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Chapter 1

Introduction



2 Introduction

1.1 Greenhouse gas mitigation and agricultural man-

agement

Agriculture plays an important role in global greenhouse gas (GHG) emissions. Ap-

proximately 10-12% of the total global anthropogenic emissions originate from agricul-

ture, around 40% of total methane (CH4) and 60% of nitrous oxide (N2O) emissions

(IPCC, 2019; Smith et al., 2014b; Tubiello et al., 2015; FAO, 2014; Frank et al., 2019;

Tubiello, 2019). Global GHG emissions from agriculture nearly doubled from 1961 to 2016

(Tubiello, 2019) and may continue to increase until 2050 (e.g. Bodirsky et al., 2014; Popp

et al., 2017; Alexandratos & Bruinsma, 2012). This growth in emissions is mainly a conse-

quence of (mineral and organic) fertilizer and enteric fermentation from livestock (Tubiello

et al., 2015). Therefore, agriculture can contribute significantly to achieve global targets

such as the climate change goals of the Paris Agreement (Frank et al., 2019; Wollenberg

et al., 2016). Several mitigation strategies have been identified to reduce emissions from

agricultural soils through improved soil management (IPCC, 2019; Burney et al., 2010;

Smith et al., 2007, 2014b; Paustian et al., 2016). An extensive body of field, laboratory

and modeling research over many decades demonstrates that agricultural management

can reduce GHG emissions and increase soil carbon (C) stocks (Paustian et al., 2016).

Examples of such management practices include: more precise application of nitrogen (N)

fertilizers to minimize excess N not used by the crop, hence reducing N2O emissions (e.g.

Millar et al., 2010; Huang & Tang, 2010), residue retention to promote C sequestration

(e.g. Farage et al., 2007; Smith, 2012), and alterations in drainage regimes in flooded rice

to limit the effects of CH4 production in low-oxygen environments (Smith, 2012). The

potential of such practices on GHG emissions is often tested at small scales (e.g. field

scales) and can give site-specific recommendations.

Knowledge about the potential of mitigation practices is especially important to

address questions such as: “how much can agricultural production be adjusted to con-

tribute to achieving global GHG mitigation targets?”, or: “which regions have the greatest

potential to reduce GHG emissions from agriculture through adjusted agricultural man-

agement?”, or: “what is the effect of agricultural production on GHG emissions at the

global scale?”. Such questions are commonly addressed using global ecosystem models.

Global ecosystem models are built by incorporating the process-understanding gained

in field- and laboratory-studies and can thus help to upscale findings to larger scales

and to experiment with altered environmental and management conditions. Moreover,

global ecosystem models can guide management decisions with respect to agricultural

based mitigation strategies. However, despite the many efforts that have been made to

test the potentials of such management practices, the potential to reduce GHG emissions

in agricultural production remains poorly understood (Del Grosso et al., 2012). Global

ecosystem models are limited to find the potential of agricultural based mitigation strate-

gies or impacts of agricultural management for three reasons (Erb et al., 2017; McDermid
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et al., 2017). First, the availability and quality of input data related to agricultural man-

agement typically decreases at larger scales. Knowledge gaps exists on the distribution, as

well as on the timing of numerous agricultural management practices (Erb et al., 2017).

For example, global spatially explicit information on fertilizer applications is limited and

uncertain, especially for livestock manure (Erb et al., 2017). Second, processes related

to agricultural management are currently underrepresented in global ecosystem models

(McDermid et al., 2017). Third, models work at a relatively coarse resolution (e.g. 0.5 de-

gree) whereas management and processes vary at short distances. Therefore, investments

are needed in data- and model development in order to accurately estimate the potential

of agricultural based mitigation (McDermid et al., 2017).

This thesis addresses the representation of processes related to agricultural manage-

ment in global ecosystem models. I will focus specifically on tillage and the processes

related to GHG emissions. Tillage is an important agricultural management practice that

is being applied on agricultural fields (White et al., 2010). Moreover, no-tillage is dis-

cussed as one of the promising, but uncertain, options to reduce GHG emissions (Powlson

et al., 2014). I will explore, extend and evaluate a global ecosystem model with tillage

for simulating its effect on N2O emissions. The analysis focuses specifically on N2O emis-

sions, as N2O is a potent GHG with a global warming potential of ∼300-fold that of CO2

(Solomon et al., 2007). The aim of this thesis is to contribute to the representation of

agricultural management in global ecosystem models, so that the potential of agricultural

based mitigation practices can be better quantified.

1.2 Agricultural management in global models

The primary objective of agriculture is the production of food, feed and fiber, employing a

range of management options (e.g. tillage, irrigation and fertilizer application). The com-

plex interactions within soils as well as between soils, plants and the atmosphere require

skilled and knowledgeable selection and combination of management options to maximize

crop productivity, but also lead to unintended side effects such as GHG emissions, nutrient

pollution and soil degradation. The different effects of agricultural management on both

crop productivity and GHG emissions can be assessed by models at local and regional

scales. Recently, additional crops, cropping cycles and agricultural management are in-

cluded in the global ecosystem models (see also: McDermid et al., 2017). Yet, continuous

development is needed to study the impacts of agricultural management on both soil (e.g.

mineralization) and plant processes (e.g. photosynthesis) (McDermid et al., 2017; Erb

et al., 2017). This first requires an understanding how agricultural management affects

these processes. The level of process understanding varies between agricultural manage-

ment practices. Poor process understanding exist for e.g., tillage, crop choice and residue

management (Erb et al., 2017) and global-scale model representation is often in form of

simple effect factors (e.g. Pugh et al., 2015). There is relative good understanding of how
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irrigation affects soil and plant processes (e.g. Erb et al., 2017). As a result, irrigation

practices are currently represented in several ecosystem models (e.g. Jägermeyr et al.,

2015; Guimberteau et al., 2012; Leng et al., 2013).

To study the effect of agricultural management on e.g. GHG emissions, soil C and

agricultural production, global ecosystem models apply different procedures. For instance,

the Tier 1 method of the Intergovernmental Panel on Climate Change proposes a single

emissions factor for fertilizer application to agricultural soils (IPCC: Eggleston et al.,

2006; Penman, 2000). Yet, a single emissions factor ignores that GHG emissions are also

driven by climate, soil conditions and other management practices. Nonlinear relation-

ships between those drivers have also been reported (Van Kessel et al., 2013; Van Groeni-

gen et al., 2010). For example, Van Kessel et al. (2013) found that N2O emissions from

fertilizer application are also depended on climate and tillage type. Moreover, Pihlatie

et al. (2004) found that N2O emissions respond differently to soil texture and soil mois-

ture. Other studies apply models that are originally developed for field level applications

at the global scale. Del Grosso et al. (2009) for instance, studied the effects of tillage on

soil C at the global scale using a field-scale model. However, applying field-scale models

to scales for which they are not developed might lead to inaccuracies (Ewert et al., 2005),

as other processes may play a role, and parameter calibration and input data are typi-

cally not available in similar quality at the global scale. For example, the scaling of the

decomposition rate used by Del Grosso et al. (2009) to account for tillage effects might

not be representative for all soil and climate conditions and may have to be calibrated to

local conditions. Yet, calibration targets at the global scale are typically not available.

Another option to include agricultural management in global models is to incorporate

processes related to management in a global ecosystem model based on the variables and

data that are available. For example, Waha et al. (2012) derived crop-specific sowing

dates from climatic variables only because a global dynamic dataset of this management

information is not available.

The most appropriate method to incorporate processes related to agricultural man-

agement in global ecosystem models depends on the research question. Research questions

related to scientific understanding, such as mitigation effects through agricultural man-

agement on the long-term, would require a more detailed description of processes, in order

to address questions about magnitude of responses, control of processes and interactions

(Jones et al., 2017). However, the level of detail of agricultural management can be or

should be represented to capture the most important responses, also depends on the avail-

ability of input and the model in which management is going to be incorporated.

Despite the different options to account agricultural management in global models, a

methodology for structured implementation of agricultural management in global models

is missing.
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1.3 Aggregation in global ecosystem models

Field-scale crop models, as well as global ecosystem models, require input data on climate,

soil properties and agricultural management. The input data at field scale can be very

detailed, as observational data are typically available. For instance, information on soil

layers may be specified as well as management information on e.g. the type, quantity and

timing of fertilizer applications (e.g. Del Grosso et al., 2012). Global ecosystem models

can typically only work with less detailed information for two main reasons.

First, at global scales, input data are available in less detail compared to plot- and

field-scale level (Erb et al., 2017; Waha et al., 2015). For example, at the global scale there

is only general information available on fertilization (e.g. Mueller et al., 2012; Potter et al.,

2010), which is characterized by gaps and uncertainties (Erb et al., 2017). For instance,

Mueller et al. (2012) used data from a variety of different sources (e.g. FAO/IFA/IFDC,

2003) to collect national and sub-national data on fertilizer application rates for crops.

They found that not all countries reported data on their fertilizer application rates. To

fill these data gaps, an income-based extrapolation technique was used, which they found

to be of lower quality of information. Moreover, the data do not distinguish between

different types of N and does not include information when the fertilizers are applied. As

a result, general assumptions have to be made about the type, and timing of fertilizer

applications.

Secondly, aggregation of input data can be necessary in order to meet the required

spatial resolution of global ecosystem models. Global ecosystem models are often used for

gridded simulations with a spatial resolution of 0.5◦ x 0.5◦ (which is equivalent to approx-

imately 55 x 55 km2 at the equator) (e.g. Schaphoff et al., 2018a; Piao et al., 2007). To

date, there have been several efforts in the development of global soil databases that come

in a finer resolution than the resolution typically used in global ecosystem models. For

example: the Harmonized World Soil Database (HSWD; FAO & ISRIC, 2012), SoilGrids

(Hengl et al., 2014) and S-World (Stoorvogel et al., 2017) come at a spatial resolution of

30 arc-sec (equivalent to approximately 1 km x 1 km at the equator). This means that,

within those large grid cells, various soil texture classes or combinations of soil parameters

may occur (Folberth et al., 2016). To aggregate the soil input data, the soil texture class

within the grid cell is either be represented as i) using the representative soil (e.g. the

dominant type) or ii) by conducting simulations with different soil representations and

aggregating results in the post-processing.

Aggregation of input data may be a significant contributor to the overall uncertainty

for agricultural impact assessments. In order to evaluate the effects of agricultural man-

agement on GHG emissions or soil C, these contributions in uncertainties have to be taken

into account.
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1.4 Thesis Overview

In order to better estimate the potential of how much agricultural based mitigation can

be achieved, processes related to agricultural management have to be better represented

in global ecosystem models. To represent agricultural management in global ecosystem

models, I extend and evaluate in this thesis the global ecosystem model LPJmL to ex-

plicitly represent tillage for simulating its effect on N2O emissions. LPJmL has been

evaluated extensively and has demonstrated good skills to reproduce C, water and N dy-

namics in both agricultural and natural vegetation on different scales. However, LPJmL

does not include the effects of tillage (Von Bloh et al., 2018a; Schaphoff et al., 2018a).

The following research questions are addressed in this thesis. Their mutual relationship

is depicted in Figure 1.1.

1. Can the global ecosystem model LPJmL be extended by a representation of tillage

management to study its effects in particular on N2O emissions?

2. Can the effects of tillage on N2O emissions be captured at the global scale?

3. How much uncertainty is introduced by coarse representations of soil heterogeneity

into global simulations of soil processes on cropland, including N2O emissions?

1.5 Thesis Outline

These research questions are addressed in the following four chapters (Chapter 2 to 5) and

the main findings of the different studies are provided in Chapter 6. The chapters have

been published or have been prepared for submission to peer reviewed journals, which

mean that they can be read independently. Therefore, some repetition occurs throughout

this thesis.

Figure 1.1 provides an overview of the outline of the thesis and indicates the topics

discussed in the chapters. In Chapter 2 options on how to model tillage effects on N2O

emissions at the global scale are investigated. Therefore, the availability of process knowl-

edge to model tillage effects on N2O emissions in field-scale models is analyzed. Moreover,

the data requirements to model these processes are matched to the data availability at

the global scale. In Chapter 3, the global ecosystem model is extended with tillage

related processes. The extended model is evaluated by comparing simulation results with

published meta-analyses on tillage effects. In Chapter 4, the extended model is evalu-

ated at four different experimental sites across Europe and the USA. Here, the focus is

on the effects of tillage on N2O emissions. Moreover, the effect of the generalization of
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agricultural management data on the simulated results is studied. Chapter 5 focuses

on the effects of different ways on representing soil heterogeneity on simulated soil C and

N2O emissions.

Finally, Chapter 6 discusses the main findings of the thesis, insights obtained during

the research, and directions for improvements for representations of agricultural manage-

ment in global models.

Figure 1.1: Thesis outline, indicating the logical structure of the research design and the

corresponding chapters in which the different topics are studied and discussed.





Chapter 2

How to incorporate tillage in global

ecosystem models?

This chapter is based on:

Lutz, F., Stoorvogel, J. J., and Müller, C., Options to model the effects of tillage

on N2O emissions at the global scale, Ecological Modelling, 392, 212–225, 2019
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Abstract

Strategies on agricultural management can help to reduce global greenhouse gas (GHG)

emissions. However, the potential of agricultural management to reduce GHG emissions

at the global scale is unclear. Global ecosystem models often lack sufficient detail in their

representation of management, such as tillage. This paper explores whether and how

tillage can be incorporated in global ecosystem models for the analysis of nitrous oxide

(N2O) emissions. We identify the most important nitrogen processes in soils and their

response to tillage. We review how these processes and tillage effects are described in field-

scale models and evaluate whether they can be incorporated in the global-scale models

while considering the data requirements for a global application. The most important

processes are described in field-scale models and the basic data requirements can be met

at the global scale. We therefore conclude that there is potential to incorporate tillage

in global ecosystem models for the analysis of N2O emissions. There are several options

for how the relevant processes can be incorporated into global ecosystem models, so

that generally there is potential to study the effects of tillage on N2O emissions globally.

Given the many interactions with other processes, modelers need to identify the modelling

approaches that are consistent with their modelling framework and test these.
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2.1 Introduction

Agriculture is responsible for approximately 14% of the global greenhouse gas (GHG)

emissions: carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) (Carter et al.,

2007; Del Grosso et al., 2009; Smith et al., 2009). Agriculture-based mitigation strategies,

such as climate smart agriculture and the 4‰initiative, include soil management strategies

that can substantially affect GHG emissions (Lipper et al., 2014; Minasny et al., 2017).

These management strategies include the reduction of nitrogen (N) fertilizers, cover crops,

rotations with legume crops, and reduced or no tillage (Paustian et al., 2016). The effect of

management on GHG emissions has been investigated in many field and modelling studies

(e.g. Jian-She et al., 2011; Kessavalou et al., 1998; Koga et al., 2004; Lee et al., 2009;

Loubet et al., 2011). At the global scale, GHG emissions and their effects are estimated

by global ecosystem models (Müller et al., 2017). However, these models typically lack

the ability to evaluate the effect of management on GHG emissions in sufficient detail,

implying that the models cannot evaluate the proposed mitigation strategies. A good

example is that many of the global ecosystem models, which are used to simulate the

terrestrial carbon and nitrogen cycles, do not deal with tillage practices, whereas zero

tillage is proposed as one of the main measures to reduce N2O emissions and increase

carbon sequestration (McDermid et al., 2017).

Despite the limitations of global ecosystem models in representing the effects of

agricultural management, these models are used to evaluate agricultural GHG emissions.

Studies bypass these limitations through different procedures. Some assume a simple

response effect of management on GHG emissions. For example, the Tier 1 method of

the Intergovernmental Panel on Climate Change suggests a single emission factor across

all fertilizer applications to agricultural soils (Buckingham et al., 2014; Sozanska et al.,

2002). However, a single emission factor ignores that the effects of management on GHG

emissions depend on e.g., soil conditions and climate (Butterbach-Bahl et al., 2013; Oertel

et al., 2016). Other studies apply models, originally developed for field level applications

(field-scale models), at the global scale (Del Grosso et al., 2009). This procedure has

several limitations. Errors may be introduced when models are used at scales or climatic

conditions for which they were not developed (Harrison et al., 2000). Moreover, detailed

information for model initialization, calibration and input for field-scale models is typically

not available at the global scale. As a third option, processes related to soil management

are incorporated in global ecosystem models considering the variables and data available

within the model. For example, Waha et al. (2012) derived crop-specific sowing dates from

climatic variables only because a global dynamic dataset of this management information

is not available.

Despite uncertainties, global ecosystem models are an important tool that can be

used to analyze, quantify and project relevant processes to study interaction between

plant-soil-atmosphere under changing practices and conditions. Tillage practices can af-
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fect these interactions as a result by altering soil properties (e.g., soil moisture). By

understanding and incorporating relevant processes related to tillage and N2O emissions

into models, changes in practices and conditions could be analyzed, whereas simple re-

sponse effects of management (e.g., Tier 1) cannot.

However, global ecosystem models now assume a standard increase in mineralization

due to tillage (e.g. Pugh et al., 2015) or they ignore the effect of tillage (e.g. Bondeau

et al., 2007). We aim to identify processes related to tillage that could be incorporated in

global ecosystem models by using the existing modelling approaches and evaluating their

suitability for the analysis of N2O emissions.

This article aims to explore the options to better represent tillage impacts on N2O

emissions in global ecosystem models in 3 consecutive steps: 1) identification of relevant

processes, 2) reviewing how these processes are described in field-scale models, and 3)

evaluating the options to incorporate the process in global-scale models. For this, we

analyze how tillage can be included in global-scale models to better estimate options to

reduce agricultural N2O emissions. If tillage were included in global-scale models, it would

allow for the selection and promotion of proper tillage systems (e.g., no-tillage or reduced

tillage) to decrease GHG emissions (e.g. Paustian et al., 2016). The study strongly builds

on reviews that study tillage effects on soil properties, carbon sequestration and tillage

models (e.g. Maharjan et al., 2018; Strudley et al., 2008; Waha et al., 2012).

2.2 Material and methods

At the global scale, the impact of tillage on N2O emissions can only be represented with

reduced complexity, because detailed information for initialization, parameterization and

input as often measured for field-scale applications is not available at the global scale

(e.g. Deng et al., 2016; Grant & Pattey, 2003; Molina-Herrera et al., 2016). Modelling

the impact of tillage on N2O emissions in reduced complexity can be achieved by focusing

on the most important processes. The various processes that affect N2O emissions there-

fore need to be analyzed for relevancy, complexity and data requirements. This analysis

contains three different steps (Figure 2.1):

1. Inventory of processes with all N processes relevant to N2O emissions.

2. Analysis of the collected processes with respect to:

2.1. How important is a particular process, what are the drivers of the processes

and how are they affected by tillage?

2.2. How are tillage and N processes being represented?

2.3. What are the data requirements?

3. Evaluation of ability to model tillage effects on N2O emissions at the global scale.
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Figure 2.1: The analysis consists of three steps on how tillage can be incorporated into

global ecosystem models for the analysis on N2O emissions.

2.2.1 Inventory of processes (Step 1)

For the analysis of the N2O producing processes, all N processes that are relevant were

assembled and summarized as well as all information that is needed in the further analysis,

i.e. the contribution (importance) of an N process to N2O emissions, as well as the role

of tillage for these processes, how processes are described in models as well as their data

requirements.
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2.2.2 Analysis of processes (Step 2)

2.2.2.1 Importance of N processes (Step 2.1)

The importance of N processes was evaluated in the context of the particular research

question of interest. A true assessment to the importance requires the implementation

and testing of the processes in a global ecosystem model. Here, we carried out an ex-

ante assessment based on global estimates of N fluxes found in literature to assess the

importance of each process. A process was considered to be important if: 1) the flux of

the process was relatively large, which is -admittedly- rather a subjective choice, and 2)

it was a primary process.

To determine how the effects of tillage on N2O emissions can be modeled, we con-

sidered the processes in which N2O is actually formed (nitrification and denitrification:

primary processes) as well as the processes that affect the performance of these primary

processes (secondary processes). These are, for instance, all processes that affect the

availability of the primary material and the environmental conditions (drivers) that de-

termine the dynamics of the primary processes. In order to incorporate tillage effects into

a global ecosystem model, we thus ensured that the mechanisms by which tillage affects

the process drivers were also included.

2.2.2.2 Processes described in models (Step 2.2)

After having identified N processes, information was collected on how models describe

them. We focused on models that have been cited often, used in environmental studies

and whose performance has been tested and evaluated. Moreover, preference was given to

models that include all relevant soil N dynamics and tillage. In order to link the identified

processes to how models describe them (modeling approaches), the models were analyzed

on: 1) which processes are included and how they are represented, 2) which drivers are

considered, and 3) how tillage affects these processes.

2.2.2.3 Data requirements (Step 2.3)

Any process representation in a model implies additional data and parameter requirements

for the application at the global scale. The data can either be available from external

sources or can be computed within the model. In this step, the data requirements to model

a process were analyzed as well as management related data, such as tillage type and

timing. Here, the spatial- and temporal resolution to represent a process was considered

as well as of the global ecosystem model into which the processes are to be incorporated.

Most global ecosystem models run at a spatial resolution of 0.5◦ or finer and with a daily

time step. The data for the consideration of a process therefore had to be available at a

minimum spatial resolution of 0.5◦. The required temporal resolution of the data depends

on the variability of the data to drive a process described in a model. Tillage practices,
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for example, do not occur on a daily basis but rather once or twice a year. Therefore,

we did not necessarily require data on a daily resolution but at the appropriate time

scale or with explicit timing information (Hutchings et al., 2012). Depending on the

global ecosystem model, some data are calculated endogenously whereas others have to

be supplied externally.

2.2.3 Evaluation (Step 3)

The structured analysis of the importance, availability of processes described in models

and data requirements of processes allowed for an evaluation if and how tillage can be

incorporated in global ecosystem models. It also enabled an assessment of possible caveats,

where e.g., individual processes had to be combined from different models. This could

yield inconsistencies in approaches and/or parameterization or where quality of available

data does not match the quality requirements of the process formulation. The analysis of

available options guided alternative implementation strategies and the design of sensitivity

studies in the evaluation of the model implementation. The analysis of the ability to model

a particular aspect of agricultural management at the global scale can help to identify the

suitable scope of model application and interpretation.

2.3 Results

2.3.1 Inventory of processes (Step 1)

The addition, transformation through internal processes, and losses of N are the main

elements of soil N dynamics (Fageria & Baligar, 2005). The main processes of these el-

ements are depicted in Figure 2.2. Nitrogen is added to the soil through N-fertilization

(mineral and organic), atmospheric deposition, biological N fixation and residue input.

Fertilization, residue input and, in part, biological N fixation are management related

processes. N-addition can be either in organic forms (residue input, organic fertilization)

or in inorganic forms (mineral fertilization, atmospheric deposition and biological N fix-

ation). After N additions, N is transformed through mineralization, immobilization and

nitrification. Nitrogen can be lost from the soil to the atmosphere, through volatilization,

denitrification and nitrification, to the groundwater through leaching and to surface water

by erosion and surface runoff. From the soils’ perspective, also the uptake by the plants

is a form of N loss.

2.3.2 Analysis of processes (Step 2)

2.3.2.1 Importance of processes (Step 2.1)

In Table 2.1 and Figure 2.2, the main addition and loss fluxes of N into and from agri-

cultural soils are shown. These numbers are based on global estimates from different



16 How to incorporate tillage in global ecosystem models?

literature sources. The primary processes nitrification and denitrification are regarded as

important processes, since they result in the formation of N2O. Inorganic N fertilization is

the largest flux and, therefore, the most important secondary process. This is followed by

biological N fixation and organic fertilizers. Plant uptake is the major loss flux of N from

soils. Since these fluxes are relatively large, these processes are essential to incorporate

in any simulation of N2O emissions. The sizes of fluxes can also be influenced by tillage

practices (see e.g. Minoli et al., 2015).

Tillage affects N processes and, therefore, N2O emissions mainly indirectly, i.e., by

affecting the drivers rather than the processes themselves. Table 2.2 provides an overview

of the drivers of relevant processes that were identified in the steps above. Of the N

addition processes, N-fertilization and residue input are both determined by management

decisions. The amount of N that is added to the soil depends on the amount of N-

fertilizer and/or residue and its incorporation into the soil. Biological N fixation by plant

symbioses is partly driven by management decisions (crop choice), and partly by soil

conditions (Brady & Weil, 2008). High levels of available N or low levels of phosphorus

in the soil tend to depress biological N fixation (Brady & Weil, 2008; Smith, 1992). The

atmospheric deposition of N depends on the location and on the deposition of rain, snow

and dust (Brady & Weil, 2008). It is much higher in areas with high emissions, as in

concentrated animal farming areas (through volatilization of mineral N).

Transformation of N through mineralization, immobilization and nitrification is con-

trolled by microbes whose activity is driven by the amount of substrate in the soil (organic

and inorganic N), soil temperature, soil moisture, soil oxygen and the soil pH (Brady &

Weil, 2008). The activity of the microbes is also driven by the size and complexity of

organic N, often indicated as the ratio of carbon (C) or lignin to N (lignin:N or C:N)

during mineralization and immobilization. Losses from the soil occur to the atmosphere,

through volatilization, nitrification and denitrification, to the groundwater through leach-

ing, to surface water or other locations through erosion, or to the plant through plant

uptake. The most important drivers that influence volatilization include the soil acidity

(pH), cation exchange capacity (CEC), temperature, moisture content, weather condi-

tions and the amount of NH+
4 at the soil surface (Sigunga et al., 2002). Denitrification

is also regulated by microbial organisms and is therefore driven by the presence of NH−
3 ,

soil temperature, soil moisture and additionally, the presence of dissolved C. N-leaching

depends on the NH−
3 content of the soil and the percolation of water, which again depends

on the water influx (from precipitation, irrigation and snowmelt), soil moisture, texture,

and soil structure of the profile (Brady & Weil, 2008). The slope gradient, management

(tillage type, residue management and cover crop), and the amount and intensity of pre-

cipitation are important drivers for erosion (Kinnell, 2010; Li et al., 2004). N-uptake by

the plant depends on crop growth, soil moisture, root length, root length density and

available N in the soil (James & Richards, 2006).
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Tillage affects some of these drivers and, therefore, processes. Tillage has a direct

impact on the physical properties of the soil, such as bulk density and porosity (Abdalla

et al., 2007; Strudley et al., 2008) Tillage-driven changes in physical properties have

pronounced effects on soil moisture and soil temperature. Soil moisture and temperature

will affect several processes. The incorporation of crop residues or fertilizers through

tillage changes the distribution of the different N forms in the profile. The soil moisture

and soil temperature, together with the amount of N in the soil profile will therefore affect

different N processes in agricultural soils and therefore N2O emissions. As shown in Table

2.2, tillage affects almost all N processes.

Figure 2.2: The main elements of soil N dynamics: the addition, transformation and losses

of N. The thickness of the arrows represents the relative size of the fluxes.
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Table 2.1: Estimates for the global fluxes of nitrogen from and to agricultural soils in

TgNY r−1 from different literature sources. No information was available on the internal

processes.

Process (% of input/output) Tg N yr−1 Reference

Additions

Fertilization: Inorganic N 78 Smil (1999)

(∼ 52%) 85 Nishina et al. (2017)

78 Bodirsky et al. (2012)

Fertilization: Organic N 17.3 Liu et al. (2010)

(∼ 13%) 24 Bodirsky et al. (2012)

N2 Fixation 22 Liu et al. (2010)

(∼ 17%) 30 Billen et al. (2013)

N deposition 15 Bodirsky et al. (2012)

(∼ 11%) 20 Smil (1999)

14.5 Liu et al. (2010)

Residue input 11 Liu et al. (2010)

(∼ 8%) 14 Smil (1999)

Losses

Volatilization 11 Smil (1999)

(∼ 6%)

Denitrification N2 14 Smil (1999)

(∼ 16%) N2O 4 Smil (1999)

6 Potter et al. (1996)

NO 4 Smil (1999)

10 Potter et al. (1996)

Nitrification NA NA

Plant uptake 85 Smil (1999)

(∼ 52.0) 81 Liu et al. (2010)

Leaching 23 Liu et al. (2010)

(∼ 12%) 17 Smil (1999)

Erosion 20 Smil (1999)

(∼ 14%) 24 Liu et al. (2010)

2.3.2.2 Processes described in models (Step 2.2)

The models selected for the literature review have often been cited, applied, and evaluated

in agricultural studies. Additionally, they include both N dynamics and tillage. Table

2.3 lists the models with their main reference and validation references. Some of these

models, like DSSAT and EXPERT-N, make use of other models for the simulation of

certain processes. For example, the N dynamics in DSSAT can be based on the approaches
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Table 2.2: Tillage affects distribution of organic material as well as mineral N in the soil

profile and the soil properties that drive N processes. This table indicated which N processes

are affected by tillage.

Process Drivers Tillage effects

Additions

Mineral fertilization N fertilization Incorporation into soil. Reduces volatilization. Af-

fects moisture, temperature, increases soil N. Am-

biguous response for internal processes.

Organic fertilization N fertilization Incorporation into soil. Reduces volatilization. Af-

fects moisture, temperature, increases soil N. Am-

biguous response for internal processes.

N2-Fixation Crop choice, fertil-

ization, Soil N con-

tent, soil moisture

Affecting moisture, temperature, soil N. Ambigu-

ous response.

N-deposition Deposition

(rain, snow, dust)

Not affected

Residue input Residue removal,

incorporation

Incorporation into soil. Reduces volatilization. Af-

fects moisture, temperature, increases soil N. Am-

biguous response for internal processes.

Losses

Volatilization pH, CEC, tempera-

ture, moisture, oxy-

gen, weather condi-

tions, NH+
4

Reduced by tillage if additions are incorporated.

Denitrification temperature, mois-

ture, oxygen,

dissolved carbon,

NO−
3

Affects moisture, temperature. Ambiguous re-

sponse.

Nitrification temperature, mois-

ture, oxygen, NO−
3

Affects moisture, temperature. Ambiguous re-

sponse.

Plant uptake plant N demand,

moisture, Soil N

content

Affects moisture, temperature. Ambiguous re-

sponse.

Leaching Texture, structure,

moisture, NO−
3

Affects moisture, temperature. Ambiguous re-

sponse.

Erosion Slope length, slope

steepness, manage-

ment, Wind speed,

rainfall amount and

intensity

Increases erosion.

Internal process

Nitrification temperature, mois-

ture, oxygen, NO−
3

Affects moisture, temperature. Ambiguous re-

sponse.

Mineralization temperature, mois-

ture, oxygen, C:N

Affects moisture, temperature. Ambiguous re-

sponse.

Immobilization C:N Not affected
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of either CERES or CENTURY. The N dynamics In EXPERT-N can be based on the

approaches of LEACHN, CERES, SOILN, Daisy and Hydrus.

The models differ slightly in the number of C and N pools (Table 2.4) but can be

generally distinguished into organic-and inorganic pools. The organic pools consist of the

fresh organic matter (OM)− and soil organic matter (SOM) pools, (e.g. labile, stabil, and

active pool). The pools are characterized by the C:N or lignin:N ratio and the turnover

time. The inorganic matter pools represent concentrations of NH+
4 and NO−

3 . Typically,

all pools are represented in all soil layers (e.g., one NH+
4 pool per layer), but models differ

in the number and thicknesses of layers represented.

Table 2.3: Models selected for the analysis with its main reference, model version and

reference to a validation study.

Model Scale Version Main references Validation

CENTURY Plot, field, regional 5.0 Metherell et al.

(1993)

Álvaro-Fuentes et al.

(2012)

RZWQM2 Plot 2.0 Ahuja et al. (2000) Cameira et al. (2007)

DNDC Field, regional 95.0 Li (2000) Giltrap

et al. (2010)

Cui et al. (2014)

Daisy Field 5.21 Abrahamson et al.

(2005)

Hansen et al. (2012)

EPIC Field 0810 Izaurralde et al.

(2006) Williams

et al. (2008)

Chung et al. (1999)

CropSyst Field 4.19.06 Stöckle et al. (2003)

Stöckle et al. (2010)

Pannkuk et al. (1998)

DSSAT Field, regional 4.5 Jones et al. (2003)

Godwin & Singh

(1998)

Ngwira et al. (2014)

STICS Plot 5.0 Beaujouan et al.

(2001) Brisson

et al. (1998)

Coucheney et al.

