model system in chapter 5 can be con-
sidered as a double network hydrogel for it is thought to feature both a network of oil
droplets as well as an amylose network which originates from cooked starch.

As noted above, hydrogels were developed as biocompatible materials, that is, ma-
terials which are well compatible with tissues, for instance. This is closely related
to the next section, where we discuss the historical background of research into the
mechanical aspects of biopolymer networks and tissues.

1.3 Biomechanics and fibrin fibers

In chapter 3 we develop a new method to determine the poroelastic properties, that
is, the hydraulic and elastic properties, of biopolymer networks and tissues. Consid-
ering biopolymer networks and tissues as gels, we develop a theoretical model which
accounts for the stress and strain in the gel network, and the flow of fluid through
the network. Experimentally, we investigate the compression of fibrin gels, which
are model systems for blood clots. To place these results in a wide context, we give
a brief account of the history of the field of biomechanics, and shortly touch on the
related fields of biophysics and mechanobiology. Also, we give an introduction into
the model system we used: fibrin gels.

Biomechanics can be said to be the science of ‘mechanics applied to biology’ [64]. It
considers different components of organisms, from the molecular to the macroscopic
scale, and aims to elucidate the mechanical aspects associated with them. A plethora
of applications is derived from this science: the understanding of bone failure [65],
plastic surgery [66], surgical robots [67], tissue engineering [68], etc. The history
of biomechanics is, similar to physics, a long one [69, 70] and features, as with
physics, Aristotle as one of its founders [71]. Through the ages we meet many famous
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names [72] like Leonardo da Vinci (1452–1519) with his treatise on locomotion,
for instance. Modern biomechanics was established only in the second half of the
20th century, however, with, among others, the introduction of mixture theory which
allowed the investigation of poromechanical aspects of matter in living beings [69,
p. 4].

A field closely related to biomechanics is biophysics, which comprises the study of
biological subjects with approaches from the physical sciences [73]. The first gener-
ation of biophysicists may be identified with the so-called ‘1847 group’: a group of
four researchers that “.. imagined that we should constitute physiology on a chemico-
physical foundation, and give it equal scientific rank with Physics...” [74]. The large
growth of biophysics, however, similar to biomechanics, occurred in the second half
of the 20th century [75]. The physicalism dominating biophysics has been criticised
as being an overly reductionist approach to biology in, for example, biosemiotics [76,
pp. x,xi], but nevertheless biophysics has proven to be a fruitful field of research. The
most recent program of inquiry in biophysics could be framed as the physics of mod-
ular cell biology. A module is considered to be a complex of interacting molecules in
a cell having a well-defined function that is chemically isolated from other modules.
Modules can be more or less connected to or insulated from other modules, depend-
ing on whether one function influences another and whether cross-talk of modules
is harmful [77–79]. An example of a well-studied module is the cytoskeleton [80–
83].

A relatively new offspring from the field of biomechanics, in conjunction with the
field of biophysics, is mechanobiology. It focuses on the interaction between me-
chanical strain and biological reaction. It does not stop with the passive mechanical
properties of tissues, but studies the functional adaptation and tissue remodelling due
to the interactions between cells, the interactions between cells and the extracellular
matrix, and the mechanically induced biophysical changes in cells [69, 84–86]. The
recent interest in mechanobiology might be related to the following historical con-
siderations. It has been known for millennia that organisms are composed of fibrous
connective tissue, and these fibers, e.g., collagen, were used in the production of a
variety of commodities [87, p. 86]. Although the fibrous structure of tissues was well
known, the development of cell theory, being a cornerstone of modern biology [88],
was founded by Robert Hooke (1635–1703) in the 17th century, and was completed in
the 19th century [70, p. 14]. With this scientific advance, tissues were recognized as
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being composed of cells and extracellular matrix, but the latter was initially viewed
as an inanimate, nonreactive and purely structural component [87, p. 90]. This has
proven to be an untenable view, however, and possibly partly explains the current
interest in mechanobiology.

With this said, it is not too much of a surprise that the porous nature of the cytoskele-
ton and the extracellular matrix has received much scrutiny in recent years [85, 89–
92], next to the more classical work on the poromechanics of cartilage [93, pp. 245-
248]. In line with this earlier research, we expect our work on the compression of gels
to provide a useful tool for both the determination of the poromechanical properties
of soft biopolymer networks and tissues, and for the controlled study of the influ-
ence of inhomogeneous strain in tissues on cells in the extracellular matrix. Next, as
we used fibrin gels as a model system to develop our theoretical model, we give a
short introduction into the formation of fibrin fibers and their functioning, where we
paraphrase the reviews of Weisel & Litvinov [94] and Laurens et al. [95].

1.3.1 Fibrin network formation

In case of hemorrhage, i.e., the bleeding resulting from damage to a blood vessel, the
process of hemostasis starts to stop the bleeding. The first step in this process is the
formation of a ‘plug’ of blood platelets to seal off the wound. At the same time, a
cascade of enzymatic reactions, resulting from the injury of the blood vessel, causes
the conversion of a dissolved macromolecule in the blood - the protein called fib-
rinogen - into a network of fibrin fibers, in other words, a blood clot is formed. This
blood clot further prevents bleeding and promotes healing of the wound. At the end
of the enzymatic reaction cascade, an enzyme called thrombin appears. This enzyme
catalyses the cleavage of fibrinopeptides from fibrinogen molecules, thereby creat-
ing fibrin monomers. These monomers form a half-staggered dimer and subsequent
addition along the long axis of the monomers creates a double stranded protofibril
containing 20–25 monomers, which has a length of 0.5 − 0.6µm, see Figure 1.4
for an illustration. By aggregating along their short axis, the protofibrils form fibrin
fibers; the mechanisms, structural motifs and driving forces of this aggregation are
not well known. Due to branching of the fibrin fibers a space-filling fibrin fiber net-
work is formed. Finally, the fibrin network is covalently cross-linked by the plasma
transglutaminase Factor XIIIa. This enzyme catalyzes the covalent cross-linking of
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Figure 1.4: The formation of a fibrin fiber from fibrinogen macromolecules. After the en-
zyme thrombin cleaves fibrinopeptides from dissolved fibrinogen molecules, the resulting
fibrin monomers polymerize spontaneously into a double-stranded fibrin oligomer. When
the oligomer contains 20–25 monomers, it acts as a protofibril which can laterally aggre-
gate with other protofibrils into a fibrin fiber. This fibrin fiber can branch and connect to
other fibers to form a fibrin network: the structural component of a fibrin gel. The image
is taken from Weisel & Litvinov [94].

the fibrin fibers, thereby making the network mechanically stable.

Fibrin polymer networks posses a variety of mechanical properties, which is perhaps
not unexpected given the complex structure of a fibrin network. From the viewpoint
of material science a fibrin gel can be considered as a viscoelastic material: the fib-
rin network produces an elastic response and the interpenetrating fluid produces a
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viscous response. In this thesis we consider a fibrin gel as a biphasic material com-
posed of a linear elastic solid, the fibrin network, and a viscous fluid. To consider the
fibrin network as a linear elastic solid is tantamount to assuming an effective descrip-
tion of the network, because fibrin networks are known to exhibit strong nonlinear
responses [96–99]. Fibrin networks strain stiffen when stressed [100] and they ex-
hibit mechanical responses on different scales [94]. At the macroscopic scale (cm)
they can display dramatic decreases in volume when they are stretched [101]. On the
mesoscopic level (10µm), fibers align in the direction where the network is strained
and form bundles, thereby dramatically increasing the local elasticity [96]. Finally,
on the microscopic (µm) scale fibers buckle and bend in the direction of compres-
sion.

Practically, fibrin is used as a biomaterial in the medical realm. For example, it is
used as a sealant to achieve hemostatis and tissue sealing in surgery [102, 103], and
it is used to promote wound healing [104–106].

1.4 Porous matter in industry

As we have seen in section 1.1.2, a traditional subject in poromechanics is soil me-
chanics. This subject is still of importance for building physics and hydrology [107–
109]. Another classical application of porous medium theory is the retrieval of oil
and gas from porous rock [110]. Relatively new fields of application are topics like
bioengineering [111, 112], for instance, see section 1.3 for more information, and
the industry of processed food [113]. The list of standard problems which may be
encountered in these fields of application is a long one [114], but nevertheless we
hope to add to this list with the approximate solution of chapter 3.

The work described in this thesis was performed in the context of an industrial part-
nership program (IPP) between The Netherlands Organisation for Scientific Research
(NWO) and Unilever R&D Vlaardingen. The IPP is called ‘Hybrid Soft Materials:
From Physical Mechanisms to Designer Products’, and its goal is to

“...understand and characterize the physico-chemical mechanisms that
determine the structure and rheological properties of hybrid bio-inspired
soft matter networks, with the ultimate goal of providing design princi-
ples for real consumer product applications” [115],
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a goal which may remind one of the goal of the pioneers in the field of biophysics that
we encountered in section 1.3. One may ask, what is the overarching raison d’être of
this IPP? In general, companies fabricate products which generate a profit when sold.
For these products, the most important aspect, as seen from a company’s perspective,
is that they serve their purpose somewhere within a favourable spot in the parameter
space spanned by, for example, product safety, production cost, consumer experience,
shelf life, and product quality. To foster more control over these parameters, the
IPP focuses on the rational understanding of food products, or food product related
model systems. Apart from this, the interaction between science and industry may be
profitable.

Ever since the production of mayonnaise became industrialized, and since the fat
content of mayonnaise has become (considered to be) a problem, the replacement
of the fat content with water required a natural additive which would thicken the
mayonnaise [116]. An associated problem with using starch as an additive is the
syneresis of low fat mayonnaise: the spontaneous excretion of fluid. In chapter 5 we
study the physical mechanisms determining this fluid expulsion.

1.5 Thesis outline

Given the foregoing sketches of the historical background of the theory of porome-
chanics and the physical systems we study in this thesis, we outline the following
research chapters.

In Chapter 2, we focus on the swelling and compression of hydrogel particles
in polymer solutions. Experimentally, the hydrogel particles are found to exhibit
non-monotonic (de)swelling under influence of the diffusion of polymer molecules
into the hydrogel network during (de)swelling. Because the diffusion of polymer
molecules decreases the osmotic pressure difference between the inside and the out-
side of the hydrogel particle, and because they interact with the hydrogel network, a
rich phenomenology of (de)swelling occurs. To understand these processes, we de-
velop two models, the first is a semi-phenomenological approach and the second is
based on the theory of poroelasticity. The first applies relaxational model A dynam-
ics [117], where we demand the free energy of the hydrogel-polymer system to de-
scend to its minimum, and we numerically solve the resulting nonlinear equations of
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motion for the hydrogel radius as a function of time. In the second approach, we start
by considering the dynamics of the diffusing polymer molecules and the resulting de-
formation of the hydrogel network in the limit of a dilute polymer solution. We solve
the poroelastic equations of motion exactly using mode-expansions. Next, by mak-
ing a dominant mode assumption, we formulate a closed-form model for hydrogel-
polymer dynamics, allowing direct quantitative insight in the (de)swelling dynam-
ics. With this model, the volume change of a spherical hydrogel, when swelling or
shrinking in a polymer solution, can be calculated straightforwardly. By fitting the
calculated volume change to measurement, both models allow to estimate the hy-
drogel network bulk modulus, its permeability, the diffusion constant of the polymer
molecules, and the strength of the interaction between the polymer molecules and the
hydrogel network.

In Chapter 3, we develop a novel method to measure the poromechanical properties
of biopolymer networks, tissues, or any gel that can be clamped to the plates of a
(commercial) parallel plate rheometer. We formulate an approximate closed-form
solution for the displacement field of the solid network and the accompanying flow
of fluid when a disk-like gel is ramp compressed. The solution is formed in analogy
with the exact solution of a compressed gel experiencing no surface friction with the
rheometer. To test this solution we compare the theoretically calculated normal force
with the experimentally measured force from compression experiments on fibrin gels.
From this comparison we find close agreement with the calculated time-dependent
normal force for large-pore and small-pore fibrin gels, for gels having a wide range
of fibrinogen concentrations, and for various compression rates. Moreover, we obtain
estimations for the permeability and the (effective) elasticity of the fibrin networks.
Interestingly, we find the effective elastic properties of fibrin networks to depend on
the compression rate. By extending our model phenomenologically to incorporate
strain stiffening, we find the onset stress, around which stiffening occurs, to depend
on the fibrinogen concentration in a power-law fashion. Similarly, the permeability
of small-pore fibrin networks is found to scale in a power-law fashion, a result which
may provide input for research into the complex polymerization process of fibrin
fibers.

In the first two research chapters we focus on the understanding and characterization
of fluid filled (bio)polymer networks, namely, gels. In particular, the second chap-
ter focused on compression tests. Compression tests are generally well understood,
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but problems with the misalignment of plates and shape-limited materials are known.
Aiming to contribute to the solution of these problems, we consider in Chapter 4 a
compression test device with a novel plate-sphere geometry. In solving the corre-
sponding boundary value problem, we present a novel method to solve the Navier-
Cauchy equations of motion, i.e, the force balance for a linear elastic solid. By
expanding the displacement field around the incompressible limit, we obtain a linear
hierarchy of coupled equations. The applicability of this method is shown by solv-
ing for the displacement field of a cylindrical sample of material that is compressed
with a spherically tipped plate. This compression-test geometry may have the ad-
vantage of reducing error in the determination of the Young’s modulus of a material
from compression measurements, and it may be useful to facilitate the pinning of
lubricated shape-limited materials.

In the final research chapter of this thesis, Chapter 5, we focus on a model system for
low fat mayonnaise exhibiting the spontaneous expulsion of fluid, that is, syneresis.
Experimentally, this system is investigated in a conventional jar-tube setup which
simulates a consumer jar of mayonnaise from which a scoop of mayonnaise is taken,
thereby inducing fluid outflow due to hydrostatic pressure differences. Theoretically,
we investigate the appropriateness of this setup by assuming the hypothesis that the
membrane in the setup becomes clogged with the oil droplets present in the low fat
mayonnaise. After ruling out this hypothesis, we propose that a double network in the
mayonnaise, combined with fluid flow through the porous network, possibly explains
the observed expulsion of fluid.

Finally, we end this thesis by treating the foregoing results in a general discussion in
which we discuss our findings and relate them to the wider scientific context. Also,
we propose some opportunities for future research.
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Interestingly, we find the effective elastic properties of fibrin networks to depend on
the compression rate. By extending our model phenomenologically to incorporate
strain stiffening, we find the onset stress, around which stiffening occurs, to depend
on the fibrinogen concentration in a power-law fashion. Similarly, the permeability
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but problems with the misalignment of plates and shape-limited materials are known.
Aiming to contribute to the solution of these problems, we consider in Chapter 4 a
compression test device with a novel plate-sphere geometry. In solving the corre-
sponding boundary value problem, we present a novel method to solve the Navier-
Cauchy equations of motion, i.e, the force balance for a linear elastic solid. By
expanding the displacement field around the incompressible limit, we obtain a linear
hierarchy of coupled equations. The applicability of this method is shown by solv-
ing for the displacement field of a cylindrical sample of material that is compressed
with a spherically tipped plate. This compression-test geometry may have the ad-
vantage of reducing error in the determination of the Young’s modulus of a material
from compression measurements, and it may be useful to facilitate the pinning of
lubricated shape-limited materials.
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Experimentally, this system is investigated in a conventional jar-tube setup which
simulates a consumer jar of mayonnaise from which a scoop of mayonnaise is taken,
thereby inducing fluid outflow due to hydrostatic pressure differences. Theoretically,
we investigate the appropriateness of this setup by assuming the hypothesis that the
membrane in the setup becomes clogged with the oil droplets present in the low fat
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Chapter 2

The swelling and compression of
hydrogels in concentrated polymer
solutions

The results of this chapter are contained in1:

M.T.J.J.M. Punter, P. van der Schoot, H.M. Wyss & B.M. Mulder. “The com-
pression and swelling of hydrogels in polymer solutions: a dominant-mode model”.
In: preparation.
F.J. Aangenendt∗, M.T.J.J.M. Punter∗, B.M. Mulder, P. van der Schoot & H.M.
Wyss. “Non-monotonic swelling and compression dynamics of hydrogels in polymer
solution”. In: submitted (2019).
∗ These authors contributed equally to this work.

1 The experiments reviewed in this chapter have been designed and carried out by Jelle J.F. Slee-
boom, Frank J. Aangenendt, and Hans M. Wyss from the Technical University of Eindhoven (The
Netherlands).
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Abstract

The swelling and compression of hydrogels in polymer solutions can be understood
by considering hydrogel-osmolyte-solvent interactions which determine the osmotic
pressure difference between the inside and the outside of a hydrogel particle and
the changes in solvent quality for the hydrogel network. We incorporate both these
effects in a semi-phenomenological relaxational dynamics model as well as in a
dominant-mode model based on the theory of poroelasticity. Specifying the free
energy of a hydrogel particle, the relaxational dynamics model predicts the evolu-
tion of the volume of a hydrogel particle as a function of time. Using the theory of
poroelasticity, we find the exact solution to hydrogel dynamics in a dilute polymer
solution, which quantifies the effect of diffusion and partitioning of osmolyte, and the
related solvent quality change, on the volumetric changes of the hydrogel network.
By making a dominant mode assumption, we propose the dominant-mode model for
the swelling and compression dynamics of spherical hydrogels in concentrated poly-
mer solutions. Osmolyte diffusion induces a bi-exponential response in the size of
the hydrogel radius, whereas osmolyte partitioning and solvent quality effects in-
duce mono-exponential responses. Comparison of both the relaxational dynamics
model and the dominant-mode model to experiments, provides reasonable values for
the bulk modulus of a hydrogel particle, the permeability of the hydrogel network
and the diffusion constant of osmolyte molecules inside the hydrogel network. Our
model shows that the dynamics of hydrogel-osmolyte interactions can be conceptu-
ally simple and we expect our approach to provide a roadmap for further research into
hydrogel dynamics and applications of hydrogel dynamics induced by, for example,
changes in the temperature and the pH.
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2.1 Introduction

Hydrogels are hydrophilic crosslinked polymer networks which, when fully swollen,
typically imbibe large volumes of water relative to their dry volume. They can have
strong volumetric responses to changes in, for example, the pH, the temperature, and
the osmotic pressure of their surroundings, which makes them interesting for drug de-
livery and responsive materials like actuators and soft robotics [39, 118, 119].

Recently, the compression and reswelling of microgel particles in response to an os-
motic shock has been reported [120]. Initially fully swollen microgels were brought
into a continuously flowing polymer solution and from both phenomenological and
formative poroelastic modelling of their volumetric response, the diffusion constant
of osmolyte inside the hydrogels, the permeability and the bulk modulus of the hy-
drogel network could be inferred. Due to nonlinearities, both the phenomenological
and poroelastic model were solved numerically.

Here, we report experiments with remarkable overshoot behaviour of hydrogels
swelling in polymer solutions. First, we describe these experiments using a numer-
ically solved relaxational dynamics model based on the free energy of a hydrogel
particle, which extends the previous phenomenological model [120]. This model
provides little explicit insight in the resulting underlying hydrogel dynamics, how-
ever. In particular, the question remains what explicit quantities determine whether
an overshoot or undershoot in the hydrogel volume occurs before it relaxes to equi-
librium.

To remedy this deficiency, we also propose, using the theory of poromechanics,
a dominant-mode model describing the volumetric response of hydrogels for both
swelling and compression in concentrated polymer solutions. Large volumetric
changes of hydrogels typically give rise to nonlinearities in the bulk modulus of the
hydrogel, the permeability of the hydrogel network and the diffusion coefficient of
the osmolyte. To obtain explicit insight in the hydrogel dynamics, we solve the os-
molyte mass conservation equation and the force balance equation exactly for hydro-
gels in dilute polymer solutions. We find the temporal effect of osmolyte diffusion
on the hydrogel radius to be of bi-exponential form, expressing the interplay between
osmolyte that stresses the hydrogel network and the resulting ‘diffusion’ of the hy-
drogel network [33, 121]. Partitioning of the osmolyte between the hydrogel and the
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surrounding polymer solution, and changes in the quality of the solvent for the hy-
drogel network induce mono-exponential swelling or compression to the equilibrium
state, determined solely by hydrogel network diffusion. From this exact solution we
approximate the hydrogel response to concentrated polymer solutions by making a
dominant mode assumption.

Both the extended relaxational dynamics model and the dominant-mode model are
fitted to the measured volumetric response of hydrogels from both Sleeboom et
al. [120] and additional experiments. Reasonable values are obtained for the (ef-
fective) diffusion constant, permeability and bulk modulus, which scale as expected
with the concentration of hydrogel network and osmolyte.

After briefly introducing the swelling and compression experiments on hydrogel par-
ticles we (re)analyze here, we first introduce the phenomenological relaxational dy-
namics model and compare it to experiments. Next, the equations of motion of hy-
drogel dynamics are formulated using the theory of poroelasticity. With the exact
solution of hydrogel-osmolyte dynamics in a dilute polymer solution, we formulate
the dominant-mode model. Finally, the dominant-mode model is compared to the
experiments and the estimations for the bulk modulus, the hydrogel permeability and
the osmolyte diffusion constant are discussed.

2.2 Swelling and compression experiments

2.2.1 Microgels

In the experiments of Sleeboom et al. [120] microgels with various acrylamide
monomer concentrations and cross-linker densities were synthesized. This resulted
in ‘soft’, ‘medium’ and ‘stiff’ microgel particles, depending on their estimated bulk
modulus, as assessed with Capillary Micromechanics [122]. The microgels were
trapped in a microfluidic device where they were first equilibrated in demi-water and
subsequently compressed by replacing the demi-water with a continuously flowing
polymer solution of dextran 70k (from Leuconostoc spp, Mw = 70 kDa, Sigma-
Aldrich, radius of gyration Rg ≈ 6 nm [123]), see Figure 2.1A and 2.1B. The
hydrogels initially decrease in volume and either reswell to (approximately) their
original volume or to some reduced volume, see Figure 2.1C–F. Each of the Figures
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Figure 2.1: Schematic (A) and microscopy (B) image of the microfluidic setup in which
microgels, with radius a = 20µm, are trapped and the surrounding water (blue) can be
replaced by a polymer solution (red). The ratio of the volume V (t) of ’soft’ (D), ’medium’
(E), and ’stiff’ (F) microgels to their original volume V0 is given as a function of time
t after water is replaced by a dextran 70k polymer solution, unless specified otherwise.
Replacing water by a PEO 2M polymer solution (D) shows that a large osmolyte causes
permanent compression of the hydrogel particle. The solid lines are fits to the relaxational
dynamics model, with the fitted parameters displayed in Table 2.1.

2.1D–F show that a higher osmotic pressure induces a faster initial decrease in hy-
drogel volume, but, see Figure 2.1F, not necessarily a smaller equilibrium volume.
Therefore, apart from the osmotic pressure, solvent-quality effects are expected to be
relevant for the determination of the equilibrium volume. Also, if PEO 2M is taken
as an osmolyte molecule, see Figure 2.1D, no reswelling occurs, showing that the
occurrence of reswelling is related to the size of the molecules.
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Figure 2.2: The normalized volume V (t)/V0 as a function of time t of initially dry Aqua-
pearl hydrogel particles for different PEO 200k concentrations exhibiting an overshoot (A),
and for dextran 70k and PEG 20k exhibiting no overshoot (B). The solid lines are fits of
the relaxational dynamics model, with the fit and material properties displayed in the upper
half of, respectively, Table 2.2 and Table 2.3.

2.2.2 Aquapearls

We use so-called Aquapearls (sodium poly-acrylate particles, Deco-Boulevard,
Lohmar, Germany) as model hydrogel particles of macroscopic size. Swelling exper-
iments were conducted by having dried hydrogel particles of average initial radius
Rdry = 1.21mm swell in polymer solutions of dextran 70k, polyethylene glycol 20k
(PEG 20k, Mw = 20 kDa, Sigma-Aldrich, Rg ≈ 7 nm [124]) and polyethylene ox-
ide 200k (PEO 200k, Mw = 200 kDa, Sigma-Aldrich, Rg ≈ 22 nm [124]) at various
osmolyte concentrations, see Figure 2.2. With increasing PEO 200k concentration,
the equilibrium radius decreases, while the overshoot occurs at approximately the
same time. For t � 105 s, there seems to be additional slow deswelling of the hy-
drogel particles, see in particular the 10 wt% PEO 200k experiment in Figure 2.2A.
The PEG 20k and dextran 70k swelling experiments, on the other hand, exhibit slow
swelling for t � 105 s, suggesting that the kind of osmolyte molecule determines the
slow (de)swelling. Compression experiments show, similar to the swelling experi-
ments, slow (de)swelling, see Figure 2.3. The PEO 200k compression experiments
exhibit slow deswelling, and the PEG 20k and dextran 70k experiment show slow
swelling, therefore the latter exhibits an undershoot in hydrogel volume.
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Figure 2.1: Schematic (A) and microscopy (B) image of the microfluidic setup in which
microgels, with radius a = 20µm, are trapped and the surrounding water (blue) can be
replaced by a polymer solution (red). The ratio of the volume V (t) of ’soft’ (D), ’medium’
(E), and ’stiff’ (F) microgels to their original volume V0 is given as a function of time
t after water is replaced by a dextran 70k polymer solution, unless specified otherwise.
Replacing water by a PEO 2M polymer solution (D) shows that a large osmolyte causes
permanent compression of the hydrogel particle. The solid lines are fits to the relaxational
dynamics model, with the fitted parameters displayed in Table 2.1.

2.1D–F show that a higher osmotic pressure induces a faster initial decrease in hy-
drogel volume, but, see Figure 2.1F, not necessarily a smaller equilibrium volume.
Therefore, apart from the osmotic pressure, solvent-quality effects are expected to be
relevant for the determination of the equilibrium volume. Also, if PEO 2M is taken
as an osmolyte molecule, see Figure 2.1D, no reswelling occurs, showing that the
occurrence of reswelling is related to the size of the molecules.
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Figure 2.2: The normalized volume V (t)/V0 as a function of time t of initially dry Aqua-
pearl hydrogel particles for different PEO 200k concentrations exhibiting an overshoot (A),
and for dextran 70k and PEG 20k exhibiting no overshoot (B). The solid lines are fits of
the relaxational dynamics model, with the fit and material properties displayed in the upper
half of, respectively, Table 2.2 and Table 2.3.

2.2.2 Aquapearls

We use so-called Aquapearls (sodium poly-acrylate particles, Deco-Boulevard,
Lohmar, Germany) as model hydrogel particles of macroscopic size. Swelling exper-
iments were conducted by having dried hydrogel particles of average initial radius
Rdry = 1.21mm swell in polymer solutions of dextran 70k, polyethylene glycol 20k
(PEG 20k, Mw = 20 kDa, Sigma-Aldrich, Rg ≈ 7 nm [124]) and polyethylene ox-
ide 200k (PEO 200k, Mw = 200 kDa, Sigma-Aldrich, Rg ≈ 22 nm [124]) at various
osmolyte concentrations, see Figure 2.2. With increasing PEO 200k concentration,
the equilibrium radius decreases, while the overshoot occurs at approximately the
same time. For t � 105 s, there seems to be additional slow deswelling of the hy-
drogel particles, see in particular the 10 wt% PEO 200k experiment in Figure 2.2A.
The PEG 20k and dextran 70k swelling experiments, on the other hand, exhibit slow
swelling for t � 105 s, suggesting that the kind of osmolyte molecule determines the
slow (de)swelling. Compression experiments show, similar to the swelling experi-
ments, slow (de)swelling, see Figure 2.3. The PEO 200k compression experiments
exhibit slow deswelling, and the PEG 20k and dextran 70k experiment show slow
swelling, therefore the latter exhibits an undershoot in hydrogel volume.
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Figure 2.3: The normalized volume V (t)/V0 as a function of time t of Aquapearl hy-
drogel particles in different PEO 200k concentrations, exhibiting no undershoot (A), and
for dextran 70k and PEG 20k exhibiting an undershoot (B). The solid lines are fits of the
relaxational dynamics model, with the fit and material properties displayed in the lower
half of, respectively, Table 2.2 and Table 2.3. The dashed lines in (A) are fits where the
hydrogel (de)swelling time scale is fixed from the swelling experiments, thereby forcing
the osmolyte diffusion to take into account the final stage of slow deswelling, see Table 2.4
for the fit parameters.

2.3 Relaxational dynamics model

We develop, based on the simple phenomenological model from our previous
study [120], an extended relaxational dynamics model, which incorporates the mod-
ification of the solvent quality, brought about by the presence of macromolecules
within the network of the hydrogel particles, as well as, related to this, a potentially
uneven equilibrium distribution of these osmolyte macromolecules between the in-
side and the outside of the hydrogel, implying a remaining osmotic pressure differ-
ence.

We assume that if a particle is subjected to a pressure difference by immersing it in
a polymer solution, this jump is instantaneous and that the pressure depends on the
concentration of the osmolyte. We consider three separate regimes for the size of the
osmolyte compared to the pores of the network:

The first regime is where the radius of gyration Rg of the osmolyte polymer chain
is much larger than the network’s mesh size ζ, Rg � ζ. In this limit, we assume
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that the osmolyte does not penetrate the hydrogel network within experimental time
scales.

The second regime is when the polymer chains are much smaller than the network’s
mesh size, Rg � ζ, in which case the diffusion of the molecules inside the network
is nearly unhindered.

Describing the third regime between these two limiting cases, Rg ∼ ζ, is not trivial.
In our model we directly employ the diffusion coefficient of the osmolyte within the
network Dosm to describe the mobility of the polymer chains within the network.
While this diffusion coefficient depends on the molecular weight of the polymer and
the mesh size of the network, a theoretical prediction based on these parameters is not
straightforward [125, 126]. Due to the presence of the network, we assume that the
diffusion of the osmolyte inside the particle is slower than diffusion of the osmolyte
outside the particle. And because diffusion of osmolyte into the hydrogel is slow, the
hydrogel particle responds elastically to the osmotic pressure difference caused by
different concentrations of osmolyte inside and outside the gel particle. Therefore,
we assume that initial volume changes are dominated by elastic effects.

At t = 0 the osmolyte concentration inside the particle is 0 and the outside osmolyte
concentration stays fixed during the experiment. Our simple model does not specif-
ically take into account the spatial distribution of the osmolyte within the particle,
instead regarding only the time dependent average osmolyte concentration within
the entire particle. In our previous experiments [120], see Figure 2.1, we flow fresh
background fluid past the particle, thereby ensuring that the outside concentration
remains constant and homogeneous. To the same end, here we submerge the macro-
scopic hydrogel particles in a large container of background fluid under constant
stirring of the fluid on a roller–bank, see section 2.6.1 of the Appendix. A large
volume of the fluid reservoir ensures that any osmolyte absorption into the hydrogel
does not significantly affect the outside concentration. As our background fluid
has roughly 50 times more volume than the hydrogel particle this is a reasonable
assumption. As we actively stir the solutions we also assume that the concentration
of osmolyte outside the particle, and near the particle surface, is homogeneous.

Similar to our previous study [120], we assume model A dynamics [117] for the vol-
umetric response of a hydrogel particle, which provides a governing equation for the
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Figure 2.3: The normalized volume V (t)/V0 as a function of time t of Aquapearl hy-
drogel particles in different PEO 200k concentrations, exhibiting no undershoot (A), and
for dextran 70k and PEG 20k exhibiting an undershoot (B). The solid lines are fits of the
relaxational dynamics model, with the fit and material properties displayed in the lower
half of, respectively, Table 2.2 and Table 2.3. The dashed lines in (A) are fits where the
hydrogel (de)swelling time scale is fixed from the swelling experiments, thereby forcing
the osmolyte diffusion to take into account the final stage of slow deswelling, see Table 2.4
for the fit parameters.

2.3 Relaxational dynamics model

We develop, based on the simple phenomenological model from our previous
study [120], an extended relaxational dynamics model, which incorporates the mod-
ification of the solvent quality, brought about by the presence of macromolecules
within the network of the hydrogel particles, as well as, related to this, a potentially
uneven equilibrium distribution of these osmolyte macromolecules between the in-
side and the outside of the hydrogel, implying a remaining osmotic pressure differ-
ence.

We assume that if a particle is subjected to a pressure difference by immersing it in
a polymer solution, this jump is instantaneous and that the pressure depends on the
concentration of the osmolyte. We consider three separate regimes for the size of the
osmolyte compared to the pores of the network:

The first regime is where the radius of gyration Rg of the osmolyte polymer chain
is much larger than the network’s mesh size ζ, Rg � ζ. In this limit, we assume
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that the osmolyte does not penetrate the hydrogel network within experimental time
scales.

The second regime is when the polymer chains are much smaller than the network’s
mesh size, Rg � ζ, in which case the diffusion of the molecules inside the network
is nearly unhindered.

Describing the third regime between these two limiting cases, Rg ∼ ζ, is not trivial.
In our model we directly employ the diffusion coefficient of the osmolyte within the
network Dosm to describe the mobility of the polymer chains within the network.
While this diffusion coefficient depends on the molecular weight of the polymer and
the mesh size of the network, a theoretical prediction based on these parameters is not
straightforward [125, 126]. Due to the presence of the network, we assume that the
diffusion of the osmolyte inside the particle is slower than diffusion of the osmolyte
outside the particle. And because diffusion of osmolyte into the hydrogel is slow, the
hydrogel particle responds elastically to the osmotic pressure difference caused by
different concentrations of osmolyte inside and outside the gel particle. Therefore,
we assume that initial volume changes are dominated by elastic effects.

At t = 0 the osmolyte concentration inside the particle is 0 and the outside osmolyte
concentration stays fixed during the experiment. Our simple model does not specif-
ically take into account the spatial distribution of the osmolyte within the particle,
instead regarding only the time dependent average osmolyte concentration within
the entire particle. In our previous experiments [120], see Figure 2.1, we flow fresh
background fluid past the particle, thereby ensuring that the outside concentration
remains constant and homogeneous. To the same end, here we submerge the macro-
scopic hydrogel particles in a large container of background fluid under constant
stirring of the fluid on a roller–bank, see section 2.6.1 of the Appendix. A large
volume of the fluid reservoir ensures that any osmolyte absorption into the hydrogel
does not significantly affect the outside concentration. As our background fluid
has roughly 50 times more volume than the hydrogel particle this is a reasonable
assumption. As we actively stir the solutions we also assume that the concentration
of osmolyte outside the particle, and near the particle surface, is homogeneous.

Similar to our previous study [120], we assume model A dynamics [117] for the vol-
umetric response of a hydrogel particle, which provides a governing equation for the
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radius of the particle Ṙ = −Γ∂Ψ/∂R, where Γ is a phenomenological rate constant
and Ψ is the free energy of the hydrogel. The free energy is taken to be

Ψ =

elasticity  
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+Π
4πR3
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expansion
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ρ

ρw  
interaction

,

where the first two terms account for elastic deformations relative to the osmolyte-
free equilibrium state at radius R0. The third term measures the mixing free energy
of the osmolyte in the particle, the fourth quantifies the energetic cost of taking up
osmolyte molecules from the surrounding solution, and the fifth measures the cost of
hydrogel expansion in the solution. The last term, parametrized by B, is an interac-
tion term with the role of a (cross) virial coefficient which can be positive or negative,
depending on the interactions between the solvent, osmolyte and polymer network.
We define m as the number of cross-linked sub-chains, N is the number of osmolyte
molecules in the hydrogel particle, ρ ≡ 3N/4πR3 is the mean density of osmolyte
inside the particle, υ is a microscopic volume scale, and µ and Π are, respectively,
the chemical potential and osmotic pressure of the osmolyte in the surrounding solu-
tion.

If the background fluid behaves like an ideal solution, we can apply van ’t Hoff’s law
to the osmotic pressure Π = kBTρw of the outside solution, with ρw the mean den-
sity of osmolyte. Due to hydrogel-osmolyte interactions the osmolyte concentration
inside and outside the particle are not necessarily equal in the final equilibrium state,
but are characterized by the equilibrium partition coefficient Q [125], as

Q ≡
3Neq/4πR

3
eq

ρw
, (2.2)

where Neq and Req are, respectively, the number of osmolyte molecules inside the
particle, and the particle radius in the final equilibrium state. The equilibrium par-
tition coefficient measures the resulting ratio of osmolyte concentrations inside and
outside of the hydrogel particle. In case the osmolyte molecules can be regarded as
point particles, i.e., their radius of gyration Rg is much smaller than the mesh size
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of the hydrogel network ζ, and if they experience no long-range interactions with the
hydrogel, then Q equals the volume fraction of solvent φ ≡ 1 − (Rdry/Req)

3, with
Rdry the radius of a dry hydrogel network. We estimate Q as the fraction of available
volume in the particle for a specific osmolyte, therefore all solvent-quality related
interactions are absorbed in B. Thus, for osmolyte molecules of nonzero size able to
penetrate the hydrogel particle, 0 < Q < φ.

In principle, for a full description of the hydrogel-osmolyte-solvent interactions, we
would require three Flory–Huggins–type [44, 45] parameters to quantify the impact
of the solvent quality for both the network and osmolyte, and the interaction between
network and osmolyte [127]. For simplicity, we choose a description using only the
effective energetic parameter B.

Definition of the normalized particle radius as α(t) ≡ R(t)/R0 leads to a modified
evolution equation for the particle radius

∂α

∂t
= −3Γα

[
α− 1

α3
− P

(
fQα3

eq

α
− α2

)
+B

fQα3
eq

α4

]
, (2.3)

where P ≡ Π/K is the osmotic pressure scaled by the bulk modulus K ≈
3kBTm/4πR3

0 of the network, and Γα ≡ mΓkBT/R
2
0 is a relaxation rate. We de-

fined αeq ≡ Req/R0 as the ratio of the particle radius in the final equilibrium state
Req to that in the osmolyte-free state R0, and we define f(t) = N(t)/Neq as the
amount of osmolyte in the hydrogel particle at time t relative to that in the final state,
Neq.

To account for diffusion of the osmolyte from the fluid into the hydrogel particle,
we use the diffusion equation in integral form, ∂N/∂t = Dosm

∮
d2S · [ρ∇µ/kBT ]

across the interface, where Dosm is the diffusivity of the osmolyte within the gel. We
treat the concentrations inside and outside the hydrogel particle as uniform but differ-
ent. On dimensional grounds, this becomes ∂N/∂t = CDosmR

−2(Neq − N) with
R(t) the radius of the hydrogel particle and Neq the number of osmolyte particles in
the final equilibrium state; C is a proportionality constant to be determined by com-
parison with the known solution of the diffusion equation for osmolyte molecules
diffusing through a static hydrogel network, see Section 2.3.2. In normalized form,
the diffusion equation reads

∂f/∂t = −Γfα
−2(f − 1), (2.4)
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with Γf ≡ CDosm/R
2
0 the kinetic parameter that sets the time scale for the osmolyte

molecules to enter the hydrogel particle by diffusion. The final equilibrium radius
Req can be found from equation (2.3) and (2.4) in the static limit.

If the osmolyte cannot penetrate into the hydrogel, Q = 0 and the particle will simply
compress or swell monotonically under influence of the applied constant pressure, see
the right column in Figure 2.4. For B = 0 the osmolyte does not alter the solvent
quality for the hydrogel network, and the final volume is determined by the osmotic
pressure difference between the inside and the outside of the particle, see the top
row in Figure 2.4. By ignoring long range interactions and regarding the hydrogel
network as a phantom network, i.e., B = 0 and Q = φ ≈ 1, the model reduces to the
version we described in Sleeboom et al. [120], see the top left scenario in Figure 2.4.
In this case, the osmolyte can penetrate the network and does not interact with it in
any way; as a consequence, in the final equilibrium state the concentrations inside
and outside the hydrogel particle are the same.

For B �= 0 and Q > 0 the osmolyte penetrates the gel and the solvent quality is
affected by the presence of the osmolyte. This generally results in a modification
of the final volume, except in the special case where the osmotic pressure difference
between the inside and the outside of the particle balances the effect of increased
solvent quality, i.e., BQ − P (Q − 1) = 0. Using this relation, we reanalyze the
experiments of Sleeboom et al. [120] for the ‘soft’ and ‘medium’ hydrogel particles,
see Figure 2.1. For the experiments in the present study, the illustrations in the middle
column at the middle row of Figure 2.4 summarize the different qualitative behaviors
for both swelling and compression experiments. These illustrations show how a small
decrease in solvent quality (dotted curve) can cause an undershoot in a compression
experiment, whereas a large decrease in solvent quality (solid curve) can cause an
overshoot in a swelling experiment.

2.3.1 Fitting results

By fitting the extended relaxational dynamics model to the experimental data we can
obtain the permeability k, the bulk modulus K, the diffusivity of the osmolyte in
the hydrogel Dosm, and an indication for the change in solvent quality due to the
osmolyte in the form of the parameter B. We fit our model to our experiments using
the Mathematica functions NonlinearModelFit and NDSolve where we set P , Γα,
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Figure 2.4: Schematic illustration of the different theoretical scenarios for the time evo-
lution of the volume of a hydrogel particle on a log-linear scale under compression (solid
red lines) and swelling (solid black lines) in polymer solutions, as a function of both the
ratio of the radius of gyration Rg of the dissolved macromolecules to the mesh size of the
hydrogel network ζ (columns) and their effect on the solvent quality of the solution B with
respect to the hydrogel network (rows). The horizontal dotted lines indicate the osmolyte-
free equilibrium level of swelling of the hydrogel particle. If Rg � ζ or Rg ∼ ζ, osmolyte
can diffuse into the hydrogel particle (left and middle column). When there is no change
in solvent quality (top row), the difference in osmotic pressure between the inside and the
outside of the particle decreases over time due to osmolyte diffusion, causing slow (addi-
tional) swelling. A small decrease in solvent quality (middle row, dotted curve) can cause
an undershoot in a compression experiment, whereas a large decrease in solvent quality
(middle row, solid curve) can cause an overshoot in a swelling experiment. Increases in
solvent quality (bottom row) enhance the magnitude of slow (re)swelling.

Γs and B as fitting parameters, and we estimate Q as follows.

The equilibrium partition coefficient Q is defined as the ratio of the concentration of
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solvent quality, i.e., BQ − P (Q − 1) = 0. Using this relation, we reanalyze the
experiments of Sleeboom et al. [120] for the ‘soft’ and ‘medium’ hydrogel particles,
see Figure 2.1. For the experiments in the present study, the illustrations in the middle
column at the middle row of Figure 2.4 summarize the different qualitative behaviors
for both swelling and compression experiments. These illustrations show how a small
decrease in solvent quality (dotted curve) can cause an undershoot in a compression
experiment, whereas a large decrease in solvent quality (solid curve) can cause an
overshoot in a swelling experiment.

2.3.1 Fitting results

By fitting the extended relaxational dynamics model to the experimental data we can
obtain the permeability k, the bulk modulus K, the diffusivity of the osmolyte in
the hydrogel Dosm, and an indication for the change in solvent quality due to the
osmolyte in the form of the parameter B. We fit our model to our experiments using
the Mathematica functions NonlinearModelFit and NDSolve where we set P , Γα,
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Figure 2.4: Schematic illustration of the different theoretical scenarios for the time evo-
lution of the volume of a hydrogel particle on a log-linear scale under compression (solid
red lines) and swelling (solid black lines) in polymer solutions, as a function of both the
ratio of the radius of gyration Rg of the dissolved macromolecules to the mesh size of the
hydrogel network ζ (columns) and their effect on the solvent quality of the solution B with
respect to the hydrogel network (rows). The horizontal dotted lines indicate the osmolyte-
free equilibrium level of swelling of the hydrogel particle. If Rg � ζ or Rg ∼ ζ, osmolyte
can diffuse into the hydrogel particle (left and middle column). When there is no change
in solvent quality (top row), the difference in osmotic pressure between the inside and the
outside of the particle decreases over time due to osmolyte diffusion, causing slow (addi-
tional) swelling. A small decrease in solvent quality (middle row, dotted curve) can cause
an undershoot in a compression experiment, whereas a large decrease in solvent quality
(middle row, solid curve) can cause an overshoot in a swelling experiment. Increases in
solvent quality (bottom row) enhance the magnitude of slow (re)swelling.

Γs and B as fitting parameters, and we estimate Q as follows.

The equilibrium partition coefficient Q is defined as the ratio of the concentration of
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osmolyte molecules inside the hydrogel particle to the concentration outside of the
particle in equilibrium, see equation (2.2). Both short-range and long-range inter-
actions determine the equilibrium partitioning of osmolyte. Short-range interactions
between the osmolyte and the hydrogel network set the fraction of available vol-
ume by determining the excluded volume through hard-core repulsive interactions.
Long-range interactions, on the other hand, set the chemical potential for osmolyte
molecules in the available volume inside the hydrogel particle. In our model, we
account for long-range interactions in the energetic parameter B. Therefore, we esti-
mate Q as the fraction of available volume φav in the hydrogel particle, based purely
on short-range interactions. Due to the finite size of osmolyte molecules, the fraction
of available volume does not generally equal the equilibrium volume fraction of sol-
vent φ ≡ 1 − (Rdry/Req)

3, with Rdry the radius of a fully dried hydrogel particle
and Req its radius in equilibrium.

To estimate the available equilibrium volume fraction in the Aquapearl hydrogels for
70k dextran, 20k PEG and 200k PEO, we model the available volume of a hydrogel
particle as being comprised of spherical solvent-filled impenetrable shells with an
inner radius equal to the mesh size ζ of the hydrogel network. Assuming the osmolyte
particles to be hard spheres whose radius equals their radius of gyration Rg, the
available volume fraction for an osmolyte molecule moving in a shell equals

φav = (1−Rg/ζ)
3 . (2.5)

To estimate φav for dextran 70k, PEG 20k and PEO 200k in the Aquapearl particles,
we first estimate the available volume fraction for dextran 70k using equation (2.5).
To do so, we calculate the ratio of the mesh size of the Aquapearl particles ζaqua to
the mesh size of a 5 wt% poly-acrylamide network ζpoly with known φav. We find
the ratio of the mesh sizes by comparing the permeabilities k ∝ ζ2 of the two kinds
of hydrogel particles.

As a proxy for the available volume fraction φav of the 5wt% poly-acrylamide net-
work for dextran 70k (Rg = 6nm [123]), we use the measured available volume
fraction of a 6wt% polacrylamide hydrogel for dextran molecules with a radius of
6.42 nm [126]. As a proxy for the permeability of the Aquapearl particles, we use
the result of section 2.6.5 in the Appendix, where we find the permeability of the
Aquapearl particles to be k = 8(5) nm2. To determine the permeability of 5wt%
poly-acrylamide hydrogels, we fit our model to the compressive response of 5wt%
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Table 2.1: Material properties of the soft, medium and stiff poly-acrylamide hydrogels
of Sleeboom et al. [120] from fits with the relaxational dynamics model. For the bulk
modulus of the medium and the stiff particles we used the value obtained from Capillary
Micromechanics, see the Supplemental Material of Sleeboom et al., and for the soft parti-
cles we used the estimation of the bulk modulus from the fits in Sleeboom et al. The weight
percentage indicates the concentration of the dextran 70k polymer solution used in the ex-
periment. The standard error for each derived material parameter is given in brackets. We
assumed all fitted parameters to be uncorrelated.

Π K k Dosm

Experiment [kPa] [kPa] [nm2] [µm2/s]

Medium 13wt% 29.4 13 0.17(0.02) 1.01(0.16)
Medium 13wt% 29.4 13 0.19(0.02) 0.74(0.11)
Medium 5wt% 4.2 13 0.18(0.03) 3.43(0.94)
Soft 13wt% 29.4 10 0.40(0.01) 0.51(0.02)
Soft PEG 2M 1.8 10 0.51(0.03) 0.00(0.00)
Stiff 5wt% 4.2 17 0.15(0.09) 7.36(307.00)
Stiff 13 wt% 29.4 17 0.09(0.01) 2.46(0.34)

‘medium’ poly-acrylamide microgel particles with dextran 70k from our previous
work [120], see Table 2.1 for the fitted parameters. In making the fits for the medium
and soft particles we enforced the particle to reswell to its original size by demanding
that BQ − P (Q − 1) = 0, and we put Q = φav = 0.11 for the medium and soft
gels and Q = φav = 0.02 for the stiff gels [126]. We average the fitted values for the
permeability k of the medium hydrogels to obtain an estimate for the permeability of
the 5wt% poly-acrylamide network.

Assuming the proportionality constant in the scaling relation for the permeability
k ∝ ζ2 to be equal for the poly-acrylamide and the Aquapearl particles, we find the
ratio of the mesh size of the Aquapearl particles to that of 5wt% poly-acrylamide
medium hydrogels as ζaqua/ζpolyac ≈ 7. Then, using equation (2.5), and that the
available volume fraction for dextran 70k of the 5wt% poly-acrylamide hydrogels
is φav = 0.11 [126], we find the available volume fraction within the Aquapearl
particles for dextran 70k as φdex

av = 0.78, where we used Rg = 6nm [123].

As we know the ratio of the radius of PEG 20k and PEO 200k molecules to that of
dextran 70k, we find the fraction of available volume in the Aquapearls for PEG 20k
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osmolyte molecules inside the hydrogel particle to the concentration outside of the
particle in equilibrium, see equation (2.2). Both short-range and long-range inter-
actions determine the equilibrium partitioning of osmolyte. Short-range interactions
between the osmolyte and the hydrogel network set the fraction of available vol-
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Long-range interactions, on the other hand, set the chemical potential for osmolyte
molecules in the available volume inside the hydrogel particle. In our model, we
account for long-range interactions in the energetic parameter B. Therefore, we esti-
mate Q as the fraction of available volume φav in the hydrogel particle, based purely
on short-range interactions. Due to the finite size of osmolyte molecules, the fraction
of available volume does not generally equal the equilibrium volume fraction of sol-
vent φ ≡ 1 − (Rdry/Req)

3, with Rdry the radius of a fully dried hydrogel particle
and Req its radius in equilibrium.

To estimate the available equilibrium volume fraction in the Aquapearl hydrogels for
70k dextran, 20k PEG and 200k PEO, we model the available volume of a hydrogel
particle as being comprised of spherical solvent-filled impenetrable shells with an
inner radius equal to the mesh size ζ of the hydrogel network. Assuming the osmolyte
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available volume fraction for an osmolyte molecule moving in a shell equals

φav = (1−Rg/ζ)
3 . (2.5)

To estimate φav for dextran 70k, PEG 20k and PEO 200k in the Aquapearl particles,
we first estimate the available volume fraction for dextran 70k using equation (2.5).
To do so, we calculate the ratio of the mesh size of the Aquapearl particles ζaqua to
the mesh size of a 5 wt% poly-acrylamide network ζpoly with known φav. We find
the ratio of the mesh sizes by comparing the permeabilities k ∝ ζ2 of the two kinds
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As a proxy for the available volume fraction φav of the 5wt% poly-acrylamide net-
work for dextran 70k (Rg = 6nm [123]), we use the measured available volume
fraction of a 6wt% polacrylamide hydrogel for dextran molecules with a radius of
6.42 nm [126]. As a proxy for the permeability of the Aquapearl particles, we use
the result of section 2.6.5 in the Appendix, where we find the permeability of the
Aquapearl particles to be k = 8(5) nm2. To determine the permeability of 5wt%
poly-acrylamide hydrogels, we fit our model to the compressive response of 5wt%
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Table 2.1: Material properties of the soft, medium and stiff poly-acrylamide hydrogels
of Sleeboom et al. [120] from fits with the relaxational dynamics model. For the bulk
modulus of the medium and the stiff particles we used the value obtained from Capillary
Micromechanics, see the Supplemental Material of Sleeboom et al., and for the soft parti-
cles we used the estimation of the bulk modulus from the fits in Sleeboom et al. The weight
percentage indicates the concentration of the dextran 70k polymer solution used in the ex-
periment. The standard error for each derived material parameter is given in brackets. We
assumed all fitted parameters to be uncorrelated.

Π K k Dosm

Experiment [kPa] [kPa] [nm2] [µm2/s]

Medium 13wt% 29.4 13 0.17(0.02) 1.01(0.16)
Medium 13wt% 29.4 13 0.19(0.02) 0.74(0.11)
Medium 5wt% 4.2 13 0.18(0.03) 3.43(0.94)
Soft 13wt% 29.4 10 0.40(0.01) 0.51(0.02)
Soft PEG 2M 1.8 10 0.51(0.03) 0.00(0.00)
Stiff 5wt% 4.2 17 0.15(0.09) 7.36(307.00)
Stiff 13 wt% 29.4 17 0.09(0.01) 2.46(0.34)

‘medium’ poly-acrylamide microgel particles with dextran 70k from our previous
work [120], see Table 2.1 for the fitted parameters. In making the fits for the medium
and soft particles we enforced the particle to reswell to its original size by demanding
that BQ − P (Q − 1) = 0, and we put Q = φav = 0.11 for the medium and soft
gels and Q = φav = 0.02 for the stiff gels [126]. We average the fitted values for the
permeability k of the medium hydrogels to obtain an estimate for the permeability of
the 5wt% poly-acrylamide network.

Assuming the proportionality constant in the scaling relation for the permeability
k ∝ ζ2 to be equal for the poly-acrylamide and the Aquapearl particles, we find the
ratio of the mesh size of the Aquapearl particles to that of 5wt% poly-acrylamide
medium hydrogels as ζaqua/ζpolyac ≈ 7. Then, using equation (2.5), and that the
available volume fraction for dextran 70k of the 5wt% poly-acrylamide hydrogels
is φav = 0.11 [126], we find the available volume fraction within the Aquapearl
particles for dextran 70k as φdex

av = 0.78, where we used Rg = 6nm [123].

As we know the ratio of the radius of PEG 20k and PEO 200k molecules to that of
dextran 70k, we find the fraction of available volume in the Aquapearls for PEG 20k
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Table 2.2: Fitting parameters for the model curve fits displayed in Figure 2.2 and Fig-
ure 2.3. The upper and lower sections of the Table display the swelling and compression
cases, respectively. The standard error for each fitted parameter is given in brackets.

P Γα Γf B

Solution [10−1] [10−5/s] [10−5/s] [10−1]

NaCl only 0 0.94(0.01) – –
dextran 70k 8wt% 3.3(0.1) 0.75(0.01) 0.10(0.12) 1.9(0.6)
PEG 20k 8wt% 12.7(0.3) 0.62(0.01) 0.39(0.16) 5.6(0.3)
PEO 200k 2wt% 0.0(0.8) 1.03(0.02) 2.71(1.20) 5.2(1.2)
PEO 200k 4wt% 4.0(1.5) 0.88(0.02) 2.69(1.30) 10.3(1.7)
PEO 200k 5wt% 4.9(2.9) 0.79(0.04) 3.39(1.28) 17.2(2.8)
PEO 200k 7.5wt% 8.9(5.1) 0.65(0.04) 3.40(1.41) 23.9(3.9)
PEO 200k 10wt% 19.2(2.6) 0.54(0.01) 1.95(0.50) 30.0(1.6)
PEO 200k 4wt% +
PEG 20k 8wt% 23.7(1.5) 0.52(0.01) 1.83(0.31) 18.9(0.3)
dextran 70k 8wt% 2.8(0.0) 1.96(0.10) 0.44(0.03) 0.9(0.0)
PEG 20k 8wt% 14.3(0.5) 1.17(0.08) 0.22(0.35) 5.3(2.1)
PEO 200k 4wt% 1.8(0.1) 5.83(0.78) 7.23(1.27) 12.9(0.2)
PEO 200k 7.5wt% 2.3(0.2) 9.94(1.45) 5.84(1.12) 16.8(0.3)
PEO 200k 10wt% 3.4(0.3) 10.90(1.73) 8.16(1.68) 22.0(0.4)

and PEO 200k as φPEG
av = 0.75 and φPEO

av = 0.36, where we used Rg = 7nm for
PEG 20k [124], and Rg = 22nm for PEO 200k [124]. Finally, taking Q = φav, we
fit the extended model to the volumetric measurements of the Aquapearl particles,
see Figure 2.2 and Figure 2.3. The parameters obtained from this fitting procedure
are summarized in Table 2.2.

We first analyze the parameters obtained for the hydrogels swollen in PEO 200k to
verify that the parameters are consistent. For these hydrogels we observe an increase
in P for increasing polymer concentrations, which is as expected, as the external
pressure, P ∝ Π, increases with increasing polymer concentration. We expect that
the decay rate for the particle radius Γα decreases with increasing polymer concen-
tration, because a higher network polymer density in the particle lowers the perme-
ability for solvent molecules, and indeed, we do observe a slight decrease in Γα for
increasing polymer concentration. We also observe a trend for an increase of Γf with

2.3 Relaxational dynamics model 42

increasing PEO 200k concentration, which is somewhat expected, as the mutual dif-
fusion coefficient increases with polymer concentration [128]. Further, we observe
an increase of the parameter B with increasing PEO 200k concentrations. This is rea-
sonable, as the interaction term in equation (2.3) is not proportional to the absolute
concentration of osmolyte molecules, and therefore the effect of increasing polymer
concentration shows itself in B. The P values for the hydrogels swollen in PEG 20k
8 wt% and dextran 70k 8 wt% are also consistent, as the PEG 20k solution has a
much higher osmotic pressure than the dextran 70k solution, 65(9) kPa [129] versus
10 kPa [123], respectively, where the estimated uncertainty, if available, is displayed
in brackets.

For the compression experiments all the obtained values for dextran 70k and PEG 20k
are comparable to those from the swelling experiments. For PEO 200k the obtained
values for P and B in the compression experiments exhibit the same trends as those
observed in the swelling experiments.

