


Propositions

1) When species continue to support each other under increasingly harsh conditions they

may, eventually, collapse simultaneously because they depend on each other for survival.

(this thesis)

2) Delayed negative feedbacks are underestimated as a potential cause of critical

transitions in complex ecosystems.

(this thesis)

3) Measures to prevent small-scale failures in complex systems should not be taken

because they undermine a system’s capacity to adapt to changing circumstances.

4) Field observations of complex ecosystems should focus on the rates at which di↵erent

processes occur rather than on diversity and species abundances.

5) Scientists should be as engaged in defending scientific freedom, the freedom to

imagine, explore, and discover, as artists are in defending artistic freedom.

6) Rather than well-planned scientific research we should promote a process of scientific

evolution where progress is made by making random mistakes.

7) Future generations will criticize us for defining e�ciency in terms of productivity

rather than in terms of minimum wasted time, e↵ort, or resources.

8) All social developments start with education or a lack thereof.
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Chapter 1

General Introduction

J. Jelle Lever
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8 GENERAL INTRODUCTION

1.1 A HISTORY OF NETWORKS IN ECOLOGY

The earliest evidence of life of Earth dates from at least 3,770 million years ago (Rosing

1999; Ohtomo et al. 2014; Dodd et al. 2017) and, today, the Earth is inhabited by an

estimated 8.7 million species (Mora et al. 2011). The far majority of these species still

awaits description. It is, therefore, only logical that we continue to try to understand

more about the world in which we live by classifying and describing the intrinsic, e.g.

the morphological, physiological, and genetic, properties of species and their common

ancestors. The description and classification of species, however, only provides limited

insight. Observations need to be accompanied by the development of theories that explain

observed patterns in order to achieve real understanding, and species are embedded in

complex ecosystems of many interacting species and of interactions between species and

their environment that have properties of their own. Network approaches towards study-

ing ecosystems attempt to study these properties, for example, by describing the patterns

of interactions among species, i.e. the way in which these interactions are arranged in

complex ‘ecological networks’. These patterns are likely to be crucial for the maintenance

of biodiversity because they allow species to coexist, and may a↵ect the specific way in

which ecosystems may respond to changing environmental conditions.

An early, perhaps the first, graphical representation of a network of interacting species

was made by Lorenzo Camerano in 1880 (Camerano 1880, 1994; Cohen 1994 and Fig.

1.1). Other relatively early studies studies included descriptions of such networks as well

(e.g. Forbes 1925 and Shelford 1913). Ecological networks, however, only became central

to ecology when Charles Elton proposed four main organizing principles by which species

communities are organized; food chains, ecological niches, food size ranges, and trophic

pyramids (Elton, 1927). These principles were an attempt to describe general patterns in

ecosystems, varying from the observation that di↵erent species may occupy a similar place

or ‘niche’ in food webs, i.e. networks of predator-prey relationships, that species tend to

eat food between certain size limits, and the idea that species at the base of food chains

tend to be more abundant than those at the top. An important further step was made by

Lindeman (1942), who described ecosystems as systems that transform energy obtained

from sunlight by plants. Lindeman (1942) suggested that this transfer of energy to higher

trophic levels is ine�cient: a potential explanation for the loss in abundance as trophic

levels increase as described by Elton (1927). When describing flows of energy in lakes,

Lindeman proposed, following Tansley (1935), that lakes should be seen as integrated

systems of biotic and abiotic interactions, and, as such, provided the basis for our modern

understanding of the word ‘ecosystem’.

The work of Lindeman (1942) was developed further by the brothers Howard and Eugene

Odum. Howard was the first to use an energy flow diagram to describe the trophic struc-

ture and productivity of ecosystems (Odum, 1957), and Eugene wrote, with the help of

his brother, several revised editions of an influential textbook that introduced the holistic,
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Figure 1.1: An early graphical representation of interacting species groups as published by

Camerano (1880, 1994). Phytophagous Coleoptera, i.e. herbivorous beetles, eat vegetation

and are decimated by predators (left) and parasites (right). These in turn are decimated by

other animal predators and parasites and so on. Adapted version taken from Bersier (2007).

systems view of Lindeman (1942) to a wider audience (e.g. Odum 1953 and Odum & Bar-

rett 2005). The Odum brothers considered ecosystems to be self-organizing. Ecosystems

would develop, i.e. change in composition, abiotic factors and the interactions between

them, during a process of succession ultimately leading to a stage of ‘homeostasis’, i.e. a

stable end state (Odum, 1953, 1957, 1969, 1988). The complexity of species communi-

ties, i.e., the number of species and/or interactions, increases during succession and an

ecosystem’s end or ‘climax’ state was, according to the Odum brothers, the result of a

selective process. Odum (1953, 1969) suggested that such complex communities are stable

due to the relatively large number of alternative pathways by which the energy collected

by autotrophes, e.g. plants, may flow through a system. Stable communities were, in

the view of Odum (1953), communities in which species abundances tend to stay quite

constant. As the complexity of an ecosystem increases, so does the number pathways,

which reduces the cascading e↵ects of perturbations through a food web which, in turn,

promotes stability. MacArthur (1955) used Shannon’s measure of information entropy

(Shannon & Weaver, 1949) to further develop and illustrate the point of Odum, and El-

ton (1958) arrived to a similar conclusion. As a measure of stability, MacArthur (1955)

proposed to use the e↵ect of a change in abundance in one species on the abundances of
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other species.