(2015)

DAYCENT Field, regional, global - Parton et al. (1998) Abdalla et al. (2010)

EXPERT-N Field 3.0 Priesack (2006) Priesack (2006)

LPJ-GUESS Regional, global - Olin et al. (2015a)

Smith et al. (2014a)

Olin et al. (2015b)

Fertilization

The models describe fertilization in similar ways (Table 2.4). Nitrogen is added
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to the soil surface and can be incorporated to deeper layers by tillage. The timing of

fertilization is either predefined or can be modelled based on plant N demand. The depth

to which the fertilizer is incorporated depends on the tillage type. Inorganic N is added

to the actual NH+
4 and NO−

3 pool. Organic N is added to the fresh OM pools.

Crop residue incorporation

The models describe crop residues incorporation in a similar way (Table 2.4). A

fraction of the crop residues is incorporated into the soil. The size of the fraction as well

as the depth of incorporation depends on the tillage type. Based on its C:N ratio, the N

contained in crop residues is then allocated to one of the fresh OM pools which is then

subject to mineralization.

Biological N fixation

In the various models, biological N fixation in models is 1) not described, 2) modelled

as a function of plant demand, 3) as a function of evapotranspiration, or 4) modelled

explicitly (Table 2.4). Biological N fixation is not described in DNDC, DSSAT and in

EXPERT-N. In CENTURY, RZWQM, Daisy, and DAYCENT it is modelled as a function

of plant demand. Thereby, the biological N fixation is assumed to occur only when there

is insufficient mineral N to satisfy the plant N requirement and if the crop is able to fix N.

In LPJ-GUESS, biological N fixation is modelled as a function of evapotranspiration (see

also Cleveland et al., 1999). The process is modelled explicitly in EPIC and CropSyst by

calculating the biological N fixation rate taking into account the growth stage of the plant,

the soil water content and the soil N content. By considering the growth stage, biological

N fixation is inhibited in young plants prior to development of functional nodules and

in old plants with senescent nodules (Patterson & LaRue, 1983). When the soil water

content is below a critical level and/or the soil N level above a certain level, the biological

N fixation rate is also reduced. In CropSyst, the soil temperature is used to limit the

biological N fixation both for too low and too high temperatures.

Mineralization

Mineralization is described according to the same principles in the studied models

(Table 2.4) but the drivers differ. The mineralization rate of N depends on the mineral-

ization rate of C and the C:N ratio of the OM. The C and N contained in the OM are

split into different SOM pools. The C contained in those pools is mineralized which is

described by first-order kinetics with high rate constants for the microbial pool and low

rate constants for the passive pool. Although, the rate constant can be calculated based

on the C:N ratio (Shaffer et al., 2001), the rate constants are predefined in the considered

models. The mineralization rates of C are then reduced by non-optimal soil conditions,

such as soil moisture and soil temperature. In most of the models the soil texture also

influences the turnover rate. In those models (e.g., CENTURY and Daisy) an increase in

clay content in the soil decreases the mineralization rate, mimicking physical protection
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against mineralization of OM. In CropSyst, the mineralization rate of C is reduced only

by soil texture as described before. The pH and the population size of heterotrophic

microbes are also included as explicit drivers of mineralization in RZWQM2. In EPIC,

the bulk density is included in the mineralization rate. In EPIC the bulk density –and

therefore the mineralization rate- is affected when tillage occurs. The mineralization of N

occurs when the OM is respired or transferred from a donor pool to a receiving pool with

a higher C:N ratio. As shown in Table 2.5, mineralization increases the soil mineral N

pool, which can be both NH+
4 and NO−

3 (e.g., CENTURY and EPIC) or NH+
4 specifically

(e.g., DNDC and Daisy).

Immobilization

The models describe N−immobilization according to the same principles (Table 2.4).

As the opposite to mineralization (see also above) immobilization of N occurs when the

C:N ratio of the receiving pool is lower than the C:N ratio of the donor pool. This will

result in a reduction of the mineral N pool.

Nitrification

Nitrification in models is 1) not included, 2) a fixed fraction of mineralization, 3)

modelled explicitly, but only simulating total gaseous losses to the atmosphere without

further sub-division or 4) modelled explicitly, with explicit simulation of different gaseous

loss fluxes, including N2O (Tables 2.4 and 2.5). Nitrification is not explicitly described

in CENTURY. In LPJ-GUESS a fixed fraction of mineralization (one percent) is lost to-

wards the atmosphere, without further specifying the actual chemical compound of that N

flux. In the other models reviewed here, nitrification is modelled explicitly. Nitrification

is mostly modelled by a given maximum nitrification rate, which is then reduced by en-

vironmental factors. The environmental factors considered are soil moisture, soil oxygen

and soil temperature in all models, and sometimes soil pH (except Daisy and CropSyst).

RZWQM2 and DAYCENT also model the growth and death of nitrifying bacteria and

then calculate the rate of nitrification based on this population. The CEC is included

for the simulation of nitrification in EXPERT-N and its sub model (LEACHN), in order

to take adsorption of NH+
4 to clay particles into account. In STICS, nitrification is only

modelled in tropical regions, whereas it assumes that NH+
4 is directly transformed into

NO−
3 in non-tropical regions. The STICS implementation assumes that this is not always

the case in tropical environments because the pH of the soils combined with high temper-

atures and low water contents in the topsoil slow nitrification down. The DNDC model

uses a more chemistry-based approach with an integrated Nernst and Michaelis-Menten

equation to track microbial activities. Therefore, first a redox potential is calculated

based on concentrations of the dominant oxidants (O2) and reductants existing in the soil

liquid phase. The redox potential is then integrated with the Michaelis-Menten equation

in which the reaction rate is calculated by including DOC and the oxidant concentration.

The integrated equation can then track the interaction between redox potential dynamics
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and a microbe-mediated redox reaction in the soil. In most of the models the loss of

N2O during the process is also modelled (Table 2.5). Except for RZWQM2 and some sub

models of EXPERT-N (CERES and LEACHN), these losses are modelled as a fixed pro-

portion of nitrification. The quantity of the proportion is not always the same; in DNDC

the proportion is 0.24%, whereas in DAYCENT the proportion is 2% and in EXPERT-N

1%. In RZWQM2, the N lost as N2O in the nitrification also depend on the soil moisture.

In EPIC and DSSAT the loss of N2O is not explicitly considered but included in an overall

gaseous loss flux.

Volatilization

Volatilization is described in most of the models, ranging from relative simplistic

to more detailed approaches (Table 2.4). In general, the simulation of volatilization can

be categorized into four categories; 1) not included, 2) estimated simultaneously with

nitrification, 3) estimated proportional to mineralization, and 4. modelled explicitly.

Volatilization is not modelled in CENTURY, STICS, DAYCENT or LPJ-GUESS. In

EPIC, the process is estimated simultaneously with nitrification. In Daisy, volatilization

is modelled as a fixed proportion (20%) of the applied mineral N fertilizer that is lost to

the atmosphere. In the other models, the process is modelled explicitly. The drivers of

these processes are different per model. In CropSyst, DNDC and DSSAT, the soil pH

and CEC are the main drivers of volatilization. In these models, the Langmuir isotherm

equation is used to firstly quantify the concentration of the adsorbed NH+
4 distributed

between its free ion phase and adsorbed phase based on the isotherm equilibrium (see e.g.

Li et al., 2006). The CEC is used as an indicator to the soil’s potential for adsorption

(see e.g. Li et al., 2006). In DNDC and DSSAT, the volatilization rate is also affected by

soil temperature. In DNDC, also the moisture and clay content of the soil determine the

volatilization rate. Wind speed is only considered in RZWQM2, where the volatilization

flux is proportional to the wind speed.

Denitrification

Denitrification in the models is 1) not included, 2) a function of mineral N remaining

after plant uptake, 3) modelled explicitly but only simulating total gaseous losses to the

atmosphere without further subdivision, or 4) modelled explicitly with explicit simulation

of different gaseous loss fluxes, including N2O (Tables 2.4 and 2.5). Denitrification is not

described in LPJ-GUESS. In CENTURY, the process is a function of mineral N remaining

after plant uptake. In the other models, denitrification is modelled explicitly. Some of

these models specify the N2O emissions (RZWQM2, DNDC, CROPSYST, STICS, DAY-

CENT, EXPERT-N), whereas in other models the combined gaseous N (N2+NO+N2O)

emissions are modelled (Daisy, EPIC, DSSAT, sub models of EXPERT-N). Most of these

models simulate denitrification based on soil temperature, soil moisture and labile C. La-

bile C is not included in STICS and in one of the sub models of EXPERT-N (LEACHN).

The soil pH and microbial activity are included as drivers of denitrification in RZWQM2
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and DNDC. The DNDC model uses a more chemistry-based approach in which both the

redox potential and Michaelis-Menten equation to track the microbial activity (see e.g. Li,

2007). In STICS, the soil bulk density is also taken into account. In this model, the N2O

emissions are a fixed proportion of the denitrification flux, whereas in the other models

labile C and soil moisture also affect the simulation of the N2O flux. RZWQM2, CropSyst

and DAYCENT use the same approach, but here the ratios of N2 to N2O and NO to N2O

are estimated and modified based on soil moisture, labile C and NO−
3 concentration. More

details are provided by Del Grosso et al. (2000). In RZWQM2 the N2O diffusion within

the soil is also accounted for by adding the soil depth into their equation (Gillette et al.,

2017). In EXPERT-N, N2O emissions can either be distinguished as a proportion of N2,

or it can be distinguished as a function of soil moisture and so il temperature. Daisy,

EPIC, DSSAT and some sub models of EXPERT-N (SOILN AND CERES) simulate den-

itrification explicitly in terms of the combined gaseous N (N2+NO+N2O) emissions based

on soil moisture, soil oxygen and labile C.

Plant uptake

The uptake of N from the inorganic N pools by a plant can be divided in four

categories: 1) not described, 2) modelled as a function of plant demand and the potential

uptake of N, 3) modelled as a proportion of plant transpiration and as a function of

plant demand and the potential uptake of N, or 4) as a function of plant demand and

the potential uptake of N and the movement of N from the soil to the root surface

(Table 2.4). The uptake of N by plants is not explicitly described in the documentation

of CENTURY and DAYCENT. In DNDC, EPIC, DSSAT, EXPERT-N (and sub model

LEACHN), and LPJ-GUESS, the uptake of N is modelled as a function of plant demand

and the potential uptake of N. The plant N demand depends thereby on the growth stage

and its corresponding N content of the plant. The potential uptake of N depends on the

supply soil mineral N in the soil profile in all models and on the soil moisture in most of

the models (except for LPJ-GUESS). Additionally, the soil temperature, the root length

density, the water uptake rate and the transpiration of the plant are taken into account

in some of the models (see Table 2.4). In RZWQM, the N uptake of the plant is modelled

in similar matters. However, the N uptake in this model is not the minimum of, or the

difference between potential uptake and plant demand, but a Michaelis-Menten equation

is used, which requires information on the maximum uptake rate of mineral N (constant)

and soil mineral N content in the profile (see also RZWQM Development Team et al.,

1998). Additionally, a ”passive” N uptake is taken into account. For this, the N uptake is

calculated proportionally to the transpiration rate of the plant. In CropSyst, Daisy and

STICS also the transport of N from the soil to the root surfaces is calculated through

convection and diffusion as shown by (see also Hansen et al., 1990). The soil N supply

in each soil layer is thereby determined by the transport of mineral N from a given soil

location to the nearest root. The actual uptake of N by the plant is then calculated

by a Michaelis-Menten equation, which requires a maximum uptake rate of mineral N
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(constants), the root density and rooting depth (CropSyst and Daisy). In STICS the

minimum of potential uptake and plant demand is considered as the actual uptake.

Leaching

The models describe leaching as the movement of dissolved inorganic N with the soil

water movement. The dissolved inorganic N is mostly described in the form of NO−
3 , and

leaching constitutes a loss of NO−
3 from the corresponding pool to lower layers or to the

aquifer. Daisy and EXPERT-N (including sub models) consider NH+
4 explicitly (Table

2.5). The main difference between the models is how the soil water movement is computed

(Table 2.4). The movement is modelled by using either the capacity soil water balance

approach (CENTURY, EPIC, STICS, DAYCENT and LPJ-GUESS) or the more detailed

mechanistic Richard equation (RZWQM2, EXPERT-N and sub models), or a combination

of the two (DNDC, Daisy, DSSAT, EPIC and LPJ-GUESS). In the capacity approach,

the water infiltrating into a soil layer fills the compartment to field capacity. When the

soil water exceeds field capacity, the water percolates to the next soil layer and/or goes

to runoff (EPIC and LPJ-GUESS). The leaching flux is that N that percolates out of

the lowest layer or goes to runoff (Del Grosso et al., 2008). The nitrate contained in the

pool is assumed to be dissolved completely in the water of the soil layer; the transport

rate of N out of a soil layer is calculated by multiplying the percolation rate out of the

soil layer by the concentration of nitrate in the soil layer. In DSSAT and STICS only

a fraction of the NO−
3 can be leached, mimicking the adsorption of NO−

3 to the soil

and the prevention of this fraction from being transported to lower soil layers (see also

Van der Laan et al., 2014). In RZWQM2, CropSyst and EXPERT-N (and sub models)

the Richard equation (Richards, 1931) is used for simulating the movement of water,

the transport is driven by potential gradients that develop between soil layers due to

gravity, water extraction by roots and water that enters or leaves the profile which causes

different soil moisture suctions in the different layers. The soil moisture characteristics

such as the hydraulic conductivity, soil water content-matric suction relationship and the

porosity are key parameters for the calculation of the water movement. The transport

of N is described by the convection-dispersion equation (see also Addiscott & Wagenet,

1985). This equation considers the solute displacement in the soil resulting from the

physical process of convection or mass flow of water and the chemical process of diffusion

in response to a concentration gradient. This concept and the simulation of leaching

in the capacity approach are described in detail in Addiscott & Wagenet (1985). Key

parameters for the equation are the volumetric water content, volumetric water flux, the

solute concentration, depth and a dispersion coefficient. The main difference between

models that combine the Richard equation with the convection-dispersion equation is

that 1) some models differentiate between mobile and immobile water, which mimics

the presence of micro- and macropores and 2) some models include adsorption of NH+
4

and NO−
3 , which reduces the amount of N lost through leaching. A third option is a

combination of the two approaches in which the capacity approach includes the hydraulic
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conductivity as parameter. This reduces the water movements through the soils and

allows the water content to be higher than field capacity as well as water to pond on

the soil surface. This option is currently used in DNDC, Daisy, EPIC, DSSAT and LPJ-

GUESS.

Erosion

Erosion in models is either 1) not included, or 2) modeled as a function of weather,

topography, soil and management related factors. Erosion is not included in RZWQM2,

DAISY, DSSAT, STICS, EXPERT-N and LPJ-GUESS. In CENTURY, EPIC, CROP-

SYST and DAYCENT, it is modeled according to the Revised Universal Soil Loss Equa-

tion (RUSLE) (Renard et al., 1997). In DNDC the Modified Universal Soil Loss Equation

(MUSLE) is used, which is also optional in EPIC (Williams, 1975).

RUSLE includes factors such as rainfall erosivity, soil erodibility, topography, land

use and management. Rainfall erosivity depends on the rainfall intensity of a specific

rainfall event (Risal et al., 2016). The soil erodibility factor is a function or soil texture,

structure and OM content. The topographic factor is a function of slope length and

slope steepness. The management related factor includes soil cover, which is influenced

by tillage, and erosion reduction measures, such as grass markings (Panagos et al., 2015).

MUSLE is the modified version of RUSLE, in which the rainfall erosivity factor is cal-

culated slightly different: instead of rainfall intensity, runoff and peak discharge is taken

into account; for which rainfall, the soil water content and different retention parameters

are used (Deng et al., 2011; Sadeghi et al., 2013).

Tillage effects on drivers

Depending on frequency, type and depth, tillage can have major impacts on the

physical properties of the soil and on the distribution of organic material as well as

mineral N in the soil profile. Tillage affects the N processes either directly (availability

of substrate) or indirectly via other soil properties, most prominently soil moisture and

soil temperature (Table 2.2). Tillage is represented in different ways in the models which

build upon each other (Table 2.6):1 tillage increases the mineralization rate temporary, 2)

tillage directly affects soil properties that drive soil N processes, 3) tillage directly affects

soil properties that drive soil N processes and have a temporal increase in mineralization

rate, and 4) tillage affects the soil properties directly and indirectly, i.e., through the soil

physical properties. The first category, in which the mineralization rate of selected pools

is increased temporarily, depending on the tillage activity. The increased rate may either

be predefined (LPJ-GUESS and DAYCENT) or is calculated based on soil texture and a

factor of soil disturbance (CropSyst). The increase in mineralization rate is temporary in

the models. In LPJ-GUESS and DAYCENT, the increase in mineralization occurs in the

month of the tillage event and returns to its original rate after this month. In CropSyst,

the rate decreases as a function of time and soil water content at a certain percentage per

day for a soil at field capacity.
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The second category, in which tillage directly affects the soil properties, can be found

in the Daisy− and in the EXPERT−N models. In these models, tillage mixes or swaps

the soil layers according to the tillage depth. This means that the soil properties of all soil

layers within the tillage depth are averaged. Additionally, a defined fraction –which has

to be specified- of the crop residues may be incorporated into the soil. Depending on the

tillage type specified in the simulation, the soil layers may also be ”swapped” in the Daisy

model, i.e. the soil layer properties are switched with each other, mimicking the inversion

of a soil profile through tillage. The mixing and swapping of soil layers is permanent

and only changes its state at a new tillage event. The third category, in which the soil

properties are directly affected (through mixing) and additionally a temporal increase

in the mineralization rate, can be found in DNDC and CENTURY. Also in DNDC, a

defined fraction of residues may be incorporated into the soil. As also described in the

second category, the mixing of soil layers is permanent and only changes its state at a

new tillage event. Additionally to affecting the soil properties, the mineralization rate of

the different pools is increased depending on the depth of tillage practice in both models.

In CENTURY, the increase in mineralization occurs in the month of the tillage event and

returns to its original rate after this month. In DNDC, the tillage effect on the rate is

gradually reduced depending on the rainfall event; the changes in properties caused by

tillage gradually degrade due to natural reconsolidation during wetting and drying.

The direct effect on soil properties through the mixing of soil layers (with or without

residues), can also be found in STICS, RZWQM2, EPIC and DSSAT. In these models,

the soil moisture and soil temperature are also indirectly affected by tillage through the

soil’s physical properties. The primary effect of tillage on soil physical properties is on

bulk density (mass to volume ratio), which can either increase (compaction) or decrease

(aeriation). The extent of the effects depends on the specific tillage event. The change

in bulk density affects the porosity (or saturated water content) in RZWQM2, DSSAT

and STICS. A decrease in bulk density will result in an increase in porosity, which means

that more water could be stored in a certain soil layer. The change in bulk density affects

the mineralization rate in EPIC and the denitrification rate in STICS directly. Another

property that is affected by tillage in DSSAT and RZWQM2 is the hydraulic conduc-

tivity, which describes the ease with which water can move through the soil column.

The hydraulic conductivity in DSSAT is changed by a certain percentage, depending on

the specific tillage event. In RZWQM2 however, the hydraulic conductivity is related

to the porosity of the soil. A change in the porosity therefore leads to a change in the

hydraulic conductivity (Ahuja et al., 2000). This affects the drainage- and percolation

rate and thus affects all soil-water dependent N processes. The bulk density, porosity

and hydraulic properties all have an effect on the soil moisture and therefore, soil tem-

perature. In RZWQM2, the porosity is updated based on the rainfall amount and the

kinetic rainfall energy. The soil porosity is then converted into soil bulk density. The

rainfall energy is obtained from rainfall intensities and duration (Wischmeier & Smith,
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1958) and is corrected for surface residues. In EPIC, the settling of the soil depends on

the percolation/infiltration rate into the layer and its sand content. Near the surface, soils

with high sand content will settle much faster than soils that are low in sand content,

especially in low rainfall areas. In DSSAT, the soil settles depending on the amount of

rainfall and the kinetic rainfall energy, which decreases per soil depth. Additionally, there

is a modification factor for the soil cover and aggregate stability; the soil cover and stable

aggregates will result in a relative slower settling of the soil than when there is no soil

cover or instable aggregates.

Tillage effects on N2O emissions in the models

Tillage has different effects on soil N dynamics -and therefore N2O emissions- in the

models (Table 2.6). RZWQM2 is the only model that-except for erosion- simulates all

N processes explicitly -including N2O losses during nitrification and denitrification- and

the direct and indirect effects of tillage on its processes. Some other models simulate all

N processes explicitly but are less detailed on tillage effects on the processes (CropSyst,

EXPERT-N), or are detailed in tillage effects, but to a lesser extent in the N processes

(EPIC and DSSAT). Moreover, not all models simulate N2O emissions specifically, but

simulate a combined flux with N2 and/or NO, or do not simulate the fluxes at all.

In the models where the mineralization rate of different pools is directly increased

for a certain time (LPJ-GUESS, DAYCENT and CropSyst), the inorganic N pool is

increased as a consequence of tillage. The inorganic N pool is then subject to losses. In

CropSyst and DAYCENT the losses as N2O emissions are explicitly modelled. In LPJ-

GUESS the gaseous losses of N are not quantified, therefore the effect of tillage on N2O

emissions cannot be quantified. In Daisy and EXPERT-N, tillage only has indirect effects

on the N processes. The incorporation of residues combined with the mixing of soil layers

changes the amount of organic N in the layers and the C:N ratio of different SOM pools.

Additionally, averaging the soil properties within the tillage depth resulting from tillage,

changes the rate of N processes due to a change in e.g., soil moisture and soil temperature,

which are important drivers of N processes. In Daisy, a change in N processes will lead to

a change in the combined losses of N2O+N2, whereas in EXPERT-N the N2O emissions

can be modelled explicitly. The mixing of soil properties and residues also affects the rate

of different N processes in DNDC. In this model and in CENTURY, also a direct change

in the mineralization rate of the different SOM pools is included as an effect of tillage.

The direct increase of the mineralization rate will increase the inorganic N pool, which

means that more N is subject to losses or further transformations, including N2O emission

by nitrification and denitrification. Since the model simulates N2O fluxes explicitly, the

change in N processes directly translates into changes in N2O emissions. In CENTURY,

the increased inorganic N pool can be subject to losses.



30 How to incorporate tillage in global ecosystem models?

T
a
b

le
2
.5

:
N

itro
gen

p
ro

d
u

cts
o
f

th
e

d
iff

eren
t

p
ro

cesses
d

istin
gu

ish
ed

b
y

d
iff

eren
t

S
O

M
m

o
d

els.
S

om
e

m
o
d

els
d

istin
gu

ish
p

ro
d

u
cts

(in
d

ica
ted

w
ith

a
com

m
a),

w
h

erea
s

o
th

ers
d

o
n

ot
(in

d
icated

w
ith

a
p

lu
s).

P
ro

cess
C

E
N

T
U

R
Y

R
Z

W
Q

M
2

D
N

D
C

D
aisy

E
P

IC
C

rop
S
y
st

D
S
S
A

T
S
T

IC
S

D
A

Y
C

E
N

T
E

X
P

E
R

T
-

N
(su

b

m
o
d
el)

L
P

J
-

G
U

E
S
S

L
osses

D
en

itrifi
cation

T
otal

N
N

O
,N

2 O
,N

2
N

O
,N

2 O
,N

2 N
2 +

N
2 O

N
2 +

N
2 O

N
O

,N
2 O

,N
2

N
O

+
N

2 O
+

N
2 N

2 O
,N

2
N

O
−3

,N
2 O

,N
2 ,

N
O

N
2 O

,N
2

(N
O

+
N

2 O
+

N
2 )

–

L
each

in
g

N
H

+4
+

N
O

−3
,

organ
ic

N

N
O

−3
N

O
−3

N
O

−3
,N

H
+4

N
O

−3
N

O
−3

N
O

−3
N

O
−3

N
O

−3
N

O
−3

,N
H

+4
N

H
+4

+
N

O
−3

,

organ
ic

N

In
tern

al
processes

N
itrifi

cation
–

N
O

−3
,N

2 O
N

O
−3

,N
2 O

N
O

−3
,N

2 O
N

O
−3

N
O

−3
,N

2 O
N

O
−3

N
O

−3
,N

2 O
N

O
−3

,N
2 O

N
O

−3
,N

2 O
T

otal
N

M
in

eralization
N

O
−3

+
N

H
+4

N
O

−3
+

N
H

+4
N

H
+4

N
H

+4
N

O
−3

+
N

H
+4

N
H

+4
N

O
−3

+
N

H
+4

N
O

−3
+

N
H

+4
N

O
−3

+
N

H
+4

N
H

+4
N

O
−3

+
N

H
+4



2.3 Results 31

Table 2.6: The directly and indirectly affected properties and processes in the models through

tillage. Tillage either directly increases the mineralization rate, or has an indirect effect on N

processes through direct effects on soil properties through mixing of soil layers/affecting the

hydraulic properties. Crosses (X) indicate that the soil property is affected by tillage in the

particular model.

Model Mixing of soil layers Bulk density Hydraulic

conductivity

Porosity Water potential Differentiation

of N emissions

CENTURY X Total N

RZWQM2 X X X X X N2O

DNDC X N2O

Daisy X N2O+N2

EPIC X X N2O+N2

CropSyst N2O

DSSAT X X X X NO+N2O+N2

STICS X X N2O

DAYCENT N2O

EXPERT-N X N2O

(NO+N2O+N2)1

LPJ GUESS Total N

1 The N-emissions only apply to specific sub-models

However, as in LPJ-GUESS, the gaseous losses of N are not quantified; therefore,

the effect of tillage on N2O emissions cannot be quantified. In the models where the soil

properties are directly and indirectly affected resulting from tillage, a change in the soil

moisture and soil temperature can be expected, as well as the N content and C:N ratios

in the soil profile. In STICS and RZWQM2, these changes affect different N processes

and therefore directly N2O emissions; in these models the N2O emissions are modelled

explicitly. In EPIC and DSSAT these changes lead to a change in the combined losses of

N2O+N2 (EPIC) and N2O+N2+NO (DSSAT). The tillage effects on the N processes and

thus N2O emissions decrease eventually due to soil reconsolidation.

2.3.2.3 Data requirements and availability (Step 2.3)

Tillage effects on N2O emissions at the global scale can only be evaluated when the data

required to simulate the processes are available at the global scale. In this step, we

analyze which data are required to drive the simulations of different processes and an

example of which data are available at the global scale is provided (Table 2.7). Data

are required on environmental properties that affect the different N processes as well

as management related data. Some data on properties and drivers can be supplied by

endogenous computations, while others have to be supplied from external sources. The

drivers and properties that are usually computed endogenously are those that are often

dynamic, such as soil water content and temperature, but also other properties for which

modelling capacities exist, but only sparse measurements, such as OM pools or vegetation
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structure and productivity. External datasets are typically needed for relatively static

physical properties such as soil texture, chemical properties that cannot be modelled well,

such as pH and CEC, and weather- and management related data. Most of these data

can be measured in the field. However, at the global scale, we need to rely on external

datasets. The management related data that are required include data on fertilizer input

of organic and inorganic N forms (amount and timing), residue input, land-use, and soil

management (e.g., tillage).

Most global ecosystem models work on a spatial resolution of 0.5◦ and a temporal

resolution of one day, although finer spatial and temporal resolutions are also applied

in global-scale models. Ideally, input data are available at the same spatial resolution

as the model simulation, but are often aggregated or interpolated to match the model

simulation’s spatial and temporal resolution. Interpolation can be as simplistic as as-

suming static conditions, e.g., when only a single temporal snapshot is available, employ

inter- and extrapolation methods or can be model assisted as e.g., in the case of weather

reanalysis data. Aggregation and interpolation (or any other scaling method) is a poten-

tial source of uncertainty (Ewert et al., 2011). This is especially the case for modelling

erosion. Here, information on slope steepness is needed for which static global datasets

are available which would need to be aggregated to meet the spatial resolution of a 0.5◦.

In this case, aggregation can lead to an underestimation of slope steepness and therefore

erosion.

In the absence of data, simulations can be conducted for scenario assumptions (e.g.,

for crop residue exports and intercrops, see Bondeau et al., 2007). Besides driving data,

models need to be parametrized and evaluated. Typically, there are no good evaluation

data sets available at the global scale, so that global-scale simulations need to be compared

at reference sites where measurements for the comparison are available or indirectly for

their effects on recorded properties, such as national yield statistics (Müller et al., 2017;

Schaphoff et al., 2018a). Model parameters typically need to be taken from smaller scales

for which the models have been developed, but can be calibrated if global effects do not

match observational evidence.

2.3.3 Evaluation of modelling tillage and N2O emission at the global scale

(step 3)

All primary, as well as the important tillage-affected secondary processes are described in

most of the models reviewed here (Table 2.4). These processes are modelled in relative

simplistic (e.g., a ratio of another process) or more detailed approaches, in which different

drivers of the processes are taken into account. This provides a sufficiently diverse basis

for selecting the most suitable approaches needed to resolve the most important processes

in a consistent manner in existing models. The most important caveat in the combination

of different approaches from existing models is to avoid inconsistencies or redundancies,
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Table 2.7: Example of the data requirement and availability at the global scale to describe the different

processes, including the spatial and temporal resolution. The drivers and properties that are usually

computed endogenously are indicated with a dash. There are many data sets for weather/climate data,

for which we only list a representative example 1.

Drivers Available data set Spatial resolution Temporal resolution

Physical properties

(Sp, Sbd, Stx)

Batjes et al. (2017) 30 arcsec Static

Other physical properties

(St, Sfc, Swp, Sst, Sk, Smp,

Sm)

– – –

Chemical properties (Sph,

Sec)

Batjes et al. (2017) 30 arcsec Static

Other chemical properties

(Scn, Slc, Sno, Snh, Som)

Stoorvogel et al. (2017) – –

Microbial activity – – –

Plant demand/supply

(Cgs, Cnx, Cur Ct, Crr,

Crl)

– – –

Weather/climate data

Observational (weather sta-

tions)

Menne et al. (2012) Daily

Observational data set Harris et al. (2014) 0.5 degree Monthly

Reanalysis Berrisford et al. (2009) 0.7 degree 6-hourly

Climate scenarios Taylor et al. (2012) various, typically re-

quires bias-correction to

a finer-scaled reference

data set, e.g., at 0.5

degree (e.g., Hempel et

al. 2013 )

3-hourly/coarser

Rainfall intensity NA NA NA

Input/management re-

lated

Fertilization

(organic and inorganic)

Potter et al. (2010) 0.5 degree and 5 arcmin static

Fertilization

(tillage type and tillage

depth)

NA NA NA

Residue input

(tillage type and tillage

depth)

NA NA NA

N2 fixation You et al. (2014) 5 arcmin Static

Soil cover NA NA NA

Erosion reduction measures NA NA NA

Topography

Slope length NA NA NA

Slope steepness WorldDEM 1 arcsec Static

1 Abbreviations:

Soil physical properties: Sbd : bulk density; Sfc : field capacity; Sk: hydraulic conductivity; Sm:

moisture; Smp: matrix potential; Sp: porosity; Sst: saturation; St: Soil temperature; Stx: texture;

Swp: wilting point.

Soil chemical properties: −Scn: C:N ratio; Sec: CEC; Slc: Labile C; Snh: NH+
4 ; Sno: NO3; Som; soil

organic matter; Sph: pH; Crop: Cgs: growth stage; Cnx: Maximum N concentration in the plant; Crl:

root length density; Crr: root radius; Ct: transpiration; Cur: water use rate.
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in which simpler, aggregated representations may already cover smaller processes. In

such cases, a re-parameterization of already implemented processes would be necessary,

if new processes would be added explicitly to the model. In all models, tillage has an

effect on the N processes in which the mineralization rate is either directly affected, or

indirectly through the soil properties which have an effect on the soil moisture and soil

temperature of the N processes. Only few models, model the effect of tillage on N2O

emissions explicitly (Table 2.6).

The data that are required to model these processes can partly be met. Static

datasets for some chemical properties (e.g., soil pH and CEC) may be acceptable, since

tillage does not influence these properties in the analyzed models and these drivers are

only taken into account for some of the N processes in some models. However, some of

the physical properties (e.g., porosity and bulk density) may have to be endogenized by

the models rather than treated as an external input, because tillage directly affects these

properties. Therefore, the static values of the external databases can serve for model

initialization or reference data.

The required data for modelling erosion cannot be met. Management and topography

related data as well as data on rainfall intensity is lacking. Moreover, modelling erosion

requires a very high spatial and temporal resolution, given that it is typically a quick

and small-scale process. Naipal et al. (2015) improved the global applicability of the

RUSLE model for modelling erosion by adjusting the topographical and rainfall erosivity

factors. The topographical factor was adjusted by scaling the slope according to the fractal

method whereas the rainfall erosivity factor was adjusted by applying a linear multiple

regression method for various climate zones. Panagos et al. (2017) developed a global

rainfall erosivity map at 30 arc seconds based on a Gaussian Process Regression, which

can be used as the erosivity factor in the RUSLE model. However, for modelling erosion,

high resolution data on slope length and the other RUSLE factors is lacking.