We find significant differences, however, between the values of Γα and Γf obtained
from the compression and the swelling experiments, respectively. While the rate of
change of the particle radius to its equilibrium value Req is set by Γα, the rate constant
Γf sets the time scale for osmolyte diffusion, which may induce slow (de)swelling
of the hydrogel particle by changing both the solvent quality and the osmotic pres-
sure difference, see Figure 2.4. Therefore, if the measured volume does experience
an under- or overshoot, as observed for the dextran 70k and PEG 20k compression
experiments in Figure 2.3B, the undershoot can be taken into account uniquely by the
slow diffusion of osmolyte, thereby determining Γf . However, the PEO 200k com-
pression experiments in Figure 2.3A exhibit no undershoot, thus making the effects
contained in Γα and Γf less clearly separated and their values prone to error.

2.3.2 Material properties

We can relate the model parameters to the bulk modulus K, the permeability k and
the diffusion coefficient of the osmolyte in the network Dosm. We determine K di-
rectly from the fitted P value as we defined P = Π/K. From literature we know Π

as a function of concentration, for both the dextran 70k [123] and the PEG 20k [129]
solutions used in our experiments, but not for our PEO 200k solutions. To determine
Π as a function of concentration for our PEO 200k solutions, we place 1 mL samples
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Table 2.2: Fitting parameters for the model curve fits displayed in Figure 2.2 and Fig-
ure 2.3. The upper and lower sections of the Table display the swelling and compression
cases, respectively. The standard error for each fitted parameter is given in brackets.

P Γα Γf B

Solution [10−1] [10−5/s] [10−5/s] [10−1]

NaCl only 0 0.94(0.01) – –
dextran 70k 8wt% 3.3(0.1) 0.75(0.01) 0.10(0.12) 1.9(0.6)
PEG 20k 8wt% 12.7(0.3) 0.62(0.01) 0.39(0.16) 5.6(0.3)
PEO 200k 2wt% 0.0(0.8) 1.03(0.02) 2.71(1.20) 5.2(1.2)
PEO 200k 4wt% 4.0(1.5) 0.88(0.02) 2.69(1.30) 10.3(1.7)
PEO 200k 5wt% 4.9(2.9) 0.79(0.04) 3.39(1.28) 17.2(2.8)
PEO 200k 7.5wt% 8.9(5.1) 0.65(0.04) 3.40(1.41) 23.9(3.9)
PEO 200k 10wt% 19.2(2.6) 0.54(0.01) 1.95(0.50) 30.0(1.6)
PEO 200k 4wt% +
PEG 20k 8wt% 23.7(1.5) 0.52(0.01) 1.83(0.31) 18.9(0.3)
dextran 70k 8wt% 2.8(0.0) 1.96(0.10) 0.44(0.03) 0.9(0.0)
PEG 20k 8wt% 14.3(0.5) 1.17(0.08) 0.22(0.35) 5.3(2.1)
PEO 200k 4wt% 1.8(0.1) 5.83(0.78) 7.23(1.27) 12.9(0.2)
PEO 200k 7.5wt% 2.3(0.2) 9.94(1.45) 5.84(1.12) 16.8(0.3)
PEO 200k 10wt% 3.4(0.3) 10.90(1.73) 8.16(1.68) 22.0(0.4)

and PEO 200k as φPEG
av = 0.75 and φPEO

av = 0.36, where we used Rg = 7nm for
PEG 20k [124], and Rg = 22nm for PEO 200k [124]. Finally, taking Q = φav, we
fit the extended model to the volumetric measurements of the Aquapearl particles,
see Figure 2.2 and Figure 2.3. The parameters obtained from this fitting procedure
are summarized in Table 2.2.

We first analyze the parameters obtained for the hydrogels swollen in PEO 200k to
verify that the parameters are consistent. For these hydrogels we observe an increase
in P for increasing polymer concentrations, which is as expected, as the external
pressure, P ∝ Π, increases with increasing polymer concentration. We expect that
the decay rate for the particle radius Γα decreases with increasing polymer concen-
tration, because a higher network polymer density in the particle lowers the perme-
ability for solvent molecules, and indeed, we do observe a slight decrease in Γα for
increasing polymer concentration. We also observe a trend for an increase of Γf with
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increasing PEO 200k concentration, which is somewhat expected, as the mutual dif-
fusion coefficient increases with polymer concentration [128]. Further, we observe
an increase of the parameter B with increasing PEO 200k concentrations. This is rea-
sonable, as the interaction term in equation (2.3) is not proportional to the absolute
concentration of osmolyte molecules, and therefore the effect of increasing polymer
concentration shows itself in B. The P values for the hydrogels swollen in PEG 20k
8 wt% and dextran 70k 8 wt% are also consistent, as the PEG 20k solution has a
much higher osmotic pressure than the dextran 70k solution, 65(9) kPa [129] versus
10 kPa [123], respectively, where the estimated uncertainty, if available, is displayed
in brackets.

For the compression experiments all the obtained values for dextran 70k and PEG 20k
are comparable to those from the swelling experiments. For PEO 200k the obtained
values for P and B in the compression experiments exhibit the same trends as those
observed in the swelling experiments.

We find significant differences, however, between the values of Γα and Γf obtained
from the compression and the swelling experiments, respectively. While the rate of
change of the particle radius to its equilibrium value Req is set by Γα, the rate constant
Γf sets the time scale for osmolyte diffusion, which may induce slow (de)swelling
of the hydrogel particle by changing both the solvent quality and the osmotic pres-
sure difference, see Figure 2.4. Therefore, if the measured volume does experience
an under- or overshoot, as observed for the dextran 70k and PEG 20k compression
experiments in Figure 2.3B, the undershoot can be taken into account uniquely by the
slow diffusion of osmolyte, thereby determining Γf . However, the PEO 200k com-
pression experiments in Figure 2.3A exhibit no undershoot, thus making the effects
contained in Γα and Γf less clearly separated and their values prone to error.

2.3.2 Material properties

We can relate the model parameters to the bulk modulus K, the permeability k and
the diffusion coefficient of the osmolyte in the network Dosm. We determine K di-
rectly from the fitted P value as we defined P = Π/K. From literature we know Π

as a function of concentration, for both the dextran 70k [123] and the PEG 20k [129]
solutions used in our experiments, but not for our PEO 200k solutions. To determine
Π as a function of concentration for our PEO 200k solutions, we place 1 mL samples
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of a 2 wt% PEO 200k solution in dialysis bags and submerge them in dextran solu-
tions of various concentrations with known osmotic pressures. After having given the
samples a week to equilibrate, we extract the PEO 200k concentration as a function
of osmotic pressure, assuming that the osmotic pressure inside has equilibrated to the
pressure outside; see section 2.6.3 of the Appendix for details.

To determine the permeability k, we consider the (hypothetical) case of the swelling
of an initially compressed hydrogel without osmolyte and find from equation (2.3)
an exponential long-time relaxation at a rate of 12Γα. Assuming that this rate corre-
sponds to the dominant relaxation rate in the long-time limit of the analytical swelling
model of Tanaka and Fillmore [121], we obtain 12Γα = π2Kk/R2

0η, with η the
dynamic viscosity of water. This expression is an improvement on the one of our
previous work [120], where we compared the short-time swelling response of our
phenomenological model to the long-time response of the analytical swelling model
of Tanaka and Fillmore.

Finally, we can estimate Dosm from the rate constant Γf . To do so, we need to realize
that in our phenomenological model we had absorbed the unknown prefactor C in
the definition of Γf . To determine C, let us consider the (hypothetical) case where
the particle radius remains fixed, Γα = 0, but diffusion of osmolyte can still occur.
In this case, the only relevant process is the diffusion of osmolyte into the network,
and we can solve equation (2.4) for all times, which yields Γf as an exponential
relaxation rate. Setting this rate equal to the dominant relaxation rate in the long-
time limit of the analytical solution of the diffusion equation in a sphere of radius
R0 [130], we obtain C = π2. This determination of C is an improvement to our
previous work [120], where we had put C = 1.

We have placed all of these results in Table 2.3. From the swelling experiments (up-
per section of the table) we obtain an average value of 35(9) kPa for K and 4(2)
nm2 for k. We obtained these averages by weighting each value with the inverse
square of its standard error; the corresponding standard deviation is displayed in
brackets. These parameters are in fair agreement with the values of K = 27(6)

kPa and k = 8(5) nm2, obtained in separate, conventional experiments. To obtain
these experimental values for K and k, we used a macroscopic version of the Capil-
lary Micromechanics technique [122] and a custom–built permeability measurement
setup, respectively. See sections 2.6.4 and 2.6.5 of the Appendix.
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We notice that the osmolyte diffusion coefficient Dosm obtained from the swelling
experiments for the dextran 70k and the PEG 20k solutions is consistently lower
than for the PEO 200k solution. The reason for this could be that, while overall the
PEO 200k has a higher molecular weight than PEG 20k and dextran 70k, the fraction
of the polydisperse PEO 200k species that is small enough to penetrate the hydro-
gel could still diffuse faster than the dextran 70k or PEG 20k polymers, see section
2.6.2 of the Appendix. Indeed, in experiments employing a mixture of PEG 20k and
PEO 200k we obtain a diffusion coefficient Dosm that lies between those observed
for PEO 200k and for PEG 20k.

The anomalously high values for K, k and especially Dosm obtained from the
PEO 200k compression experiments are possibly caused by the monotonic decrease
of hydrogel volume in these compression experiments, which makes the effects of os-
molyte diffusion (Γf ) and the rate of solvent permeation of the hydrogel particle (Γα)
difficult to distinguish, see the last paragraph of section 2.3.1 for more information.
Indeed, if we fix Γα with the value fitted from the corresponding swelling experiment,
we find values for K, k as well as Dosm that are closer to those of PEG 20k and dex-
tran 70k, see Table 2.4. The corresponding fit curves are displayed in Figure 2.3 as
dashed lines.

Overall, given the simplicity of our model, for the swelling experiments the model
accounts for the experiments surprisingly well, even as we neglected any polydis-
persity effects. Nevertheless, it could be useful to develop an improved model that
specifically accounts for this factor.

From the results of Table 2.3 we conclude that the decrease in solvent quality is
stronger for PEO 200k than for both dextran 70k and PEG 20k. This is a key
ingredient needed to explain the long–time hydrogel particle dynamics in every
swelling and compression experiment we conducted. In the experiments (part of)
the osmolyte slowly diffuses into the hydrogel, as witnessed by the (de)swelling and
(de)compression processes happening on long time scales in Figure 2.2–2.3. By dif-
fusing into the hydrogel, the osmolyte lowers the osmotic pressure difference, thereby
inducing swelling of the hydrogel, lowering the solvent quality at the same time.
This causes compression of the hydrogel. The competition between these two effects
determines the measured volumetric response of the hydrogel particle at long time
scales, see the middle row of Figure 2.4 for an illustration. For the dextran 70k and
PEG 20k the decrease in osmotic pressure difference prevails, causing additional slow
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of a 2 wt% PEO 200k solution in dialysis bags and submerge them in dextran solu-
tions of various concentrations with known osmotic pressures. After having given the
samples a week to equilibrate, we extract the PEO 200k concentration as a function
of osmotic pressure, assuming that the osmotic pressure inside has equilibrated to the
pressure outside; see section 2.6.3 of the Appendix for details.

To determine the permeability k, we consider the (hypothetical) case of the swelling
of an initially compressed hydrogel without osmolyte and find from equation (2.3)
an exponential long-time relaxation at a rate of 12Γα. Assuming that this rate corre-
sponds to the dominant relaxation rate in the long-time limit of the analytical swelling
model of Tanaka and Fillmore [121], we obtain 12Γα = π2Kk/R2

0η, with η the
dynamic viscosity of water. This expression is an improvement on the one of our
previous work [120], where we compared the short-time swelling response of our
phenomenological model to the long-time response of the analytical swelling model
of Tanaka and Fillmore.

Finally, we can estimate Dosm from the rate constant Γf . To do so, we need to realize
that in our phenomenological model we had absorbed the unknown prefactor C in
the definition of Γf . To determine C, let us consider the (hypothetical) case where
the particle radius remains fixed, Γα = 0, but diffusion of osmolyte can still occur.
In this case, the only relevant process is the diffusion of osmolyte into the network,
and we can solve equation (2.4) for all times, which yields Γf as an exponential
relaxation rate. Setting this rate equal to the dominant relaxation rate in the long-
time limit of the analytical solution of the diffusion equation in a sphere of radius
R0 [130], we obtain C = π2. This determination of C is an improvement to our
previous work [120], where we had put C = 1.

We have placed all of these results in Table 2.3. From the swelling experiments (up-
per section of the table) we obtain an average value of 35(9) kPa for K and 4(2)
nm2 for k. We obtained these averages by weighting each value with the inverse
square of its standard error; the corresponding standard deviation is displayed in
brackets. These parameters are in fair agreement with the values of K = 27(6)

kPa and k = 8(5) nm2, obtained in separate, conventional experiments. To obtain
these experimental values for K and k, we used a macroscopic version of the Capil-
lary Micromechanics technique [122] and a custom–built permeability measurement
setup, respectively. See sections 2.6.4 and 2.6.5 of the Appendix.
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We notice that the osmolyte diffusion coefficient Dosm obtained from the swelling
experiments for the dextran 70k and the PEG 20k solutions is consistently lower
than for the PEO 200k solution. The reason for this could be that, while overall the
PEO 200k has a higher molecular weight than PEG 20k and dextran 70k, the fraction
of the polydisperse PEO 200k species that is small enough to penetrate the hydro-
gel could still diffuse faster than the dextran 70k or PEG 20k polymers, see section
2.6.2 of the Appendix. Indeed, in experiments employing a mixture of PEG 20k and
PEO 200k we obtain a diffusion coefficient Dosm that lies between those observed
for PEO 200k and for PEG 20k.

The anomalously high values for K, k and especially Dosm obtained from the
PEO 200k compression experiments are possibly caused by the monotonic decrease
of hydrogel volume in these compression experiments, which makes the effects of os-
molyte diffusion (Γf ) and the rate of solvent permeation of the hydrogel particle (Γα)
difficult to distinguish, see the last paragraph of section 2.3.1 for more information.
Indeed, if we fix Γα with the value fitted from the corresponding swelling experiment,
we find values for K, k as well as Dosm that are closer to those of PEG 20k and dex-
tran 70k, see Table 2.4. The corresponding fit curves are displayed in Figure 2.3 as
dashed lines.

Overall, given the simplicity of our model, for the swelling experiments the model
accounts for the experiments surprisingly well, even as we neglected any polydis-
persity effects. Nevertheless, it could be useful to develop an improved model that
specifically accounts for this factor.

From the results of Table 2.3 we conclude that the decrease in solvent quality is
stronger for PEO 200k than for both dextran 70k and PEG 20k. This is a key
ingredient needed to explain the long–time hydrogel particle dynamics in every
swelling and compression experiment we conducted. In the experiments (part of)
the osmolyte slowly diffuses into the hydrogel, as witnessed by the (de)swelling and
(de)compression processes happening on long time scales in Figure 2.2–2.3. By dif-
fusing into the hydrogel, the osmolyte lowers the osmotic pressure difference, thereby
inducing swelling of the hydrogel, lowering the solvent quality at the same time.
This causes compression of the hydrogel. The competition between these two effects
determines the measured volumetric response of the hydrogel particle at long time
scales, see the middle row of Figure 2.4 for an illustration. For the dextran 70k and
PEG 20k the decrease in osmotic pressure difference prevails, causing additional slow
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Table 2.3: Material properties based on the model fits displayed in Figure 2.2 to Figure 2.3.
The upper and lower sections of the Table display the swelling and compression cases,
respectively. The standard error for each material parameter is given in brackets. We
assume all fitted parameters to be uncorrelated.

Π K k Dosm

Solution [kPa] [kPa] [nm2] [µm2/s]

NaCl only 0 27 5.7(0.1) –
dextran 70k 8wt% 10.4 32(1) 3.9(0.1) 1.3(1.6)
PEG 20k 8wt% 64.7(8.6) 51(7) 2.0(0.3) 5.3(2.2)
PEO 200k 2wt% 0.4(0.3) 633(73800) 0.3(31.0) 37.0(16.4)
PEO 200k 4wt% 6.1(0.6) 15(6) 9.6(3.7) 36.7(17.8)
PEO 200k 5wt% 10.8(0.8) 22(13) 5.8(3.5) 46.3(17.5)
PEO 200k 7.5wt% 28.4(1.4) 32(18) 3.3(1.9) 46.4(19.3)
PEO 200k 10wt% 54.1(2.2) 28(4) 3.2(0.5) 26.6(6.8)
PEO 200k 4wt% +
PEG 20k 8 wt% 70.7(8.6) 30(4) 2.9(0.4) 25.0(4.3)
dextran 70k 8wt% 10.4 37(1) 8.7(0.4) 6.0(0.4)
PEG 20k 8wt% 64.7(8.6) 45(6) 4.2(0.7) 3.0(4.7)
PEO 200k 4wt% 6.1(0.6) 33(4) 28.9(5.1) 98.7(17.4)
PEO 200k 7.5wt% 28.4(1.4) 124(11) 13.1(2.2) 79.7(15.3)
PEO 200k 10wt% 54.1(2.2) 161(15) 11.0(2.0) 112.0(23.0)

swelling in the swelling experiments and slow decompression in the compression ex-
periments, see Figures 2.2B and 2.3B. On the other hand, for PEO 200k the decrease
in solvent quality prevails, causing slow compression in the swelling experiments,
which results in the observed overshoot, see Figure 2.2A. Also, it causes additional
slow compression in the compression experiments, see Figure 2.3A.

For dextran 70k and PEG 20k the diffusion constant in the swelling and compres-
sion experiments is consistent and reflects their monodispersity. However, from fits
to the data for PEO 200k, after fixing the swelling time scale Γα, we obtain sig-
nificantly higher diffusion coefficients from the swelling experiments than from the
corresponding compression experiments, see Table 2.3 and 2.4. Due to the very broad
size distribution of PEO 200k, as shown in section 2.6.2 in the Appendix, the frac-
tion of small PEO molecules, which are of approximately the size of dextran 70k and
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Table 2.4: Model parameters and material properties obtained by fitting P , Γf and B

for the PEO 200k compression experiments, using Γα from the corresponding swelling
experiments shown in Table 2.2. See the dashed lines in Figure 2.3 for the curve fits.

4wt% 7.5wt% 10wt%

P 5.9(0.2) 9.4(0.5) 16.9(1.1)
Γα 0.88 0.65 0.54
Γf 2.21(0.83) 0.29(0.08) 0.10(0.76)
B 8.5(0.5) 10.4(1.4) 12.3(14.8)
Π 6.1(0.6) 28.4(1.4) 54.1(2.2)
K 10(1) 30(2) 32(2)
k 14.1(1.4) 3.5(0.2) 2.8(0.2)
Dosm 30.2(11.3) 3.9(1.1) 1.4(10.3)

PEG 20k, are the first to diffuse into the hydrogel. Therefore, the small fraction is the
first to decrease the solvent quality and induce compression of the hydrogel particle.
As this compression shows itself as a pronounced overshoot in the hydrogel volume
on which we fit our model, we obtain the diffusion constant of the fraction of small
PEO molecules from the swelling experiments. Therefore, we find a relatively large
apparent diffusion constant in the swelling experiments albeit with a large uncertainty
due to the additional compression caused by the fraction of larger PEO molecules,
see Table 2.3. In the PEO 200k compression experiments, however, the compression
caused by solvent quality changes induced by the low–Mw fraction of PEO 200k
coincides with a compression purely due to osmotic pressure differences. As soon
as the osmotic pressure difference is balanced by the elasticity of the hydrogel net-
work, the additional slow compression is fully determined by the high–Mw fraction
of PEO 200k molecules diffusing into the hydrogel particle, implying a much lower
diffusion coefficient, see Table 2.4.

2.4 Poroelastic model

In section 2.3 we treated the relaxational dynamics model which showed how the
volumetric hydrogel dynamics in concentrated polymer solutions could be explained
by considering the competition between changes in the osmotic pressure difference
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Table 2.3: Material properties based on the model fits displayed in Figure 2.2 to Figure 2.3.
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which results in the observed overshoot, see Figure 2.2A. Also, it causes additional
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For dextran 70k and PEG 20k the diffusion constant in the swelling and compres-
sion experiments is consistent and reflects their monodispersity. However, from fits
to the data for PEO 200k, after fixing the swelling time scale Γα, we obtain sig-
nificantly higher diffusion coefficients from the swelling experiments than from the
corresponding compression experiments, see Table 2.3 and 2.4. Due to the very broad
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PEG 20k, are the first to diffuse into the hydrogel. Therefore, the small fraction is the
first to decrease the solvent quality and induce compression of the hydrogel particle.
As this compression shows itself as a pronounced overshoot in the hydrogel volume
on which we fit our model, we obtain the diffusion constant of the fraction of small
PEO molecules from the swelling experiments. Therefore, we find a relatively large
apparent diffusion constant in the swelling experiments albeit with a large uncertainty
due to the additional compression caused by the fraction of larger PEO molecules,
see Table 2.3. In the PEO 200k compression experiments, however, the compression
caused by solvent quality changes induced by the low–Mw fraction of PEO 200k
coincides with a compression purely due to osmotic pressure differences. As soon
as the osmotic pressure difference is balanced by the elasticity of the hydrogel net-
work, the additional slow compression is fully determined by the high–Mw fraction
of PEO 200k molecules diffusing into the hydrogel particle, implying a much lower
diffusion coefficient, see Table 2.4.

2.4 Poroelastic model

In section 2.3 we treated the relaxational dynamics model which showed how the
volumetric hydrogel dynamics in concentrated polymer solutions could be explained
by considering the competition between changes in the osmotic pressure difference
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between the inside and the outside of the hydrogel particle, and changes in the solvent
quality, both governed by the diffusion of osmolyte. To obtain more insight in these
competing effects, we consider a dominant-mode model for hydrogel dynamics in
polymer solutions drawn from the theory of poroelasticity. We first outline the basic
equations of poroelasticity [27, 28, 33], from which the exact solution for a hydrogel
particle in a dilute polymer solution is found, see section 2.6.6–2.6.11 of the Ap-
pendix for a detailed derivation. Assuming the long-time dynamics of this solution to
be similar to the long-time dynamics in the regime of concentrated polymer solutions,
we construct a dominant-mode model for hydrogel swelling and compression.

2.4.1 Hydrogel dynamics in dilute polymer solutions

Regarding the hydrogel particle as a superposed solid phase (hydrogel network) and
fluid phase (dilute polymer solution), and the osmolyte particles as a constituent
of the fluid phase [131, 132], the mass conservation equations read in Eulerian
form

∂φs

∂t
+∇ · (φsvs) = 0, (2.6)

∂φn

∂t
+∇ · (φnvn) = 0, (2.7)

∂cφs

∂t
+∇ · (cφs (vn + vdif)) = 0, (2.8)

where both phases are assumed to be incompressible, φs and φn are, respectively, the
volume fractions of the polymer solution and the hydrogel network, vs and vn are
their respective velocities, and c is the concentration of osmolyte particles per unit
volume of polymer solution. We idealize the hydrogel particle as being spherically
symmetric. Summing equation (2.6) and (2.7), using that φs + φn = 1, and applying
the divergence theorem, we find

φsvs + φnvn = 0, (2.9)

which directly relates the velocity of the polymer solution to the velocity of the hy-
drogel network.

The advective osmolyte velocity in equation (2.8) equals vn, because the osmolyte
particles are assumed to have much stronger frictional interaction with the hydrogel
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network than with the solvent, i.e., the hydrogel network and the osmolyte particles
move advectively as a single complex. Thus, the radius of gyration of an osmolyte
particle Rg must be comparable to the mesh size ζ of the hydrogel network, that
is, Rg ∼ ζ. Assuming osmolyte diffusion to be Fickian, the velocity of osmolyte
particles relative to the hydrogel network vdif is given as

cvdif = −Dosm∇c, (2.10)

with Dosm the diffusion coefficient of osmolyte inside the hydrogel network.

Assuming mechanical equilibrium and the absence of body forces, the overall force
balance for the hydrogel can be written as

∇ · σ = 0, (2.11)

with σ the Cauchy stress tensor of the whole hydrogel particle, i.e., of the polymer
solution and hydrogel network combined. Using the Terzaghi effective stress [23,
27], we can decompose σ as

σij = σ′
ij − (p+Π)δij , (2.12)

with σ′ the elastic stress of the hydrogel network, and p, Π and p+Π are, respectively,
the pneumatic pressure, the total osmotic pressure and the total pressure of the poly-
mer solution [133]. For a dilute polymer solution in the hydrogel network, the total
osmotic pressure Π = Πid +Πexc is composed of the ideal part Πid = kBTc and the
excess pressure due to hydrogel network-osmolyte interactions Πexc = kBTcρBns,
where ρ is the number density of the hydrogel network and Bns is the cross-virial
coefficient of interactions between the hydrogel network and the osmolyte in the
polymer solution, through which the solvent quality can be increased Πexc > 0 or
decreased Πexc < 0. Darcy’s law relates gradients in the pneumatic pressure to the
flow of solvent through the hydrogel-osmolyte complex as [27]

φs (vs − vn) = −k

η
∇p, (2.13)

where k is the permeability of the hydrogel-osmolyte complex for the solvent, and η

is the dynamic viscosity of the solvent.

For dilute polymer solutions, the total osmotic pressure is low, implying the strain in
the hydrogel network to be small, and thus the network responds approximately as a
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with σ′ the elastic stress of the hydrogel network, and p, Π and p+Π are, respectively,
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mer solution [133]. For a dilute polymer solution in the hydrogel network, the total
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For dilute polymer solutions, the total osmotic pressure is low, implying the strain in
the hydrogel network to be small, and thus the network responds approximately as a
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linear elastic material. Assuming the hydrogel network to be isotropic and homoge-
neous, the elastic stress of the hydrogel network, relative to the stress-free equilibrium
state in osmolyte-free solvent, is written as

σ′
ij =

M

1− ν

[
νekkδij +

(
1

2
− ν

)
eij

]
, (2.14)

with eij = 1
2 (∇iUj +∇jUi) the infinitesimal strain tensor, M = K + 4G/3 the

longitudinal modulus of the hydrogel network [134], K the bulk modulus, G the
shear modulus, and ν the Poisson ratio. The displacement field U(r, t) = U(r, t)r̂

is radial, with r ∈ [0, R0] the radial position in the network and R0 the stress-free
hydrogel radius.

Mass conservation of osmolyte, equation (2.8), and the overall force balance, equa-
tion (2.11) are found as

∂c

∂t
−Dosm

1

r2
∂

∂r
r2

∂c

∂r
= 0, (2.15)

η

k

∂U

∂t
−M

∂

∂r

1

r2
∂

∂r
r2U = − ∂

∂r
kBTc(1 + f), (2.16)

where we defined f ≡ ρBns. Equation (2.15) is the standard diffusion equation
for osmolyte in the hydrogel network. The displacement field, see equation (2.16),
obeys a diffusion-like equation sourced by the gradient in total osmotic pressure.
These equations can alternatively be derived from the framework of incompressible
mixtures [132].

Due to both short-range repulsive and long-range interactions with the hydrogel net-
work, osmolyte is partitioned between the hydrogel particle and the surrounding poly-
mer solution. The equilibrium partition coefficient Q gives the ratio of the equilib-
rium concentration of osmolyte in the hydrogel to the osmolyte concentration in the
surrounding in equilibrium [125]. As the hydrogel network is homogeneous, the os-
molyte concentration at the hydrogel surface equals the equilibrium concentration for
all times

c(r, t) = Qc0, at r = R0, (2.17)

with c0 the concentration of osmolyte in the surrounding polymer solution. This
concentration can be considered constant, because experimentally the microgel dy-
namics were shown to be independent of the velocity of the polymer solution [120].
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Similarly, the Aquapearl particles were put on a rollerbank in a bath of polymer so-
lution to ensure a constant outside osmolyte concentration, see section 2.6.1 of the
Appendix. Initially, no osmolyte is present in the hydrogel

c(r, t) = 0, at t = 0, (2.18)

Force balance requires the total pressure of the surrounding polymer solution to equal
the total radial stress at the hydrogel surface, i.e., σrr(R0, t) = −(p0+Π0), with σrr
given by equation (2.12), p0 the pneumatic pressure of the outside polymer solution
and Π0 = kBTc0 the osmotic pressure of the outside polymer solution. Using that
Π = kBTc(1+f), invoking equation (2.17), and the fact that the hydrogel network is
permeable for solvent p(R0, t) = p0, the radial network stress at the hydrogel surface
is given as

σ′
rr(r, t) = −kBTc0 (1−Q (1 + f)) , at r = R0, (2.19)

which shows that the difference in osmotic pressure between the surface of the hy-
drogel and the surrounding polymer solution can provide a resultant force on the
hydrogel surface. In a swelling experiment, where the hydrogel network swells from
its fully dried state, the network is initially compressed relative to its stress-free state.
In a compression experiment, on the other hand, the hydrogel particle starts out in the
stress-free state, giving as initial condition

U(r, t) = r

(
Rinit

R0
− 1

)
, at t = 0, (2.20)

where Rinit is the initial radius of the hydrogel network and R0 the osmolyte-free
equilibrium radius.

Equation (2.17)–(2.20) provide the necessary boundary conditions to solve equation
(2.15) and (2.16). The solution to equation (2.15) can be written, using a Hankel
transform [135], as

c(r, t)

Qc0
= 1−

∞∑

k=1

2(−1)k+1j0

(
πk

r

R0

)
exp

(
− (πk)2

t

τosm

)
, (2.21)

where j0 is the spherical Bessel function of the first kind of order zero, and τosm ≡
R2

0/Dosm is the time for the osmolyte to diffuse completely through the hydrogel.
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Next, we may solve equation (2.16) using another Hankel transform to find

U(r, t) =

∞∑

m=1

Um(t)

β2
mNm

j1 (βmr/R0) , (2.22)

Um(t) = U init
m (t) + Ubc

m (t) +
∞∑

k=1

Udif
km(t), (2.23)

where βm is the m-th positive solution of

2
1− 2ν

1− ν
j1 (βm) = βmj0 (βm) , (2.24)

and Nm is the normalization of the m-th mode of the network displacement
field

Nm =
1

2β4
m

(
cos (2βm)− 1 +

βm
2

sin (2βm) + β2
m

)
. (2.25)

The effect of swelling from an initially compressed or swollen state is given as

U init
m (t)

R0
=

Rinit/R0 − 1

(3j1 (βm)− βmj0 (βm))−1 exp

(
−β2

m

t

τn

)
, (2.26)

where τn ≡ R2
0η/kM is the typical time for the hydrogel network to swell or com-

press. The effect of force balance at the hydrogel surface is

Ubc
m (t)

R0
= −(1− (1 + f)Q)Π0

M

1− exp
(
−β2

mt/τn
)

(j1(βm))−1
, (2.27)

and the contribution of the k-th mode of osmolyte diffusion to the m-th displacement
mode is given as

Udif
km(t)

R0
= −(1 + f)Q

Π0

M

2 sin (βm)

(πk)2 − β2
m

Γkm(t), (2.28)

where

Γkm(t) =
exp

(
− (πk)2 t/τosm

)
− exp

(
−β2

mt/τn
)

1− (πk)2 τn/β2
mτosm

. (2.29)

Equation (2.26) shows that the effect of swelling from a pre-stressed state is deter-
mined by the hydrogel network diffusion time τn. Changes in the equilibrium volume
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due to partitioning of osmolyte and changes in solvent quality, see equation (2.27), are
also mediated on the network diffusion time scale. The effect of osmolyte diffusion in
the hydrogel network, see equation (2.28) and (2.29), generates bi-exponential tem-
poral effects, because the gradient of the osmotic pressure in the hydrogel network,
varying on the time scale of osmolyte diffusion τosm, causes stress gradients in the
network.

2.4.2 Dominant-mode model

Given the hydrogel dynamics for hydrogel particles in dilute polymer solutions, we
construct a dominant-mode model for hydrogel dynamics in concentrated polymer
solutions from the following considerations.

If the time scale of network diffusion is either smaller or comparable to that of os-
molyte diffusion, i.e., τn � τosm, the first mode in equation (2.21)–(2.29), with
k = m = 1, is dominant on time scale τosm in the long-time limit; all other modes de-
cay much faster. Thus, the first mode is sufficient to understand the long-time effects
of the interplay between osmolyte diffusion and hydrogel (de)swelling.

For a concentrated polymer solution, compared to a dilute polymer solution, the vol-
ume change in the hydrogel is expected to be large, because of the high osmotic
pressure of the polymer solution, implying that the permeability k, the bulk modulus
K and the osmolyte diffusion coefficient Dosm may vary appreciably over time. We
do not expect them to vary over an order of magnitude, however, because if the hydro-
gel volume decreases, for example, by 75%, the permeability is expected to decrease
by 60%, as approximately V (t)/Vinit = (ζ(t)/ζinit)

3 and k(t) ∝ ζ2(t), with ζ(t) the
time-varying average mesh size of the hydrogel network. The permeability is usu-
ally determined with relative uncertainties in the order of 10%, see section 2.6.5 of
the Appendix, and similar uncertainties hold for the bulk modulus [120] and the os-
molyte diffusion coefficient [128]. Therefore, we assume the variance of the material
parameters does not give rise to qualitatively different hydrogel-osmolyte dynamics.
This does not necessarily imply that the dilute-solution hydrogel dynamics of section
2.4.1 suffices to describe the hydrogel dynamics in concentrated polymer solutions,
however, because for concentrated polymer solutions the osmolyte must be described
as an independent phase instead of a constituent of the fluid phase.
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Next, we may solve equation (2.16) using another Hankel transform to find
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∞∑

m=1

Um(t)

β2
mNm

j1 (βmr/R0) , (2.22)

Um(t) = U init
m (t) + Ubc

m (t) +
∞∑

k=1

Udif
km(t), (2.23)

where βm is the m-th positive solution of

2
1− 2ν

1− ν
j1 (βm) = βmj0 (βm) , (2.24)

and Nm is the normalization of the m-th mode of the network displacement
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1

2β4
m
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βm
2

sin (2βm) + β2
m

)
. (2.25)

The effect of swelling from an initially compressed or swollen state is given as

U init
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=
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−β2

m
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τn

)
, (2.26)

where τn ≡ R2
0η/kM is the typical time for the hydrogel network to swell or com-

press. The effect of force balance at the hydrogel surface is
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Equation (2.26) shows that the effect of swelling from a pre-stressed state is deter-
mined by the hydrogel network diffusion time τn. Changes in the equilibrium volume
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solutions from the following considerations.
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molyte diffusion, i.e., τn � τosm, the first mode in equation (2.21)–(2.29), with
k = m = 1, is dominant on time scale τosm in the long-time limit; all other modes de-
cay much faster. Thus, the first mode is sufficient to understand the long-time effects
of the interplay between osmolyte diffusion and hydrogel (de)swelling.

For a concentrated polymer solution, compared to a dilute polymer solution, the vol-
ume change in the hydrogel is expected to be large, because of the high osmotic
pressure of the polymer solution, implying that the permeability k, the bulk modulus
K and the osmolyte diffusion coefficient Dosm may vary appreciably over time. We
do not expect them to vary over an order of magnitude, however, because if the hydro-
gel volume decreases, for example, by 75%, the permeability is expected to decrease
by 60%, as approximately V (t)/Vinit = (ζ(t)/ζinit)

3 and k(t) ∝ ζ2(t), with ζ(t) the
time-varying average mesh size of the hydrogel network. The permeability is usu-
ally determined with relative uncertainties in the order of 10%, see section 2.6.5 of
the Appendix, and similar uncertainties hold for the bulk modulus [120] and the os-
molyte diffusion coefficient [128]. Therefore, we assume the variance of the material
parameters does not give rise to qualitatively different hydrogel-osmolyte dynamics.
This does not necessarily imply that the dilute-solution hydrogel dynamics of section
2.4.1 suffices to describe the hydrogel dynamics in concentrated polymer solutions,
however, because for concentrated polymer solutions the osmolyte must be described
as an independent phase instead of a constituent of the fluid phase.
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As a closed-form approximation to the hydrogel dynamics in concentrated polymer
solutions, we propose the dominant mode of the exact solution, equation (2.21)–
(2.29), but now regarding K, k and Dosm as effective constants. Using only the
dominant mode amounts to blurring of the hydrogel boundary, because for t → 0,
the gradient in the osmolyte concentration at the hydrogel surface remains finite,
contrary to what equation (2.17) and (2.18) imply.

For a dilute polymer solution, the total osmotic pressure of the polymer solution is the
sum of the ideal contribution, which equals the osmotic pressure of the surrounding
polymer solution, and an excess contribution due to osmolyte-network interactions.
Therefore, in the dominant-mode model we replace the total osmotic pressure in
the dominant mode of equation (2.22)–(2.28) by the sum of the osmotic pressure
of the surrounding concentrated polymer solution Π0 and a pressure quantifying the
solvent-quality change Πexc, giving the radius of the hydrogel relative to the stress-
free state ∆R(t) as

∆R(t) = ∆Rinit(t) + ∆Rbc(t) + ∆Rdif(t), (2.30)

with the contribution due to initial compression or swelling given by

∆Rinit(t) =
k

η

M (1−Rinit/R0)

R0
C init(ν)

exp (−t/tn)

−1/tn
, (2.31)

where tn ≡ R2
0η/kMβ2

1 is the exponential relaxation time for hydrogel swelling or
compression. Force balance at the hydrogel surface provides

∆Rbc(t) = −k

η

(1−Q)Π0 −QΠexc

R0
Cbc(ν)

1− exp (−t/tn)

1/tn
, (2.32)

which determines the equilibrium volume of the hydrogel immersed in polymer so-
lution. The effect of osmolyte diffusion results in

∆Rdif(t) = −k

η

Q (Π0 +Πexc)

R0
Cdif(ν)

e−t/tosm − e−t/tn

1/tn − 1/tosm
, (2.33)

which is proportional to the maximum osmotic pressure of the polymer solution in
the hydrogel network and where tosm ≡ R2

0/Dosmπ
2 is the exponential relaxation

time for osmolyte diffusion.

The proportionality constants in equation (2.31)–(2.33), are given as C init(ν) =

j1(β1)(3j1(β1) − β1j0(β1)/N1, Cbc(ν) = j21(β1)/N1 and Cdif(ν) =
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2j1(β1) sin(β1)/N1(π
2 − β2

1). For −0.08 < ν ≤ 1/2, we can approximate β1
as

β1 = π

(
1− 2(1− 2ν)

π2 − 4 + ν (π2 + 8)

)
, (2.34)

within an accuracy of 1%. To first order in x ≡ 1 − β1/π the proportionality con-
stants read C init(ν) ≈ 6 + (18 − 2π2)x, Cbc(ν) ≈ 2 + 6x and Cdif(ν) ≈ 2 + 3x,
a particularly useful approximation for polyacrylamide hydrogels having a Poisson
ratio of about 0.48 [136].

Pre-stress in the hydrogel network, see equation (2.31), and the force balance at the
hydrogel boundary, see equation (2.32), cause swelling or compression on time scale
tn to the equilibrium state of the hydrogel, which is determined by the balance be-
tween the resultant compressive force (1 − Q)Π0 over the hydrogel surface and the
solvent quality pressure QΠexc at the hydrogel surface. For Q = 0 the hydrogel is
compressed in equilibrium relative to the stress-free state due to the osmotic pressure
of the surrounding polymer solution Π0 > 0. If the solvent quality increases, how-
ever, such that Π0(1−Q) < QΠexc, the hydrogel can swell relative to the stress-free
state.

In case osmolyte diffusion is slow, i.e, tosm � tn, additional (de)swelling can occur
on time scale tosm, depending on the sign of Π0 + Πexc, see equation (2.33). This
slow (de)swelling stems from two competing effects due to osmolyte diffusion. On
the one hand, the gradient in the osmotic pressure Π0 vanishes, which decreases the
compressive force on the hydrogel particle, thus inducing swelling. On the other
hand, the gradient in solvent quality pressure Πexc vanishes. The latter induces either
swelling if the osmolyte increases the solvent quality, Πexc > 0, or compression if
the solvent quality is decreased Πexc < 0. Therefore, for a strong decrease in solvent
quality, with Π0 + Πexc < 0, an overshoot in a swelling experiment can occur, see
Figure 2.6. Similarly, if Π0 +Πexc > 0, an undershoot in a compression experiment
is possible, see Figure 2.7. In comparison with the relaxational dynamics model of
section 2.3 we find an explicit criterion which determines whether an overshoot or
undershoot may occur, see the middle row of Figure 2.4 for an illustration of a strong
(solid curve) and weak (dashed curve) decrease in solvent quality.

The velocity of the hydrogel surface at t = 0, v0, is given by a global form of Darcy’s
law v0 ∝ k∆P/ηR0, which stems from the approximative nature of the dominant-
mode model. The pressure difference ∆P in equation (2.31) is proportional to the
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Figure 2.5: The ratio of the volume V (t) of ’soft’ (D), ’medium’ (E), and ’stiff’ (F) micro-
gels to their original volume V0 is given as a function of time t after water is replaced by
a dextran 70k polymer solution, see Figure 2.1A–C, unless specified otherwise. Replacing
water by a PEO 2M polymer solution (D) shows that the non-monotonic response is as-
sociated with osmolyte diffusion into the hydrogel particle. The solid lines are fits to the
dominant-mode model, with parameters displayed in Table 2.5.

stress initially present in the hydrogel network, in equation (2.32) it is proportional
to the osmotic pressure difference between the inside and the outside of the hydrogel
in equilibrium, and in equation (2.33) it is proportional to the equilibrium osmotic
pressure of the polymer solution in the hydrogel network.

To test the validity of the dominant-mode model, we compare it to measurements
of the hydrogel volume in the swelling and compression experiments described in
section 2.2.

2.4.3 Comparison to experiment

To test the dominant-mode model proposed in the previous section, we use equa-
tion (2.30)–(2.33) to obtain estimates for the (effective) osmolyte diffusion constant
Dosm, and both the bulk modulus K ≡ M(1 + ν)/3(1 − ν) and the permeability k

of the hydrogel particles, with M the longitudinal modulus and ν ≈ 0.48 the Poisson
ratio [136, 137], by fitting the dominant-mode model to the measured volumetric re-
sponse of both the microgels and the Aquapearl hydrogels, see Figure 2.5–2.7. Also,
we find an estimation for the change in solvent quality as the excess osmotic pres-
sure Πexc of the osmolyte in the hydrogel network, similar to the B parameter in

2.4 Poroelastic model 56

▽
▽

▽
▽

▽

▽

▽

▽
▽

▽
▽
▽▽▽

▽▽ ▽▽▽▽▽▽▽

■ ■■■
■■■
■■
■■
■■■
■
■

■
■
■

■
■■
■■
■
■
■■ ■ ■■■■■

◦
◦
◦
◦
◦
◦
◦
◦◦
◦◦
◦◦
◦◦
◦◦
◦◦◦
◦◦◦◦◦◦◦ ◦ ◦◦◦◦◦











  

△
△
△
△
△△
△
△
△
△
△
△
△△△△△△△△ △ △ △ △△△△

▲
▲▲

▲▲
▲▲
▲
▲▲
▲
▲▲▲▲▲▲▲▲▲ ▲ ▲ ▲ ▲▲▲▲

102 103 104 105 106 107
0

5

10

15

20

25

30
102 103 104 105 106 107

0

5

10

15

20

25

30

t (s)

V
(t
)/

V
0

▽ NaCl ■ 2 wt% PEO 200k ◦ 4 wt% PEO 200k  5 wt% PEO 200k

△ 7.5 wt% PEO 200k ▲ 10 wt% PEO 200k

▽
▽
▽
▽
▽

▽

▽

▽
▽
▽
▽▽
▽▽ ▽▽▽▽▽▽▽▽▽

□□
□□
□□□
□□□
□□
□□
□□
□□
□□
□□
□□
□□
□□□□□ □□□□□□□□□□□

○
○○

○○
○○
○○
○○
○○
○○
○
○○
○○○○

○○ ○○○○○○○

102 103 104 105 106 107
0

5

10

15

20

25

30
102 103 104 105 106 107

0

5

10

15

20

25

30

t (s)

V
(t
)/

V
0

▽ NaCl □ 8 wt% dextran 70k ○ 8 wt% PEG 20k

(A) (B)

Figure 2.6: The normalized volume V (t)/V0 as a function of time t of initially dry Aqua-
pearl hydrogel particles for different PEO 200k concentrations exhibiting an overshoot (A),
and for dextran 70k and PEG 20k exhibiting no overshoot (B). The solid lines are fits of the
dominant-mode model, with material parameters displayed in the upper half of Table 2.6.
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Figure 2.7: The normalized volume V (t)/V0 as a function of time t of Aquapearl hydro-
gel particles in different PEO 200k concentrations, exhibiting no undershoot (A), and for
dextran 70k and PEG 20k exhibiting an undershoot (B). The solid lines are fits of the relax-
ational dynamics model, with material parameters displayed in the lower half of Table 2.6.
The dashed line in (A) is a fit of the 7.5 wt% PEO 200k experiment which is forced to take
into account the final stage of slow deswelling, see Table 2.7 for fit parameters.

the relaxational dynamics model of section 2.3. We estimate the equilibrium parti-
tion coefficient Q either from literature for the microgels [126] or by modeling the
available volume in the hydrogel network as spherical pores for the Aquapearls, see
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Figure 2.5: The ratio of the volume V (t) of ’soft’ (D), ’medium’ (E), and ’stiff’ (F) micro-
gels to their original volume V0 is given as a function of time t after water is replaced by
a dextran 70k polymer solution, see Figure 2.1A–C, unless specified otherwise. Replacing
water by a PEO 2M polymer solution (D) shows that the non-monotonic response is as-
sociated with osmolyte diffusion into the hydrogel particle. The solid lines are fits to the
dominant-mode model, with parameters displayed in Table 2.5.

stress initially present in the hydrogel network, in equation (2.32) it is proportional
to the osmotic pressure difference between the inside and the outside of the hydrogel
in equilibrium, and in equation (2.33) it is proportional to the equilibrium osmotic
pressure of the polymer solution in the hydrogel network.

To test the validity of the dominant-mode model, we compare it to measurements
of the hydrogel volume in the swelling and compression experiments described in
section 2.2.

2.4.3 Comparison to experiment

To test the dominant-mode model proposed in the previous section, we use equa-
tion (2.30)–(2.33) to obtain estimates for the (effective) osmolyte diffusion constant
Dosm, and both the bulk modulus K ≡ M(1 + ν)/3(1 − ν) and the permeability k

of the hydrogel particles, with M the longitudinal modulus and ν ≈ 0.48 the Poisson
ratio [136, 137], by fitting the dominant-mode model to the measured volumetric re-
sponse of both the microgels and the Aquapearl hydrogels, see Figure 2.5–2.7. Also,
we find an estimation for the change in solvent quality as the excess osmotic pres-
sure Πexc of the osmolyte in the hydrogel network, similar to the B parameter in
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Figure 2.6: The normalized volume V (t)/V0 as a function of time t of initially dry Aqua-
pearl hydrogel particles for different PEO 200k concentrations exhibiting an overshoot (A),
and for dextran 70k and PEG 20k exhibiting no overshoot (B). The solid lines are fits of the
dominant-mode model, with material parameters displayed in the upper half of Table 2.6.
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Figure 2.7: The normalized volume V (t)/V0 as a function of time t of Aquapearl hydro-
gel particles in different PEO 200k concentrations, exhibiting no undershoot (A), and for
dextran 70k and PEG 20k exhibiting an undershoot (B). The solid lines are fits of the relax-
ational dynamics model, with material parameters displayed in the lower half of Table 2.6.
The dashed line in (A) is a fit of the 7.5 wt% PEO 200k experiment which is forced to take
into account the final stage of slow deswelling, see Table 2.7 for fit parameters.

the relaxational dynamics model of section 2.3. We estimate the equilibrium parti-
tion coefficient Q either from literature for the microgels [126] or by modeling the
available volume in the hydrogel network as spherical pores for the Aquapearls, see
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Table 2.5: Material properties from the fits with the dominant-mode model on ‘soft’,
‘medium’ and ‘stiff’ microgel particles, some of which are displayed in Figure 2.5. The
standard error for each derived material parameter is given in brackets. We assumed all fit-
ted parameters to be uncorrelated. The value for the bulk modulus K without uncertainty
specification has been taken from Capillary Micromechanics measurements [120].

K k Dosm Πexc

Solution [kPa] [nm2] [µm2/s] [kPa]

Medium 13wt% 8.5(1.7) 0.22(0.02) 5.4(1.0) 238.0(0.4)
Medium 13wt% 6.3(1.1) 0.25(0.03) 7.1(1.0) 234.0(0.8)
Medium 5wt% 12 0.23(0.04) 4.3(0.5) 34.4(0.3)
Medium 5wt% 12 0.13(0.02) 3.5(0.3) -34.4(0.3)
Soft 13wt% 2.0(0.1) 0.53(0.01) 12.7(0.3) 238.0(0.1)
Soft PEG 2M 9.1(0.1) 0.58(0.04) - -
Stiff 5wt% 17 0.18(0.11) 7.5(293.0) 3.0(4.8)
Stiff 13 wt% 17 0.13(0.01) 5.9(0.6) 1280.0(10.8)

section 2.3.1. The osmotic pressure of the polymer solutions Π0 as a function of
the concentration of osmolyte are known from literature for the 70k dextran [123],
the PEG 20k [129] and the PEO 200k polymer solutions, for the latter see section
2.6.3 of the Appendix. Using the Mathematica function NonlinearModelFit, the
dominant-mode model is fitted to the volumetric measurements, see Figure 2.5–2.7.
In case the fit routine did not converge, the value of K or k was fixed from the esti-
mated value determined with, respectively, CM or a conventional permeability test,
see section 2.6.4 and 2.6.5 of the Appendix. See Table 2.5 and 2.6 for a summary of,
respectively, the fit parameters for the microgel and the Aquapearl particles.

As explained in section 2.4.2, the dominant-mode model contains the effective val-
ues for the material parameters K, k, Dosm and Πexc. Nevertheless, we do expect
the fitted values to give the typical order of magnitude and trends in the material
parameters, e.g., the magnitude of the solvent quality pressure Πexc is expected to in-
crease with osmolyte concentration. For the microgels, the order of magnitude of the
bulk modulus K agrees with independent measurements from Capillary Microme-
chanics (CM) [120], where the bulk modulus of the medium particles was found as
K = 13(5) kPa, with the uncertainty in brackets. The permeability k decreases with
increasing bulk modulus, which is to be expected, as a higher bulk modulus implies
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Table 2.6: Material properties based on the model fits displayed in Figure 2.6 to Figure 2.7.
The upper and lower sections of the Table display the swelling and compression cases, re-
spectively. The standard error for each derived material parameter is given in brackets. We
assumed all fitted parameters to be uncorrelated. The value for the bulk modulus K and the
permeability k without uncertainty specification has been taken from Capillary Microme-
chanics measurements and permeability measurements, see section 2.6.4 and 2.6.5 of the
Appendix.

K k Dosm Πexc

Solution [kPa] [nm2] [µm2/s] [kPa]

Saline 27 7.5(0.5) - -
dextran 70k 8wt% 35(5) 5.5(1.0) 1.0(16.1) -6.8(41.5)
PEG 20k 8wt% 86(8) 2.2(0.5) 1.7(36.8) -46.3(297.0)
PEO 200k 2wt% 27 7.9(0.5) 45.1(53.8) -17.6(4.2)
PEO 200k 4wt% 27 7.6(0.5) 82.1(35.1) -38.6(3.6)
PEO 200k 5wt% 27 6.9(0.8) 62.4(28.3) -49.7(4.3)
PEO 200k 7.5wt% 30(2) 8 15.9(28.3) -45.9(9.7)
PEO 200k 10wt% 43(2) 8 4.8(14.3) -78.0(24.7)
dextran 70k 8wt% 37(1) 10.5(0.6) 6.4(1.8) -4.0(0.5)
PEG 20k 8wt% 75(1) 5.3(0.2) 3.9(4.8) -46.2(11.3)
PEO 200k 4wt% 44(3) 37.2(3.0) 98.8(3.2) -73.2(5.8)
PEO 200k 7.5wt% 153(10) 16.3(1.4) 78.2(4.4) -315.0(25.4)
PEO 200k 10wt% 219(16) 14.4(1.3) 109.0(7.0) -562.0(49.0)

a smaller cross-linker to cross-linker distance and therefore a smaller mesh size and
permeability. The odd one out, however, is the PEG 2M experiment on soft particles,
which disagrees with the 13wt% dextran 70k experiment on the bulk modulus of the
soft particles. The osmolyte diffusion constant is expected to be a fraction of its
value in the surrounding polymer solution [138]. Indeed, the fitted values for Dosm

are a fraction of the mutual diffusion coefficient in a 13wt% dextran 70k solution,
Dosm = 6 · 101 µm2s−1 [128]. Finally, the solvent quality pressure Πexc increases
with the concentration of osmolyte, as expected.

For the Aquapearl swelling experiments the fitted permeability agrees with indepen-
dent measurements which indicate k = 8(5) nm2, see section 2.6.5 of the appendix.
Moreover, the bulk modulus agrees to that obtained by CM, see section 2.6.4 of the
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Table 2.5: Material properties from the fits with the dominant-mode model on ‘soft’,
‘medium’ and ‘stiff’ microgel particles, some of which are displayed in Figure 2.5. The
standard error for each derived material parameter is given in brackets. We assumed all fit-
ted parameters to be uncorrelated. The value for the bulk modulus K without uncertainty
specification has been taken from Capillary Micromechanics measurements [120].
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Solution [kPa] [nm2] [µm2/s] [kPa]

Medium 13wt% 8.5(1.7) 0.22(0.02) 5.4(1.0) 238.0(0.4)
Medium 13wt% 6.3(1.1) 0.25(0.03) 7.1(1.0) 234.0(0.8)
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Stiff 5wt% 17 0.18(0.11) 7.5(293.0) 3.0(4.8)
Stiff 13 wt% 17 0.13(0.01) 5.9(0.6) 1280.0(10.8)

section 2.3.1. The osmotic pressure of the polymer solutions Π0 as a function of
the concentration of osmolyte are known from literature for the 70k dextran [123],
the PEG 20k [129] and the PEO 200k polymer solutions, for the latter see section
2.6.3 of the Appendix. Using the Mathematica function NonlinearModelFit, the
dominant-mode model is fitted to the volumetric measurements, see Figure 2.5–2.7.
In case the fit routine did not converge, the value of K or k was fixed from the esti-
mated value determined with, respectively, CM or a conventional permeability test,
see section 2.6.4 and 2.6.5 of the Appendix. See Table 2.5 and 2.6 for a summary of,
respectively, the fit parameters for the microgel and the Aquapearl particles.

As explained in section 2.4.2, the dominant-mode model contains the effective val-
ues for the material parameters K, k, Dosm and Πexc. Nevertheless, we do expect
the fitted values to give the typical order of magnitude and trends in the material
parameters, e.g., the magnitude of the solvent quality pressure Πexc is expected to in-
crease with osmolyte concentration. For the microgels, the order of magnitude of the
bulk modulus K agrees with independent measurements from Capillary Microme-
chanics (CM) [120], where the bulk modulus of the medium particles was found as
K = 13(5) kPa, with the uncertainty in brackets. The permeability k decreases with
increasing bulk modulus, which is to be expected, as a higher bulk modulus implies

2.4 Poroelastic model 58

Table 2.6: Material properties based on the model fits displayed in Figure 2.6 to Figure 2.7.
The upper and lower sections of the Table display the swelling and compression cases, re-
spectively. The standard error for each derived material parameter is given in brackets. We
assumed all fitted parameters to be uncorrelated. The value for the bulk modulus K and the
permeability k without uncertainty specification has been taken from Capillary Microme-
chanics measurements and permeability measurements, see section 2.6.4 and 2.6.5 of the
Appendix.

K k Dosm Πexc

Solution [kPa] [nm2] [µm2/s] [kPa]

Saline 27 7.5(0.5) - -
dextran 70k 8wt% 35(5) 5.5(1.0) 1.0(16.1) -6.8(41.5)
PEG 20k 8wt% 86(8) 2.2(0.5) 1.7(36.8) -46.3(297.0)
PEO 200k 2wt% 27 7.9(0.5) 45.1(53.8) -17.6(4.2)
PEO 200k 4wt% 27 7.6(0.5) 82.1(35.1) -38.6(3.6)
PEO 200k 5wt% 27 6.9(0.8) 62.4(28.3) -49.7(4.3)
PEO 200k 7.5wt% 30(2) 8 15.9(28.3) -45.9(9.7)
PEO 200k 10wt% 43(2) 8 4.8(14.3) -78.0(24.7)
dextran 70k 8wt% 37(1) 10.5(0.6) 6.4(1.8) -4.0(0.5)
PEG 20k 8wt% 75(1) 5.3(0.2) 3.9(4.8) -46.2(11.3)
PEO 200k 4wt% 44(3) 37.2(3.0) 98.8(3.2) -73.2(5.8)
PEO 200k 7.5wt% 153(10) 16.3(1.4) 78.2(4.4) -315.0(25.4)
PEO 200k 10wt% 219(16) 14.4(1.3) 109.0(7.0) -562.0(49.0)

a smaller cross-linker to cross-linker distance and therefore a smaller mesh size and
permeability. The odd one out, however, is the PEG 2M experiment on soft particles,
which disagrees with the 13wt% dextran 70k experiment on the bulk modulus of the
soft particles. The osmolyte diffusion constant is expected to be a fraction of its
value in the surrounding polymer solution [138]. Indeed, the fitted values for Dosm

are a fraction of the mutual diffusion coefficient in a 13wt% dextran 70k solution,
Dosm = 6 · 101 µm2s−1 [128]. Finally, the solvent quality pressure Πexc increases
with the concentration of osmolyte, as expected.