While the previous work focused on the upward flows of energy through food webs, lit-

tle attention was given to the top-down e↵ects of predators on prey until Hairston et al.

(1960) published their influential work on food chains in terrestrial communities. Hairston

et al. (1960) argued that predators reduce the abundance of herbivores and therefore allow

plants to flourish, an hypothesis referred to as the ‘green world hypothesis’. The impor-

tance of top-down e↵ects was later confirmed by Paine (1966), who showed experimentally

that the removal of a top-predator may lead to secondary extinctions due to increased

competition between species on lower trophic levels. He later coined the terms keystone

species (Paine, 1969) and trophic cascade (Paine, 1980) to describe species that have a

disproportionately large e↵ect on the integrity and stability of species communities and

the indirect e↵ects these species may have on other species.

By explicitly incorporating, and showing the relevance of, top-down e↵ects in species

communities, Hairston et al. (1960) and Paine (1969) paved the way for a re-evaluation

of the relationship between the complexity and stability of ecosystems. Eventually, it was

May (1972, 1973) who suggested that a general study of Gardner & Ashby (1970) on the

relationship between the complexity and stability of complex systems, was of relevance for

ecology as well. With model systems they showed that, when randomly taking interaction

strengths from a normal distribution with mean zero, the chance of a system to be stable,

i.e., to exhibit a stable nontrivial equilibrium point at which all species may coexist stably,

declines rapidly when the number of interactions or species passes a critical value.

The analysis of May (1972, 1973) triggered a longstanding debate in ecology on the rela-

tionship between the complexity and stability of ecosystems, because the observation that

simple systems are more likely to be stable than large, complex ones, was the opposite of

what was commonly believed and previously suggested by Odum (1953) and MacArthur

(1955). The model systems of May (1972, 1973), however, did not include much ecological

realism as interactions were assigned randomly and allowed for negative nontrivial equi-

librium abundances (Roberts, 1974), and May hinted in his 1972 paper that alternative

arrangements, i.e. a modular ‘block’ structure, could promote the stability of complex

ecosystems. Eventually, it was Yodzis (1981), building on the work of Pimm & Lawton

(1978), who showed that model systems to which interactions are assigned such that they

mimic real ecosystems are more likely to exhibit a stable nontrivial equilibrium point than

their randomized counterparts. A strong suggestion that the non-random way in which

interactions are arranged in complex ecological networks may provide an explanation for

the stable coexistence of species in complex ecosystems.

1.2 THE STRUCTURE OF ECOLOGICAL NETWORKS

One of the pioneers in searching for structural patterns in complex ecological networks

was Joel Cohen. Cohen used a framework provided by Hutchinson (1957), who defined a



1

1.2 THE STRUCTURE OF ECOLOGICAL NETWORKS 11

species’ niche as an n-dimensional hypervolume in a space with environmental conditions

or resource traits on the axes to study the niche structure of species communities (Cohen,

1977; Cohen & Stephens, 1978). By determining the prey shared by predators, Cohen

determined the overlap in the trophic niche occupied by predators and suggested that

a single niche axis is usually su�cient to explain who interacts with whom in complex

food webs. Discussions continue about what this single axis might represent, some have

suggested that it could simply be the body-size of prey (Warren & Lawton, 1987; Lawton

& Warren, 1988; Cohen et al., 1993, 2003), but it might di↵er among ecosystems.

A way to test whether basic rules based on the aforementioned organizing principle may

explain observed patterns is to generate model networks and comparing them with data.

Cohen & Newman (1985) made a first attempt to generate such networks by arranging

species in a ‘cascade’ or hierarchical order and assuming that species feed, with a certain

probability, only on species that are lower in hierarchy (Cohen & Newman, 1985; Cohen

et al., 1990). The approach of Cohen & Newman (1985) was developed further by Williams

& Martinez (2000), who randomly assigned species with a ‘niche value’ and assumed

species to feed on species within a niche range of which the mean is lower than a species

own value. Other notable work building on the work of Cohen (1977) can be found in

Sugihara (1980, 1983), Cattin et al. (2004), and Stou↵er et al. (2005). In this work,

other, similar methods to generate model networks are proposed that were, to a more or

lesser extent, able to reproduce several features common to all food webs, such as the

fractions of species at top, intermediate and basal levels, the variability in the number of

interactions per prey and predator species, and the degrees of cannibalism, omnivory, and

trophic similarity. Stou↵er et al. (2005) suggests that this will be the case for any model

satisfying two conditions: (1) the species’ niche values form a totally ordered set and

(2) each species has a specific exponentially decaying probability of preying on a given

fraction of the species with lower niche values.