The required management related data (except for tillage and erosion), are also partly

available (e.g., fertilizer input). These datasets are available at sufficiently fine spatial res-

olution but often only as static datasets with no information on sub-annual distributions.

However, fertilizer inputs for example, are mostly applied more often throughout a grow-

ing season. Therefore, a dynamic dataset could give a better indication on when and how

often fertilizers are being applied (Hutchings et al., 2012). For tillage and crop residue in-

corporation there are currently no spatial- and temporal explicit datasets available. This

means that tillage can be implemented in a global ecosystem model for the analysis of

how different tillage options affect agricultural N2O emissions. However, since we lack

spatial explicit datasets on tillage practices, this analysis can only be conducted in a

scenario-based setting.
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2.4 Discussion

The models that have been analyzed vary in the amount of processes that are taken into

account and the detail in representation of processes (Table 2.4). As mentioned previously,

some models include most processes explicitly, but are less detailed on the tillage effects

on those processes (CropSyst, EXPERT-N), whereas some models are detailed in tillage

effects, but to a lesser extent on the N-processes (EPIC and DSSAT), or cannot simulate

N2O emissions specifically. Depending on the research question, the availability of data for

parameterization and model performance, some models might be more suitable to apply

than others. Models that simulate certain processes more detailed are often more suitable

for questions related to scientific understanding, as they can be used as tools to address

research questions about control of processes, magnitude of responses and interactions

(Jones et al., 2017). However, an increase in detail typically requires a larger number of

parameters, which may be unknown or only known with relatively large uncertainties. As

there is a tradeoff between detailed process representation and model parametrization, it

is unclear what level of detail is the best for global-scale application.

A general recommendation on which model process description to choose for the

implementation of individual processes cannot be provided as this depends on the current

implementation of other processes in the model that is to be extended. The new imple-

mentation will have to be tested and evaluated in the model-specific and research-question

specific context. Combining different processes described in models can yield inconsisten-

cies and the individual processes of the models are typically not validated. Moreover,

although the data requirements are generally met, the quality of the data is unknown or

known to be poor (see e.g., Grassini et al., 2015). Model performance can only be tested

against site measurements (as global measurements are lacking) and these should ideally

span a broad range of environmental conditions (i.e., Jin et al., 2017; Lognoul et al., 2017;

Mei et al., 2018; Van Kessel et al., 2012). This can be challenging as there is an enormous

temporal and spatial variability in N2O emissions (Butterbach-Bahl et al., 2013). Given

this variability, model evaluation should be conducted at different scales, which will be a

learning process that we need to engage in.

Most of the analyzed crop models have been developed for field−scale application,

with processes usually simulated at daily resolution. When models (or modelling ap-

proaches) are applied at larger spatial or temporal scales, scaling to the new level of

application is required. This can include modifications of input data, parameters and

model simplifications (Ewert et al., 2006). The degree of how much data, parameters and

models need to be modified, also depends on the research objective, the available data

and what can be done regarding data and model uncertainties. Here, we are interested in

tillage effects on N2O emissions at the global spatial scale. Since we are interested in N2O

mitigation, and therefore rather a long-term research study, the temporal scale should be

focused on the long-term, i.e. multiple years and decades. With respect to the modifica-
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tion of data and parameters, several methods can be distinguished depending on whether

data manipulation refers to changes in extent, coverage or resolution (Hatfield, 2001). In

Ewert et al. (2011) different scaling methods are proposed for data (input and output)

and models (e.g., model parameters and model structure). In case input or output data

are not matching the spatial resolution of the model simulation, aggregation (averaging)

or disaggregation can be considered.

Model simplifications may be needed since large-scale model application can be

resource-intensive (computational time). Model simplifications can be done by consid-

ering only those processes that matter at the global scale (as described before) and se-

lecting an appropriate level of detail for each N process (Adam et al., 2011; Ewert et al.,

2011).

Here we followed an evaluation scheme on assessing the feasibility of incorporating

tillage in global ecosystem models. This method opens opportunities of incorporating and

analyzing other management aspects GHG emissions at the global scale instead of working

with static GHG emission factors. However, the method is limited due to several reasons.

First of all, it does not provide a standard procedure for the evaluation of the performance

of the processes described in models individually as well as within the global ecosystem

model into which management is incorporated. Although standard evaluation procedures

are not provided, evaluating the model performance can always be conducted against

available data (e.g. Kelley et al., 2013; Müller et al., 2017; Schaphoff et al., 2018a).

Only a selected set of models are analyzed that should both cover N processes and

tillage effects. This may have resulted in excluding models that can describe only one

of the aspects well, e.g., only tillage effects on soil properties, but do not describe N

processes. Additionally, the analyzed models do not always provide a full model docu-

mentation which hampers the analysis. The available documentation of individual models

is mostly scattered over different articles. Full model documentations could better sup-

port information discovery and/or prevent the use of outdated information about the

described processes.

The analysis on data availability does not give insight on the quality of the data. A

sensitivity analysis can be conducted in order to assess the relative contribution of the

inputs variables and parameters on the model outputs (see also Campolongo & Braddock,

1999; Moreau et al., 2013). Inputs that make relatively high contribution to model outputs

would require relatively higher quality data, and constraints on input data quality should

be considered in the interpretation of model results.

2.5 Conclusions

We studied how tillage can be implemented in global ecosystem models for the analysis of

N2O emissions from agricultural production. Existing field-scale modeling approaches on
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soil nitrogen dynamics and on the effects of tillage facilitate this implementation in general.

However, the suitability and validity of individual processes described in models is often

not evaluated and will have to be tested within the new global framework. Scaling issues

for processes and data availability will have to be addressed. Data scarcity, especially

on management-related data, will only allow for scenario-based analyses. We followed an

evaluation scheme for assessing options for the inclusion of tillage-related processes into

global ecosystem models, which could also be employed for other management aspects.

We find that there are ample options to implement tillage and soil nitrogen dynamics in

sufficient detail in global-scale ecosystem models. A general recommendation on what

modeling approach to use is not possible, as this depends on what processes are already

covered in the model that is to be extended, and tradeoffs in data availability vs. quality

vs. uncertainty in model parametrization need to be considered. However, agricultural

management should be better represented in global-scale ecosystem models (McDermid

et al., 2017) and the formal procedure described here can help in selecting suitable options.

Such better model representation can open opportunities to evaluate agricultural-based

mitigation strategies, such as climate smart agriculture (Lipper et al., 2014) with global

ecosystem models.
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Abstract

The effects of tillage on soil properties, crop productivity, and global greenhouse gas

emissions have been discussed in the last decades. Global ecosystem models have limited

capacity to simulate the various effects of tillage. With respect to the decomposition of soil

organic matter, they either assume a constant increase due to tillage, or they ignore the

effects of tillage. Hence, they do not allow for analyzing the effects of tillage and cannot

evaluate, for example, reduced-tillage or no-till as mitigation practices for climate change.

In this paper, we describe the implementation of tillage related practices in the global

ecosystem model LPJmL. The extended model is evaluated against reported differences

between tillage and no-till management on several soil properties. To this end, simulation

results are compared with published meta-analysis on tillage effects. In general, the

model is able to reproduce observed tillage effects on global, as well as regional patterns

of carbon and water fluxes. However, modelled N-fluxes deviate from the literature and

need further study. The addition of the tillage module to LPJmL5 opens opportunities to

assess the impact of agricultural soil management practices under different scenarios with

implications for agricultural productivity, carbon sequestration, greenhouse gas emissions

and other environmental indicators.
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3.1 Introduction

Agricultural fields are tilled for various purposes, including seedbed preparation, incorpo-

ration of residues and fertilizers, water management and weed control. Tillage affects a

variety of biophysical processes that affect the environment, such as greenhouse gas emis-

sions or soil carbon sequestration and can influence various forms of soil degradation (e.g.

wind-, water- and tillage-erosion Armand et al., 2009; Govers et al., 1994; Holland, 2004).

Reduced-tillage or no-till is being promoted as a strategy to mitigate greenhouse gas

(GHG) emissions in the agricultural sector (Six et al., 2004; Smith et al., 2008). However,

there is an ongoing long-lasting debate about tillage and no-till effects on soil organic car-

bon (SOC) and GHG emissions (e.g. Lugato et al., 2018). In general, reduced-tillage and

no-till tend to increase SOC storage through a reduced decomposition and consequently

reduces GHG emissions (Chen et al., 2009; Willekens et al., 2014). However, discrepancies

exist on the effectiveness of reduced tillage or no-till on GHG emissions. For instance,

Abdalla et al. (2016) found in a meta-analyses that on average no-till systems reduce CO2

emissions by 21% compared to conventional tillage, whereas Oorts et al. (2007) found that

CO2 emissions from no-till systems increased by 13% compared to conventional tillage,

and Aslam et al. (2000) found only minor differences in CO2 emissions. These discrepan-

cies are not surprising as tillage affects a complex set of biophysical factors, such as soil

moisture and soil temperature (Snyder et al., 2009), which drive several soil processes,

including the carbon and nitrogen dynamics, and crop performance. Moreover, other fac-

tors such as management practices (e.g. fertilizer application and residue management)

and climatic conditions have been shown to be important confounding factors (Abdalla

et al., 2016; Oorts et al., 2007; Van Kessel et al., 2013). For instance Oorts et al. (2007)

attributed the higher CO2 emissions under no-till to higher soil moisture and decomposi-

tion of crop litter on top of the soil. Van Kessel et al. (2013) found that N2O emissions

were smaller under no-till in dry climates and that the depth of fertilizer application was

important. Finally, Abdalla et al. (2016) found that no-till effects on CO2 emissions are

most effective in dryland soils.

In order to upscale this complexity and to study the role of tillage for global bio-

geochemical cycles, crop performance and mitigation practices, the effects of tillage on

soil properties need to be represented in global ecosystem models. Although tillage is al-

ready implemented in other ecosystem models in different levels of complexity (Lutz et al.,

2019b; Maharjan et al., 2018), tillage practices are currently underrepresented in global

ecosystem models that are used for biogeochemical assessments. In these, the effects of

tillage are either ignored, or represented by a simple scaling factor of decomposition rates.

Global ecosystem models that ignore the effects of tillage include for example JULES (Best

et al., 2011; Clark et al., 2011), the Community Land Model (Levis et al., 2014; Oleson

et al., 2010) PROMET (Mauser & Bach, 2009) and the Dynamic Land Ecosystem Model

(DLEM) (Tian et al., 2010). The models in which the effects of tillage are represented as
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an increase in decomposition include LPJ-GUESS (Olin et al., 2015a; Pugh et al., 2015)

and ORCHIDEE-STICS (Ciais et al., 2011).

The objective of this paper is to 1) extend the Lund Potsdam Jena managed Land

(LPJmL5) model (Von Bloh et al., 2018b), so that the effects of tillage on biophysical

processes and global biogeochemistry can be represented and studied and 2) evaluate

the extended model against data reported in meta-analyses by using a set of stylized

management scenarios. This extended model version allows for quantifying the effects of

different tillage practices on biogeochemical cycles, crop performance and for assessing

questions related to agricultural mitigation practices. Despite uncertainties in the formal-

ization and parameterization of processes, the processed-based representation allows for

enhancing our understanding of the complex response patterns as individual effects and

feedbacks can be isolated or disabled to understand their importance. To our knowledge,

some crop models that have been used at the global scale, EPIC (Williams et al., 1983)

and DSSAT (White et al., 2010), have similarly detailed representations of tillage prac-

tices, but models used to study the global biogeochemistry (Friend et al., 2014) have no

or only very coarse representations of tillage effects.

3.2 Tillage effects on soil processes

Tillage affects different soil properties and soil processes, resulting in a complex system

with various feedbacks on soil water, temperature, carbon (C) and nitrogen (N) related

processes (Fig. 3.1). The effect of tillage has to be implemented and analyzed in con-

junction with residue management as these management practices are often inter-related

(Guérif et al., 2001; Strudley et al., 2008). The processes that were implemented into

the model were chosen based on the importance of the process and its compatibility with

the implementation of other processes within the model. Those processes are visualized

in Fig. 3.1 with solid lines; processes that have been ignored in this implementation are

visualized with dotted lines. To illustrate the complexity, we here describe selected pro-

cesses in the model affected by tillage and residue management, using the numbered lines

in Fig. 3.1.

With tillage, surface litter is incorporated into the soil [1] and increases the soil or-

ganic matter (SOM) content of the tilled soil layer [2] (Guérif et al., 2001; White et al.,

2010), while tillage also decreases the bulk density of this layer [3] (Green et al., 2003).

An increase in SOM positively affects the porosity [4] and therefore the soil water holding

capacity (whc) [5] (Minasny & McBratney, 2018). Tillage also affects the whc by in-

creasing porosity [6] (Glab & Kulig, 2008). A change in whc affects several water-related

processes through soil moisture [7]. For instance, changes in soil moisture influence lat-

eral runoff [8] and leaching [9] and affect infiltration. A wet (saturated) soil for example

decreases infiltration [10], while infiltration can be enhanced if the soil is dry (Brady &

Weil, 2008). Soil moisture affects primary production as it determines the amount of
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water which is available for the plants [11] and changes in plant productivity again deter-

mine the amount of residues left at the soil surface or to be incorporated into the soil [1]

(feedback not shown).

The presence of crop residues on top of the soil (referred to as ”surface litter” here-

after) enhances water infiltration into the soil [12] (Guérif et al., 2001; Jägermeyr et al.,

2016; Ranaivoson et al., 2017), and thus increases soil moisture [13]. That is because

surface litter limits soil crusting, can constitute preferential pathways for water fluxes

and slows lateral water fluxes at the soil surface so that water has more time to infiltrate

(Glab & Kulig, 2008). Consequently, surface litter reduces surface runoff [14] (Ranaivoson

et al., 2017). Surface litter also intercepts part of the rainfall [15], reducing the amount

of water reaching the soil surface, but also lowers soil evaporation [16] and thus reduces

unproductive water losses to the atmosphere (Lal, 2008; Ranaivoson et al., 2017). Sur-

face litter also reduces the amplitude of variations in soil temperature [17] (Enrique et al.,

1999; Steinbach & Alvarez, 2006). The soil temperature is strongly related to soil moisture

[18], through the heat capacity of the soil, i.e. a relatively wet soil heats up much slower

than a relatively dry soil (Hillel, 2004). The rate of SOM mineralization is influenced by

changes in soil moisture [19] and soil temperature [20] (Brady & Weil, 2008). The rate

of mineralization affects the amount of CO2 emitted from soils [21] and the inorganic N

content of the soil. Inorganic N can then be taken up by plants [22], be lost as gaseous N

[23], or transformed into other forms of N. The processes of nitrate (NO3
– ) leaching, ni-

trification, denitrification, mineralization of SOM and immobilization or mineral N forms

are explicitly represented in the model (Von Bloh et al., 2018b). The degree to which soil

properties and processes are affected by tillage mainly depends on the tillage intensity,

which is a combination of tillage efficiency and mixing efficiency (in detail explained in

chapter 3.3.2 and 3.3.5.2). Tillage has a direct effect on the bulk density of the tilled soil

layer. The type of tillage determines the mixing efficiency, which affects the amount of

incorporating residues into the soil. Over time, soil properties reconsolidate after tillage,

eventually returning to pre-tillage states. The speed of reconsolidation depends on soil

texture and the kinetic energy of precipitation (Horton et al., 2016).

This implementation mainly focuses on two processes directly affected by tillage: 1)

the incorporation of surface litter associated with tillage management and the subsequent

effects (Fig. 3.1, arrow 1 and following arrows), 2) the decrease in bulk density and the

subsequent effects of changed soil water properties (Fig. 3.1, e.g. arrow 3 and following

arrows). In order to limit model complexity and associated uncertainty, tillage effects that

are not directly compatible with the original model structure, such as subsoil compaction,

or require very high spatial resolution, are not taken into account in this initial tillage

implementation, despite acknowledging that these processes can be important.
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Figure 3.1: Flow chart diagram of feedback processes caused by tillage, which are

considered (solid lines) and not considered (dashed lines) in this implementation in

LPJmL5.0-tillage. Blue lines highlight positive feedbacks, red negative, and black are

ambiguous feedbacks. The numbers in the figure indicate the processes described in Sect.

3.2.

3.3 Implementation of tillage routines into

LPJmL

3.3.1 LPJmL model description

The tillage implementation described in this paper was introduced into the dynamical

global vegetation, hydrology and crop growth model LPJmL. This model was recently

extended to also cover the terrestrial N cycle, accounting for N dynamics in soils and
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plants and N limitation of plant growth (LPJmL5; Von Bloh et al., 2018a). Previous

comprehensive model descriptions and developments are described by Schaphoff et al.

(2018a). The LPJmL model simulates the C, N and water cycles by explicitly representing

biophysical processes in plants (e.g. photosynthesis) and soils (e.g. mineralization of

N and C). The water cycle is represented by the processes of rain water interception,

soil and lake evaporation, plant transpiration, soil infiltration, lateral and surface runoff,

percolation, seepage, routing of discharge through rivers, storage in dams and reservoirs

and water extraction for irrigation and other consumptive uses.

In LPJmL5, all organic matter pools (vegetation, litter and soil) are represented as

C pools and the corresponding N pools with variable C:N ratios. Carbon, water and N

pools in vegetation and soils are updated daily as the result of computed processes (e.g.

photosynthesis, autotrophic respiration, growth, transpiration, evaporation, infiltration,

percolation, mineralization, nitrification, leaching; see Von Bloh et al. (2018a) for the full

description). Litter pools are represented by the above-ground pool (e.g. crop residues,

such as leaves and stubbles) and the below-ground pool (roots). The litter pools are

subject to decomposition, after which the humified products are transferred to the two

SOM pools that have different decomposition rates (Fig. A.3.1A in Appendix A). The

fraction of litter which is harvested from the field can range between almost fully harvested

or none, when all litter is left on the field (90%, Bondeau et al., 2007). In the soil,

pools of inorganic reactive N forms (NH4
+, NO3

– ) are also considered. Each organic

soil pool consists of C and N pools and the resulting C:N ratios are flexible. Soil C:N

ratios are considerably smaller than those of plants as immobilization by microorganisms

concentrates N in SOM. In LPJmL, a soil C:N ratio of 15 is targeted by immobilization

for all soil types (Von Bloh et al., 2018a). The SOM pools in the soil consist of a fast

pool with a turnover time of 30 years, and a slow pool with a 1000 year turnover time

(Schaphoff et al., 2018a). Soils in LPJmL5 are represented by five hydrologically active

layers, each with a distinct layer thickness. The first soil layer, which is mostly affected

by tillage, is 0.2 m thick. The following soil layers are 0.3, 0.5, 1.0 and 1.0 m thick,

respectively, followed by a 10.0 m bedrock layer, which serves as a heat reservoir in the

computation of soil temperatures (Schaphoff et al., 2013).

LPJmL5 has been evaluated extensively and demonstrated good skills in reproducing

C, water, and N fluxes in both agricultural and natural vegetation on various scales (Von

Bloh et al., 2018a; Schaphoff et al., 2018a).

3.3.2 Litter pools and decomposition

In order to address the residue management effects of tillage, the original above-ground

litter pool is now separated into an incorporated litter pool (Clitter,inc) and a surface litter

pool (Clitter,surf ) for carbon, and the corresponding pools (Nlitter,inc) and (Nlitter,surf ) for

nitrogen (Fig. A.3.1B in Appendix A). Crop residues not collected from the field are
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transferred to the surface litter pools. A fraction of residues from the surface litter pool

is then partially or fully transferred to the incorporated litter pools, depending on the

tillage practice;

Clitter,inc,t+1 = Clitter,inc,t + Clitter,surf,t ∗ TL, for carbon , and (3.1a)

Nlitter,inc,t+1 = Nlitter,inc,t +Nlitter,surf,t ∗ TL, for nitrogen. (3.1b)

The Clitter,surf and Nlitter,surf pools are reduced accordingly:

Clitter,surf,t+1 = Clitter,surf,t ∗ 1 − TL, (3.2a)

Nlitter,surf,t+1 = Nlitter,surf,t ∗ 1 − TL, (3.2b)

where Clitter,inc and Nlitter,inc is the amount of incorporated surface litter C and

N in g m−2 at time step t (days). The parameter TL is the tillage efficiency, which

determines the fraction of residues that is incorporated by tillage (0-1). To account for the

vertical displacement of litter through bioturbation under natural vegetation and under

no-till conditions, we assume that 0.1897% of the surface litter pool is transferred to the

incorporated litter pool per day (equivalent to an annual bioturbation rate of 50%).

The litter pools are subject to decomposition. The decomposition of litter depends on

the temperature and moisture of its surroundings. The decomposition of the incorporated

litter pools depends on soil moisture and temperature of the first soil layer (as described

by Von Bloh et al., 2018a), whereas the decomposition of the surface litter pools depends

on the litter’s moisture and temperature, which are approximated by the model. The

decomposition rate of litter (rdecom in g C m−2 day−1) is described by first-order kinetics,

and is specific for each ”plant functional type” (PFT), following Sitch et al. (2003);

rdecom(PFT ) = 1 − exp

(
−1

τ10(PFT )
∗ g(Tsurf ) ∗ F (θ)

)
, (3.3)

where τ10 is the mean residence time for litter and F(θ) and g(Tsurf ) are response

functions of the decay rate to litter moisture and litter temperature (Tsurf ) respectively.

The response function to litter moisture F(θ) is defined as;

F (θ) = 0.0402 − 5.005 ∗ θ3 + 4.269 ∗ θ2 + 0.7189 ∗ θ, (3.4)

where, θ is the volume fraction of litter moisture which depends on the water holding

capacity of the surface litter (whcsurf ), the fraction of surface covered by litter (fsurf ), the

amount of water intercepted by the surface litter (Isurf ) (Sect. 3.3.3.1) and lost through

evaporation Efsurf (Sect. 3.3.3.3).
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The temperature function g(Tsurf ) describes the influence of temperature of surface

litter on decomposition (Von Bloh et al., 2018a);

g(Tsurf ) = exp

(
308.56 ∗

(
1

66.02
− 1

T(surf+56.02)

)

))
, (3.5)

where Tsurf is the temperature of surface litter (Sect. 3.3.4).

A fixed fraction (70%) of the decomposed Clitter,surf is mineralized, i.e., emitted as

CO2, whereas the remaining humified C is transferred to the soil C pools, where it is

then subject to the soil decomposition rules as described by Von Bloh et al. (2018a) and

Schaphoff et al. (2018a). The mineralized N (also 70% of the decomposed litter) is added

to the NH4
+ pool of the first soil layer, where it is subjected to further transformations

(Von Bloh et al., 2018a), whereas the humified organic N (30% of the decomposed litter)

is allocated to the different organic soil N pools in the same shares as the humified C. In

order to maintain the desired C:N ratio of 15 within the soil (Von Bloh et al., 2018a), the

mineralized N is subject to microbial immobilization, i.e., the transformation of mineral

N to organic N directly reverting some of the N mineralization in the soil.

The presence of surface litter influences the soil water fluxes and soil temperature of

the soil (see 3.3.3 and 3.3.4), and therefore affects the decomposition of the soil carbon

and nitrogen pools, including the transformations of mineral N forms. Nitrogen fluxes

such as N2O from nitrification and denitrification for instance, are partly driven by soil

moisture (Von Bloh et al., 2018a):

FN2O,nitrification,l = K2 ∗Kmax ∗ F1(Tl) ∗ F1(Wsat,l) ∗ F (pH) ∗NH+
4,lfor nitrification, and

(3.6a)

FN2O,nitrification,l = rmx2 ∗ F2(Wsat,l) ∗ F2(Tl, Corg) ∗NO−
3 for denitrification. (3.6b)

Where FN2O,nitrification,l and FN2O,nitrification,l are the N2O flux related to nitrification

and denitrification respectively in g N m−2 d−1 in layer l. K2 is the fraction of nitrified

N lost as N2O (K2=0.02),Kmax is the maximum nitrification rate of NH4
+ (Kmax=0.1

d−1). F1(Tl), F1(Wsat,l), are response functions of soil temperature and water satura-

tion respectively, that limit the nitrification rate. F (pH) is the function describing the

response of nitrification rates to soil pH and NH+
4,l and NO−

3,l the soil ammonium and

nitrate concentration in g N m−2 respectively. F2(Tl,Corg), F2(Wsat,l) are reaction for soil

temperature, soil carbon and water saturation and rmx2 is the fraction of denitrified N

lost as N2O (11%, the remainder is lost as N2). For a detailed description of the N related

processes implemented in LPJmL, we refer to Von Bloh et al. (2018a).
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3.3.3 Water fluxes

3.3.3.1 Litter interception

Precipitation and applied irrigation water in LPJmL5 is partitioned into interception,

transpiration, soil evaporation, soil moisture and runoff (Jägermeyr et al., 2015). To

account for the interception and evaporation of water by surface litter, the water can now

also be captured by surface litter through litter interception (Isurf ) and be lost through

litter evaporation, subsequently infiltrates into the soil and/or forms surface runoff. Litter

moisture (θ) is calculated in the following way:

θ(t+1) = min(whcsurf − θt, Isurf ∗ fsurf ). (3.7)

fsurf is calculated by adapting the equation from Gregory (1982) that relates the

amount of surface litter (dry matter) per m2 to the fraction of soil covered;

fsurf = 1 − exp−Am∗OMlitter,surf , (3.8)

where OMlitter,surf is the total mass of dry matter surface litter in g m−2 and Am is

the area covered per mass of crop specific residue (m2 g−1). The total mass of surface

litter is calculated assuming a fixed C to organic matter ratio of 2.38 (CFOM,litter), based

on the assumption that 42% of the organic matter is C, as suggested by Brady & Weil

(2008):

OMlitter,surf = Clitter,surf ∗ CFOM,litter, (3.9)

where Clitter,surf is the amount of C stored in the surface litter pool in g C m−2. We

apply the average value of 0.006 for Am from Gregory (1982) to all materials, neglecting

variations in surface litter for different materials. whcsurf (mm) is the water holding

capacity of the surface litter and is calculated by multiplying the litter mass with a

conversion factor of 2 10−3 mm kg−1 (OMlitter,surf ) following Enrique et al. (1999).

3.3.3.2 Soil infiltration

The presence of surface litter enhances infiltration of precipitation or irrigation water

into the soil, as soil crusting is reduced and preferential pathways are affected (Ranaivoson

et al., 2017). In order to account for improved infiltration with the presence of surface

litter, we follow the approach by Jägermeyr et al. (2016), which has been developed for

implementing in situ water harvesting, e.g. by mulching in LPJmL. The infiltration rate

(In in mm d−1) depends on the soil water content of the first layer and the infiltration

parameter p;
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In = prir ∗ p

√
1 − Wa

Wsat,l=1 −Wpwp,l=1

(3.10)

where prir is the daily precipitation and applied irrigation water in mm, Wa the

available soil water content in the first soil layer, and Wsat,l=1 and Wpwp,l=1 the soil water

content at saturation and permanent wilting point of the first layer in mm. By default

p=2, but four different levels are distinguished (p=3,4,5,6) by Jägermeyr et al. (2016),

in order to account for increased infiltration based on the management intervention. To

account for the effects of surface litter, we here scale the infiltration parameter p between

2 and 6, based on the fraction of surface litter cover (fsurf );

p = 2 ∗ (1 + fsurf ∗ 2) (3.11)

Surplus water that cannot infiltrate forms surface runoff and enters the river sys-

tem.

3.3.3.3 Litter and soil evaporation

Evaporation (Esurf ,in mm) from the surface litter cover (fsurf ), is calculated in a similar

manner as evaporation from the first soil layer (Schaphoff et al., 2018a). Evaporation

depends on the vegetation cover (fv), the radiation energy for the evaporization of water

(PET) and the water stored in the surface litter that is available to evaporate (ωevap)

relative to whcsurf . Here, also fsurf is taken into account so that the fraction of soil

uncovered is subject to soil evaporation as described in Schaphoff et al. (2018a);

Esurf = PET ∗ α ∗ max(1 − fv, 0.05) ∗ ω2
surf ∗ fsurf , (3.12)

ωsurf =
θ

whcsurf
, (3.13)

where PET is calculated based on the theory of equilibrium evapotranspiration

(Jarvis & McNaughton, 1986) and α the empirically derived Priestley-Taylor coefficient

(α=1.32) (Priestley & Taylor, 1972).

The presence of litter at the soil surface reduces the evaporation from the soil (Esoil).

Esoil (mm) corresponds to the soil evaporation as described in Schaphoff et al. (2018a),

and depends on the available energy for vaporization of water and the available water

in the upper 0.3 m of the soil (ωevap). However, with the implementation of tillage, the

fraction of fsurf now also influences evaporation, i.e., greater soil cover (fsurf ) results in

a decrease in Esoil;
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Esoil = PET ∗ α ∗ max(1 − fv, 0.05) ∗ ω2 ∗ (1 − fsurf ) (3.14)

ω is calculated as the evaporation-available water (ωevap) relative to the water holding

capacity in that layer (whcevap);

ω = min(1,
ωevap
whcevap

), (3.15)

where ωevap is all the water above wilting point of the upper 0.3 m (Schaphoff et al.,

2018a).

3.3.4 Heat flux

The temperature of the surface litter is calculated as the average of soil temperature of

the previous day (t) of the first layer (Tsoil,l=1 in ◦C) and actual air temperature (Tair,t+1

in ◦C), in the following way:

Tlitter,surf,t+1 = 0.5(Tair,t+1 + Tl=1,t). (3.16)

Equation (3.16) is an approximate solution for the heat exchange described by

Schaphoff et al. (2013). The new upper boundary condition (Tupper in ◦C) is now calcu-

lated by the average of Tair and Tsurfweighted by fsurf . With the new boundary condition,

the cover of the soil with surface litter diminishes the heat exchange between soil and

atmosphere;

Tupper = Tair ∗ (1 − fsurf ) + Tsurf ∗ fsurf . (3.17)

The remainder of the soil temperature computation remains unchanged from the

description of Schaphoff et al. (2013).

3.3.5 Tillage effects on physical properties

3.3.5.1 Dynamic calculation of hydraulic properties

Previous versions of the LPJmL model used static soil hydraulic parameters as inputs,

computed following the pedotransfer function (PTF) by Cosby et al. (1984). Different

methods exist to calculate soil hydraulic properties from soil texture and SOM content for

different points of the water retention curve (Balland et al., 2008; Saxton & Rawls, 2006;

Wösten et al., 1995) or at continuous pressure levels (Van Genuchten, 1980; Vereecken

et al., 2010). Extensive reviews of PTFs and their application in Earth system and

soil modeling can be found in Van Looy et al. (2017) and Vereecken et al. (2016). We
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now introduced an approach following the PTF by Saxton & Rawls (2006), which was

included in the model in order to dynamically simulate layer-specific hydraulic parameters

that account for the amount of SOM in each layer, constituting an important mechanism

of how hydraulic parameters are affected by tillage (Strudley et al., 2008).

As such, Saxton & Rawls (2006) define a PTF most suitable for our needs and

capable of calculating all the necessary soil water properties for our approach: it allows

for a dynamic effect of SOM on soil hydraulic properties, and is also capable of representing

changes in bulk density after tillage and was developed from a large number of data points.