For the Aquapearl swelling experiments the fitted permeability agrees with indepen-
dent measurements which indicate k = 8(5) nm2, see section 2.6.5 of the appendix.
Moreover, the bulk modulus agrees to that obtained by CM, see section 2.6.4 of the
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Table 2.7: Fitted material properties from the PEO 200k 7.5 wt% experiment where the
data points are weighted proportional to their time coordinate, see the dashed line in Fig-
ure 2.7 for the corresponding curve fit. The extracted diffusion coefficient corresponds,
most probably, to a high molecular weight species of the osmolyte.

K k Dosm Πexc

Solution [kPa] [nm2] [µm2/s] [kPa]

PEO 200k 7.5 wt% 40(1) 3.2(0.2) 1.6(0.4) -41(1)

appendix, except for the PEG 20k swelling experiment. The osmolyte diffusion co-
efficients all have a rather large uncertainty. For the PEO 200k experiments this is
probably caused by polydispersity in osmolyte size, see section 2.6.2 of the Appendix
and the discussion in section 2.3.2. For the dextran 70k and PEG 20k swelling ex-
periments the uncertainty may be connected to the fact that they do not exhibit an
overshoot, thereby making the effect of osmolyte diffusion less pronounced. Finally,
the PEO 200k swelling experiments show that the excess osmotic pressure increases
with the osmolyte concentration, as expected.

The compression experiments on dextran 70k and PEG 20k roughly agree with the
appurtanent swelling experiments, showing the robustness of the dominant-mode
model. The PEO 200k compression experiments, however, show anomalously high
values for all four fit parameters. In section 2.6.2 of the Appendix we establish that
the PEO 200k osmolyte consists of a wide range of species having different sizes. As
the different species have different diffusion constants and, possibly, different effects
on the solvent quality, a complicated evolution of the volume of the hydrogel particle
is to be expected. The dominant-mode model assumes only a single size of osmolyte
molecules, however, implying the fitted material parameters to reflect a kind of av-
erage effect of all osmolyte species. As a result, the solid line fits in Figure 2.7A
show, for example, that the slow deswelling for t � 105 s is effectively ignored, for
the model fit equilibrates at t ∼ 105 s. Indeed, if we force the fit routine to take into
account the final deswelling process by weighing each data point proportionally to
the time coordinate, and hence giving more weight to the long-time data, the fit of, for
example, the 7.5 wt% PEO 200k compression experiment provides credible values
for all four fit parameters, see the dashed line in Figure 2.7A and Table 2.7 for the fit
parameters. The fitted diffusion constant, most probably, pertains to a high molecular
weight species of PEO 200k, the excess osmotic pressure agrees with the appurtenant
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swelling experiment, and the bulk modulus and permeability of the hydrogel particle
agree with their independent measurement, see section 2.6.4 and 2.6.5 of the Ap-
pendix. Moreover, the polydispersity in the PEO 200k osmolyte probably causes the
large value and uncertainty of the fitted diffusion constant for the PEO 200k swelling
experiments, similar as with the relaxational dynamics model of section 2.3. The low
molecular weight species cause a fast decrease in solvent quality, giving rise to the
overshoot in hydrogel volume, see Figure 2.6A.

2.5 Conclusions and discussion

We construct two models to account for the swelling and compression of hydrogels
in polymer solutions: a semi-phenomenological relaxational dynamics model, which
minimizes the free energy of the hydrogel particle, and, using the theory of poroe-
lasticity, a dominant-mode model. The dominant-mode model is derived through a
dominant mode assumption: the long-time hydrogel dynamics in concentrated poly-
mer solutions is assumed to be similar to that in dilute polymer solutions.

The equilibrium volume of the hydrogel is shown to be determined by the balance be-
tween the osmotic compressive force and the solvent quality pressure at the hydrogel
surface. Diffusion of osmolyte results in non-monotonic changes in hydrogel volume.
On the one hand, osmolyte diffusion causes a gradual decrease in compressive force
on the hydrogel particle, resulting in initial compression and subsequent reswelling.
On the other hand, depending on whether the osmolyte increases or decreases the
solvent quality for the hydrogel network, it can cause swelling or compression at
the time scale of osmolyte diffusion. The dominant-mode model provides, contrary
to the relaxational dynamics model, an explicit criterion of whether an overshoot or
undershoot can occur in the hydrogel volume, depending on the magnitude of the
change in solvent quality for the hydrogel network due to the presence of the os-
molyte. Also, the dominant-mode model shows that the spatial-temporal effect of
osmolyte diffusion may cause non-monotonic evolution of the hydrogel volume. In
the relaxational dynamics model, however, where only temporal feedback between
osmolyte diffusion and hydrogel swelling was taken into account, non-monotonicity
can also be accounted for, showing the temporal effect of osmolyte diffusion to be
crucial to understand non-monotonic (de)swelling of hydrogels.
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Table 2.7: Fitted material properties from the PEO 200k 7.5 wt% experiment where the
data points are weighted proportional to their time coordinate, see the dashed line in Fig-
ure 2.7 for the corresponding curve fit. The extracted diffusion coefficient corresponds,
most probably, to a high molecular weight species of the osmolyte.

K k Dosm Πexc

Solution [kPa] [nm2] [µm2/s] [kPa]

PEO 200k 7.5 wt% 40(1) 3.2(0.2) 1.6(0.4) -41(1)

appendix, except for the PEG 20k swelling experiment. The osmolyte diffusion co-
efficients all have a rather large uncertainty. For the PEO 200k experiments this is
probably caused by polydispersity in osmolyte size, see section 2.6.2 of the Appendix
and the discussion in section 2.3.2. For the dextran 70k and PEG 20k swelling ex-
periments the uncertainty may be connected to the fact that they do not exhibit an
overshoot, thereby making the effect of osmolyte diffusion less pronounced. Finally,
the PEO 200k swelling experiments show that the excess osmotic pressure increases
with the osmolyte concentration, as expected.

The compression experiments on dextran 70k and PEG 20k roughly agree with the
appurtanent swelling experiments, showing the robustness of the dominant-mode
model. The PEO 200k compression experiments, however, show anomalously high
values for all four fit parameters. In section 2.6.2 of the Appendix we establish that
the PEO 200k osmolyte consists of a wide range of species having different sizes. As
the different species have different diffusion constants and, possibly, different effects
on the solvent quality, a complicated evolution of the volume of the hydrogel particle
is to be expected. The dominant-mode model assumes only a single size of osmolyte
molecules, however, implying the fitted material parameters to reflect a kind of av-
erage effect of all osmolyte species. As a result, the solid line fits in Figure 2.7A
show, for example, that the slow deswelling for t � 105 s is effectively ignored, for
the model fit equilibrates at t ∼ 105 s. Indeed, if we force the fit routine to take into
account the final deswelling process by weighing each data point proportionally to
the time coordinate, and hence giving more weight to the long-time data, the fit of, for
example, the 7.5 wt% PEO 200k compression experiment provides credible values
for all four fit parameters, see the dashed line in Figure 2.7A and Table 2.7 for the fit
parameters. The fitted diffusion constant, most probably, pertains to a high molecular
weight species of PEO 200k, the excess osmotic pressure agrees with the appurtenant

2.5 Conclusions and discussion 60

swelling experiment, and the bulk modulus and permeability of the hydrogel particle
agree with their independent measurement, see section 2.6.4 and 2.6.5 of the Ap-
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experiments, similar as with the relaxational dynamics model of section 2.3. The low
molecular weight species cause a fast decrease in solvent quality, giving rise to the
overshoot in hydrogel volume, see Figure 2.6A.
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minimizes the free energy of the hydrogel particle, and, using the theory of poroe-
lasticity, a dominant-mode model. The dominant-mode model is derived through a
dominant mode assumption: the long-time hydrogel dynamics in concentrated poly-
mer solutions is assumed to be similar to that in dilute polymer solutions.

The equilibrium volume of the hydrogel is shown to be determined by the balance be-
tween the osmotic compressive force and the solvent quality pressure at the hydrogel
surface. Diffusion of osmolyte results in non-monotonic changes in hydrogel volume.
On the one hand, osmolyte diffusion causes a gradual decrease in compressive force
on the hydrogel particle, resulting in initial compression and subsequent reswelling.
On the other hand, depending on whether the osmolyte increases or decreases the
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the time scale of osmolyte diffusion. The dominant-mode model provides, contrary
to the relaxational dynamics model, an explicit criterion of whether an overshoot or
undershoot can occur in the hydrogel volume, depending on the magnitude of the
change in solvent quality for the hydrogel network due to the presence of the os-
molyte. Also, the dominant-mode model shows that the spatial-temporal effect of
osmolyte diffusion may cause non-monotonic evolution of the hydrogel volume. In
the relaxational dynamics model, however, where only temporal feedback between
osmolyte diffusion and hydrogel swelling was taken into account, non-monotonicity
can also be accounted for, showing the temporal effect of osmolyte diffusion to be
crucial to understand non-monotonic (de)swelling of hydrogels.
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Comparison of both models to experiment provides reasonable estimations of the
bulk modulus and the permeability of the hydrogel network, the osmolyte diffusion
constant and the solvent quality change due to the presence of osmolyte. Therefore,
the dominant mode assumption, which assumes the long-time hydrogel dynamics in
dilute and concentrated polymer solutions to be similar, seems justified. One could
argue that this is to be expected, since the material parameters do not vary strongly
during the majority of the time-evolution of the hydrogel volume. What is unex-
pected, however, is the fact that the dominant-mode model also accurately describes
the short-time response of the microgel particles, see Figure 2.5. We hypothesize this
to be due to a cancellation of errors between the idealized description of the experi-
mental setup and the neglect of higher order modes in the exact solution.

In this study we focused on osmolyte diffusion and the appurtenant effects of its
osmotic pressure on the swelling and compression of hydrogels. The dominant-
mode model can be extended to account for changes in the external pH and temper-
ature, however, as their spacial-temporal propagation is also governed by a diffusion
equation. Therefore, we expect the dominant-mode model to have wider applicabil-
ity.
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2.6.1 Roller bank
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Figure 2.8: Normalized weight as a
function of time for a sample on and
off the roller bank.
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Figure 2.9: Dynamic light scattering
data. Electric field correlation func-
tion g2(t) − 1 as a function of lag
time t, measured at scattering angles
ranging from 30 to 120 degrees. The
shape of the correlation functions is
clearly broader than single exponen-
tial, indicating that the PEO does not
exhibit a narrow molecular weight
distribution. Inset: Distribution of ra-
dius of hydration, as extracted from a
CONTIN fit to the measured correla-
tion functions.

We measure the weight of a hydrogel particle,
which has been swollen in a saline solution for
at least a week, as a function of time, after we
submerge it in a PEO solution. For samples ex-
posed to a polymer solution at rest, without using
the roller bank, a distinct delay in compression
is observed. We hypothesize that this has to do
with the formation of a depletion zone around
the particle. Changing the settings of the roller
bank might also influence this process, but we
have not investigated this in detail.

2.6.2 Dynamic Light Scattering on PEO so-
lutions

To obtain more information on the molecular
weight distribution of the PEO, we perform dy-
namic light scattering (DLS) experiments. For a
polymer with a uniform molecular weight distri-
bution we would expect a single exponential de-
cay of the electric field correlation function g1 =

[g2 − 1]0.5 as a function of time [139], see Fig-
ure 2.9. Our measured g1, however, clearly does
not decay as a single exponential, instead ex-
hibiting a broad distribution of relaxation times.
This indicates that the PEO polymer used in our
experiments exhibits a broad size distribution.
The inset of Figure 2.9 shows the correspond-
ing distribution in hydrodynamic radius, as es-
timated from the temporal correlation function,
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[g2 − 1]0.5 as a function of time [139], see Fig-
ure 2.9. Our measured g1, however, clearly does
not decay as a single exponential, instead ex-
hibiting a broad distribution of relaxation times.
This indicates that the PEO polymer used in our
experiments exhibits a broad size distribution.
The inset of Figure 2.9 shows the correspond-
ing distribution in hydrodynamic radius, as es-
timated from the temporal correlation function,
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using a CONTIN fitting algorithm [140] as implemented in the freely available Af-
terALV software (AfterALV 1.0d, Dullware Inc, The Netherlands).

2.6.3 Osmotic pressure PEO

We measure the osmotic pressure of the PEO solutions as a function of concentration
by dialysis against dextran solutions, for which the osmotic pressure has previously
been measured in detail [123]. We enclose 2 wt% PEO solutions into dialysis bags
and place them into baths of dextran solutions of various concentrations with corre-
sponding osmotic pressures ranging from 0.9 kPa to 40.7 kPa. These baths are then
allowed to equilibrate for a period of 1 week. After this period we assume that the
osmotic pressure of PEO inside the bag matches that of dextran in the bath outside.
Depending on whether the initial osmotic pressure in the PEO solution is larger or
smaller than that in the surrounding dextran solution, the concentration within the
dialysis bag will have increased or decreased after equilibration, respectively. We
neglect changes in concentration in the dextran bath around the dialysis bag, as the
volume of the dextran solution far exceeds the volume of the sample in the dialysis
bag (ratio 50:1).
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Figure 2.10: Osmotic pressure as
a function of concentration for PEO
solutions, as determined from dial-
ysis against dextran solutions. The
blue circles are the experimental
data, and the red line is our second
order polynomial fit.

To determine the concentrations of the equi-
librated PEO solutions, we extract the solu-
tions from the dialysis bags and determine their
weight both immediately after extraction and af-
ter thorough overnight drying on a hotplate, re-
spectively. The PEO weight concentration is
then taken as the ratio of the dry weight to the
initial weight of the solution. The resulting data
points for the different solutions are shown in
Figure 2.10 as blue circles. The red line is a
second order polynomial fit to the data, which
adequately describes the experimental data over
the range of concentrations studied. To obtain
the osmotic pressure of PEG 20k from litera-
ture [129], we also used a second order fit of
the measured osmotic pressure in the range of
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0–10 wt%.

2.6.4 Capillary Micromechanics
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Figure 2.11: Volume change ∆V/V

as a function of the characteristic
bulk stress (2pwall + p)/3, as mea-
sured using Capillary Micromechan-
ics.

As a comparison with our osmotic compres-
sion experiments, we quantify the mechanical
properties of our hydrogel particles using the
recently developed Capillary Micromechanics
method [122]. The results mainly serve as
a validation for our developed model. During
Capillary Micromechanics, a particle of interest
is flown into a tapered glass capillary of circu-
lar cross-section. As the tip of the capillary is
smaller in diameter than the particles, the par-
ticle gets trapped and subsequently blocks the
flow. In this situation, the entire pressure differ-
ence applied across the capillary falls off across
the trapped particle. The corresponding applied
external stress must match the internal elastic
stress within the particle, which is a function of
the particle’s deformation and the elastic moduli of the particle. As the particle
changes both its shape as well as its volume in the process, quantifying its defor-
mation enables us to directly extract the full elastic response, including the com-
pressive (bulk) modulus K and the shear elastic modulus G. To extract K, we
quantify the volumetric strain ∆V/V as a function of the characteristic bulk stress
σcompr. ≈ [2 · pwall + p] /3 applied to the particle, where pwall is the pressure exerted
on the particle at the area of contact between the particle and the wall of the capillary,
and p is the pressure drop applied across the capillary. The result for a particle which
is swollen in a saline solution for at least a week is depicted in Figure 2.11. From the
slope we find K = 27(5) kPa, with the fit uncertainty in brackets.
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the trapped particle. The corresponding applied
external stress must match the internal elastic
stress within the particle, which is a function of
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changes both its shape as well as its volume in the process, quantifying its defor-
mation enables us to directly extract the full elastic response, including the com-
pressive (bulk) modulus K and the shear elastic modulus G. To extract K, we
quantify the volumetric strain ∆V/V as a function of the characteristic bulk stress
σcompr. ≈ [2 · pwall + p] /3 applied to the particle, where pwall is the pressure exerted
on the particle at the area of contact between the particle and the wall of the capillary,
and p is the pressure drop applied across the capillary. The result for a particle which
is swollen in a saline solution for at least a week is depicted in Figure 2.11. From the
slope we find K = 27(5) kPa, with the fit uncertainty in brackets.
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Figure 2.12: Home-built setup to determine the permeability of hydrogel particles.

2.6.5 Home-built permeability setup

The permeability k is measured using a home–built setup consisting of a thin–walled
glass capillary (TW120-6, WPI, USA) and a pressure regulator (MFC-EZ, Fluigent,
Germany). In the capillary we create an hourglass-shaped notch by controlled pulling
with a micropipette puller (model P-97, Sutter Instruments, USA). The function of
this notch is to prevent the hydrogel from moving forward when pressure is applied
to it. To prevent air bubbles in the system, we first fill the capillary with the solvent in
which the hydrogel of interest has been swollen. Hereafter we insert the hydrogel by
piercing the capillary through the hydrogel, thereby cutting out a cylindrical piece of
hydrogel that fits snugly into the capillary. Finally we connect the pressure setup to
the capillary. We apply pressures between 0.8 kPa and 4 kPa and track the movement
of the solvent-air interface as a function of time after the application of pressure. A
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Figure 2.13: Normalized flow rate as a function of applied pressure. The slope indicates
the permeability.
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schematic overview of the setup is shown in Figure 2.12. According to Darcy’s law,
the flow velocity is proportional to the pressure drop ∆P , as uηL = ∆Pk, with u

the fluid flow rate, η the dynamic viscosity, and L the length of the porous material
over which the pressure difference is applied. To obtain the permeability k, we thus
plot the scaled flow rate (uηL) as a function of the pressure difference ∆P , as shown
in Figure 2.13; the permeability can be directly extracted as the slope of the resultant
curve. We have plotted the results for two particles. We here obtain permeabilities
of k = 8(5) nm2, with the uncertainty in brackets. These values are reasonable
and within the range of permeabilities previously reported for hydrogels of similar
polymer concentration.

2.6.6 Theoretical background

In the following sections we give the theoretical background to the poromechanical
analysis of section 2.4.1 from which we developed the dominant-mode model. First,
we show the general implications of fluid, network and osmolyte mass conservation.
Subsequently, we elaborate on the force balance inside the gel and the role herein
of the osmotic pressure exerted by the osmolyte molecules. Next, we consider the
implications of our assumption of spherical symmetry and formulate the equations
of motion (EOM) for a spherically symmetric hydrogel. Finally, we take the limit of
hydrogel dynamics in dilute polymer solutions, and give a detailed derivation of the
solution to the EOMs in this limit.

2.6.7 Conservation laws

We describe the hydrogel as a superposition of two continua: a solid continuum (hy-
drogel network) and a fluid continuum (dilute polymer solution). Both continua fill
the entire space and are made up of infinitely many material particles. Movement
of the two is governed by mass conservation, force balance and frictional interac-
tions between the two continua. The osmolyte molecules are assumed to move with
and to diffuse through the network because the radius of gyration of the osmolyte
molecules (Rg ∼ 6 nm [141, 142]) is comparable to the pore radius of the network
(ζ ∼ 30 nm for the 5wt% polyacrylamide mirogels [143]). Therefore, we assume
osmolyte molecules to move advectively with the hydrogel network. Moreover, we
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we show the general implications of fluid, network and osmolyte mass conservation.
Subsequently, we elaborate on the force balance inside the gel and the role herein
of the osmotic pressure exerted by the osmolyte molecules. Next, we consider the
implications of our assumption of spherical symmetry and formulate the equations
of motion (EOM) for a spherically symmetric hydrogel. Finally, we take the limit of
hydrogel dynamics in dilute polymer solutions, and give a detailed derivation of the
solution to the EOMs in this limit.

2.6.7 Conservation laws

We describe the hydrogel as a superposition of two continua: a solid continuum (hy-
drogel network) and a fluid continuum (dilute polymer solution). Both continua fill
the entire space and are made up of infinitely many material particles. Movement
of the two is governed by mass conservation, force balance and frictional interac-
tions between the two continua. The osmolyte molecules are assumed to move with
and to diffuse through the network because the radius of gyration of the osmolyte
molecules (Rg ∼ 6 nm [141, 142]) is comparable to the pore radius of the network
(ζ ∼ 30 nm for the 5wt% polyacrylamide mirogels [143]). Therefore, we assume
osmolyte molecules to move advectively with the hydrogel network. Moreover, we
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assume the volume fraction of osmolyte molecules to be small compared to the vol-
ume fraction of fluid.

In this section we first derive the mass conservation equations in Eulerian form for
the network, the fluid and the osmolyte molecules, using the theory of poromechanics
as formulated by Coussy [28]. Subsequently, we cast the conservation laws in their
Lagrangian form, as this is a more convenient form for making (numerical) compu-
tations.

Eulerian framework

First thing to note is that we assume all pressures (hydrostatic pressure, Terzaghi
effective stress and osmotic pressure) to be of such a magnitude that the specific
density of both the hydrogel network and the fluid are constant. This is a safe as-
sumption since the bulk modulus of pure water is of the order GPa, whilst the os-
motic pressure exerted by the osmolyte molecules is of the order of kPa. The specific
density of fluid, for example, is the mass of fluid per unit of fluid volume, as op-
posed to the average density, which is the mass of fluid per unit of total volume.
Furthermore, we do not bother about any temperature inhomogeneities because of
the following. The typical time needed for heat to diffuse through the hydrogel tq
is of the order tq = R2

0/α, with R0 the radius of the undeformed hydrogel and α

the thermal diffusivity of a polyacrylamide hydrogel. Is has been established that α
is of the order 10−7m2/s [144, 145] and in the (de)swelling experiments on micro-
gels R0 ≈ 20µm, implying tq to be of the order of 10−3s. From the experiments
we infer that the relevant timescale for deformation of the hydrogel and diffusion of
the osmolyte molecules is of the order of seconds or tens of seconds, suggesting we
have a clear seperation of timescales between the processes of heat conduction and
that of mass transport. Similarly, the swollen Aquapearls have R0 ≈ 4mm, imply-
ing tq to be in the order of 102 s , while the gel (de)swelling time is many orders of
magnitude larger, see Figure 2.2 and 2.3. Therefore, the assumption of a homoge-
neous temperature throughout the hydrogel, imposed by the surrounding solution, is
justified.

To denote the quantity of fluid in an infinitesimal volume dΩ, we introduce the fluid
volume fraction φs(x, t), i.e., the ratio of the volume of fluid in dΩ, the center of
which is located at x, to the total volume dΩ. The volume of fluid in dΩ is thus
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given by φs dΩ. Similarly, we define the polymer network volume fraction φn, and
the volume fractions satisfy φs+φn = 1. If we refer to the hydrogel in the following,
we refer to the part of space where φn �= 0.

To derive the conservation laws, we consider a volume Ωt at time t. The volume of
polymer network Vn,t and the volume of fluid Vs,t in Ωt can be expressed as

Vn,t =

∫

Ωt

dΩt φn, (2.35)

Vs,t =

∫

Ωt

dΩt φs, (2.36)

where dΩt is an infinitesimal volume element and the integral is over the volume Ωt.
As noted above, we describe the gel as the superposition of two continua, both filling
the entire space. During a short time dt of the gel deformation, both continua in Ωt

will generally change their shape, location and volume, whilst the volume fractions
φs and φn change. Considering, for example, the fluid continuum, we should find the
same volume of fluid, Vs,t, if we integrate φs(x, t + dt) over the volume which the
fluid continuum occupies after a time dt, Ωs,t+dt, for we consider the fluid mass and
specific density to be constant.

To derive the conservation equations, we formalize this statement by introducing the
material derivative di / dt, which measures the amount of change of a quantity when
this quantity is attached to a tiny piece of the i-th continuum, a material particle.
Mathematically, any point in R3 coincides with a unique material particle of the i-th
continuum. Using the material derivative, any position vector x changes to a new
position vector x + dt

(
dix / dt

)
. Also, a scalar field G = G(x, t) changes its

value when attached to a material particle at position x, because both x and t change
within a time dt. With i = n refering to the network continuum and i = s to the fluid
continuum (polymer solution), we state the following relations

dix

dt
= vi, (2.37)

didx

dt
= (∇x ⊗ vi) · dx, (2.38)

di(dΩt)

dt
= dΩt∇x · vi, (2.39)

diG

dt
=

∂G

∂t
+ vi · ∇xG, (2.40)
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where vi = vi(x, t) is the velocity of a material particle at position x on time t,
dx is an infinitesimal vector, ∇x is the gradient operator with respect to position x

of a material particle, i.e., the current position, and dΩt is an infinitesimal volume
element which is given by the composed product of vectors dx1, dx2 and dx3,
forming a parallelepiped, see Coussy [28] for proofs. Considering an integral over
all volume elements dΩt making up the volume Ωt, one can find the rate of change
of the volume of the fluid continuum in Ωt at time t as

ds

dt

∫

Ωt

dΩt =

∫

Ωt

(∇x · vs) dΩt . (2.41)

In a similar manner, we can obtain the change in the volume of fluid in Ωt, when
following the fluid, as

ds

dt

∫

Ωt

dΩt φs =

∫

Ωt

dΩt

(
∂φs

∂t
+∇x · (φsv

s)

)
. (2.42)

The volume of fluid is conserved in time, however, since no fluid is destroyed nor cre-
ated, and this holds for any volume Ωt. Therefore, the integrand of equation (2.42)
should be zero for any volume element dΩt, giving rise to the fluid volume conser-
vation equation

∂φs

∂t
+∇x · (φsv

s) = 0. (2.43)

Similarly, by following the network continuum in time we obtain

∂φn

∂t
+∇x · (φnv

n) = 0. (2.44)

Using that φs + φn = 1, and summing equations (2.43) and (2.44), we immediately
find the incompressibility condition for a biphasic porous material

∇x · (φsv
s + φnv

n) = 0, (2.45)

which we will invoke in section 2.6.9 to exploit the symmetry of a spherical
gel.

To obtain the osmolyte conservation equation, we consider the number of osmolyte
molecules Nt in a volume Ωt as

Nt =

∫

Ωt

dΩt φsc, (2.46)
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where c is the number of osmolyte molecules per unit of fluid volume. Note that φsc

gives the number of particles per unit of total volume. To obtain the rate of change
of the number of osmolyte molecules in the volume Ωt we follow the network con-
tinuum, because we assume the osmolyte molecules to move advectively with the
network. The change of the number of particles in Ωt must equal the number of par-
ticles travelling per second through the boundary Ωt due to diffusion, giving

dn

dt

(∫

Ωt

dΩt φsc

)
+

∫

∂Ωt

dSt n̂ ·mdif = 0, (2.47)

where ∂Ωt is the boundary of Ωt, dSt is an infinitesimal area on ∂Ωt, n̂ is the outward
pointing unit vector normal to ∂Ωt at the position of dSt, and mdif is the flux of
polymer particles through the boundary due to diffusion. The particle flux through
the boundary is purely diffusive because we assume the osmolyte molecules to move
advectively along with the network. We assume the osmolyte molecules to obey
Fick’s law, so

mdif = −Dosm∇xc, (2.48)

where Dosm is the osmolyte diffusion constant inside the polymer network of the gel.
We expect Dosm to be significantly lower than the diffusion constant in pure water
due to hindrance of the hydrogel network. Generally, Dosm is taken to be a function
of the fluid volume fraction φs, the radius of gyration of the osmolyte molecules Rg

dissolved polymer radius rsol and the permeability of the hydrogel k. With the help
of Gauss’ divergence theorem we obtain from equation (2.47)

∂φsc

∂t
+∇x · (φscv

n) +∇x ·mdif = 0, (2.49)

the convection-diffusion equation for relatively large osmolyte molecules dissolved
in fluid penetrating a porous medium.

The conservation equations, equation (2.43), (2.44) and (2.49), are in their Eulerian
form, referring to the position, x, of a volume element at time t. To solve them one
needs appropiate boundary conditions for the (possibly) moving boundary, besides
additional equations of motion for the bulk. Instead, the Lagrangian form of these
equations makes reference to the labels given to the material particles of the network
continuum and time t. The label given to the material particles is typically their
position at t = 0. Therefore, the boundary conditions are more easily specified in a
Lagrangian framework as they are continuously imposed at the same material particle
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s)

)
. (2.42)
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ated, and this holds for any volume Ωt. Therefore, the integrand of equation (2.42)
should be zero for any volume element dΩt, giving rise to the fluid volume conser-
vation equation

∂φs

∂t
+∇x · (φsv

s) = 0. (2.43)

Similarly, by following the network continuum in time we obtain

∂φn

∂t
+∇x · (φnv

n) = 0. (2.44)

Using that φs + φn = 1, and summing equations (2.43) and (2.44), we immediately
find the incompressibility condition for a biphasic porous material

∇x · (φsv
s + φnv

n) = 0, (2.45)

which we will invoke in section 2.6.9 to exploit the symmetry of a spherical
gel.

To obtain the osmolyte conservation equation, we consider the number of osmolyte
molecules Nt in a volume Ωt as

Nt =

∫

Ωt

dΩt φsc, (2.46)
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where c is the number of osmolyte molecules per unit of fluid volume. Note that φsc

gives the number of particles per unit of total volume. To obtain the rate of change
of the number of osmolyte molecules in the volume Ωt we follow the network con-
tinuum, because we assume the osmolyte molecules to move advectively with the
network. The change of the number of particles in Ωt must equal the number of par-
ticles travelling per second through the boundary Ωt due to diffusion, giving

dn

dt

(∫

Ωt

dΩt φsc

)
+

∫

∂Ωt

dSt n̂ ·mdif = 0, (2.47)

where ∂Ωt is the boundary of Ωt, dSt is an infinitesimal area on ∂Ωt, n̂ is the outward
pointing unit vector normal to ∂Ωt at the position of dSt, and mdif is the flux of
polymer particles through the boundary due to diffusion. The particle flux through
the boundary is purely diffusive because we assume the osmolyte molecules to move
advectively along with the network. We assume the osmolyte molecules to obey
Fick’s law, so

mdif = −Dosm∇xc, (2.48)

where Dosm is the osmolyte diffusion constant inside the polymer network of the gel.
We expect Dosm to be significantly lower than the diffusion constant in pure water
due to hindrance of the hydrogel network. Generally, Dosm is taken to be a function
of the fluid volume fraction φs, the radius of gyration of the osmolyte molecules Rg

dissolved polymer radius rsol and the permeability of the hydrogel k. With the help
of Gauss’ divergence theorem we obtain from equation (2.47)

∂φsc

∂t
+∇x · (φscv

n) +∇x ·mdif = 0, (2.49)

the convection-diffusion equation for relatively large osmolyte molecules dissolved
in fluid penetrating a porous medium.

The conservation equations, equation (2.43), (2.44) and (2.49), are in their Eulerian
form, referring to the position, x, of a volume element at time t. To solve them one
needs appropiate boundary conditions for the (possibly) moving boundary, besides
additional equations of motion for the bulk. Instead, the Lagrangian form of these
equations makes reference to the labels given to the material particles of the network
continuum and time t. The label given to the material particles is typically their
position at t = 0. Therefore, the boundary conditions are more easily specified in a
Lagrangian framework as they are continuously imposed at the same material particle
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of the network continuum. Furthermore, when working with Lagrangian quantities
the material derivative dn/ dt simplifies to ∂/∂t. In the following we will cast all
three conservation equations in their Lagrangian form.

Lagrangian framework

To cast the conservation equations (2.43), (2.44) and (2.49) in their Lagrangian form
we first consider equation (2.44) and rewrite it to

dn

dt
(φn dΩt) = 0, (2.50)

where we used equation (2.40) and (2.39). This equation implies that if we consider
an infinitesimal volume element dΩt at any time t and position x, and follow in time
the network continuum in this volume element, then the volume of network in this
piece of network continuum does not change. Therefore, we have

φn dΩt = φn,0 dΩ0 , (2.51)

with φn,0 the volume fraction of network in the network continuum volume element
at t = 0, and dΩ0 its volume at t = 0.

To relate the volume of an infinitesimal volume element of the network continuum
at time t to its original volume at time t = 0, and because the stress-strain relation
we invoke in the following sections is expressible in it, we introduce the deformation
gradient F , which relates any infinitesimal vector attached to the network continuum,
dx, to this same vector at t = 0, dX , through

dx = F · dX, (2.52)

dxi =
∂xi
∂Xj

dXj . (2.53)

So (F )ij = ∂xi
∂Xj

, and
(
F−1

)
ij

= ∂Xi
∂xj

. Using equation (2.52) we can write for the
infinitesimal volume dΩt at time t

dΩt ≡ dx1 · (dx2 × dx3) , (2.54)

= det(F )dX1 · (dX2 × dX3) , (2.55)

= det(F ) dΩ0 , (2.56)

= J dΩ0 , (2.57)
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where we defined J ≡ det(F ). Using equation (2.51) with equation (2.57) we ob-
tain

φnJ = φn,0, (2.58)

which relates the volume fraction of network at time t to the volume fraction at of
network at t = 0. In a similar way we define the ratio of the volume of fluid in
a volume dΩt to the volume which the network continuum in dΩt had at t = 0

as
Φs ≡ Jφs. (2.59)

Accordingly, we define the volume fraction of network with respect to the network
continuum configuration at t = 0 as

Φn ≡ Jφn, (2.60)

and from equation (2.51) it follows immediately that Φn = φn,0 and since this holds
for all times we have Φn = Φn,0, which is a restatement that the volume of network
is conserved if one follows a volume element of the network continuum.

Using Φs we can cast equation (2.43) in its Lagrangian form in the following way.
First, we define w, the fluid flux which passes through an infinitesimal area attached
to the network continuum as

w ≡ φs (v
s − vn) , (2.61)

such that the volume passing through a surface dSt is equal to n̂ ·w dSt, with n̂ the
normal vector to the surface. Using this definition we find for equation (2.43)

∂φs

∂t
+∇x · (φsv

n) +∇x ·w = 0, (2.62)

dnφs

dt
+ φs∇x · vn +∇x ·w = 0, (2.63)

With equation (2.59) we have φs dΩt = Φs dΩ0, so we write

dnφs

dt
=

dΩ0

dΩt

(
dnΦs

dt
− Φs

dΩt

dn dΩt

dt

)
=

dΩ0

dΩt

dnΦs

dt
− φs∇x · vn, (2.64)

such that we obtain for equation (2.63)

dΩ0
dnΦs

dt
+ dΩt∇x ·w = 0. (2.65)
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As ∇x is the gradient operator in space we would like to rewrite it in terms of the
positions X of the network continuum at t = 0, such that we can use X as a label
for the material particles of the network and express the fluid conservation equation
as a function of the independent variables X and t. To do so we consider again the
flux through a surface attached to the network continuum which has an area dSt and
normal vector n̂ at time t, and express this flux as a vector W with respect to the
state of the netwerk continuum at t = 0, which satisfies

w · n̂ dSt = W · N̂ dS0 , (2.66)

where dS0 is the area of and N̂ is the normal vector to the material surface under
consideration at t = 0. Using Gauss’ theorem we obtain from equation (2.66)

dΩt∇x ·w = dΩ0∇X ·W , (2.67)

and with Nanson’s formula it follows from equation (2.66) that W ≡ JF−1w, with
F−1 the inverse deformation gradient. With the help of equation (2.67) we obtain the
Lagrangian form of the fluid conservation equation from equation (2.65) as

∂Φs

∂t
+∇X ·W = 0, (2.68)

where we consider Φs = Φs(X, t) as a function of position of the material particles
of the network continuum in the reference configuration X at t = 0, the material
particle time derivative following the network continuum reduces to a partial time
derivative, and W = JF−1φs (V

s − V n) with V s = V s(X, t) the speed of a
material particle of the fluid continuum which is at the same position at time t as
the material particle of the network continuum which was located at X at t = 0.
Furthermore, V n = V n(X, t) is the speed of a material particle of the network
continuum originally located at position X at time t. These speeds obey V i(X, t) =

vi(x, t), where vi(x, t) is the speed of the material particle of the i-th continuum
located at position x at time t.

To write the osmolyte conservation equation, equation (2.49), in Lagrangian form,
we first invoke equation (2.44) and (2.40) to obtain

φs
dnc

dt
+ c∇x · vn +∇x ·mdif = 0, (2.69)

where mdif = −Dosm∇xc. Next, multiplying equation (2.69) with the volume of
an infinitesimal volume element dΩt located at the position where we consider the
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osmolyte conservation, we can write

Φs
dnc

dt
+ c∇X · JF−1V n +∇X ·Mdif = 0, (2.70)

where we used dΩt φs = dΩ0Φs, equation (2.67), defined M ≡ JF−1mdif and
∇X denotes a gradient operator with respect to the coordinates of the reference con-
figuration. Taking all quantities in equation (2.70) as a function of X and t we
obtain

Φs
∂c

∂t
+ c∇X · JF−1V n +∇X ·Mdif = 0, (2.71)

with Mdif ≡ −JF−1F−TDosm∇Xc and Φs = Jφs. Equation (2.71) expresses the
change in time of the number of osmolyte molecules per unit of fluid volume in an
infinitesimal volume element of the network continuum. The second term quantifies
the change in the concentration of osmolyte molecules due to compression or expan-
sion of the network. To understand this, recall that the osmolyte molecules move
advectively with the network due to their size. The third accounts for the diffusional
flux of osmolyte in or out of the material particle.

2.6.8 Force balance

The force balance for a material volume dΩt can be derived using the hypothesis
of local forces, the linear and angular momentum balance of the fluid and network
continuum combined, Newtons third law, and the tetrahedon lemma, see Coussy [28]
for more details. The force balance for all matter inside an infinitesimal volume
element dΩt can be expressed for a biphasic material as

∇x · σ + fn + f s = φnρna
n + φsρsa

s, (2.72)

where σ is the Cauchy stress tensor which gives the force T on a material surface
dSt of dΩt as

T = σn̂, (2.73)

with n̂ the unit vector normal to dSt. Furthermore, f i is the external force per unit
of volume acting on the volume element of the i-th continuum in dΩt, with i = s for
the fluid continuum and i = n for the network continuum. The specific density of the
i-th continuum is ρi and φi is its volume fraction. Recall that we describe the gel as a
superposition of a fluid and network continuum, both filling the entire space.
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The force of gravity, for example, can be written as f i = φiρig, where g = gẑ

and g is the gravitational acceleration constant. In the dynamics of spherical gels,
immersed in liquid, gravity plays no role for the hydrostatic pressure of the outside
liquid balances that in the hydrogel, so we can set g = 0. The accelerations ai, de-
fined as ai = divi / dt, are generally negligible because by dimensional scaling, as
will be done for the equations of motion in the next sections, one finds that the accel-
eration terms scale as the ratio of the typical kinetic energy per unit volume and the
typical size of the Terzaghi effective stress of the polymer network, φiρi (a/τn)

2 /K,
where R0 is the radius of the gel, τn is the typical time for fluid to flow through the
network, i.e., the typical time needed for the network to deform and K is the bulk
modulus of the hydrogel network. Given these considerations, we obtain as force
balance equation

∇x · σ = 0, (2.74)

expressing a state of mechanical equilibrium, where σ is the Cauchy stress tensor
accounting for all forces per unit area which all matter outside of a volume element
dΩt exert on the surfaces of this volume element.

Stress Tensor

To express σ in terms of our dependent variables we use the concept of Terzaghi’s
effective stress: the difference between the total stress and the total fluid pressure
P [27]. Microscopically, the fluid permeates the polymer network, causing the poly-
mer network to inherit the pressure of the fluid. Therefore, one can write the total
stress as the sum of fluid pressure and a surplus, the Terzaghi effective stress due to
the hydrogel network σ′, giving

σ = σ′ − P 1. (2.75)

Next, imagine an infinitesimal volume dΩt inside the gel with a number of osmolyte
molecules per unit of fluid volume c. Using one of the basic assumptions of non-
equilibrium thermodynamics [28], the local equilibrium assumption, we suppose it
is reasonable to define an osmotic pressure of the osmolyte molecules in dΩt, Πosm.
Subsequently, one can speak of the osmotic stress on the surface surrounding the
volume element dΩt in the same way one can speak of the osmotic stress reducing the
size of a hydrogel when its network effectively acts as a semi-permeable membrane
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to the surrounding solution. Given these considerations, we write the total pressure
that the network inherits, as

P = p+Πosm, (2.76)

with p the pneumatic pressure and Πosm the osmotic pressure of the osmolyte
molecules. In the following we assume a virial expansion for the osmotic pressure:
Πosm = Πosm(c), and for simplicity we neglect contributions to the pressure stem-
ming from hydrogel-osmolyte interactions, i.e., changes in solvent quality. Further-
more, we use Hencky elasticity as a constitutive relation relating σ′ to the deforma-
tion gradient of the network continuum F as

Jσ′ = Λtr (H) 1 + (M − Λ)H, (2.77)

with H = 1
2 lnFF T , Λ = K − 2G/3 Lamé’s first constant, M = K + 4G/3 the

longitudinal modulus, K the bulk modulus of the hydrogel network and G the shear
modulus of the hydrogel network. We choose Hencky elasticity as a phenomeno-
logical constitutive relation because it reduces to linear elasticity for small strains but
measures the natural (logarithmic) strain in three dimensions. Furthermore, because a
covalently bonded hydrogel network typically has a Poisson ratio close to 0.5, there-
fore behaving much like rubber, we deem Hencky elasticity with constant material
parameters a suitable contitutive relation.

Lagrangian formulation

It can be shown [28] that σ : dn dΩt is the work done in a volume dΩt due to strain of
the network continuum per unit of time, where dn ≡ 1

2

(
∇x ⊗ V n + (∇x ⊗ V n)T

)

is the Eulerian strain rate tensor, σ is the Cauchy stress tensor and σ : dn = σijd
n
ij .

The Lagrangian counterpart of the Eulerian strain rate tensor is the time derivative of
the Green-Lagrange strain tensor, d∆/ dt. To express the strain power in Lagrangian
quantities we define the Piola-Kirchhoff stress tensor π to satisfy

σ : dn dΩt = π :
d∆

dt
dΩ0 , (2.78)

where dΩ0 is the volume, at t = 0, of the volume element of the network continuum
present in dΩt. Using that dn = F−T d∆

dt F
−1, and dΩt = J dΩ0, we obtain from

equation (2.78)
π = JF−1σF−T . (2.79)
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)

is the Eulerian strain rate tensor, σ is the Cauchy stress tensor and σ : dn = σijd
n
ij .

The Lagrangian counterpart of the Eulerian strain rate tensor is the time derivative of
the Green-Lagrange strain tensor, d∆/ dt. To express the strain power in Lagrangian
quantities we define the Piola-Kirchhoff stress tensor π to satisfy

σ : dn dΩt = π :
d∆

dt
dΩ0 , (2.78)

where dΩ0 is the volume, at t = 0, of the volume element of the network continuum
present in dΩt. Using that dn = F−T d∆

dt F
−1, and dΩt = J dΩ0, we obtain from

equation (2.78)
π = JF−1σF−T . (2.79)
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Multiplying equation (2.74) with dΩt, and using equations (2.67) and (2.79), we
find

∇X · (Fπ) = 0, (2.80)

enabling us to write the force balance equation as a function of time t and the position
of the volume elements of the network continuum at t = 0, and material particle label
X .

2.6.9 Spherical symmetry

As we consider a spherical gel we assume the deformation of the gel and the flow of
fluid to occur radially and to depend only on the radial coordinate r, so vi = vi(r, t)r̂.
Also, the volume fraction of the fluid, φs, and the volume fraction of polymer net-
work, φn, are assumed to depend only on r. Next, we define the volume averaged
center of mass speed, vcm, as vcm ≡ φsv

s + φnv
n = (φsv

s + φnv
n) r̂ = vcm(r, t)r̂.

Using the incompressibility condition, equation (2.45), and Gauss’ theorem we can
write

0 =

∫

Ωt

dΩt∇x · vcm =

∫

∂Ωt

dSt n̂ · vcm, (2.81)

where Ωt is an arbitrary volume in the gel, ∂Ωt is its boundary, and n̂ is the outward
pointing normal vector to ∂Ωt at the position of an infinitesimal area element dSt on
the boundary. Taking Ωt to be a sphere of radius r, it follows that

0 = 4πr2vcm, (2.82)

implying for any r > 0

vs = −φn

φs
vn. (2.83)

Using equation (2.83), we find the flux of fluid through an infinitesimal surface at-
tached to the network continuum to be

w = φs (v
s − vn) = −vn. (2.84)

In the next section we show how the volume conservation equations and the force
balance constitute a set of equations of motion for the deformation of the network
continuum and the concentration of osmolyte molecules. Equation (2.84) and Darcy’s
law will play an essential role in this derivation.
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2.6.10 Equations of motion

In the previous sections we found Lagrangian equations of motion governing the
transport of the osmolyte molecules, the fluid and the hydrogel network as a function
of time t and the position X of the volume elements of the network continuum in the
reference configuration at t = 0. The equations of motion are as follows

0 =
∂Φs

∂t
+∇X ·W , (2.85)

0 = Φs
∂c

∂t
+ c∇X · JF−1V n +∇X ·Mdif , (2.86)

0 = ∇X · (Fπ) , (2.87)

where Φs is the ratio of the volume of fluid in an infinitesimal volume element dΩt to
the volume of this element at t = 0, W = JF−1φs (V

s − V n) is the flux vector of
fluid through a surface attached to the network continuum, V i is the velocity vector of
network (i = n) or fluid (i = s) continuum, c is the number of osmolyte molecules
per unit of fluid volume, M = −JF−1F−TDosm∇Xc is the diffusive flux of os-
molyte molecules, F is the deformation gradient, J = det(F ), and Fπ = JσF−T

with σ the Cauchy stress tensor. The five unknowns are Φs, V s, V n, c and σ.
Nonetheless, we can find a closed set of equations from the following considera-
tions.

First, we introduce the deformation vector field U = U(X, t) satisfying x(X, t) =

X + U , with X the position of a piece of the hydrogel network at t = 0 and x the
position of this piece at time t. Rewriting the left hand side of equation (2.37) as
dnx/ dt = ∂x(X, t)/∂t = ∂U/∂t, it follows immediately that

∂U

∂t
= V n. (2.88)

Also, in the case of a spherically symmetric hydrogel we have

V s = −φn

φs
V n, (2.89)

and V i = V i(R, t)R̂, as shown in section 2.6.9, causing V s to be expressible
in terms of U . Furthermore, we can write F in spherical coordinates as F =

diag
(
1 + ∂U

∂R , 1 +
U
R , 1 +

U
R

)
≡ diag (λr, λθ, λθ), with R the original radial posi-

tion at t = 0 of hydrogel network in an infinitesimal volume element located at x
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at some time t, R ∈]0, a], and R0 being the radius of the hydrogel at t = 0. With
equation (2.59) and (2.60) it follows that J = J (φs + φn) = Φs + Φn, and since
Φn = Φn,0 = 1 − Φs,0, see section 2.6.7, we have J = 1 + Φs − Φs,0. Finally,
because J = det (F ) = λrλ

2
θ, Φs can be expressed in terms of U(R, t).

Using the above considerations, V s,V n and Φs can be expressed in terms of U(R, t)

and we are left with three dependent variables and three equations. However, us-
ing equation (2.89) we have W = −JF−1V n and one finds that equation (2.85)
is trivially satisfied. Because in deriving equation (2.89) we used equation (2.45)
which was found by combining the fluid and network conservation equations, equa-
tion (2.85) is trivially satisfied.

To find a closed set of equations we use the derivation of the Cauchy stress tensor
from section 2.6.8 and write it as

σ = σ′ − (p+Πosm) 1, (2.90)

where σ′ is the Terzaghi effective stress tensor given by equation (2.77) and is ex-
pressed in U(R, t) through F . Next, we invoke Darcy’s law, an empirical law gov-
erning the flow through porous media, which allows us to express the pressure in
terms of the flux vector of fluid as

w = −k

η
∇xp, (2.91)

where k is the permeability of the network, η is the dynamic viscosity of the fluid in
which the osmolyte molecules are dissolved, i.e., the dynamic viscosity of water for
our experiments, and w = φs (v

s − vn). The permeability is generally a function
of the volume fraction of network, the concentration of osmolyte molecules and the
diffusion constant of the osmolyte. In Lagrangian coordinates, equation (2.91) is
written as

F TV n =
k

η
∇Xp, (2.92)

upon using equation (2.89). Using Darcy’s law, we find two equations of motion for
U(R, t) and c(R, t) as

η

k

∂U

∂t
− 1

λr

∂σ′
rr

∂R
− 2

R

(σ′
rr − σ′

θθ)

λθ
+

∂Πosm/∂c

λr

∂c

∂R
= 0, (2.93)

Φs
∂c

∂t
− 1

R2

∂

∂R
(λθR)2

Dosm

λr

∂c

∂R
+ c

1

R2

∂

∂R
(λθR)2

∂U

∂t
= 0, (2.94)
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which is essentially a set of coupled diffusion-like equations for U(R, t) and c(R, t).
Each equation has a source term generated by the other dependent variable. To derive
these equations we used

∇X ·A =

(
∂Arr

∂R
+

2

R
[Arr −Aθθ]

)
R̂, (2.95)

for a matrix A = diag (Arr, Aθθ, Aθθ) which depends only on the radial coordinate

R. Also, we observe the identity ∂λ2
θ

∂R + 2
Rλθ (λθ − λr) = 0. The components of the

Terzaghi effective stress tensor σ′ = diag (σ′
rr, σ

′
θθ, σ

′
θθ) are given by

σ′
rr =

M lnλr + 2Λ lnλθ

λrλ2
θ

, (2.96)

σ′
θθ =

Λ lnλr + (M + Λ) lnλθ

λrλ2
θ

, (2.97)

where M ≡ K + 4G/3 is called the longitudinal modulus and Λ = K − 2G/3 is
Lamé’s first parameter.

Finally, in order to solve these equations appropiate boundary and initial conditions
for c(R, t) and U(R, t) are required. For notational simplicity, we consider in the
rest of this Appendix the (hypothetical) case where the partition coefficient equals
unity, Q = 1. Generalization to the more general case with Q �= 1, which we
considered in section 2.4.1, is straightforward. Force balance at the boundary of
the hydrogel demands the traction force exerted on the hydrogel by the surrounding
solution to be balanced by the stress in the hydrogel: f ext = r̂σ. The solution at the
boundary of the hydrogel is assumed to have a mechanical pressure p0 and an osmotic
pressure Π0. We neglect the pressure drop in the running solution over the distance
of the hydrogel in the microgel experiments. Also, the concentration of osmolyte
molecules in the solution at the boundary is taken to be a constant c0 because the
hydrogel is immersed in a running/mixed solution, causing osmolyte molecules to be
constantly replenished. Experimentally, we verified that lowering the flow velocity
in the microgel experiments does not alter the evolution of the hydrogel in a polymer
solution. Given these considerations we obtain as a force balance on the hydrogel
surface in the radial direction

σ′
rr(a, t) = − (Π0 −Πosm (c(a, t)))− (p0 − p(a, t)) , (2.98)

where R0 is the radius of the hydrogel at t = 0 and σ′
rr(a, t) is given by equation

(2.96). As we assume the partition coefficient to be unity, the hydrogel network is



2

2.6 Appendix 79

at some time t, R ∈]0, a], and R0 being the radius of the hydrogel at t = 0. With
equation (2.59) and (2.60) it follows that J = J (φs + φn) = Φs + Φn, and since
Φn = Φn,0 = 1 − Φs,0, see section 2.6.7, we have J = 1 + Φs − Φs,0. Finally,
because J = det (F ) = λrλ

2
θ, Φs can be expressed in terms of U(R, t).

Using the above considerations, V s,V n and Φs can be expressed in terms of U(R, t)

and we are left with three dependent variables and three equations. However, us-
ing equation (2.89) we have W = −JF−1V n and one finds that equation (2.85)
is trivially satisfied. Because in deriving equation (2.89) we used equation (2.45)
which was found by combining the fluid and network conservation equations, equa-
tion (2.85) is trivially satisfied.

To find a closed set of equations we use the derivation of the Cauchy stress tensor
from section 2.6.8 and write it as

σ = σ′ − (p+Πosm) 1, (2.90)

where σ′ is the Terzaghi effective stress tensor given by equation (2.77) and is ex-
pressed in U(R, t) through F . Next, we invoke Darcy’s law, an empirical law gov-
erning the flow through porous media, which allows us to express the pressure in
terms of the flux vector of fluid as

w = −k

η
∇xp, (2.91)

where k is the permeability of the network, η is the dynamic viscosity of the fluid in
which the osmolyte molecules are dissolved, i.e., the dynamic viscosity of water for
our experiments, and w = φs (v

s − vn). The permeability is generally a function
of the volume fraction of network, the concentration of osmolyte molecules and the
diffusion constant of the osmolyte. In Lagrangian coordinates, equation (2.91) is
written as

F TV n =
k

η
∇Xp, (2.92)

upon using equation (2.89). Using Darcy’s law, we find two equations of motion for
U(R, t) and c(R, t) as

η

k

∂U

∂t
− 1

λr

∂σ′
rr

∂R
− 2

R

(σ′
rr − σ′

θθ)

λθ
+

∂Πosm/∂c

λr

∂c

∂R
= 0, (2.93)

Φs
∂c

∂t
− 1

R2

∂

∂R
(λθR)2

Dosm

λr

∂c

∂R
+ c

1

R2

∂

∂R
(λθR)2

∂U

∂t
= 0, (2.94)

2.6 Appendix 80
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(2.96). As we assume the partition coefficient to be unity, the hydrogel network is
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effectively regarded as a phantom network, implying c(a, t) = c0 for t > 0. Also,
because the hydrogel boundary is permeable for water we assume the pressure of
water to be continuous: p(a, t) = p0. These conditions provide a condition at R = a

for both U(R, t) and c(R, t) for t > 0. At the center of the hydrogel U(R, t) should
go to zero, for a point can not deform into a spherical surface: U(0, t) = 0. We
expect the concentration of osmolyte molecules c(R, t) to be a continuously differ-
entiable function inside the hydrogel when moving on a line from one edge of the
hydrogel through the center to the other edge, therefore ∂c/∂R = 0 at R = 0. The
osmolyte molecule concentration inside the hydrogel is zero before the hydrogel is
put into the polymer solution, implying c(R, 0) = 0, and the hydrogel is initially
undeformed, giving U(R, 0) = 0. With these four boundary and two initial condi-
tions equation (2.93) and (2.94) can be solved (numerically), given the concentration
of osmolyte molecules c0, the bulk modulus of the hydrogel network K, the shear
modulus of the hydrogel network G, the dynamic viscosity of water η, and the func-
tional form of the permeability of the hydrogel network k, the diffusion coefficient
for osmolyte molecules inside the hydrogel Dosm, and the osmotic pressure of the
osmolyte molecules Πosm.

2.6.11 Dilute polymer solutions

In the previous section, equation (2.93) was found as equation of motion (EOM) for
the deformation U(R, t) of a spherical hydrogel in a polymer solution, with R the
position of an infinitesimal portion of the hydrogel network at t = 0 and t the time.
The EOM of U(R, t) is two-way coupled to equation (2.94): the EOM for the num-
ber concentration of osmolyte molecules per unit of fluid volume c(R, t). A general
exact solution to this sytem of equations lies outside the scope of our capabilities.
An exact solution is desirable, however, for it shows the structure of the solution. In
this section we will give an exact solution to the EOMs which is valid in the limit
of dilute polymer solutions. To solve these EOMs we first assume appropiate func-
tional forms for the permeability of the hydrogel network k, the osmolyte diffusion
coefficient Dosm, and the osmolyte osmotic pressure Πosm. Second, we cast them in
dimensionless form and finally employ an appropiate perturbation theory to obtain
(linearized) EOMs for each order in the perturbation. Afterwards, we exactly solve
for the leading order contributions to c and U , giving the dominant response of a
spherical hydrogel to a surrounding polymer solution.
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Functional forms

To apply perturbation theory to the equations of motion (EOMs) for the deformation
field U and the osmolyte molecules concentration profile c, we first consider possible
functional forms for the permeability of a polyacrylamide hydrogel k, the osmotic
pressure Πosm of, for example, 70 kDa dextran, and the osmolyte molecules diffusion
coefficient in a polyacrylamide network Dosm.

