Springer Nature
Browse

A genetical metabolomics approach for bioprospecting plant biosynthetic gene clusters

Posted on 2019-04-02 - 05:00
Abstract Objective Plants produce a plethora of specialized metabolites to defend themselves against pathogens and insects, to attract pollinators and to communicate with other organisms. Many of these are also applied in the clinic and in agriculture. Genes encoding the enzymes that drive the biosynthesis of these metabolites are sometimes physically grouped on the chromosome, in regions called biosynthetic gene clusters (BGCs). Several algorithms have been developed to identify plant BGCs, but a large percentage of predicted gene clusters upon further inspection do not show coexpression or do not encode a single functional biosynthetic pathway. Hence, further prioritization is needed. Results Here, we introduce a strategy to systematically evaluate potential functions of predicted BGCs by superimposing their locations on metabolite quantitative trait loci (mQTLs). We show the feasibility of such an approach by integrating automated BGC prediction with mQTL datasets originating from a recombinant inbred line (RIL) population of Oryza sativa and a genome-wide association study (GWAS) of Arabidopsis thaliana. In these data, we identified several links for which the enzyme content of the BGCs matches well with the chemical features observed in the metabolite structure, suggesting that this method can effectively guide bioprospecting of plant BGCs.

CITE THIS COLLECTION

DataCite
3 Biotech
3D Printing in Medicine
3D Research
3D-Printed Materials and Systems
4OR
AAPG Bulletin
AAPS Open
AAPS PharmSciTech
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
ABI Technik (German)
Academic Medicine
Academic Pediatrics
Academic Psychiatry
Academic Questions
Academy of Management Discoveries
Academy of Management Journal
Academy of Management Learning and Education
Academy of Management Perspectives
Academy of Management Proceedings
Academy of Management Review
or
Select your citation style and then place your mouse over the citation text to select it.

SHARE

email
need help?