With this implementation, soil hydraulic properties are now all updated daily. Following

Saxton & Rawls (2006), soil water properties are calculated as:

λ(pwp,l) = −0.024 ∗ Sa+ 0.0487 ∗ Cl + 0.006 ∗ SOMl

+ 0.005 ∗ Sa ∗ SOMl − 0.013 ∗ Cl ∗ SOMl + 0.068 ∗ Sa ∗ Cl + 0.031, (3.18)

Wpwp,l = 1.14 ∗ λpwp,l − 0.02, (3.19)

λfc,l = −0.251 ∗ Sa+ 0.195 ∗ Cl + 0.011 ∗ SOMl

+ 0.006 ∗ Sa ∗ SOMl − 0.027 ∗ Cl ∗ SOMl + 0.452 ∗ Sa ∗ Cl + 0.299, (3.20)

Wfc,l = 1.238 ∗ (λfc,l)
2 ∓ 0.626 ∗ λfc,l − 0.015, (3.21)

λsat,l = 0.278 ∗ Sa+ 0.034 ∗ Cl + 0.022 ∗ SOMl

− 0.018 ∗ Sa ∗ SOMl − 0.027 ∗ Cl ∗ SOMl − 0.584 ∗ Sa ∗ Cl + 0.078, (3.22)

Wsat,l = Wfc,l + 1.636 ∗ λsat,l − 0.097 ∗ Sa− 0.064, (3.23)

BDsoil,l = (1 −Wsat,l) ∗MD. (3.24)

SOMl is the soil organic matter content in weight percent (%w) of layer l, Wpwp,l is

the moisture content at the permanent wilting point, Wfc,l moisture contents at field ca-

pacity, Wsat,l is the moisture contents at saturation, λpwp,l, λfc,l and λsat,l are the moisture
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contents for the first solution at permanent wilting point, field capacity and saturation,

Sa is the sand content in volume percent (%v), Cl is the clay content in %v, BDsoil,l is

the bulk density in kg m−3, MD is the mineral density of 2700 kg m−3. For SOMl, total

SOC content is translated into SOM of this layer, following:

SOMl =
CFOM,soil ∗ (CfastSoil,l + CslowSoil,l)

BDsoil,l ∗ zl
∗ 100, (3.25)

where CFOM,soil is the conversion factor of 2 as suggested by Pribyl (2010), assuming

that SOM contains 50% SOC, CfastSoil,l is the fast decaying C pool in kg m−2, CslowSoil,l

is the slow decaying C pool in kg m−2 , BDsoil,l is the bulk density in kg m−3 and z

is the thickness of layer l in m. It was suggested by Saxton & Rawls (2006) that the

PTF should not be used for SOM content above 8%, so we cap SOMl at this maximum

when computing soil hydraulic properties and thus treated soils with SOMl content above

this threshold as soils with 8% SOM content. Saturated hydraulic conductivity is also

calculated following Saxton & Rawls (2006) as:

KSl
= 1930 ∗ (Wsatl −Wfcl)

3−φl , (3.26)

φl =
ln(Wfc,l) − ln(Wpwp,l)

ln(1500) − ln(33)
, (3.27)

where KSl
is the saturated hydraulic conductivity in mm h−1 and φl is the slope of

the logarithmic tension-moisture curve of layer l.

3.3.5.2 Bulk density effect and reconsolidation

The effects of tillage on BD are adopted from the APEX model by Williams et al. (2015)

which is a follow-up development of the EPIC model (Williams et al., 1983). Tillage causes

changes in BD of the tillage layer (first topsoil layer of 0.2 m) after tillage. Soil moisture

content for the tillage layer is updated using the fraction of change in BD. KSl
is also

updated based on the new moisture content after tillage. A mixing efficiency parameter

(mE) depending on the intensity and type of tillage (0-1), determines the fraction of

change in BD after tillage. A mE of 0.90 for example represents a full inversion tillage

practice, also known as conventional tillage (White et al., 2010). The parameter mE can

be used in combination with residue management assumptions to simulate different tillage

types. It should be noted that Williams et al. (1983) calculate direct effects of tillage on

BD, while we changed the equation accordingly to account for the fraction at which BD

is changed.

The fraction of BD change after tillage is calculated the following way:
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fBDtill,t+1 = fBDtill,t − (fBDtill,t − 0.667) ∗mE. (3.28)

Tillage density effects on saturation and field capacity follow Saxton and Rawls

(2006):

Wsat,till,l,t+1 = 1 − (1 −Wsat,l,t) ∗ fBDtill,t+1, (3.29)

Wfc,till,l,t+1 = Wfc,l,t − 0.2 ∗ (Wsat,l,t −Wsat,till,l,t+1), (3.30)

where fBDtill,t+1 is the fraction of density change of the topsoil layer after tillage,

fBDtill,t is the density effect before tillage, Wsat,till,l,t+1 and Wfc,till,l,t+1 are adjusted mois-

ture content at saturation and field capacity after tillage and Wsat,l,t and Wfc,l,t are the

moisture content at saturation and field capacity before tillage.

Reconsolidation of the tilled soil layer is accounted for following the same approach

by Williams et al. (2015). The rate of reconsolidation depends on the rate of infiltration

and the sand content of the soil. This ensures that the porosity and BD changes caused by

tillage gradually return to their initial value before tillage. Reconsolidation is calculated

the following way:

sz = 0.2 ∗ In ∗
( 1+2∗Sa
Sa+e(8.597−0.075∗Sa) )

z0.6
till

, (3.31)

f =
sz

sz + e3.92−0.0226∗sz , (3.32)

fBDtill,t+1 = fBDtill,t + f ∗ (1 − fBDtill,t), (3.33)

where sz is the scaling factor for the tillage layer and ztill is the depth of the tilled

layer in m. This allows for a faster settling of recently tilled soils with high precipitation

and for soils with a high sand content. In dry areas with low precipitation and for soils

with low sand content, the soil settles slower and might not consolidate back to its initial

state. This is accounted for by taking the previous bulk density before tillage into account.

The effect of tillage on BD can vary from year to year, but fBDtill,t cannot be below 0.667

or above 1 so that unwanted amplification is not possible. We do not yet account for

fluffy soil syndrome processes (i.e. when the soil does not settle over time) and negative

implication from this, which results in an unfavorable soil particle distribution that can

cause a decline in productivity (Daigh & DeJong-Hughes, 2017).
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3.4 Model set-up

3.4.1 Model input, initialization, and spin-up

In order to bring vegetation patterns and SOM pools into a dynamic equilibrium stage,

we make use of a 5000-year spin-up simulation of only natural vegetation, which recycles

the first 30 years of climate input following the procedures of Von Bloh et al. (2018a). For

simulations with land-use inputs and to account for agricultural management, a second

spin-up of 390 years is conducted to account for historical land-use change, which is

introduced in the year 1700. The spatial resolution of all input data and model simulations

is 0.5◦. Land-use data are based on crop-specific shares of MIRCA2000 (Portmann et al.,

2010) and cropland and grassland time series since 1700 from HYDE3 (Klein Goldewijk

et al., 2010) as described by Fader et al. (2010). As per default setting, intercrops are

grown on all set-aside stands in all simulations (Bondeau et al., 2007). As we are here

interested in the effects of tillage on cropland, we ignore all natural vegetation in grid cells

with cropland by scaling existing cropland shares to 100 %. We drive the model with daily

mean temperature from the Climate Research Unit (CRU TS version 3.23;University of

East Anglia Climate Research Unit, 2015; Harris et al., 2014), monthly precipitation data

from the Global Precipitation Climatology Centre (GPCC Full Data Reanalysis version

7.0; Becker et al., 2013), and shortwave down-ward and net long wave downward radiation

data from the ERA-Interim data set (Dee et al., 2011). Static soil texture classes are taken

from the Harmonized World Soil Database(HWSD) version 1.1 (Nachtergaele et al., 2009)

and aggregated to 0.5◦ resolution by using the dominant soil type. Twelve different soil

textural classes are distinguished according to the USDA soil texture classification and

one unproductive soil type, which is referred to as ”rock and ice”. Soil pH data are taken

from the WISE data set (Batjes, 2005). The NOAA/ESRL Mauna Loa station (Tans &

Keeling, 2015) provides atmospheric CO2 concentrations. Deposition of N was taken from

the ACCMIP database (Lamarque et al., 2013).

3.4.2 Simulation options and evaluation set-up

The new tillage management implementation allows for specifying different tillage and

residue systems. We conducted four contrasting simulations on current cropland area with

or without the application of tillage and with or without removal of residues Table3.1. The

default setting for conventional tillage is: mE=0.9 and TL=0.95. In the tillage scenario,

tillage is conducted twice a year, at sowing and after harvest. Soil water properties are

updated on a daily basis, enabling the tillage effect to be effective from the subsequent day

onwards until it wears off due to soil settling processes. The four different management

settings (MS) for global simulations are as the following: 1) full tillage and residues left

on the field (T R), 2) full tillage and residues are removed (T NR), 3) no-till and residues

are retained on the field (NT R), and 4) no-till and residues are removed from the field

(NT NR). The specific parameters for these four settings are listed in Table 3.1. The
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default MS is T R and was introduced in the second spin-up from the year 1700 onwards,

as soon as human land use is introduced in the individual grid cells (Fader et al., 2010).

All of the four MS simulations were run for 109 years, starting from year 1900. Unless

specified differently, the outputs of the four different MS simulations were analyzed using

the relative differences between each output variable using T R as the baseline MS;

RDX =
XMS

X(T R)

− 1, (3.34)

where RDX is the relative difference between the management scenarios for variable

X and XMS and X(T R) are the values of variable X of the MS of interest and the baseline

management systems: conventional tillage with residues left on the field (T R). Spin-up

simulations and relative differences for equation (34) were adjusted, if a different MS was

used as reference system, e.g. if reference data are available for comparisons of different

MS. The effects were analyzed for different time scales: the three year average of year

1 to 3 for short-term effects, the average after year 9 to 11 for mid-term effects and the

average of year 19 to 21 for long-term effects. Depending on available reference data in

the literature, the specific duration and default MS of the experiment were chosen. The

results of the simulations are compared to literature values from selected meta-analyses.

Meta-analyses allow for the comparison of globally modeled results to a set of combined

results of individual studies from all around the world, assuming that the data basis pre-

sented in meta-analyses is representative. A comparison to individual site-specific studies

would require detailed site-specific simulations making use of climatic records for that

site and details on the specific land-use history. Results of individual site-specific exper-

iments can differ substantially between sites, which hampers the interpretation at larger

scales. We calculated the median and the 5th and 95th percentile (values within brackets)

between MS in order to compare the model results to the meta-analyses, where aver-

ages and 95% confidence intervals (CI) are mostly reported. We chose medians rather

than arithmetic averages to reduce outlier effects, which is especially important for rel-

ative changes that strongly depend on the baseline value. If region-specific values were

reported in the meta-analyses, e.g. climate zones, we compared model results of these

individual regions, following the same approach for each study, to the reported regional

value ranges.

To analyze the effectiveness of selected individual processes (see Fig. 3.1) without

confounding feedback processes, we conducted additional simulations of the four differ-

ent MS on bare soil with uniform dry matter litter input (simulation NT NR bs and

NT R bs1 to NT R bs5) of uniform composition (C:N ratio of 20), no atmospheric N de-

position and static fertilizer input (Elliott et al., 2015). This helps isolating soil processes,

as any feedbacks via vegetation performance is eliminated in this setting.
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3.5 Evaluation and Discussion

3.5.1 Tillage effects on hydraulic properties

Table 3.2 presents the calculated soil hydraulic properties of tillage for each of the soil

classes prior to and after tillage (mE of 0.9), combined with a SOM content in the tilled

soil layer of 0% and 8%. In general, both tillage and a higher SOM content tend to increase

whc, Wsat,l, Wfc,l and KSl
. Clay soils are an exception, since higher SOM content decreases

whc, Wsat,l and Wfc,l, and increases KSl
. The effect of increasing SOM content on whc,

Wsat,l and Wfc,l is greatest in the soil classes sand and loamy sand. The increasing effects

of tillage on the hydraulic properties are generally weaker compared to an increase in SOM

by 8% (maximum SOM content for computing soil hydraulic properties in the model).

While tillage (mE of 0.9, 0% SOM) in sandy soils increase whc by 83%, 8% of SOM can

increase whc in an untilled soil by 105% and in a tilled soil by 84%. As comparison in

silty loam soils with 0% SOM, tillage (mE of 0.9) increases whc by 16%, while 8% SOM

can increase whc by 31% and by 26% for untilled and tilled soil, respectively.

The PTF by Saxton & Rawls (2006) uses an empirical relationship between SOM,

soil texture and hydraulic properties derived from the USDA soil database, implying that

the PTF is likely to be more accurate within the US than outside. A PTF developed for

global scale application is, to our knowledge, not yet developed. Nevertheless PTFs are

used in a variety of global applications, despite the limitations to validate at this scale

(Van Looy et al., 2017).

3.5.1.1 Productivity

In our simulations adopting NT R slightly increases productivity for all rain-fed crops

simulated (wheat, maize, pulses, rapeseed) on average, but ranges from increases to de-

creases across all cropland globally. This increase can be observed for the first three years

(Fig. A.3.2a in Appendix A), and for the first ten years (Fig. 3.2A and 3.2B). All the

results shown here and in the subsequent sections are calculated as RD following Eq. 3.34,

unless otherwise stated. The numbers discussed in this section refer to the productivity

after 10 years (average of year 9-11). The largest positive impact can be found for rape-

seed, where NT R results in a median increase of +3.5% (5th, 95th percentiles: -24.5%,

+57.8% The positive impact is lowest for maize, with median increases by +1.8% (5th,

95th percentiles: -24.6%, +56.2%). The median productivity of wheat increases slightly

by +2.5% (5th, 95th percentiles: -15.2%, +53.5%) under NT R. The slight increases in

median productivity under NT R are contrasting to the values reported by Pittelkow

et al. (2015a), who reports slight decreases in productivity for wheat and maize and small

median increases for rapeseed (Table 3.3).
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They report both positive and negative effects for wheat and rapeseed, but only

negative effects for maize. Pittelkow et al. (2015a) identify aridity and crop type as the

most important factors influencing the responses of productivity to the introduction of no-

till systems with residues left on the field. The aridity index was determined by dividing

the mean annual precipitation by potential evaporation. No-till performed best under

rain-fed conditions in dry climates (aridity index <0.65), by which the overall response

was equal or positive compared to T R.

The positive effects on productivity under NT R in dry regions can also be found

in our simulations. For instance, wheat productivity increases substantially under NT R

whereas this effect diminishes with increases in aridity indexes (Fig. 3.2A). Similar results

are found for maize productivity (Fig. 3.2B). This positive effect can be attributed to

the presence of surface litter, which leads to higher soil moisture conservation through

increased water infiltration into the soil and decreases in evaporation. Areas where crop

productivity is limited by soil water could therefore potentially benefit from NT R (Pit-

telkow et al., 2015b). The influence of climatic condition of no-till effects on productivity

was already found by several other studies (e.g. Ogle et al., 2012; Pittelkow et al., 2015b;

Van Kessel et al., 2013). Ogle et al. (2012) found declines in productivity, but that these

declines were larger in the cooler and wetter climates. Pittelkow et al. (2015b) found only

small declines in productivity in dry areas, but emphasized that increases in yield can be

found when no-till is combined with residues and crop rotation. This was not the case for

humid areas (aridity index >0.65), there declines in productivity were larger under no-till

regardless if residues and crop rotations were applied. Finally, Van Kessel et al. (2013)

found declines in productivity after adapting to no-till in dry areas (-11%) and humid

areas (-3%). However, in their analysis it is not clear how crop residues are treated in

no-till and tillage (i.e. removed or retained).

Negative effects of NT R on productivity can be observed in mainly the tropical

areas. As soil moisture increases in the tropical areas under NT R as well (Fig. 3.5C),

the decline is resulting from a decrease in N availability is the soil (Fig. 3.5D). Soil

moisture drives many N-related processes that can cause a decline of N. For instance,

the increase in soil moisture can lead to an increase in denitrification, which decreases

the amount of NO3
– (which will be more discussed in chapter 3.5.3). On the other hand,

mineralization can also be reduced if soil moisture is too high. However, the soil moisture-

N availability and yield feedback is complex as many processes are involved.

3.5.2 Soil C stocks and fluxes

We evaluate the effects of tillage and residue management on simulated soil C dynamics

and fluxes for CO2 emissions from cropland soils, relative change in C input, SOC turnover

time as well as relative changes in soil and litter C stocks of the topsoil (0.3 m). In our

simulation CO2 emissions initially decrease for the average of the first three years by a
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Figure 3.2: Relative yield changes for rain-fed wheat (A) and rain-fed maize (B) compared

to aridity indexes after 10 years NT R vs. T R. Low aridity index values indicate arid

conditions as the index is defined as mean annual precipitation divided by potential

evapotranspiration, following Pittelkow et al. (2015a). Substantial increases in crop yields

only occur in arid regions, with aridity indices < 0.75.
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median value of -11.9% (5th, 95th percentile: -24.1%, +2.0%) after introducing no-till

(NT R vs. T R) (Fig. A.3.3A in Appendix A) and soil and litter C stocks increase. After

ten years duration (average of year 9-11) however, both CO2 emissions and soil and litter

C stocks are higher under NT R than under T R (Fig. 3.3A, 3.3D). Median CO2 emissions

from NT R compared to T R increase by +1.7% (5th, 95th percentile: -17.4%, +32.4%)

(Fig. 3.3A), while at the same time median topsoil and litter C also increase by +5.3%

(5th, 95th percentile: +1.4%, +12.8%) (Fig. 3.3D), i.e. the soil and litter C stock has

already increased enough to sustain higher CO2 emissions. There are two explanations for

CO2 increase in the long term: 1) more C input from increased net primary production

(NPP) for NT R or 2) a higher decomposition rate over time under NT R, due to changes

in e.g. soil moisture or temperature. Initially CO2 emissions decrease almost globally

due to increased turnover times under T R (Fig. A.3.3B in Appendix A), but after ten

years, CO2 emissions start to increase in drier regions, while they still decrease in most

humid regions (Fig. 3.3A). The median of the relative differences in mean residence time

of soil carbon for NT R compared to T R is small, but variable (+0.0% after ten years,

5th, 95th percentile: -22.9%, +23.7%) (Fig. 3.3C), and mean residence time shows similar

spatial patterns, i.e. it decreases in drier areas but increases in more humid areas. The

drier regions are also the areas where we observe a positive effect of reduced evaporation

and increased infiltration on plant growth, i.e. in these regions the C-input into soils is

substantially increased under NT R compared to T R (Fig. 3.3B) (see also Sect. 3.5.1.1

for productivity). As such, both mechanisms that affect CO2 emissions are reinforcing

each other in many regions. This is in agreement with the meta-analyses conducted

by Pittelkow et al. (2015a), who report a positive effect on yields (and thus general

productivity and thus C-input) of no-till compared to conventional tillage in dry climates.

Their results show that in general, no-till performs best relative to conventional tillage

under water-limited conditions, due to enhanced water-use efficiencies when residues are

retained.

Abdalla et al. (2016) reviewed the effect of tillage, no-till and residues management

and found that if residues are returned, no-till compared to conventional tillage increases

soil and litter C content by 5.0% (95th CI: -1.0%, +9.2%) and decreases CO2 emissions

from soils by -23.0% (95th CI: -35.0%, -13.8%) (Table 3.3). These findings of Abdalla et al.

(2016) are in line to our findings for CO2 emissions if we consider the first three years of

duration for CO2 emissions and ten years duration for topsoil and litter C. Abdalla et al.

(2016) do not explicitly specify a time of duration for these results. If we only analyze

the tillage effect without taking residues into account (T NR vs. NT NR), we find in

our simulation that topsoil and litter C decreases by -18.0% (5th, 95th percentile: -42.5%,

-0.5%) after twenty years, while CO2 emissions increase by +21.3% (5th, 95th percentile:

-1.1%, +125.2%) mostly in humid regions, whereas they start increasing in drier regions

(Table 3.3). Abdalla et al. (2016) also reported soil and litter C changes from a T NR vs.

NT NR comparison and reported a decrease in soil and litter C under T NR of -12.0%
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(95th CI: -15.3%, -5.1%) and a CO2 increase of +18.0% (95th CI: +9.4%, +27.3%), which

is well in line with our model results.

Ogle et al. (2005) conducted a meta-analysis and reported SOC changes from NT R

compared to T R system with medium C input, grouped for different climatic zones.

They found a +23%, +17%, + 16% and +10% mean increase in SOC after converting

from a conventional tillage to a no-till system for more than 20 years for tropical moist,

tropical dry, temperate moist and temperate dry climates, respectively. We only find a

+4.8%, +8.3%, +3.5% and +5.8% mean increase in topsoil and litter C for these regions,

respectively. However, Ogle et al. (2005) analyzed the data by comparing a no-till system

with high C inputs from rotation and residues to a conventional tillage system with

medium C input from rotation and residues. We compare two similarly productive systems

with each other, where residues are either left on the field or incorporated through tillage

(NT R vs. T R), which may explain why we see smaller relative effects in the simulations.

Comparing a high input system with a medium or a low input system will essentially lead

to an amplification of soil and litter C changes over time; nevertheless we are still able to

generally reproduce a SOC increase over longer periods.

Unfortunately there are high discrepancies in the literature with regard to no-till

effects on soil and litter C, since the high increases found by Ogle et al. (2005) are not

supported by the findings of Abdalla et al. (2016). Ranaivoson et al. (2017) found that

crop residues left on the field increases soil and litter C content, which is in agreement

with our simulation results.

3.5.2.1 Water fluxes

We evaluate the effects of tillage and residue management on water fluxes by analyzing

soil evaporation and surface runoff. Our results show that evaporation and surface runoff

under NT R compared to T R are generally reduced by -44.3% (5th, 95th percentiles: -

64.5%, -17.4%) and by -57.8% (5th, 95th percentiles: -74.6%, -26.1%), respectively (Fig.

A.3.4A and A.3.4B in Appendix A). We also analyzed soil evaporation and surface runoff

for different amounts of surface litter loads and cover on bare soil without vegetation in

order to compare our results to literature estimates from field experiments. We find that

both the reduction in evaporation and surface runoff are dependent on the residue load,

which translates into different rates of surface litter cover.

On the process side, water fluxes highly influence plant productivity and are affected

by tillage and residue management (Fig. 3.1). Surface litter, which is left on the surface of

the soil, creates a barrier that reduces evaporation and also increases the rate of infiltration

into the soil. Litter which is incorporated into the soil through tillage loses this function

to cover the soil. Both, the reduction of soil evaporation and the increase of rainfall

infiltration contribute to increased soil moisture and hence plant water availability. The

model accounts for both processes. Scopel et al. (2004) modeled the effect of maize



3.5 Evaluation and Discussion 63

residues on soil evaporation calibrated from two tropical sites and found that a presence

of 100 g m−2 surface litter decrease soil evaporation by -10% to -15% in the data, whereas

our model shows a median decrease in evaporation of -6.6% (5th, 95th percentiles: -26.1%,

+20.3%) globally (Fig. A.3.5A in Appendix A). The effect of a higher amount of surface

litter is much more dominate, as Scopel et al. (2004) found that 600 g m−2 surface litter

reduced evaporation by approx. -50%. For the same litter load our model shows a median

decrease in evaporation by -72.6% (5th, 95th percentiles: -81.5%, -49.1%) (Fig. A.3.5B

in Appendix A), which is higher than the results found by Scopel et al. (2004). We

further analyze and compare our model results to the meta-analysis from Ranaivoson

et al. (2017), who reviewed the effect of surface litter on evaporation and surface runoff

and other agro-ecological functions. Ranaivoson et al. (2017) and the studies compiled by

them not explicitly distinguish between the different compartments of runoff (e.g. lateral-

, surface-runoff). We assume that they measured surface runoff, since lateral runoff is

difficult to measure and has to be considered in relation to plot size. In Fig. 3.4, modeled

global results for relative evaporation and surface runoff change for 10, 30, 50, 70 and 90%

soil cover on bare soil are compared to literature values from Ranaivoson et al. (2017).

Concerning the effect of soil cover on evaporation (Fig. 3.4A), we find that we are well

in line with literature estimates from Ranaivoson et al. (2017) for up to 70% soil cover,

especially when analyzing humid climates. For higher soil cover ≥70%, the model seems

to be more in line with literature values for arid regions. Overall for high soil cover of

90%, the model seems to overestimate the reduction of evaporation. It should be noted

that the estimates from Ranaivoson et al. (2017) are only taken from two field studies,

which are only representative for the local climatic and soil conditions, since global data

on the effect of surface litter on evaporation are not available. The general effect of surface

litter on the reduction in soil evaporation is thus captured by the model, but the model

seems to overestimate the response at high litter loads. It is not entirely clear from the

literature if these experiments have been carried on bare soil without vegetation. If crops

are also grown in the experiments, water can be used for transpiration which is otherwise

available for evaporation, which could explain why the model overestimates the effect of

surface litter on evaporation on bare soil without any vegetation.
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Ranaivoson et al. (2017) also investigated the runoff reduction under soil cover, but

the results do not show a clear picture. In theory, surface litter reduces surface runoff

and literature generally supports this assumption (Kurothe et al., 2014; Wilson et al.,

2008), but the magnitude of the effect varies. Fig. 3.4B compares our modeled results

under different soil cover to the literature values from Ranaivoson et al. (2017). This

shows that modeled results across all global cropland are on the upper end of the effect of

surface runoff reduction from soil cover, but they are still well within the range reported

by Ranaivoson et al. (2017). The amount of water which is infiltrated (and thus not going

into surface runoff) is affected by the parameter p in Eq. 3.11, which is dependent on the

amount of surface litter cover (fsurf ). The parameterization of p is chosen to be at the

upper end of the approach by Jägermeyr et al. (2016) at full surface litter cover, as this

should substantially reduce surface runoff (Tapia-Vargas et al., 2001) and thus increase

infiltration rates (Strudley et al., 2008). The parametrization of p can be adjusted if better

site-specific information on slope, soils crusting and rainfall intensity is available.

3.5.3 N2O fluxes

Switching from tillage to no-till management with leaving residues on the fields (NT R

vs. T R) increases N2O emissions by a median of +20.8% (5th, 95th percentile: -3.6%,

+325.5%) (Fig. A.3.6A in Appendix A). The strongest increase is found in the cool tem-

perate zone where the average increase is +23.5% (5th, 95th percentile: -0.1%, +664.4%)

(Fig. A.3.6E in Appendix A). The lowest increase is found in the tropical zone +15.8%

(5th, 95th percentile: -7.3%, +72.1%) (Fig. A.3.6C in Appendix A).

The increase in N2O emissions after switching to no-till is in agreement with several

literature studies (Linn & Doran, 1984; Mei et al., 2018; Van Kessel et al., 2013; Zhao et al.,

2016) (Table 3.3). Mei et al. (2018) reports an overall increase of +17.3% (95th CI: +4.6%,

+31.1%), which is in agreement with our median estimate. However, the regional patterns

over the different climatic regimes are in less agreement. LPJmL simulations strongly

underestimate the increase in N2O emissions in the tropical zone, whereas simulations

overestimate the response in cool temperate and humid zones and to some extent in the

warm temperate zone (Table 3.3).

In general, N2O emissions are formed in two separate processes: nitrification and

denitrification. The increase in N2O emissions after adapting to NT R is mainly resulting

from denitrification in our simulations (+55.9%, Fig. 3.5A). This increase is visible in most

of the regions. The N2O emissions resulting from nitrification decrease mostly (median of

-6.0%, Fig. 3.5B) but tends to increase in dry areas. The increase in denitrification and

decrease in nitrification, results in a decrease in NO3
– (median of -26.4%), which appears

to be stronger in the tropical areas as well (Fig. 3.5D). The transformation of mineral

N to N2O is not only affected by the nitrification and denitrification rates, but also by

substrate availability (NH4
+ and NO3

– ). These in turn are affected by nitrification and
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B

Figure 3.4: Relative change in evaporation (a) and surface runoff (b) relative to soil cover

from surface residues for different soil cover values of 10 %, 30 %, 50 %, 70 %, and 90%

(simulation NT R bs1 to NT R bs5 vs. NT NR bs, respectively). For better visibility, the

red and blue boxplots are plotted next to the overall boxplots, but correspond to the soil

cover value of the overall simulation (empty boxes).

denitrification rates, but also by other processes, such as plant uptake and leaching. In

the Sahel zone for example, denitrification decreases and nitrification increases, but NO3
–

stocks decline, because leaching increase more strongly (Fig. A.3.7 in Appendix A).

In LPJmL, denitrification and nitrification rates are mainly driven by soil moisture

and to a lesser extent by soil temperature, soil C (denitrification) and soil pH (nitrifica-

tion). A strong increase in annually averaged soil moisture can be observed after adapting

NT R (median of +18.9%, Fig. 3.5C). Denitrification, as an anoxic process, increases non-

linearly beyond a soil moisture threshold (Von Bloh et al., 2018a), whereas there is an

optimum soil moisture for nitrification, which is reduced at low and high soil moisture

content. In wet regions, as in the tropical and humid areas, nitrification is thus reduced

by no-till practices whereas it increases in dryer regions. The increase in soil moisture

under NT R is caused by higher water infiltration rates and reduced soil evaporation (see

section 5.4). Also, no-till practices tend to increase bulk density and thus higher relative

soil moisture contents (Fig. 3.1) also affecting nitrification and denitrification rates and

therefore N2O emissions (Van Kessel et al., 2013; Linn & Doran, 1984).

Empirical evidence shows that the introduction of no-till practices on N2O emissions

can cause both increases and decreases in N2O emissions (Van Kessel et al., 2013). This

variation in response is not surprising, as tillage affects several biophysical factors that in-
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fluence N2O emissions (Fig. 3.1) in possibly contrasting manners (Van Kessel et al., 2012;

Snyder et al., 2009). For instance no-till can lower soil temperature exchange between soil

and atmosphere, through the presence of litter residues, which can reduce N2O emissions

(Enrique et al., 1999). Reduced N2O emissions under no-till compared to tillage MS can

also be observed in the model results, for instance in Northern Europe and areas in Brazil

(Fig. A.3.6A in Appendix A).

As several biophysical factors are affected, N2O emissions are characterized by sig-

nificant spatial and temporal variability. As a result, the estimation of N2O emissions are

accompanied with high uncertainties (Butterbach-Bahl et al., 2013), which hampers the

evaluation of the model results (Chatskikh et al., 2008; Mangalassery et al., 2015).

The deviations from the model results compared to the meta-analyses especially for

specific climatic regimes (i.e. tropical- and cool temperate) require further investigations

and verification, including model simulations for specific sites at which experiments have

been conducted. The sensitivity of N2O emissions highlights the importance of correctly

simulating soil moisture. However, simulating soil moisture is subject to strong feedback

with vegetation performance and comes with uncertainties, as addressed by e.g. Senevi-

ratne et al. (2010). The effects of different management settings (as conducted here),

on N2O emissions and soil moisture requires therefore further analyses, ideally in dif-

ferent climate regimes, soil types and in combination with other management settings

(e.g. N-fertilizers). We expect that further studies using this tillage implementation in

LPJmL will increase the understanding of management effects on soil nitrogen dynamics.

The great diversity in observed responses in N2O emissions to management options (Mei

et al., 2018) renders modeling these effects as challenging, but we trust that the ability of

LPJmL5.0-tillage to represent the different components can also help to better understand

their interaction under different environmental conditions.

3.5.4 General discussion

The implementation of tillage into the global ecosystem model LPJmL opens opportuni-

ties to assess the effects of different tillage practices on agricultural productivity and its

environmental impacts, such as nutrient cycles, water consumption, GHG emissions and

C sequestration and is a general model improvement to the previous version of LPJmL

(Von Bloh et al., 2018a). The implementation involved 1) the introduction of a surface

litter pool that is incorporated into the soil column at tillage events and the subsequent

effects on soil evaporation and infiltration, 2) dynamically accounting for SOM content in

computing soil hydraulic properties, and 3) simulating tillage effects on bulk density and

the subsequent effects of changed soil water properties and all water-dependent processes

(Fig. 3.1).

In general, a global model implementation on tillage practices is difficult to evaluate,

as effects are reported often to be quite variable, depending on local soil and climatic con-
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ditions. The model results were evaluated with data compiled from meta-analyses, which

implies several limitations. Due to the limited amount of available meta-analyses, not all

fluxes and stocks could be evaluated within the different management scenarios. For the

evaluation we focused on productivity, soil and litter C stocks and fluxes, water fluxes

and N2O dynamics. The sample size in some of these meta-analyses was sometimes low,

which may result in biases if not a representative set of climate and soil combinations was

tested. Clearly a comparison of a small sample size to simulations of the global cropland is

challenging. Nevertheless, the meta-analyses gave the best overview of the overall effects

of tillage practices that have been reported for various individual experiments.

We find that the model results for NT R compared to T R are generally in agreement

with literature with regard to magnitude and direction of the effects on C stocks and fluxes.

Despite some disagreement between reported ranges in effects and model simulations,

we find that the diversity in modeled responses across environmental gradients is an

asset of the model. The underlying model mechanisms, as the initial decrease in CO2

emissions after introduction of no-till practices that can be maintained for longer time

periods in moist regions, but is inverted in dry regions due to the feedback of higher water

availability on plant productivity and reduced turnover times and generally increasing soil

carbon stocks (Fig. 3.3), are plausible and in line with general process understanding.

Certainly, the interaction of the different processes may not be captured correctly and

further research on this is needed. We trust that this model implementation representing

this complexity allows for further research in this direction. For water fluxes, the model

seems to overestimate the effect of surface residue cover on evaporation for high surface

cover, but the evaluation is also constrained by the small number of suitable field studies.