The permeability scales with the volume fraction of network as φ−3/2
n [146], thereby

implying k = k0

(
φn,0

φn

)3/2
, with k0 the permeability of the undeformed network at

t = 0 and φn,0 the volume fraction of hydrogel network at t = 0. Moreover, the
scaled osmolyte molecules osmotic pressure Π̃osm of monodisperse linear polymer
solutions under good solvent conditions can be expressed in terms of a virial expan-
sion in the dilute limit [147]

Π̃osm ≡ Πosm

kBTc0
= c̃

(
1 +A

′
2Φosm,0c̃+A

′
3(Φosm,0c̃)

2 +A
′
4(Φosm,0c̃)

3 + ...
)
,

(2.99)
where Πosm is the osmolyte osmotic pressure, c0 is the number concentration of
osmolyte molecules in the surrounding solution, Φosm,0 = vosmc0 is the pack-
ing fraction of osmolyte molecules in the solution flowing around the hydrogel,
vosm = 4

3πR
3
g is the occupied volume per osmolyte molecule with Rg the radius of

gyration, and c̃ ≡ c/c0 is the ratio of the fluid concentration of osmolyte inside the hy-
drogel c to the osmolyte concentration in the surrounding solution c0, i.e., the scaled
osmolyte molecules concentration. The non-linear coefficients A

′
n are related to the

virial coefficients Bn by A
′
n+1 = Bn+1/v

n
osm. Given that the weight of a typical

dextran monomer is 179 Da [141] and that dextran typically consists of a main linear
chain with a few small branches [148], we approximate dextran as a linear chain and
calculate the first three non-linear coefficients with finite polymerization correction
as A

′
2 ≈ 1.318, A

′
3 ≈ 0.564 and A

′
4 ≈ −0.122 [147]. When comparing the virial

expansion with measurements of the osmotic pressure of 70 kDa dextran [123], we
observe that theory and experiment have about a factor of two discrepancy. Reasons
for this may be that dextran is not a perfectly linear polymer, and the uncertainties
in other measured quantities, e.g., the radius of gyration Rg. Finally, the osmolyte
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t = 0 and φn,0 the volume fraction of hydrogel network at t = 0. Moreover, the
scaled osmolyte molecules osmotic pressure Π̃osm of monodisperse linear polymer
solutions under good solvent conditions can be expressed in terms of a virial expan-
sion in the dilute limit [147]

Π̃osm ≡ Πosm

kBTc0
= c̃

(
1 +A

′
2Φosm,0c̃+A

′
3(Φosm,0c̃)

2 +A
′
4(Φosm,0c̃)

3 + ...
)
,

(2.99)
where Πosm is the osmolyte osmotic pressure, c0 is the number concentration of
osmolyte molecules in the surrounding solution, Φosm,0 = vosmc0 is the pack-
ing fraction of osmolyte molecules in the solution flowing around the hydrogel,
vosm = 4

3πR
3
g is the occupied volume per osmolyte molecule with Rg the radius of

gyration, and c̃ ≡ c/c0 is the ratio of the fluid concentration of osmolyte inside the hy-
drogel c to the osmolyte concentration in the surrounding solution c0, i.e., the scaled
osmolyte molecules concentration. The non-linear coefficients A

′
n are related to the

virial coefficients Bn by A
′
n+1 = Bn+1/v

n
osm. Given that the weight of a typical

dextran monomer is 179 Da [141] and that dextran typically consists of a main linear
chain with a few small branches [148], we approximate dextran as a linear chain and
calculate the first three non-linear coefficients with finite polymerization correction
as A

′
2 ≈ 1.318, A

′
3 ≈ 0.564 and A

′
4 ≈ −0.122 [147]. When comparing the virial

expansion with measurements of the osmotic pressure of 70 kDa dextran [123], we
observe that theory and experiment have about a factor of two discrepancy. Reasons
for this may be that dextran is not a perfectly linear polymer, and the uncertainties
in other measured quantities, e.g., the radius of gyration Rg. Finally, the osmolyte
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molecules diffusion coefficient Dosm can be written as [128]

Dosm = Dself
c

kBT

(
∂µosm

∂c

)

T,p

= Dself

(
∂Π̃osm

∂c̃

)

T,p

, (2.100)

where Dself is the self-diffusion coefficient which is generally assumed to be equal
to the tracer difusion coefficient Dtracer. The tracer diffusion coefficient of osmolyte
molecules inside hydrogel networks and polymer solutions is often taken to be of the
empirical form [149]

Dtracer(J) = D0e
−αJβ

, (2.101)

with α and β dimensionless constants of order unity, D0 the tracer diffusion coeffi-
cient in pure fluid, and J = det (F ) the dilution factor of the network with respect
to the undeformed state of the hydrogel at t = 0.

Dimensionless form

To write the equations of motion in dimensionless form we scale all distances to the
typical dimension of length, the original hydrogel radius R0, and scale all times to
an appropiate dimension of time, the typical time for the fluid to flow through the
hydrogel network τn = a2η/Mk, with η the dynamic viscosity of water, K the bulk
modulus of the hydrogel network and k the permeability of the hydrogel network.
The resulting equations are

(
φn,0

φn

)3/2 ∂Ũ

∂t̃
− 1

λr

∂σ̃rr

∂R̃
− 2

R̃

(σ̃rr − σ̃θθ)

λθ
+ ε

∂Π̃sol/∂c̃

λr

∂c̃

∂R̃
= 0,(2.102)

Φs
∂c̃

∂t̃
− τn

tsol

1

R̃2

∂

∂R̃

(
R̃2λ

2
θ

λr

Dosm

Dtracer(1)

∂c̃

∂R̃

)
+ c̃

1

R̃2

∂

∂R̃

((
λθR̃

)2 ∂Ũ

∂t̃

)
= 0,(2.103)

where Ũ = U/a is the scaled deformation field, t̃ = t/τn is the scaled time, R̃ = R/a

is the scaled original position of the hydrogel network, tsol = a2/Dtracer(1) is the
ratio of the original hydrogel radius squared to the diffusion constant of osmolyte
molecules in the hydrogel in the undeformed state, i.e., the typical time for osmolyte
molecules to diffuse through the hydrogel network, σ̃ii = σ′

ii/M (no summation)
are the scaled Terzaghi effective stresses for i = r, θ, and the principle stretches are
given by λr = 1+∂Ũ/∂R̃ and λθ = 1+ Ũ/R̃. Furthermore, c̃ = c/c0 is the concen-
tration of osmolyte molecules per unit of fluid volume scaled to the concentration of
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osmolyte molecules in the surrounding fluid and ε = kBTc0/K is the ratio of a hypo-
thetical van ’t Hoff osmotic pressure of the surrounding solution to the bulk modulus
of the hydrogel K, i.e., ε is a measure for the osmotic strength of the surrounding
polymer solution relative to the resistance to (de)swelling of the hydrogel network.
The scaled stresses of the polymer network are given by

Jσ̃rr = lnλr + 2
Λ

M
lnλθ, (2.104)

Jσ̃θθ =
Λ

M
lnλr +

(
1 +

Λ

M

)
lnλθ, (2.105)

where J = λrλ
2
θ and Λ/M = ν/(1− ν), with ν the Poisson ratio.

Summarizing, the parameters governing the dimensionless equations are the rela-
tive strength of the polymer solution ε, the ratio of the typical gel deformation time
to the typical osmolyte molecules diffusion time τn/τosm, the Poisson ratio ν, the
phenomenological coefficients determining the diffusion of dextran inside the poly-
acrylamide network α and β, the volume fraction of osmolyte molecules in the dex-
tran solution Φosm,0, and the dextran osmotic pressure virial coefficients Bi, with
i = 1, 2, ....

Perturbation theory

From the EOMs, equation (2.102) and (2.103), it can be observed that ε determines
the size of the c̃ source term in equation (2.102) and that the source term in equation
(2.103) is proportional to Ũ . To solve the EOMs in the limit of dilute polymer so-
lutions, ε = kBTc0/K � 1, we employ a perturbation expansion in ε. For ε = 0,
i.e., no osmolyte, we have Ũ = 0 for all times because there is no source term in
equation (2.102), because there is no driving term in the boundary conditions, and
because Ũ = 0 at t̃ = 0. Therefore, we write

Ũ = εŨ (1) + ε2Ũ (2) + ..., (2.106)

c̃ = c̃(0) + εc̃(1) + ε2c̃(2) + ..., (2.107)

with Ũ (i) and c̃(i) the contribution to Ũ and c̃ of the i-th order in ε. For notational
convenience, we drop all tildes in the rest of the Appendix until they are restored.
Because the leading order term in the expansion for U is of order ε, we anticipate
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From the EOMs, equation (2.102) and (2.103), it can be observed that ε determines
the size of the c̃ source term in equation (2.102) and that the source term in equation
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i.e., no osmolyte, we have Ũ = 0 for all times because there is no source term in
equation (2.102), because there is no driving term in the boundary conditions, and
because Ũ = 0 at t̃ = 0. Therefore, we write

Ũ = εŨ (1) + ε2Ũ (2) + ..., (2.106)
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with Ũ (i) and c̃(i) the contribution to Ũ and c̃ of the i-th order in ε. For notational
convenience, we drop all tildes in the rest of the Appendix until they are restored.
Because the leading order term in the expansion for U is of order ε, we anticipate
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that the source term in equation (2.103) is small relative to the other terms. Next,
the importance of the non-ideal terms in equation (2.99) is determined by Φosm,0

which can be written as Φosm,0 = vosmc0 = ε43πR
3
g

K
kBT

upon using the definition
of ε. Assuming the polyacrylamide network to be isotropic and homogeneous in its
elastic constants, we have K = G 2(1+ν)

3(1−2ν) , with ν the Poisson ratio. Also, classi-
cal network theory [150] gives G = nkBT , with n the cross-link density which is
assumed to be proportional to the number of chains per unit volume. Taking the
volume per chain to be approximately equal to the cube of the mesh size ζ3, we
obtain Φosm,0 ≈ ε43π (Rg/ζ)

3 2(1+ν)
3(1−2ν) ≈ 0.18ε for a 70 kDa dextran radius of gy-

ration of Rg ≈ 6 nm [141, 142], a typical mesh size of the polyacrylamide network
of ζ ≈ 50 nm [143] and a Poisson ratio of ν ≈ 0.48 [136]. From these considera-
tions we may conclude that Φosm,0 can be determined by the relative strength of the
polymer solution ε.

Given the proportionality of Φosm,0 to ε, and equations (2.99), (2.100), (2.101),
(2.106) and (2.107), we write equation (2.102) and (2.103), as well as the bound-
ary conditions found in section 2.6.10, as a power series in ε. Because ε is small and
because it can be chosen arbitrarily, we require for each order in ε the appurtenant
coefficient on both sides of each equation to be equal. We obtain from the zeroth
order of equation (2.103) a Fickian diffusion equation for the zeroth order osmolyte
concentration c(0)

Φs,0
∂c(0)

∂t
− τn

τosm

1

R2

∂

∂R
R2∂c

(0)

∂R
= 0, (2.108)

with c(0) = 1 at R = 1 for t > 0, ∂c(0)/∂R = 0 at R = 0 for t > 0, and
c(0) = 0 at t = 0 for R ∈]0, 1]. Fickian diffusion is to be expected, because the zeroth
order contribution to U corresponds to no deformation, i.e., U (0) = 0. Furthermore,
from the first order equation from equation (2.103), the force balance condition at the
surface of the hydrogel and the initial condition for U , we find the following equation
for U (1)

∂U (1)

∂t
− ∂

∂R

1

R2

∂

∂R
R2U (1) +

∂c(0)

∂R
= 0, (2.109)

with M ∂U (1)/∂R + 2ΛU (1)/R = 0 at R = 1 for t > 0, U (1) = 0 at R = 0 for
t > 0, and U (1) = 0 at t = 0 for R ∈]0, 1]. The evolution of U (1) satisfies a diffusive-
like EOM and is driven by the gradient of the zeroth order osmolyte concentration
profile, implying differences in the osmotic pressure in the hydrogel to cause defor-
mation. The solution to this equation gives the dominant response of a hydrogel to
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a dilute polymer solution. The higher order EOMs are all linear diffusion-like equa-
tions with increasingly complex source terms. The source term in the c(1) EOM, for
example, is composed of terms of combinations of c(0) and U (1) which incorporate
the dominant variation of the diffusion coefficient and the lowest order influence of
dilution of the hydrogel network through the source term in equation (2.103). For
reference, equation (2.108) and (2.109) can also be found from the theory of irre-
versible processes applied to the movement of osmolyte molecules through a matrix
in the limit of dilute polymer solutions, see the work of Mauck et al. [132].

Exact solution

In the previous paragraph the equations of motion for the leading order contribu-
tions to the perturbative expansion of the hydrogel deformation field U and the os-
molyte molecules concentration profile c in the limit of dilute polymer solution were
found. Their solution is found by first solving equation (2.108) with its accompany-
ing boundary and initial conditions [135] to find

c(0)(R, t) = 1−
∞∑

n=1

2 (−1)n+1 j0 (πnR) exp

(
− (πn)2

τn
Φs,0τosm

t

)
, (2.110)

where jo is the zeroth order spherical Bessel function of the first kind.

Equation (2.109) with its appurtenant boundary and initial conditions can be solved
by using an integral transform, the Hankel transform. We find an orthogonal set of
eigenfunctions, in order to transform the R-coordinate, by considering an auxiliary
problem [135]. This problem is similar to the spacial equation one obtains by seper-
ation of variables, is given by

∂

∂R

(
1

R2

∂

∂R
(R2ψ)

)
+ β2ψ = 0, (2.111)

M
∂ψ

∂R
+ 2Λ

ψ

R
= 0, atR = 1, (2.112)

ψ = 0, atR = 0, (2.113)

and has the following solutions

ψm(R) =
1

N
1/2
m

j1(βmR), m = 1, 2, ... (2.114)
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where j1 is a spherical Bessel function of the first kind of order one and N
1/2
m is a

normalization such that the solutions form an orthonormal set of functions, found-
ing a complete basis on R ∈]0, 1]. We neglect Bessel functions of the second kind
because they diverge at R = 0, and the boundary condition at R = 0 is fulfilled
because j1(0) = 0. The eigenvalues βm are determined by the positive solutions of
the transcendental equation

4
(1/2− ν)

1− ν
j1(βm) = βmj0(βm), (2.115)

implying βm to be determined by the Poisson ratio ν alone. The norm is given
by

Nm =

∫ 1

0
dRR2j21(βmR) =

2 cos(2βm) + βm sin(2βm) + 2(β2
m − 1)

4β4
m

. (2.116)

The Hankel transform of an arbitrary function l(R) with R ∈ [0, 1] is given by

l̄m =

∫ 1

0
dRR2ψm(R)l(R), (2.117)

and its inverse is

l(R) =
∞∑

m=1

l̄mψm(R), (2.118)

where the sum is over all positive eigenvalues, given by equation (2.115). Therefore,
we have for the transform of the first order contribution U

(1)
m

U (1)
m (t) =

∫ 1

0
dRR2U (1)(R, t)ψm, (2.119)

and upon transforming equation (2.109) we find

∂U
(1)
m

∂t
+ β2

mU (1)
m = −

∫ 1

0
dRR2ψm∂c(0)/∂R ≡ sm (2.120)

where we used double partial integration and the boundary terms vanish, because
there is no net external force acting at the boundary of the hydrogel. We write
∂c(0)/∂R as

∂c(0)/∂R = −
∞∑

n=1

2(−1)nπnj1(πnR) exp

(
−(πn)2

τn
Φs,0τosm

t

)
, (2.121)
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so in sm, on the righthand side of equation (2.120), we have for any n,m =

1, 2, ... ∫ 1

0
dRR2j1(βmR)j1(πnR) = (−1)n

γmn

πn
, (2.122)

provided that βm �= πn, which requires ν �= 1/2, and where

γmn ≡ sin(βm)

β2
m − (πn)2

. (2.123)

We can interpret γmn as the spacial interference of osmolyte molecules diffusion and
gel deformation modes. For sm we obtain

sm =
∞∑

n=1

2

N
1/2
m

γmn exp

(
−(πn)2

τn
Φs,0τosm

t

)
. (2.124)

Next, by integrating equation (2.120) in time and by using that Um = 0 at t = 0

because U(R, 0) = 0, we find

U (1)
m = e−β2

mt

∫ t

0
dt′ smn(t

′)eβ
2
mt′ , (2.125)

=

∞∑

n=1

2

N
1/2
m

γmne
−β2

mτ

∫ t

0
dt′ et

′(β2
m−(πn)2τn/τosmΦs,0), (2.126)

≡
∞∑

n=1

2

N
1/2
m

γmnΓmn(t), (2.127)

with Γmn the temporal interference between osmolyte molecules diffusion and gel
deformation modes. The temporal interference Γmn can be calculated as

Γmn(t) =
exp

(
−β2

mt
)
− exp

(
−(πn)2 (τn/τosmΦs,0) t

)

(πn)2τn/τosmΦs,0 − β2
m

. (2.128)

Finally, with the inverse Hankel transform, we find U (1)(R, t) as

U (1)(R, t) =

∞∑

n,m=1

2

Nm
γmnj1(βmR)Γmn(t). (2.129)

Recalling that the above result was derived with dimensionless quantities and upon
restoring the tildas for the dimensionless quantities defined in paragraph 2.6.11, we
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the transcendental equation

4
(1/2− ν)

1− ν
j1(βm) = βmj0(βm), (2.115)

implying βm to be determined by the Poisson ratio ν alone. The norm is given
by

Nm =

∫ 1

0
dRR2j21(βmR) =

2 cos(2βm) + βm sin(2βm) + 2(β2
m − 1)

4β4
m

. (2.116)

The Hankel transform of an arbitrary function l(R) with R ∈ [0, 1] is given by

l̄m =

∫ 1

0
dRR2ψm(R)l(R), (2.117)

and its inverse is

l(R) =
∞∑

m=1

l̄mψm(R), (2.118)

where the sum is over all positive eigenvalues, given by equation (2.115). Therefore,
we have for the transform of the first order contribution U

(1)
m

U (1)
m (t) =

∫ 1

0
dRR2U (1)(R, t)ψm, (2.119)

and upon transforming equation (2.109) we find

∂U
(1)
m

∂t
+ β2

mU (1)
m = −

∫ 1

0
dRR2ψm∂c(0)/∂R ≡ sm (2.120)

where we used double partial integration and the boundary terms vanish, because
there is no net external force acting at the boundary of the hydrogel. We write
∂c(0)/∂R as

∂c(0)/∂R = −
∞∑

n=1

2(−1)nπnj1(πnR) exp

(
−(πn)2

τn
Φs,0τosm

t

)
, (2.121)
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so in sm, on the righthand side of equation (2.120), we have for any n,m =

1, 2, ... ∫ 1

0
dRR2j1(βmR)j1(πnR) = (−1)n

γmn

πn
, (2.122)

provided that βm �= πn, which requires ν �= 1/2, and where

γmn ≡ sin(βm)

β2
m − (πn)2

. (2.123)

We can interpret γmn as the spacial interference of osmolyte molecules diffusion and
gel deformation modes. For sm we obtain

sm =
∞∑

n=1

2

N
1/2
m

γmn exp

(
−(πn)2

τn
Φs,0τosm

t

)
. (2.124)

Next, by integrating equation (2.120) in time and by using that Um = 0 at t = 0

because U(R, 0) = 0, we find

U (1)
m = e−β2

mt

∫ t

0
dt′ smn(t

′)eβ
2
mt′ , (2.125)

=

∞∑

n=1

2

N
1/2
m

γmne
−β2

mτ

∫ t

0
dt′ et

′(β2
m−(πn)2τn/τosmΦs,0), (2.126)

≡
∞∑

n=1

2

N
1/2
m

γmnΓmn(t), (2.127)

with Γmn the temporal interference between osmolyte molecules diffusion and gel
deformation modes. The temporal interference Γmn can be calculated as

Γmn(t) =
exp

(
−β2

mt
)
− exp

(
−(πn)2 (τn/τosmΦs,0) t

)

(πn)2τn/τosmΦs,0 − β2
m

. (2.128)

Finally, with the inverse Hankel transform, we find U (1)(R, t) as

U (1)(R, t) =

∞∑

n,m=1

2

Nm
γmnj1(βmR)Γmn(t). (2.129)

Recalling that the above result was derived with dimensionless quantities and upon
restoring the tildas for the dimensionless quantities defined in paragraph 2.6.11, we
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obtain the dimensionfull result for U(R, t) and c(R, t) up to leading order in the
relative strength of the polymer solution ε as

U(R, t) = aε
∞∑

n,m=1

2

Nm
γmnj1(βm

R

a
)
exp

(
−β2

mt/τn
)
− exp

(
−(πn)2t/τosmΦs,0

)

(πn)2τn/τosmΦs,0 − β2
m

,

(2.130)

c(R, t) = c0

[
1−

∞∑

n=1

2(−1)n+1j0(πn
R

a
) exp

(
−(πn)2

t

Φs,0τosm

)]
(2.131)

From this result we observe that the leading order response of a hydrogel to a di-
lute polymer solution, i.e., the deformation field U , is parametrized by: the initial
t = 0 hydrogel radius R0, the typical time for fluid to flow through the hydrogel net-
work τn, the typical time for the osmolyte molecules to diffuse through the hydrogel
network τosm, the strength of the dilute polymer solution ε = kBTc0/K, and the
Poisson ratio ν which determines Nm, γmn, and βm through equation (2.115), and
therefore determines the way the network responds to deformations. The coefficients
A

′
i determining both the non-ideal osmotic pressure contributions and the diffusion

coefficient Dosm, and the phenomenological constants α and β which determine the
influence of gel deformation on osmolyte molecules diffusion in the hydrogel do not
enter explicitly into the leading order contributions. These are signals that the leading
order contributions effectively treat the permeability as a constant, approximate the
osmotic pressure with van ’t Hoffs law, and take the diffusion coefficient of osmolyte
molecules as a constant throughout the process of compression and reswelling.

The Hankel modes contributing to the deformation field U turn out to be biexpo-
nential. The reason for this is the following. The leading order contribution to the
concentration profile of osmolyte molecules c(0) satisfies a Fickian diffusion equa-
tion, i.e., a first order equation in time, thereby giving rise to exponential relaxation
of the concentration profile. The equation of motion for the leading order hydrogel
deformation U (1) contains c(0) in its source term and is diffusive-like. Therefore, the
response of the hydrogel is an interplay between two diffusive relaxation processes,
i.e., the diffusion of osmolyte molecules and the flow of solvent through the hydrogel
network, implying its response to be biexponential.

Chapter 3

Poroelasticity of (bio)polymer
networks during compression:
theory and experiment

The results of this chapter are contained in1:

M.T.J.J.M. Punter, B.E. Vos, B.M. Mulder & G.H. Koenderink. “Poroelastic-
ity of (bio)polymer networks during compression: theory and experiment”. In: Soft
Matter (2020) Accepted Manuscript.

1 The experiments reviewed in this chapter have been designed and carried out by Bart E. Vos and
Gijsje H. Koenderink from AMOLF (The Netherlands).
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Abstract

Soft living tissues like cartilage can be considered as biphasic materials comprised
of a fibrous complex biopolymer network and a viscous background liquid. Here, we
show by a combination of experiment and theoretical analysis that both the hydraulic
permeability and the elastic properties of (bio)polymer networks can be determined
with simple ramp compression experiments in a commercial rheometer. In our ap-
proximate closed-form solution of the poroelastic equations of motion, we find the
normal force response during compression as a combination of network stress and
fluid pressure. Choosing fibrin as a biopolymer model system with controllable pore
size, measurements of the full time-dependent normal force during compression are
found to be in excellent agreement with the theoretical calculations. The inferred
elastic response of large-pore (µm) fibrin networks depends on the strain rate, sug-
gesting a strong interplay between network elasticity and fluid flow. Phenomenolog-
ically extending the calculated normal force into the regime of nonlinear elasticity,
we find strain-stiffening of small-pore (sub-µm) fibrin networks to occur at an on-
set average tangential stress at the gel-plate interface that depends on the polymer
concentration in a power-law fashion. The inferred permeability of small-pore fibrin
networks scales approximately inverse squared with the fibrin concentration, imply-
ing with a microscopic cubic lattice model that the number of protofibrils per fibrin
fiber cross-section decreases with protein concentration. Our theoretical model pro-
vides a new method to obtain the hydraulic permeability and the elastic properties
of biopolymer networks and hydrogels with simple compression experiments, and
paves the way to study the relation between fluid flow and elasticity in biopolymer
networks during dynamical compression.

3.1 Introduction 92

3.1 Introduction

Soft biopolymer networks have essential functions in living cells [151, 152], the ex-
tracellular matrix [153, 154] and the process of blood coagulation [94, 155]. Their
mechanical properties are determined by the network’s hydraulic permeability and
(visco)elastic properties.

The permeability of biopolymer networks determines mass transport in soft tis-
sues [92, 156, 157], the dynamic behaviour of cells [85, 158] and the (dis)functioning
of blood clots in hemostasis and thrombosis [159–161]. Conventionally, the perme-
ability of porous materials is inferred from the measured flow rate of a liquid through
the material [146, 162]. There are alternative approaches to measure the perme-
ability of porous materials, such as microfluidic devices [32], but sticky biopolymer
gels are prone to block such devices. Another complicating factor is that separate
measurements on biopolymer gels are required for a characterization of their elastic
properties. The elastic properties of biopolymer networks are essential for the phys-
iological function of tissues and in wound healing [100]. For instance, arteries need
to be extendable to provide blood pressure capacitance and pulse smoothing in the
blood circulation [163], and blood clots are required to be resilient structural scaf-
folds in wound healing [164]. The elastic properties of biopolymer networks have
been studied extensively in shear [100, 165], extension [96, 166] and static compres-
sion [167]. The dynamic response during compression, however, remains largely
unexplored [168, 169].

Seeking to establish both the permeability and the elastic properties of dynamically
compressed biopolymer networks in a single test, we consider slow ramp compres-
sion tests with a commercial rheometer. For interpretation of the measured normal
force, we use the theory of poroelasticity [23, 27, 28], as applied to polymer gels [33].
Previously, this theory has been applied successfully to other systems, e.g. interstitial
fluid flow through (mineralized) bone tissue [170, 171]. In short, this theory con-
structs a stress field in a poroelastic material whose physical origin is twofold: elastic
stresses from the deformed network, and pressure from the fluid. Network stress and
fluid pressure are tightly coupled: when a fast compressive deformation is applied,
for example, stresses are generated in the network because it is forced to deform in
a volume-conserving manner. By equilibrium conditions on the overall stress field,
pressure is induced in the fluid, prompting fluid flow through the porous material by
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Figure 3.1: The measured normal force F (blue circles) of a large-pore fibrin gel (mesh
size ζ ∼ 1 µm and fibrinogen concentration c = 2 mg/mL) with initial radius a =

20 mm and height h = 1 mm in response to ramp compression in te = 100 s up to
10% engineering strain εe. During the pressurizing time t⊥ = 40 s the fluid pressure
builds up to its maximal value. Subsequently, the compression of the fibrin network keeps
increasing the normal force. After compression, the fluid pressure contribution decreases
to zero; the residual normal force consists only of a static network response. Assuming the
independently measured shear modulus G0 = 139 Pa to be constant during compression,
a fit of the calculated normal force in equation (3.4) (blue curve) gives the permeability
of the fibrin network as k = (1.26 ± 0.03) · 10−1 µm2 and its longitudinal modulus
as M = K + 4G0/3 = 1.5 ± 0.1 kPa, with K the bulk modulus and ± denotes the
estimation uncertainty. Inset: scanning electron microscopy image of a large-pore fibrin
gel with c = 2 mg/mL.

Darcy’s law [28].

We propose an approximate closed-form solution to the poroelastic equations of mo-
tion from which we calculate the normal force, during ramp compression, of a disk-
like cylindrical gel bonded to the plates of a parallel-plate rheometer. The theoretical
calculation of the normal force allows us to infer the permeability and elastic prop-
erties of a biopolymer network, or any other gel bonded to the plates. The calculated
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normal force separates the contribution of the fluid and the gel network to the mea-
sured normal force, describing the full temporal evolution during ramp compression,
which, to the best of our knowledge, is lacking in literature, see for example Kim
et al. [169]. To test the approximate solution, we use covalently cross-linked fibrin
gels as a model system. Fibrin is a fibrous protein structure that is the main structural
component of blood clots. The formation of a fibrin gel starts with thrombin cleav-
ing fibrinopeptides from dissolved fibrinogen molecules to obtain fibrin monomers.
The fibrin monomers then assemble in a half-staggered manner, forming elongated
protofibrils of two molecules thick. These protofibrils interconnect to form the rela-
tively thick fibrin fibers that constitute the fibrin network [94]. The fibers themselves
are immersed in fluid, making a hydrogel with a solid volume fraction of typically
less than 1%.

Fibrin gels are convenient experimental model systems because their permeability
can be manipulated through the polymerization conditions, with pore sizes that can
be either several tens of nanometers or a few microns [172]. We perform ramp com-
pression tests on disk-like cylindrical fibrin gels in which we vary the fibrinogen
concentration, the amount of strain, the strain rate and the dimensions of the gel.
The normal force response of fibrin gels during compression can be explained with
our theoretical solution, accounting for the time-dependent build-up of fluid pressure,
see Figure 3.3–3.1. Since for large-pore fibrin gels the vast majority of fluid pressure
builds up in only a few seconds, we also considered small-pore fibrin gels having a
prolonged phase of pressure build-up, see Figure 3.2.

We find that the flow of fluid through large-pore fibrin networks has a strong in-
fluence on its mechanical response under both small (5–10% compressive strain)
and large (≤80%) compression. Phenomenologically extending the theoretical solu-
tion to include strain-stiffening during compression, we show that strain-stiffening of
small-pore fibrin networks occurs during pressure build-up around an onset average
tangential stress at the gel-plate interface, similar as in shear rheology [100]. The
onset stress depends on the fibrinogen concentration in a power-law fashion. Fluid
flow through the fibrin network inhibits strain-stiffening, implying a nontrivial inter-
play between network elasticity and fluid flow. The permeability of small-pore fibrin
networks is found to scale approximately with the inverse squared of the fibrinogen
concentration, implying with a microscopic cubic lattice model that the number of
protofibrils per fibrin fiber cross-section decreases with the overall fibrinogen con-
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Figure 3.1: The measured normal force F (blue circles) of a large-pore fibrin gel (mesh
size ζ ∼ 1 µm and fibrinogen concentration c = 2 mg/mL) with initial radius a =
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Figure 3.2: The measured normal force F (orange circles) of a small-pore fibrin gel (mesh
size ζ ∼ 0.1 µm) probed under identical conditions as the large-pore gel of Figure 3.1.
The relatively small pores cause a large pressurizing time t⊥ = 300 s and fluid pressure.
Before the onset time of strain-stiffening tc = 7.9 ± 0.3 s, with ± denoting the estima-
tion uncertainty, the normal force follows the time dependence expected for a volume-
conserving linear elastic solid with the measured initial shear modulus G0 = 49 Pa (blue
line in the inset). Fitting equation (3.4), combined with (3.7), we find the permeabil-
ity as k = (3.86 ± 0.15) · 10−3 µm2, the augmented shear modulus after stiffening as
Gc = 589± 19 Pa and the longitudinal modulus as M = 0± 5 kPa (red curve). The lat-
ter could not be estimated due to the small contribution of network elasticity to the normal
force. Top right inset: single 2D fluorescence microscopy image of a fine fibrin network.
As the mesh size of this network is smaller than the diffraction limit of light [172], the
network cannot be resolved with fluorescence microscopy.

centration in the gel.

After introducing the compression experiments on fibrin gels, we develop the theoret-
ical background, the theoretical calculation for the normal force, and its phenomeno-
logical extensions. The strain rate dependence of the elastic properties of large-pore
fibrin networks is discussed, as well as the onset stress for strain-stiffening and the
inferred permeability of small-pore fibrin networks.
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Figure 3.3: Two compression phases of (A) an initially stress-free cylindrical fibrin gel
(yellow) of radius a and height h with high aspect ratio S ≡ a/h � 1 (Figure not on scale).
The gel is ramp compressed in a parallel-plate rheometer with the upper plate (gray) having
a constant velocity ε̇h, where ε̇ is the strain rate. B) As compression commences, the fibrin
network starts to bulge out (black arrows) because the gel is bonded to the plates, causing
the fluid pressure p to build up in a pressurizing time t⊥. The build-up proceeds until the
fluid outflow velocity vf (blue arrows) due to the fluid pressure gradient, vf ∝ −∂p/∂r

with r the radial coordinate in the fibrin gel, is such that the outward bulging of the gel
network, which induces the fluid pressure, stabilizes. C) Afterwards, the gel is compressed
further at maximal fluid pressure until at time te the compression stops.

3.2 Materials and Methods

3.2.1 Materials

Human plasma fibrinogen (contains naturally occuring Factor XIIIa; plasminogen,
von Willebrand Factor and Fibronectin depleted) and human α-thrombin were
obtained in lyophilized form from Enzyme Research Laboratories (Swansea,
United Kingdom). All chemicals were obtained from Sigma Aldrich (Zwijndrecht,
The Netherlands). Fibrinogen was dissolved in water at 37°C for 15 min to its
original concentration (approximately 13 mg/ml) and dialysed against fibrin buffer
containing 20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)
and 150 mM NaCl at a pH of 7.4, and stored at -80°C. Prior to use, the fibrinogen
was quickly thawed at 37°C, and then diluted in a final assembly buffer containing
20 mM HEPES, 150 mM NaCl and 5 mM CaCl2 (large-pore gels). Dense net-
works (small-pore gels) with an average pore size of 0.08 µm, as determined by
light scattering measurements [172, 173], were obtained in small-pore-gel assem-
bly buffer (400 mM NaCl, 3.2 mM CaCl2 and 50 mM Tris-HCl) at a pH of 8.5 [174].

Fibrin polymerization was initiated by the addition and quick mixing of 0.5 U/ml of
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Figure 3.2: The measured normal force F (orange circles) of a small-pore fibrin gel (mesh
size ζ ∼ 0.1 µm) probed under identical conditions as the large-pore gel of Figure 3.1.
The relatively small pores cause a large pressurizing time t⊥ = 300 s and fluid pressure.
Before the onset time of strain-stiffening tc = 7.9 ± 0.3 s, with ± denoting the estima-
tion uncertainty, the normal force follows the time dependence expected for a volume-
conserving linear elastic solid with the measured initial shear modulus G0 = 49 Pa (blue
line in the inset). Fitting equation (3.4), combined with (3.7), we find the permeabil-
ity as k = (3.86 ± 0.15) · 10−3 µm2, the augmented shear modulus after stiffening as
Gc = 589± 19 Pa and the longitudinal modulus as M = 0± 5 kPa (red curve). The lat-
ter could not be estimated due to the small contribution of network elasticity to the normal
force. Top right inset: single 2D fluorescence microscopy image of a fine fibrin network.
As the mesh size of this network is smaller than the diffraction limit of light [172], the
network cannot be resolved with fluorescence microscopy.
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the fluid pressure p to build up in a pressurizing time t⊥. The build-up proceeds until the
fluid outflow velocity vf (blue arrows) due to the fluid pressure gradient, vf ∝ −∂p/∂r

with r the radial coordinate in the fibrin gel, is such that the outward bulging of the gel
network, which induces the fluid pressure, stabilizes. C) Afterwards, the gel is compressed
further at maximal fluid pressure until at time te the compression stops.
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The Netherlands). Fibrinogen was dissolved in water at 37°C for 15 min to its
original concentration (approximately 13 mg/ml) and dialysed against fibrin buffer
containing 20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)
and 150 mM NaCl at a pH of 7.4, and stored at -80°C. Prior to use, the fibrinogen
was quickly thawed at 37°C, and then diluted in a final assembly buffer containing
20 mM HEPES, 150 mM NaCl and 5 mM CaCl2 (large-pore gels). Dense net-
works (small-pore gels) with an average pore size of 0.08 µm, as determined by
light scattering measurements [172, 173], were obtained in small-pore-gel assem-
bly buffer (400 mM NaCl, 3.2 mM CaCl2 and 50 mM Tris-HCl) at a pH of 8.5 [174].

Fibrin polymerization was initiated by the addition and quick mixing of 0.5 U/ml of
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thrombin from a 20 U/ml thrombin stock, kept on ice for a maximum of 24 hours.
After addition of thrombin, the mixture was quickly transferred to the rheometer to
allow in situ polymerization. During polymerization, we measured the linear elastic
shear modulus G′ of the fibrin gels by measuring the stress response to a small oscil-
latory shear strain with an amplitude of 0.5% and a frequency of 0.5 Hz. In this way
the shear modulus just before compression G0 was determined.

3.2.2 Compression experiments

To measure the normal force produced by fibrin gels under ramp uniaxial compres-
sion, we use an Anton Paar rheometer (Physica MCR 501, Graz, Austria) to com-
press disk-like fibrin gels, confined between two impermeable surfaces: a stainless
steel bottom plate and a steel top plate, separated by an initial gap h of 1 or 0.5 mm.
We used top plates with diameters of either 20 or 40 mm. The plates of the rheometer
were held at 37°C throughout the experiment. To provide external hydrostatic pres-
sure and to prevent the formation of a fibrin membrane at the free boundary of the
gel, we immersed the gel in mineral oil [175].

In the analysis of the time-dependent normal force, the liquid can safely be assumed
to be incompressible at the pressures we apply: the force transducer in the rheometer
can apply normal forces up to 50 N, implying the maximum engineering stress to be
of the order of 10 kPa. To verify that in the compression experiments only liquid
is expelled while the network remains intact, we collected the expelled liquid and
confirmed by spectrophotometric measurements of the absorbance at 280 and 320 nm
that no protein was present.

3.3 Theoretical framework

To calculate the normal force response of a fibrin gel under compression we use
the theory of linear poroelasticity which rests on the following three principles [23,
27, 28]. 1). Assuming fluid flow through the fibrin network to be in the regime
of low Reynolds number, and because the gel is immersed in fluid, we can neglect,
respectively, inertia and gravity, implying the overall force balance of the fibrin gel
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to read [27]
∇ ·

(
σ′ − p1

)
= 0, (3.1)

where σ′ is the Terzaghi effective stress of the fibrin network: the network stress
relative to the pressure p of the permeating fluid. We take the effective stress to be that
of a linear elastic isotropic homogeneous solid with the bulk modulus K and the shear
modulus G as elastic constants. 2) Assuming the fibrin fibers and the fluid both to be
individually incompressible, we find from mass conservation the incompressibility
condition for a fibrin gel as [33]

∇ · V = 0, (3.2)

where V ≡ φfvf + φnvn is the gel velocity: a sum of the local volume-averaged
velocity vi of the fluid and the fibrin network weighted with their respective volume
fractions φi. 3) Finally, in the low Reynolds number regime, Darcy’s law governs the
flow of fluid through the fibrin network [27]

φf (vf − vn) = −k

η
∇p, (3.3)

where k is the permeability of the fibrin network and η the dynamic viscosity of the
fluid, which we take to be equal to that of pure water at 37°C.

For a compressed fibrin gel with initial radius a and height h, experiencing no friction
with the rheometer plates, equation (3.1)-(3.3) can be solved exactly [176]. During
slow ramp compression, the fluid pressure in a frictionless gel becomes maximum
after some pressurizing time t‖. In our high aspect ratio S ≡ a/h � 1 compres-
sion tests on fibrin gels, however, where the network binds to the plates, this binding
strongly influences its mechanical response, see Figure 3.3. Here, we propose an ap-
proximate solution to equation (3.1)-(3.3) for a disk-like bonded gel during compres-
sion, see section 3.6.1 of the the Appendix for a full derivation. This solution assumes
that the shear stress induced by the friction between the gel and the rheometer plate
dominates the network stress in the gel. For a given bulk modulus K and shear modu-
lus G, the local increase in the radial force on the gel network per unit of volume due
to inhomogeneous radial strain is given by M∂r(1/r)∂rrU , with M = K + 4G/3

the longitudinal modulus [134], U the radial displacement and r the radial coordinate.
The shear stress dominates the network stress when the ratio of this radial force to
the local increase in radial force due to bending of the gel network G∂2

zU , with z the
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vertical coordinate, is small, i.e., M/GS2 � 1. The solution interpolates between
initial volume-conserving (VC) compression, during which no significant outflow of
fluid occurs and of which the network displacement field and fluid pressure are well
known [177], and pressurized compression in which the fluid pressure is maximal,
see Figure 3.3C. The dominant part of the normal force F is found as

F

πa2
= T (t)

(
ηa2

8k
ε̇+Mε(t)

)
+ (1− T (t)) 2Gε, (3.4)

where ε̇ ≡ v/h is the strain rate with v the velocity of the upper plate and h the
initial height of the gel, and ε ≡ ε̇t is the engineering strain. Equation (3.4) shows
that when T (t) ≈ 1, F is composed of two contributions: the first stems from the
compression-induced fluid pressure and the second from the normal force response
of the fibrin network. The first term is proportional to the strain rate ε̇ and increases
with decreasing permeability k of the network, whilst the second term is proportional
to the engineering strain ε, and grows proportionally to the longitudinal modulus M
of the network. Equation (3.4) gives a quantitative prediction for the evolution of the
normal force from the outset of compression into the pressurized phase, needed to
describe the normal force during the full range of ramp compression, see the blue
curve in Figure 3.1.

The transition function T (t) is given by

T (t) = 1− exp

(
−12

t

t⊥

)
, (3.5)

t⊥ =
h2η

kG
, (3.6)

where t⊥ is the pressurizing time. The rate of fluid outflow increases until the fluid
pressure distribution in the gel is maximal, i.e., the gel is pressurized when T (t) ≈ 1.
Once pressurized, equation (3.4) agrees with the normal force for load-controlled
compression [33]. The time scale of relaxation t⊥ does not depend on the initial ra-
dius a of the gel, because the main contribution to the pressure of the fluid is induced
by bending of the fibrin network, i.e., from vertical, h-dependent curvature in the ra-
dial displacement field. For comparison, radial gradients in the radial strain field relax
on a time scale t‖ = a2η/kM = t⊥S2G/M � t⊥, implying a geometry-induced
separation of time scales for relaxations of vertical and radial strain gradients.

The compression of small-pore fibrin networks suggests the network to strain-stiffen,
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see Figure 3.2, but only for small fluid pressures where the gel deforms approxi-
mately volume-conserving. We accommodate this phenomenologically by replacing
Gt →

∫ t
0 dt

′G(t′) in the approximate solution wherever G enters, with the shear
modulus G(t) increasing instantaneously at an onset time tc. Notwithstanding that
strain-stiffening is a continuous process, this instantaneous increase is, in the ab-
sence of knowledge of the details, a minimal form to incorporate strain-stiffening,
and gives

G(t) ≡ G0 + (Gc −G0)H (t− tc) , (3.7)

with G0 the measured shear modulus of the undeformed gel, Gc the augmented shear
modulus and H(t) the Heaviside step function.

In simple shear experiments [178], strain-stiffening starts to occur at an onset shear
stress σc. In our compression experiments, we assume the onset stress to be propor-
tional to the average tangential network stress σ̄′

rz at the gel-plate interface at time
t = tc

σ̄′
rz ≡

1

πa2

∫ a

0
dr 2πrσ′

rz(z = h, t = tc), (3.8)

which can be calculated using the solution for the network displacement field pre-
sented in section 3.6.1 of the Appendix, giving

σc ∝ T (tc)
ηha

6k
ε̇. (3.9)

The onset stress is a property of the fibrin network, implying its magnitude to be
independent of the aspect ratio S = a/h of the gel, contrary to what equation (3.9)
suggests at a first glance. Below, we show, however, that σc is indeed independent of
the aspect ratio.

To study the mechanical response of the fibrin networks outside of the linear regime,
we performed compression tests on large-pore fibrin gels up to 80% compressive
strain, ε ≤ 0.8. For these experiments, we assume a phenomenological form for
the normal force in the pressurized phase, based on equation (3.4), by retaining the
form of the fluid pressure term, but with a strain-dependent permeability, and by
replacing the elastic contribution with the Toll model normal force response of a
fibrous network under large compression [169, 179], giving

F

πa2
=

ηa2

8k(ε)
ε̇+ bEf

(
φ3(ε)− φ3

0

)
, (3.10)
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compression [33]. The time scale of relaxation t⊥ does not depend on the initial ra-
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The onset stress is a property of the fibrin network, implying its magnitude to be
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suggests at a first glance. Below, we show, however, that σc is indeed independent of
the aspect ratio.

To study the mechanical response of the fibrin networks outside of the linear regime,
we performed compression tests on large-pore fibrin gels up to 80% compressive
strain, ε ≤ 0.8. For these experiments, we assume a phenomenological form for
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where Ef is the Young’s modulus of a single fibrin fiber, φ(ε) = φ0/ (1− ε) is
(approximately) the strain dependent volume fraction of the fibrin network with φ0

the volume fraction in the initial state, and k(ε) = k0 (1− ε) is (approximately) the
permeability of the fibrin network, with k0 its initial value, see section 3.6.2 of the
Appendix for more information. Finally, b is a proportionality constant.

3.4 Results

To probe the capability of our theoretical framework to infer both the permeability
and the elastic properties of a biopolymer network from simple compression tests, we
performed compression experiments on both large-pore and small-pore fibrin fiber
networks. Large-pore fibrin networks have a mesh size of about ζ ∼ 1µm, whereas
small-pore networks have ζ ∼ 0.1µm [172]. Therefore, we expect the latter to have
a much smaller permeability k ∝ ζ2 and, from equation (3.4) and (3.6), a larger
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Figure 3.4: Poisson’s ratio ν of large-pore fibrin gels as a function of the strain rate ε̇,
inferred from ramp compression measurements. All gels were prepared at a fibrinogen
concentration of 2 mg/mL, were compressed up to an engineering strain of 5% or 10% and
have an aspect ratio of either S ≡ a/h = 20 or S = 10, with a the radius and h the height
of the gel before compression. Poisson’s ratio grows with strain rate, suggesting that the
fluid velocity has a marked influence on the elastic response of the fibrin network. Inset:
the fitted permeability k is independent of the strain rate, as expected, though it shows a
large sample-to-sample variation.
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normal force in the pressurized phase and a larger pressurizing time t⊥, which we
indeed observe by comparing the maximum normal force during compression and the
pressurizing time between the large-pore and small-pore experiment in, respectively,
Figure 3.1 and 3.2. For details of the fitting procedure and all fit results, we refer to
section 3.6.3 of the Appendix.

3.4.1 Large-pore fibrin gels

Comparing the measured normal force of large-pore and small-pore fibrin networks,
see respectively Figure 3.1 and the inset of Figure 3.2, we observe no supralinear
initial increase for large-pore fibrin, see section 3.4.2 for further elaboration on this
point. Therefore, we assume the shear modulus of the large-pore samples to remain
equal to G0 throughout compression, i.e., the independently measured shear modulus
just before compression, while we fit the permeability k and the longitudinal modulus
M as free parameters. The different large-pore gel samples show a large sample-to-
sample variability for the fitted permeability k under equal conditions, see the inset of
Figure 3.4, and do not suggest dependence of the permeability on the strain rate. The
compressibility of the fibrin network seems to decrease with strain rate, however,
as evidenced by an increasing Poisson’s ratio ν = (M − 2G0)/(2M − 2G0), see
Figure 3.4. As fibrin and other biopolymer networks are known to exhibit (strong)
nonlinear effects, even for small strains [96–99], we consider this Poisson’s ratio to
be an effective value over the range of applied compressive strain. For strain rates
close to zero, i.e., ε̇ = 0.1 · 10−3 /s, we find negative values for Poisson’s ratio with
a large estimation uncertainty. In earlier work [167], it was found that in the static
limit fibrin networks seem to have a Poisson’s ratio of zero, although no uncertainty
estimation was given. If one calculates the radial extension of a static linear elastic
solid bound to the plates [177], however, it is found that for negative Poisson’s ratios,
−1 ≤ ν ≤ 0, the maximum radial extension is very small: it is less than 30µm for
a gel with radius a = 20mm and h = 1mm under 10% compressive strain. As the
mesh size of a large-pore fibrin network is about ζ ∼ 1µm, this radial extension is
on the boundary of being meaningful in the poroelastic continuum approach we use.
Therefore, we deem our finding of negative Poisson’s ratio near the static limit to be
consistent with literature.

To further investigate the dependence of the mechanical response of the fibrin net-
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where Ef is the Young’s modulus of a single fibrin fiber, φ(ε) = φ0/ (1− ε) is
(approximately) the strain dependent volume fraction of the fibrin network with φ0

the volume fraction in the initial state, and k(ε) = k0 (1− ε) is (approximately) the
permeability of the fibrin network, with k0 its initial value, see section 3.6.2 of the
Appendix for more information. Finally, b is a proportionality constant.

3.4 Results

To probe the capability of our theoretical framework to infer both the permeability
and the elastic properties of a biopolymer network from simple compression tests, we
performed compression experiments on both large-pore and small-pore fibrin fiber
networks. Large-pore fibrin networks have a mesh size of about ζ ∼ 1µm, whereas
small-pore networks have ζ ∼ 0.1µm [172]. Therefore, we expect the latter to have
a much smaller permeability k ∝ ζ2 and, from equation (3.4) and (3.6), a larger
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Figure 3.4: Poisson’s ratio ν of large-pore fibrin gels as a function of the strain rate ε̇,
inferred from ramp compression measurements. All gels were prepared at a fibrinogen
concentration of 2 mg/mL, were compressed up to an engineering strain of 5% or 10% and
have an aspect ratio of either S ≡ a/h = 20 or S = 10, with a the radius and h the height
of the gel before compression. Poisson’s ratio grows with strain rate, suggesting that the
fluid velocity has a marked influence on the elastic response of the fibrin network. Inset:
the fitted permeability k is independent of the strain rate, as expected, though it shows a
large sample-to-sample variation.
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Figure 3.4. As fibrin and other biopolymer networks are known to exhibit (strong)
nonlinear effects, even for small strains [96–99], we consider this Poisson’s ratio to
be an effective value over the range of applied compressive strain. For strain rates
close to zero, i.e., ε̇ = 0.1 · 10−3 /s, we find negative values for Poisson’s ratio with
a large estimation uncertainty. In earlier work [167], it was found that in the static
limit fibrin networks seem to have a Poisson’s ratio of zero, although no uncertainty
estimation was given. If one calculates the radial extension of a static linear elastic
solid bound to the plates [177], however, it is found that for negative Poisson’s ratios,
−1 ≤ ν ≤ 0, the maximum radial extension is very small: it is less than 30µm for
a gel with radius a = 20mm and h = 1mm under 10% compressive strain. As the
mesh size of a large-pore fibrin network is about ζ ∼ 1µm, this radial extension is
on the boundary of being meaningful in the poroelastic continuum approach we use.
Therefore, we deem our finding of negative Poisson’s ratio near the static limit to be
consistent with literature.

To further investigate the dependence of the mechanical response of the fibrin net-
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Figure 3.5: The proportionality constant b of the Toll model obtained by fitting the normal
force response, see equation (3.10), of a large-pore fibrin fiber network in the pressurized
phase during compression experiments up to 80% strain as a function of strain rate ε̇, at
a fibrinogen concentration of 2 mg/mL. For increasing strain rate, b grows, suggesting
a higher fluid velocity to induce a stronger mechanical response of the fibrin network,
similar to the increase in Poisson’s ratio ν for the 5–10% compression experiments shown
in Figure 3.4. Inset: although there is a large sample-to-sample variation, see also the inset
of Figure 3.4, the fitted initial permeability k0 does not vary appreciably with strain rate,
as expected.

work on the applied strain rate, we performed compression experiments of eight con-
secutive compression ramps of 10% engineering train, while we let the gel relax fully
in between the ramps. Using equation (3.10) we find the permeability at zero strain
k0 and the proportionality constant of the Toll model [179] b by fitting the maximum
value of the normal force during each compression step, where the fluid pressure is
assumed to be maximal, see Figure 3.5. Again, given a large sample-to-sample vari-
ability, the estimated initial permeability k0 seems to be independent of the strain
rate, as expected, see the inset of Figure 3.5. The proportionality constant b, how-
ever, depends significantly on the strain rate. For vanishing strain rate ε̇ it approaches
a value of order unity, which agrees with literature [169].
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3.4.2 Small-pore fibrin gels

Small-pore fibrin gels exhibit a qualitatively different increase in normal force during
compression, see the inset of Figure 3.2, as compared to a large-pore gel, see Figure
3.1. Initially, the normal force increases as one would expect when the volume of
the gel is conserved, based on the normal force of a linear elastic volume-conserving
solid [177] with a shear modulus equal to that of the uncompressed fibrin network
G0, see the blue line in the inset of Figure 3.2. Afterwards, it increases supralinearly
before it starts to relax due to fluid outflow, similar as with a large-pore gel. The ini-
tial supralinear increase suggests that the gel network stiffens while the fluid pressure
is still low, which we take into account, as introduced in section 3.3, by assuming a
stepwise increase in the shear modulus at some onset time tc, providing the red curve
fit in Figure 3.2. Strain-stiffening in small-pore fibrin gels is to be expected, as their
small permeability provides a relatively long volume-conserving compression, which
is a shearing deformation, and fibrin networks are known to stiffen under shear [180].
Given the fitted values for the onset time tc at which the shear modulus increases, we
can calculate the onset stress σc at which stiffening occurs for the different fibrino-
gen concentrations we experimentally realized, see Figure 3.6. The black curve is a
power law fit to the calculated onset stresses, suggesting a sharp dependence on the
fibrinogen concentration of the gel.

As mentioned in section 3.3, the calculated onset stress should not depend on the
aspect ratio S of the gel, since it is a microscopic property of the fibrin network.
In the inset of Figure 3.6, the calculated onset stress (�) and the fitted onset times
(�) are shown for the experiments at c = 6mg/mL, where three experiments have
been performed at an aspect ratio of S = 20 (blue) and three at S = 10 (red). It
shows that the onset time at which stiffening occurs depends on the aspect ratio of
the gel, but the onset stress does not. Therefore, the measure we defined for the
onset stress in equation (3.9) seems appropriate. The geometry dependence of the
stiffening onset time is expected, because for higher aspect ratio less compression is
needed to establish a given average shear strain γ‖ ∝ ε̇tca/h in the gel.

As the gel is compressed further after the onset time tc, the fluid pressure increases
due to increased bending of the fibrin network, thereby increasing the average tan-
gential stress at the sample-plate interface: a measure for the magnitude of the shear
stress in the sample. Therefore, due to increased shear stress, one would expect the
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Figure 3.5: The proportionality constant b of the Toll model obtained by fitting the normal
force response, see equation (3.10), of a large-pore fibrin fiber network in the pressurized
phase during compression experiments up to 80% strain as a function of strain rate ε̇, at
a fibrinogen concentration of 2 mg/mL. For increasing strain rate, b grows, suggesting
a higher fluid velocity to induce a stronger mechanical response of the fibrin network,
similar to the increase in Poisson’s ratio ν for the 5–10% compression experiments shown
in Figure 3.4. Inset: although there is a large sample-to-sample variation, see also the inset
of Figure 3.4, the fitted initial permeability k0 does not vary appreciably with strain rate,
as expected.

work on the applied strain rate, we performed compression experiments of eight con-
secutive compression ramps of 10% engineering train, while we let the gel relax fully
in between the ramps. Using equation (3.10) we find the permeability at zero strain
k0 and the proportionality constant of the Toll model [179] b by fitting the maximum
value of the normal force during each compression step, where the fluid pressure is
assumed to be maximal, see Figure 3.5. Again, given a large sample-to-sample vari-
ability, the estimated initial permeability k0 seems to be independent of the strain
rate, as expected, see the inset of Figure 3.5. The proportionality constant b, how-
ever, depends significantly on the strain rate. For vanishing strain rate ε̇ it approaches
a value of order unity, which agrees with literature [169].
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(�) are shown for the experiments at c = 6mg/mL, where three experiments have
been performed at an aspect ratio of S = 20 (blue) and three at S = 10 (red). It
shows that the onset time at which stiffening occurs depends on the aspect ratio of
the gel, but the onset stress does not. Therefore, the measure we defined for the
onset stress in equation (3.9) seems appropriate. The geometry dependence of the
stiffening onset time is expected, because for higher aspect ratio less compression is
needed to establish a given average shear strain γ‖ ∝ ε̇tca/h in the gel.

As the gel is compressed further after the onset time tc, the fluid pressure increases
due to increased bending of the fibrin network, thereby increasing the average tan-
gential stress at the sample-plate interface: a measure for the magnitude of the shear
stress in the sample. Therefore, due to increased shear stress, one would expect the
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shear modulus to increase further during compression. In our model, however, we
assume the shear modulus to remain constant at the augmented value, which was
attained at the onset time tc. The red curve fit closely matches the measurements
throughout compression, see Figure 3.2, suggesting further strain-stiffening of the
fibrin network to be somehow suppressed.

The fitted permeabilities k of the small-pore fibrin networks scale as k ∝ cn, with
n = −2.2 ± 0.5, see Figure 3.7. On the basis of a simple cubic lattice model, this
result suggests that the number of protofibrils per fibrin fiber cross-section for small-
pore fibrin decreases with fibrinogen concentration, see section 3.6.2 of the Appendix
for more information. Finally, due to small pores the equilibrium time t⊥ is generally
larger than the compression time te and the fluid pressure contribution is relatively
large compared to the network elasticity contribution. Therefore, and because of
the uncertainty in the normal force measurements, we were unable to estimate the
longitudinal modulus M from normal force measurements on all small-pore gels,
and consequently we cannot calculate Poisson’s ratio.
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Figure 3.6: The onset stress σc at which the shear modulus of small-pore fibrin gels
increases as a function of fibrinogen concentration c. The onset stress can be fitted
with a power law σc = σc,ref (c/cref)

n where we choose as a reference concentration
cref = 2mg/mL, and we fit σc,ref = 2.3± 0.8Pa and n = 3.4± 0.2, with the estimation
uncertainty in brackets. The inset shows that the stiffening onset time tc (�) depends on
aspect ratio, blue symbols correspond to S ≡ a/h = 20 and red to S = 10, whereas the
onset stress σc (�) is geometry independent.
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Figure 3.7: The permeability of small-pore fibrin gels as a function of the overall fib-
rinogen concentration c. The red line is a fit of k = kref(c/cref)

n, where we choose
cref = 2 mg/mL as a reference concentration and fit kref = (4.4 ± 0.3) · 10−3 µm2 and
n = −2.2 ± 0.5, with the estimation uncertainty in brackets. This result implies that the
number of protofibrils per fibrin fiber cross-section decreases with the fibrinogen concen-
tration, see section 3.6.2 of the Appendix for more information.