Effects can also change over time so that a comparison needs to consider the timing, history

and duration of management changes and specific local climatic and soil conditions. The

overall effect of NT R compared to T R on N2O emissions are in agreement with literature

as well. However, the regional patterns over the different climatic regimes are in less

agreement. N2O emissions are highly variable in space and time and are very sensitive to

soil water dynamics (Butterbach-Bahl et al., 2013). The simulation of soil water dynamics

differs per soil type as the calculation of the hydraulic parameters is texture specific.

Moreover, these parameters are now changed after a tillage event. The effects of tillage

on N2O emissions, as well as other processes that are driven by soil water (e.g. CO2, water

dynamics) can therefore be different per soil type. The soil specific effects of tillage on

N2O and CO2 emissions was already studied by Abdalla et al. (2016) and Mei et al. (2018).

Abdalla et al. (2016) found that differences in CO2 emissions between tilled and untilled

soils are largest in sandy soils (+29%), whereas the differences in clayey soils are much

smaller (+12%). Mei et al. (2018) found that clay content <20% significantly increases

N2O emissions (+42.9%) after adapting to conservation tillage, whereas this effect for

clay content >20% is smaller (+2.9%). These studies show that soil type-specific tillage

effects on several processes can be of importance and should be investigated in more
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detail in future studies. The interaction of all relevant processes is complex, as seen in

Fig. 3.1, which can also lead to high uncertainties in the model. Again, we think that

this model implementation captures substantial aspects of this complexity and thus lays

the foundation for further research.

It is important to note that not all processes related to tillage and no-till are taken

into account in the current model implementation. For instance, NT R can improve

soil structure (e.g., aggregates) due to increased faunal activity (Martins et al., 2009),

which can result in a decrease in BD. Although tillage can have several advantages

for the farmer, e.g. residue incorporation and topsoil loosening, it can also have several

disadvantages. For instance, tillage can cause compaction of the subsoil (Bertolino et al.,

2010), which result in an increase in BD (Podder et al., 2012) and creates a barrier

for percolating water, leading to ponding and an oversaturated topsoil. Strudley et al.

(2008) however observed diverging effects of tillage and no-till on hydraulic properties,

such as BD, KS and whc for different locations. They argue that affected processes of

agricultural management have complex coupled effects on soil hydraulic properties, as well

as that variations in space and time often lead to higher differences than the measured

differences between the management treatments. They also argue that characteristics of

soil type and climate are unique for each location, which cannot simply be transferred

from one field location to another. A process-based representation of tillage effects as in

this extension of LPJmL allows for further studying management effects across diverse

environmental conditions, but also to refine model parameters and implementations where

experimental evidence suggests disagreement.

One of the primary reasons for tillage, weed control, is also not accounted for in

LPJmL5.0-tillage or in other ecosystem models. As such, different tillage and residue

management strategies can only be assessed with respect to their biogeochemical effects,

but only partly with respect to their effects on productivity and not with respect to some

environmental effects (e.g. pesticide use). Our model simulations show that crop yields

increase under no-till practices in dry areas but decrease in wetter regions (Fig. 3.2A

and 3.2B). However, the median response is positive, which may be in part because the

water saving effects from increased soil cover with residues are overestimated or because

detrimental effects, such as competition with weeds, are not accounted for.

The included processes now allow us to analyze long term feedbacks of productivity

on soil and litter C stocks and N dynamics. Nevertheless the results need to be interpreted

carefully, due to the capacity of the model and implemented processes. We also find that

the modeled impacts of tillage are very diverse in space as a result of different framing

conditions (soil, climate, management) and feedback mechanisms, such as improved pro-

ductivity in dry areas if residue cover increases plant available water. The process-based

representation in the LPJmL5.0-tillage of tillage and residue management and the effects

on water fluxes such as evaporation and infiltration at the global scale is unique in the
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context of global biophysical models (e.g. Friend et al., 2014; LeQuéré et al., 2018). Future

research on improved parameterization and the implementation of more detailed repre-

sentation of tillage processes and the effects on soil water processes, changes in porosity

and subsoil compaction, effects on biodiversity and on soil N dynamics is needed in order

to better assess the impacts of tillage and residue management at the global scale. The

spatial resolution needed to resolve processes, such as erosion, data availability, and model

structure need to be considered in further model development (Lutz et al., 2019b). As

such, some processes, such as a detailed representation of soil crusting processes, may

remain out of reach for global-scale modeling.

3.6 Conclusions

We described the implementation of tillage related processes into the global ecosystem

model LPJmL5.0-tillage. The extended model was tested under different management

scenarios and evaluated by comparing to reported impact ranges from meta-analyses on

C, water and N dynamics as well as on crop yields.

We find that mostly arid regions benefit from a no-till management with leaving

residues on the field, due to the water saving effects of surface litter. We are able to

broadly reproduce reported tillage effects on global stocks and fluxes, as well as regional

patterns of these changes, with LPJmL5.0-tillage, but deviations in N-fluxes need to be

further examined. Not all effects of tillage, including one of its primary reasons, weed

control, could not be accounted for in this implementation. Uncertainties mainly arise

because of the multiple feedback mechanisms affecting the overall response to tillage,

especially as most processes are affected by soil moisture. The processes and feedbacks

presented in this implementation are complex and evaluation of effects is often limited

in the availability of reference data. Nonetheless, the implementation of more detailed

tillage-related mechanics into global ecosystem model LPJmL improves our ability to rep-

resent different agricultural systems and to understand management options for climate

change adaptation, agricultural mitigation of GHG emissions and sustainable intensifi-

cation. We trust that this model implementation and the publication of the underlying

source code promote research on the role of tillage for agricultural production, its envi-

ronmental impact and global biogeochemical cycles.

Code and data availability. The source code is publicly available under the GNU AGPL

version 3 license. An exact version of the source code described here is archived under

https://doi.org/10.5281/zenodo.2652136.
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Abstract

No-tillage is often suggested as a strategy to reduce greenhouse gas emissions. Model-

ing tillage effects on nitrous oxide (N2O) emissions is challenging and subject to large

uncertainties, as the processes producing the emissions are complex and strongly non-

linear. Previous findings have shown deviations between LPJmL5.0-tillage model and

the results from meta-analysis on global estimates of tillage effects on N2O emissions.

Here we tested LPJmL5.0-tillage at four different experimental sites across Europe and

the USA, to verify whether deviations in N2O emissions under different tillage regimes

result from a lack of detailed information on agricultural management and/or the rep-

resentation of soil water dynamics. Model results were compared to observational data

and outputs from field-scale Daycent simulations. Daycent has been successfully applied

for the simulation of N2O emissions and provides a richer data base for comparison than

non-continuous measurements at the experimental sites. We found that adding infor-

mation on agricultural management improved the simulation of tillage effects on N2O

emissions in LPJmL. We also found that LPJmL overestimated N2O emissions as well

as the effects of no-tillage on N2O emissions, whereas Daycent tended to underestimate

the emissions of no-tillage treatments. LPJmL showed a general bias to over-estimate

soil moisture content. Modifications of hydraulic properties in LPJmL in order to match

properties assumed in Daycent, as well as of the parameters related to residue cover, im-

proved the overall simulation of soil water as well as the N2O emissions simulated under

tillage and no-tillage separately. However, the effects of no-tillage (shifting from tillage to

no-tillage) did not improve. Advancing the current state of information on agricultural

management as well as improvements in soil moisture highlight the potential to improve

LPJmL5.0-tillage and global estimates of tillage effects on N2O emissions.
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4.1 Introduction

Agricultural fields are often tilled to suppress weeds, incorporate crop residues, aerate the

soil, prepare the seedbed and improve infiltration. The resulting changes in physical and

chemical properties of the soil affect several biochemical processes, including the formation

of greenhouse gases (GHG). Many field-scale models and experiments evaluated the effects

of tillage and no-tillage on GHG and soil organic carbon (SOC) (Álvaro-Fuentes et al.,

2012; Del Grosso et al., 2009; Jin et al., 2017; Oorts et al., 2007) . Nitrous oxide (N2O)

is a very strong GHG and predominantly emitted in agricultural production (Ciais et al.,

2014; Smith, 2017). However, studies reported mixed results for the impacts of adapting

no-tillage on N2O emissions from croplands (Deng et al., 2016; Venterea et al., 2011). For

instance, no-tillage was found to increase N2O emissions (Mei et al., 2018; Van Kessel

et al., 2013), decrease N2O emissions (Deng et al., 2016; Plaza-Bonilla et al., 2018; Yoo

et al., 2016) or having no significant effects (Alvarez et al., 2012; Boeckx et al., 2011) in

comparison to conventional tillage systems.

Soils emit N2O through a series of processes involving denitrification and nitrification.

These processes are driven by microbial activity and strongly respond to soil properties

such as moisture, temperature, oxygen, mineral N, and organic carbon (Mosquera et al.,

2005; Snyder et al., 2009; Van Kessel et al., 2013). These soil properties are affected by

tillage (Lutz et al., 2019a,b) and other management practices (e.g., fertilizer application

and residue treatment) (Van Kessel et al., 2013). Due to the complexity of the system,

the simulation of tillage effects on N2O emissions is challenging and subject to large

uncertainties.

Lutz et al. (2019a) extended a dynamic global vegetation, hydrology and crop model

to explicitly account for the effects of tillage in the simulations of biogeochemical cycles,

hydrology and crop yields. This enables simulations of the effects of tillage on crop pro-

ductivity, the water, carbon and nitrogen cycles, including N2O emissions at the global

scale. However, they found that simulated N2O emissions from no-tillage exceeded values

in most of the climate zones reported in meta-analyses. These deviations between observa-

tions and simulations of tillage effects on N2O emissions can have several different causes,

including missing processes and lack of process understanding. Also the parameterization

of implemented processes as well as detailed information on management aspects that

are explicitly addressed in the model can lead to model deficiencies that could cause the

mismatch between observations and simulations.

For example, as detailed information about agricultural management practices is

lacking for global-scale applications, assumptions on agricultural management are nec-

essary in these global simulations about e.g., the type, amount and timing of fertilizer

applications. Detailed information on fertilization can typically be dealt with in field-scale

modeling experiments, whereas at the global scale, there is only general information on
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fertilization (e.g. Mueller et al., 2012; Potter et al., 2010) which is characterized by gaps

and uncertainties (Erb et al., 2017). These generalizations may be a significant contribu-

tor to the overall uncertainty for agricultural impact assessments. For instance, Folberth

et al. (2019) found that differences in management assumptions (about e.g., growing sea-

son, and fertilization) resulted in substantial differences in modeled crop yields using the

same crop model.

Second, the formation of N2O in soils is very sensitive to soil moisture (Butterbach-

Bahl et al., 2013). How the effect of tillage on soil moisture is simulated is thus another

source of uncertainty that could explain the inaccuracy in modeling tillage effects on N2O

emissions.

In this study, we test the importance of management information as well as the repre-

sentation of soil water dynamics for the ability to simulate N2O emissions under different

tillage regimes with LPJmL5.0-tillage (Lutz et al., 2019a), for four different experimental

sites across Europe and the USA. Simulation results are compared to measurements of

N2O emissions from experimental studies under tillage and no-tillage in different sim-

ulation experiments, varying from using observed site-specific information to using the

default assumptions usually applied in the global-scale simulations. Because of the im-

portance of soil moisture for N2O emissions, we test the accuracy of the simulated soil

moisture dynamics and its effects on N2O emissions against observations. As simulating

tillage effects on N2O emissions is generally challenging, we use the site-specific model

Daycent (Del Grosso et al., 2009; Parton et al., 1996), which has previously been applied

at the study sites as a benchmark and to provide more detailed information on soil hy-

drology than the sparse observations. Daycent is a well-established model that has been

used for questions related to agricultural impact assessments at various scales (e.g. Begum

et al., 2019; Del Grosso et al., 2009; Del Grosso et al., 2002; Gryze et al., 2010). Daycent

can be used as a benchmark for which the underlying mechanisms can be analyzed and

used for improvements of LPJmL5.0-tillage, even though the performance of Daycent has

to be compared to observations first.

4.2 Material and methods

4.2.1 Overview

In Lutz et al. (2019a), model results deviated from meta-analyses when comparing simu-

lated tillage effects on N2O emissions. First, we tested whether the deviations are due to

a lack of detailed management information. Four experimental sites for which detailed in-

formation on management are available were identified. On those sites, LPJmL5.0-tillage

was run using management assumptions usually used in a global simulation experiment

(LPJmL.G.Orig). To find out if LPJmL5.0-tillage performed better with detailed in-

formation on management, we also applied LPJmL5.0-tillage using detailed site-specific



4.2 Material and methods 79

management information to derive inputs (LPJmL.D.Orig). In order to analyze the im-

portance of individual management information (e.g. on irrigation and fertilization), we

conducted a set of simulations as in the LPJmL.D.Orig, but kept one of the site-specific

management practice as in the LPJmL.G.Orig setup (Table 4.1).

The site-specific Daycent model was used as benchmark to analyze the underlying

mechanisms of the N2O producing processes. For all the simulations of Daycent, detailed

information of management was used. Except for the experimental site in Boigneville,

Daycent has been used and calibrated for field-scale assessments at the chosen sites (i.e.

Campbell et al., 2014; Del Grosso et al., 2009; Yang et al., 2017). Therefore, we expect it

to perform better on simulating the effects of tillage on N2O emissions than LPJmL. We

also expect to learn from the underlying mechanisms simulated by Daycent and to use

this information for improving process representation and parameterization in LPJmL.

All model versions considered here require similar inputs (soil properties, vegetation type,

land management information, latitude, daily precipitation, and daily air temperature

(minimum and maximum).

4.2.2 LPJmL5.0-tillage

LPJmL5.0-tillage is a dynamic global vegetation, hydrology and crop model that simulates

nitrogen (N), carbon (C) and water dynamics in natural and agricultural ecosystems. Soils

are represented by five hydrologically active layers, with different layer thicknesses.

LPJmL5.0-tillage (in the following referred to as LPJmL) uses three litter pools;

representing surface litter, incorporated litter and below-ground litter as well as two soil

organic matter (SOM) pools per soil layer, which are characterized by fast and slow

decomposition rates, respectively, and by separate C and N components for each pool.

The surface litter pool consists of crop residues which are not removed at harvest or

incorporated into the first soil layer through tillage. Residue cover is calculated from

the surface litter following Gregory (1982). This residue cover intercepts some rainfall,

promotes infiltration into the soil, and limits soil evaporation. Moreover, the presence of

a residue cover insulates the soil from air temperature fluctuations. The effects of residue

cover on soil water dynamics and soil temperature fluctuations are thoroughly described

in Lutz et al. (2019a).

Surface litter decomposes and is incorporated through bioturbation and tillage, form-

ing the incorporated litter pool in the first layer. The below ground litter pool includes

crop roots that remain in the soil after harvest. All pools are subjected to decomposition,

which is driven by the moisture content and temperature of the soil (for the incorporated

litter and below-ground litter pool), or of the moisture content and temperature of the

surface litter (surface litter pool). A fixed fraction of the decomposed litter is mineralized

and emitted as CO2, whereas the humified C is transferred to the SOM pool, where it is

then subject to soil C decomposition (see also Von Bloh et al., 2018a). The mineralized
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N is added to the NH4
+ pool which is subject to further transformations into other forms

of nitrogen (Von Bloh et al., 2018a).

Nitrification and denitrification are simulated throughout the entire soil profile and

are dependent on the water-filled pore space (WFPS), soil temperature, NH4
+, pH, SOC

(denitrification) and NO3
– . The N2O emissions from denitrification increases exponen-

tially when the WFPS reaches a threshold value of ≥ 90%, as denitrification occurs only

in oxygen deficit conditions (see also Krysanova & Wechsung, 2000).

In addition to tillage effects on residues (i.e. incorporating residues into the soil),

tillage affects the hydraulic properties of the soil by decreasing the bulk density. Soil

hydraulic parameters are calculated through a pedotransfer function (PTF) from Saxton

& Rawls (2006) which uses soil texture, SOM, and bulk density changes to calculate

field capacity (FC), wilting point (WP), saturation (WSAT) and the saturated hydraulic

conductivity (Ksat). The hydraulic parameters determine the water holding capacity-

and the water dynamics of the soil. For instance, soil water above WSAT runs off as

lateral runoff, while remaining soil water above FC percolates to the next soil layer and

generates lateral subsurface runoff or vertical seepage from the soil column.

A full overview of the tillage implementation into LPJmL5.0 as well as affected soil

properties and processes can be found in Lutz et al. (2019a), the nitrogen implementation

is described by Von Bloh et al. (2018a) and a comprehensive description of the LPJmL

model is provided by Schaphoff et al. (2018a) and Schlüter et al. (2018).

4.2.3 Daycent

The Daycent ecosystem model simulates crop growth, soil water, C and nutrient dynamics

(N, P) in natural and agricultural ecosystems (Del Grosso et al., 2009; Parton et al., 1998).

The soil is represented by user-specified layers which are hydrologically active. Daycent

has two litter pools, representing surface-litter and below-ground litter and three SOM

pools (active, slow and passive) characterized by different decomposition rates.

The active and the slow organic matter pools have surface as well as soil components

while the passive pool has only a soil component. The litter pools are partitioned into

structural and metabolic pools as a function of the lignin to N ratio in the residue, which

are subject to decomposition. Decomposition products of litter supply the SOM pools

(surface active, soil active, surface slow and soil slow) and are partitioned among pools

based on lignin content. Decomposition of litter and soil organic matter and nutrient

mineralization are a function of substrate availability, substrate quality (lignin content,

C:N ratio), soil moisture, soil temperature and tillage intensity. N-mineralization, N-

fertilization and N-fixation supply the N-pools. NO3
– is distributed throughout the soil

profile, whereas NH4
+ is confined to the top 10 cm. NO3

– and NH4
+ can then be taken

up by plants, leached to lower layers (NO3
– ) or transformed to N gas emissions (e.g.
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N2O) through nitrification or denitrification (Del Grosso et al., 2000; Parton et al., 2001).

N2O emissions from nitrification are calculated as a function of soil NH4
+ concentration,

temperature, pH, texture and soil moisture. N2O from denitrification is calculated as a

function of soil NO3
– concentration, soil moisture, texture and heterotrophic CO2 respi-

ration rate. N2O emissions from denitrification increases exponentially when the WFPS

exceeds the texture related threshold value and levels off as the soil approaches satura-

tion. The model can simulate different types of tillage (i.e. plowing, tandem disk and field

cultivator). Depending on the type of tillage, the decomposition of litter and SOM (active

and slow) pools are increased by a specific factor for one month, and a fraction of above-

ground residues is transferred to surface litter and top soil layer. Tillage also impacts

soil temperature and water dynamics indirectly because the model assumes that precip-

itation intercepted by surface litter and living biomass evaporates before entering soil.

On the other hand, the presence of surface litter insulates the soil from air temperature

fluctuations.

If site level measurements of soil hydraulic properties required for Daycent are not

available, they are calculated through the PTF from Saxton et al. (1986) and are static

throughout the simulations. The PTF uses soil texture to calculate FC, WP, bulk den-

sity and Ksat. The soil water model simulates unsaturated water flow using Darcy’s

equation, runoff, snow dynamics, and the effect of soil freezing on saturated water flow

(Pannkuk et al., 1998). Daycent has been shown to reliably model soil water content, N

mineralization and N2O emission rates from different soil types and management practices

(Kelly et al., 2000; Parton et al., 2001). For an extensive overview of validation results of

Daycent, we refer to Del Grosso et al. (2002).

4.2.4 Experimental sites

Four experimental sites were selected in which the effects of tillage and no-tillage on

N2O emissions were studied (Table 4.2 and Table 4.3). The sites were selected based

on the availability of observational data and treatment combination of tillage and no-

tillage.

The first study site is located at the Agricultural Research Development and Educa-

tion Center (ARDEC) near Fort Collins, CO (40◦ 39’6” N, 104◦ 59’57” W; 1555 m asl).

It was initiated in 1999 on a clay loam soil (fine-loamy, mixed, mesic Aridic Haplustalfs),

that was continuously cropped with maize (Zea mays L.) for six years. Shortly before

sowing, fertilizers (67 kg N ha−1) were applied. The fields were sprinkler irrigated during

the growing season. In the tillage treatment, fields were tilled shortly before sowing, and

with harvest, followed by tandem disking and then moldboard plowing to a depth of 25

to 30 cm. N2O emissions were measured three times per week during the growing season

(2002-2006) with closed chambers. Soil moisture was measured two to three times per

month during the growing season from 2003 to 2006. Soil organic carbon (SOC) was
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measured once in October 2005. A detailed description of the experimental site can be

found in Halvorson et al. (2006).

The second study site is located at the University of Nebraska-Lincoln Agricultural

Research and development Center, Ithaca, NE (41◦ 9’43.3”N, 96◦ 24’41.4” W; 349 m

asl). The experiment was established in 2002 on a silt loam soil that was previously

cropped with rain fed maize, soybean (Glycine max (L.) Merr.), oat (Avena sativa L.)

and alfalfa (Medicago sativa L.). From 2000 on, maize was grown continuously. During

the experiment, N fertilizers were injected to a depth of 10-15 cm, once during the growing

season at various rates and compositions (Table 4.2). The soil in tillage treatments was

tilled, before sowing and at harvest, to a depth of 15-20 cm. The field was irrigated

with varying irrigation amounts. N2O emissions were measured from April 2011 through

May 2016 monthly during the growing season using closed chambers. Soil moisture was

measured at varying intervals from one to five times per month between 2011 and 2015.

SOC was measured in May 2001, November 2010, and November 2014 for different depths

(0-0.15, 0.15-0.30, 0.30-0.60, 0.60-0.90, 0.90-1.20 and 1.20-1.50 m). More information

regarding the experimental study site is provided by Jin et al. (2017).

The third study site is the W.K. Kellogg Biological Station Long-Term Ecological

Research (KBS LTER) experiment located in Southwest Michigan (42◦ 24’ N, 85◦ 24’ W,

288 m asl) on loam soils (Typic Hapludalfs). The experiment was established in 1988

on an agricultural field that had been tilled for at least 100 years before the experiment.

The crop rotation before 1995 consisted of maize followed by soybean. In 1995, wheat

(Triticum aestivum L.) was planted after soybean, which resulted in a maize-soybean-

wheat rotation. After the harvest of wheat, the fields stayed bare until the fields were

cropped with maize again. This sequence was followed during the time span analyzed here

(1989-2010). Different quantities of N-fertilizers were applied at sowing and/or during the

growing season for maize, during the growing season for wheat, and soybean did not receive

fertilizers (Table 4.2). The tillage treatment was tilled each year with sowing, then during

the growing season and at harvest, to a depth of 20 cm. The fields were not irrigated

during the experiment. N2O emissions were measured once or twice a month from June

1991 to October 2016 using closed chambers. Soil moisture was measured once per month

during the growing season from 1989 until 2017. SOC was measured annually since 1989

at multiple sampling depths. More information regarding the experimental study site is

provided by Grandy et al. (2006) and on the KBS LTER website (http://lter.kbs.msu.edu,

accessed November 2018 ).

The last study site is located in Boigneville, France (48◦ 33’N, 2◦ 33’E, altitude

unknown) on a silt loam soil (Haplic Luvisoil) (FAO, 1998). The experiment started

in 1970 that had been tilled to 30 cm depth annually. During the experiment, the site

was cropped with a maize-wheat rotation, with maize being sown in April, harvested

in October and directly followed by tillage (20 cm for tillage treatments) and sowing
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of wheat. After harvest of wheat in April, the soil was left bare and was tilled (20

cm) in November, until the fields were cropped with maize again. This sequence was

followed during the time span analyzed here (2003-2004). During the experiment, the

maize received N-fertilizers in May and wheat in February and April (Table 4.2). The

fields were irrigated between the end of June and July. N2O emissions were measured on

average every three weeks using closed chambers. Soil moisture was not measured. Soil

organic carbon was measured twice in 2003 and once in 2004 on various depths. More

information regarding the study site can be found in (Oorts et al., 2007).

4.2.5 Management information

4.2.5.1 LPJmL standard setup using global input data

In the LPJmL.G.Orig scenario, all management information as well as soil C and N-pools

were used as within the default global simulation of LPJmL (Table 4.1). The amount of

mineral and organic fertilizers was provided by the global gridded crop model intercom-

parison (Elliott et al., 2015) of the Agricultural Model Intercomparison and Improvement

Project (AgMIP, Rosenzweig et al., 2013). It is based on global, gridded data sets for

each crop (Mueller et al., 2012; Potter et al., 2010). Fertilizer is assumed to consist of

50% NO3
– and 50% NH4

+. If fertilizer input is low (≤ 5.0 gN m−2), all is applied at

sowing. Otherwise, only half of the fertilizer is applied at sowing and the remainder is

applied when the phenological stage fraction (unitless) of the crop reaches 0.4 (Von Bloh

et al., 2018a).

Irrigation events occur when the fractional soil moisture of the water holding capac-

ity (unitless) is below an irrigation threshold value of 0.7 for maize (Jägermeyr et al.,

2015).

In the experiments with tillage, tillage occurs twice a year; once at sowing and

once at the day of harvest. Sowing dates are calculated internally following Waha et al.

(2012). Thereby, the sowing dates are calculated based on a set of rules depending on

crop specific thresholds and climate. Here, the sowing date depends on a crop-specific

temperature threshold (i.e. 14 ◦C for maize; Waha et al., 2012).

The size of the C and N pools are calculated internally during the spinup (5000

years) of the natural vegetation and land-use history. The land-use history is simulated

as with Daycent, in order to establish a comparable starting point when the simulations

for the experiments are conducted. Thereby, the spin-up is followed by a simulation of

historical land-use change to account for effects on the pools based on the best available

information of land management.
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4.2.5.2 LPJmL detailed setup using observed input data

Site-specific observed information for all management inputs as well as soil C and N

pools were prescribed for simulation LPJmL.D.Orig (Table 4.1). For practical reasons,

irrigation water was added to precipitation to enable the specification of the amount

and the timing of irrigation events. This mimics a sprinkler irrigation technique as part

of the irrigation water is intercepted by the canopy. As the current implementation of

soil layers and tillage in LPJmL does not allow for distinguishing more detailed tillage

types other than conventional tillage and no tillage, we ignored tillage activities that were

less intensive (e.g. “shredding”). In order to specify the growing season, phenological

heat unit requirements and base temperatures were parameterized so that the simulated

harvest dates were matching the reported harvest dates.

The soil C and organic N pools from the simulations were scaled to the observed

values. This was done twice, once at the introduction of land-use during spin-up and once

at the start of the treatment of the experimental site. If observations were not available

for the start of the experiment, the first available observation was taken, assuming that

pool sizes remained stable over that time period. The pools (P) at each site were scaled

as in equation 4.1:

P(cor,l) = P(sim,l) ∗
Total(obs)
Total(sim)

(4.1)

Where P(cor) are the scaled carbon or nitrogen content of the soil pools (g C or N

m−2) in layer l of the experimental site and P(sim), the simulated amounts of C or N

contained in the soil and litter pools of the different layers l of the experimental site.

Total(obs) and Total(sim), are the total of C or N contained in the soil and litter pools

summed over the different layers (l) for which observational data of soil organic C and N

were available (in g C or g N m−2, respectively) of the experimental site.

The differences between simulated and observed input data are depicted in Table 4.1.

4.2.6 LPJmL experimental simulations

Agricultural management consists of several practices. To analyze the importance of in-

dividual management aspects, we conducted a set of simulations as in LPJmL.D.Orig

but ignored one site-specific management practice and replace it with the global as-

sumption as in LPJmL.G.Orig (Table 4.1). As an example: LPJmL.D.Orig-F, refers

to the simulation where all management information are as in the LPJmL.D.Orig, except

for the fertilizer information. Instead, the amount, timing and type of fertilizers were

used as in LPJmL.G.Orig. Other experimental simulations refer to: LPJmL.D.Orig-I,

LPJmL.D.Orig-GS, LPJmL.D.Orig-PS and LPJmL.D.Orig-T, that use the management

information as in LPJmL.D.Orig, except for irrigation (I; timing and amount), growing
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season (GS; sowing- and harvest days), C and N pool sizes (PS) and the timing of tillage

(T) respectively. The naming of the simulation consists of three parts: 1) model used

(LPJmL), 2) the experiment conducted (e.g. I, GS or PS) and 3) whether it includes

modifications (“Mod”; see 4.2.7) or not (“Orig”).

4.2.7 Model modifications

Lutz et al. (2019a) found that LPJml overestimates N2O emissions. Because of the im-

portance of soil moisture for N2O emissions, we tested if modifying the simulation of soil

moisture can contribute to improving the simulation of N2O emission. We modified the

model with respect to the treatment of the residue cover of the soil in no-tillage systems

and with respect to changing the soil parameterization.

As the soil covered by residues under no-tillage practices in LPJmL simulations

is very high and thus leads to high soil moisture levels throughout the year (as soil

evaporation is reduced and infiltration is enhanced), we tested modifications of the relevant

functions for this aspect. To this end, we tested modifications of the parameters that

translate litter amounts into soil cover (Gregory, 1982) and those that determine how

long the soil is covered with residues. Rather than changing well-established functions on

litter decomposition (Schlüter et al., 2018), we modified the parameter on bioturbation

that was introduced by Lutz et al. (2019a) and tested its effects on the reduction of the

residue cover of the soil.

Lutz et al. (2019a) used an average value of 0.006 (m2 g−1) to translate litter biomass

into a fraction of soil being covered with residues, which was applied to all litter, neglecting

variations in surface litter for different materials. The bioturbation rate was increased

from 0.19% day−1 to 0.63% day−1 to account for the surface litter being transferred to

the incorporated litter pool per day (equivalent to an annual bioturbation rate of 90%,

versus 50% as assumed previously).

High N2O emissions can also result from biases in the parameterization of hydraulic

properties. For example, small differences between FC and WSAT lead to frequent trig-

gering of denitrification. To study the role of soil moisture for causing deviations in tillage

effects on N2O emissions, we analyzed if the parameterization of the hydraulic properties

causes the overestimation in soil moisture. As observational data on the hydraulic prop-

erties are lacking, we here compared the hydraulic properties in relation to soil moisture

from Daycent.

4.2.8 Analyses

4.2.8.1 N2O emissions

As N2O emissions are characterized by a high temporal variability, we analyzed two

different aggregation levels: annual averages of N2O emissions and emissions of individual
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days within the year. We analyzed each tillage type (tt, i.e. conventional tillage and

no-tillage) separately (N2Ott, equation 4.2) and differences between the two for both

aggregation levels (N2Odiff,year; equation 4.3 and N2Odiff,day; equation 4.4).

N2Ott =

∑n
day=1 N2Oday,tt

ntt
(4.2)

N2Ott is the annual average of simulated and observed N2O emissions (in g N ha−1 d−1)

of tt (tillage type: conventional tillage (till) or no-tillage (notill)), and ntt is the number

of days with N2O emissions simulated or observed in the year of tt. Thereby, ntt equals

all 365 days in the simulations and for the observations ntt < 365 as observations are not

available for every day in the year. We thus assumed that the scarcer observations still

represent the full year’s dynamics.

The differences in N2O emissions on annual average (N2Odiff,year) were calculated as in

equation 4.3:

N2Odiff,year =

∑n
day=1 N2Oday,notill

nnotill
−
∑n

day=1 N2Oday,till

ntill
(4.3)

Where N2Oday,notill and N2Oday,till are daily N2O emissions in g N ha−1 d−1 for all the

days in the year and nnotill and ntill the number of days with N2O emissions simulated or

observed in the year for no-tillage and tillage, respectively.

The differences in N2O emissions for individual days were calculated as in equation

4.4:

N2Odiff,day = N2Onotill − N2Otill (4.4)

Where N2Onotill and N2Onotill are daily emissions in all years.

The relative difference (RD in %) of no-tillage to conventional tillage was calculated as

in equation 4.5:

RD =

(∑n
day=1 N2Onotill∑n
day=1 N2Otill

)
∗ 100(%) (4.5)

Where N2Onotill and N2Otill are daily N2O emissions in g N ha−1 d−1 for all the days in

the year and n is the number of days with N2O emissions simulated or observed.
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4.2.8.2 Soil moisture

For the analyses of soil moisture, we focused on the first 0.2 m of the soil, which is the

tillage-affected layer. We analyzed the experimental site in Nebraska as this site had the

most observations of soil moisture compared to the other experimental sites. As N2O

emissions are regulated by the WFPS in both LPJmL and Daycent, we normalized the

soil moisture content and hydraulic properties to porosity (WSAT in mm). The WFPS

(fraction) is calculated as in equation 4.6:

WFPS =
W

WSAT

(4.6)

where W is the volumetric soil water content (mm). The WFPCFC (fraction) and

WFPCWP (fraction) are the field capacity and wilting point values normalized to WFPS

as in equations 4.7 and 4.8:

WFPCFC =
WFC

WSAT

(4.7)

WFPCWP =
WWP

WSAT

(4.8)

The WFC and WWP are the water content at field capacity and wilting point, respec-

tively.