3.5 Conclusions and discussion

We formulate a closed-form approximate solution to the poroelastic equations of mo-
tion which allows, with appropriate phenomenological extensions, to obtain the per-
meability and the elastic properties of a soft bonded biopolymer network from the
measured time-dependent normal force in a ramp compression test. This approxi-
mate solution, appropriate for disk-like gels bonded to the rheometer plates, differs
strongly from that for frictionless gels, it distinguishes the fluid and network contri-
bution to the normal force, and it holds for all times during ramp compression, which
allows for the quantification of strain stiffening during compression, in contrast to
previous approximate approaches [33, 181].

The normal force contribution of the large-pore fibrin networks is found to increase
with increasing strain rate, suggesting fluid flow through the network to make it more
resistant against volume change, both for small (5–10%) and large (≤80%) compres-
sive strains. This strain rate dependence suggests that the network-fluid interactions
cause a change in the elastic response of the fibrin fiber network. The microscopic
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shear modulus to increase further during compression. In our model, however, we
assume the shear modulus to remain constant at the augmented value, which was
attained at the onset time tc. The red curve fit closely matches the measurements
throughout compression, see Figure 3.2, suggesting further strain-stiffening of the
fibrin network to be somehow suppressed.

The fitted permeabilities k of the small-pore fibrin networks scale as k ∝ cn, with
n = −2.2 ± 0.5, see Figure 3.7. On the basis of a simple cubic lattice model, this
result suggests that the number of protofibrils per fibrin fiber cross-section for small-
pore fibrin decreases with fibrinogen concentration, see section 3.6.2 of the Appendix
for more information. Finally, due to small pores the equilibrium time t⊥ is generally
larger than the compression time te and the fluid pressure contribution is relatively
large compared to the network elasticity contribution. Therefore, and because of
the uncertainty in the normal force measurements, we were unable to estimate the
longitudinal modulus M from normal force measurements on all small-pore gels,
and consequently we cannot calculate Poisson’s ratio.
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Figure 3.6: The onset stress σc at which the shear modulus of small-pore fibrin gels
increases as a function of fibrinogen concentration c. The onset stress can be fitted
with a power law σc = σc,ref (c/cref)

n where we choose as a reference concentration
cref = 2mg/mL, and we fit σc,ref = 2.3± 0.8Pa and n = 3.4± 0.2, with the estimation
uncertainty in brackets. The inset shows that the stiffening onset time tc (�) depends on
aspect ratio, blue symbols correspond to S ≡ a/h = 20 and red to S = 10, whereas the
onset stress σc (�) is geometry independent.
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Figure 3.7: The permeability of small-pore fibrin gels as a function of the overall fib-
rinogen concentration c. The red line is a fit of k = kref(c/cref)

n, where we choose
cref = 2 mg/mL as a reference concentration and fit kref = (4.4 ± 0.3) · 10−3 µm2 and
n = −2.2 ± 0.5, with the estimation uncertainty in brackets. This result implies that the
number of protofibrils per fibrin fiber cross-section decreases with the fibrinogen concen-
tration, see section 3.6.2 of the Appendix for more information.

3.5 Conclusions and discussion

We formulate a closed-form approximate solution to the poroelastic equations of mo-
tion which allows, with appropriate phenomenological extensions, to obtain the per-
meability and the elastic properties of a soft bonded biopolymer network from the
measured time-dependent normal force in a ramp compression test. This approxi-
mate solution, appropriate for disk-like gels bonded to the rheometer plates, differs
strongly from that for frictionless gels, it distinguishes the fluid and network contri-
bution to the normal force, and it holds for all times during ramp compression, which
allows for the quantification of strain stiffening during compression, in contrast to
previous approximate approaches [33, 181].

The normal force contribution of the large-pore fibrin networks is found to increase
with increasing strain rate, suggesting fluid flow through the network to make it more
resistant against volume change, both for small (5–10%) and large (≤80%) compres-
sive strains. This strain rate dependence suggests that the network-fluid interactions
cause a change in the elastic response of the fibrin fiber network. The microscopic
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details giving rise to this change in the elastic response are a subject for further re-
search.

In earlier work the normal force response of fibrin gels has been found to be depen-
dent on the strain rate of compression [168, 169]. In these works the contributions of
fluid pressure and the fibrin network were not separated in a biphasic model, however,
and the network elasticity under compression could not be extracted, see for example
Figure 5 in Kim et al. [169]. Our work enables the separation of fluid pressure and
network elasticity and shows that, additionally to the fluid pressure contribution, the
network elasticity also depends on the applied strain rate.

The small-pore fibrin networks are found to strain-stiffen close to the start of com-
pression, and the shear modulus is found to remain at the magnitude attained at the
onset time although the shear stress on the network still increases. Possibly, the
flow of fluid through the fiber network suppresses the irreversible changes in the
hierarchical structure of the fibrin network which are needed for reversible strain-
stiffening [182].

From compression experiments on small-pore fibrin gels we find the permeability
to scale inverse squared with fibrinogen concentration. With the cubic lattice model
this suggests that the number of protofibrils per fibrin fiber cross-section decreases
with fibrinogen concentration. Considering the complex polymerization kinetics of
fibrin from its soluble precursor fibrinogen [94], this dependence could be caused by
the enhanced local depletion of protofibrils with increasing fibrinogen concentration,
thereby decreasing the number of protofibrils per fiber cross-section [183].

This work quantitatively describes how the complex mechanical behaviour of
biopolymer systems can be decomposed into simple physical principles. It provides
an alternative method to determine the hydraulic permeability of biopolymer systems
based on simple compression measurements, rather than flow-through assays, with
the added benefit that their elastic properties are probed at the same time. Therefore,
we expect our findings to prove fruitful in, for example, mechanobiological investi-
gations of the relation between fluid flow and the elasticity of biopolymer networks
and soft tissues.
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Figure 3.8: The compression phases of (A) an initially stress-free cylindrical fibrin gel
(yellow) of radius a and height h with high aspect ratio S ≡ a/h � 1 (Figure not on
scale). The gel is ramp compressed in a parallel-plate rheometer with the upper plate
(gray) having a constant velocity ε̇h, where ε̇ is the strain rate. B) Compression com-
mences with the volume-conserving phase. The fibrin network starts to bulge out (black
arrows) because the gel is bonded to the plates, causing the fluid pressure p to build up. C
The build-up proceeds, causing a fluid outflow velocity vf (blue arrows) due to the fluid
pressure gradient, vf ∝ −∂p/∂r with r the radial coordinate in the fibrin gel. After the
pressurizing time t⊥, the outward bulging of the gel network, which induces the fluid pres-
sure, stabilizes. C) In the pressurized phase, the gel is compressed further at maximal fluid
pressure until at time te the compression stops.

3.6 Appendix

In this Appendix we first present in section 3.6.1 our approximate solution to the
poroelastic equations of motion, equation (1)–(3) in the manuscript. Afterwards, we
treat the assumptions on which the approximate form of the poroelastic equations
is based, as well as the assumptions underlying our solution. Next, we consider in
section 3.6.2 the cubic lattic model used to estimate the dependence of the perme-
ability k of a fibrin network on the concentration of fibrinogen c and the compressive
strain ε. In section 3.6.3, we present the fit results of the measured normal force in
all compression experiments and discuss them systematically.

3.6.1 Approximate solution

The approximate closed-form solution to the poroelastic equations of motion is found
as an exact solution to an approximate form of the poroelastic equations. First, we
state this exact solution. Afterwards, we motivate the approximate form of the poroe-
lastic equations, and detail the underlying assumptions.

We consider the ramp compression of a cylindrical gel bonded to the plates of a
parallel-plate rheometer, where the gel network is treated as a linear elastic solid with
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all compression experiments and discuss them systematically.

3.6.1 Approximate solution

The approximate closed-form solution to the poroelastic equations of motion is found
as an exact solution to an approximate form of the poroelastic equations. First, we
state this exact solution. Afterwards, we motivate the approximate form of the poroe-
lastic equations, and detail the underlying assumptions.

We consider the ramp compression of a cylindrical gel bonded to the plates of a
parallel-plate rheometer, where the gel network is treated as a linear elastic solid with
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shear modulus G and bulk modulus K, see Figure 3.8 and Figure 2 of the manuscript.
The gel network has a permeability k, the fluid has dynamic viscosity η, and the
gel is compressed at a strain rate ε̇ ≡ v/h, with v the velocity of the upper plate.
Before compression, the gel has an axial length h, a radius a and a large aspect ratio
S ≡ a/h � 1, see Figure 3.8A. The solution of the exact poroelastic equations,
equation (1)–(3) of the manuscript, can be specified by the displacement field of
the gel network U , the velocity field of the fluid vf and the fluid pressure p. For
notational convenience, however, we do not use the fluid velocity, but the volume-
averaged local velocity of the gel V ≡ φnvn+φfvf instead, with φf(φn) the volume
fraction and vf(vn ≡ ∂tU) the velocity field of the fluid(gel network). In the exact
solution of the approximate form of the poroelastic equations, for any radial position
r, vertical position z and time t with (r, z, t) ∈]0, a]×[0, h]×[0,∞], the displacement
field of the gel network U(r, z, t) = U(r, z, t)r̂+W (z, t)ẑ, with U(r, z, t) the radial
displacement and W (z, t) the vertical displacement, reads the following
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where t⊥ ≡ ηh2/Gk is the time for the gel to become pressurized, i.e., ∂tp = 0,
during compression, ε = ε̇t is the compressive strain on the gel, M = K + 4G/3

is the longitudinal modulus, and T (t) is the transition function which brings the gel
from volume-conserving compression into the pressurized phase. The fluid pressure
p(r, z, t) is given by
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where pext is the pressure of the fluid in which the gel is immersed, and the volume-
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averaged local velocity of the gel V (r, z, t) is found as

V (r, z, t) = (1− T (t))V vc(r, z) + T (t)V cp(r, z), (3.15)
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V cp(r, z) =
r

2
ε̇r̂ − zε̇ẑ, (3.17)

which shows that the volume averaged local velocity of the gel transitions between
that of volume-conserving compression V vc(r, z, t) and that in the pressurized phase
V cp(r, z, t) where the fluid pressure is constant in time.

Equation (3.11)–(3.17) exactly solve the following approximate set of poroelastic
bulk and boundary equations of motion: equation (3.18)–(3.27). First of all, equation
(3.11)–(3.14) solve the exact overall force balance, see equation (1) of the manuscript,
which reads
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Equation (3.11)–(3.17) solve an approximate form of Darcy’s law, see equation (3) in
the manuscript, which has been rewritten using the definition of the volume averaged
local velocity of the gel V ≡ φnvn + φfvf
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where 〈X〉 ≡ (1/h)
∫ h
0 dz X is the average of X over the axial height of the gel. This

form of Darcy’s law, which stems from the force balance of the fluid, is approximate
because it requires Darcy’s law in the vertical direction to be obeyed only on average.
Finally, equation (3.15)–(3.17) solve the incompressibility condition of the gel which
follows from mass conservation

∇ · V = 0. (3.22)

The solution in equation (3.11)–(3.13) obeys the following essential boundary condi-
tions. Ramp compression and the binding of the gel network to the rheometer plates
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averaged local velocity of the gel V (r, z, t) is found as
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Equation (3.11)–(3.17) solve an approximate form of Darcy’s law, see equation (3) in
the manuscript, which has been rewritten using the definition of the volume averaged
local velocity of the gel V ≡ φnvn + φfvf
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where 〈X〉 ≡ (1/h)
∫ h
0 dz X is the average of X over the axial height of the gel. This

form of Darcy’s law, which stems from the force balance of the fluid, is approximate
because it requires Darcy’s law in the vertical direction to be obeyed only on average.
Finally, equation (3.15)–(3.17) solve the incompressibility condition of the gel which
follows from mass conservation

∇ · V = 0. (3.22)

The solution in equation (3.11)–(3.13) obeys the following essential boundary condi-
tions. Ramp compression and the binding of the gel network to the rheometer plates
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impose

W = 0andVz = 0, at z = 0, (3.23)

W = −εh andVz = −ε̇h, at z = h, (3.24)

U = 0, at both z = 0and z = h. (3.25)

At the free boundary the solution obeys the average form of the tangential overall
stress balance, and an approximate form of the radial overall stress balance combined
with the permeability condition

〈σ′
rz〉 = 0at r = a, (3.26)

〈σ′
rr (1− T (t))− p〉 = −pext, at r = a, (3.27)

where σ′ is the Terzaghi effective stress of the gel network, taken to be that of a linear
elastic solid.

The time-dependent normal force F (t) on the plates which is generated by the gel
during compression, can be calculated from the overall stress at the gel-plate interface
as
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which gives with equation (3.11)–(3.14)
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The condition for the validity of the solution presented in equation (3.11)–(3.17) is
that M/GS2 � 1. Using this validity condition, the dominant part of equation (3.29)
gives equation (4) of the manuscript.

Assumptions

To study the ramp compression of a bonded disk-like gel, we make several assump-
tions by comparing the bonded gel with a frictionless gel having no friction with
the plates of the rheometer. Similar to a frictionless gel, we assume the bonded gel
to deform in a volume-conserving manner when compression commences, see Fig-
ure 3.8B. Also similar to a frictionless gel, the fluid pressure is assumed to reach a
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maximal value during compression, the gel is then pressurized, see Figure 3.8D. Fi-
nally, the gel transitions in the pressurizing time from the volume-conserving to the
pressurized phase in a simple mono-exponential time-dependent fashion, see Figure
3.8C.

The pressurized phase Consider a cylindrical gel under compression identical to
the case we treat in the manuscript, see Figure 3.8, but instead of being bonded to the
plates, it experiences no friction with the plates. In this case, the exact solution of the
poroelastic equations of motion, equation (1)–(3) in the manuscript, is known [176].
During sufficiently slow ramp compression, the frictionless gel becomes pressurized,
i.e., ∂tp = 0, after a pressurizing time t‖ = a2η/kM . When pressurized, the exact
solution for the displacement field, the volume-averaged velocity field and the fluid
pressure p of the frictionless gel reads
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which shows that the gel deformation differs from that of a static frictionless solid
by an inhomogeneous radial strain proportional to the compression rate, see equation
(3.30). This inhomogeneous strain causes stress in the gel network, which in turn
sources the fluid pressure p required for the outflow of fluid from the gel, see equation
(3.18) and (3.19). The fact that this fluid pressure is constant in time, implies a
constant outflow of fluid from the gel, which brings us to the first assumption.

Assumption 1: similar to a frictionless gel, a bonded gel becomes pressurized, i.e.,
∂tp = 0, after some pressurizing time t⊥, see Figure 3.8D.

Given this assumption, we can write down the following approximate solution for a
bonded gel in the pressurized phase with constant pressure, which obeys the exact
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form of equation (3.18)–(3.25)
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where we note that in the bonded case the vertical strain is inhomogeneous instead
of the radial strain in the frictionless case, and we used the permeability condition
p = pext at the free boundary r = a. The volume-averaged gel velocity field V cp

equals that of a frictionless volume-conserving solid because ∂tU = 0, implying all
radial motion is due to fluid flow. The velocity field of the fluid equals that of a
frictionless volume-conserving solid, because it is not bonded to the rheometer plates
and flows through the radially static, but vertically comoving, gel network.

To study whether this approximate solution is reasonable, we consider the exact form
of the bulk equations of motion, equation (3.18)–(3.22), giving
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∇ · V = 0, (3.40)

where we eliminated the fluid pressure p. The boundary conditions (BCs) are equa-
tions (3.23)–(3.25), combined with the exact boundary conditions at the free bound-
ary: the overall force balance and the permeability condition

σ′
rr − p = −pext, at r = a, (3.41)

σ′
rz = 0, at r = a, (3.42)

p = pext, at r = a, (3.43)

where equation (3.41) is the overall balance of forces perpendicular to the free bound-
ary, equation (3.42) is the overall balance of forces tangential to the free boundary,
and equation (3.43) expresses that the gel network is permeable for fluid.
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The exact solution in the constant pressure phase can be written as U = U cp +∆U

and V = V cp +∆V , with ∆U and ∆V the difference solution, i.e., the difference
between the exact and the approximate solution in the pressurized phase. To show
that the difference may be negligible, we scale all quantities to their presumed typical
sizes: Ũ = ∆U/h, W̃ = ∆W/h, Ṽr = ∆Vr/(a/text), Ṽz = ∆Vz/(h/text), ξ =

z/h, ρ = r/a, τext = t/text and we define text as the externally determined time
scale of ramp compression, text = h/v with v the velocity of the upper plate. The
bulk equations of motion for the difference solution read
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∂Ũ

∂ξ
+

G

MS2

1

ρ

∂

∂ρ
ρ
∂W̃

∂ρ

)
, (3.45)

∇̃ · Ṽ = 0, (3.46)

where t⊥ = h2η/kG is the pressurizing time, and the boundary conditions
read

W̃ = 0, Ṽz = 0and Ũ = 0, at both ξ = 0and ξ = 1, (3.47)
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∂Ũ

∂ξ
+ ε̇t⊥

r

4h

{
1− 2

z

h

})
, at ρ = 1. (3.49)

If we assume that M/GS2 � 1, then the M∂r(1/r)∂rrU term is much smaller than
the G∂2

zU term, compare equation (3.38) to equation (3.44), and the G(1/r)∂rr∂rW

term is much smaller than the M∂2
zW term since G < M , compare equation (3.39)

to equation (3.45). Neglecting the small terms, both equation (3.44) and (3.45) are
only first order in r instead of second order. The boundary conditions for U and W at
r = 0 are imposed by smoothness and symmetry: U = 0 and σrz = 0 =⇒ ∂rW =

0 at r = 0, and can not be ignored. Therefore, we must neglect the Robin boundary
condition for U at r = a in equation (3.48), and the Neumann boundary condition
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of the bulk equations of motion, equation (3.18)–(3.22), giving
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∇ · V = 0, (3.40)

where we eliminated the fluid pressure p. The boundary conditions (BCs) are equa-
tions (3.23)–(3.25), combined with the exact boundary conditions at the free bound-
ary: the overall force balance and the permeability condition

σ′
rr − p = −pext, at r = a, (3.41)

σ′
rz = 0, at r = a, (3.42)

p = pext, at r = a, (3.43)

where equation (3.41) is the overall balance of forces perpendicular to the free bound-
ary, equation (3.42) is the overall balance of forces tangential to the free boundary,
and equation (3.43) expresses that the gel network is permeable for fluid.
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The exact solution in the constant pressure phase can be written as U = U cp +∆U

and V = V cp +∆V , with ∆U and ∆V the difference solution, i.e., the difference
between the exact and the approximate solution in the pressurized phase. To show
that the difference may be negligible, we scale all quantities to their presumed typical
sizes: Ũ = ∆U/h, W̃ = ∆W/h, Ṽr = ∆Vr/(a/text), Ṽz = ∆Vz/(h/text), ξ =

z/h, ρ = r/a, τext = t/text and we define text as the externally determined time
scale of ramp compression, text = h/v with v the velocity of the upper plate. The
bulk equations of motion for the difference solution read
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∂ρ
+

M −G

GS

∂2W̃

∂ρ∂ξ
+

∂2Ũ
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∇̃ · Ṽ = 0, (3.46)

where t⊥ = h2η/kG is the pressurizing time, and the boundary conditions
read

W̃ = 0, Ṽz = 0and Ũ = 0, at both ξ = 0and ξ = 1, (3.47)
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If we assume that M/GS2 � 1, then the M∂r(1/r)∂rrU term is much smaller than
the G∂2

zU term, compare equation (3.38) to equation (3.44), and the G(1/r)∂rr∂rW

term is much smaller than the M∂2
zW term since G < M , compare equation (3.39)

to equation (3.45). Neglecting the small terms, both equation (3.44) and (3.45) are
only first order in r instead of second order. The boundary conditions for U and W at
r = 0 are imposed by smoothness and symmetry: U = 0 and σrz = 0 =⇒ ∂rW =

0 at r = 0, and can not be ignored. Therefore, we must neglect the Robin boundary
condition for U at r = a in equation (3.48), and the Neumann boundary condition
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for W at r = a in equation (3.49). Then, it follows that there are no sources for a
nontrivial solution to equation (3.44)–(3.47), implying that Ũ = 0 and Ṽ = 0 is the
solution. Therefore, the approximate solution in equation (3.34)–(3.36) is expected
to be accurate in the pressurized phase, provided that M/GS2 � 1.

The neglect of the two small terms is equivalent to treating the dependencies of Ũ
and Ṽ to the radial coordinate r as static. In fact, the relative size of the differ-
ent network stress terms, provided M/GS2 � 1, holds during the whole of com-
pression, which gives the full time-dependent approximate solution, contained in
equation (3.11),(3.12) and (3.15)–(3.17) a static dependence on r: U(r, z, t) ∝ r1,
W (z, t) ∝ r0, Vr(r, z, t) ∝ r1 and Vz(z, t) ∝ r0 for all times t.

Physically, the condition for the approximate solution to hold, M/GS2 � 1, means
that the radial force in the gel network due to bending of the gel network, sourced by
G∂2

zU , is much greater than the radial force due to inhomogeneity in the radial strain,
sourced by M∂r(1/r)∂rrU . That is, the shear stress induced by friction between the
gel and the rheometer plate dominates the network stress in the gel. Similarly, the
vertical force in the gel network due to inhomogeneity in the vertical strain, sourced
by M∂2

zW , is much greater than the vertical force induced by vertical out of plane
displacements, sourced by G(1/r)∂rr∂rW . The term (M−G)∂z∂rW can be smaller
or comparable to the G∂2

zU term, depending on the size of the aspect ratio S � 1,
likewise for the size of (M−G)(1/r)∂rr∂zU relative to M∂zW . Finally, it should be
noted that although the presumed magnitude of U , which we take to be h, is uncertain,
this presumption does not influence the condition to neglect the radial inhomogeneity
term, because the shear stress term, relative to which the radial inhomogeneity term
is small, also scales with U .

The volume-conserving phase Next, we consider that in the frictionless case [176]
for short times after the commencement of compression, i.e., π2t/t‖ � 1 with t‖ the
pressurizing time, the gel deforms to good approximation as a volume-conserving
frictionless solid, because the outflow of fluid from the gel network is still small.
Again, assuming the bonded case to behave analogous to the frictionless case, we
arrive at the second assumption.

Assumption 2: similar to a frictionless gel, for times much shorter than the, yet to
be determined, pressurizing time t⊥, a bonded gel deforms like a bonded volume-
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conserving solid, see Figure 3.8B.

The (quasi)-static displacement field of a volume-conserving linear elastic solid
bonded to the plates is [177]

Uvc(r, z, t) = 3εr
z

h
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1− z

h

)
, (3.50)

W vc(z, t) = −zε
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h
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which gives equation (3.18) and (3.19) in dimensionless form as

∂p̃

∂ρ
= −6S2ερ, (3.52)

∂p̃

∂ξ
= −6ε(1− 2ξ), (3.53)

where we defined p̃ = p/G. As S � 1, the majority of the pressure builds up
radially, stemming from the G∂2

zU
vc term in equation (3.18). This term quantifies

the stress induced by bending of the gel network, which is imposed by the binding of
the network to the plates. At z = 0 and z = h, we find that ∂p/∂z �= 0, however,
which implies with Darcy’s law, see equation (3) of the manuscript, a vertical flow
of fluid relative to the gel network through the impermeable plates of the rheometer.
As this would render the plates permeable, we adopt an approximative form of the
vertical part of Darcy’s law, see equation (3.21), by requiring it to hold only when
averaged over the axial height of the gel.

Transition from the volume-conserving phase to the pressurized phase The
frictionless gel transitions from volume-conserving compression to the pressurized
phase on a pressurizing time scale t‖ [176]. Also, previous work in the context of gel
compression demonstrated mono-exponential time-dependence, see equation (32) in
Yamaue et al. [181]. This brings us to the final assumption

Assumption 3: we assume the time-dependent dynamics of the radial displacement
of the gel network, transitioning from volume-conserving deformation to the pressur-
ized phase, to be proportional to a transition function T (t), see Figure 3.8C.

We write U(r, z, t) = T (t)U cp, such that T (t) ≈ 1 if t � t⊥ with t⊥ the pres-
surizing time, and T (0) = 0, because at t = 0 we assume the gel to be stress-
free. Then, we assume that V (r, z, t), see equation (3.15), interpolates between
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The neglect of the two small terms is equivalent to treating the dependencies of Ũ
and Ṽ to the radial coordinate r as static. In fact, the relative size of the differ-
ent network stress terms, provided M/GS2 � 1, holds during the whole of com-
pression, which gives the full time-dependent approximate solution, contained in
equation (3.11),(3.12) and (3.15)–(3.17) a static dependence on r: U(r, z, t) ∝ r1,
W (z, t) ∝ r0, Vr(r, z, t) ∝ r1 and Vz(z, t) ∝ r0 for all times t.

Physically, the condition for the approximate solution to hold, M/GS2 � 1, means
that the radial force in the gel network due to bending of the gel network, sourced by
G∂2

zU , is much greater than the radial force due to inhomogeneity in the radial strain,
sourced by M∂r(1/r)∂rrU . That is, the shear stress induced by friction between the
gel and the rheometer plate dominates the network stress in the gel. Similarly, the
vertical force in the gel network due to inhomogeneity in the vertical strain, sourced
by M∂2

zW , is much greater than the vertical force induced by vertical out of plane
displacements, sourced by G(1/r)∂rr∂rW . The term (M−G)∂z∂rW can be smaller
or comparable to the G∂2

zU term, depending on the size of the aspect ratio S � 1,
likewise for the size of (M−G)(1/r)∂rr∂zU relative to M∂zW . Finally, it should be
noted that although the presumed magnitude of U , which we take to be h, is uncertain,
this presumption does not influence the condition to neglect the radial inhomogeneity
term, because the shear stress term, relative to which the radial inhomogeneity term
is small, also scales with U .

The volume-conserving phase Next, we consider that in the frictionless case [176]
for short times after the commencement of compression, i.e., π2t/t‖ � 1 with t‖ the
pressurizing time, the gel deforms to good approximation as a volume-conserving
frictionless solid, because the outflow of fluid from the gel network is still small.
Again, assuming the bonded case to behave analogous to the frictionless case, we
arrive at the second assumption.

Assumption 2: similar to a frictionless gel, for times much shorter than the, yet to
be determined, pressurizing time t⊥, a bonded gel deforms like a bonded volume-
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conserving solid, see Figure 3.8B.

The (quasi)-static displacement field of a volume-conserving linear elastic solid
bonded to the plates is [177]
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where we defined p̃ = p/G. As S � 1, the majority of the pressure builds up
radially, stemming from the G∂2

zU
vc term in equation (3.18). This term quantifies

the stress induced by bending of the gel network, which is imposed by the binding of
the network to the plates. At z = 0 and z = h, we find that ∂p/∂z �= 0, however,
which implies with Darcy’s law, see equation (3) of the manuscript, a vertical flow
of fluid relative to the gel network through the impermeable plates of the rheometer.
As this would render the plates permeable, we adopt an approximative form of the
vertical part of Darcy’s law, see equation (3.21), by requiring it to hold only when
averaged over the axial height of the gel.

Transition from the volume-conserving phase to the pressurized phase The
frictionless gel transitions from volume-conserving compression to the pressurized
phase on a pressurizing time scale t‖ [176]. Also, previous work in the context of gel
compression demonstrated mono-exponential time-dependence, see equation (32) in
Yamaue et al. [181]. This brings us to the final assumption

Assumption 3: we assume the time-dependent dynamics of the radial displacement
of the gel network, transitioning from volume-conserving deformation to the pressur-
ized phase, to be proportional to a transition function T (t), see Figure 3.8C.

We write U(r, z, t) = T (t)U cp, such that T (t) ≈ 1 if t � t⊥ with t⊥ the pres-
surizing time, and T (0) = 0, because at t = 0 we assume the gel to be stress-
free. Then, we assume that V (r, z, t), see equation (3.15), interpolates between
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the volume-conserving velocity field of a bonded solid V vc(r, z, t), see the time-
derivative of equation (3.50) and (3.51), and the volume-conserving velocity field
of a frictionless solid V cp(r, z, t), see equation (3.36). The exact radial force bal-
ance, equation (3.18) combined with equation (3.20), can than be solved for T (t),
giving the transition function T (t), see equation (3.13), along with the pressurizing
time t⊥ = h2η/kG. Then, by requiring also W (z, t) and p(r, z, t) to transition from
their volume-conserving form to their form in the pressurized phase, using only T (t),
we obtain as a solution to equation (3.18)–(3.25) the solution contained in equation
(3.11)–(3.17), but slightly more general with
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where n ≥ 2, and C is an integration constant. The non-uniqueness of this solution,
illustrated by the arbitrariness of n, may be related to the approximate nature of the
equations of motion it solves.

The terms proportional to Tn(t) are related to the inhomogeneous vertical strain in
the pressurized phase, compare equation (3.35) to equation (3.54). This inhomoge-
neous vertical strain balances the (M − G)(1/r)∂rr∂zU term in equation (3.39),
which measures the local increase in vertical force on the gel network due to the
radial change in the deflection of the gel network. If we consider the vertical force
balance with the exact form of Darcy’s law, and plug in equation (3.11), (3.15)–
(3.17), and (3.54), we find that the left hand side can be grouped in terms proportional
to T (t)0, T (t)1, T (t)n−1 and T (t)n, whereas the right hand side can be grouped in
terms proportional to T (t)0, T (t)1 and T (t)n. We then set the value of n ≥ 2 by
requiring the dependencies on the transition function T (t) on both sides of the exact
equation to match: for each term on the left hand side proportional to T (t)m, there
should be a term on the right hand side also proportional to T (t)m. This requirement
uniquely sets n = 2.

Finally, to determine the integration constant C for the fluid pressure p, we consider
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the force balance for the overall radial stress at the free boundary. The volume-
conserving solution, see equation (3.50)–(3.53), can satisfy the weak form of the
radial force balance 〈σ′

rr − p〉 = −pext at r = a. On the other hand, our approxi-
mate solution, as explained above, ignores the exact boundary conditions at the free
boundary in the pressurized phase, see equation (3.41)–(3.43), and thus does not obey
the stress-free condition on the gel network σ′

rr = 0 at r = a, which is implied by
the exact boundary conditions. This artifact of our approximate solution comes from
ignoring the M∂r(1/r)∂rrU term, implying we do not take into account the relax-
ations in the radial strain which are induced by σ′

rr = 0 and which are expected to
occur, similar to the frictionless case, on a time scale t‖. Therefore, we assume an ap-
proximate condition at the free boundary which interpolates between the weak form
of the overall radial force balance in the volume-conserving phase and the weak form
of the permeability condition, see equation (3.43), in the pressurized phase, giving
equation (3.27). This approximate condition makes the contribution of the gel net-
work to the radial stress vanish in the pressurized phase, thereby enforcing the weak
form of the permeability condition in the pressurized phase. Using equation (3.27),
we then find C = 2(1 − T (t))Gε + pext. Similarly, we assume the force balance of
the overall tangential stress at the free boundary, see equation (3.42), to hold in weak
form, i.e., 〈σ′

rz〉 = 0 at r = a, which is satisfied trivially due to symmetry.

3.6.2 Cubic lattice model

During the polymerization of a fibrin fiber network fibrinopeptides are cleaved from
fibrinogen molecules, thereby creating fibrin monomers. These monomers polymer-
ize into protofibrils which in turn form fibrin fibers by both end-to-end and lateral
aggregation, see section 1.3.1 for more information. To estimate the scaling of the
permeability of a fibrin network with both the pre-polymerization fibrinogen con-
centration and large compressive strains on the network, we model the fibrin fiber
network after polymerization as a cubic lattice.

Mass conservation Consider a volume V in which a fibrinogen solution with over-
all mass density c has been polymerized into a large number of cubic cells, forming
a cubic lattice. Because of the large number of cells, the volume V can have any
macroscopic shape. The cube edges have a length ζ, the mesh size, and consist of
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the volume-conserving velocity field of a bonded solid V vc(r, z, t), see the time-
derivative of equation (3.50) and (3.51), and the volume-conserving velocity field
of a frictionless solid V cp(r, z, t), see equation (3.36). The exact radial force bal-
ance, equation (3.18) combined with equation (3.20), can than be solved for T (t),
giving the transition function T (t), see equation (3.13), along with the pressurizing
time t⊥ = h2η/kG. Then, by requiring also W (z, t) and p(r, z, t) to transition from
their volume-conserving form to their form in the pressurized phase, using only T (t),
we obtain as a solution to equation (3.18)–(3.25) the solution contained in equation
(3.11)–(3.17), but slightly more general with
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where n ≥ 2, and C is an integration constant. The non-uniqueness of this solution,
illustrated by the arbitrariness of n, may be related to the approximate nature of the
equations of motion it solves.

The terms proportional to Tn(t) are related to the inhomogeneous vertical strain in
the pressurized phase, compare equation (3.35) to equation (3.54). This inhomoge-
neous vertical strain balances the (M − G)(1/r)∂rr∂zU term in equation (3.39),
which measures the local increase in vertical force on the gel network due to the
radial change in the deflection of the gel network. If we consider the vertical force
balance with the exact form of Darcy’s law, and plug in equation (3.11), (3.15)–
(3.17), and (3.54), we find that the left hand side can be grouped in terms proportional
to T (t)0, T (t)1, T (t)n−1 and T (t)n, whereas the right hand side can be grouped in
terms proportional to T (t)0, T (t)1 and T (t)n. We then set the value of n ≥ 2 by
requiring the dependencies on the transition function T (t) on both sides of the exact
equation to match: for each term on the left hand side proportional to T (t)m, there
should be a term on the right hand side also proportional to T (t)m. This requirement
uniquely sets n = 2.

Finally, to determine the integration constant C for the fluid pressure p, we consider
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the force balance for the overall radial stress at the free boundary. The volume-
conserving solution, see equation (3.50)–(3.53), can satisfy the weak form of the
radial force balance 〈σ′

rr − p〉 = −pext at r = a. On the other hand, our approxi-
mate solution, as explained above, ignores the exact boundary conditions at the free
boundary in the pressurized phase, see equation (3.41)–(3.43), and thus does not obey
the stress-free condition on the gel network σ′

rr = 0 at r = a, which is implied by
the exact boundary conditions. This artifact of our approximate solution comes from
ignoring the M∂r(1/r)∂rrU term, implying we do not take into account the relax-
ations in the radial strain which are induced by σ′

rr = 0 and which are expected to
occur, similar to the frictionless case, on a time scale t‖. Therefore, we assume an ap-
proximate condition at the free boundary which interpolates between the weak form
of the overall radial force balance in the volume-conserving phase and the weak form
of the permeability condition, see equation (3.43), in the pressurized phase, giving
equation (3.27). This approximate condition makes the contribution of the gel net-
work to the radial stress vanish in the pressurized phase, thereby enforcing the weak
form of the permeability condition in the pressurized phase. Using equation (3.27),
we then find C = 2(1 − T (t))Gε + pext. Similarly, we assume the force balance of
the overall tangential stress at the free boundary, see equation (3.42), to hold in weak
form, i.e., 〈σ′

rz〉 = 0 at r = a, which is satisfied trivially due to symmetry.

3.6.2 Cubic lattice model

During the polymerization of a fibrin fiber network fibrinopeptides are cleaved from
fibrinogen molecules, thereby creating fibrin monomers. These monomers polymer-
ize into protofibrils which in turn form fibrin fibers by both end-to-end and lateral
aggregation, see section 1.3.1 for more information. To estimate the scaling of the
permeability of a fibrin network with both the pre-polymerization fibrinogen con-
centration and large compressive strains on the network, we model the fibrin fiber
network after polymerization as a cubic lattice.

Mass conservation Consider a volume V in which a fibrinogen solution with over-
all mass density c has been polymerized into a large number of cubic cells, forming
a cubic lattice. Because of the large number of cells, the volume V can have any
macroscopic shape. The cube edges have a length ζ, the mesh size, and consist of
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Table 3.1: Experimental conditions and fit results for compression experiments on large-
pore fibrin gels at small strain. From the left to the right, the columns provide: the number
tag given to each experiment, the concentration of fibrinogen c, the initial radius a of the
gel before compression, the strain rate at which the gel is compressed ε̇, the amount of
engineering strain put on the gel after compression εe, the fitted permeability k, the fitted
longitudinal modulus M , the measured shear modulus just before compression G0 from
small-strain rheometry, the calculated Poisson’s ratio ν = (M − 2G0)/(2M − 2G0),
the exponential relaxation time t⊥/12 with t⊥ = h2η/kG the pressurizing time, and the
validity condition M/G0S

2. All gels had an initial height of h = 1mm and the estimation
uncertainty is in brackets.

# c(mg/mL) a (mm) ε̇ (10−3/s) εe (%) k
(
10−1 µm2

)
M (kPa) G0 (kPa) ν (-) t⊥/12 (s) M/GS2

1 2 20 1.0 10 1.26(0.03) 1.45(0.12) 0.139 0.447(0.005) 3.3 0.026
2 2 20 1.0 10 4.97(0.19) 0.43(0.05) 0.142 0.257(0.039) 0.8 0.008
3 2 20 1.0 10 2.79(0.11) 0.91(0.09) 0.212 0.347(0.019) 1.0 0.011
4 2 20 1.0 10 1.73(0.03) 1.48(0.07) 0.087 0.469(0.002) 3.8 0.042
5 2 10 1.0 10 1.54(0.02) 0.15(0.01) 0.227 1.950(0.235) 1.6 0.007
6 2 20 1.0 5 5.00(0.33) 0.99(0.16) 0.119 0.431(0.013) 1.0 0.021
7 2 20 1.0 5 2.29(0.11) 1.28(0.26) 0.213 0.401(0.024) 1.2 0.015
8 4 20 1.0 10 2.17(0.08) 1.14(0.10) 0.444 0.181(0.048) 0.6 0.006
9 4 20 1.0 10 0.63(0.02) 3.43(0.34) 1.400 0.156(0.058) 0.7 0.006
10 2 20 5.0 10 1.20(0.07) 2.04(1.40) 0.162 0.457(0.032) 3.0 0.032
11 2 20 5.0 10 1.05(0.15) 0(4.10) 0.139 - 3.9 -
12 2 10 0.5 5 1.98(0.10) 0.30(0.04) 0.202 -0.562(0.418) 1.4 0.015
13 2 10 0.5 5 1.97(0.10) 0.36(0.04) 0.194 -0.071(0.133) 1.5 0.019
14 2 20 0.1 10 2.16(0.10) 0.27(0.01) 0.158 -0.184(0.075) 1.7 0.004
15 2 20 0.1 10 1.83(0.07) 0.30(0.01) 0.202 -0.537(0.132) 1.5 0.004

cylindrical fibrin fibers with radius R and fibrin monomer mass density ρ, see Figure
3.9. The total mass m of fibrinogen in the volume is m = cV . By mass conservation,
the fibrinogen mass must be equal to the mass of fibrin monomers in the fibrin fibers,
implying m = ρVfiber with Vfiber the total volume of fibrin fibers, where we assume
all fibrin monomers to be polymerized. As the mass of a fibrinogen molecule is about
340 kDa and the mass of the cleaved fibrinopeptides is about 1.5 kDa, we ignore the
mass difference between a fibrinogen molecule and a fibrin monomer. Assuming the
mesh size to be much larger than the radius R of the fibrin fibers, i.e., ζ/R � 1, the
total volume of fibrin fiber can be expressed approximately as Vfiber = LπR2, with
L the total axial length of fibrin fiber in the volume. We then obtain

cV = ρLπR2, (3.56)

where V = ζ3N and L = 3ζN , since the unit cell of a cubic lattice contains three
edges of a cube. We consider equation (3.56) as an implicit function for ζ as a
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Figure 3.9: In the cubic lattice model a fibrin network of volume V is modelled as a cubic
lattice of fibrin fibers, where the edge length equals the mesh size ζ. The fibrin fibers have
a radius R and mass density ρ.

function of c, so a given overall fibrinogen mass density c results in a mesh size ζ

after polymerization of the fibrinogen.

Scaling laws If the fibrinogen mass per unit of axial length πR2ρ depends on the
fibrinogen concentration as πR2ρ ∝ cn, we obtain ζ ∝ c(n−1)/2. And because the
permeability is expected to scale as k ∝ ζ2, we find k ∝ cn−1. As reported in
the manuscript, we find from experiments on small-pore fibrin gels that k ∝ cm,
with m = −2.2(0.5) and the uncertainty in brackets. This result implies that the
fibrinogen concentration per unit of axial fiber length πR2ρ decreases with the over-
all fibrinogen concentration c. suggesting the polymerization kinetics to depend on
c.

As the fibrin fibers are formed out of protofibrils, which in turn consist of fib-
rin monomers, one can express the mass of fibrinogen in the fibrin fibers as
Nmproto, with N the total number of protofibrils and mproto the mass per protofib-
ril. The protofibrils are formed by both end-to-end and lateral aggregation of fibrin
monomers, see Figure 1.4. Therefore, the total number of protofibrils in the fibrin
fibers can be calculated as N = NcrossL/lproto, with Ncross the number of protofib-
rils per fibrin fiber cross-section, L the total axial length of fibrin fiber and lproto the
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Table 3.1: Experimental conditions and fit results for compression experiments on large-
pore fibrin gels at small strain. From the left to the right, the columns provide: the number
tag given to each experiment, the concentration of fibrinogen c, the initial radius a of the
gel before compression, the strain rate at which the gel is compressed ε̇, the amount of
engineering strain put on the gel after compression εe, the fitted permeability k, the fitted
longitudinal modulus M , the measured shear modulus just before compression G0 from
small-strain rheometry, the calculated Poisson’s ratio ν = (M − 2G0)/(2M − 2G0),
the exponential relaxation time t⊥/12 with t⊥ = h2η/kG the pressurizing time, and the
validity condition M/G0S

2. All gels had an initial height of h = 1mm and the estimation
uncertainty is in brackets.

# c(mg/mL) a (mm) ε̇ (10−3/s) εe (%) k
(
10−1 µm2

)
M (kPa) G0 (kPa) ν (-) t⊥/12 (s) M/GS2

1 2 20 1.0 10 1.26(0.03) 1.45(0.12) 0.139 0.447(0.005) 3.3 0.026
2 2 20 1.0 10 4.97(0.19) 0.43(0.05) 0.142 0.257(0.039) 0.8 0.008
3 2 20 1.0 10 2.79(0.11) 0.91(0.09) 0.212 0.347(0.019) 1.0 0.011
4 2 20 1.0 10 1.73(0.03) 1.48(0.07) 0.087 0.469(0.002) 3.8 0.042
5 2 10 1.0 10 1.54(0.02) 0.15(0.01) 0.227 1.950(0.235) 1.6 0.007
6 2 20 1.0 5 5.00(0.33) 0.99(0.16) 0.119 0.431(0.013) 1.0 0.021
7 2 20 1.0 5 2.29(0.11) 1.28(0.26) 0.213 0.401(0.024) 1.2 0.015
8 4 20 1.0 10 2.17(0.08) 1.14(0.10) 0.444 0.181(0.048) 0.6 0.006
9 4 20 1.0 10 0.63(0.02) 3.43(0.34) 1.400 0.156(0.058) 0.7 0.006
10 2 20 5.0 10 1.20(0.07) 2.04(1.40) 0.162 0.457(0.032) 3.0 0.032
11 2 20 5.0 10 1.05(0.15) 0(4.10) 0.139 - 3.9 -
12 2 10 0.5 5 1.98(0.10) 0.30(0.04) 0.202 -0.562(0.418) 1.4 0.015
13 2 10 0.5 5 1.97(0.10) 0.36(0.04) 0.194 -0.071(0.133) 1.5 0.019
14 2 20 0.1 10 2.16(0.10) 0.27(0.01) 0.158 -0.184(0.075) 1.7 0.004
15 2 20 0.1 10 1.83(0.07) 0.30(0.01) 0.202 -0.537(0.132) 1.5 0.004

cylindrical fibrin fibers with radius R and fibrin monomer mass density ρ, see Figure
3.9. The total mass m of fibrinogen in the volume is m = cV . By mass conservation,
the fibrinogen mass must be equal to the mass of fibrin monomers in the fibrin fibers,
implying m = ρVfiber with Vfiber the total volume of fibrin fibers, where we assume
all fibrin monomers to be polymerized. As the mass of a fibrinogen molecule is about
340 kDa and the mass of the cleaved fibrinopeptides is about 1.5 kDa, we ignore the
mass difference between a fibrinogen molecule and a fibrin monomer. Assuming the
mesh size to be much larger than the radius R of the fibrin fibers, i.e., ζ/R � 1, the
total volume of fibrin fiber can be expressed approximately as Vfiber = LπR2, with
L the total axial length of fibrin fiber in the volume. We then obtain

cV = ρLπR2, (3.56)

where V = ζ3N and L = 3ζN , since the unit cell of a cubic lattice contains three
edges of a cube. We consider equation (3.56) as an implicit function for ζ as a
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Figure 3.9: In the cubic lattice model a fibrin network of volume V is modelled as a cubic
lattice of fibrin fibers, where the edge length equals the mesh size ζ. The fibrin fibers have
a radius R and mass density ρ.

function of c, so a given overall fibrinogen mass density c results in a mesh size ζ

after polymerization of the fibrinogen.

Scaling laws If the fibrinogen mass per unit of axial length πR2ρ depends on the
fibrinogen concentration as πR2ρ ∝ cn, we obtain ζ ∝ c(n−1)/2. And because the
permeability is expected to scale as k ∝ ζ2, we find k ∝ cn−1. As reported in
the manuscript, we find from experiments on small-pore fibrin gels that k ∝ cm,
with m = −2.2(0.5) and the uncertainty in brackets. This result implies that the
fibrinogen concentration per unit of axial fiber length πR2ρ decreases with the over-
all fibrinogen concentration c. suggesting the polymerization kinetics to depend on
c.

As the fibrin fibers are formed out of protofibrils, which in turn consist of fib-
rin monomers, one can express the mass of fibrinogen in the fibrin fibers as
Nmproto, with N the total number of protofibrils and mproto the mass per protofib-
ril. The protofibrils are formed by both end-to-end and lateral aggregation of fibrin
monomers, see Figure 1.4. Therefore, the total number of protofibrils in the fibrin
fibers can be calculated as N = NcrossL/lproto, with Ncross the number of protofib-
rils per fibrin fiber cross-section, L the total axial length of fibrin fiber and lproto the
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length of a protofibril. The mass balance then becomes

cV =
LNcrossmproto

lproto
. (3.57)

As the mass and length of a protofibril are both expected to be proportional to the
number of fibrinogen monomers in the protofibril, we expect the ratio mproto/lproto
to be independent of the fibrinogen concentration c. Assuming the number of
protofibrils per fiber cross-section to scale with fibrinogen concentration Ncross ∝ cd,
we find that k ∝ ζ2 ∝ cd−1. Our finding that k ∝ cm, with m = −2.2(0.5), thus
implies that the number of protofibrils per fibrin fiber cross-section decreases with
increasing fibrinogen concentration.

Large compression When a fibrin gel is under large compression, the vertically
oriented fibers in the cubic lattic model will buckle. Assuming approximate homoge-
neous deformation, the vertical height of the buckled fibers is ζ(1− ε), where ε is the
engineering strain. As fluid flows out of the gel radially, and since the permeability k

is proportional to the surface area of the pores, we expect the permeability to scale as
k ∝ ζ2 (1− ε), giving the compression dependent permeability as k(ε) = k0(1− ε)

with k0 the permeability at zero strain. This strain-dependent permeability we use in
equation (10) of the manuscript.

3.6.3 Fit results

In section 3.6.1 the normal force exerted by a bonded disk-like gel under ramp com-
pression was obtained from an approximate closed-form solution of the poroelastic
equations of motion. Here, we analyze the compression experiments we performed
on fibrin gels. By varying the experimental conditions, i.e., the amount of strain εe,
the fibrinogen concentration c, the aspect ratio S = a/h with the initial height h
and radius a of the gel, and the strain rate ε̇, the microscopic response of the fibrin
network will be reflected in the fitted elastic constants and the permeability. We use
the Mathematica function NonlinearModelFit for fitting.

We conducted experiments at body temperature on fibrin gels having either a large-
pore fibrin network or a small-pore network. The large-pore gels have a typical mesh
size ζ of about 1 micrometer [172, 173]. The small-pore gels, on the other hand,
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have a mesh size of about a hundred nanometers. For the large-pore fibrin gels, com-
pression experiments with both small and large strain have been conducted. In the
small strain experiments the engineering strain, i.e., the ratio of the change in gap size
over the gap size at polymerization, was maximally 10%. In the large strain exper-
iments the fibrin gels were compressed up to 80% engineering strain in subsequent
steps of 10% compression. For small-pore fibrin gels only small strain compression
experiments up to 10% compression were conducted.

Compression of large-pore fibrin gels

We conducted ramp compression experiments on large-pore fibrin gels under vari-
able conditions in which we measured the normal force F exerted by the gel on the
rheometer as a function of time t. See Figure 3.10 for an example of a compres-
sion experiment with relatively high strain rate and Figure 3.11 for a compression
experiment with relatively low strain rate. These experiments were conducted with
an initial gap size of h = 1mm, and the standard conditions (SC) were chosen to be
εe = 0.1, ε̇ = 10−3 /s, c = 2mg/mL and S = 20. By varying one of these condi-
tions relative to the experiments at standard conditions, the influence of the different
conditions could be studied. After compression, the gel relaxes while the engineering
strain is held constant. During and after compression the normal force exerted by the
gel on the rheometer is measured. Moreover, just before the start of compression, the
shear modulus G0 of the gel is measured from small oscillation rheometry.

Comparing equation (3.29) to the measured normal force, we fit the permeability k

and the longitudinal modulus M = K+4G0/3. Table 3.1 gives the results for the fit-
ted material parameters, the experimental conditions, and the exponential relaxation
time. Moreover, we calculated M/G0S

2 which, as shown in section 3.6.1, should be
much smaller than unity to validly apply the approximate solution. Indeed, this is the
case for all large-pore fibrin compression experiments.

From the measured shear modulus G0 and the fitted longitudinal modulus M follows
the Poisson’s ratio of the gel network ν = (M − 2G0)/(2M − 2G0), where we
assumed the ratio of the standard deviation in the measurement of the shear modulus
to its measured value to be 1%. The uncertainties in G0 and M are assumed to be
independent because M was fitted against normal force measurements, while G0 was
inferred from a torsion measurement.
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length of a protofibril. The mass balance then becomes

cV =
LNcrossmproto

lproto
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to be independent of the fibrinogen concentration c. Assuming the number of
protofibrils per fiber cross-section to scale with fibrinogen concentration Ncross ∝ cd,
we find that k ∝ ζ2 ∝ cd−1. Our finding that k ∝ cm, with m = −2.2(0.5), thus
implies that the number of protofibrils per fibrin fiber cross-section decreases with
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Large compression When a fibrin gel is under large compression, the vertically
oriented fibers in the cubic lattic model will buckle. Assuming approximate homoge-
neous deformation, the vertical height of the buckled fibers is ζ(1− ε), where ε is the
engineering strain. As fluid flows out of the gel radially, and since the permeability k

is proportional to the surface area of the pores, we expect the permeability to scale as
k ∝ ζ2 (1− ε), giving the compression dependent permeability as k(ε) = k0(1− ε)

with k0 the permeability at zero strain. This strain-dependent permeability we use in
equation (10) of the manuscript.

3.6.3 Fit results

In section 3.6.1 the normal force exerted by a bonded disk-like gel under ramp com-
pression was obtained from an approximate closed-form solution of the poroelastic
equations of motion. Here, we analyze the compression experiments we performed
on fibrin gels. By varying the experimental conditions, i.e., the amount of strain εe,
the fibrinogen concentration c, the aspect ratio S = a/h with the initial height h
and radius a of the gel, and the strain rate ε̇, the microscopic response of the fibrin
network will be reflected in the fitted elastic constants and the permeability. We use
the Mathematica function NonlinearModelFit for fitting.

We conducted experiments at body temperature on fibrin gels having either a large-
pore fibrin network or a small-pore network. The large-pore gels have a typical mesh
size ζ of about 1 micrometer [172, 173]. The small-pore gels, on the other hand,
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have a mesh size of about a hundred nanometers. For the large-pore fibrin gels, com-
pression experiments with both small and large strain have been conducted. In the
small strain experiments the engineering strain, i.e., the ratio of the change in gap size
over the gap size at polymerization, was maximally 10%. In the large strain exper-
iments the fibrin gels were compressed up to 80% engineering strain in subsequent
steps of 10% compression. For small-pore fibrin gels only small strain compression
experiments up to 10% compression were conducted.

Compression of large-pore fibrin gels

We conducted ramp compression experiments on large-pore fibrin gels under vari-
able conditions in which we measured the normal force F exerted by the gel on the
rheometer as a function of time t. See Figure 3.10 for an example of a compres-
sion experiment with relatively high strain rate and Figure 3.11 for a compression
experiment with relatively low strain rate. These experiments were conducted with
an initial gap size of h = 1mm, and the standard conditions (SC) were chosen to be
εe = 0.1, ε̇ = 10−3 /s, c = 2mg/mL and S = 20. By varying one of these condi-
tions relative to the experiments at standard conditions, the influence of the different
conditions could be studied. After compression, the gel relaxes while the engineering
strain is held constant. During and after compression the normal force exerted by the
gel on the rheometer is measured. Moreover, just before the start of compression, the
shear modulus G0 of the gel is measured from small oscillation rheometry.

Comparing equation (3.29) to the measured normal force, we fit the permeability k

and the longitudinal modulus M = K+4G0/3. Table 3.1 gives the results for the fit-
ted material parameters, the experimental conditions, and the exponential relaxation
time. Moreover, we calculated M/G0S

2 which, as shown in section 3.6.1, should be
much smaller than unity to validly apply the approximate solution. Indeed, this is the
case for all large-pore fibrin compression experiments.

From the measured shear modulus G0 and the fitted longitudinal modulus M follows
the Poisson’s ratio of the gel network ν = (M − 2G0)/(2M − 2G0), where we
assumed the ratio of the standard deviation in the measurement of the shear modulus
to its measured value to be 1%. The uncertainties in G0 and M are assumed to be
independent because M was fitted against normal force measurements, while G0 was
inferred from a torsion measurement.
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Figure 3.10: The measured normal force F (blue circles) of a large-pore fibrin gel in
response to fast ramp compression, see experiment 10 in Table 3.1 for the experimental
conditions. The pressurizing time for the fluid pressure to build up to its maximal value is
t⊥ = 36 s. The blue curve is a fit of equation (3.29) to the measured normal force during
compression, giving the permeability of the fibrin network k and its longitudinal modulus
M as listed in Table 3.1.

Next, we consider the influence of the different experimental conditions on the results
for the permeability k and the Poisson’s ratio ν.

Compressive strain The standard amount of engineering strain after compression
of the gel is 10%. To probe the influence of strain, two compression experiments
have been conducted with 5% strain instead, experiment 6 and 7. The standard con-
dition (SC) experiments, experiment 1 t/m 4, give an average of the best estimates
for the permeability of k̄SC = 0.27(0.17)µm2, with the standard deviation of the
four best estimates in brackets. The uncertainty in the best estimate for each of the
four individual experiments is smaller than 5%, see Table 3.1. Moreover, the aver-
age of the Poisson’s ratio best estimates of the SC experiments is ν̄SC = 0.38(0.10),
with individual uncertainty all less than 15%. We have four experiments at standard
conditions, which is the highest number of repeated experiments within a single set
of conditions in our data set. Since the individual uncertainties are much smaller
than the standard deviation of the best estimates, we assume the standard deviation
of the permeabilities and the Poisson’s ratios to reflect the sample-to-sample vari-
ation among the different fibrin gels [162]. The variation probably arises from the
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Figure 3.11: The measured normal force F (blue circles) of a large-pore fibrin gel in
response to slow ramp compression, see experiment 14 in Table 3.1 for the experimental
conditions. The pressurizing time for the fluid pressure to build up to its maximal value is
t⊥ = 20 s. The blue curve is a fit of equation (3.29) to the measured normal force during
compression, giving the permeability of the fibrin network k and its longitudinal modulus
M as listed in Table 3.1.

nature of the polymerization process and the origin and purification process of fib-
rinogen.

The permeability estimates of the two 5% strain experiments are k6 =

0.50(0.03)µm2 and k7 = 0.23(0.01)µm2, with the uncertainty of the best esti-
mate in brackets. The first of these two estimates is more than one standard deviation
from the average of the standard condition experiments. Therefore, the 5% strain
permeabilities measurements suggest that possibly the permeability for 5% strain is
significantly different from a gel which is 10% compressed. The best estimates of
the Poisson’s ratio of the small strain experiments, however, are ν6 = 0.43(0.01)

and ν7 = 0.40(0.02), which both lie within one standard deviation of the standard
condition experiments. Therefore, the 5% Poisson’s ratios suggest constancy of the
Poisson’s ratio in the range of 5-10% strain. Due to the small number of experi-
ments, no conclusions can be drawn with respect to the influence of the magnitude of
compression on k and ν.
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Figure 3.10: The measured normal force F (blue circles) of a large-pore fibrin gel in
response to fast ramp compression, see experiment 10 in Table 3.1 for the experimental
conditions. The pressurizing time for the fluid pressure to build up to its maximal value is
t⊥ = 36 s. The blue curve is a fit of equation (3.29) to the measured normal force during
compression, giving the permeability of the fibrin network k and its longitudinal modulus
M as listed in Table 3.1.