4.2.8.3 Evaluation metrics

To quantify the performance of simulated N2O emissions, we conducted an analyses of

coincidence (equation 4.9) and an analysis of association (equation 4.10), following Smith

& Smith (2007). Therefore, we calculated the deviation between simulated and observed

values were by the root mean squared deviation (RMSD in g N ha−1 d−1) for the different

sites as in equation 4.9:

RMSD =

√∑n
i=1(Oi − Si)2

n
(4.9)

Oi is the average observed N2O emission (in g N ha−1 d−1) of year i and Si the average

simulated value of N2O emission (in g N ha−1 d−1) of year i and n the total number of

valid value pairs for comparison.

To describe how well the dynamics in the observations were captured in the simulations,

we calculated the degree of association (r) as in equation 4.10:
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r =

∑n
i=1(Oi −O)(Si − S)√∑n

i=1(Oi −O)2
∑n

i=1(Si − S)2

(4.10)

Where O and S are the average observed and average simulated value respectively over

all years (in g N ha−1 d−1). The significance of r corresponds to the tests, null hypothesis:

r=0.

The mean bias (MB in fraction) was calculated as in equation 4.11:

MB =
O

S
(4.11)

For soil moisture, the RMSD and r were calculated as well. However, there we focused

on one site and calculated the average RMSD and r over all the years, as not much

variation in soil moisture is expected between the years.

4.3 Results and discussion

4.3.1 Importance of management information

4.3.1.1 Tillage effects on N2O emissions

Annual averages

The N2O emissions were overestimated in the LPJmL.G.Orig experiment when analyzing

yearly averages of the different sites (Fig. 4.1 A). This effect was stronger for simu-

lated emissions under no-tillage (RMSD=36.2 g N ha−1 d−1, r=-0.07) than under tillage

(RMSD= 23.6 g N ha−1 d−1, r=-0.31). Daycent was closer to the observed values for

both tillage (RMSD=7.60 g N ha−1 d−1, r=0.67) and no-tillage (RMSD=4.61 g N ha−1

d−1, r=0.66). For the full statistical analyses, we refer to Table B.4.1 in the Appendix

B.

Using detailed site-specific management information in LPJmL (LPJmL.D.Orig) im-

proved the correlation between the observed and simulated values (Fig. 4.1 B). The sim-

ulated N2O emissions under no-tillage deviated more from the observed values (RMSD=

38.9 g N ha−1 d−1, r=0.36), as the N2O emissions were still overestimated. This held for

the simulated N2O emissions resulting under conventional tillage as well (RSMD=31.7 g

N ha−1 d−1, r=0.34).

When analyzing the effect of tillage (difference between no-tillage and tillage),

LPJmL.G.Orig showed an increase in emissions with no-tillage (Fig. 4.2 A), and

LPJmL.D.Orig showed both an increase and decrease with no-tillage (Fig. 4.2 B). On

average, no-tillage increased N2O emissions by 59.5% in LPJmL.G.Orig, and 22.4% in
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Figure 4.1: Comparison of observed and simulated yearly averages of N2O emissions by tillage

type and models LPJmL.G.Orig (A), LPJmL.D.Orig (B) and DayCent. Data refer to all four

sites and years of the experiments. Each point represents the average of all measured daily

values within one year and tillage treatment. Tillage types are indicated by different colors.

LPJmL.D.Orig across all sites and years.In observations, no-tillage decreased N2O emis-

sions on average by 16.0% and Daycent shows a reduction of 24.3%. However, observations

across the different sites showed, that no-tillage can have very different effects on N2O

emissions. In Boigneville and Michigan, N2O emissions increased under no-tillage (49.3%

and 15.7% respectively), whereas it decreased in Colorado (by 9.01%) and Nebraska (by

29.2%). LPJmL.D.Orig reproduced the observed differences in tillage better (RSMD=12.0

g N ha−1 d−1, r=0.48) than LPJmL.G.Orig (RSMD=18.0 g N ha−1 d−1, r=-0.16), see also

Fig. 4.2. Yet, both versions mainly projected an increase in N2O emissions from no-tillage

practices. Daycent results were closer to the observed values, but slightly underestimated

the effects of no-tillage on N2O emissions (RMSD= 4.96 g N ha−1 d−1, r=0.34).

Daily emissions

The simulations with different management information showed that these are relevant

for the simulated tillage effects on N2O emissions on individual days (Fig. 4.3). On aver-

age, more accurate information on management improved the simulations of differences

between conventional and no-tillage systems in LPJmL except for the site in Colorado.

However, there was no clear pattern between the different experimental runs of LPJmL

(Fig. B.4.1 in Appendix B). None of the simulations with partial usage of detailed man-

agement information (Table 4.1) performed clearly better or worse between the LPJmL

simulations. There were only small differences in the distribution of no-tillage effects

on N2O emissions as well as between the averages. The observations showed that no-

tillage both increased (Boigneville, Michigan) and decreased N2O emissions (Colorado,

Nebraska) on average, as well as on the individual days. The negative effects were re-

produced by Daycent in Colorado and Nebraska. The positive and negative effects were

reproduced by LPJmL.D.Orig as well, except in Michigan. LPJmL.G.Orig however, only
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Figure 4.2: Comparison of observed and simulated effects after converting to no-tillage. The

data refer to yearly averages of N2O emissions and models LPJmL.G.Orig (A), LPJmL.D.Orig

(B) and DayCent, of all four sites and years of the experiments.

reproduced the increase in N2O emissions in Michigan (Fig. 4.3).

In Colorado, observations showed a decrease in N2O emissions under no-tillage com-

pared to conventional tillage. In contrast, LPJmL.D.Orig and LPJmL.G.Orig showed an

increase in emissions with no-tillage, whereas the observed decrease was well captured by

Daycent. In Boigneville, the increase in N2O emissions under no-tillage was well captured

by LPJmL.D.Orig. Daycent and LPJmL.G.Orig did not capture the increase in N2O

emissions with no-tillage. In Nebraska, LPJmL.D.Orig and Daycent agreed with observa-

tions that no-tillage decreases N2O emission. In Michigan, no-tillage resulted mainly in

an increase in emissions in LPJmL, which can also be found in the observations but not

in Daycent simulations.

For all sites, LPJmL showed a high variability in N2O emissions between days (Fig.

4.3 and Table B.4.1 in Appendix B). The interquartile ranges from LPJmL simulations

were often much wider compared to observations and Daycent simulations. Hence, the

variability of no-tillage effects on daily N2O emissions was overestimated. Daycent on

the other hand, tended to underestimate the variability of N2O emissions between days

(Table B.4.1).

In LPJmL, the N2O emissions from no-tillage were entirely caused by changes in

denitrification, whereas no-tillage mainly caused decreases on N2O emissions from nitri-

fication (Fig. B.4.2 in Appendix B). This can be explained by higher soil moisture levels

with no-tillage in LPJmL. In general, higher soil moisture levels trigger N2O emissions

from denitrification (anaerobic process), whereas nitrification is decreased (aerobic pro-

cess). In Daycent, no-tillage mainly decreased N2O emissions emitted from nitrification

and had little effects on denitrification.
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Figure 4.3: Effects of no-tillage on N2O emissions on individual days (and on average),

including the original LPJmL settings, the observations and simulated values by DayCent.

4.3.2 Soil hydrology and model modifications

4.3.2.1 Soil hydrology

The soil moisture (WFPS) simulated by LPJmL.D.Orig for no-tillage in Nebraska,

is high compared to the observed values (RMSD= 0.24 (unitless), r= 0.28) (Fig. 4.4).

Daycent was closer to the observed values for no-tillage (RMSD= 0.10 (unitless), r=0.50)

and tillage (RMSD= 0.11 (unitless), r=0.49). After modifying the parameters for sur-

face litter and the hydraulic properties, the simulated soil moisture in the experiment

LPJmL.D.Mod was closer to the observed values and simulation results from Daycent (Fig.

4.4). These combined effects showed the best performance for both tillage (RSMD=0.12

(unitless), r=0.33) and no-tillage (RSMD=0.14 (unitless), r=0.48), compared to imple-

menting the modifications separately (Table 4.4). The dynamics in soil moisture simulated

in the experiment LPJmL.D.Mod better reflected the dynamics simulated by Daycent.

For instance, after October, a decrease in soil moisture was simulated by Daycent (and

measured) which was previously not captured by LPJmL.D.Orig. In LPJmL.D.Orig, soil

moisture was mostly stationary around FC, which in LPJmL.D.Mod was only the case

from April to June.
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Figure 4.4: Observed and simulated soil moisture of no-tillage in the top soil (0-20 cm) in

Nebraska.

Although the simulation of soil moisture was improved with the modified settings,

LPJmL simulations still overestimated soil moisture in comparison to observations.

Table 4.4: Performance of Daycent, and LPJmL compared to soil water

observations in Nebraska. The results are shown for both conventional tillage and no-tillage

RMSE r

Conv. tillage No tillage Conv. tillage No tillage

LPJmL.D.Orig 0.21 0.24 0.10 0.28

Bioturbation 0.20 0.22 0.19 0.40

Parameter residue cover 0.19 0.24 0.20 0.32

Hydraulic properties Daycent 0.15 0.18 0.07 0.23

LPJmL.D.Mod 0.12 0.14 0.33 0.48

Daycent 0.11 0.10 0.49 0.50

4.3.2.2 Tillage effects on N2O emissions after modifications

Yearly averages

The modifications of the parameters for surface litter and the hydraulic properties im-

proved the yearly tillage and no-tillage effects on N2O emissions across all the different

sites (Fig. 4.5). The emissions under no-tillage (RSMD=18.1 g N ha−1 d−1, r=0.60) and
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under tillage (RSMD=16.3 g N ha−1 d−1, r=0.38) were much closer to the observed values

than with the original hydrologic parameterization. Although the modifications improved

the simulation of tillage and no-tillage, LPJmL.D.Mod still overestimated the changes in

emissions when switching from conventional tillage to no-tillage systems (Fig. 4.5, Table

B.4.1). The modifications did not improve the simulation of N2O emissions after shifting

to no-tillage (Fig. 4.6). Although the deviations of the absolute differences between tillage

systems decreased, the correlation with observations was less well captured (RMSD=7.35

g N ha−1 d−1, r=-0.04), negating the improvements achieved through the consideration of

detailed management information (LPJmL.G.Orig vs. LPJmL.D.Orig). The conversion

to no-tillage systems increased N2O emissions by 13.0% in LPJmL.D.Mod. The increase

in N2O emissions after shifting to no-tillage in the modified simulations was found across

all sites in LPJmL.D.Mod, whereas Daycent showed decreases in N2O emissions across

all sites at the yearly aggregation (Fig. 4.6). However, the observations showed both

increases and decreases in N2O emissions after shifting to no-tillage for all sites at the

yearly aggregation.

Daily emissions

The modified hydrology (LPJmL.D.Mod and LPJmL.G.Mod), decreased the variability

of no-tillage effects on N2O emissions of individual days in most LPJmL simulations

(Fig. B.4.3 in Appendix B). The interquartile ranges from daily N2O emissions simulated

by LPJmL were more in agreement compared to the observations and Daycent, as the

variability of no-tillage effects on N2O emissions is declined between days.

In the LPJmL.D.Mod experiment, simulated N2O emissions from no-tillage are now

produced by both denitrification and nitrification (Fig. B.4.2 in Appendix B). The in-

creases in emissions from denitrification were smaller than in the LPJmL.D.Orig exper-

iment and closer to the simulated values by Daycent in Boigneville and Nebraska. The

emissions from nitrification increased by switching from conventional tillage to no-tillage

systems, whereas they decreased in the LPJmL.D.Orig experiment. However, changes in

nitrification remain small, compared to changes in denitrification.

4.4 General discussion

Detailed information on agricultural management improved the LPJmL simulation of N2O

emissions produced by tillage and no-tillage, as well as of the effect of switching from con-

ventional tillage to no-tillage systems. However, also with detailed information, LPJmL

overestimated the N2O emissions. The overestimation is caused by too high simulated soil

moisture, resulting in high fluxes from denitrification. After correcting for the overesti-

mation in soil moisture, by modifying 1) the parameter that translate litter amounts into

soil cover, 2) the parameter that determines the duration of the surface litter layer and

3) hydraulic properties, the yearly averages of N2O emissions were closer to the observed

values for tillage and no-tillage separately, but not for shifting from conventional tillage
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Figure 4.5: Comparison of observed and

simulated yearly averages of N2O emissions by

tillage type and models DayCent,

LPJmL.D.Mod and LPJmL.D.Orig (in grey).

Data refer to all four sites and years of the

experiments. Each point represents the

average of all measured daily values within one

year and tillage treatment. Tillage types are

indicated by different colors.
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Figure 4.6: Comparison of observed and

simulated effects after converting to no-tillage.

The data refer to yearly averages of N2O

emissions and models DayCent, LPJmL.D.Mod

and LPJmL.D.Orig (in grey). Data refer to all

four sites and years of the experiments.

to no-tillage. However, the variability of no-tillage effects on N2O emissions between the

days is now reduced in most of the LPJmL simulations and the interquartile ranges from

LPJmL simulations are now in better agreement with observations and Daycent.

Daycent performed better in simulating tillage and no-tillage effects on N2O emis-

sions on the yearly averages. However, Daycent tended to underestimate the overall effects

and the inter annual variability of no-tillage on the emissions. Daycent mostly simulated

a decrease in N2O emissions upon shifting to no-tillage. A major reason for this is that

in Daycent conversion to no-tillage leads to increasing soil organic matter which is as-

sociated with decreased availability of mineral N. However, observations showed that

no-tillage can also increase N2O emissions. For example, no-tillage can result in increased

soil moisture content which can promote N2O emissions from denitrification. Daycent

simulations showed basically no response in N2O emissions from denitrification. On the

other hand, conventional tillage can increase the decomposition rate of (soil) organic mat-

ter, through improved aeriation of the soil. Increased decomposition leads to an increase

of available N that can be transformed to N2O through nitrification and denitrification.

The higher N2O emissions with conventional tillage in Daycent, indicates that the increase

in decomposition rate of (soil) organic matter due to tillage, is dominant in comparison

to the effect of increased soil moisture-driven denitrification rate.

The overall better performance by Daycent likely reflects the years of model devel-
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opment and testing at this scale and previous application at these sites (except the site

in Boigneville) (Campbell et al., 2014; Del Grosso et al., 2008; Yang et al., 2017), which

enabled more accurate reproduction of observed N2O emissions. The testing of the model

performance as well as improvements to reproduce observed N2O emissions has been con-

ducted in several studies (Necpálová et al., 2015; Fitton et al., 2014; Del Grosso et al.,

2010). For example, model calibration has been conducted to test the model performance

based on contributing parameters and key processes that affect N2O emissions. For in-

stance, the maximum amount of N2O emissions produced during nitrification as well as

the proportion of nitrified N that is lost as N2O can be specified. LPJmL on the other

hand, is developed for global-scale applications and is therefore usually not calibrated, as

suitable calibration targets are typically not available at that scale.

The application of LPJmL at the experimental sites provided much insight in the

deviations of the tillage effects on N2O emissions from observations. It enabled to use site-

specific information on agricultural management, whereas missing information at global

scale has to be supplemented with assumptions. As detailed information improved the

simulation of tillage effects on N2O emissions, advancing the current state of information

on agricultural management at the global scale could improve global estimates of tillage

effects on N2O emissions. The study also highlighted the potential of improving the

simulation of N2O emission by improving soil moisture dynamics. Any modification to

improve LPJmL5.0-tillage needs to be evaluated at the global scale, as LPJmL is typically

applied at that scale (e.g. Heinke et al., 2019; Rolinski et al., 2018; Schaphoff et al.,

2018a). A first recommendation is to revisit the PTF used in LPJmL5.0-tillage. We

saw in this exercise that LPJmL overestimated soil moisture independent of the tillage

system. Although the modifications in residue cover improved the results on soil moisture,

the most important modification was in the hydraulic properties resulting from the PTF.

The modifications still resulted in relatively high soil moisture contents, and therefore

possibly still overestimations in N2O emissions. A reason for this could be the relatively

inefficient percolation of soil moisture to lower soil layers as soon as soil moisture is higher

than FC.

N2O emissions from denitrification increase exponentially when the WFPS exceeds a

certain threshold value in LPJmL. This threshold value (which is around 0.8 of WFPS) is a

proxy for assuming anaerobic conditions, and is static for all soil texture types. However,

finer-textured soils have lower gas diffusivity at a given WFPS than coarser textured

soils (e.g. Del Grosso et al., 2000). In soils with lower gas diffusivity, denitrification is

assumed to occur at lower levels of WFPS, because atmospheric O2 may not diffuse into

the soil fast enough to fully satisfy microbial demand (Parton et al., 1996). Threshold

values for anoxic conditions that are soil texture type specific are currently not accounted

for in LPJmL. In Daycent, the effect of gas diffusivity of different soil texture types is

taken into account. An index of gas diffusivity is calculated based on the WFPS, bulk

density and FC, which is a proxy for pore size distribution and air filled pore space. This
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index influences the denitrification rate (i.e. lower diffusivity increases denitrification),

N2 to N2O and NOx to N2O ratios. Including such processes in LPJmL might improve

simulated N2O emissions. However, this would require suitable reference data in order to

parameterize these processes well.

4.5 Conclusions

Previous findings have shown deviations between simulations with the LPJmL5.0-tillage

model and the results from meta-analyses on global estimates of tillage effects on N2O

emissions. In this study, we tested LPJmL5.0-tillage at different experimental sites to

study whether deviations in N2O emissions result from a lack of detailed information on

agricultural management and/or the representation of soil water dynamics. The results

were compared to observed values of the experimental sites as well as to results of the

field-scale model Daycent.

Adding site-specific information on agricultural management improved the simula-

tion of N2O emissions under conventional tillage and no-tillage practices, as well as changes

in emissions from shifting from conventional tillage to no-tillage in LPJmL5.0-tillage. Al-

though adding information on agricultural management improved the performance of

LPJmL5.0-tillage, simulated N2O emissions remained too high, due to a general bias in

over-estimations of soil moisture. By modifying the parameters related to residue cover

and the hydraulic properties as used in Daycent, the simulation of soil moisture and N2O

emissions by LPJmL5.0-tillage improved substantially.

Generally, there is substantial uncertainty in simulating the effects of different tillage

systems on N2O emissions. Daycent performed better in simulating N2O emissions under

conventional tillage and no-tillage, but generally showed little response in N2O emissions

on changes in tillage practices. LPJmL5.0-tillage simulations reproduced a broader range

of tillage effects on N2O emissions, but tended to overestimate N2O emissions in general.

Modifications to the detail of management information considered and soil hydrology

could always only improve in one deficiency (bias or dynamics) but not in both.

This study confirmed that the deviations in N2O emissions can be explained by both

lacking detailed information on management and relative high soil moisture levels sim-

ulated by LPJmL5.0-tillage. Advancing the current state of information on agricultural

management can thus improve global estimates of tillage effects on N2O emissions. Fur-

thermore, the representation of soil water dynamics and N2O dynamics highlights the

potential to improve LPJmL5.0-tillage. However, given the limited skill to reproduce

observed patterns in simulations with LPJmL5.0-tillage, the model currently does not

lend itself to evaluating the impacts of different tillage systems on N2O emissions but

requires further research on better representation of soil hydrology and its effects on N2O

emissions.
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Chapter 5

Representing soil heterogeneity in

global modelling of N2O emissions

and soil organic matter

This chapter is based on:

Lutz, F., Stoorvogel, J. J., and Müller, C., Representing soil heterogeneity in

global modelling of soil carbon and N2O emissions, to be submitted to Global Change

Biology.
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Representing soil heterogeneity in global modelling of N2O emissions and soil

organic matter

Abstract

Global Ecosystem Models (GEMs) are used to evaluate climate change impacts on the

global biogeochemistry. Increasingly, they also cover the effects of agriculture on the

environment. The fine-scale variability of soils is often ignored by GEMs as they are

often run at a relatively coarse spatial resolution and typically work with the dominant

soil texture class (STCdom) in each grid cell. Conceptually, high resolution soil maps

can be represented in different ways in these simulations. In this study, we analyzed

the effect of different representation methods of soil texture classes on simulated nitrous

oxide (N2O) emissions and soil organic carbon (SOC) content on cropland. To this end,

we used the dynamic global vegetation, hydrology and crop model LPJmL5.0-tillage and

the high resolution soil database S-World. We first identified the areas that are at high,

low or intermediate risk for erroneous model results when using STCdom in the grid cell

for analyses of N2O emissions and SOC content. Then we analyzed the effect of the

different soil representation methods on N2O emissions and SOC, at the global scale as

well as within the risk areas. Our findings highlight that choosing STCdom in studies

on N2O emissions and SOC content is a feasible method for global analyses. The global

averages on simulated N2O emissions and SOC content, only showed small differences

between the different representation methods. However, considerable differences were

found when analyzing local and regional differences. For local or regional assessments on

N2O emissions and SOC content, using STCdom can therefore lead to distortions, especially

in the high risk areas. In these areas, soil variability should be more explicitly accounted

for. The similarity in spatial patterns of high-risk areas for N2O and SOC suggests that

a non-regular grid can be defined for all output variables from GEMs, hence increasing

regional model fidelity without substantially increasing computation demands.
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5.1 Introduction

There is an increasing demand for global studies providing insights into phenomena of

global relevance, such as climate change and the sustainable development goals (Griggs

et al., 2013). These studies often rely on the use of global models. Computational reasons

often require global models to operate at a relatively coarse resolution of e.g., 0.5◦ (e.g. Liu

et al., 2013; Schaphoff et al., 2018a). However, the coarse resolution also poses a number

of challenges in dealing with high spatial variability of input data and using datasets

at higher resolutions. A good example are the Global Ecosystem Models (GEMs) that

are used to evaluate climate-change impacts, adaptation and the effects of agricultural

production on the environment (Müller et al., 2017; Pugh et al., 2015). Amongst the wide

range of input data describing land use and environmental variation, they make use of

soil data. With a wide range of different, more detailed global soil maps available at, for

example, 30 arc-second resolution e.g., HWSD (FAO & ISRIC, 2012), S-World (Stoorvogel

et al., 2017) and SoilGrids (Hengl et al., 2014),, the question remains how to represent

the soil heterogeneity at the coarser resolution of the GEM simulation. Within those

large-scale grid cells, various soil types, or combinations of soil types may occur (Folberth

et al., 2016). GEMs typically use the dominant soil type within a grid cell (Folberth

et al., 2016; Schaphoff et al., 2018a). As a result, soil heterogeneity within the larger grid

cells is ignored and the response on the dominant soil type is not necessarily the average

response across all soil types present in the grid cell. In addition, cropland may not be

located on the dominant soil type but on specific (e.g., highly fertile) soil types that may

be present in only smaller parts of the grid cell. In some areas with limited soil variability

like the vast Chernozem areas in Russia and Romania, the use of a dominant soil type can

be expected to be unproblematic. However, the inland valleys in West Africa are a good

example where intensive agriculture is located in (and at the fringes of) narrow valleys

with relatively high water availability and soil fertility compared to the vast majority of

the area. Therefore, the representation of soil by the dominant soil type may lead to

an overall uncertainty and biases in model-based assessments, although this depends on

the model sensitivity for soil differences. For instance, Folberth et al. (2016) found that

impacts of climate change on yield can be negative or positive across different climate

regions, depending on the chosen soil type.

This study aims to obtain better insights in the effect of the representation of high

resolution soil data in global models and to explore whether it is possible to give a priori

prediction where these aggregation effects are likely to play a major role. We evaluated

the simulation of N2O emissions and soil organic carbon (SOC) using the dynamic global

vegetation, hydrology and crop model LPJmL5.0-tillage (Lutz et al., 2019a, 2020). As this

study requires a finer resolution of soil data that is per default used by LPJmL5.0-tillage,

we here use the S-World (“Soils of the World”) soil property database which comes at

a spatial resolution of 30 arc-seconds (Stoorvogel et al., 2017). LPJmL5.0-tillage uses
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the 12 soil texture classes (STC; Staff, 2003) for the characterization of soils. In order to

determine which soils are present in the cropland area, we use the high-resolution cropland

mask of GlobCover (Bontemps et al., 2011).

We first identify the areas at risk for simulation errors when using the dominant

STC (STCdom) within each 0.5◦ grid cell. Problems can occur where the area share that is

covered by the dominant STC is relatively small and where high variability in model results

across STCs is found. To evaluate the overall effects of different representation methods,

as well as its effects in the risk areas we analyze the N2O emissions and SOC content.

We focus at the global-scale aggregation level as well as on the spatial distribution of and

relevancy of the representation of the soil heterogeneity within these risk categories.

5.2 Material and methods

5.2.1 Model and data

5.2.1.1 LPJmL

The GEM used for this study is the dynamic global vegetation, hydrology and crop model

LPJmL5.0-tillage (from now on referred to as LPJmL). LPJmL simulates both natural

and agricultural ecosystems, typically at a spatial resolution of 0.5◦ (Schaphoff et al.,

2018a). The model simulates carbon (C), nitrogen (N) and water cycles by representing

biophysical processes in plants (e.g. photosynthesis) and soils (e.g. mineralization of

organic matter). The model divides the soil column into five hydrologically active layers

of 0.2, 0.3, 0.5 and 1 m thickness (Schaphoff et al., 2013). In LPJmL, the organic matter

pools consist of vegetation, litter and soil compartments and are represented as C pools

and the corresponding N pools with variable C:N ratios (Von Bloh et al., 2018a). The litter

pools are subject to decomposition, after which the humified products are transferred to

the two soil organic matter (SOM) pools that have different decomposition rates (Von Bloh

et al., 2018a). The N contained in those pools can be mineralized after which it is added

to the NH4
+ pool of the respective soil layer and is subject to further transformations (e.g.

nitrification and denitrification). Recently, LPJmL was extended by a tillage module to

account for the effects of tillage practices on hydraulic properties and residue management

(Lutz et al., 2019a). With tillage, crop residues are incorporated into the first soil layer

whereas in no-tillage systems, the residues cover the soil. The residue cover hampers soil

evaporation and promotes soil water infiltration into the first soil layer. Over time, the

residue cover diminishes due to decomposition and bioturbation until the next harvest

event. Next to the effects on residues, tillage also affects the hydraulic properties of the

soil, by increasing the soil’s water-holding capacity. For a full overview of tillage practices

and effects implemented in LPJmL, see Lutz et al. (2019a). While soil carbon and nitrogen

pools are modeled in LPJmL, data on soil texture classes (STCs) are required as model

input.
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5.2.1.2 S-World

Several global soil property databases are available. S-World is a high resolution (30

arc-seconds), spatially exhaustive soil property data base (Stoorvogel et al., 2017) that is

developed for global environmental modelling studies. The database is based on a disag-

gregation of the Harmonized World Soil Database (HWSD; Batjes, 2009). The HWSD

describes global soil variability based on discrete soil map units. These map units are de-

scribed by 1 to 10 different soil types. In a first step, S-World disaggregated the complex

map units (described by multiple soil types) into simple soil map units (described by a

single soil type) using a global digital elevation model and through the development of

logical sequences of soil types according to their topographic position in the landscapes.

Ranges in soil properties per soil type were determined using the WISE3.1 soil profile

database (Batjes, 2009). Then, through a model based on a meta-analyses, soil proper-

ties are estimated at each location using the soil type and landscape properties (climate,

topography, land use). A full description of the procedure underlying the disaggregation

is described in (Stoorvogel et al., 2017). S-World includes average clay and sand fractions

for the soil profile. For this study, the sand and clay fractions in S-World are classified

as STCs (according to the USDA classification: Staff (2003)) resulting in a global 30

arc-seconds soil texture class map.

5.2.1.3 GlobCover

The information of cropland cover was derived from GlobCover (Bontemps et al., 2011).

GlobCover is a global land cover database at a 10 arc-seconds resolution. It was created

from satellite imagery, and represents 22 land-cover classes following the UN Land Cover

Classification System (LCCS). The land-cover classes may represent predominantly crop-

land or a certain fraction of cropland. GlobCover was first aggregated to a map of cropland

shares at 30 arc-seconds by adding up all cropland areas (m2) of the finer-resolution Glob-

Cover that belong to the coarser 30 arc-seconds grid cells and dividing it by the total area

of the 30 arc-seconds grid cell (m2). This yields a 30 arc-seconds map of cropland where

each value represents the % of the grid cell covered by cropland.

5.2.2 Simulation and analysis

5.2.2.1 LPJmL simulations

N2O emissions and SOC were simulated with LPJmL for each STC. This was done by

creating input data for LPJmL where the entire world was covered by a single STC. To

bring vegetation patterns and SOM pools into a dynamic equilibrium stage, we follow a

standard procedure for LPJmL simulations (Schaphoff et al., 2018a) using a 5000 year

spin-up simulation for potential natural vegetation, followed by a second spin-up simula-

tion of 390 years to account for historical land use change that accounts for agricultural

management (including tillage) that starts changing dynamically in 1700 (Fader et al.,
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2010) and ended in 1998 accounting for the historical land-use change during that period.

After the second spin-up simulation, the experimental simulations were conducted that

started in 1998 and ended in 2017.

Land-use data for the simulation runs are based on the crop-specific shares of

MIRCA2000 (Portmann et al., 2010) and grassland and cropland time series since 1700

from HYDE3 (Klein Goldewijk et al., 2010) as described by Fader et al. (2010). For

this study, we focus on the rain-fed areas only and do not consider any land-use change

after 1998 so that results refer to the cropland extent in 1998. The model is driven by

monthly temperatures, precipitation, cloudiness and wet days per months from the Cli-

mate Research Unit (Harris & Jones, 2019), version TS4.02 (Harris et al., 2014) that are

internally interpolated to daily weather variables using a weather generator (Schaphoff

et al., 2018a). The hydraulic properties are derived dynamically during the simulation

for each grid cell by using the pedotransfer function from Saxton & Rawls (2006) that

derives hydraulic properties from SOC and soil texture classes.

5.2.2.2 SOC and N2O emissions based on representations of dominant soil

texture classes

The 30 arc-second STC map is represented as dominant soil texture classes in two ways

at the 0.5◦ resolution. The first procedure, the standard in LPJmL, takes the STC with

the largest coverage in the grid cell defined as the STCdom. For analyses purposes, a cor-

responding 0.5◦ resolution map is created representing the % coverage of STCdom in each

grid cell. A second procedure also takes the dominant STC but now only considering the

cropland within each grid cell, using the information of aggregated 30 arc-seconds Glob-

Cover map. So within each 0.5◦ grid cell the dominant STC is determined by its spatial

overlap with cropland at 30 arc-seconds resolution (STCdom,cropland). These two represen-

tations of soils could now be linked to the simulation results, selecting the STC-specific

simulation results for each grid cell, according to its STCdom and STCdom,cropland.

5.2.2.3 SOC and N2O emissions based on a weighted average of simulated

results

An alternative procedure is to aggregate the modelling results rather than the soil map.

This is done by first assigning the 0.5◦ resolution modelling results (i.e., the twelve maps

for SOC and N2O emissions for each of the STCs) to the 30 arc-seconds STC map

(STCS−world) resulting in a 30 arc-seconds resolution map of SOC and N2O emissions.

These results can then be aggregated in two different ways: i) an area weighted average

for all the 30 arc-second resolution grid cells in each 0.5◦ grid cell (SOMweightedaverage and

N2Oweightedaverage) and ii) an area weighted average for all the 30 arc-second resolution

grid cells under cropland in each 0.5◦ grid cell.

The weighted average of model outputs on N2O emissions and SOC on bases of high
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resolution soil texture masks are computed as in equation 5.1

Xagg,c =
12∑
i=1

wi,c ∗Xi,c (5.1)

Where Xagg,c is a weighted average of the simulation result X (N2O emissions or SOC

content (in g N m−2 or g C m−2 respectively)) for each aggregation scheme agg in each

0.5◦ grid cell c. The individual weights for each STC i (wi,c) add up to exactly 1 in each

grid cell c, i.e.
∑n

i=1 wi,c = 1; with n being the number of STC present in grid cell c.

Simulation results per STC and grid cell c are depicted as Xi,c where X is either the

output for SOC or for N2O of STC i. The weights w are different per aggregation scheme

agg.