Next, we consider the influence of the different experimental conditions on the results
for the permeability k and the Poisson’s ratio ν.

Compressive strain The standard amount of engineering strain after compression
of the gel is 10%. To probe the influence of strain, two compression experiments
have been conducted with 5% strain instead, experiment 6 and 7. The standard con-
dition (SC) experiments, experiment 1 t/m 4, give an average of the best estimates
for the permeability of k̄SC = 0.27(0.17)µm2, with the standard deviation of the
four best estimates in brackets. The uncertainty in the best estimate for each of the
four individual experiments is smaller than 5%, see Table 3.1. Moreover, the aver-
age of the Poisson’s ratio best estimates of the SC experiments is ν̄SC = 0.38(0.10),
with individual uncertainty all less than 15%. We have four experiments at standard
conditions, which is the highest number of repeated experiments within a single set
of conditions in our data set. Since the individual uncertainties are much smaller
than the standard deviation of the best estimates, we assume the standard deviation
of the permeabilities and the Poisson’s ratios to reflect the sample-to-sample vari-
ation among the different fibrin gels [162]. The variation probably arises from the
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Figure 3.11: The measured normal force F (blue circles) of a large-pore fibrin gel in
response to slow ramp compression, see experiment 14 in Table 3.1 for the experimental
conditions. The pressurizing time for the fluid pressure to build up to its maximal value is
t⊥ = 20 s. The blue curve is a fit of equation (3.29) to the measured normal force during
compression, giving the permeability of the fibrin network k and its longitudinal modulus
M as listed in Table 3.1.

nature of the polymerization process and the origin and purification process of fib-
rinogen.

The permeability estimates of the two 5% strain experiments are k6 =

0.50(0.03)µm2 and k7 = 0.23(0.01)µm2, with the uncertainty of the best esti-
mate in brackets. The first of these two estimates is more than one standard deviation
from the average of the standard condition experiments. Therefore, the 5% strain
permeabilities measurements suggest that possibly the permeability for 5% strain is
significantly different from a gel which is 10% compressed. The best estimates of
the Poisson’s ratio of the small strain experiments, however, are ν6 = 0.43(0.01)

and ν7 = 0.40(0.02), which both lie within one standard deviation of the standard
condition experiments. Therefore, the 5% Poisson’s ratios suggest constancy of the
Poisson’s ratio in the range of 5-10% strain. Due to the small number of experi-
ments, no conclusions can be drawn with respect to the influence of the magnitude of
compression on k and ν.
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Concentration The standard condition (SC) in the compression experiments takes
a fibrinogen solution with mass concentration c = 2mg/mL, see experiment 1 t/m
4. Two experiments were conducted with c = 4mg/mL, experiment 8 and 9, to ob-
serve the influence of the concentration of fibrinogen. We expect a higher fibrinogen
concentration c to give rise to a smaller mesh size ζ and thus a lower permeability
k. Assuming the mass density per unit length of fibrin fiber to be independent of
the fibrinogen concentration c, the cubic lattice model gives k ∝ c−1, see section
3.6.2.

With the scaling relation between the permeability and the mass concentration of
the fibrin network, we turn to the fit results. Taking the average of the best es-
timates of the fitted permeability of the standard condition experiments, we find
k̄SC = 0.27(0.17)µm2, where in brackets is the standard deviation of the estimates,
which we assume to measure the sample-to-sample variability of the permeability
of different fibrin gels. The best estimates of the fitted permeability of the two 4
mg/mL gels are k8 = 0.217(0.008)µm2 and k9 = 0.063(0.002)µm2, with the
uncertainty in brackets. Given the sample-to-sample variation of the permeability,
one of the fitted permeabilities of the 4 mg/mL experiments does not lie within one
standard deviation, suggesting that possibly the permeabilities of 4 mg/mL experi-
ments differs significantly from the standard condition experiments. Given the scal-
ing relation derived above and the permeability estimation from the standard condi-
tion experiments, we would expect the permeabilities of the 4 mg/mL gels to equal
k̄2/2 = 0.13(0.08)µm2, with the sample-to-sample variation in brackets. The av-
erage of the two 4 mg/mL experiments is k̄4 = 0.14µm2, therefore pointing to the
validity of the scaling relation.

Next, the fitted Poisson’s ratio from the standard condition experiments is ν̄SC =

0.38(0.10). The best estimates for the 4 mg/mL gels are ν8 = 0.18(0.05) and ν9 =

0.16(0.06), suggesting a significant difference in the Poisson’s ratio. Due to the small
number of experiments, however, no conclusions can be drawn on the influence of
concentration on the permeability k and the Poisson’s ratio ν.

Geometry To observe the influence of geometry, experiment 5 has been conducted,
see Table 3.1, where the aspect ratio of the gel was S = a/h = 10 instead of S = 20

in the standard condition experiments. The fitted permeability of experiment 5 is
k5 = 0.154(0.002) µm2, whereas the standard condition experiments give an av-
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Figure 3.12: The measured normal force F (blue circles) of a large-pore fibrin gel in
response to eight consecutive ramp compression steps of 10% compressive strain each,
see experiment 2 in Table 3.2 for the experimental conditions. The inset displays the
maximal normal force during each compression step at the corresponding compressive
strain (orange circles), which has been obtained by averaging the last 5% of data points of
the compression step. The orange curve is a fit of equation (10) of the manuscript to the
maximal normal force, giving the permeability of the fibrin network k0 in the stress-free
initial state and the proportionality constant of the Toll model b, as listed in Table 3.2.

erage permeability of k̄SC = 0.27(0.17)µm2, with the standard deviation of the
best estimates of the permeability of the standard condition experiments in brack-
ets, which is presumed to measure the sample-to-sample variation in permeability.
Therefore, the permeability of experiment 5 does not seem to be significantly differ-
ent from the permeability with S = 20. The fitted Poisson’s ratio of experiment 5
is ν10 = 2.2(0.3), because the longitudinal modulus M is fitted to be 160 Pa while
the shear modulus G is 227 Pa, suggesting spontaneous contraction of the fibrin net-
work. The reason for this awkward result is probably that the normal force increase
during the pressurized phase is approximately 0.005 N, while the uncertainty in the
rheometer measurements is about 0.01 N. Experiment 12 and 13 have also been con-
ducted with an aspect ratio of S = 10, however, also having increases of the normal
force during the pressurized phase of less than 0.01 N, but they do give physically
reasonable fit values for the Poisson’s ratio, ν = −0.56(0.42) and ν = −0.07(0.13),
albeit with large uncertainties. Therefore, the anomalous value of the Poisson’s ratio
drawn from experiment 5 does not allow for a simple explanation.
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Concentration The standard condition (SC) in the compression experiments takes
a fibrinogen solution with mass concentration c = 2mg/mL, see experiment 1 t/m
4. Two experiments were conducted with c = 4mg/mL, experiment 8 and 9, to ob-
serve the influence of the concentration of fibrinogen. We expect a higher fibrinogen
concentration c to give rise to a smaller mesh size ζ and thus a lower permeability
k. Assuming the mass density per unit length of fibrin fiber to be independent of
the fibrinogen concentration c, the cubic lattice model gives k ∝ c−1, see section
3.6.2.

With the scaling relation between the permeability and the mass concentration of
the fibrin network, we turn to the fit results. Taking the average of the best es-
timates of the fitted permeability of the standard condition experiments, we find
k̄SC = 0.27(0.17)µm2, where in brackets is the standard deviation of the estimates,
which we assume to measure the sample-to-sample variability of the permeability
of different fibrin gels. The best estimates of the fitted permeability of the two 4
mg/mL gels are k8 = 0.217(0.008)µm2 and k9 = 0.063(0.002)µm2, with the
uncertainty in brackets. Given the sample-to-sample variation of the permeability,
one of the fitted permeabilities of the 4 mg/mL experiments does not lie within one
standard deviation, suggesting that possibly the permeabilities of 4 mg/mL experi-
ments differs significantly from the standard condition experiments. Given the scal-
ing relation derived above and the permeability estimation from the standard condi-
tion experiments, we would expect the permeabilities of the 4 mg/mL gels to equal
k̄2/2 = 0.13(0.08)µm2, with the sample-to-sample variation in brackets. The av-
erage of the two 4 mg/mL experiments is k̄4 = 0.14µm2, therefore pointing to the
validity of the scaling relation.

Next, the fitted Poisson’s ratio from the standard condition experiments is ν̄SC =

0.38(0.10). The best estimates for the 4 mg/mL gels are ν8 = 0.18(0.05) and ν9 =

0.16(0.06), suggesting a significant difference in the Poisson’s ratio. Due to the small
number of experiments, however, no conclusions can be drawn on the influence of
concentration on the permeability k and the Poisson’s ratio ν.

Geometry To observe the influence of geometry, experiment 5 has been conducted,
see Table 3.1, where the aspect ratio of the gel was S = a/h = 10 instead of S = 20

in the standard condition experiments. The fitted permeability of experiment 5 is
k5 = 0.154(0.002) µm2, whereas the standard condition experiments give an av-
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Figure 3.12: The measured normal force F (blue circles) of a large-pore fibrin gel in
response to eight consecutive ramp compression steps of 10% compressive strain each,
see experiment 2 in Table 3.2 for the experimental conditions. The inset displays the
maximal normal force during each compression step at the corresponding compressive
strain (orange circles), which has been obtained by averaging the last 5% of data points of
the compression step. The orange curve is a fit of equation (10) of the manuscript to the
maximal normal force, giving the permeability of the fibrin network k0 in the stress-free
initial state and the proportionality constant of the Toll model b, as listed in Table 3.2.

erage permeability of k̄SC = 0.27(0.17)µm2, with the standard deviation of the
best estimates of the permeability of the standard condition experiments in brack-
ets, which is presumed to measure the sample-to-sample variation in permeability.
Therefore, the permeability of experiment 5 does not seem to be significantly differ-
ent from the permeability with S = 20. The fitted Poisson’s ratio of experiment 5
is ν10 = 2.2(0.3), because the longitudinal modulus M is fitted to be 160 Pa while
the shear modulus G is 227 Pa, suggesting spontaneous contraction of the fibrin net-
work. The reason for this awkward result is probably that the normal force increase
during the pressurized phase is approximately 0.005 N, while the uncertainty in the
rheometer measurements is about 0.01 N. Experiment 12 and 13 have also been con-
ducted with an aspect ratio of S = 10, however, also having increases of the normal
force during the pressurized phase of less than 0.01 N, but they do give physically
reasonable fit values for the Poisson’s ratio, ν = −0.56(0.42) and ν = −0.07(0.13),
albeit with large uncertainties. Therefore, the anomalous value of the Poisson’s ratio
drawn from experiment 5 does not allow for a simple explanation.
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Strain rate The standard strain rate is taken to be ε̇ ≡ v/h = 10−3/s, with
v = 1µm/s the velocity of the upper plate and h = 1mm the initial height of the
sample. To observe the influence of strain rate, we conducted two experiments at
ε̇ = 5 · 10−3/s, see Figure 3.10, and two at ε̇ = 0.1 · 10−3/s, see Figure 3.11.
The standard condition (SC) experiments, experiment 1 t/m 4, yield an average per-
meability k̄SC = 0.27(0.17)µm2, where the standard deviation due to sample-to-
sample variability is between brackets. The high strain rate experiments, experiment
10 and 11, yield k10 = 0.120(0.007)µm2 and k11 = 0.11(0.02)µm2, which both
fall within one standard deviation of the standard condition experiments. The low
strain rate experiments, experiment 14 and 15, yield k14 = 0.22(0.01)µm2 and
k15 = 0.183(0.007)µm2, both within the standard deviation of the standard con-
dition experiments. Strain rate therefore does not seem to significantly influence the
permeability of the fibrin network, as one would expect, because the permeability is
expected to depend primarily on the microscopic structure of the fibrin network, see
section 3.6.2.

The Poisson’s ratio of the SC experiments yields ν̄1 = 0.38(0.10), and the high speed
experiments, experiment 10 and 11, provide ν10 = 0.46(0.03) and ν11 = 1(14). Ex-
periment 11 clearly gives an unreliable value for the Poisson’s ratio. In this experi-
ment the normal force decreases significantly during the pressurized phase, causing
the fitted value of the longitudinal modulus to be fitted to zero, M = 0(4) kPa,
though the uncertainty indicates that M is in the order of kPa, similar to experiment
10. The Poisson’s ratio of experiment 10 falls within the variation of the SC exper-
iments. The slow compression experiments, however, yield ν14 = −0.18(0.07) and
ν15 = −0.54(0.13), clearly falling out of the sample-to-sample variation implied
by the SCEs, see section 3.1 of the manuscript for interpretation of the strain rate
dependence of the Poisson’s ratio.

Large compression of large-pore fibrin gels

Additional to the small strain experiments on large-pore fibrin gels, see section 3.6.3,
large strain compression experiments on large-pore fibrin gels have been conducted
to observe the fibrin fiber network response to large compressive strains. The stan-
dard experimental conditions were equal to that of the small strain experiments: the
fibrinogen concentration in the gels was taken to be c = 2mg/mL, the applied strain
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Table 3.2: Experimental conditions and fit results for the large compression experiments
(ε ≤ 80%) on large-pore fibrin. From the left to the right the columns provide: the tag
given to each experiment, the concentration of fibrinogen c, the strain rate at which the gel
is compressed ε̇, the fitted permeability k, and the fitted proportionality constant of the Toll
model [179] b. All gels have height h = 1mm and radius a = 20mm before compression,
and the estimation uncertainty is in brackets.

# c(g/L) ε̇ (10−3/s) k
(
10−1 µm2

)
b (-)

1 4 1.0 0.180(0.030) 2.6(6.4)
2 4 1.0 0.195(0.008) 12.0(1.4)
3 2 1.0 0.682(0.048) 3.9(5.7)
4 2 1.0 1.070(0.050) 22.0(2.4)
5 2 5.0 1.510(0.068) 25.0(8.6)
6 2 5.0 1.400(0.029) 76.0(4.2)
7 2 0.1 1.020(0.031) 3.4(0.2)
8 2 0.1 0.943(0.045) 3.0(0.3)

rate was ε̇ = 1 · 10−3/s, the initial gap size was h = 1mm and the initial radius of
the gel was a = 20mm. All gels were compressed up to 80% engineering strain in
a stepwise fashion, see Figure 3.12. Each step comprised 10% strain and after each
step the gel was allowed to relax, i.e., the measured normal force decreased after
compression to a constant value. Figure 3.12 shows that the different compression
steps have a similar normal force response, although the maximal normal force in-
creases with compression. Therefore, we assume that also under large compression
the gel enters the pressurized phase during compression.

In section 3.6.1, we assumed the gel network to be linear elastic, and to have a con-
stant permeability, both rather poor assumptions for a fibrin gel under large com-
pression. Therefore, as explained in section 2 of the manuscript, we assume a phe-
nomenological form of the normal force as a function of the compressive strain in the
pressurized phase, see equation (10) of the manuscript.

We assume the Young’s modulus of a single fibrin fiber to be in the order of MPa:
Ef = 1MPa [184]. The volume fraction of fibrin fiber before compression is
φ0 = fc/ρfibrinogen, with ρfibrinogen = 1.4 · 103 kg/m3 the mass density of pure
fibrinogen [173], f = 5.0 the volume which a fibrin fiber encompasses relative to the
volume of fibrinogen molecules in the fiber [185], and c the overall concentration of
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Strain rate The standard strain rate is taken to be ε̇ ≡ v/h = 10−3/s, with
v = 1µm/s the velocity of the upper plate and h = 1mm the initial height of the
sample. To observe the influence of strain rate, we conducted two experiments at
ε̇ = 5 · 10−3/s, see Figure 3.10, and two at ε̇ = 0.1 · 10−3/s, see Figure 3.11.
The standard condition (SC) experiments, experiment 1 t/m 4, yield an average per-
meability k̄SC = 0.27(0.17)µm2, where the standard deviation due to sample-to-
sample variability is between brackets. The high strain rate experiments, experiment
10 and 11, yield k10 = 0.120(0.007)µm2 and k11 = 0.11(0.02)µm2, which both
fall within one standard deviation of the standard condition experiments. The low
strain rate experiments, experiment 14 and 15, yield k14 = 0.22(0.01)µm2 and
k15 = 0.183(0.007)µm2, both within the standard deviation of the standard con-
dition experiments. Strain rate therefore does not seem to significantly influence the
permeability of the fibrin network, as one would expect, because the permeability is
expected to depend primarily on the microscopic structure of the fibrin network, see
section 3.6.2.

The Poisson’s ratio of the SC experiments yields ν̄1 = 0.38(0.10), and the high speed
experiments, experiment 10 and 11, provide ν10 = 0.46(0.03) and ν11 = 1(14). Ex-
periment 11 clearly gives an unreliable value for the Poisson’s ratio. In this experi-
ment the normal force decreases significantly during the pressurized phase, causing
the fitted value of the longitudinal modulus to be fitted to zero, M = 0(4) kPa,
though the uncertainty indicates that M is in the order of kPa, similar to experiment
10. The Poisson’s ratio of experiment 10 falls within the variation of the SC exper-
iments. The slow compression experiments, however, yield ν14 = −0.18(0.07) and
ν15 = −0.54(0.13), clearly falling out of the sample-to-sample variation implied
by the SCEs, see section 3.1 of the manuscript for interpretation of the strain rate
dependence of the Poisson’s ratio.

Large compression of large-pore fibrin gels

Additional to the small strain experiments on large-pore fibrin gels, see section 3.6.3,
large strain compression experiments on large-pore fibrin gels have been conducted
to observe the fibrin fiber network response to large compressive strains. The stan-
dard experimental conditions were equal to that of the small strain experiments: the
fibrinogen concentration in the gels was taken to be c = 2mg/mL, the applied strain
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Table 3.2: Experimental conditions and fit results for the large compression experiments
(ε ≤ 80%) on large-pore fibrin. From the left to the right the columns provide: the tag
given to each experiment, the concentration of fibrinogen c, the strain rate at which the gel
is compressed ε̇, the fitted permeability k, and the fitted proportionality constant of the Toll
model [179] b. All gels have height h = 1mm and radius a = 20mm before compression,
and the estimation uncertainty is in brackets.

# c(g/L) ε̇ (10−3/s) k
(
10−1 µm2

)
b (-)

1 4 1.0 0.180(0.030) 2.6(6.4)
2 4 1.0 0.195(0.008) 12.0(1.4)
3 2 1.0 0.682(0.048) 3.9(5.7)
4 2 1.0 1.070(0.050) 22.0(2.4)
5 2 5.0 1.510(0.068) 25.0(8.6)
6 2 5.0 1.400(0.029) 76.0(4.2)
7 2 0.1 1.020(0.031) 3.4(0.2)
8 2 0.1 0.943(0.045) 3.0(0.3)

rate was ε̇ = 1 · 10−3/s, the initial gap size was h = 1mm and the initial radius of
the gel was a = 20mm. All gels were compressed up to 80% engineering strain in
a stepwise fashion, see Figure 3.12. Each step comprised 10% strain and after each
step the gel was allowed to relax, i.e., the measured normal force decreased after
compression to a constant value. Figure 3.12 shows that the different compression
steps have a similar normal force response, although the maximal normal force in-
creases with compression. Therefore, we assume that also under large compression
the gel enters the pressurized phase during compression.

In section 3.6.1, we assumed the gel network to be linear elastic, and to have a con-
stant permeability, both rather poor assumptions for a fibrin gel under large com-
pression. Therefore, as explained in section 2 of the manuscript, we assume a phe-
nomenological form of the normal force as a function of the compressive strain in the
pressurized phase, see equation (10) of the manuscript.

We assume the Young’s modulus of a single fibrin fiber to be in the order of MPa:
Ef = 1MPa [184]. The volume fraction of fibrin fiber before compression is
φ0 = fc/ρfibrinogen, with ρfibrinogen = 1.4 · 103 kg/m3 the mass density of pure
fibrinogen [173], f = 5.0 the volume which a fibrin fiber encompasses relative to the
volume of fibrinogen molecules in the fiber [185], and c the overall concentration of
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Table 3.3: Experimental conditions and fit results for compression experiments on small-
pore fibrin gels. From left to right, the columns provide: the tag given to each experiment,
the concentration of fibrinogen c, the initial height h and radius a of the gel before compres-
sion, the strain rate at which the gel is compressed ε̇, the amount of engineering strain put
on the gel after compression εe, the fitted permeability k, the fitted longitudinal modulus
M , the measured shear modulus just before compression G0 from small-strain rheometry,
the augmented shear modulus during compression Gc, and the exponential relaxation time
t⊥/12 with t⊥ the pressurizing time. The strain rate is ε̇ = 10−3 /s in all experiments, and
the uncertainty is given in brackets.

# c(g/L) h (mm) a (mm) εe (%) k
(
10−3 µm2

)
M (kPa) G0 (kPa) Gc (kPa) tc (s) t⊥/12 (s)

18 2 0.5 20 10 6.64(0.24) 6.1(2.7) 0.04 0.19(0.02) 6.4(0.6) 11
19 2 1.0 20 10 3.86(0.15) 0(4.6) 0.05 0.59(0.02) 7.9(0.3) 25
20 2 1.0 20 10 4.75(0.20) 0(4.1) 0.04 0.50(0.02) 7.9(0.3) 24
21 2 1.0 20 5 3.37(0.11) - 0.05 0.49(0.01) 6.2(0.3) 35
22 2 1.0 20 5 3.40(0.13) - 0.04 0.50(0.02) 6.7(0.3) 34
23 4 1.0 20 5 0.73(0.05) - 0.24 1.03(0.02) 5.8(0.3) 77
24 4 1.0 20 5 0.73(0.06) - 0.19 0.90(0.02) 9.3(0.2) 88
25 6 1.0 20 5 0.22(0.04) - 0.47 1.22(0.03) 5.6(0.3) 211
26 6 1.0 20 5 0.30(0.04) - 0.49 1.39(0.04) 5.9(0.3) 137
27 6 1.0 20 5 0.48(0.05) - 0.36 1.08(0.03) 5.7(0.3) 110
28 6 1.0 10 5 0.80(0.07) - 0.36 1.17(0.05) 10.8(0.4) 62
29 6 1.0 10 5 0.43(0.04) - 0.40 1.99(0.07) 9.9(0.4) 68
30 6 1.0 10 5 0.74(0.06) - 0.49 1.36(0.05) 9.9(0.4) 57
31 8 1.0 20 5 0.22(0.03) - 0.65 1.69(0.04) 7.2(0.3) 152
32 8 1.0 20 5 0.16(0.04) - 0.70 1.24(0.03) 9.8(0.4) 295
33 10 1.0 20 10 0.17(0.05) - 0.97 1.32(0.05) 14.4(1.0) 264

fibrinogen in the gel. As the fibrin fiber network sticks to the plates, one can approx-
imate the average volume fraction as φ = φ0/ (1− ε), where we ignore the bulging
of the gel since S = a/h � 1.

To fit equation (10) of the manuscript to the measured normal force in the pressurized
phase, in principle one needs to know when the pressurized phase sets in. This is
unknown outside of the linear regime.

As the exponential relaxation time in the first compression step is in the order of sec-
onds, however, see Table 3.1, we assume that at the end of each compression step,
with te = 20100 s, the gel has entered the pressurized phase, and we fit equation (10)
of the manuscript to the maximal normal forces. Due to the uncertainty in the mea-
sured normal force, we take the last five percent of data points of a given compression
step and average both the normal force and the strain of the different data points, to
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obtain a single data point per compression step, see the inset of Figure 3.12.

Two of the large compression experiments were performed at standard conditions,
two at high strain rate ε̇ = 5 ·10−3 /s, two at low strain rate ε̇ = 0.1 ·10−3 /s, and two
with a doubled concentration of fibrinogen c = 4mg/mL, see Table 3.2. Comparing
experiment 1 and 2 to experiment 3 and 4, the fitted prefactors b do not appear to be
influenced by the fibrinogen concentration c. This result confirms the assumed form
of the stress response of the fibrin fiber network as that of a randomly structured
fiber network in the Toll model [179], where the concentration of fibrinogen is taken
into account by the volume fraction of fibrin fibers φ. Comparison of experiment
3-8, where the influence of strain rate is probed, suggests a monotonous increase of
b with the strain rate, see Figure 4 of the manuscript. This increase is analogous
with the findings described in section 3.6.3, which showed that for higher strain rate
the gel responds more like a volume-conserving solid. The increase in strain rate
suggests that for the strain rate going to zero the proportionality constant b of the fiber
network response could be of order 1 or less. The dependence of the normal force
to strain rate in large compression experiments shows that the strain rate dependence
of the mechanical response of the fibrin fiber network holds both for small and large
compressive strain.

Next, as noted in section 3.6.3, we expect the permeability to scale as k ∝ c−1, and
we do not expect it to depend on the strain rate, which determines the fluid velocity
through the fiber network, as the permeability is supposed to be determined by the
architecture of the network. The network architecture would depend on the amount
of compressive strain, but not on the strain rate. Therefore, we expect the fitted
permeability at zero compression k0 to be independent of the strain rate, although
we do expect sample-to-sample variation, see section 3.6.3. Experiment 3-8 provide
permeabilities which indeed fall within approximately one standard deviation of the
permeability of experiment 1-4 of the small strain experiments under standard con-
ditions, see Table 3.1 and 3.2. All fitted permeabilities are at the lower end, however,
which seems somewhat unexpected. Moreover, given the scaling relation k ∝ c−1,
the permeability of experiment 1 and 2 with c = 4mg/mL would be expected to
be approximately half of that of experiment 3-8. This is not confirmed by the fit-
ted values, however. Due to the low number of experiments no conclusions can be
drawn.
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Table 3.3: Experimental conditions and fit results for compression experiments on small-
pore fibrin gels. From left to right, the columns provide: the tag given to each experiment,
the concentration of fibrinogen c, the initial height h and radius a of the gel before compres-
sion, the strain rate at which the gel is compressed ε̇, the amount of engineering strain put
on the gel after compression εe, the fitted permeability k, the fitted longitudinal modulus
M , the measured shear modulus just before compression G0 from small-strain rheometry,
the augmented shear modulus during compression Gc, and the exponential relaxation time
t⊥/12 with t⊥ the pressurizing time. The strain rate is ε̇ = 10−3 /s in all experiments, and
the uncertainty is given in brackets.

# c(g/L) h (mm) a (mm) εe (%) k
(
10−3 µm2

)
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fibrinogen in the gel. As the fibrin fiber network sticks to the plates, one can approx-
imate the average volume fraction as φ = φ0/ (1− ε), where we ignore the bulging
of the gel since S = a/h � 1.

To fit equation (10) of the manuscript to the measured normal force in the pressurized
phase, in principle one needs to know when the pressurized phase sets in. This is
unknown outside of the linear regime.

As the exponential relaxation time in the first compression step is in the order of sec-
onds, however, see Table 3.1, we assume that at the end of each compression step,
with te = 20100 s, the gel has entered the pressurized phase, and we fit equation (10)
of the manuscript to the maximal normal forces. Due to the uncertainty in the mea-
sured normal force, we take the last five percent of data points of a given compression
step and average both the normal force and the strain of the different data points, to
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obtain a single data point per compression step, see the inset of Figure 3.12.

Two of the large compression experiments were performed at standard conditions,
two at high strain rate ε̇ = 5 ·10−3 /s, two at low strain rate ε̇ = 0.1 ·10−3 /s, and two
with a doubled concentration of fibrinogen c = 4mg/mL, see Table 3.2. Comparing
experiment 1 and 2 to experiment 3 and 4, the fitted prefactors b do not appear to be
influenced by the fibrinogen concentration c. This result confirms the assumed form
of the stress response of the fibrin fiber network as that of a randomly structured
fiber network in the Toll model [179], where the concentration of fibrinogen is taken
into account by the volume fraction of fibrin fibers φ. Comparison of experiment
3-8, where the influence of strain rate is probed, suggests a monotonous increase of
b with the strain rate, see Figure 4 of the manuscript. This increase is analogous
with the findings described in section 3.6.3, which showed that for higher strain rate
the gel responds more like a volume-conserving solid. The increase in strain rate
suggests that for the strain rate going to zero the proportionality constant b of the fiber
network response could be of order 1 or less. The dependence of the normal force
to strain rate in large compression experiments shows that the strain rate dependence
of the mechanical response of the fibrin fiber network holds both for small and large
compressive strain.

Next, as noted in section 3.6.3, we expect the permeability to scale as k ∝ c−1, and
we do not expect it to depend on the strain rate, which determines the fluid velocity
through the fiber network, as the permeability is supposed to be determined by the
architecture of the network. The network architecture would depend on the amount
of compressive strain, but not on the strain rate. Therefore, we expect the fitted
permeability at zero compression k0 to be independent of the strain rate, although
we do expect sample-to-sample variation, see section 3.6.3. Experiment 3-8 provide
permeabilities which indeed fall within approximately one standard deviation of the
permeability of experiment 1-4 of the small strain experiments under standard con-
ditions, see Table 3.1 and 3.2. All fitted permeabilities are at the lower end, however,
which seems somewhat unexpected. Moreover, given the scaling relation k ∝ c−1,
the permeability of experiment 1 and 2 with c = 4mg/mL would be expected to
be approximately half of that of experiment 3-8. This is not confirmed by the fit-
ted values, however. Due to the low number of experiments no conclusions can be
drawn.
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Compression of small-pore fibrin gels

Next to the compression experiments on large-pore fibrin gels, see section 3.6.3, gels
of small-pore fibrin networks have been compressed while measuring the normal
force. The standard conditions were, similar to those in section 3.6.3 and 3.6.3, a
fibrinogen concentration of c = 2mg/mL, a strain rate of ε̇ = 10−3 /s, an initial gel
height of h = 1mm, and an initial radius of 20mm. We increased the concentration
of fibrinogen up to 10 mg/mL to observe its influence on the permeability. Moreover,
we varied the geometry of the gels to test the validity of the approximate solution
presented in section 3.6.1. Below, we first discuss the numerical details of the fitting
procedure. Afterwards, we consider the influence of fibrinogen concentration and ge-
ometry on the permeability and shear modulus of small-pore fibrin networks.

Strain stiffening As noted in section 2 of the manuscript, we accommodate for
strain stiffening by replacing Gt →

∫ t
0 G(t′) dt′ where G enters in equation (3.29),

with G(t) as given in equation (7) of the manuscript. For the numerical fit routine, we
use a sigmoidal function with very high power n = 33 to interpolate approximately
stepwise and analytically from G0 to the augmented shear modulus Gc. This gives
for the time-dependent shear modulus

G(t) = G0 + (Gc −G0)
(t/tc)

n

1 + (t/tc)
n . (3.58)

All small-pore fibrin experiments can be described well by fitting the permeability
k, the augmented shear modulus Gc, the onset time for strain stiffening tc, and, if
possible, the longitudinal modulus M , see Table 3.3.

In experiment 18, the fit routine was able to converge with a meaningful value of the
longitudinal modulus M = 6.2(2.7) kPa. The reason for convergence is that in this
experiment the initial height of the gel was h = 0.5mm, causing a relatively short
exponential relaxation time t⊥/12 = h2η/12kGc of 11 s. Therefore, during a sig-
nificant portion of compression the gel is to good approximation in the pressurized
phase, in which the increase in normal force is solely due to the longitudinal modulus,
see equation (3.29). For experiment 21-33, we put M = 0 by hand, because other-
wise the fit routine does not converge. This presumption is also justified, however, for
the following reasons. Arguably, the non-convergence is due to the negligible effect
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Figure 3.13: The measured normal force F (orange circles) of a small-pore fibrin gel
with high fibrinogen concentration, see experiment 31 in Table 3.3 for the experimental
conditions. The pressurizing time for the fluid pressure to build up to its maximal value is
t⊥ = 1824 s. The orange curve is a fit of equation (3.29) to the measured normal force
during compression, giving the permeability of the fibrin network k, the onset time of
strain stiffening tc and the augmented shear modulus Gc as listed in Table 3.3. Before the
onset time of strain stiffening, the normal force follows the time dependence expected for
a volume-conserving solid with the measured initial shear modulus G0. The inset shows
an extended process of gel relaxation after compression stops.

of the mechanical response, πa2Mεe with a the initial radius of the gel and εe the
amount of strain after compression, in the pressurized phase. Moreover, these exper-
iments all have h = 1mm, implying a longer pressurizing time than in experiment
18. In part of the experiments, the gel is compressed with only 5% engineering strain
ε = 0.05, reducing the mechanical response contribution even further. Finally, with
increasing concentration the relaxation time t⊥ seems to increase, thereby increasing
the time needed to enter the pressurized phase and decreasing the influence ofM , see
Figure 3.13 for a high fibrinogen concentration experiment with M = 0.

Concentration and geometry To observe the influence of the concentration of fib-
rinogen c we conducted experiments with c = 2, 4, 6, 8, 10mg/mL, see Table 3.3 for
the results and Figure 3.13 for a high fibrinogen gel. The permeability k decreases
with increasing fibrinogen concentration c, see Figure (7) of the manuscript.

Up to the increase of the shear modulus at tc, the fibrin gels deform in an approxi-
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Compression of small-pore fibrin gels

Next to the compression experiments on large-pore fibrin gels, see section 3.6.3, gels
of small-pore fibrin networks have been compressed while measuring the normal
force. The standard conditions were, similar to those in section 3.6.3 and 3.6.3, a
fibrinogen concentration of c = 2mg/mL, a strain rate of ε̇ = 10−3 /s, an initial gel
height of h = 1mm, and an initial radius of 20mm. We increased the concentration
of fibrinogen up to 10 mg/mL to observe its influence on the permeability. Moreover,
we varied the geometry of the gels to test the validity of the approximate solution
presented in section 3.6.1. Below, we first discuss the numerical details of the fitting
procedure. Afterwards, we consider the influence of fibrinogen concentration and ge-
ometry on the permeability and shear modulus of small-pore fibrin networks.

Strain stiffening As noted in section 2 of the manuscript, we accommodate for
strain stiffening by replacing Gt →

∫ t
0 G(t′) dt′ where G enters in equation (3.29),

with G(t) as given in equation (7) of the manuscript. For the numerical fit routine, we
use a sigmoidal function with very high power n = 33 to interpolate approximately
stepwise and analytically from G0 to the augmented shear modulus Gc. This gives
for the time-dependent shear modulus

G(t) = G0 + (Gc −G0)
(t/tc)

n

1 + (t/tc)
n . (3.58)

All small-pore fibrin experiments can be described well by fitting the permeability
k, the augmented shear modulus Gc, the onset time for strain stiffening tc, and, if
possible, the longitudinal modulus M , see Table 3.3.

In experiment 18, the fit routine was able to converge with a meaningful value of the
longitudinal modulus M = 6.2(2.7) kPa. The reason for convergence is that in this
experiment the initial height of the gel was h = 0.5mm, causing a relatively short
exponential relaxation time t⊥/12 = h2η/12kGc of 11 s. Therefore, during a sig-
nificant portion of compression the gel is to good approximation in the pressurized
phase, in which the increase in normal force is solely due to the longitudinal modulus,
see equation (3.29). For experiment 21-33, we put M = 0 by hand, because other-
wise the fit routine does not converge. This presumption is also justified, however, for
the following reasons. Arguably, the non-convergence is due to the negligible effect
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Figure 3.13: The measured normal force F (orange circles) of a small-pore fibrin gel
with high fibrinogen concentration, see experiment 31 in Table 3.3 for the experimental
conditions. The pressurizing time for the fluid pressure to build up to its maximal value is
t⊥ = 1824 s. The orange curve is a fit of equation (3.29) to the measured normal force
during compression, giving the permeability of the fibrin network k, the onset time of
strain stiffening tc and the augmented shear modulus Gc as listed in Table 3.3. Before the
onset time of strain stiffening, the normal force follows the time dependence expected for
a volume-conserving solid with the measured initial shear modulus G0. The inset shows
an extended process of gel relaxation after compression stops.

of the mechanical response, πa2Mεe with a the initial radius of the gel and εe the
amount of strain after compression, in the pressurized phase. Moreover, these exper-
iments all have h = 1mm, implying a longer pressurizing time than in experiment
18. In part of the experiments, the gel is compressed with only 5% engineering strain
ε = 0.05, reducing the mechanical response contribution even further. Finally, with
increasing concentration the relaxation time t⊥ seems to increase, thereby increasing
the time needed to enter the pressurized phase and decreasing the influence ofM , see
Figure 3.13 for a high fibrinogen concentration experiment with M = 0.

Concentration and geometry To observe the influence of the concentration of fib-
rinogen c we conducted experiments with c = 2, 4, 6, 8, 10mg/mL, see Table 3.3 for
the results and Figure 3.13 for a high fibrinogen gel. The permeability k decreases
with increasing fibrinogen concentration c, see Figure (7) of the manuscript.

Up to the increase of the shear modulus at tc, the fibrin gels deform in an approxi-
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mately volume-conserving manner. Therefore, the compression up to t = tc can be
considered as a shear deformation of the sample. The tangential radial stress at the
sample-plate interface therefore shears the sample. Within the gel the shear stress
is lower because the gel can bulge out. The tangential stress at the sample-plate in-
terface before stiffening is given as σn,rz = G0 (∂zU + ∂rW ) = G0∂zU , since W

is independent of r, as we presumed in this entire analysis. The radial deformation
U grows linearly with the radial coordinate r, see equation (3.11). Therefore, we
average the tangential stress over the gel plate interface to obtain the critical stress:
σc ∝

(
1/πa2

) ∫ a
0 dr 2πrσ′

rz|z=h,t=tc , giving equation (9) of the manuscript, and the
dependence of σc on the concentration of fibrinogen c is given in Figure 6 of the
manuscript.

Experiments 25-30 have a fibrinogen concentration of c = 6mg/mL, whereas ex-
periments 25-27 have an initial radius of a = 20mm and experiments 28-30 have
a = 10mm. According to equation (3.29), a difference in the magnitude of the nor-
mal force FN ∝ a4 is to be expected, but no difference in the fitted permeability
k, the shear modulus Gc and the critcial time tc. The three fit parameters are all of
the same order, their differences are probably due to sample-to-sample variation, and
the coefficient of determination exceeds 0.9992 for every experiment. Therefore, our
model seems to account correctly for the influence of geometry.

Shear modulus In section 3.6.3 we found the measured normal force in all large-
pore fibrin compression experiments during compression to be explained by the ap-
proximate solution of section 3.6.1, while using the measured value of the shear
modulus G0 just before compression. For small-pore fibrin gels, however, we found
the shear modulus to increase at a critical stress and to remain constant afterwards.
In this section, we also consider the evolution of the shear modulus after compres-
sion.

For large-pore fibrin gels undergoing large compression, see section 3.6.3, the shear
modulus has been measured before and after compression, see for example Figure
3.14. Before compression, the shear modulus has a constant value G0. After com-
pression, it first decreases rapidly. Subsequently, it increases very slowly and can be
regarded as approximately constant, i.e., as if the gel is relaxed. Just after compres-
sion, the shear modulus seems to be at approximately the same value as before com-
pression, suggesting the shear modulus in large-pore fibrin gels to be approximately
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Figure 3.14: The measured shear modulus G (blue dots) before and after three compres-
sion steps of 10% compressive strain for a large-pore fibrin sample. The beginning and end
of a compression step are denoted by a red line. Before each compression step the shear
modulus is (approximately) constant. After each step the shear modulus decreases rapidly
to a smaller value than before compression.

constant during compression, as we assumed in section 3.6.3. With each compression
step, the magnitude of the relaxed shear modulus is decreased compared to its value
before compression, in accordance with literature [167].

Combining the results from section 3.6.3, 3.6.3 and the shear modulus measurements
just after compression, we can form a coherent picture of the evolution of the shear
modulus during and after the compression of fibrin gels, see Figure 3.15. Before com-
pression, the gel has a constant shear modulus which reflects that the gel is in equi-
librium. As soon as compression starts it is first compressed in a volume-conserving
manner because the (low) permeability of the gel prevents fluid to be squized out
instantaneously. In this phase the shear modulus may increase around an onset stress
σc in the network, see equation (9) of the manuscript. If fluid starts to flow out before
the gel is stressed to σc, the shear modulus remains constant throughout the whole
of the ramp compression, as with the large-pore compression experiments in section
3.6.3. If σc is reached while being in the volume-conserving phase, the shear mod-
ulus can increase significantly and remains so during the rest of compression, see
section 3.6.3. After compression, the shear modulus relaxes to its static value.

The evolution of the shear modulus of a fibrin gel of Figure 3.15, and the differ-
ence in stiffening depending on whether the gel reaches the onset stress σc in the
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mately volume-conserving manner. Therefore, the compression up to t = tc can be
considered as a shear deformation of the sample. The tangential radial stress at the
sample-plate interface therefore shears the sample. Within the gel the shear stress
is lower because the gel can bulge out. The tangential stress at the sample-plate in-
terface before stiffening is given as σn,rz = G0 (∂zU + ∂rW ) = G0∂zU , since W

is independent of r, as we presumed in this entire analysis. The radial deformation
U grows linearly with the radial coordinate r, see equation (3.11). Therefore, we
average the tangential stress over the gel plate interface to obtain the critical stress:
σc ∝

(
1/πa2

) ∫ a
0 dr 2πrσ′

rz|z=h,t=tc , giving equation (9) of the manuscript, and the
dependence of σc on the concentration of fibrinogen c is given in Figure 6 of the
manuscript.

Experiments 25-30 have a fibrinogen concentration of c = 6mg/mL, whereas ex-
periments 25-27 have an initial radius of a = 20mm and experiments 28-30 have
a = 10mm. According to equation (3.29), a difference in the magnitude of the nor-
mal force FN ∝ a4 is to be expected, but no difference in the fitted permeability
k, the shear modulus Gc and the critcial time tc. The three fit parameters are all of
the same order, their differences are probably due to sample-to-sample variation, and
the coefficient of determination exceeds 0.9992 for every experiment. Therefore, our
model seems to account correctly for the influence of geometry.

Shear modulus In section 3.6.3 we found the measured normal force in all large-
pore fibrin compression experiments during compression to be explained by the ap-
proximate solution of section 3.6.1, while using the measured value of the shear
modulus G0 just before compression. For small-pore fibrin gels, however, we found
the shear modulus to increase at a critical stress and to remain constant afterwards.
In this section, we also consider the evolution of the shear modulus after compres-
sion.

For large-pore fibrin gels undergoing large compression, see section 3.6.3, the shear
modulus has been measured before and after compression, see for example Figure
3.14. Before compression, the shear modulus has a constant value G0. After com-
pression, it first decreases rapidly. Subsequently, it increases very slowly and can be
regarded as approximately constant, i.e., as if the gel is relaxed. Just after compres-
sion, the shear modulus seems to be at approximately the same value as before com-
pression, suggesting the shear modulus in large-pore fibrin gels to be approximately
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Figure 3.14: The measured shear modulus G (blue dots) before and after three compres-
sion steps of 10% compressive strain for a large-pore fibrin sample. The beginning and end
of a compression step are denoted by a red line. Before each compression step the shear
modulus is (approximately) constant. After each step the shear modulus decreases rapidly
to a smaller value than before compression.

constant during compression, as we assumed in section 3.6.3. With each compression
step, the magnitude of the relaxed shear modulus is decreased compared to its value
before compression, in accordance with literature [167].

Combining the results from section 3.6.3, 3.6.3 and the shear modulus measurements
just after compression, we can form a coherent picture of the evolution of the shear
modulus during and after the compression of fibrin gels, see Figure 3.15. Before com-
pression, the gel has a constant shear modulus which reflects that the gel is in equi-
librium. As soon as compression starts it is first compressed in a volume-conserving
manner because the (low) permeability of the gel prevents fluid to be squized out
instantaneously. In this phase the shear modulus may increase around an onset stress
σc in the network, see equation (9) of the manuscript. If fluid starts to flow out before
the gel is stressed to σc, the shear modulus remains constant throughout the whole
of the ramp compression, as with the large-pore compression experiments in section
3.6.3. If σc is reached while being in the volume-conserving phase, the shear mod-
ulus can increase significantly and remains so during the rest of compression, see
section 3.6.3. After compression, the shear modulus relaxes to its static value.

The evolution of the shear modulus of a fibrin gel of Figure 3.15, and the differ-
ence in stiffening depending on whether the gel reaches the onset stress σc in the
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Figure 3.15: Schematic of the development of the shear modulus G(t) in response to
changes in the height h(t) of a ramp-compressed fibrin gel during and after compression.
Initially, for t < 0 the shear modulus has magnitude G0. As compression commences, the
shear modulus increases to Gc, with the point of maximum increase at the onset time tc.
The difference between Gc and G0 is negligibly small for large-pore fibrin gels but may be
significant for small-pore fibrin gels. This difference is probably due to the much shorter
volume-conserving phase of large-pore fibrin gels. After compression stops at te, the shear
modulus decreases to its static value G∞, which is determined by the compressive strain.

volume-conserving phase or not, suggests that the occurrence of strain stiffening has
a strong connection with the flow of fluid through the fibrin network. In the volume-
conserving phase, when no fluid flows relative to the fibrin network, the shear modu-
lus shows compressive stiffening, as most materials do when compressed. As the gel
transitions into the pressurized phase and the fluid velocity relative to the network in-
creases to a nonzero value, however, the modulus becomes fixed. Therefore, it seems
as if flow of fluid through the network prevents further stiffening of the shear modu-
lus. After compression stops, however, and the relative velocity starts to decrease to
zero, the shear modulus also decreases to its new equilibrium value.

Chapter 4

Plate-sphere compression

The results of this chapter are contained in:

M.T.J.J.M. Punter & B.M. Mulder. “Uniaxial compression tests using a spher-
ically curved contact surface: a perturbative approach”. In: preparation.
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volume-conserving phase or not, suggests that the occurrence of strain stiffening has
a strong connection with the flow of fluid through the fibrin network. In the volume-
conserving phase, when no fluid flows relative to the fibrin network, the shear modu-
lus shows compressive stiffening, as most materials do when compressed. As the gel
transitions into the pressurized phase and the fluid velocity relative to the network in-
creases to a nonzero value, however, the modulus becomes fixed. Therefore, it seems
as if flow of fluid through the network prevents further stiffening of the shear modu-
lus. After compression stops, however, and the relative velocity starts to decrease to
zero, the shear modulus also decreases to its new equilibrium value.

Chapter 4
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The results of this chapter are contained in:
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Abstract

Conventional uniaxial compression tests employ testing machines where flat surfaces
touch the flat ends of a cylindrical specimen. Within this geometry, misalignment of
the surfaces may induce significant error in the determination of, e.g., the Young’s
modulus. As a novel geometry, we investigate the compression of a cylinder with a
flat surface from below and a spherical surface from above. Using a perturbative anal-
ysis of the elastostatic equations in displacement form, we report for this geometry a
polynomial full-field solution for the displacement and stresses of a frictionless linear
elastic material. This solution provides the exact expression for the required load for
any shape of the cylinder. Our perturbative approach is fit for wider application in
the field of elasticity theory.
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4.1 Introduction

For the determination of the mechanical properties of a material, e.g., the Young’s
modulus, a commonly used method is to press a sample between two parallel flat
surfaces in a uniaxial compression test [186–189]. A practical problem in compres-
sion testing is the friction which exists between the sample and the plates. It causes
the relation between the engineering strain and the load to be nontrivial, causing dis-
crepancy between the measured apparent Young’s modulus and the intrinsic Young’s
modulus [177, 190–192]. For materials which can be shaped at will, e.g., metals,
the solution is to use a long cylinder because the end effects decay by Saint Venant’s
principle, causing the middle to be in a state of homogeneous strain [193]. For ma-
terials with shape limitations, on the other hand, lubrication of the ends can be a
solution [188, 189].

Recent experimental and numerical studies suggest, however, that apart from friction,
in the case of an elastic-plastic material, an important source of discrepancy between
the apparent and the intrinsic Young’s modulus is misalignment of the two flat plates
straining the sample [194]. The misalignment causes non-axisymmetric deformation
of the compressed cylinder with local zones of high plastic deformation [195]. These
local zones of high plastic deformation blur the cross-over between the regimes of
elastic and plastic compression, thereby introducing error in the determination of the
Young’s modulus. Moreover, for shape-limited materials with medium to high aspect
ratios (radius/height), misalignment has a strong influence because the end effects are
significant.

Can misalignment problems be evaded by choosing a different geometry of the com-
pression test? To explore alternative testing machine geometries, we consider the
compression of a frictionless cylinder not with two flat surfaces, but with a flat sur-
face from below and a spherical surface from above, see Figure 4.1A. The use of a
spherical surface can be advantageous, because the spherical symmetry of the surface
circumvents the need to align the two surfaces in the first place. Also, it could reduce
the effect of tilt of the spherical surface due to testing machine wear. In the case of
elastic-plastic materials, the spherical symmetry could make regions of plastic defor-
mation less concentrated, thereby reducing error in the determination of the Young’s
modulus. For shape-limited materials, the end effect of sphericity of the upper plate
in lubricated compression can be taken into account exactly, as we show here. Moreo-
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Abstract

Conventional uniaxial compression tests employ testing machines where flat surfaces
touch the flat ends of a cylindrical specimen. Within this geometry, misalignment of
the surfaces may induce significant error in the determination of, e.g., the Young’s
modulus. As a novel geometry, we investigate the compression of a cylinder with a
flat surface from below and a spherical surface from above. Using a perturbative anal-
ysis of the elastostatic equations in displacement form, we report for this geometry a
polynomial full-field solution for the displacement and stresses of a frictionless linear
elastic material. This solution provides the exact expression for the required load for
any shape of the cylinder. Our perturbative approach is fit for wider application in
the field of elasticity theory.
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For the determination of the mechanical properties of a material, e.g., the Young’s
modulus, a commonly used method is to press a sample between two parallel flat
surfaces in a uniaxial compression test [186–189]. A practical problem in compres-
sion testing is the friction which exists between the sample and the plates. It causes
the relation between the engineering strain and the load to be nontrivial, causing dis-
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the solution is to use a long cylinder because the end effects decay by Saint Venant’s
principle, causing the middle to be in a state of homogeneous strain [193]. For ma-
terials with shape limitations, on the other hand, lubrication of the ends can be a
solution [188, 189].

Recent experimental and numerical studies suggest, however, that apart from friction,
in the case of an elastic-plastic material, an important source of discrepancy between
the apparent and the intrinsic Young’s modulus is misalignment of the two flat plates
straining the sample [194]. The misalignment causes non-axisymmetric deformation
of the compressed cylinder with local zones of high plastic deformation [195]. These
local zones of high plastic deformation blur the cross-over between the regimes of
elastic and plastic compression, thereby introducing error in the determination of the
Young’s modulus. Moreover, for shape-limited materials with medium to high aspect
ratios (radius/height), misalignment has a strong influence because the end effects are
significant.

Can misalignment problems be evaded by choosing a different geometry of the com-
pression test? To explore alternative testing machine geometries, we consider the
compression of a frictionless cylinder not with two flat surfaces, but with a flat sur-
face from below and a spherical surface from above, see Figure 4.1A. The use of a
spherical surface can be advantageous, because the spherical symmetry of the surface
circumvents the need to align the two surfaces in the first place. Also, it could reduce
the effect of tilt of the spherical surface due to testing machine wear. In the case of
elastic-plastic materials, the spherical symmetry could make regions of plastic defor-
mation less concentrated, thereby reducing error in the determination of the Young’s
modulus. For shape-limited materials, the end effect of sphericity of the upper plate
in lubricated compression can be taken into account exactly, as we show here. Moreo-



4.1 Introduction 139

ever, the use of a spherical surface can facilitate the pinning of a lubricated cylindrical
sample.

A. Uncompressed B. Plate-sphere compression

Figure 4.1: A) An initially unstressed and frictionless cylinder of radius a and height h
of an isotropic and homogeneous linear elastic material in a compression testing machine
with plate-sphere geometry. The dotted line gives the axis of symmetry of the cylinder.
B) During compression, the tip of the surface is moved over the axis of symmetry and
translates the center of the upper end of the cylinder over a distance γ1h. The circular
boundary of the upper end of the cylinder is translated over a distance h(γ1 − γ2), where
γ2h = a2/2R is determined by the radius of curvature R of the spherical surface. For
medium to high aspect ratio S ≡ a/h, the entire sample is in a state of inhomogeneous
strain due to the curvature of the upper plate.

To good approximation, a spherical surface can be regarded as a paraboloid. There-
fore, we study theoretically the compression of a frictionless cylinder made of a linear
elastic material at any aspect ratio, using a flat surface from below and a paraboloidal
shaped surface from above, where the tip of the paraboloid is exactly aligned with the
axis of symmetry of the cylinder. Under these conditions, the sample will be strained
inhomogeneously, see Figure 4.1B. To find the displacement field, we employ a per-
turbative expansion of the elastostatic equations in displacement form by regarding,
essentially, the ratio of the shear modulus over the bulk modulus as a small parame-
ter. We solve the equations of motion to all orders in the perturbation with the radial
traction-free boundary condition in weak form. We find a polynomial solution which
becomes, independent of Saint Venant’s principle, exact in the limit of high aspect
ratio. Using a corrective solution, we find the exact solution for any aspect ratio.
The corrective solution does not add to the load, however, rendering the calculated
load from the polynomial solution exact for all aspect ratios. Therefore, our solution
can be used in a plate-sphere testing machine to determine the Young’s modulus of
materials of any cylindrical shape, while possibly avoiding problems associated to
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misalignment.

We first introduce our perturbative approach of the elastostatic equations. Next, we
use this approach to find the displacement field of a cylinder under plate-sphere com-
pression.

4.2 Perturbation expansion around an incompressible
solid

In this section we employ perturbation theory to reformulate the equilibrium equa-
tions of motion and appurtenant boundary conditions (BCs), i.e., the elastostatic
equations, for a body of a linear elastic isotropic and homogeneous material. In
the next section, we use this approach to find the solution for frictionless plate-sphere
compression.

For a body of a homogeneous and isotropic linear elastic material without body forces
acting on it, the elastostatic equations can be written as [196]

0 = ∇ (∇ · U) + ε∇2U, inB, (4.1)

U(x) = h(x), on ∂B1, (4.2)

njσij = li(x), on ∂B2, (4.3)

where U(x) is the displacement field, B is an open region of Euclidean 2D or 3D
space occupied by the body with a bounding surface ∂B = ∂B1 ∪ ∂B2, and h(x) and
l(x) are, respectively, prescribed displacements and tractions. We assumed the so-
called chi-modulus to be nonzero χ ≡ K+G/3 �= 0, and defined the deviation of the
material from an incompressible material, the so-called compressibility parameter, as
ε ≡ 1−2ν = G/χ, with K the bulk modulus, G the shear modulus and ν the Poisson
ratio.

Considering the chi-modulus χ and the compressibility parameter ε as independent
elastic constants, we treat ε > 0 as a small perturbative parameter, and expand the
displacement field, the prescribed displacements and the tractions around the incom-
pressible limit [197–200]. For example, we write for the displacement field

U(x) =
∞∑

n=0

εnU(n)(x), (4.4)
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where U(n) is the n-th order displacement field. From the constitutive equations, we
find the stress fields as

σij
χ

= e
(0)
ll δij +

∞∑

n=1

εn
(
e
(n)
ll δij + 2d

(n−1)
ij

)
, (4.5)

where e
(n)
ij = 1

2

(
∇iU

(n)
j +∇jU

(n)
i

)
and d

(n)
ij ≡ e

(n)
ij − δije

(n)
ll /2 are, respectively,

the strain tensor and the 2D deviatoric strain tensor of the n-th order displacement
field, and repeated indices imply summation: ε(n)ll = ∇ · U(n).

This expansion amounts to treating the body as the superposition of a nearly in-
compressible body, defined by the combination of the zeroth and first order, with an
infinite number of compressible body’s, defined by each higher order. All body’s are
coupled in a linear hierarchy. We note that this expansion is not unique, as one could
expand in any η ≡ εf(ε), with f(ε) → 1 if ε → 0. Our choice, however, gives a
convenient linear hierarchical form of the perturbative equations of motion.

As the prescribed displacements and tractions are also expanded, our approach al-
lows for a systematic analysis of BCs of different order of magnitude in ε. Gen-
erally, however, prescriptions will be independent of ε, and are thus treated at the
lowest order nearly incompressible body, implying all higher order compressible
body’s to obey homogeneous boundary conditions, similar to other recursive solu-
tion schemes [201].

From the force balance, equation (4.1), we obtain

0 = ∇e
(0)
ll +

∞∑

n=1

εn
(
∇e

(n)
ll +∇2U(n−1)

)
, (4.6)

which shows that nonhomogeneous deformation in the n-th order body induces gra-
dients in the local dilatation of the (n+ 1)-th order body. In principle, we expanded
the elastostatic equations, equation (4.1)–(4.3) in an infinite number of static prob-
lems, which can be easier to solve. For illustration of the perturbative expansion, we
treat the standard problems of isotropic, constrained and plate-plate compression in
4.5.1.