5.2.3 Analyses

5.2.3.1 Indication of risk areas

As GEM studies typically use the dominant soil within a grid cell (Folberth et al., 2016),

we study in which areas this type of soil representation can constitute a risk for introducing

simulation errors (Risk in fraction). Problems can occur where for instance the area

covered by STCdom is relatively low as a high variability in STCs is found in the grid cell.

On the other hand, if the sensitivity of simulated N2O emissions or SOC content between

the STCs is low, the method of aggregation is relatively unimportant. Here we relate

the coverage of STCdom (Covdom in %) and the model sensitivity for N2O emissions and

SOC content in terms of the coefficient of variation (CVX), for each STC within the grid

cell (i) as in equation 5.2

Riski = (1 − Covdom,i) ∗ CVX,i (5.2)

The coverage of the dominant STC (Covdom) is calculated following equation 5.3, where

CoverageSTCdom
is the area covered by the STCdom and Coveragetot the total reference

area (either of the entire grid cell c in the case of STCdom or the total cropland area in

the case of STCdom,cropland); quantifying all area measures in m2.

Covdom,i =
CoverageSTCdom,i

CoverageSTCtot,i
∗ 100(%)

(5.3)

The Risk is ranked in three different classes: 1) high risk, 2) moderate risk and 3) low

risk. The highest third of the Risk values are thereby classified as high risk, the middle

third is classified as moderate risk and the lowest third is classified as lowest risk.
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The CV of STCs relating to SOC content and N2O emissions is calculated following

equation 5.4;

CVX,c =
SDX,c

meanX,c ∗ 100(%)
(5.4)

Where SDX is the standard deviation of SOC content (in g C m−2) or N2O emissions (in

g N m−2) and meanX is the mean value of the output variable X over the different STCs

present in the grid cell c.

To assess where the sensitivity of global-scale results of different aggregation schemes for

N2O emissions and SOC content is highest, we additionally calculated a variant of the

coefficient of variation CV global on basis of the global mean (meanglobal,X) as in equation

5.5:

CV globalX,c =
SDX,c

meanglobal,X ∗ 100(%)
(5.5)

5.2.3.2 Effects of soil representation on simulated SOC and N2O emis-

sions

To analyze the effects of representation of soils on simulated SOC content and N2O emis-

sions (X), we calculated the representation effect fX,rep as the differences between the

representation schemes using the results of the standard representation scheme STCdom

(Xdom) as the reference case (see equation 5.6).

f(X,rep) = Xdom −Xrep (5.6)

5.3 Results

5.3.1 S-World

5.3.1.1 Soil textural classes of S-world (30 arc-seconds)

The transformation of soil properties from S-World to STCs according to the USDA

classification results in a detailed global map of STCs (Fig. 5.1a) that is the basis for

further aggregation to 0.5◦ (Fig. 5.1b). A high spatial variation in STCs on cropland

areas can be observed in many regions of the world, including e.g. Central Europe, the

mountainous regions of North America, Australia and China. The spatial variation in

STCs is relatively low in central South America, Central Africa and Southeast Asia. In

those regions, the STC is mainly dominated by clay, whereas a mixture of clay- silt- and

sandy loam are found in large parts of the remainder of the world. The diversity of soils is
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also reflected by the dominance of the dominant soil type, i.e. how much of the 0.5◦ pixel

is covered by the dominant soil type, as shown in Fig. 5.1c. The regions with smaller

shares of the dominant STC (STCdom) mostly overlap with the regions with high STC

diversity. In those regions, choosing STCdom ignores the variability of the STCs (e.g.

Central Europe, East Africa and East Asia).

Figure 5.1a: Soil texture classes provided by S-world (30 arc-seconds, for technical reasons,

the high resolution cannot be adequately reproduced in print). White areas indicate regions

without cropland, according to MIRCA2000 (Portmann et al., 2010).

Figure 5.1b: Dominant soil texture classes (0.5 degree). White areas indicate regions

without cropland, according to MIRCA2000 (Portmann et al., 2010).
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Figure 5.1c: Area share (%) covered by dominant soil texture class within each 0.5 degree

grid cell. White areas indicate regions without cropland, according to MIRCA2000

(Portmann et al., 2010).

5.3.2 Identification of risk areas

5.3.2.1 Model sensitivity of N2O emissions and SOC content to variations in

STCs

The simulation of N2O emissions by LPJmL is sensitive to the different STCs. Simulation

results for N2O emissions are typically more sensitive in dry regions such as central Asia

and the western North America, even though exceptions exist (e.g. parts of Australia)

and it can also be moderately high in regions with relatively high precipitation as in the

Amazon region (Fig. 5.2a). The simulated SOC content is overall less sensitive compared

to the sensitivity of simulated N2O emissions to the different STCs (Fig. 5.2b). Also here,

the simulations of SOC content are more sensitive to STCs in the arid regions compared

to the rest of the world.

The relative high sensitivity to the STCs in the arid regions can be explained by the

relative low N2O emissions and SOC content across the different STCs. In these regions,

small variations between the STCs can therefore already result in a high sensitivity values

if this is expressed as the CV. However, when assessing where the sensitivity is most

important for global assessments, these regions become unimportant. We demonstrate

this by computing the sensitivity of simulated N2O emissions with the modified CV global

(see equation 5.5) using the global average of simulated N2O emissions rather than the

grid-cell average. In this metric, the arid areas are relatively insensitive to the STCs (Fig.

C.5.1a in Appendix C). The areas with relative high N2O emissions become now more

important as the variation between STCs in relation to the global average becomes larger

(Fig. C.5.1b in Appendix C). This also holds true for the simulation of SOC content,
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where a similar pattern can be found (Fig. C.5.1a in Appendix C).

(a) (b)

Figure 5.2: The sensitivity of N2O emissions (a) and SOC content (b) in terms of the CV

of the simulated results for different soil texture classes. White areas indicate regions

without cropland, according to MIRCA2000 (Portmann et al., 2010)

(a) (b)

Figure 5.3: The spatial distribution of areas at low, high and intermediate risk of

introducing modeling errors by generalizing STC variability using STCdom for N2O emissions

(a) and SOC content (b). White areas indicate regions without cropland, according to

MIRCA2000 (Portmann et al., 2010)

5.3.2.2 Risk areas for the analyses of N2O emissions and SOC content

The areas at high risk of introducing errors into simulation results by using STCdom for

the analyses on N2O emissions are in many of the arid- (e.g. Central Asia and western

United States) and temperate regions (e.g. Europe and eastern China) (Fig 5.3a). The

areas at low risk are mainly located in the tropical regions (e.g. Central Africa and South

America). The areas with a moderate risk are more evenly spread across the globe.
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The areas at high, low and intermediate risk when using STCdom for the analyses of

SOC content under tillage are similar to the regions found to be sensitive in the simulation

of N2O emissions (Fig 5.3b). Also here, the areas at risk of introducing modeling errors

by using STCdom are found in the arid regions as well as parts of the cold- and temperate

zones. Additionally, some areas at risk are also found in the tropical regions (e.g. eastern

Africa), but a high spatial variation in risk classes can be observed.

The share of the dominant STC (STCdom) within 0.5◦ grid cells (Fig. 5.1c is often

small in regions where simulation results are also sensitive to STCs (e.g. Central Europe)

so that the areas at high risk of introducing modeling errors by using STCdom is often

an amplification of the two factors. However, there are also regions where a low STCdom

share is sufficient to result in high risk classes (e.g. parts of Madagascar). However, only

high sensitivity of model results to different STCs is insufficient to constitute high risk of

introducing modeling errors by using STCdom if there is little diversity in STCs, as e.g.

in parts of Pakistan.

5.3.3 Effect of representing soil heterogeneity

Between the different methods of soil representation, there are only small differences to

the estimates with STCdom at the global average for both the N2O emissions and SOC

content (Table 5.1). However, locally there are considerable differences and the standard

deviations of the differences between aggregation methods are high. These local differences

increase considerably with an increase in risk.

On average, the representation using STCdom,cropland shows the largest differences

with the representation using STCdom, for both the N2O emissions and SOC content at the

global aggregation (Table 5.1). The smallest difference is found when using STCfrac,cropland

for N2O emissions and STCfrac for SOC.

Although the representation of soil heterogeneity using dominant STC on cropland

STCdom,cropland shows largest differences with the representation using STCdom for both

the N2O emissions and SOC content at the global aggregation (Table 5.1), there are no

clear visible differences in the map (Fig. 5.4c for N2O and 5.5c for SOC). Presumably,

the large differences on average are strongly influenced by outliers, as also suggested by

the larger standard deviation of differences in space (Table 5.1). There are also no clear

differences found between STCfrac,cropland and STCfrac for both the N2O emissions and

SOC content, indicating that the representation of soil heterogeneity by the dominant

STCs (STCdom and STCdom,cropland) and the weighted averages of the simulated results

(STCfrac,cropland and STCfrac) are very similar to each other at the global aggregation.

However, there are stronger regional differences detectable, as shown in Fig. 5.4 b and d

for N2O emissions and in Fig. 5.5 b and d for SOC. Here, regional positive and negative

differences compensate each other at the global aggregation level.
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Table 5.1: This table represents the average of differences between the generalization and the

estimates with STCdom. The standard deviation is also shown (between parentheses).

Overall Low risk Moderate risk High risk

N2O emissions (in g N m−1)

STCfrac 0.007 (0.093) 0.001 (0.009) 0.008 (0.062) 0.006 (0.129)

STCdom,cropland -0.013 (0.123) 0.001 (0.018) 0.002 (0.076) -0.011 (0.145)

STCfrac,cropland -0.004 (0.107) -0.003 (0.051) -0.006 (0.077) -0.025 (0.171)

SOC (in g C m−1)

STCfrac 21 (1197) 37 (145) 90 (925) -59 (1558)

STCdom,cropland 72 (1546) 17 (408) 6 (1151) 160 (2033)

STCfrac,cropland 57 (1379) 40 (249) 77 (1093) 39 (1761)

5.4 Discussion

To our knowledge, this is the first global study where the different effects of representation

methods of soil heterogeneity on simulations of SOC and N2O emissions are analyzed. In

this study, we first identified the areas at risk of introducing modeling errors by using

STCdom, which is the most often-used representation method for soil heterogeneity in

GEM studies. To evaluate the overall effects of different aggregation methods, as well as

its effects in the risk areas, we analyzed the simulated N2O emissions and SOC, at the

global scale as well as in these risk areas under different soil representation methods.

Our findings highlight that choosing STCdom for a global analyses on N2O emissions

and SOC content is a feasible approach to keep computational requirements manageable as

errors are both positive and negative and largely compensate at the global aggregation.

The global averages on simulated N2O emissions and SOC content, showed only small

differences between the different methods for representing soil heterogeneity. However,

considerable differences were found in the local and regional patterns. For local or regional

assessments on N2O emissions and SOC content, using STCdom within 0.5◦ grid cells can

therefore lead to modeling errors.

The high risk areas for introducing modeling errors by using STCdom show very

similar spatial patterns for both the simulation of N2O emissions and of SOC. These

high risk areas were mainly found in the regions where the coverage of STCdom was low,

and in the arid regions where the N2O emissions and SOC content were very sensitive to

the different STCs. This sensitivity is often a result of very low mean values, especially

in the case of SOC simulations, so that variations in their low values do not affect the

global average much. However, assessments within these regions, should therefore more

explicitly account for soil variability in order to improve the overall assessments related to

N2O emissions and SOC content. Presumably, the aggregation in which the relative share

of STCs is calculated under cropland gives the most accurate result. This requires a high
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resolution (e.g. 30 arc-seconds) STC soil map and cropland cover as well as substantial

computational resources. A global simulation at 30 arc-seconds is about 3600 times more

expensive than a simulation at 0.5◦.

The variability in STCs might be underrepresented in many regions in the S-World

dataset as the availability and spatial coverage of soil data are very variable across different

world regions. Regions identified as low risk areas for introducing modeling errors by using

STCdom may thus be falsely classified, merely reflecting the poor data availability in these

regions and the homogeneous gap-filling methods applied (Stoorvogel et al., 2017).

Similarly, we here present results only for one GEM, LPJmL. This is a widely used

dynamic global vegetation, hydrology and crop model (Schaphoff et al., 2018a) and has

been evaluated comprehensively (Schaphoff et al., 2018b; Müller et al., 2017). However,

given the diversity in model implementations across crop (Müller et al., 2017) and biome

models (Friend et al., 2014), the sensitivity of simulation results to STCs will likely be

quite different across GEMs.

This is also true for the indicators considered here. Model responses are also likely

different across modeled outputs. Folberth et al. (2016) found strong effects of yield

simulations with the gridded global crop model GEPIC to STC selection in 0.5◦ grid

cells. Because of the sensitivity of their results, they emphasized that global model studies

should more explicitly account for soil variability by using high soil resolution data.

Although various soil data sources are available at a high spatial resolution (e.g.

Hengl et al., 2014; Batjes et al., 2017), aggregating soil data is often needed as the com-

putational capacity to run a global model is too low to conduct global simulations at high

resolution. An option to cope with high resolution soil data and cropland cover, is through

following the same procedure conducted in this study: i.e. conduct individual simulations

for each STC and link the outputs to the high resolution soil map. This would open

opportunities to conduct the aggregation of outputs based on fractions of STCs under

cropland. However, this implies that conversions between cropland, managed grassland

and natural vegetation cannot be adequately represented in such analyses, in which re-

sults are aggregated in the post-processing only. The temporal dynamics in land-use have

strong effects on the biogeochemical cycles (e.g. Bondeau et al., 2007; Pugh et al., 2015)

and an accounting for the diversity in STCs in the post-processing is thus limited to static

analyses as here. Irregular grids with higher spatial resolution only in regions with high

STC diversity and larger effects on the simulation results, which we have identified as high

risk areas, could be a way forward to combine spatial diversity and temporal dynamics.

This will have to be tested, especially with its implications for lateral interaction such as

river routing schemes (Rost et al., 2008).
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5.5 Conclusions

GEMs are increasingly applied to evaluate climate change impacts, the role of agricultural

adaptation and the effects of agriculture on the environment. For global-scale analyses,

such models are often applied at a relatively coarse spatial resolution, which in many

regions implies that the variability of soils is underrepresented as the most dominant

soil texture class is typically used to represent the entire grid cell. As there are different

methods to represent soil heterogeneity, we here tested the effect of different representation

methods on simulated N2O emissions and SOC content under tillage, using the LPJmL

model.

Our findings highlight that choosing STCdom for global analyses on N2O emissions and

SOC content with LPJmL is a feasible compromise between computational constraints and

relevant spatial detail. The global averages on simulated N2O emissions and SOC content,

showed only small differences between the methods of representing soil heterogeneity. For

research questions related to global assessments on N2O emissions and SOC content, using

the dominant soil texture type within the grid cell is therefore feasible. However, locally

and regionally there are considerable differences. In this study we could identify the areas

that are at high risk of introducing modeling errors when analyzing N2O emissions and

SOC content by using the dominant soil texture class. In these areas, soil variability should

be more explicitly accounted for, especially in regional to local studies. We hypothesize

that the representation in which the relative share of STCs is calculated under cropland

gives the most accurate result. An aggregation of results with high-resolution soil texture

class data in the post-processing as done here, conflicts with accounting for land-use

change dynamics in time. As such, this does not represent an adequate approach to resolve

the conflict between high computational demand for such high-resolution simulations and

the necessary spatial detail in all regions. However, the identification of high-risk areas

could help to define non-regular grid sizes as a compromise. Even though we only looked at

two different output variables (N2O emissions and SOC), the similarity in spatial patterns

of high-risk areas for N2O emissions and SOC suggests that an non-regular grid can be

defined for all output variables from GEMs.





Chapter 6

Synthesis
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6.1 Challenges of agricultural management represen-

tations in global ecosystem models

Agriculture is responsible for 10-12% of the global GHG emissions, mainly in form of

carbon dioxide, (CO2), methane (CH4) and nitrous oxides (N2O) (IPCC, 2019; Smith

et al., 2014b; Tubiello et al., 2015; FAO, 2014; Frank et al., 2019; Tubiello, 2019). Sev-

eral agricultural-based mitigation strategies have been identified to reduce emissions from

agricultural soils, through improved soil management (Smith et al., 2014b; Paustian et al.,

2016). The efficacy of improved soil management on reducing GHG emission from agri-

cultural soils has been demonstrated in many field and field-scale modeling studies (e.g.

Amado et al., 2006; Chen et al., 2009; Jiang et al., 2019; Pezzuolo et al., 2017). However,

the potential of reducing GHG emissions from agriculture through improved management

at the global scale remains poorly understood. Global ecosystem models often lack the

capacity to assess the potential of agricultural-based mitigation strategies or agricultural

management impacts in general. The global models work with a simplified representation

of the agricultural systems that simply excludes or strongly simplifies certain management

practices such as tillage. This has three underlying causes: i) processes related to agricul-

tural management are currently underrepresented in global ecosystem models (Erb et al.,

2017; McDermid et al., 2017), ii) knowledge gaps exist on the distribution and timing of

numerous agricultural management practices (Erb et al., 2017; McDermid et al., 2017),

and iii) the models work at a relatively coarse resolution (e.g., 0.5◦) whereas agricultural

management may vary greatly between farming systems in close proximity.

Field-scale crop models typically include detailed descriptions of processes related

to agricultural management. Field-scale models that have a broad range of agricultural

management options incorporated are for example DSSAT (Jones et al., 2010), EPIC

(Williams et al., 2008) and Daycent (Parton et al., 1998). These models can simulate

residue management and include different types of tillage which are typically ignored or

underrepresented in global ecosystem models. Sometimes, field-scale models have been

applied at global scales to enable studying effects of agricultural management, such as

tillage, at the global scale (Del Grosso et al., 2009). However, field-scale models can-

not simply be applied at scales for which they are not developed as other processes or

conditions may play a role that were not relevant or considered in the field-scale model

applications. Moreover, field-scale models typically include many descriptive variables

and parameters for which at the global scale data are lacking. Therefore, for global-scale

analyses, global ecosystem models are preferred. This requires, however, the incorporation

of processes related to agricultural management in these global models in an adequate

level of detail.

Although the application of field-scale models at the global scale is problematic,

the implementation of agricultural management into global ecosystem models can benefit
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from the description of processes in field-scale models. The detailed process descriptions

from the field-scale models can be used to extend the global models. In the selection of

suitable approaches, the importance of processes has to be considered, as well as the input

data requirements and availability at the global scale. Yet, a guiding principle on where

to start and how to make these decisions on model extension was not available.

Next to data and knowledge gaps on processes related to agricultural management

and its environmental impacts, uncertainties in inputs may impact simulated effects of

agricultural management on GHG emissions. For example, current global ecosystem mod-

els neglect soil heterogeneity within grid cells, which has been shown to seriously affect

simulated yields (Folberth et al., 2016). Folberth et al. (2016) therefore emphasized the

importance of considering high resolution soil data in global crop simulations. Although

soil data are available at high spatial resolution (e.g. Hengl et al., 2014; Stoorvogel et al.,

2017, for soil data), it is necessary to upscale the data to meet the required spatial res-

olution of global ecosystem models. Often, the computational capacity to run global

ecosystem models is too low to cope with input data that comes at a fine resolution

(Grosz et al., 2017). Representing soil heterogeneity can be conducted in different ways,

for example, by averaging the underlying detail. The decision on how soil heterogeneity

is represented can have implications when assessing agricultural management effects on

GHG emissions. Yet, how to decide on the method of representing soil heterogeneity and

what kind of implications this may have, remains poorly understood.

This thesis aimed to improve the representation of agricultural management in global

ecosystem models, so that the potential of agricultural-based mitigation practices can be

better quantified. Therefore, this thesis first addressed if and how processes related to

agricultural management can be described in global ecosystem models. The research fo-

cused on processes related to tillage and N2O emissions. Tillage is a common agricultural

practice and changes in tillage management are a promising option to reduce GHG emis-

sions (Paustian et al., 2016). N2O emissions are particularly important as N2O is a potent

GHG with a global warming potential of ∼300-fold that of CO2 (Solomon et al., 2007).

After indicating how processes related to tillage can be described, they were implemented

into the global ecosystem model LPJmL. Subsequently, the extended LPJmL model was

evaluated on its performance at the global scale and for a number of experimental sites.

Finally, the effect of representing of soil heterogeneity on global modelling of SOC and

N2O emissions was tested.

This final chapter discusses and synthesizes the main findings of the thesis. Insights

obtained during conducting the research for this thesis are addressed as well as directions

for improvements in the representation of agricultural management in global models.
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6.2 Can an existing global ecosystem model be ex-

tended by tillage management to study its effects

in particular on N2O emissions?

Several field-scale models simulate the effects of tillage on N2O emissions (Chapter 2).

However, not all tillage related processes described in field-scale models are suitable for

incorporation into global ecosystem models. In order to make an informed decision on

which approach to choose, or whether it is actually possible to incorporate tillage in that

level of detail into global ecosystem models that allows for analyses on tillage effects

on N2O emissions, a standardized framework is proposed in Chapter 2. The framework

consists of three different steps (Figure 2.1). First, the most important nitrogen (N)

processes in soils were identified including their response to tillage. Second, the description

of these processes and tillage effects in field-scale models are reviewed. The third step

included an evaluation whether they can be incorporated in global ecosystem models,

while considering the data requirements for a global application. As the most important

processes of tillage, its effects on soil conditions and subsequently the formation of N2O

were described in field-scale models and the basic data requirements can be met at the

global scale, I concluded that we can incorporate tillage into global ecosystem models for

the analyses on N2O emissions. However, a spatial explicit dataset on tillage was missing,

which only allows for scenario-based analyses.

Chapter 2 identified several options to represent tillage in field-scale models. The

option where tillage directly affected the physical soil properties through changes to bulk

density was found to be most appropriate to extend a global ecosystem model, as it affects

the main drivers (soil moisture and soil temperature) of N2O emissions. Some of the

field-scale models also simulated the effects of tillage in relation with residue management

where, for example, a fraction of crop residues was incorporated into the first soil layer. As

tillage practices and residue management are indeed often inter-related (Strudley et al.,

2008), the two effects of tillage (physical soil properties and residue incorporation) were

considered to be necessary for incorporation into a global ecosystem model. The effects

of tillage on physical soil properties and residues is also supported by several studies (e.g.

Schlüter et al., 2018; Strudley et al., 2008; Kurothe et al., 2014; Alvarez & Steinbach,

2009).

6.3 Can the effects of tillage on N2O emissions be

captured at the global scale?

As I found that tillage can be incorporated into global ecosystem models, the global

ecosystem model LPJmL was extended with tillage management (Chapter 3). LPJmL is
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a dynamic global vegetation, hydrology and crop model that simulates N (including the

most important N processes that are relevant for N2O emissions), C and water dynamics

in natural and agricultural ecosystems (Von Bloh et al., 2018a; Schaphoff et al., 2018a).

The model has been evaluated extensively and reproduced C, water and N dynamics

in both agricultural and natural ecosystems in a proper way Schaphoff et al. (2018b).

The resulting model extension led to a global ecosystem model with a more detailed

representation of tillage than typically found in other global-scale models, in combination

with detailed nitrogen dynamics while keeping input data requirements manageable (Lutz

et al., 2019a).

The first step after extending a model with a new module is to evaluate its perfor-

mance. Ideally, the evaluation is done at the same scale for which the model was devel-

oped. The most common approach of model evaluation is through comparison against

observations (Oreskes, 2003). However, it is unrealistic to expect observational data of

tillage effects on soil processes, GHG emissions and crop yields with global coverage. More-

over, a comparison to individual site-specific studies would require detailed site-specific

simulations, in which land-use history, weather data and other agricultural management

practices are specified. Therefore, the results of the simulations were compared to litera-

ture values from selected meta-analyses. Meta-analyses allow for comparing the simulated

results to a set of combined results of world-wide individual studies. Using meta-analyses

therefore enables evaluating the magnitude and variability of an effect.

In Chapter 3, the extended model was evaluated by using four contrasting simula-

tions: with and without the application of tillage in combination with two contrasting

assumptions on residues: with and without the removal of residues. The simulated re-

sults of soil organic carbon (SOC), CO2 and N2O emissions and water-fluxes across the

global cropland were then compared to reported effect sizes and distributions from meta-

analyses. In general, the model was able to reproduce observed effects of no-tillage on

global, as well as regional patterns of agricultural productivity, water- and carbon (C)

fluxes. For N2O emissions, I found that the overall effect of no-tillage compared to tillage

on N2O emissions was in overall agreement with data reported in meta-analyses as well.

However, the regional patterns over the different climate regimes were strongly deviating

from the meta-analyses. For example, Mei et al. (2018) found that no-tillage decreases

N2O emissions in the cool temperate climate zones by 1.7% on average, whereas the

simulations from LPJmL resulted in an increase by 23.5% on average with no-tillage.

Furthermore, Van Kessel et al. (2012) found that no-tillage decreases N2O emissions by

1.5% on average in the humid climate zone, whereas the simulations from LPJmL resulted

in an increase by 23.5% on average with no-tillage in the humid climate zone.

Meta-analyses can be very useful in order to get an indication of model responses

to agricultural management, such as tillage. Yet, using meta-analyses for evaluating

the model performance can be limited for two main reasons. First, meta-analysed are
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typically biased from uneven or sparse samples of experiments covered. For instance,

Mei et al. (2018) reported in their meta-analyses that no-tillage increases N2O emissions

by 17.8% on average over all data analysed, with significant differences among climate

regimes. However, in their analyses the amount of paired observations between climate

regimes differed, with having many more paired observations in the tropical regime than

in the warm- and cool temperate regime together. The overall average reported by Mei

et al. (2018) might therefore be biased, resulting to an over-representation of the tropical

climate regime.

Second, meta-analyses can only give a first indication of overall model performance.

Mismatches between reported effect ranges and simulated results cannot provide any in-

sights on the underlying mechanisms or model deficiencies that lead to this mismatch.

Modelled tillage effects on N2O emissions can deviate from reported values in meta-

analyses for different reasons. The deviations can be a result of model parameter uncer-

tainties, the quality of the input data, and uncertainties in the processes related to tillage

effects on N2O emissions. For instance, at the global scale assumptions have to be made

on agricultural management, as detailed information about management is typically lack-

ing (such as fertilizer application, sowing dates, irrigation and residue management) (Erb

et al., 2017). Moreover, as mentioned previously, the spatial variability of soil conditions

within grid cells is ignored, which can have implications when assessing tillage effects on

N2O emissions.

The deviations in tillage effects on N2O emissions can also result from uncertainties in

the process representation of tillage. To test if the deviations result from a lack of detailed

input on management practices or the representation of processes related to tillage, the

extended model LPJmL was applied at different experimental sites in Chapter 4. Four

experimental sites were selected in which the effects of tillage and no-tillage on N2O

emissions were studied, and site-specific information on management, weather and soil was

available. This enabled using site-specific information on agricultural management, soil

and weather information and thus, understanding if model input or process representation

causes the observed mismatch between global simulations and reported values in meta-

analyses.

Chapter 4 showed that adding site-specific information on management improved

the simulated N2O emissions produced by tillage and no-tillage, as well as the effect of

switching from conventional tillage to no-tillage. However, also with detailed information,

the N2O emissions were strongly deviating from the observations across all the experi-

mental sites. LPJmL was strongly overestimating N2O emissions in general and did not

reproduce the effects of tillage and no-tillage on N2O emissions. The observations showed

that shifting to no-tillage could both increase and decrease N2O emissions (e.g. Halvor-

son et al., 2006; Oorts et al., 2007; Jin et al., 2017). However, LPJmL was not able

to reproduce decreases in N2O emissions at the annual aggregation at any of the four
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sites.

The application of LPJmL at the experimental sites provided much insight in why

the effects of tillage on N2O emissions were deviating from observations. It enabled to use

site-specific information on agricultural management, whereas at global scale we have to

work with assumptions. As detailed information improved the simulation of tillage effects

on N2O emissions, advancing the current state of information on agricultural management

at the global scale could improve global estimates of tillage effects on N2O emissions. The

study also highlighted the potential of improving the simulation of N2O emission by im-

proving soil moisture dynamics. Chapter 4 showed that the high emissions were a result

of high soil moisture levels. Soil moisture is a major driver of N2O emissions as it reg-

ulates the oxygen availability to soil microbes. In many models, including LPJmL, soil

moisture is used as a proxy for anaerobic conditions. As denitrification is an anaerobic

process, high soil moisture levels trigger N2O emission from denitrification. In LPJmL,

N2O emission from denitrification increases exponentially when the soil moisture exceeds

a certain threshold value. As denitrification is therefore very sensitive to soil moisture

levels in LPJmL, it is very important to more accurately simulate soil moisture in LPJmL.

However, as high soil moisture levels can result from various reasons (e.g. parameteriza-

tion of hydraulic properties), further research is needed to improve the representation of

soil hydrology in LPJmL. However, an adjusted parameterization of soil hydraulic prop-

erties could substantially reduce the general overestimation of N2O emissions in LPJmL

simulations, indicating that this is indeed a promising way forward.

6.4 How much uncertainty is introduced by coarse

representations of soil heterogeneity into global

simulations of soil processes on cropland, includ-

ing N2O emissions

A possible cause of uncertainty to accurately estimate the potential of agricultural-based

mitigation is the relatively coarse resolution at which global models are typically applied.

Global ecosystem models often work at a spatial resolution of 0.5◦ (equivalent to approx-

imately 55 km at the equator) (Clark et al., 2011; Olin et al., 2015a; Oleson et al., 2010,

e.g.) and typically work with the most dominant soil type within the grid cell. As a

result, soil heterogeneity within the large grid cells is ignored. Moreover, croplands may

not be located on the dominant soil type within the grid cell but on specific (e.g. high

fertile) areas that only cover specific parts of that grid cell.

As this can contribute to the uncertainty in simulating N2O emissions, four different

ways of representing heterogeneity in soil conditions and their effects on simulated N2O

emissions and SOC were tested in Chapter 5. To this end, I combined simulations from
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the global ecosystem LPJmL and the high resolution (30 arc-seconds) global soil prop-

erty data base S-World Stoorvogel et al. (2017) as well as the high-resolution cropland

map of Globcover (Bontemps et al., 2011). The four different ways of representing soil

heterogeneity on simulated N2O emissions and SOC included: i) using the dominant soil

type in the grid cell (the method that is typically used), ii) using the dominant soil type

under cropland in the grid cell iii) using the high resolution soil map and aggregate the

outputs of N2O emissions and SOC, which were generated in individual simulations for

each soil texture classes (STC), using the shares of STCs within the entire grid cell as

aggregation weights and iv) following the same procedure as in iii) but using only STC

shares under cropland within the grid cell. We also identified areas that are at low, high

or intermediate risk for modeling errors when using the dominant soil texture class within

the grid cell. Areas at high risks for modeling errors can occur where for instance the area

covered by the dominant STC is relatively low as a high heterogeneity in STCs are found

in the grid cell. On the other hand, if the sensitivity of N2O emissions between the STCs

is low, the method of representing soil heterogeneity is relatively unimportant.

Chapter 5 indicated that for global assessments using LPJmL, the dominant soil

type can be used for simulating N2O emissions and SOC content, as the errors across

regions tend to compensate each other, so that only small differences were found between

the methods of representing soil heterogeneity. However, considerable differences were

found when analyzing local and regional differences. For local or regional assessments on

N2O emissions and SOC content, using the dominant soil texture within the grid cell can

therefore lead to distortions, especially in the high risk areas.

The results of this study confirmed that ignoring the heterogeneity in soil conditions

can indeed be a source of uncertainty when simulating N2O emissions and SOC content,

especially for local and regional assessments. As mentioned previously, in Chapter 3 I

found that the regional patterns over the different climate regimes were strongly deviating

from the meta-analyses. Accounting more explicitly for soil heterogeneity, especially in

the indicated high-risk areas (Chapter 5) can potentially improve the simulation of tillage

effects on N2O emissions by LPJmL.

As the spatial patterns of the indicated high risk areas for N2O emissions and SOC

content were similar, I hypothesized that a non-regular grid could be defined for soil

inputs/output variables from global ecosystem models as a compromise between compu-

tational constraints and required spatial detail. The irregular grids can have a higher

spatial resolution only in those regions (e.g. high-risk areas) where one should account for

the higher heterogeneity in soil properties. However, further research efforts are required

to determine if that indeed can improve the simulation of tillage effects on N2O at the

regional scale, and hence at the global scale.
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6.5 General discussion

An evaluation of the effects of agricultural management on GHG emissions requires the

closure of knowledge gaps on processes related to agricultural management and its effects

on the environment as well as data gaps on the spatial distribution and timing of agri-

cultural practices. Moreover, the effects of representing of soil heterogeneity on global

modelling of SOC and N2O emissions has to be addressed. This thesis focused on the

representation of processes related to tillage management in the global ecosystem model

LPJmL. Besides developing an extended LPJmL model for such large-scale assessments,

the effects of preparing input data, such as the representation of heterogeneous soil prop-

erties for assessing N2O emissions were studied. The process representation in field-scale

models can be used for such an extension by following a standardized framework (Chapter

2). The standardized framework enabled to make informed decisions on how to implement

tillage into the global ecosystem model for the analyses of N2O emissions (Chapter 3).