Truncating the expansions in equation (4.4) and (4.5) at first order, we find the con-
stitutive equations of a nearly incompressible body

σij = −δijp+ 2Ge′(0)ij , (4.7)
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Figure 4.2: A) Overview of boundary value problems for the displacement field U(r, z) =

U(r, z)r̂ + W (r, z)ẑ of a cylinder of height h and radius a. The exact boundary value
problem (red) is that of a free frictionless cylinder compressed by a spherical surface with
radius of curvature R ≡ a2/2hγ2, giving a resulting engineering strain γ1 at the cylin-
der axis, see Figure 4.1. The simplified problem (blue) obeys the weak form of the ra-
dial traction-free boundary condition and has γ1 = 0 for clarity. The corrective solution
(green) generates a radial[tangential] traction distribution f(z)[g(z)] on the free boundary
symmetrical[antisymmetrical] in z = 0. Unless specified otherwise, the tangential trac-
tions vanish at each boundary σrz = G (∂zU + ∂rW ) = 0. B) Flow chart of the relations
between the different boundary value problems. Plate-plate compression is the solution of
a standard uniaxial compression test with engineering strain γ1, see 4.5.1.

provided one identifies p = −
(
Ke

(0)
ll +Ge

(1)
ll

)
as the pressure in the body, with

e′(n)ij ≡ e
(n)
ij − δije

(n)
ll /3 the 3D deviatoric strain. In this constitutive equation, the

stress scale of the zeroth and first order contribution, K = χ(1−ε/3) and G = χε re-
spectively, are linearly independent, implying as force balance equations 0 = ∇e

(0)
ll

and 0 = ∇e
(1)
ll + ∇2U(0). If e

(0)
ll = 0, we obtain the equations of motion of an

incompressible solid [196]. Usually, the pressure of an incompressible solid is in-
troduced as a Lagrange multiplier [21], but it follows naturally from our perturbative
expansion.

Using the perturbative system of equations, we solve the problem of plate-sphere
compression in the next section.
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coupled in a linear hierarchy. We note that this expansion is not unique, as one could
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which shows that nonhomogeneous deformation in the n-th order body induces gra-
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lems, which can be easier to solve. For illustration of the perturbative expansion, we
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4.5.1.

Truncating the expansions in equation (4.4) and (4.5) at first order, we find the con-
stitutive equations of a nearly incompressible body

σij = −δijp+ 2Ge′(0)ij , (4.7)
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Figure 4.2: A) Overview of boundary value problems for the displacement field U(r, z) =

U(r, z)r̂ + W (r, z)ẑ of a cylinder of height h and radius a. The exact boundary value
problem (red) is that of a free frictionless cylinder compressed by a spherical surface with
radius of curvature R ≡ a2/2hγ2, giving a resulting engineering strain γ1 at the cylin-
der axis, see Figure 4.1. The simplified problem (blue) obeys the weak form of the ra-
dial traction-free boundary condition and has γ1 = 0 for clarity. The corrective solution
(green) generates a radial[tangential] traction distribution f(z)[g(z)] on the free boundary
symmetrical[antisymmetrical] in z = 0. Unless specified otherwise, the tangential trac-
tions vanish at each boundary σrz = G (∂zU + ∂rW ) = 0. B) Flow chart of the relations
between the different boundary value problems. Plate-plate compression is the solution of
a standard uniaxial compression test with engineering strain γ1, see 4.5.1.

provided one identifies p = −
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Ke

(0)
ll +Ge
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ll

)
as the pressure in the body, with

e′(n)ij ≡ e
(n)
ij − δije

(n)
ll /3 the 3D deviatoric strain. In this constitutive equation, the

stress scale of the zeroth and first order contribution, K = χ(1−ε/3) and G = χε re-
spectively, are linearly independent, implying as force balance equations 0 = ∇e

(0)
ll

and 0 = ∇e
(1)
ll + ∇2U(0). If e

(0)
ll = 0, we obtain the equations of motion of an

incompressible solid [196]. Usually, the pressure of an incompressible solid is in-
troduced as a Lagrange multiplier [21], but it follows naturally from our perturbative
expansion.

Using the perturbative system of equations, we solve the problem of plate-sphere
compression in the next section.
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4.3 Plate-sphere compression

In this section, we consider a cylinder of length h and radius a compressed by a flat
plate from below and a paraboloidal plate from above. At the ends the displacements
are prescribed by the shape of the plates and the condition of frictionless contact. The
displacement imposed by the upper plate, assuming full contact, is a combination
of a translational engineering strain γ1, similar to plate-plate compression, and a
curvature-induced strain γ2, see Figure 4.1. At the free boundary the tractions vanish,
see Figure 4.2A for the appurtenant exact boundary value problem (BVP), where we
assume axial symmetry, U(r, z) is the radial translation and W (r, z) is the vertical
translation of the displacement field U(r, z) = U(r, z)r̂ +W (r, z)ẑ.

In principle, the exact solution to this problem is known [19, 202, 203], but is in
the form of infinite series whose coefficients must be determined by matrix inver-
sion. Seeking an exact closed-form expression for the engineering stress, we treat the
equilibrium equations of motion perturbatively, as outlined in the previous section.
To solve the perturbative elastostatic equations, we simplify the problem by requiring
the radial stress at the free boundary to vanish only on average. This simplified BVP,
see Figure 4.2A, does not have a unique solution [196]. Nevertheless, we can find a
polynomial solution for the simplified BVP from which we find the engineering stress
of the exact BVP in closed-form, as will be shown below. As the exact BVP is the
sum of a translation and curvature of the upper plate, we take γ1 = 0 in the simplified
problem for clarity, retaining only the effect of curvature of the upper plate.

For the simplified BVP, the displacement fields U(n)(W(n)) which solve the pertur-
bative form of the elastostatic equations, equation (4.6), are found for each order in
terms of polynomials of odd(even) powers in r and even(odd) in z, where the degree
of the polynomials in z and r are found through trial and error using Mathematica,
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giving
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4

[(r
a

)2
− 4

3S2

(
1− 3

( z
h

)2
)]

, (4.8)

W (0)(r, z) = γ2z

[(r
a

)2
− 2

3S2

(
1−

( z
h

)2
)]

, (4.9)

U (1)(r) = −γ2r

4

(
1− 2

(r
a

)2
)
, (4.10)

U (n)(r) = (−1)n
γ2r

2

(
1−

(r
a

)2
)
, (4.11)

W (m)(z) = (−1)m+1 4γ2z

3S2

(
1−

( z
h

)2
)
, (4.12)

where n ≥ 2 and m ≥ 1 and S ≡ a/h is the aspect ratio. The prescribed vertical dis-
placements at the sample-plate interfaces, z = 0 and z = h, are taken into account by
the zeroth order displacement field U(0)(r, z). Strikingly, the higher order displace-
ment fields are of equal form, alternating only in sign. This can be seen by noting
that the force balance equation, equation (4.6), can be written for n ≥ 1 as

∇×
(
∇× U(n)

)
+∇2

(
U(n) + U(n−1)

)
= 0, (4.13)

where the first term vanishes because the radial translation depends only on r and
the vertical only on z. For n ≥ 1 each order has vanishing boundary conditions, it
then follows from equation (4.13) that their heterogeneous parts will differ in sign,
implying only a homogeneous deformation term as possible differences, compare for
example U (1)(r) and U (2)(r).

Assuming ε ≡ 1 − 2ν < 1, with ν the Poisson ratio, the perturbation expansion
of the displacement field in equation (4.4) is convergent, and we find for the full
displacement field
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which, as one checks, solves the elastostatic equations, equation (4.1)–(4.3), for the
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simplified BVP with any ν. For the stress fields, we find
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where E is the Young’s modulus. In the limit of large aspect ratio, i.e., in the limit of a
plate cylinder with S � 1, the radial stress-free boundary condition in the simplified
BVP is satisfied pointwise, and the solution becomes exact and unique.

In principle, we can find the engineering stress from equation (4.18). As the solution
solves the simplified BVP, however, it is not generally unique. Therefore, we find the
solution to the exact BVP by adding the corrective solution Ucor(r, z) to the solution
of the simplified BVP [193], see Figure 4.2A for the boundary value problem appur-
tanent to the corrective solution and Figure 4.2B for the relation between the exact,
the simplified and the corrective solution. This corrective solution cancels the erro-
neous radial tractions acting on the free boundary in the simplified BVP, see equation
(4.16). The corrective solution does not add to the engineering stress, however, as
will be shown below.

For any radial and tangential stress distribution at the curved boundary of a friction-
less cylinder that are, respectively, symmetric and antisymmetric around z = 0, the
corrective solution satisfying the BVP given in Figure 4.2 can be written as

Ucor(r, z) =

∞∑

n=0

(
C1,nUcor,1

n (r, z) + C2,nUcor,2
n (r, z)

)
, (4.20)

with C1,n and C2,n arbitrary constants, and

U cor,1
n (r, z) = −I1(βnr) cos (βnz) , (4.21)

W cor,1
n (r, z) = I0 (βnr) sin (βnz) , (4.22)

U cor,2
n (r, z) = (4(1− ν)I1(βnr)− βnrI0(βnr)) cos (βnz) , (4.23)

W cor,2
n (r, z) = βnrI1 (βnr) sin (βnz) , (4.24)
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where βn ≡ πn/h.

Suppose the radial f(z) and tangential g(z) tractions at the curved boundary can be
expanded as f(z) =

∑∞
n=1 fn cos(βnz) and g(z) =

∑∞
n=1 gn sin(βnz). Solving for

C1,n and C2,n, we find for the engineering stress induced by the tractions

σ̄cor
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πa2

∫ a

0
dr 2πrσcor
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z=h

∝
∞∑
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(−1)n
gnh

nπa
, (4.25)

which shows that only with nonzero tangential stresses at the free boundary, the cor-
rective solution adds to the engineering stress. To correct the polynomial solution to
the simplified BVP, we set f(z) = −σrr|r=a and g(z) = −σrz|r=a, with σrr and σrz
from equation (4.16) and (4.19). Because the tangential stress at the free boundary in
the polynomial solution vanishes, however, we have g(z) = 0, and we observe from
equation (4.25) that the corrective solution gives zero contribution to the engineering
stress.

Finally, to obtain the solution to the exact BVP, see Figure 4.2, we add to the solution
of the simplified BVP both the corrective solution and that of a translation of the
upper plate, i.e., that of plate-plate compression with engineering strain γ1. From
this exact solution, we find the engineering stress as

F

πa2
= Eγeq, (4.26)

where γeq ≡ γ1 − γ2/2 is the equivalent strain. Equation (4.26) holds for any as-
pect and Poisson ratio, provided there is full contact between the spherical surface
and the upper cylinder end. The equivalent strain equals the engineering strain in a
hypothetical plate-plate compression experiment where the upper flat plate displaces
the same volume as the curved plate in a plate-sphere compression experiment. This
result is to be expected for any long prismatic bar with end loading [204], but is here
found to hold for a frictionless cylinder of any aspect ratio. This result allows for
straightforward interpretation of measured stress-strain curves in plate-sphere com-
pression experiments on any linear elastic homogeneous and isotropic material, sim-
ilar to plate-plate compression.
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straightforward interpretation of measured stress-strain curves in plate-sphere com-
pression experiments on any linear elastic homogeneous and isotropic material, sim-
ilar to plate-plate compression.
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4.4 Conclusions and discussion

Using a novel perturbative approach we obtain the exact solution for the plate-sphere
compression of a frictionless cylindrical sample by combining a full field polynomial
solution of the displacement field with the corrective solution. The former provides
the exact closed-form expression for the engineering stress for cylindrical samples
of any aspect ratio. In the limit of high aspect ratio the polynomial solution for the
displacement field becomes exact. Our solution enables plate-sphere compression as
a method to determine the Young’s modulus, with the possible benefit of avoiding
misalignment problems in the experimental setup.

For a long cylinder, the result we found for the load is exactly what one would ex-
pect from standard methods [204], since in the plane strain regime the equivalent
strain should determine the vertical stress by Saint Venant’s principle. It is striking,
however, that the load is exact for all aspect ratio’s.

In the plate-sphere compression method we propose, the problem of geometrical mis-
alignment is replaced by the need to move the tip of a spherically curved plate in line
with the symmetry axis of the cylinder. In principle, this is easy to solve as the sample
can be positioned accurately in line with the tip of the spherical surface. A possible
source of error which remains, however, is that the tip of the surface could move
misaligned with the axis of the cylinder. Future work should examine the influence
of this misalignment on the deformation of the sample.

For large curvatures of the upper surface the vertical normal stress at the sample-plate
required for full contact can be positive, implying adhesive forces to be present. For
many materials no significant adhesive forces are present. Practically, the theoretical
compression tests which need adhesive forces are easily excluded, however, as a non-
adhesive material will not make full contact with the spherical surface.

We hope our perturbative approach to be fruitful in many problems where an exact so-
lution is lacking. By finding a simple approximate solution, as illustrated here, some
properties of the system can yet be found exactly. As noted above, our perturbative
approach reminds somewhat of the recursive approach to the three-dimensional lin-
ear elastic problem of a long prismatic bar subjected to arbitrary polynomial tractions
on its lateral surfaces [201], though this approach holds only for relatively long bars.
Relations between our perturbative approach and the recursive approach could be a
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subject for further research. The conventional analysis of the perturbative equations
we obtained involves the use of vector field decomposition and the search for ap-
propriate scalar and vector potential functions. This kind of analysis is a matter for
future research.

We assumed the material to be linear elastic, which can be a good approximation
of a real material up to 10% engineering strain. Therefore, given that the erroneous
tractions scale as 1/S2, our polynomial solution for the displacement field is accurate
for disk-like samples with aspect ratio S � 10, provided friction between the cylinder
and the compression surfaces is negligible.

4.5 Appendix

4.5.1 Standard problems with perturbation theory

For illustration, we treat three standard problems within our perturbative ap-
proach.

Isotropic Constrained Plate-plate

Isotropic

Constrained

Plate-plate

Isotropic Constrained Plate-plate

Figure 4.3: Illustration of the boundary value problem for the displacement field U(r, z) =

U(r, z)r̂ + W (r, z)ẑ of a cylindrical sample in the standard problems of isotropic (red),
constrained (blue) and plate-plate (green) compression. All problems have vanishing tan-
gential tractions at each boundary σrz = G (∂zU + ∂rW ) = 0.

Isotropic compression

For a cylinder under some uniform external hydrostatic pressure pext, see Figure 4.3,
at all sides without any tangential tractions acting at the boundaries, the solution of
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U(r, z)r̂ + W (r, z)ẑ of a cylindrical sample in the standard problems of isotropic (red),
constrained (blue) and plate-plate (green) compression. All problems have vanishing tan-
gential tractions at each boundary σrz = G (∂zU + ∂rW ) = 0.

Isotropic compression

For a cylinder under some uniform external hydrostatic pressure pext, see Figure 4.3,
at all sides without any tangential tractions acting at the boundaries, the solution of
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the force balance equations can be found as

U (0) = −γr, W (0) = −γz, (4.27)

U (n) = 0, W (n) = 0, (4.28)

where n ≥ 1. Only the zeroth and first order contribute to the stresses which are
uniform throughout the body. From, say, the radial BC σrr = −pext we then find
γ = pext/3K.

Constrained compression

For a frictionless constrained cylinder under a load F , see Figure 4.3, the force bal-
ance equations of motion can be solved by taking

U (0) = 0, W (0) = −γ1z, (4.29)

U (n) = 0, W (n) = 0, (4.30)

where n ≥ 1. From the stress BC’s, we find the zeroth order and first order to
contribute to the vertical and the radial stress, implying γ1 = F/Mπa2 and σrr =

−γ1Λ, with M ≡ K + 4G/3 the longitudinal modulus and Λ ≡ K − 2G/3 Lamé’s
first parameter.

Plate-plate compression

For a cylinder under plate-plate compression, see Figure 4.3, under an engineering
strain γ1, the solution of the force balance equations can be found as

U (0) = γ1r/2, W (0) = −γ1z, (4.31)

U (1) = −γ1r/2, W (1) = 0, (4.32)

U (n) = 0, W (n) = 0, (4.33)

where n ≥ 2. Only the first order of the radial stress is nonzero. At zeroth order, there
is zero contribution to the vertical stress, but it receives nonzero contributions in first
and second order, giving rise to the Young’s modulus E = 9KG/ (3K +G).
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4.5.2 Classical derivation of the polynomial solution

The solution to the simplified BVP, equation (4.14) and (4.15), can alternatively be
derived using the polynomial potential functions φA

n and φB
m [205]

φA
n (r, z) =

(
r2 + z2

)n/2
Pn

(
z√

r2 + z2

)
, (4.34)

φB
m(r, z) =

(
r2 + z2

)
φA
m−2(r, z), (4.35)

where n ≥ 0 and m ≥ 2 and Pn is the n-th Legendre polynomial. From the poly-
nomial potential functions four linearly independent solutions fi(r, z) can be formed
which separately satisfy σrz = 0 for any value of r and z

f1(r, z) = φA
3 (r, z), (4.36)

f2(r, z) = φB
3 (r, z), (4.37)

f3(r, z) =
φA
4 (r, z)

12
+

φB
4 (r, z)

2(8− 7ν)
, (4.38)

f4(r, z) =
φA
5 (r, z)

60
+

φB
5 (r, z)

6(8− 9ν)
, (4.39)

(4.40)

giving as a general solution f tot(r, z) = C1f1(r, z) + C2f2(r, z) + C3f3(r, z) +

C4f4(r, z), with Ci arbitrary constants. The displacement field U(r, z) = U(r, z)r̂+
W (r, z)ẑ can be found as U = −∂r∂zf

tot/2G and W = (2(1−ν)∇2−∂2
z )f

tot/2G,
with G the shear modulus and ∇2 the Laplacian [205]. Next, the prescribed vertical
displacements at the cylinder ends, W = hγ2(r/a)

2 at z = h and W = 0 at z = 0,
are uniquely satisfied by setting

C2 =
3C1

7− 10ν
− 2

3
γ2G

(
h

a

)2 ν

(1− ν)(7− 10ν)
, (4.41)

C3 = 0, (4.42)

C4 =
4

9
γ2G

1

a2
9ν − 8

1− ν
. (4.43)

Finally, requiring the average radial tractions to vanish at the free boundary im-
plies

C1 = −γ2G
3(7− 10ν)ν − 4(h/a)2(7− 5ν)

90(1− ν)
, (4.44)
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first parameter.

Plate-plate compression

For a cylinder under plate-plate compression, see Figure 4.3, under an engineering
strain γ1, the solution of the force balance equations can be found as

U (0) = γ1r/2, W (0) = −γ1z, (4.31)

U (1) = −γ1r/2, W (1) = 0, (4.32)

U (n) = 0, W (n) = 0, (4.33)

where n ≥ 2. Only the first order of the radial stress is nonzero. At zeroth order, there
is zero contribution to the vertical stress, but it receives nonzero contributions in first
and second order, giving rise to the Young’s modulus E = 9KG/ (3K +G).

4.5 Appendix 150

4.5.2 Classical derivation of the polynomial solution

The solution to the simplified BVP, equation (4.14) and (4.15), can alternatively be
derived using the polynomial potential functions φA

n and φB
m [205]

φA
n (r, z) =

(
r2 + z2

)n/2
Pn

(
z√

r2 + z2

)
, (4.34)

φB
m(r, z) =

(
r2 + z2

)
φA
m−2(r, z), (4.35)

where n ≥ 0 and m ≥ 2 and Pn is the n-th Legendre polynomial. From the poly-
nomial potential functions four linearly independent solutions fi(r, z) can be formed
which separately satisfy σrz = 0 for any value of r and z

f1(r, z) = φA
3 (r, z), (4.36)

f2(r, z) = φB
3 (r, z), (4.37)

f3(r, z) =
φA
4 (r, z)

12
+

φB
4 (r, z)

2(8− 7ν)
, (4.38)

f4(r, z) =
φA
5 (r, z)

60
+

φB
5 (r, z)

6(8− 9ν)
, (4.39)

(4.40)

giving as a general solution f tot(r, z) = C1f1(r, z) + C2f2(r, z) + C3f3(r, z) +

C4f4(r, z), with Ci arbitrary constants. The displacement field U(r, z) = U(r, z)r̂+
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and

C2 = γ2G
4(h/a)2 − 3ν

30(1− ν)
. (4.45)

With the arbitrary constants Ci fixed, we find the solution for the displacement field
in equation (4.14) and (4.15).

Chapter 5

Scoop syneresis

The results of this chapter are contained in1:

Q. Wu, M.T.J.J.M. Punter, T.E. Kodger, L. Arnaudov, B.M. Mulder, S. Stoy-
anov & J. van der Gucht. “Gravity-driven syneresis in model low fat mayonnaise”.
In: Soft Matter 15.46 (Nov. 2019), pp. 9474-9481.

1 The experiments reviewed in this chapter have been designed and carried out by Qimeng Wu,
T.E. Kodger & J. van der Gucht from Wageningen University (The Netherlands) and L. Arnaudov & S.
Stoyanov from Unilever B.V.
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Abstract

In the food industry, low fat products are often enriched with polymer-forming in-
gredients, e.g., starch, to obtain similar mechanical properties and mouth feel as full
fat products. Syneresis, i.e., densification stemming from fluid expulsion, is a com-
mon problem associated with low fat products. To obtain insight in the governing
mechanism of syneresis in low fat mayonnaise, we study a model system composed
of emulsified oil droplets with heated starch in the aqueous phase. In syneresis ex-
periments, the fluid expulsion was measured and we find the rate of expulsion to be
proportional to the hydrostatic pressure. We formulate a two-cylinders model which
takes into account the geometry of the experimental setup by separating it into a
cylinder with high and a cylinder with low fluid velocity. First, the measured fluid
expulsion is explained by assuming filter paper clogging and the subsequent buildup
of a cake of densified mayonnaise. Through additional experiments, filter paper clog-
ging is shown to be negligible, however, and instead an oil droplet-starch network is
hypothesized to govern the expulsion of fluid. Regarding the network as a quasi-static
porous medium of oil droplets, and using the two-cylinders model, the expulsion of
fluid is explained as a hydrostatically driven flow of fluid through a bed of packed oil
droplets.

5.1 Introduction 154

5.1 Introduction

A known and poorly understood problem for low fat mayonnaise is its lack of stabil-
ity. It suffers from the expulsion of watery fluid after a first spoon has been taken from
the mayonnaise jar, implying reduced attractiveness for consumers. Remarkably, the
expulsion does not occur in the absence of spooning, suggesting, for instance, a role
for the height difference that spooning induces. Therefore, we pose the question,
what physical mechanism governs fluid expulsion from low fat mayonnaise?

Fluid expulsion has been measured in a model system for low fat mayonnaise: a
starch paste, combined with typical mayonnaise ingredients, with oil droplets dis-
persed throughout. Searching for the physical mechanism that governs the expul-
sion, we first hypothesize that a fringe effect, i.e., clogging of the filter paper used in
the experimental setup, determines the fluid expulsion. This investigation serves to
put the experimental results under scrutiny. As the theoretical results for filter clog-
ging compare well to experiments, it seems a possible explanation of the observed
fluid expulsion. Additional experiments, however, exclude filter paper clogging as
an explanatory mechanism for fluid expulsion. Next, the measured fluid expulsion is
hypothesized to arise from the local yielding and reforming of both an oil droplet and
a starch network. It is argued that this double network can act as a semi-static porous
medium for fluid to flow through.

Below, after introducing the experimental setup, materials and results, we model the
experimental geometry with a two-cylinders model. Thereafter, we introduce and
argue for the filter paper clogging hypothesis, implement it, and compare the results
to experiments. Next, the validation experiments are introduced which show no filter
paper clogging to be present. Finally, the fluid expulsion is explained as a hydrostati-
cally driven syneresis of the double network in the model low fat mayonnaise.

5.2 Syneresis experiments: materials, methods and re-
sults

The model low fat mayonnaise is composed of 52 v% of sunflower oil and 48 v% of
aqueous phase. Sunflower oil is added to the aqueous phase in the form of emulsi-
fied oil droplets using a Silverson LSM-A Laboratory Mixer with Emulsor Screens



5

153

Abstract

In the food industry, low fat products are often enriched with polymer-forming in-
gredients, e.g., starch, to obtain similar mechanical properties and mouth feel as full
fat products. Syneresis, i.e., densification stemming from fluid expulsion, is a com-
mon problem associated with low fat products. To obtain insight in the governing
mechanism of syneresis in low fat mayonnaise, we study a model system composed
of emulsified oil droplets with heated starch in the aqueous phase. In syneresis ex-
periments, the fluid expulsion was measured and we find the rate of expulsion to be
proportional to the hydrostatic pressure. We formulate a two-cylinders model which
takes into account the geometry of the experimental setup by separating it into a
cylinder with high and a cylinder with low fluid velocity. First, the measured fluid
expulsion is explained by assuming filter paper clogging and the subsequent buildup
of a cake of densified mayonnaise. Through additional experiments, filter paper clog-
ging is shown to be negligible, however, and instead an oil droplet-starch network is
hypothesized to govern the expulsion of fluid. Regarding the network as a quasi-static
porous medium of oil droplets, and using the two-cylinders model, the expulsion of
fluid is explained as a hydrostatically driven flow of fluid through a bed of packed oil
droplets.

5.1 Introduction 154

5.1 Introduction

A known and poorly understood problem for low fat mayonnaise is its lack of stabil-
ity. It suffers from the expulsion of watery fluid after a first spoon has been taken from
the mayonnaise jar, implying reduced attractiveness for consumers. Remarkably, the
expulsion does not occur in the absence of spooning, suggesting, for instance, a role
for the height difference that spooning induces. Therefore, we pose the question,
what physical mechanism governs fluid expulsion from low fat mayonnaise?

Fluid expulsion has been measured in a model system for low fat mayonnaise: a
starch paste, combined with typical mayonnaise ingredients, with oil droplets dis-
persed throughout. Searching for the physical mechanism that governs the expul-
sion, we first hypothesize that a fringe effect, i.e., clogging of the filter paper used in
the experimental setup, determines the fluid expulsion. This investigation serves to
put the experimental results under scrutiny. As the theoretical results for filter clog-
ging compare well to experiments, it seems a possible explanation of the observed
fluid expulsion. Additional experiments, however, exclude filter paper clogging as
an explanatory mechanism for fluid expulsion. Next, the measured fluid expulsion is
hypothesized to arise from the local yielding and reforming of both an oil droplet and
a starch network. It is argued that this double network can act as a semi-static porous
medium for fluid to flow through.

Below, after introducing the experimental setup, materials and results, we model the
experimental geometry with a two-cylinders model. Thereafter, we introduce and
argue for the filter paper clogging hypothesis, implement it, and compare the results
to experiments. Next, the validation experiments are introduced which show no filter
paper clogging to be present. Finally, the fluid expulsion is explained as a hydrostati-
cally driven syneresis of the double network in the model low fat mayonnaise.

5.2 Syneresis experiments: materials, methods and re-
sults

The model low fat mayonnaise is composed of 52 v% of sunflower oil and 48 v% of
aqueous phase. Sunflower oil is added to the aqueous phase in the form of emulsi-
fied oil droplets using a Silverson LSM-A Laboratory Mixer with Emulsor Screens



5.2 Syneresis experiments: materials, methods and results 155

A B

Figure 5.1: A) Scanning electron microscopy image of the model low fat mayonnaise.
Oil droplets are approximately spherical due to the relatively low packing fraction and
have radii in the order of micrometers. B) Schematic of the container setup in which the
expulsion experiments on the model low fat mayonnaise (yellow) have been conducted.
The radius of the jar is Rj = 3.14 cm and the radius of the inner tube is Rin = 1 cm. The
vertical dashed line gives the axis of cylindrical symmetry and the horizontal dashed line
denotes the filter paper at the bottom of the tube. The total height of the mayonnaise in the
jar is L = 4.8 cm and the height of the inner tube, setting the height of the mayonnaise
column above the filter paper, is h.

at 5800 rpm. Oil droplets are produced whose radius is in the order of micrometers,
see Figure 5.1A. To have the model low fat mayonnaise be reminiscent of real low
fat mayonnaise, the aqueous phase consists of 4 wt% native rice starch, 7 wt% of
egg yolk, 5wt% of vinegar, 2.8 wt% of NaCl, and is prepared as follows. First, the
rice starch is suspended in Milli-Q water and gently stirred for 5 minutes, thereby
avoiding sedimentation and/or agglomeration, at a temperature of 90 °C, while com-
pensating for evaporation. Afterwards, the suspension is cooled to 50 °C and the egg
yolk, the vinegar and the NaCl are added.

In the validation experiments, see section 5.5, the syneresis of a starch paste is com-
pared to syneresis of the model low fat mayonnaise. To obtain a starch paste, a 4 wt%
native starch suspension is heated, as described above, albeit no other ingredients are
added.

It is known that starch, when heated above the gelation temperature, forms a turbid
viscoelastic paste consisting of an amylose network with swollen starch granules act-
ing as a filler [206, 207]. In section 5.6, it is shown through rheology experiments that
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Figure 5.2: The mass of expelled fluid Mex into the inner tube from the model low fat
mayonnaise for integer values (A) and half-integer values (B) of the height of the inner
tube h as a function of time t, see Figure 5.1 for the experimental setup. Each experiment
has been performed twice.

the starch paste indeed has the rheological characteristics of a complex viscoelastic
fluid, see Figure 5.10. Interestingly, the aqueous phase does not seem to have a yield
stress, see Figure 5.5, implying the egg yolk, vinegar and NaCl to alter the rheological
characteristics of the starch paste.

The syneresis experiments on model low fat mayonnaise have been conducted in a
container setup, see Figure 5.1B. In this setup, a mayonnaise filled inner tube with
filter paper at the bottom is located inside a volume of mayonnaise in a cylindrical
jar, and is left for a week before initiation of a syneresis experiment. To initiate the
experiment, the mayonnaise in the tube is aspirated from the open end. As soon as
the tube is filled with air, a hydrostatic pressure difference is established between
the inside of the tube and the mayonnaise just below the bottom end of the tube,
thereby simulating a scoop taken from a real-life mayonnaise. It is observed that over
time fluid, consisting of a combination of water and dissolved starch components,
is expelled from the mayonnaise without any oil, see Figure 5.2 for the expelled
mass Mex as a function of time t. In the first few weeks the rate of fluid expulsion
decreases, after which it seems to become approximately constant.

We determine the average rate of fluid expulsion r̄ by fitting Mex = r̄t to the mea-
surements. The fitted expulsion rates r̄ increase proportional to h for h ≤ 4 cm,
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filter paper at the bottom is located inside a volume of mayonnaise in a cylindrical
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Figure 5.3: The fitted average rate of fluid expulsion r̄ = Mex/t for the syneresis exper-
iments in Figure 5.2 (blue dots), the error bars represent the fit uncertainties. Apart from
the h = 1.5 cm and h = 4.5 cm experiments, the average expulsion rate seems to scale
with the height of the inner tube r̄ ∝ h. A linear fit of the expulsion rates (red line) gives
r̄/h = 7.4(0.1)mg day−1cm−1, with the uncertainty in brackets. The green dots give the
average expulsion rate for the h = 1.5 cm experiments when ignoring the lag phase.

see Figure 5.3. Ignoring the h = 1.5 cm experiments, we fit the line r = ah to
the inferred expulsion rates for h ≤ 4 cm, giving a = 7.4(0.1)mg day−1cm−1 with
the uncertainty in brackets, see the red line in Figure 5.3. The proportionality of the
expulsion rates with h suggests the syneresis process to be driven by the hydrostatic
pressure ∆p = ρgh of the mayonnaise column around the inner tube above the level
of the filter paper, with ρ the density of the low fat mayonnaise and g the gravitational
acceleration.

The h = 1.5 cm experiments seem to break the trend r̄ ∝ h, however. This could
be connected to the fact that in these experiments there is a lag time for the fluid
expulsion to initiate. This lag time could be caused by an energy barrier which needs
to be overcome before fluid expulsion can initiate, or by some slow time-dependent
process. Ignoring the lag phase and refitting the average rate of fluid expulsion r̄ with
the line Mex = r̄t + b, taking b as a fit parameter, the h = 1.5 cm experiments still
seem to break the trend, see the green datapoints in Figure 5.3.

For h > 4 cm the expulsion rate decreases. Possibly, this is because the total height
of the mayonnaise in each experiment is L = 4.8 cm, see Figure 5.1B, causing the
bottom of the jar to generate boundary effects which influence the fluid flow if h be-
comes too large. If so, the fluid flow would be negligible more than about 1 cm below
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A B

Figure 5.4: A) As fluid flows out of model low fat mayonnaise, a region of high fluid ve-
locity, with characteristic size dH, and a region of low fluid velocity, whose characteristic
size equals the height of the mayonnaise in the jar h. B) The two-cylinders model ab-
stracts the 3D fluid flow of the experimental geometry as a 1D flow through two connected
cylinders with unequal cross-section. The high-velocity cylinder ends at the filter paper
of surface area Ain, thereby setting its cross-sectional area. The low-velocity cylinder has
cross-sectional area Aj, with Aj the end surface area of the jar.

the filter paper. Assuming the fluid flow to be isotropically concentrated around the
filter paper, this suggests that for h ≤ 4 cm the entire jar has negligible influence
on the fluid flow, because the radius of the jar Rj = 3.14 cm while the radius of the
inner tube is Rin = 1 cm. Given these observations, we model the geometry of the
experimental setup in the next section as two connected cylinders, one with high fluid
velocity near the filter paper, and one with low fluid velocity far away from the filter
paper.

5.3 Two-cylinders model

Before considering a specific mechanism governing the syneresis, we model the
geometry of the experimental setup, because this generally determines the flow of
fluid through the mayonnaise. The experimental setup has axial symmetry, and is
parametrized by the height of the jar L = 4.8 cm, the radius of the inner tube
Rin = 1 cm, the radius of the jar Rj = 3.14 cm and the height of the inner tube
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Figure 5.3: The fitted average rate of fluid expulsion r̄ = Mex/t for the syneresis exper-
iments in Figure 5.2 (blue dots), the error bars represent the fit uncertainties. Apart from
the h = 1.5 cm and h = 4.5 cm experiments, the average expulsion rate seems to scale
with the height of the inner tube r̄ ∝ h. A linear fit of the expulsion rates (red line) gives
r̄/h = 7.4(0.1)mg day−1cm−1, with the uncertainty in brackets. The green dots give the
average expulsion rate for the h = 1.5 cm experiments when ignoring the lag phase.

see Figure 5.3. Ignoring the h = 1.5 cm experiments, we fit the line r = ah to
the inferred expulsion rates for h ≤ 4 cm, giving a = 7.4(0.1)mg day−1cm−1 with
the uncertainty in brackets, see the red line in Figure 5.3. The proportionality of the
expulsion rates with h suggests the syneresis process to be driven by the hydrostatic
pressure ∆p = ρgh of the mayonnaise column around the inner tube above the level
of the filter paper, with ρ the density of the low fat mayonnaise and g the gravitational
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Figure 5.4: A) As fluid flows out of model low fat mayonnaise, a region of high fluid ve-
locity, with characteristic size dH, and a region of low fluid velocity, whose characteristic
size equals the height of the mayonnaise in the jar h. B) The two-cylinders model ab-
stracts the 3D fluid flow of the experimental geometry as a 1D flow through two connected
cylinders with unequal cross-section. The high-velocity cylinder ends at the filter paper
of surface area Ain, thereby setting its cross-sectional area. The low-velocity cylinder has
cross-sectional area Aj, with Aj the end surface area of the jar.

the filter paper. Assuming the fluid flow to be isotropically concentrated around the
filter paper, this suggests that for h ≤ 4 cm the entire jar has negligible influence
on the fluid flow, because the radius of the jar Rj = 3.14 cm while the radius of the
inner tube is Rin = 1 cm. Given these observations, we model the geometry of the
experimental setup in the next section as two connected cylinders, one with high fluid
velocity near the filter paper, and one with low fluid velocity far away from the filter
paper.

5.3 Two-cylinders model

Before considering a specific mechanism governing the syneresis, we model the
geometry of the experimental setup, because this generally determines the flow of
fluid through the mayonnaise. The experimental setup has axial symmetry, and is
parametrized by the height of the jar L = 4.8 cm, the radius of the inner tube
Rin = 1 cm, the radius of the jar Rj = 3.14 cm and the height of the inner tube
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h, which is varied in the experiments, see Figure 5.1B. Independent of the height of
the inner tube, however, the fluid has to flow from the bulk of the mayonnaise through
the filter paper into the inner tube, see Figure 5.4A. As the end area of the filter paper
is Ain = πR2

in and the end area of the jar is Aj = πR2
j , the cross-section of the fluid

flow should decrease when fluid flows from, e.g., the top of the mayonnaise in the jar
towards the filter paper. As explained in section 5.2, the mayonnaise within about 1
cm from the filter paper seems to significantly influence the rate of fluid expulsion.
Therefore, we model the fluid flow as a one-dimensional flow through a cylinder with
high fluid velocity and a cylinder with low fluid velocity, see Figure 5.4B. The low-
velocity cylinder models the mayonnaise in the jar far away from the filter paper,
has end area Aj, its length equals the height of the inner tube h, and is with one end
connected to the high-velocity cylinder. We take the length to be h because the fluid
above the level of the filter paper is driven by gravity to flow into the inner tube. The
high-velocity cylinder connects the low-velocity cylinder with the filter paper, has
end area Ain and length dH. We expect dH to be dependent on the radius of the inner
tube Rin, because it determines over what distance the fluid should flow horizontally,
but not on L and Rj for h ≤ 4 cm, as argued for in the previous section. Due to mass
conservation, the fluid flow velocities in the two cylinders are related by

vLAj = vHAin, (5.1)

where vL is the fluid velocity in the low-velocity cylinder and vH is the fluid velocity
in the high-velocity cylinder. Since Aj ≈ 10Ain, the low fluid velocity vL is about
an order of magnitude smaller than the high fluid velocity vH. With this model for
the experimental geometry, the mechanisms governing syneresis can be explicated,
as will be done in section 5.4 and 5.6.

5.4 Filter paper clogging

In this section we argue for the hypothesis that the observed fluid expulsion in the
syneresis experiment, see Figure 5.2, can be explained by clogging of the filter paper
with oil droplets, and that the expulsion of fluid causes the mayonnaise to compactify
into a cake of close-packed oil droplets, such that the resistance against fluid outflow
increases over time. First, we consider how a clogged filter paper can set the initial
outflow of fluid from the mayonnaise. Second, with the two-cylinders model the
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fluid outflow during compactification of mayonnaise is calculated. Finally, fitting the
results for the fluid outflow to the available experimental results, we find credible
values for the two fit parameters: the length of the high-velocity cylinder dH, see
section 5.3, and the influence of the clogged filter paper on the outflow of fluid. If
the filter paper is clogged with oil droplets, the majority of the hydrostatic pressure is
found to be dissipated in the clogged filter paper throughout the experiment.

5.4.1 Clogging hypothesis

The model low fat mayonnaise has a yield stress in the order of 0.1 Pa, see Figure 5.5,
implying it has weak solid-like properties. As the hydrostatic pressure differences are
typically in the order of 100 Pa, the model low fat mayonnaise is expected to flow as
a fluid. Therefore, the model low fat mayonnaise should flow as a whole through the
filter paper once the hydrostatic pressure difference is present. Since the filter paper
is semi-permeable, however, the oil droplets, combined with swollen starch granules,
can not pass and could clog the filter paper instead.

The rate of fluid outflow from the model low fat mayonnaise initially decreases, ap-
proaching an approximately constant value after at most a few weeks, see Figure
5.2. This suggests that the resistance against fluid outflow initially increases, which
would be the case if a cake of close-packed oil droplets forms beneath the filter paper
by compactification of the mayonnaise.

Taking into account the above observations, we hypothesize that as soon as the hy-
drostatic pressure difference is actuated, the mayonnaise is pushed through the filter
paper and clogs it with oil droplets and insoluble starch components. Therefore,
the permeability of the filter paper is reduced drastically and the initial rate of fluid
outflow is set. Upon the expulsion of fluid the mayonnaise near the filter paper com-
pactifies into a cake until the oil droplets are at random close packing. Fluid outflow
causes this compactified layer to grow throughout the mayonnaise. The larger this
layer, the more resistance against fluid flow, thereby decreasing the rate of fluid ex-
pulsion over time.

In section 5.2 the average rate of fluid expulsion r̄ was shown to increase propor-
tional to the hydrostatic pressure of the mayonnaise above the level of the filter paper
∆p = ρgh. In Darcy flow, the average fluid velocity through a porous medium is
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the filter paper is clogged with oil droplets, the majority of the hydrostatic pressure is
found to be dissipated in the clogged filter paper throughout the experiment.

5.4.1 Clogging hypothesis

The model low fat mayonnaise has a yield stress in the order of 0.1 Pa, see Figure 5.5,
implying it has weak solid-like properties. As the hydrostatic pressure differences are
typically in the order of 100 Pa, the model low fat mayonnaise is expected to flow as
a fluid. Therefore, the model low fat mayonnaise should flow as a whole through the
filter paper once the hydrostatic pressure difference is present. Since the filter paper
is semi-permeable, however, the oil droplets, combined with swollen starch granules,
can not pass and could clog the filter paper instead.

The rate of fluid outflow from the model low fat mayonnaise initially decreases, ap-
proaching an approximately constant value after at most a few weeks, see Figure
5.2. This suggests that the resistance against fluid outflow initially increases, which
would be the case if a cake of close-packed oil droplets forms beneath the filter paper
by compactification of the mayonnaise.

Taking into account the above observations, we hypothesize that as soon as the hy-
drostatic pressure difference is actuated, the mayonnaise is pushed through the filter
paper and clogs it with oil droplets and insoluble starch components. Therefore,
the permeability of the filter paper is reduced drastically and the initial rate of fluid
outflow is set. Upon the expulsion of fluid the mayonnaise near the filter paper com-
pactifies into a cake until the oil droplets are at random close packing. Fluid outflow
causes this compactified layer to grow throughout the mayonnaise. The larger this
layer, the more resistance against fluid flow, thereby decreasing the rate of fluid ex-
pulsion over time.

In section 5.2 the average rate of fluid expulsion r̄ was shown to increase propor-
tional to the hydrostatic pressure of the mayonnaise above the level of the filter paper
∆p = ρgh. In Darcy flow, the average fluid velocity through a porous medium is
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Figure 5.5: Rheology measurements of the required stress to establish a given shear rate
for the model low fat mayonnaise (red), the starch paste (blue), and the aqueous phase used
to prepare the mayonnaise (green). The starch paste and model low fat mayonnaise have a
yield stress which is in the order of 0.1 Pa.

proportional to the pressure change, suggesting the mayonnaise should be regarded
as a porous medium.

Assuming the clogged filter paper to obey Darcy’s law with filter paper permeability
kf , thickness df and dynamic viscosity of the expelled fluid η, we obtain for the initial
superficial velocity of fluid vi through the filter paper, i.e., the fluid velocity averaged
over the total surface area of the filter paper,

vi =
kf
η

ρgh

df
, (5.2)

where ρgh is the hydrostatic pressure difference induced by the mayonnaise col-
umn of height h, with ρ ≈ 103 kg/m3 the density of the fluid and the mayon-
naise which we take to be approximately equal because we observe no creaming,
and g = 9.81m/s2 the gravitational acceleration constant. From measurements, we
can infer what the initial average fluid velocity vi is, because we know the initial
expulsion rate r0 of fluid from the mayonnaise from Figure 5.2. The expulsion rate
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obeys at all times
r = vρAin, (5.3)

with Ain = πR2
in the surface area of the filter paper, see Figure 5.1, with Rin = 1 cm

.

From Figure 5.2 we find the initial expulsion rate for, e.g., h = 3 cm to be about
r0 = 70 mg day−1 at the start of the experiment, implying the initial fluid expulsion
velocity to be vi = 3 · 10−9 m s−1 with equation (5.3). We then find kf/ηdf =

9 · 10−12 kg−1m2s. Estimating the dynamic viscosity of expelled fluid to be slightly
higher than that of pure water due to soluble starch components, say η ∼ 10mPa · s,
and estimating the thickness of the clogged layer in the filter paper to be in the order
of ten times the order of magnitude of the average oil droplet radius Roil = 1µm,
see Figure 5.1, implying df ∼ 10µm, we find the permeability of the clogged filter
paper to be kf ∼ 9 ·10−19 nm2, suggesting the effective pore size of the clogged filter
paper to be of the order of nanometers. The treatment of the clogged filter paper with
Darcy’s law may be too simplistic, however, as the initial fluid velocity could obey a
more general law, e.g., vi ∝ (∆p)n, with n a positive power law exponent.

As soon as fluid is expelled through the clogged filter paper, oil droplets in the bulk
mayonnaise must be compactified until they are randomly close packed due to mass
conservation. Therefore, the resistance to fluid outflow grows with time because a
growing layer of compactified mayonnaise with permeability k arises. We define
the resistance as the ratio of the fluid velocity through the filter paper over the net
hydrostatic pressure producing the fluid velocity. To compare the contribution to
the resistance of the clogged filter paper with that of the compactification layer, it is
convenient to define the effective length of the clogged filter paper deff . This effective
length equals the length of a hypothetical layer of compactified mayonnaise having
the same resistance as the filter paper. Therefore, we define

deff ≡ df
k

kf
, (5.4)

which is useful because of the following. First, the definition of the effective length
will simplify the results of section 5.4.2. For example, if a pressure difference ρgh

over the clogged filter paper produces an initial fluid velocity vi, the latter can be
written as

vi =
k

η

ρgh

deff
, (5.5)
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Figure 5.5: Rheology measurements of the required stress to establish a given shear rate
for the model low fat mayonnaise (red), the starch paste (blue), and the aqueous phase used
to prepare the mayonnaise (green). The starch paste and model low fat mayonnaise have a
yield stress which is in the order of 0.1 Pa.
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which allows for easy comparison with fluid flow through compactified bulk mayon-
naise. Second, in section 5.4.2, where we treat deff as a fitting parameter, its magni-
tude shows the importance of the filter paper, relative to macroscopically compacti-
fied mayonnaise, in determining the measured outflow of fluid.

Given the above estimation of the permeability of the clogged filter paper, we can
estimate the effective length of the filter paper as follows. Considering the oil droplets
in the compactified mayonnaise as random close packed spheres, the volume fraction
of the aqueous phase is φaq = 0.375, and its permeability k can be estimated with
the Kozeny-Carman expression [27]

k =
R2

oil

180

φ3
aq

(1− φaq)
2 , (5.6)

where Roil = 1µm is order of magnitude of the radius of the oil droplets. With an es-
timated fluid viscosity of η ∼ 10mPa · s, we find from equation (5.2) and (5.4) with
vi = 3 · 10−9m/s for h = 3 cm, that deff ∼ 3 cm, which implies the clogged filter
paper to have a similar resistance as a macroscopically compacted mayonnaise layer,
since the dimensions of the experimental setup are of the order of centimeters.

The above estimation shows that a clogged filter paper can have a significant influence
on the outflow of fluid. In the next section, using the two-cylinders model of section
5.3, we account for the expulsion process with a clogged filter paper and a growing
compactification layer.

5.4.2 Clogging in the two-cylinders model

In the previous section the clogging hypothesis was introduced. Here, we take into
account the growth of a layer of compactified oil droplets in the bulk mayonnaise due
to the expulsion of fluid. As introduced in section 5.4, we model the experimental
geometry with a two-cylinders model, a high-velocity cylinder representing the may-
onnaise close to the filter paper and a low-velocity cylinder representing mayonnaise
far away.

As water is expelled from the mayonnaise, the compactification layer starts to grow
in the high-velocity cylinder. We model the compactification layer as having a well
defined length y(t), which grows from y = 0 at t = 0 to the length of the high-
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velocity cylinder y = dH, where all of the mayonnaise in the high-velocity cylin-
der has been compactified, see Figure 5.6A. Afterwards, the mayonnaise in the low-
velocity cylinder also starts to compactify, such that the layer ultimately grows to a
length y = dH + h, see Figure 5.6B. After that the mayonnaise will be compacted
further like a porous medium due to the elasticity of the randomly close packed oil
droplets. Initially, no significant elastic effects arising from the compression and
shear of the network of starch components and oil droplets is expected because the
yield stress is negligible and the initial volume fraction of oil droplets is 52 v%, well
below random close packing. Due to the expulsion of fluid the oil droplets can be-
come random close packed, however, at which point we assume the bulk modulus to
be non-negligible.

By mass conservation, the velocity of fluid in the filter paper and the high-velocity
cylinder must be equal because the cross-section is constant, i.e., vf = vH, with vf the
average fluid velocity through the filter paper and vH the velocity in the high-velocity
cylinder. Moreover, the fluid velocities in the two cylinders are related through equa-
tion (5.1). Relative to the undisturbed mayonnaise the volume fraction of the aque-
ous phase in the compactification layer is lowered with ∆φ ≈ 0.1, for the oil droplet
volume fraction goes from its initial value φoil,0 = 0.52 to random close packing
φrcp = 0.62 [208]. Therefore, the larger the compactification layer, the larger the
amount of expelled fluid.

Next, the growth of the compactification layer in the two cylinders is treated sepa-
rately and explicit expressions for the height of the column of expelled fluid in the
inner tube as a function of time are derived.

High velocity cylinder

After initiation of the syneresis experiment, a compactification layer develops in the
mayonnaise close to the filter paper: the high velocity cylinder. If the compacti-
fication layer is only present in the high-velocity cylinder, i.e., 0 < y ≤ dH, the
hydrostatic pressure generated by the mayonnaise column above the filter paper must
be balanced by the hydrostatic pressure of the column of expelled fluid, and by dissi-
pation in both the filter paper and the compactification layer. The mayonnaise column
generates a pressure of pg = ρgh, while the column of expelled fluid in the inner tube
generates pin = ρgx(t), with x(t) the height of the fluid column in the inner tube.
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Figure 5.6: A) As the layer of compactified mayonnaise grows in the high-velocity cylin-
der, 0 ≤ y(t) < dH, the net hydrostatic pressure ∆p ≡ pg − pin is dissipated in both
the compactification layer ∆pH = −χH∆p and the clogged filter paper ∆pf = −χf∆p,
with χf + χH = 1. B) If the compactification layer grows into the low-velocity cylinder,
the net hydrostatic pressure ∆p is dissipated in both the high and low velocity cylinder
and the clogged filter paper, with χf + χH + χL = 1, inducing a fluid velocity vL in the
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The net hydrostatic pressure ∆p ≡ ρg (h− x(t)) is dissipated partly in the filter pa-
per ∆pf = −χf∆p < 0 and partly in the compactificaton layer ∆pH = −χH∆p < 0,
see Figure 5.6A, with χH + χf = 1, such that ∆p+∆pf +∆pH = 0.
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the high-velocity cylinder vH can be written with Darcy’s law as

vf =
kf
η

χf∆p

df
, (5.7)

vH =
k

η

χH∆p

y(t)
, (5.8)

where kf and k are the permeability of the filter paper and the compactification layer
respectively, df is the length of the clogged oil layer in the filter paper, and η is the
dynamic viscosity of the fluid. Mass conservation implies for a 1D flow with constant
cross section that vf = vH, determining χf as

χf =
deff

deff + y(t)
, (5.9)

where we used equation (5.4), and yields for the fluid velocity through the filter
paper

vf =
vi (1− x(t)/h)

1 + y(t)/deff
, (5.10)

where we used equation (5.2). Equation (5.9) shows that as the thickness of the com-
pactification layer grows, a smaller fraction of the hydrostatic pressure is dissipated in
the filter paper. Moreover, equation (5.10) shows the fluid velocity through the filter
paper to decrease with time both due to antipressure of the expelled fluid and because
the total resistance against fluid flow increases upon growth of the compactification
layer.

In an infinitesimal time dt the compactification layer grows a distance dy, implying
with mass conservation that ∆φfAindy = vHAindt, i.e., ∆φf ẏ = vH. Therefore,
fluid which flows through the compactification layer comes from further compactifi-
cation of the mayonnaise at the end of the compactification layer. Also, the volume
with which the mayonnaise has shrunk due to compactification needs to equal the
amount of expelled fluid in the fluid column: x(t) = ∆φfy(t). Then, we can write
equation (5.10), for 0 < x ≤ xH ≡ ∆φfdH, as

ẋ(t) =
vi (1− x(t)/h)

1 + x(t)/∆φfdeff
, (5.11)

which can be solved with x = 0 at t = 0 to find

x(t)

h
= 1 + αHW0

[
− 1

αH
exp

(
−1 + t/τ

αH

)]
, (5.12)
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der, 0 ≤ y(t) < dH, the net hydrostatic pressure ∆p ≡ pg − pin is dissipated in both
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with χf + χH = 1. B) If the compactification layer grows into the low-velocity cylinder,
the net hydrostatic pressure ∆p is dissipated in both the high and low velocity cylinder
and the clogged filter paper, with χf + χH + χL = 1, inducing a fluid velocity vL in the
compactification layer in the low-velocity cylinder.
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where W0(x) is the principal branch of the product logarithm, defined as z = W0 (g),
if g = z exp (z) for any real number z ≥ −1. Moreover, we defined

αH ≡ 1 +
∆φfdeff

h
, (5.13)

and we defined τ ≡ ηh/∆φfkρg as the typical time scale of fluid expulsion. At time
t = tH the compactification layer comprises the entire high-velocity cylinder, i.e.,
y = dH and x = xH, which gives

tH = τ

[
αH ln

(
1

1− xH/h

)
− xH

h

]
. (5.14)

Summarizing, due to the simplicity of the two-cylinders model we find a definite time
at which the compactification layer encompasses the entire high-velocity cylinder.
As argued in section 5.2 and 5.3, we expect dH to be in the order of centimeters, and
since ∆φ = 0.10, we expect xH ∼ 1mm, implying xH � h for all experiments, and
the compactification layer to grow further into the low-velocity cylinder. In the next
section, the expulsion of fluid is treated when the compactification layer grows in the
low-velocity cylinder.

Low velocity cylinder

The previous section treated the growth of the compactification layer in the high-
velocity cylinder of length dH. Here, we consider its growth in the low-velocity
cylinder of length h, see Figure 5.6B. When compactification starts to occur in
the low-velocity cylinder, the length of the compactification layer satisfies 0 <

y − dH ≤ h and the height of the column of expelled fluid obeys x(t) =

∆φf [dH + (y(t)− dH) Λ] with Λ ≡ (Rj/Rin)
2 ≈ 10, as Rin = 1 cm and Rj =

3.14 cm. The hydrostatic pressure pg = ρgh generated in the mayonnaise column
in the low-velocity cylinder is divided between the filter paper ∆pf , the compactifi-
cation layer in the high-velocity cylinder ∆pH, the layer in the low-velocity cylinder
∆pL and the hydrostatic pressure of the column of expelled fluid in the inner tube
pin = ρgx(t), in such a way that the fluid velocities in the cylinders obey mass conser-
vation, see equation (5.1). Force balance requires pg+∆pf +∆pH+∆pL = pin, and
it can be satisfied by taking ∆pf = −χf∆p, ∆pH = −χH∆p and ∆pL = −χL∆p,
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with ∆p ≡ pg − pin = ρg (h− x(t)) the net hydrostatic pressure, and the normal-
ization condition χf + χH + χL = 1. Using Darcy’s law, the fluid velocities are
expressed as

vf =
kf
η

χf∆p

df
, (5.15)

vH =
k

η

χH∆p

dH
, (5.16)

vL =
k

η

χL∆p

y − dH
. (5.17)

Due to mass conservation, vL and vH are not independent, see equation (5.1), and
because the high-velocity cylinder has the same cross-section as the filter paper: vf =
vH. Under these conditions, and using equation (5.4), we find for χf

χf =
deff

deff + dH (1 + (y/dH − 1) /Λ)
, (5.18)

which shows that growth of the compactification layer in the low-velocity cylinder
has a much smaller influence on the expulsion velocity of fluid than in the high-
velocity cylinder since Λ ≈ 10, see equation (5.9) for comparison. Given that vf = ẋ,
using that x(t) = ∆φf (dH + (y(t)− dH) Λ), that xH ≡ ∆φfdH and equation (5.2),
we find

ẋ(t) =
vi (1− x(t)/h)

1 + dH (1 + (x(t)/xH − 1) /Λ2) /deff
, (5.19)

which reduces to equation (5.11) if there is no difference in cross-section be-
tween the low and high-velocity cylinders, i.e., if Λ = 1. Moreover, given that
Λ ≈ 10 in the experiments, and because deff , h, dH ∼ Rin, there is a small quantity,
(x/xH − 1) /Λ2 = (y/dH − 1) /Λ � 1, and up to leading order we obtain

ẋ =
vi (1− x/h)

1 + dH/deff
, (5.20)

which shows that the hydrostatic pressure is predominantly dissipated in the filter
paper and the compactified mayonnaise in the high-velocity cylinder, because they
have a much larger fluid velocity than the low-velocity cylinder.

Equation (5.20) shows why after an initial decrease the expulsion rate becomes ap-
proximately constant, see Figure 5.2. The initial decrease is due to growth of the
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compactification layer in the high-velocity cylinder. As soon as it grows into the low-
velocity cylinder, however, the large value of Λ causes the leading order contribution
to the rate of fluid outflow to be approximately constant, provided x(t)/h is small
compared to unity. Therefore, the observed constancy of the rate of fluid expulsion
is an artifact of the experimental setup.

Solving equation (5.19) with x = xH at t = tH, we find

x(t)

h
= 1 + αLW0

[
−1− xH/h

αL
exp

(
−1− xH/h+ (t− tH) Λ

2/τ

αL

)]
, (5.21)

where τ ≡ hη/kρg is the typical time for fluid outflow and

αL ≡ 1 + Λ2∆φfdeff
h

+
xH
h

(
Λ2 − 1

)
. (5.22)

At t = tL all mayonnaise in the low-velocity cylinder has compactified, i.e.,
y = dH + h or x = xL = ∆φf [dH + hΛ]. For t > tL fluid can still be expelled,
but the compactified network, consisting of random close packed oil droplets and
possibly also starch components, has to compactify further. Therefore, the elasticity
of the network becomes important and the problem becomes poroelastic, implying
the poromechanical relaxation time to become important τp ∝ L2η/kK, with L,
the total height of the mayonnaise in the jar, a measure for the distance over which
fluid needs to be transported, and K the bulk modulus of the random close-packed
oil droplets. Also, the boundary conditions provided by the jar and the mayonnaise
surface become important.