However, the evaluation of the model performance on simulating tillage effects on N2O

emissions showed substantial deviations compared to the data reported in meta-analyses

(Chapter 3), and observations from field experiments (Chapter 4). LPJmL showed a gen-

eral bias to overestimate soil moisture content (Chapter 4) and therefore N2O emissions,

especially from denitrification. Next to uncertainties in the processes related to the sim-

ulation of N2O emissions, I also found that the method of representing soil heterogeneity

can contribute to the uncertainties of simulating tillage effects on N2O emissions (Chapter

5).

Agricultural management affects both crop productivity and the associated GHG

emissions. An analysis based on simple Tier 1 emission factors is insufficient to study the

mitigation potential in agricultural production, as these do not account for the multiple

options in which emissions and productivity can be modified by management and diverse

environmental conditions. Further development of global ecosystem models is thus needed

to study the impacts of agricultural management on soil and plant processes, which first

requires an understanding of how agricultural management affects these processes. For

the implementation in global ecosystem models, one can make use of existing process

knowledge from field-scale models. To make an informed decision on how to do that,

the standardized framework from Chapter 2 can be followed. Although the framework

is focused on tillage effects on N2O emissions in Chapter 2, the framework could also

be employed for other management aspects. The framework provides guidance on where

to start management implementation in global ecosystem models, but cannot substitute

careful model development, testing and eventually model refinement. The suitability and

validity of processes that are described in the field-scale models are often not evaluated

and will have to be tested within the global ecosystem model, along with an adequate

parameterization.

Yet, the process representation of agricultural management in global ecosystem mod-
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els is not the only gap that has to be filled. Data-scarcity on the spatial distribution and

timing of agricultural management will have to be addressed. However, in the absence

of management-related data, scenario-based analyses can allow for evaluating the effects

of agricultural management. In Chapter 3 for example, the extended global ecosystem

model LPJmL is evaluated by using four scenarios: with and without the application of

tillage and with and without the removal of residues. As processes related to agricultural

management can be incorporated by following the standardized framework, and data-

scarcity on agricultural management not necessarily limits the evaluation of the extended

model, I therefore argue that there is no barrier to extend global ecosystem models to

better represent agricultural management. The exclusion of explicit management options

in models also implicitly represents some form of management, so that it is not possi-

ble to avoid making assumptions on management in response to the large uncertainties

connected with these.

The incorporation of agricultural management practices into a global ecosystem

model should be followed by an evaluation of its performance. However, this can be

a challenging task as the simulated effects can be very variable, depending on climatic

and soil conditions. Because of the high data collection and preparation requirements,

it would be unrealistic to conduct simulations at so many sites where data are available

so that a site-specific evaluation is possible. The use of meta-analyses can be very help-

ful, as they can give the magnitude and variability of model responses to agricultural

management. Therefore, using meta-analyses for model evaluations can be suggested as

a good strategy for model evaluation at the global scale. However, the evaluation of an

extended ecosystem model should additionally be evaluated at the field scale when devia-

tions with meta-analyses are observed. First, using meta-analyses might under-represent

certain climate and soil combinations which can result in biases, especially when the sam-

ple size is low. Using observational data of single field experiments — rather than results

of combined experiments — can give a better indication of the model responses. Ideally,

the single studies span a broad range of environmental- and climatic conditions. Second,

site-specific information of the field experiments can be used as inputs for the model.

Generalized inputs on management information and soil data affect model results, which

can be a cause of model deviations with observed values (Chapter 4 and 5). By specifying

site-specific inputs and using site-specific observations with higher temporal resolution,

more insights can be obtained in processes related to management, and can give directions

for model improvements.

To better assess the impacts of tillage at the global scale, different tillage types (e.g.

reduced tillage) need to be incorporated into LPJmL. In this initial implementation, con-

ventional tillage and no-tillage can be distinguished. In reality, there are various different

types of tillage (Porwollik et al., 2019), such as reduced tillage. Differences in tillage

types vary in the objective (e.g. seedbed preparation, weeding or cultivation) and the

intensity of tillage management (e.g. tillage affected soil depth, amount of residues in-
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corporated). These differences in tillage types can affect GHG emissions (Abdalla et al.,

2013) which can currently not be captured by LPJmL. Porwollik et al. (2019) provide a

globally spatial explicit dataset on different types of tillage. In order to use this dataset,

these tillage types need to be represented by LPJmL. This can be done through a param-

eterization of the already incorporated processes (e.g. hydraulic properties and residue

incorporation).

The extended global ecosystem LPJmL was not capable of accurately simulating

tillage effects on N2O emissions. Hence, the potential of mitigating N2O emissions through

tillage management cannot be well assessed. Therefore, the question how strongly other

mitigation efforts are needed to meet the targets from e.g. the Paris Agreement remains

equally unclear, as the overall contribution of tillage effects to mitigation efforts cannot

be evaluated. Yet, we have now a much better understanding of processes related to

tillage and its interaction with N2O emissions. For example, tillage affects N2O emissions

by altering soil properties that drive N2O emissions (Chapter 2). By understanding and

incorporating such processes into models, changes in practices and conditions can be

analyzed, whereas a simple response effect of management cannot (e.g. Tier 1 and Del

Grosso et al., 2009). For example, the IPCC Tier 1 methodology estimates N2O emissions

based on N inputs only and does not account for soil conditions and weather which

hampers the evaluation of mitigation options, except for those that involve reducing N

fertilizers (IPCC: Eggleston et al., 2006; Penman, 2000).

Although LPJmL was not capable of accurately simulating tillage effects on N2O

emissions, the model is able to reproduce observed effects of tillage on the other dimen-

sions such as agricultural production, SOC and CO2 emissions at various scales. The

implementation of the more detailed tillage-related mechanisms into LPJmL improves

the ability to represent different agricultural systems and understand agricultural man-

agement options for the mitigation of agricultural GHG emissions, climate change adap-

tation and reducing environmental impacts. For example, in Chapter 3 I could identify

the regions where no-tillage can be beneficial for agricultural productivity. Moreover,

regions where an increase in CO2 emissions were found after shifting to no-tillage were

identified, indicating that no-tillage is not necessarily a mitigation practice in those re-

gions. Such findings can guide management decisions at various scales with respect to

agriculture-based mitigation strategies. Decisions, such as when and where no-tillage

should be adapted to mitigate GHG emissions, can inform policymakers in order to define

a realistic portfolio of different mitigation options that include reliable estimates of the

potentials and spatial patterns of agricultural mitigation options. This could support the

achievement of regional and global mitigation goals, such as the Paris Agreement (Frank

et al., 2019; Wollenberg et al., 2016) and its interactions (i.e. synergies and trade-offs)

with the Sustainable Developments Goals (Griggs et al., 2013; Steffen et al., 2015).
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6.6 General conclusions

To improve the representation of agricultural management in global ecosystem models,

this thesis addressed how tillage effects on N2O emissions at the global scale can be

evaluated. This works shows that:

1. Process knowledge and model implementation schemes related to agricultural man-

agement can be obtained by analyzing existing field-scale modeling approaches. In

order to make an informed decision on how to use existing approaches and if they are

suitable for incorporation into global ecosystem models, a standardized frame-work

can be followed.

2. In the absence of management-related data with suitable detail and spatial cover-

age, a scenario-based analyses can be used to evaluate the effects of agricultural

management.

3. As processes related to agricultural management can be incorporated into global

ecosystem models by following the standardized framework, and data-scarcity on

agricultural management does not necessarily limit the evaluation of the extended

model, there is no general barrier to extend global ecosystem models by modules

for the representation of agricultural management.

4. The performance of the extended ecosystem model should be evaluated both at the

global scale, as well at the field-scale. The evaluation of the model at field-scale

enables using site-specific input information and therefore provides understanding

whether model input or process representation causes possible mismatches simula-

tions and reported values.

5. LPJmL was not capable of accurately simulating tillage effects on N2O emissions.

Hence, the potential of mitigating N2O emissions through tillage management can-

not be assessed here. However, options for further improving the model could al-

ready be identified.

6. Accounting more explicitly for soil heterogeneity in areas at risk of aggregation

errors can potentially improve the simulation of tillage effects on N2O emissions

and SOC content by LPJmL.

7. The implementation of the more detailed tillage-related mechanism into the global

ecosystem model LPJmL improves the ability to represent different agricultural

systems and understand agricultural management options for agricultural mitigation

of CO2 emissions, climate change adaptation and reducing environmental impacts.
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(2009). Faunal analysis and population fluctuation of Carabidae and Staphylinidae

(Coleoptera) in no-tillage and conventional tillage systems. Revista Brasileira de Ento-

mologia, 53 , 432–443.

Mauser, W., & Bach, H. (2009). PROMET–Large scale distributed hydrological modelling

to study the impact of climate change on the water flows of mountain watersheds.

Journal of Hydrology , 376 , 362–377.

McDermid, S., Mearns, L., & Ruane, A. (2017). Representing agriculture in e arth s ystem

m odels: Approaches and priorities for development. Journal of advances in modeling

earth systems , 9 , 2230–2265.

Mei, K., Wang, Z., Huang, H., Zhang, C., Shang, X., Dahlgren, R. A., Zhang, M.,

& Xia, F. (2018). Stimulation of N2O emission by conservation tillage manage-

ment in agricultural lands: A meta-analysis. Soil and Tillage Research, 182 , 86–93.

doi:10.1016/j.still.2018.05.006.

Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., & Houston, T. G. (2012). An

Overview of the Global Historical Climatology Network-Daily Database. Journal of

Atmospheric and Oceanic Technology , 29 , 897–910. doi:10.1175/jtech-d-11-00103.1.

Metherell, A. K., Harding, L. A., Cole, C. V., & Parton, W. J. (1993). CENTURY

https://doi.org/10.5194/gmd-2019-364
https://doi.org/10.5194/gmd-12-2419-2019
https://doi.org/10.1016/j.ecolmodel.2018.11.015
https://doi.org/10.1016/j.still.2018.03.009
https://doi.org/10.1017/S0021859614001002
https://doi.org/10.1016/j.still.2018.05.006
https://doi.org/10.1175/jtech-d-11-00103.1


REFERENCES 145

Soil Organic Matter Model Environment - Technical Documentation Agroecosystem

Version 4.0. Great Plains System Research Unit USDA-ARS Technical Report No. 4 , .

Millar, N., Robertson, G. P., Grace, P. R., Gehl, R. J., & Hoben, J. P. (2010). Nitrogen

fertilizer management for nitrous oxide N2O mitigation in intensive corn (maize) pro-

duction: an emissions reduction protocol for us midwest agriculture. Mitigation and

adaptation strategies for global change, 15 , 185–204.

Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers,

A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B. S. et al. (2017). Soil carbon 4 per

mille. Geoderma, 292 , 59–86.

Minasny, B., & McBratney, A. B. (2018). Limited effect of organic matter on soil available

water capacity. European Journal of Soil Science, 69 , 39–47. doi:10.1111/ejss.12475.

Minoli, S., Acutis, M., & Carozzi, M. (2015). NH3 emissions from land application of

manures and N-fertilisers: a review of the Italian literature. Italian Journal of Agrom-

eteorology , 20 , 5–24.

Molina-Herrera, S. et al. (2016). A modeling study on mitigation of N2O emissions and

NO3 leaching at different agricultural sites across europe using landscape DNDC. Sci-

ence of The Total Environment , 553 , 128–140. doi:10.1016/j.scitotenv.2015.12.099.

Moreau, P., Viaud, V., Parnaudeau, V., Salmon-Monviola, J., & Durand, P. (2013). An

approach for global sensitivity analysis of a complex environmental model to spatial

inputs and parameters: A case study of an agro-hydrological model. Environmental

Modelling & Software, 47 , 74–87. doi:10.1016/j.envsoft.2013.04.006.

Mosquera, J., ter Beek, C., & Hol, J. (2005). Precise soil management as a tool to reduce

CH4 and N2O emissions from agricultural soil. II. Field measurements at arable soils

in the Netherlands . Report 9067549851, Agrotechnology & Food Innovations.

Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., & Foley, J. A.

(2012). Closing yield gaps through nutrient and water management. Nature, 490 , 254.

Müller, C. et al. (2017). Global gridded crop model evaluation: benchmarking, skills,

deficiencies and implications. Geoscientific Model Development , 10 , 1403–1422.

doi:10.5194/gmd-10-1403-2017.

Nachtergaele, F., Van Velthuizen, H., Verelst, L., Batjes, N., Dijkshoorn, K., van Engelen,

V., Fischer, G., Jones, A., Montanarella, L., & Petri, M. (2009). Harmonized World

Soil Database (version 1.1). Food and Agriculture Organization of the United Nations.

Rome, Italy and IIASA, Laxenburg, Austria.

Naipal, V., Reick, C., Pongratz, J., & Oost, K. V. (2015). Improving the global appli-

cability of the RUSLE model − adjustment of the topographical and rainfall erosivity

factors. Geoscientific Model Development , 8 , 2893–2913. doi:10.5194/gmd-8-2893-2015.
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Figure A.3.1: The litter- and soil organic matter pools in LPJmL5.0 (A) and in

LPJmL5.0-tillage (B)



161

Figure A.3.2a: Relative yield changes for NT R vs. T R of rain-fed wheat compared to

aridity indexes after three years.

Figure A.3.2b: Relative yield changes for NT R vs. T R of rain-fed maize compared to

aridity indexes after three years.
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NT_R vs. T_R Q50: 20.8% (Q5: 3.6%, Q95: 325.5%)
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Figure A.3.6: Relative changes for N2O dynamics for the average of the first three years of NT R vs.

T R of the simulation experiment for different climates – overall (A), warm-temperate (B), tropical (C),

arid (D), cold-temperate (E) and humid (F).
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Figure B.4.1: Effects of no-tillage on N2O emissions on individual

days by the different experimental simulations, including the original

runs of LPJmL, the observations and simulated values by DayCent.
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modified (black lines) LPJmL settings. The simulated values by

DayCent are also shown. Observed values are not available.
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Figure C.5.1a: As Fig. 5.2 but the sensitivity of simulated N2O expressed as CV global to

indicate the relevance for analyses at the global aggregation.

Figure C.5.1b: As Fig. 5.2 but the sensitivity of simulated SOC expressed as CV global to

indicate the relevance for analyses at the global aggregation.



Summary

Agriculture is the largest contributor of non- CO2 anthropogenic greenhouse gas emissions

(GHG). Several agricultural based mitigation strategies (e.g. no-tillage and reducing fer-

tilizers) have been identified to reduce emissions from agricultural soils through improved

management. Yet, the potential of reducing GHG emissions from agricultural produc-

tion through agricultural-based mitigation strategies remains poorly understood. Global

ecosystem models often lack the capacity to assess the potential of agricultural-based

mitigation strategies or even the impacts of agricultural management in general for three

reasons. First, processes related to agricultural management are currently underrepre-

sented in global ecosystem models. Second, knowledge gaps exist on the application and

timing of numerous agricultural management practices. Third, models work at a rela-

tively coarse resolution (e.g. 0.5◦) whereas agricultural management may vary greatly

between farming systems in close proximity.

The aim of this thesis was to contribute to the representation of agricultural manage-

ment in global ecosystem models, so that the potential of agricultural based mitigation

practices can be better quantified. The research was focused on processes related to

tillage and N2O emissions. The first study of this thesis first addressed if and how pro-

cesses related to tillage can be described in global ecosystem models. After indicating

how processes related to tillage can be described, they were implemented into the global

ecosystem model LPJmL. The performance of the extended model was then evaluated at

the global scale and for a number of experimental sites. Finally, the effect of representing

of soil heterogeneity on global modelling of SOC and N2O emissions was assessed.

Approaches to represent new processes related to agricultural management in global

ecosystem model, such as tillage, can be obtained by making use of process knowledge from

field-scale models. However, not all processes described in field-scale models are suitable

for incorporation into global ecosystem models. Thereby, the importance of processes

has to be considered, as well as the input requirements and input data availability at

the global scale. Yet, a guiding principle on where to start and how make decisions was

previously still missing. This thesis, therefore firstly provided a standardized framework

that can be followed to decide if and how processes related to agricultural management

can be incorporated into global ecosystem models. The general framework was applied to
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the implementation of tillage-induced processes for the analyses of N2O emissions. The

standardized framework consists of three steps. First, the most important nitrogen (N)

processes in soils are identified, and their response to environmental conditions and how

these are affected by tillage. Then the description of how these processes and tillage

effects are described in field-scale models, followed by an evaluation whether they can

be incorporated in global ecosystem models, while considering the data requirements

for a global scale application. As the most important processes were described in field-

scale models and the basic requirements can be met, I concluded that tillage can be

incorporated into global ecosystem models for the analyses on N2O emissions. However,

a spatial explicit dataset on tillage management was missing, which only allowed for

scenario-based analyses.

The global ecosystem model LPJmL was then extended with new processes and

modules for the representation of tillage management. More specifically, the tillage effects

on physical properties (bulk density) and residue incorporation into the soil including

feedbacks on soil water and N dynamics were considered to be the most relevant aspects

with approaches suitable for implementation into a global model. After extending the

model with an explicit representation of tillage practices, the model was evaluated by

using four contracting simulations: with and without the application of tillage and with

and without the removal of residues. This scenario-based analysis enabled to evaluate the

performance of the model, as a spatial explicit dataset on tillage was not available. The

performance of the model was tested by comparing modeling results of carbon and water-

fluxes, crop productivity and N2O emissions with reported data from meta-analyses. In

general, the model was able to reproduce observed effects of no-tillage on global, as well

as regional patterns of agricultural productivity, water- and carbon fluxes. The overall

effect of no-tillage on N2O emissions were in overall agreement with reported data ranges

as well. However, the regional patterns over the different climate regimes were strongly

deviating from the meta-analyses.

Deviations of tillage effects on N2O emissions compared to reported values in meta-

analyses can have different causes, such as a lack of detailed input data on management

practices or the representation of processes related to tillage. To gain insight if the de-

viations resulted from a lack of detailed input data on management practices or from

distortions in the representation of processes related to tillage, the extended model was

applied at different experimental sites. This enabled using site-specific information on

agricultural management, soil and weather information and thus understanding if model

input or process representation caused mismatches between the reported values in the

meta-analyses and model simulations. A comparison with the field-scale model Daycent

that was previously calibrated for and applied at these sites helped to fill gaps in mea-

surements and gain further insights into the model behavior.

Evaluating the global ecosystem model LPJmL at field-scale, gave much insight in
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finding why the effects of tillage on N2O emissions were deviating from observations. It

showed that specifying site-specific information on management improved the performance

of the model. However, also with detailed information, the N2O emissions were strongly

deviating from the observations due to a general overestimation of N2O emissions simu-

lated by LPJmL. The high emissions were a result of high soil moisture levels simulated

by the model. As N2O emissions are very sensitive to soil moisture, it is very impor-

tant to more accurately simulate soil moisture with LPJmL. As high soil moisture levels

can result from various reasons, further research is needed to improve the representation

of soil hydrology in LPJmL. However, the study could already indicate the potential of

improving soil hydrology through adjusted parameterization of soil hydraulic properties,

and therefore reduce the general overestimation of N2O emissions.

Next to uncertainties in the soil hydrology, another source of uncertainty can be the

relatively coarse resolution at which global models are typically applied. Global ecosystem

models often work at a spatial resolution of 0.5◦ (equivalent to approximately 55 km at the

equator) and typically work with the most dominant soil texture class within the grid cell.

As a result, the soil heterogeneity is ignored. In Chapter 5, we tested four different ways of

representing heterogeneity in soil conditions and their effects on simulated N2O emissions

and SOC using LPJmL. Moreover, we identified the areas at risk for modeling errors when

using the dominant soil texture within the grid cell, which is the common practice. The

results of the study indicated that for global assessments the method typically used by

global ecosystem models (i.e. using dominant soil texture class) is feasible for simulating

N2O emissions and SOC content, as the errors across regions tend to compensate each

other, so that only small differences were found between the methods of representing

soil heterogeneity. However, considerable differences were found when analyzing local

and regional differences. For local or regional assessments on N2O emissions and SOC

content, using the dominant soil texture class within the grid cell can therefore lead to

distortions, especially in high-risk areas. In these areas, the soil heterogeneity should be

more explicitly accounted for. As the spatial patterns of the indicated high risk areas for

N2O emissions and SOC content were similar, I hypothesized that a non-regular grid could

be defined for soil inputs/output variables from global ecosystem models as a compromise

between computational constraints and required spatial detail. This could potentially also

improve the simulation of tillage effects on N2O emissions and SOC content, but requires

further research.

The extended global ecosystem model LPJmL was not capable of accurately simu-

lating tillage effects on N2O emissions. The global potential of mitigating N2O emissions

through tillage management cannot be well assessed. Yet, there is a better understanding

of processes related to tillage and interactions with N2O emissions. Moreover, the model

was able to reproduce observed effects of tillage on other dimensions, such as agricultural

production, soil C and CO2 emissions at various scales. The implementation of the more

detailed tillage related mechanism into LPJmL therefore improves the ability to repre-
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sent different agricultural systems and understand agricultural management options for

agricultural adaptation and for mitigation options of agricultural GHG emissions. Such

findings can guide management decisions at various scales with respect to agricultural-

based mitigation strategies in order to support regional and global mitigation goals, such

as the Paris Agreement.



Samenvatting

Landbouw levert de grootste bijdrage aan antropogene broeikasgasemissies anders dan

CO2. Verschillende mitigatiestrategieën voor de landbouw zijn gëıdentificeerd om de uit-

stoot van landbouwgronden te verminderen door middel van beter bodembeheer (bijv.

het verminderen van grondbewerking en mest). Toch is het potentieel om de uitstoot van

broeikasgassen door de landbouwproductie wereldwijd te verminderen via deze mitigaties-

trategieën nog onduidelijk. Globale ecosysteemmodellen missen vaak het vermogen om

het potentieel van de op landbouw gebaseerde mitigatiestrategieën of zelfs de algemene

effecten van landbouwbeheer te beoordelen om drie redenen. Ten eerste zijn de processen

die verband houden met landbouwbeheer momenteel ondervertegenwoordigd in globale

ecosysteemmodellen. Ten tweede bestaat er een hiaat in kennis over het toepassen van

landbouwbeheer praktijken in relatie tot broeikasgasemissies. Ten derde werken deze

modellen met een relatief grove resolutie (bijv. 0.5 ◦), terwijl landbouwbeheer sterk kan

verschillen tussen landbouwsystemen in de directe nabijheid.

Het doel van dit proefschrift was landbouwbeheer beter te beschrijven in de globale

ecosysteemmodellen, zodat het potentieel van de mitigatiepraktijken voor de landbouw

beter kan worden gekwantificeerd. Het onderzoek was gericht op processen met betrekking

tot grondbewerking en N2O emissies. In de eerste studie van dit proefschrift werd onder-

zocht of en hoe processen gerelateerd aan grondbewerking kunnen worden beschreven in

globale ecosysteemmodellen. Vervolgens werden deze processen gëımplementeerd in het

globale ecosysteemmodel LPJmL. De prestaties van het vernieuwde model werden vervol-

gens op wereldwijde schaal en voor een aantal experimentele sites geëvalueerd. Tot slot

werd het effect van bodemheterogeniteit op de modellering van bodem-organische stof en

N2O emissies beoordeeld op de globale schaal.

Om processen met betrekking tot landbouwbeheer, zoals grondbewerking, in een

globaal ecosysteemmodel te beschrijven kan proceskennis vanuit veldmodellen worden ge-

bruikt. Niet alle processen die worden beschreven in veldmodellen zijn echter geschikt om

gëımplementeerd te worden in globale ecosysteemmodellen. Daarbij moet rekening worden

gehouden met het belang van de processen en met beschikbaarheid van de benodigde data

op globale schaal. Een leidraad om te beoordelen of processen die worden beschreven in

veldmodellen ook gebruikt kunnen worden in een globaal ecosysteem model ontbrak. Dit
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proefschrift leverde daarom in de eerste plaats een gestandaardiseerd raamwerk dat kan

worden gevolgd om te beoordelen of en hoe processen met betrekking tot landbouwbeheer

kunnen worden opgenomen in globale ecosysteemmodellen. Het raamwerk werd toegepast

op de implementatie van processen die gerelateerd zijn aan grondbewerking en de inter-

actie met N2O emissies. Het raamwerk bestaat uit drie stappen. Eerst worden de belan-

grijkste stikstof processen in de bodem, hun reactie op omgevingsfactoren en hun relatie

tot grondbewerking gëıdentificeerd. Vervolgens wordt geanalyseerd hoe deze processen en

grondbewerking beschreven worden in veldschaalmodellen, gevolgd door een evaluatie of

ze kunnen worden opgenomen in globale ecosysteemmodellen, rekening houdend met de

inputvereisten voor de toepassing op wereldschaal. Aangezien de belangrijkste processen

in veldmodellen werden beschreven en aan de basisvereisten kan worden voldaan, con-

cludeerde ik dat grondbewerking kan worden opgenomen in globale ecosysteemmodellen

voor de analyse van N2O emissies. Een expliciete ruimtelijke dataset over grondbewerking

ontbrak echter, waardoor de analyse beperkt is tot scenario’s.

Het globale ecosysteemmodel LPJmL werd vervolgens uitgebreid met nieuwe pro-

cessen en modules voor grondbewerking. In het bijzonder werden de grondbewerkingsef-

fecten op fysische eigenschappen (bulkdichtheid) en de opname van gewasresten in de bo-

dem, inclusief terugkoppelingen van bodemwater en N-dynamiek, beschouwd als de meest

relevante aspecten die geschikt zijn voor implementatie in een globaal model. Na de im-

plementatie met een expliciete weergave van grondbewerkingsmethoden, werd het model

geëvalueerd met behulp van vier verschillende simulaties: met en zonder het toepassen

van grondbewerking en met en zonder het verwijderen van gewasresten. Deze op scenario

gebaseerde analyse maakte het mogelijk om de prestaties van het model te evalueren. De

prestaties van het model werden getest door de model resultaten van koolstof- en water-

fluxen, gewasproductiviteit en N2O emissies te vergelijken met gerapporteerde gegevens

uit meta-analyses. Over het algemeen kon het model de waargenomen effecten van niet-

grondbewerking op de globale, evenals regionale patronen van gewasproductiviteit, water-

en koolstoffluxen reproduceren. Het algemene effect van niet-grondbewerking op N2O

emissies was ook in overeenstemming met de gerapporteerde gegevens uit meta-analyses.

De regionale patronen over de verschillende klimaatregimes weken echter sterk af.

Afwijkingen van grondbewerkingseffecten op N2O emissies ten opzichte van gerap-

porteerde gegevens in meta-analyses kunnen verschillende oorzaken hebben, zoals een

gebrek aan gedetailleerde gegevens over landbouwbeheer of de weergave van processen die

gerelateerd zijn aan grondbewerking. Om inzicht te krijgen of de afwijkingen het gevolg

waren van een gebrek aan gedetailleerde inputgegevens van landbouwbeheer of in de

weergave van processen met betrekking tot grondbewerking, werd het model toegepast op

verschillende veldexperimenten. Ruimtelijke specifieke informatie van landbouwbeheer,

bodem en weerscondities vanuit de experimenten kon gebruikt worden om te begrijpen

of modelinput of procesrepresentatie afwijkingen veroorzaakte tussen de gerapporteerde

gegevens van de meta-analyses en model resultaten. Een vergelijking met het veldmodel
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Daycent, dat eerder op deze locaties was toegepast en gekalibreerd, hielp om gaten in de

metingen te vullen en meer inzicht te krijgen in het gedrag van het model.

Evaluatie van het globale ecosysteemmodel LPJmL op veldschaal gaf veel inzicht in

het achterhalen waarom de effecten van grondbewerking op N2O emissies afweken van

waarnemingen. Hieruit bleek dat het gebruiken van locatie-specifieke informatie over

landbouwbeheer de prestaties van het model verbeterde. Echter, ook met gedetailleerde

informatie, weken de N2O emissies sterk af van de waarnemingen vanwege een algemene

overschatting van N2O emissies die werden gesimuleerd door LPJmL. De hoge emissies

waren een resultaat van hoge bodemvochtgehaltes gesimuleerd door het model. Aangezien

N2O emissies zeer gevoelig zijn voor bodemvocht, is het erg belangrijk om bodemvocht

nauwkeuriger te simuleren met LPJmL. Omdat een hoge bodemvochtigheid verschillende

oorzaken kan hebben, is verder onderzoek nodig om de weergave van de bodemhydrologie

in LPJmL te verbeteren. De studie kon echter al wijzen op een potentiële verbetering van

de bodemhydrologie door middel van het aanpassen van hydraulische parameters van de

bodem, en daarmee de algemene overschatting van N2O emissies te verminderen.

Naast onzekerheden in de bodemhydrologie, kan een andere bron van onzekerheid de

relatief grove resolutie zijn waarop globale modellen doorgaans worden toegepast. Glob-

ale ecosysteemmodellen werken vaak met een ruimtelijke resolutie van 0,5 ◦ (gelijk aan

ongeveer 55 km bij de evenaar) en werken meestal met de meest dominante bodemtex-

tuurklasse in de rastercel. De heterogeniteit van de bodem binnen de rastercel wordt

hierdoor genegeerd. In Hoofdstuk 5 hebben we vier verschillende manieren getest om

heterogeniteit in de bodemcondities en hun effecten op gesimuleerde N2O emissies en

bodem-organische stof met LPJmL weer te geven. Bovendien hebben we de gebieden

gëıdentificeerd die risico lopen op fouten bij het gebruik van de dominante bodemtex-

tuur in de rastercel. De resultaten van de studie gaven aan dat voor globale studies, de

methode die doorgaans wordt gebruikt door globale ecosysteemmodellen (dat wil zeggen

met behulp van de dominante bodemtextuurklasse) haalbaar is voor het simuleren van

N2O emissies en bodem-organische stof gehalte, aangezien de fouten in regio’s de neiging

hebben elkaar te compenseren, zodat slechts kleine verschillen werden gevonden tussen

de methoden om bodemheterogeniteit weer te geven. Er werden echter aanzienlijke ver-

schillen gevonden bij het analyseren van lokale en regionale verschillen. Voor lokale of

regionale beoordelingen van N2O emissies en bodem-organische stof gehalte kan daarom

het gebruik van de dominante bodemtextuurklasse in de rastercel leiden tot onzekerhe-

den, vooral in risicovolle gebieden. In deze gebieden moet expliciet meer rekening worden

gehouden met de bodemheterogeniteit. Omdat de ruimtelijke patronen van de gebieden

met een hoog risico voor N2O emissies en bodem-organische stof gehalte vergelijkbaar

waren, veronderstelde ik dat een niet-regelmatig raster zou kunnen worden gedefinieerd

voor bodeminput/outputvariabelen van globale ecosysteemmodellen als een compromis

tussen beperkingen in de rekencapaciteit van een model en vereisten in ruimtelijk de-

tail. Dit kan potentieel ook de simulatie van grondbewerkingseffecten op N2O emissies en
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bodem-organische stof gehalte verbeteren, maar vereist verder onderzoek.

Het uitgebreide wereldwijde ecosysteemmodel LPJmL was niet in staat om grond-

bewerkingseffecten op N2O emissies nauwkeurig te simuleren. Het potentieel voor het

verminderen van N2O emissies door grondbewerking op globale schaal, kan daardoor

niet goed worden beoordeeld. Toch is er een beter inzicht verkregen in processen gere-

lateerd aan grondbewerking en hun interacties met N2O emissies. Bovendien kon het

model de waargenomen effecten van grondbewerking op andere dimensies reproduceren,

zoals landbouwproductie, bodemkoolstof en CO2 uitstoot op verschillende schalen. De

implementatie van het meer gedetailleerde grondbewerkingsmechanisme in LPJmL ver-

betert daarom het vermogen om verschillende landbouwsystemen weer te geven en inzicht

te krijgen in landbouwbeheeropties voor landbouwaanpassing en voor mitigatie opties

voor broeikasgasemissies in de landbouw. Dergelijke bevindingen kunnen beslissingen

over landbouwbeheer op verschillende schalen helpen met betrekking tot op landbouw

gebaseerde mitigatiestrategieën ter ondersteuning van regionale en wereldwijde mitigatie-

doelstellingen, zoals de Paris Agreement.
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