In this section we found the height of the column of expelled fluid as a function of
time within the two-cylinders model. Given these results, the results for the height
of the fluid column in the inner tube are fitted to the available experimental measure-
ments in the next section.

Comparison to experiment

Here, we compare the theoretical results for the height of the column of expelled
fluid in the inner tube, derived in the previous section, with the measurements,
see Figure 5.2. The mass of expelled fluid Mex can be calculated from x(t) as
Mex(t) = ρAinx(t), with x(t) given by equation (5.12) and (5.21) in their respective
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Figure 5.7: A) The measured amount of expelled fluid (full lines) for integer heights h of
the inner tube. The dashed lines give fits of the results of the clogging model, assuming the
change in the volume fraction of the aqueous phase due to compactification to be ∆φf =

0.10, the average oil droplet radius to be Roil = 1µm, and by taking deff = 9.0 cm and
dH = 1.0 cm as fitted parameters. B) Full lines give the amount of expelled fluid for half-
integer heights of the inner tube. The dashed lines give the prediction of the two-cylinders
model using the fitted parameters from A.

time domains. We fix the permeability k of the compactification layer by assuming
Kozeny-Carman for the random close packed oil droplets, see equation (5.6), with an
average oil droplet radius of Roil = 1µm and a volume fraction of the aqueous phase
of φaq = φaq,0 −∆φ, with φaq,0 = 0.48 the uncompactified volume fraction of the
aqueous phase and ∆φf = 0.10 the change in fluid volume fraction for random close
packing of the oil droplets in the compactification layer to occur. Finally, we take the
fluid viscosity as η = 10mPa · s. We fit the model to the experiments with integer
height of the inner tube by setting the effective length of the clogged filter paper as
deff = 9.0 cm and the length of the high-velocity cylinder as dH = 1.0 cm, see Figure
5.7A for the results. The result that dH = 1.0 cm suggests that the cross-section of
the fluid flow grows significantly on the order of 1 cm away from the filter paper, in
agreement with the results in section 5.2. Moreover, as the effective length is much
larger than dH, most of the hydrostatic pressure is dissipated in the filter paper.

Given the definition of the effective length, see section 5.4, the total resistance against
fluid flow is given by the sum of the effective length of the clogged filter paper deff
and the length of the high-velocity cylinder dH, because, as shown in section 5.4.2,
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compactification layer in the high-velocity cylinder. As soon as it grows into the low-
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y = dH + h or x = xL = ∆φf [dH + hΛ]. For t > tL fluid can still be expelled,
but the compactified network, consisting of random close packed oil droplets and
possibly also starch components, has to compactify further. Therefore, the elasticity
of the network becomes important and the problem becomes poroelastic, implying
the poromechanical relaxation time to become important τp ∝ L2η/kK, with L,
the total height of the mayonnaise in the jar, a measure for the distance over which
fluid needs to be transported, and K the bulk modulus of the random close-packed
oil droplets. Also, the boundary conditions provided by the jar and the mayonnaise
surface become important.

In this section we found the height of the column of expelled fluid as a function of
time within the two-cylinders model. Given these results, the results for the height
of the fluid column in the inner tube are fitted to the available experimental measure-
ments in the next section.
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change in the volume fraction of the aqueous phase due to compactification to be ∆φf =

0.10, the average oil droplet radius to be Roil = 1µm, and by taking deff = 9.0 cm and
dH = 1.0 cm as fitted parameters. B) Full lines give the amount of expelled fluid for half-
integer heights of the inner tube. The dashed lines give the prediction of the two-cylinders
model using the fitted parameters from A.

time domains. We fix the permeability k of the compactification layer by assuming
Kozeny-Carman for the random close packed oil droplets, see equation (5.6), with an
average oil droplet radius of Roil = 1µm and a volume fraction of the aqueous phase
of φaq = φaq,0 −∆φ, with φaq,0 = 0.48 the uncompactified volume fraction of the
aqueous phase and ∆φf = 0.10 the change in fluid volume fraction for random close
packing of the oil droplets in the compactification layer to occur. Finally, we take the
fluid viscosity as η = 10mPa · s. We fit the model to the experiments with integer
height of the inner tube by setting the effective length of the clogged filter paper as
deff = 9.0 cm and the length of the high-velocity cylinder as dH = 1.0 cm, see Figure
5.7A for the results. The result that dH = 1.0 cm suggests that the cross-section of
the fluid flow grows significantly on the order of 1 cm away from the filter paper, in
agreement with the results in section 5.2. Moreover, as the effective length is much
larger than dH, most of the hydrostatic pressure is dissipated in the filter paper.

Given the definition of the effective length, see section 5.4, the total resistance against
fluid flow is given by the sum of the effective length of the clogged filter paper deff
and the length of the high-velocity cylinder dH, because, as shown in section 5.4.2,



5.5 Validation experiments 171

to good approximation all hydrostatic pressure is dissipated in these parts of the ex-
perimental setup. Therefore, one can think of the experiments in the constant ex-
pulsion rate regime as a single layer of random close packed oil droplets of length
deff + dH = 10 cm, in which all hydrostatic pressure ρgh is dissipated.

As the clogged filter paper sets the initial velocity of fluid outflow, see section 5.4, ini-
tially 100% of the hydrostatic pressure is dissipated in the filter paper. From equation
(5.18), with (y/dH − 1) /Λ � 1, we find that to leading order 90% of the hydrostatic
pressure is dissipated in the filter paper in the constant expulsion regime, implying
the clogged filter paper to be the dominant factor determining the outflow of fluid
throughout the experiment.

Using the fitted values, we predict the expulsion for the experiments with half-integer
values for the height of the inner tube, see Figure 5.7B. These predictions agrees
reasonably well with the experiments, except for h = 1.5 cm, as expected, because
of the lag phase, see section 5.2. This delay might be caused by some slow time-
dependent process in the clogged filter paper, allowing fluid to pass only after 10
days.

To summarize, the measured expulsion of fluid from low fat mayonnaise can be fitted
by assuming the filter paper to be clogged with oil droplets, and by using the results
of the two-cylinders model, with reasonable values for the effective length of the
filter paper deff and the length of the high-velocity cylinder dH. Therefore, we deem
the hypothesis of a clogged filter paper and accompanying compactification layer
to be a possible mechanism for fluid expulsion from model low fat mayonnaise. The
additional experiments described in the next section, however, suggest the filter paper
not to be clogged.

5.5 Validation experiments

In section 5.4, the measured expulsion in the syneresis experiments, see Figure 5.2,
is explained by presuming the filter paper to be clogged with oil droplets. To test
whether oil droplets indeed clog the filter paper in the experiments, several additional
experiments were conducted.

As a reference experiment, the inner tube of the experimental setup is filled with
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Figure 5.8: Schematic (B and C) and results (A) of the mayonnaise layer experiment to test
whether clogging of the filter paper is significant. B) The inner tube, of height h = 2 cm,
is filled with starch paste as a reference experiment. C) The inner tube is filled with starch
paste with a small layer of model low fat mayonnaise in between the paste and the filter
paper. A) The weight of expelled fluid from the tube into the jar as a function of time t. The
appurtenant syneresis experiment from Figure 5.2 (yellow dots) is given for comparison.

starch paste while leaving the jar empty, see Figure 5.8B, and the expulsion of fluid
into the jar is measured. Next, in a so-called mayonnaise interlayer experiment we fill
the inner tube with starch paste, but with a small, yet macroscopic, layer of mayon-
naise in between the starch paste and the filter paper, see Figure 5.8C. We measure the
mass of expelled fluid in the jar as a function of time, see Figure 5.8A. If oil droplets
indeed clog the filter paper, the expulsion in the interlayer experiment is expected to
be similar to the appurtenant syneresis experiment in Figure 5.2, where the inner tube
has the same height h = 2 cm as the starch paste column, because in section 5.4.2 it
was found that at least 90% of the hydrostatic pressure is dissipated in the clogged
filter paper. We observe, however, that the interlayer experiment exhibits similar fluid
expulsion as the reference experiment, see Figure 5.8A. As both the reference and the
interlayer experiment have an expulsion rate of about an order of magnitude larger
than the appurtenant syneresis experiment, these results suggest the filter paper not
to be clogged with oil droplets.

In the fluid expulsion experiments both the jar and the syneresis tube are filled with
model low fat mayonnaise and left for approximately one week before initiation of
the experiment. Next, the experiment is initiated by aspiration of the mayonnaise
in the tube by a vacuum pump. In principle, this aspiration may cause clogging
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pulsion rate regime as a single layer of random close packed oil droplets of length
deff + dH = 10 cm, in which all hydrostatic pressure ρgh is dissipated.
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tially 100% of the hydrostatic pressure is dissipated in the filter paper. From equation
(5.18), with (y/dH − 1) /Λ � 1, we find that to leading order 90% of the hydrostatic
pressure is dissipated in the filter paper in the constant expulsion regime, implying
the clogged filter paper to be the dominant factor determining the outflow of fluid
throughout the experiment.

Using the fitted values, we predict the expulsion for the experiments with half-integer
values for the height of the inner tube, see Figure 5.7B. These predictions agrees
reasonably well with the experiments, except for h = 1.5 cm, as expected, because
of the lag phase, see section 5.2. This delay might be caused by some slow time-
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To summarize, the measured expulsion of fluid from low fat mayonnaise can be fitted
by assuming the filter paper to be clogged with oil droplets, and by using the results
of the two-cylinders model, with reasonable values for the effective length of the
filter paper deff and the length of the high-velocity cylinder dH. Therefore, we deem
the hypothesis of a clogged filter paper and accompanying compactification layer
to be a possible mechanism for fluid expulsion from model low fat mayonnaise. The
additional experiments described in the next section, however, suggest the filter paper
not to be clogged.

5.5 Validation experiments

In section 5.4, the measured expulsion in the syneresis experiments, see Figure 5.2,
is explained by presuming the filter paper to be clogged with oil droplets. To test
whether oil droplets indeed clog the filter paper in the experiments, several additional
experiments were conducted.

As a reference experiment, the inner tube of the experimental setup is filled with

5.5 Validation experiments 172

C

AA B

Figure 5.8: Schematic (B and C) and results (A) of the mayonnaise layer experiment to test
whether clogging of the filter paper is significant. B) The inner tube, of height h = 2 cm,
is filled with starch paste as a reference experiment. C) The inner tube is filled with starch
paste with a small layer of model low fat mayonnaise in between the paste and the filter
paper. A) The weight of expelled fluid from the tube into the jar as a function of time t. The
appurtenant syneresis experiment from Figure 5.2 (yellow dots) is given for comparison.

starch paste while leaving the jar empty, see Figure 5.8B, and the expulsion of fluid
into the jar is measured. Next, in a so-called mayonnaise interlayer experiment we fill
the inner tube with starch paste, but with a small, yet macroscopic, layer of mayon-
naise in between the starch paste and the filter paper, see Figure 5.8C. We measure the
mass of expelled fluid in the jar as a function of time, see Figure 5.8A. If oil droplets
indeed clog the filter paper, the expulsion in the interlayer experiment is expected to
be similar to the appurtenant syneresis experiment in Figure 5.2, where the inner tube
has the same height h = 2 cm as the starch paste column, because in section 5.4.2 it
was found that at least 90% of the hydrostatic pressure is dissipated in the clogged
filter paper. We observe, however, that the interlayer experiment exhibits similar fluid
expulsion as the reference experiment, see Figure 5.8A. As both the reference and the
interlayer experiment have an expulsion rate of about an order of magnitude larger
than the appurtenant syneresis experiment, these results suggest the filter paper not
to be clogged with oil droplets.

In the fluid expulsion experiments both the jar and the syneresis tube are filled with
model low fat mayonnaise and left for approximately one week before initiation of
the experiment. Next, the experiment is initiated by aspiration of the mayonnaise
in the tube by a vacuum pump. In principle, this aspiration may cause clogging
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Figure 5.9: Schematics (B, C and D) and results (A) of the experiments to test whether
aspiration of model low fat mayonnaise causes clogging of the filter paper. B) In the control
experiment the inner tube is filled with starch paste. C) The inner tube is first filled with
model low fat mayonnaise and left for one week. Afterwards, the mayonnaise is aspirated
and replaced by starch paste. D) Same as C but both the inner tube and the jar are filled
with mayonnaise. A) The mass of expelled fluid from the inner tube into the jar as a
function of time. No significant difference is observed, suggesting filter paper clogging to
be irrelevant.

by sucking mayonnaise from beneath the filter paper through the filter paper. To
test this we conduct the following experiments. First, a syneresis tube filled with
mayonnaise is aspirated and the mayonnaise is replaced by starch paste, see Figure
5.9C. Also, a setup where both the jar and the tube are filled with mayonnaise is
aspirated, after which the inner tube is filled with starch paste, see Figure 5.9D. The
expulsion characteristics of these are compared to the control experiment in which
the inner tube was filled with starch paste to start with, see Figure 5.9B. As the
difference in expulsion rates between the three experiments is negligible, see Figure
5.9A, aspiration does not seem to clog the filter paper.

From the mayonnaise layer and aspiration experiments we conclude that clogging of
the filter paper is insignificant for the expulsion characteristics we measure in Figure
5.2. Therefore, instead of the clogged filter paper hypothesis, we deem a double
network in the mayonnaise to be responsible for the measured expulsion, see the next
section.
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Figure 5.10: The storage G′(�) and loss modulus G′′(�) of the model low fat mayonnaise
(red) and the starch paste (blue) as a function of shear strain. The peak in G′′ for the starch
paste is typical for a viscoelastic complex fluid that behaves as a solid at smalls strains but
yields and flows at larger strains [209].

5.6 Double network

As shown in the previous section, clogging of the filter paper does not seem to de-
termine the observed outflow of fluid. Another possible mechanism governing the
outflow of fluid is the existence of a double network in the model low fat mayonnaise
which yields and reforms during fluid outflow.

From the stress sweep experiment, see Figure 5.5, we find the yield stress of the
starch paste and the model low fat mayonnaise to be approximately equal, implying
solid-like properties for both materials. The aqueous phase, however, does not seem
to have a yield stress, implying the extra ingredients in the aqueous phase, relative to
the pure starch paste, to somehow destroy the starch network. To further test the rheo-
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logical properties of the model low fat mayonnaise and the starch paste, their storage
and loss moduli have been measured, see Figure 5.10. The starch paste and the model
low fat mayonnaise yield at, respectively, about 10% and 1% of shear strain, implying
solid properties for both materials under small stresses. As the storage modulus of
the model low fat mayonnaise before yielding is about 100 Pa and that of the starch
paste about 20 Pa, the presence of the oil droplets seems to enhance the solid prop-
erties. Indeed, an independent colloidal network could be formed through depletion
interaction among the oil droplets caused by dissolved starch constituents, e.g., amy-
lose [207, 210–212]. Moreover, the loss modulus of the starch paste shows a peak,
typical of a viscoelastic complex fluid [209]. The loss modulus of the model low
fat mayonnaise, on the other hand, seems to be a sum of a solid and a viscoelastic
complex fluid because of the double plateau. This suggests the oil droplets some-
how restore the viscoelastic properties of the starch in the aqueous phase. The starch
and the oil droplets in the model low fat mayonnaise thus seem to form a double
network.

As the hydrostatic pressure is in the order of 100 Pa, we can not generally expect the
whole double network to remain intact during the experiment. On the other hand, as
verified in the previous section, the network does not yield in such a way that fluid
is pushed through the filter paper while the filter paper becomes clogged with oil
droplets. Therefore, we hypothesize both the oil droplet and the starch network to
yield and reform by the generation of new bonds, the details of which depend on,
for example, the dynamic viscosity of the continuous phase, the strength of deple-
tion interactions, the size of the oil droplets and the connectivity of the oil droplet
network [213–216]. Therefore, the double network could have a mechanical strength
while at the same time being compressed, implying the process of fluid expulsion
to be a poromechanical problem from the start of the experiment, contrary to the
assumptions of the filter paper clogging hypothesis, see section 5.4.

Using the Terzaghi effective stress, we decompose the total stress in the model low fat
mayonnaise as the sum of the Terzaghi effective stress, stemming from the mechan-
ical contribution of the double network, and the fluid pressure [23, 27]. Because the
yield stress is very small compared to the hydrostatic pressure, however, we neglect
the Terzaghi effective stress. Also, as shown in section 5.4.2, the striction of the fluid
flow through the mayonnaise causes nearly all hydrostatic pressure to be dissipated
in a high fluid velocity region near the filter paper of size dH, independent of the tube
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height h because the rate of dissipation is proportional to the fluid velocity according
to Darcy’s law. Therefore, assuming all hydrostatic pressure to be dissipated in the
high velocity cylinder, dH can be estimated using Darcy’s law.

To use Darcy’s law, the permeability of the low fat mayonnaise needs to be known.
The double network is expected to have a permeability predominantly determined
by the oil droplets, as the experiments in Figure 5.8 show that the initial rate of
fluid expulsion for model low fat mayonnaise is about an order of magnitude smaller
than that of the starch paste. By treating the double network as a porous bed of oil
droplet particles, we estimate the total length of the bed dH using the Kozeny-Carman
expression for the permeability [27], which describes laminar fluid flow through a
packed bed of oil droplets as a collection of curved tubes with diameter comparable
to the oil droplets. In this way, the superficial velocity v through the high-velocity
cylinder and the hydrostatic pressure difference generated by the mayonnaise above
the filter paper ∆P = −ρgh, can be related as

v = −(ΦRoil)
2

45η

φ3

(1− φ)2
∆P

dH
,

with φ the volume fraction of fluid, η the dynamic viscosity of the expelled liquid,
Φ the sphericity of the oil droplets, and Roil the average oil droplet radius. As we
assume all of the low fat mayonnaise to be compressed from the start, we do not
expect any appreciable change in the volume fraction of the aqueous phase during
the experiments. Taking into account the 7 wt% of egg yolk in the aqueous phase,
we estimate φ = φaq − φegg, where φaq = 0.48 is the initial volume fraction of
the aqueous phase and φegg = 0.07 is estimated to be equal to its mass fraction,
giving φ ≈ 0.41. The order of magnitude of the average size of the oil droplets can
be estimated from the SEM image of the model low fat mayonnaise, see Figure 5.1,
giving Roil = 1µm. Also, the SEM image suggests the particles to be approximately
spherical, implying Φ ≈ 1. Based on the average expulsion rate r̄, see Figure 5.3,
we estimate v/h ≈ 2.7 · 10−8 s−1, where we used r̄ = ρAinv, with Ain the end
area of the inner tube. Finally, we estimate the dynamic viscosity of the expelled
fluid to be about ten times the viscosity of water, i.e., η = 10mPa · s. Using these
estimated values, we find dH = 16 cm, which differs from the dimensions of the
experimental setup by one order of magnitude. In fact, in section 5.2 and 5.3 it was
argued that dH should be about 1 cm. This discrepancy could be explained in the
following manner.
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A starch paste can retrograde into a firm gel after it has been made [217]. Suppose
that in the low fat mayonnaise starch retrogradation occurs, possibly in interplay with
the oil droplets. This gel formation need not be homogeneous throughout the model
low fat mayonnaise. Therefore, at the initiation of a syneresis experiment only parts
of the double network could be prone to yielding and subsequent reformation. Then,
the fluid velocity through the yielded mayonnaise would actually be higher than the
estimated v, giving rise to a smaller value of dH. Moreover, as starch retrogradation
initially involves the relatively fast recrystallization of amylose molecules, followed
by the slow crystallization of amylose pectin molecules [217], the decrease in ex-
pulsion rate after initiation of the experiment could be caused by ongoing starch
retrogradation. Finally, the lag phase in the h = 1.5 cm experiments could be caused
by an energy barrier to yielding of the double network which builds up in the process
of starch retrogradation, only to be overcome after the lag phase.

5.7 Conclusions and discussion

The mechanism governing syneresis in low fat mayonnaise has been investigated by
conducting syneresis experiments on a model low fat mayonnaise. In these experi-
ments a height difference, simulating a scoop taken from the mayonnaise, is estab-
lished. The expulsion rate of fluid is found to be proportional to the induced height
difference. In first instance, the rate of expulsion is assumed to be set by the filter
paper in the experimental setup. Taking into account the geometry of the setup in a
two-cylinders model, the clogged filter paper can explain the measured fluid expul-
sion. Further experiments, show, however, that the filter paper is not clogged with oil
droplets. Next, measurements of the storage and loss modulus of both the model low
fat mayonnaise and the starch paste where the first is based on, suggest a network
of starch components and a network of oil droplets to be present in the low fat may-
onnaise, where the latter forms through depletion interaction mediated by dissolved
starch components. This network is supposed to yield and reform during fluid expul-
sion, thereby forming a porous medium for fluid to flow through. Again, simplifying
the fluid flow as a one-dimensional flow through two cylinders, we estimate the size
of the high-velocity cylinder to be of the order of 10 cm. Measurements of the aver-
age rate of fluid expulsion suggest the size of the high-velocity cylinder to be of the
order of 1 cm, however. This discrepancy could be caused by starch retrogradation
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in the low fat mayonnaise, which causes only parts of the double network to yield,
therefore producing a higher fluid velocity through the yielded mayonnaise and a
lower estimation of the size of the high-velocity cylinder.
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Chapter 6

General discussion

6.1 Hydrogel dynamics in polymer solutions 180

In this thesis we have investigated a relatively large variety of experimental systems,
ranging from synthetic- to fibrin fiber hydrogels. Our investigations were largely
connected by focusing on the characterization of the poromechanical properties of
gels. Below, we discuss our findings and provide some directions for future re-
search.

6.1 Hydrogel dynamics in polymer solutions

In the first chapter, we focused on the swelling and compression dynamics of hy-
drogels in (concentrated) polymer solutions. The hydrogels were observed to exhibit
non-monotonic swelling and deswelling, an observation which asked for explanation.
Through a numerically solved relaxational dynamics model, we could give an accu-
rate account of the measured volume of a hydrogel as a function of time. Through
this account, we were able to estimate the bulk modulus and permeability of the hy-
drogel network, as well as the diffusion constant of the dissolved polymer molecules
and the solvent quality change they bring about for the hydrogel network. On the
other hand, through a poromechanical approach, we theoretically examined the re-
sponse of a hydrogel on the diffusing polymers from a diluted solution, and we were
able to formulate an explicit expression for the displacement field of the hydrogel
network and the concentration profile of polymer molecules in the hydrogel. Assum-
ing the dominant contribution to the hydrogel dynamics of a diluted solution to also
be the dominant response of a hydrogel in a concentrated solution, we constructed a
closed-form model for hydrogel dynamics in concentrated polymer solutions. Using
this model, one can extract the bulk modulus, the permeability, the diffusion constant
and the hydrogel-polymer interaction coefficient from volume measurements on a
hydrogel.

Conventionally, the permeability of hydrogels is established through a flow assay
[146], a complicated measurement compared to the mass measurements on hydrogels
we considered. The bulk modulus of hydrogels can be measured by Capillary Mi-
cromechanics [122] and the diffusion coefficient of polymer molecules in hydrogels
can be determined by, among others, nuclear magnetic resonance techniques [138,
218]. These three material parameters are, in principle, readily accessible through
the dominant-mode model combined with hydrogel volume measurements. We ex-
pect the dominant-mode model to be especially useful as a novel method to charac-
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terize the diffusion coefficient of guest molecules in (soft) hydrogels at different pH
and temperatures. This method distinguishes itself from existing techniques [138] by
using relatively simple mass measurements, which might even develop into a high-
throughput technique with appropriate automation. Limitations of the method are that
the diffusion time scale needs to be (much) larger than the (de)swelling timescale of
the hydrogel, such that diffusion-induced (de)swelling can be clearly observed, as
well as that the magnitude of (de)swelling needs to be measurable. A systematic as-
sessment of the accuracy of the model would first be necessary, however, which is
a task for future research. In practice, we experienced problems with convergence
of fitting the data, which forced us to fix a material parameter from conventional
measurement techniques in some of the experiments we analyzed. Part of the conver-
gence problems might be explained by the fact that the PEO polymer solutions were
polydisperse. Structurally, the convergence problems might be solved by making
mass measurements on the hydrogel at equal time intervals. In this manner the long-
time processes of slow (de)swelling effectively gain more weight in the fit routine.
Due to the large time scales involved, however, many mass measurements would be
required, the automation of which could be an object for future research.

Both the relaxational dynamics and the dominant-mode model show that non-
monotonic (de)swelling of hydrogels arises from an interplay between the osmotic
pressure of the osmolyte molecules and the change in solvent quality for the hydro-
gel network that these molecules may bring about. When the hydrogel is immersed
in polymer solution, it is compressed by the osmotic pressure difference between the
inside and the outside of the hydrogel. Upon diffusion of osmolyte molecules into the
hydrogel, however, this pressure difference decreases while the solvent quality can
change. The combination of these two processes determines whether the hydrogel
swells or compresses due to the diffusion of polymer molecules. As these two differ-
ent processes produce a single measurable characteristic, one may expect that there
are some caveats when deducing the material properties from a volume measure-
ment. The ‘mapping’ of the measured volume to the material properties through the
dominant-mode model may be, so to say, non-surjective. When an initially swollen
hydrogel exhibits an undershoot in the measured volume, however, the measurement
has four clear characteristics on the basis of which the bulk modulus and permeability
of the hydrogel network, and the diffusion constant and solvent quality change of the
polymer molecules, can be characterized, possibly uniquely. Initially, the hydrogel
compresses fast, while for later times it slowly reswells. The magnitude and the time

6.2 Compression of (bio)polymer gels 182

scale of the former correspond to, respectively, the bulk modulus and permeability of
the hydrogel network. The magnitude and time time scale of the latter is caused by,
respectively, the change in solvent quality brought about by the polymer molecules
and their diffusion constant. Our results suggest that for a non-monotonic evolu-
tion of the hydrogel volume our model provides a ‘bijective’ mapping. Whether this
holds in a robust manner, however, is a subject for future research. If a compressed
hydrogel does not exhibit an undershoot, but its volume decreases monotonically, the
distinction between the fast initial and the slow asymptotic compression is less clear
and may lead to a non-unique determination of the material properties. In this case,
a swelling experiment on an initially dry hydrogel in the polymer solution may be
more appropriate, for it can exhibit an overshoot.

6.2 Compression of (bio)polymer gels

As we have seen in the introduction, hydrogels are often used in biomedical ap-
plications. Considering the mechanical aspects of living creatures, one encounters
biopolymer networks and tissues which exhibit gel dynamics due to their porosity and
elasticity. We investigated a novel method to determine the poromechanical proper-
ties of (bio)polymer gels and tissues from a ramp compression test in a commercial
rheometer. As biopolymer gels, e.g., fibrin gels, are prone to stick to the rheometer
plates during compression, we developed a novel approximate solution to the poroe-
lastic equations of motion: a closed-form expression for the displacement field of the
gel network and the flow field of the fluid. With this solution, the measured force in
a ramp compression test can be interpreted to yield the permeability and (effective)
elastic properties of the gel network. Furthermore, we found our approximate so-
lution, with appropriate phenomenological extensions, to be capable of probing the
poromechanical properties of fibrin gels in the nonlinear regimes of large compres-
sion and strain stiffening. In particular, the contribution to the normal force in the
linear regime was found to hold at large compression with a strain-dependent per-
meability, and we could model strain stiffening during compression with a stepwise
increase in the shear modulus of the gel network. Often, research focuses on the dis-
covery of materials with low surface friction [219]. Methodological reasons for this
are that with zero surface friction the poroelastic equations can be solved exactly for
plate-plate compression [176] or be well-approximated in indentation testing [220,
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221]. In practice, however, small surface friction coefficients can already make a
large impact on the measured normal force in a compression experiment [222]. Our
approach avoids the need to decrease the friction coefficient of a hydrogel through,
e.g., lubrication, or to limit oneself to low-friction materials, but fully incorporates
the friction between the hydrogel and the rheometer plates. In case the gel might
(partially) slip over the rheometer plates, it may be bonded by using, e.g., surgical
glue [222].

Our approximate solution of the compression of a bonded disk-like gel is essentially
different from that of a frictionless gel, for in a bonded gel the network is heav-
ily strained by bulging of the network. The most important approximation we have
made, is the neglect of the influence of the free boundary conditions. In very slow
compression relative to the pressurizing time, that is, the time in which the fluid pres-
sure becomes maximal, the (radial) relaxation stemming from the free boundary con-
ditions can occur during the compression process. Indeed, in the slow-compression
experiment displayed in Figure 3.11, the normal force might to increase sub-linearly
due to radial relaxations, though this is difficult to judge because of the measurement
uncertainty. If the compression time is of the same order and larger than the pres-
surizing time, however, we seem to observe a linear increase in the normal force, see
Figure 3.1, which suggests that our approximate model is indeed applicable. A sys-
tematic investigation of the influence of the free boundary conditions by a numerical
solution of the equations of motion through, e.g., finite element analysis, is a subject
for future research.

A remarkable finding from our analysis of the compression experiments on large-
pore fibrin gels is that the (effective) elastic properties of the fibrin network during
compression are found to depend on the strain rate. This suggests that the elasticity
of the fibrin fibers depends on the pressure of the fluid, which scales proportionally to
the strain rate. It is known that protein structure depends on the pressure of the sur-
rounding fluid [223], suggesting that the fibrinogen protein structure might change
with fluid pressure, thereby giving rise to strain rate dependent elasticity of the fibrin
network in a compression experiment. Moreover, in the compression experiments on
small-pore fibrin gels, we found the fibrin network to strain stiffen during compres-
sion. We modelled this by assuming a single stepwise increase in the shear modulus
of the fibrin network at the early stage of fluid pressure build-up in the gel. After
stiffening, the fluid pressure increases to its maximal value which implies, accord-
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ing to the approximate model, that the fibrin network is increasingly strained also
after stiffening. From earlier work, however, stiffening is found to increase continu-
ously with strain on the fibrin network [100], which suggests that the fibrin network
increasingly stiffens throughout compression. Therefore, the increase of the fluid
pressure seems to inhibit strain stiffening. Possibly, this inhibition is also related to
a change in the structure of the fibrinogen monomers with fluid pressure. The in-
fluence of fluid pressure on the elastic properties of fibrin networks is a subject for
future research.

In the large compression experiments on fibrin gels, we only considered the measured
normal force when the fluid pressure was (presumed to be) maximal. Therefore, we
did not investigate whether the exponential relaxation in our approximate solution is
also applicable when the fluid pressure builds up during the compression steps at large
compressive strain. Possibly, our approximate solution can account for the full time-
varying normal force at large compressive strain if the dependence of the pressurizing
time on the compressive strain is taken into account through the permeability; this
provides a question for future research.

Using a cubic lattice model for the fibrin network, we found from our analysis of
compression experiments on small-pore fibrin gels that the mass density per unit of
fiber length decreases with increasing concentration of the initial fibrinogen solution,
or equivalently, the number of protofibrils per fibrin fiber cross-section decreases with
fibrinogen concentration. An earlier work has suggested that a higher supply rate
of fibrin monomers during polymerization, which can be expected to increase with
fibrinogen concentration, gives rise to more branching of fibrin fibers and shorter
fiber segments between branch points [224]. Possibly, branching inhibits the lateral
aggregation of protofibrils, thereby lowering the number of protofibrils per fibrin fiber
with increasing initial fibrinogen concentration.

We hope that our approximate model will stimulate further research into the mecha-
nisms, structural motifs and driving forces of lateral protofibril aggregation, as these
are mostly still unknown [94]. For example, if one wishes to investigate the influence
of, say, molecule A on lateral protofibril aggregation, one can proceed in the follow-
ing manner. The dependence of the permeability k(cA) on the concentration of the
molecule cA can be inferred from compression experiments using our approximate
model. Assuming the ratio of the protofibril mass to the protofibril length to be inde-
pendent of the concentration of molecule A, the cubic lattice model asserts that the
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permeability is proportional to the number of protofibrils per fibrin fiber cross-section
Ncross(cA), that is, k(cA) ∝ Ncross(cA), thereby relating the measured permeability
to the number of protofibrils per fibrin fiber cross-section.

6.3 Plate-sphere compression

In compression tests on solids, one may have problems with misalignment of the
rheometer plates, which can cause regions of strong plastic deformation in elastic-
plastic materials in an uncontrolled manner. Moreover, some materials are shape-
limited, or highly prone to buckle, such that they cannot be given a rod-like shape
which minimizes the effects of friction in the determination of the Young’s modulus
in a compression test. In the latter case, the materials need to be lubricated, but lubri-
cation may render the positioning of a compression sample problematic. Therefore,
we investigated a compression test with a spherically tipped plate. This geometry
would make the test less sensitive to plate misalignment, for the rotation of a sphere
produces another spherical tip. Moreover, a spherically tipped plate would facilitate
the positioning of the sample. But how does a compressed solid respond to compres-
sion with a spherically tipped plate? To answer this question, we solved the force
balance of a linear elastic solid compressed with a parabolically curved plate using
a novel perturbation approach which allowed to decompose the problem into many,
infinitely many, subproblems, yielding a solution which provides the exact magni-
tude of the required load for compression of a sample, free of surface friction, having
any aspect ratio. In the limit of a disk-like sample, this solution becomes exact, and
in the limit of a rod-like sample, it pertains that the normal force is equivalent to a
plate-plate compression displacing an equal quantity of volume.

6.4 Scoop syneresis

We investigated a problem with industrial relevance: the expulsion of fluid from low
fat mayonnaise. To attack this problem, we formulated a two-cylinders model to
take into account the geometry of the experimental setup. With this model, we first
investigated the appropriateness of the setup, that is, we considered whether clogging
of the membrane in the setup could explain the observed expulsion of fluid. Through
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experiments, it was found that the membrane was not clogged, however. Furthermore,
given that low fat mayonnaise is a complex material, we probed what the physico-
chemical origin of the observed expulsion process could be.

The model low fat mayonnaise which we have put under scrutiny was a far cry from
consumer mayonnaise, for its yield stress σY is in the order of tens of Pascal. This
implies that the order of magnitude of the surface height inhomogeneities h of the
model low fat mayonnaise in a jar are expected to be no more than tens of microm-
eters (σY = ρgh), i.e., the mayonnaise has a practically flat surface. A more real-
istic model low fat mayonnaise with higher yield stress might give highly different
expulsion characteristics, for the recipe of this mayonnaise can have very different
concentrations of the ingredients, which may interact in unexpected ways. A rational
design of low fat mayonnaise seems yet elusive.
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Appendix A

Dimensonal analysis

As an appendix to this thesis we introduce a part of physical analysis which is gen-
erally not very well known: dimensional analysis. It is applied within engineering
[225] and applied physics [226, 227], and it is related to the dimensionless numbers
arising within fluid dynamics, e.g., the Reynolds number Re. Dimensional analysis
is very helpful to obtain a ‘taste’ of a physical problem before entering into a first-
principle analysis: it can give an idea of the relevant relations between the physical
characteristics pertaining to the system under consideration, and in some cases it may
provide the solution.

In the following sections we briefly describe the main idea of dimensional analysis
through some instructive examples, and we state its most important result: the Π-
theorem.

A.1 Complete physical relations

Dimensional analysis is founded on the elegant principle that any complete physi-
cal relation should hold irrespective of the fundamental units in which the physical
quantities entering the relation are expressed [226]. As a simple example of a com-
plete physical relation, one can consider the period T for small oscillations of a rigid
pendulum in the earth gravitational field when friction is negligible. Within classical
mechanics, this period can be calculated in terms of the length of the pendulum l
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and the gravitational acceleration g as T = 2π
√

l/g. Irrespective of the fundamental
units of length and time in which T , g, and l are measured, the relation holds in the
same form, therefore it is called complete.

Valid physical relations do not need to be complete. Suppose we would not know
of classical mechanics and through experiment we find for the pendulum that T =

C
√
l, with C a constant whose numerical value is equal to 2.01 when T and l are

measured in, respectively, seconds and meters. The numerical value of C in our
experimental result will change if we measure the length in centimeters. In the result
from classical mechanics quoted above, on the other hand, the value of the constant
2π is unchanged by switching from one system of units to another, thereby making it
a complete physical relation. The unit-invariance of complete physical relations is at
the core of dimensional analysis.

At this point one may object that in the result of classical mechanics the gravitational
acceleration g acts effectively like the constant C in the experimental relation when
changing the units, that is, one could consider C as a dimensional constant expressed
as C = 2π/

√
g: each incomplete physical relation can be made complete by intro-

ducing a dimensional constant.

The power of dimensional analysis is in situations in which the relevant physical con-
stants are known beforehand, in other words, when the physical constants entering
the equations of motion underlying the phenomenon are known. In the case of the
period of a pendulum, for example, one does not consider the Boltzmann constant, as
the problem is clearly in the realm of classical mechanics and not in that of thermo-
dynamics. To know what the relevant constants are, however, one needs experience
and theoretical formation.

A.2 A frictionless pendulum

To make use of the unit-invariance of complete physical relations, one can consider
a physical relation between some quantities which is of unknown form, and presup-
pose that it is complete. That is, one assumes to have complete knowledge of the
relevant physical quantities in the physical relation. Returning to the example of the
pendulum, suppose the period of oscillation is not known explicitly through classical
mechanics. One can write a general functional relationship between the period of
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oscillation T and other physical quantities which supposedly determine the period.
For example, one could write

T = f1 (g, l, θ) , (A.1)

where f1 is some unknown function and θ is the dimensionless initial angle in radians
under which the pendulum is released, not necessarily small. One could argue for the
relevance of the quantities in this relation by asserting that the pendulum makes a
falling movement in the earths gravitational field, implying the gravitational acceler-
ation g to be into play. Moreover, the larger the length of the pendulum is, the larger
is the distance of the tip to travel in one period, pointing towards a dependence on l.
Finally, for a pendulum of a given length l the initial angle θ of the pendulum could
be relevant as it determines which part of a circle the pendulum runs through in one
period, therefore one expects a larger period for a larger initial angle θ. On the other
hand, to neglect quantities like the mass of the pendulum and the friction constant of
the pendulum with the surrounding air is nontrivial. The latter rests on the presump-
tion that friction is negligible, and the former presupposes theoretical formation that
in free fall the mass of an object does not enter in the kinematic description.

Assuming equation (A.1) to be complete, the right hand side needs to be expressed
in units of time, since the left hand side has units of time. Therefore, it has to be
possible to form a quantity with units of time on the right hand side, and we can write
in general

T =

√
l

g
f2(g, l, θ), (A.2)

where f2 is another unknown function. Upon an arbitrary change of the unit of time
in equation (A.2), it is necessary for the value of f2 not to change, otherwise the
relation between T and g, l and θ changes when changing the units, thereby rendering
equation (A.2) incomplete. The numerical value of g, one of the arguments of f2,
does change by changing the unit of time, however, which implies that f2 has to be
independent of g. Next, by the same argument, we find f2 to be independent of l.
Equation (A.2) then becomes

T =

√
l

g
f2(θ), (A.3)

where f2(θ) is a function to be determined through experiment or through classical
mechanics. In fact, within classical mechanics f2(θ) can be calculated to be f2(θ) =
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ation g to be into play. Moreover, the larger the length of the pendulum is, the larger
is the distance of the tip to travel in one period, pointing towards a dependence on l.
Finally, for a pendulum of a given length l the initial angle θ of the pendulum could
be relevant as it determines which part of a circle the pendulum runs through in one
period, therefore one expects a larger period for a larger initial angle θ. On the other
hand, to neglect quantities like the mass of the pendulum and the friction constant of
the pendulum with the surrounding air is nontrivial. The latter rests on the presump-
tion that friction is negligible, and the former presupposes theoretical formation that
in free fall the mass of an object does not enter in the kinematic description.

Assuming equation (A.1) to be complete, the right hand side needs to be expressed
in units of time, since the left hand side has units of time. Therefore, it has to be
possible to form a quantity with units of time on the right hand side, and we can write
in general

T =

√
l

g
f2(g, l, θ), (A.2)

where f2 is another unknown function. Upon an arbitrary change of the unit of time
in equation (A.2), it is necessary for the value of f2 not to change, otherwise the
relation between T and g, l and θ changes when changing the units, thereby rendering
equation (A.2) incomplete. The numerical value of g, one of the arguments of f2,
does change by changing the unit of time, however, which implies that f2 has to be
independent of g. Next, by the same argument, we find f2 to be independent of l.
Equation (A.2) then becomes

T =

√
l

g
f2(θ), (A.3)

where f2(θ) is a function to be determined through experiment or through classical
mechanics. In fact, within classical mechanics f2(θ) can be calculated to be f2(θ) =
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4F (π/2, sin(θ/2)), with F the incomplete elliptic integral of the first kind. The
above example shows that through the right assertion of the relevant quantities in a
physical relation, that is, by writing down a complete physical relation, important
results can be deduced on the basis of dimensional arguments alone. In this way, the
experimental work of determining f1(g, l, θ) in equation (A.1) is reduced by, say, two
orders of magnitude in equation (A.3), where a function of only one argument needs
to be determined.

A.3 The Π-theorem

The supposed complete relation for a pendulum’s period, equation (A.1), was a func-
tional relationship between four quantities. After using dimensional arguments, how-
ever, it can be rewritten in terms of two dimensionless quantities, T

√
g/l and θ, in

equation (A.3), thereby reducing the number of independent quantities by two. From
dimensional analysis, it turns out that in general, when writing the physical relation-
ship in terms of dimensionless groups, the number of independent quantities in a
complete physical relation can be reduced by the number of fundamental units they
are expressed in. In the above example, the fundamental units in which equation
(A.1) was expressed were that of length and time, as the period could be expressed in
seconds, the length in meters, and the gravitational acceleration in meters per second
squared. Therefore, equation (A.1) was expressed in 4−2 = 2 quantities in equation
(A.3).

The Π-theorem can be stated as follows [226]. A complete physical relationship
between n quantities a1, a2, ..., an, given in general by

f(a1, a2, ..., an) = 0, (A.4)

can be written as
F (Π1,Π2, ...,Πn−m) = 0, (A.5)

which depends on n − m dimensionless groups Π1,Π2, ...,Πn−m where m is the
number of fundamental units in which the n dimensional quantities are expressed.
These dimensionless groups are products of the original quantities where the each of
the original quantities is raised to some power.
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A.4 A pendulum with friction

For the remainder of this section, it is instructive to illustrate the influence of pre-
sumptions on the results of dimensional analysis by returning to the example of the
pendulum. If one would not have presupposed that friction is negligible, one should
have taken the mass of the pendulum m and the frictional constant of the pendulum
with the surrounding air ξ into consideration. In the laminar flow limit, ξv is the
frictional force acting on the center of mass of the pendulum for a center of mass
velocity v. Also, because friction destroys time translation symmetry, the time t after
release of the pendulum should be taken into account. Equation (A.1) would then
have had seven relevant quantities, and by expressing the unknown function in terms
of dimensionless groups, similar as in section A.2, equation (A.3) becomes

T =

√
l

g
f3

(
θ,

ξ
√
gl

mg
,

t√
l/g

)
, (A.6)

where we redefined T as the time between two subsequent maximum extensions of
the pendulum at, say, the positive angle side. As the original quantities are now
expressed in three fundamental units: mass, length and time, the resulting number of
dimensionless groups is 7− 3 = 4. We find a dimensionless group ξ

√
gl/mg giving

the ratio of the typical size of the frictional force to the gravitational force acting on
the pendulum, therefore measuring the importance of friction relative to the driving
force of the movement. Also, we find t/

√
l/g as a measure of the number of periods

which have been elapsed after release of the pendulum, in case of the underdamped
limit.

The product of the two new dimensionless groups in equation (A.6),
(ξ
√
gl/mg)(t/

√
l/g) = tξ/m, gives another dimensionless group determining the

influence of friction on the behaviour of the pendulum. This group is the ratio of
the typical quantity of momentum lost to friction after time t, ξ

√
glt, to the typical

quantity of momentum contained originally in a (hypothetical) free fall of the pendu-
lum, m

√
gl. Because f3 in equation (A.6) is a general relation, it can be reformulated

as

T =

√
l

g
f4

(
θ,

ξ
√
gl

mg
,
tξ

m

)
, (A.7)

Equation (A.7) shows that neglect of the influence of friction in this problem is the
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Equation (A.7) shows that neglect of the influence of friction in this problem is the
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same as asserting that tξ/m � 1, meaning that no significant quantity of the initial
momentum has been lost to friction. The question of whether this ‘practically fric-
tionless’ regime comprises a fraction of a period or several periods is subsequently
given by ξ

√
gl/mg, the ratio of the typical size of the frictional force to the typical

size of the gravitational force. When this group is also much smaller than one, it
can be assumed that there is a number of periods in which the frictional force can be
safely neglected.

The extension of the pendulum example to the frictional case shows that dimensional
analysis can give quite precise information on the conditions for limiting cases in a
physical problem. On the other hand, it should be noted that this example is well
known from classical mechanics and simulations. For a problem where the determi-
nation of a complete set of quantities may be done, but for which the explicit equa-
tions of motion are either unknown or insolvable, the neglect of appropriate groups
in a given limit is not necessarily straightforward.

Samenvatting

Hydrogels bestaan in het algemeen uit een combinatie van een netwerk van vaste stof
en een vloeistof die in dit netwerk doordringt. Interacties tussen de vaste stof en de
vloeistof bepalen de respons van een hydrogel wanneer deze wordt verstoord door
bijvoorbeeld externe mechanische of osmotische druk. De resulterende tijdsafhanke-
lijke dynamiek van (ont)zwelling wordt gekarakteriseerd door de poromechanische
eigenschappen van een hydrogel: de (visco)elasticiteit, plasticiteit en permeabiliteit.
In dit proefschrift richten we ons voornamelijk op de vaststelling van de permeabi-
liteit en elasticiteit van hydrogels door middel van de modellering van de dynamica
van enkele (ont)zwellingsprocessen bij synthetische hydrogels en biopolymeergels.
Ook richten we ons op het meer algemene probleem van compressietesten op vaste
stoffen waarbij we een nieuw soort geometrie van de testmachine behandelen en we
maken een poromechanische studie van een industrieel relevant fenomeen: de spon-
tane expulsie van vloeistof uit vetarme mayonaise.

In Hoofdstuk 2 behandelen we de zwelling en compressie dynamica van synthetische
hydrogels in (geconcentreerde) polymeeroplossingen. We observeren niet-monotone
(ont)zwelling bij de hydrogels, een observatie die om uitleg vraagt. Door middel van
een numeriek model, gebaseerd op fenomenologische relaxionele dynamica, geven
we een accurate beschrijving van het gemeten hydrogel volume als functie van de tijd.
Met deze beschrijving verkrijgen we zowel schattingen van de compressiemodulus en
de permeabiliteit van het hydrogel netwerk als van de diffusieconstante van de opge-
loste polymeren in het hydrogel netwerk en de verandering in oplosmiddelkwaliteit
die de polymeren teweeg brengen voor het netwerk. Verder onderzoeken we door
middel van een poromechanisch model de theoretische respons van een hydrogel op
een verdunde oplossing van polymeren en we formuleren een expliciete uitdrukking
voor zowel het verplaatsingsveld van het hydrogel netwerk als voor het concentratie-
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profiel van polymeermoleculen in de hydrogel. Op basis van de aanname dat de do-
minante contributie aan de hydrogeldynamica voor een verdunde polymeeroplossing
van eenzelfde vorm is als die voor een geconcentreerde oplossing, construeren we
een gesloten-vorm model voor de dynamica van hydrogelen in geconcentreerde po-
lymeeroplossingen. Gebruikmakend van dit model kan men de compressiemodulus,
permeabiliteit, diffusieconstante en hydrogel-polymeer interactiecoefficient afleiden
vanuit volumemetingen aan een hydrogel.

In Hoofdstuk 3 bestuderen we een nieuwe methode om de poromechanische eigen-
schappen van biopolymeergels en weefsels te karakeriseren door middel van een
constante-snelheid compressietest in een commerciële rheometer. Aangezien bio-
polymeergels, bijvoorbeeld fibrinegels, zich sterk hechten aan de rheometerplaten
gedurende compressie, ontwikkelen we een nieuwe benaderende oplossing van de
poroelastische bewegingsvergelijkingen: een gesloten-vorm expressie voor het ver-
plaatsingsveld van het gel netwerk en het stromingsveld van de vloeistof, waarbij de
gel gebonden is aan de rheometerplaten. Gebruikmakend van deze oplossing kan
men de gemeten normaalkracht in een constante-snelheid compressietest interprete-
ren om zo de permeabiliteit en de (effectieve) elastische eigenschappen van het gel
netwerk te verkrijgen. Bovendien kan men met onze benaderende oplossing, gege-
ven de nodige fenomenologische extensies, de poromechanische eigenschappen van
fibrinegels in het niet-lineaire regime van grote compressie en rekverstijving bestu-
deren. Meer precies, we vinden dat de vorm van de normaalkracht in het lineaire
regime behouden blijft tijdens grote compressie mits een rek-afhankelijke permeabi-
liteit wordt gebruikt en de rekverstijving tijdens compressie wordt gemodelleerd met
een stapsgewijze toename in de schuifmodulus van het gel netwerk.

In Hoofdstuk 4 behandelen we compressietesten op vaste stoffen. We bekijken een
nieuw soort geometrie van testmachines om zo de elasticiteitsmodulus van vormbe-
perkte materialen te bepalen alsmede die van elasto-plastische materialen die sensi-
tief kunnen zijn voor foutieve uitlijning van vlakke compressieplaten. In deze nieuwe
compressie geometrie, waarbij de bovenste plaat sferisch is gebogen, rapporteren we
de kracht-rek relatie van een lineair elastisch materiaal door middel van een pertur-
batieve oplossingstrategie toegepast op de Navier-Cauchy vergelijkingen.

Tenslotte bestuderen we in Hoofdstuk 5 de spontane expulsie van vloeistof, dat wil
zeggen de synerese, van een industrieel relevant systeem: een modelsubstantie voor
vetarme mayonaise. Door de mayonaise als een poreus materiaal te beschouwen, en
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door de geometrie van de experimentele opstelling met een twee-cylinder model in
ogenschouw te nemen, beschrijven we de gemeten expulsie van vloeistof en maken
een kritische evaluatie van de experimentele opstelling.
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Summary

Hydrogels generally consist of a solid network and of a fluid permeating the network.
Interactions between the solid and the fluid determine the response of a hydrogel
when it is perturbed by, for example, the external mechanical pressure or the exter-
nal osmotic pressure. The resulting time-dependent dynamics of (de)swelling are
characterized by the poromechanical properties of hydrogels: their (visco)elasticity,
plasticity and permeability. In this thesis we mainly focus on the characterization
of the permeability and elasticity of hydrogels by modelling the dynamics of sev-
eral (de)swelling processes for synthetic hydrogels and (bio)polymer gels. Also, we
delve into the broader problem of compression tests on solids where we investigated
a novel compression testing geometry, and we perform a poromechanical study of an
industrially relevant phenomenon: the spontaneous expulsion of fluid from low fat
mayonnaise.

In Chapter 2, we focus on the swelling and compression dynamics of synthetic hy-
drogels in (concentrated) polymer solutions. The hydrogels are observed to exhibit
non-monotonic swelling and deswelling, an observation which asks for explanation.
Through a numerically solved relaxational dynamics model, we give an accurate ac-
count of the measured volume of a hydrogel as a function of time. Through this
account, we estimate the bulk modulus and the permeability of the hydrogel network,
as well as the diffusion constant of the dissolved polymer molecules and the solvent
quality change they bring about for the hydrogel network. On the other hand, through
a poromechanical approach, we examine the theoretical response of a hydrogel on the
diffusing polymers from a diluted solution, and we formulate an explicit expression
for the displacement field of the hydrogel network and the concentration profile of
polymer molecules in the hydrogel. Assuming the dominant contribution to the hy-
drogel dynamics of a diluted solution to also be the dominant response of a hydrogel

198

in a concentrated solution, we construct a closed-form model for hydrogel dynamics
in concentrated polymer solutions. Using this model, one can extract the bulk mod-
ulus, the permeability, the diffusion constant and the hydrogel-polymer interaction
coefficient from volume measurements on a hydrogel.

In Chapter 3, we investigate a novel method to characterize the poromechanical prop-
erties of (bio)polymer gels and tissues from a ramp compression test in a commercial
rheometer. As biopolymer gels, e.g., fibrin gels, are prone to stick to the rheometer
plates during compression, we develop a novel approximate solution to the poroelas-
tic equations of motion: a closed-form expression for the displacement field of the
gel network and the flow field of the fluid where the gel is bonded to the rheometer
plates. With this solution, the measured force in a ramp compression test can be inter-
preted to obtain the permeability and (effective) elastic properties of the gel network.
Furthermore, we find our approximate solution, with appropriate phenomenologi-
cal extensions, to be capable of probing the poromechanical properties of fibrin gels
in the nonlinear regimes of large compression and strain stiffening. In particular, we
find the contribution to the normal force in the linear regime to hold at large compres-
sion with a strain-dependent permeability, and we can model strain stiffening during
compression with a stepwise increase in the shear modulus of the gel network.

In Chapter 4, we direct our attention to compression tests on solid materials. We
consider a novel geometry in compression tests aiming to determine the Young’s
modulus of shape-limited materials and elasto-plastic materials which are sensitive
to misalignment of the compression plates. In this compression geometry, where
the upper plate is spherically tipped, we report the force-strain response of a linear
elastic solid by solving the Navier-Cauchy equations through a novel perturbation
approach.

Finally, in Chapter 5, we investigate the spontaneous expulsion of fluid, that is,
syneresis, from an industrially relevant system: a model low fat mayonnaise. Consid-
ering the mayonnaise as a porous material, and by accounting for the geometry of the
experimental setup with a two-cylinder model, we describe the measured expulsion
and we critically evaluate the appropriateness of the experimental setup.
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plates during compression, we develop a novel approximate solution to the poroelas-
tic equations of motion: a closed-form expression for the displacement field of the
gel network and the flow field of the fluid where the gel is bonded to the rheometer
plates. With this solution, the measured force in a ramp compression test can be inter-
preted to obtain the permeability and (effective) elastic properties of the gel network.
Furthermore, we find our approximate solution, with appropriate phenomenologi-
cal extensions, to be capable of probing the poromechanical properties of fibrin gels
in the nonlinear regimes of large compression and strain stiffening. In particular, we
find the contribution to the normal force in the linear regime to hold at large compres-
sion with a strain-dependent permeability, and we can model strain stiffening during
compression with a stepwise increase in the shear modulus of the gel network.

In Chapter 4, we direct our attention to compression tests on solid materials. We
consider a novel geometry in compression tests aiming to determine the Young’s
modulus of shape-limited materials and elasto-plastic materials which are sensitive
to misalignment of the compression plates. In this compression geometry, where
the upper plate is spherically tipped, we report the force-strain response of a linear
elastic solid by solving the Navier-Cauchy equations through a novel perturbation
approach.

Finally, in Chapter 5, we investigate the spontaneous expulsion of fluid, that is,
syneresis, from an industrially relevant system: a model low fat mayonnaise. Consid-
ering the mayonnaise as a porous material, and by accounting for the geometry of the
experimental setup with a two-cylinder model, we describe the measured expulsion
and we critically evaluate the appropriateness of the experimental setup.



Dankwoord

Nu is het tijd om dank te betuigen aan ieder die mij in staat heeft gesteld om dit
proefschrift te voltooien. Allereerst gaat mijn dank uit naar God, de Schepper van
hemel en aarde, van al wat zichtbaar en onzichtbaar is. U hebt alles in het bestaan ge-
roepen: alle onderwerpen die zijn onderzocht in dit proefschrift, mijzelf en alles wat
mijn gebrekkige ik nodig had om dit werk te volbrengen. Vervolgens wil ik mijn ou-
ders danken, door wiens onwankelbare liefde, zorg en opvoeding ik hier heb kunnen
komen. Dan volgen mijn familie en vrienden: dank voor alle steun en interese, ook
al is mijn onderzoek als een andere planeet voor de meesten van jullie. Verder dank
aan alle collega’s op AMOLF voor het goede (kantoor)gezelschap en wederom voor
alle steun die ik heb mogen ontvangen, in het bijzonder toen ik kampte met pijnen
vanwege het vele computerwerk.

Tenslotte een speciaal dankwoord gericht aan Bela, mijn promotor: allereerst wil
ik je bedanken voor het vertrouwen dat je in mij hebt gesteld bij het vergeven van
de promotieplek waarin ik dit proefschrift heb geschreven. Dankzij jouw vaderlijke
bijstand heb ik deze promotie met succes kunnen voltooien. Je hebt mij gevormd
in het (natuur)wetenschappelijke denken, ik ben er trots op in deze zin jouw zoon te
zijn. Ik zie nu in dat de vereiste intellectuele zelfstandigheid in het wetenschappelijke
bedrijf in het bijzonder door een promotie kan worden verkregen: hierbij moet je uit
het nest worden gegooid opdat je kunt leren vliegen. Gelukkig was jij zo trouw om
wekelijks mijn ideeën aan te horen en mij bij te sturen waar nodig.

In de toekomst hoop ik wetenschappelijk actief te blijven, al zij het niet meer in het
puur natuurwetenschappelijke bedrijf.
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