Another approach to detect commonalities in food-web structure is to study the frequency

of network motifs, i.e. subnetworks of n species within larger food webs. In ecology,

several simple patterns of interactions involving three or more species received a lot of

attention, i.e. trophic cascades in food chains, omnivory, exploitative competition, and

apparent competition (Elton, 1927; Hairston et al., 1960; Holt, 1977; Pimm & Lawton,

1978; Tilman, 1982; Holt et al., 1994). Following earlier work by Milo et al. (2002), Stou↵er

et al. (2007) were the first to rigorously explore whether such relationships are common

in empirical and model-generated food webs by studying the frequency of three-species

motifs. Stou↵er et al. (2007) found that simple food chains and omnivory were over-

represented in most empirical and in model-generated food webs, while exploitative and

apparent competition were under-represented relative to randomized versions of the same

food webs. A notable exception, however, did occur in some empirical networks where

omnivory was under-represented and exploitative and apparent competition were over-

represented. The implications of these patterns for the dynamics of complex food-webs
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are still part of ongoing research (Prill et al., 2005; Kondoh, 2008; Stou↵er & Bascompte,

2010).

A further understanding of why some patterns are more likely to occur in ecological

networks can, most likely, be obtained when studying feedbacks in complex ecosystems.

Three types of feedbacks are of importance; direct negative feedbacks, positive feedbacks,

and delayed negative feedbacks (Levins, 1974). Direct negative feedbacks, e.g. intraspe-

cific competition, have stabilizing e↵ects. Positive or ‘reinforcing’ feedbacks, e.g. the

feedback between two mutualistically interacting species, amplify change away from an

existing equilibrium and are thus destabilizing. Delayed negative feedbacks, i.e. negative

feedbacks with a time lag usually occurring as the result of an uneven number of negative

interactions in feedback loops of two or more species, can lead to oscillating dynamics, and

the interplay between several delayed negative feedbacks may cause chaotic or other com-

plex dynamics. A well-known example is provided by Rosenzweig & MacArthur (1963)

and Rosenzweig (1971) who showed that ‘enriching’ a prey population by providing it with

more resources could destabilize predator-prey systems, a phenomenon referred to as the

‘paradox of enrichment’. When providing prey with more resources, the direct negative

feedback due to intraspecific competition becomes weaker relative to the delayed, indirect

negative e↵ect due to a prey’s interaction with a predator. Such a change in the balance

between direct and delayed negative feedbacks may lead to oscillations in the abundances

of predators and prey (Levins, 1974; Puccia & Levins, 1985). McCann et al. (1998) later

suggested that weak trophic interactions may stabilize subsystems of strongly interacting

prey and predator species that would show oscillating or chaotic dynamics in isolation,

and idea that was later build further upon by Berlow (1999), Neutel et al. (2002), and

Bascompte et al. (2005). Delayed negative feedback may also undermine the resilience of

systems with strong positive feedbacks, such as shallow lakes. The interplay between a

delayed negative feedback and such a positive feedback may lead to a ‘slow-fast cycle’,

causing a system to repeatedly switch between alternative states, e.g. a clear-water and

a turbid state (Van Nes et al., 2007).

Networks of trophic, predator-prey interactions remained the main object of study when

describing ecological network structure until Jordano (1987) presented his work on com-

plex communities of mutualistically interacting plant and pollinator species or seed dis-

persers. Jordano (1987) found, among other patterns, that the distribution of relative

mutualistic interaction strengths is highly skewed. Most interactions were found to be

weak, and the few cases in which species depended strongly on a single species did not nec-

essarily imply a strong mutual dependence. Pairwise dependencies were, instead, found to

be asymmetric, i.e., plant species depend relatively strongly on seed disperses that do not

depend strongly on them and vice versa. Building further on the work of Jordano (1987),

Bascompte et al. (2006) showed that such asymmetric relationships promote the stability

of mutualistic networks. The work of Jordano (1987) paved the way for the later finding

that mutualistic networks tend to be highly nested, i.e., specialists tend to interact with
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a subset of the species interacting with the more generalist species (Bascompte et al.,

2003). An automatic consequence of such a structure is that specialist species depend

relatively strongly on generalist species, thus explaining the asymmetry in relative inter-

action strengths as described by Jordano (1987). Bastolla et al. (2009) later showed that

nestedness reduces e↵ective interspecific competition and promotes indirect facilitation in

mutualistic communities which, in turn, enhances the number of species that may coexist

stably. These findings may have wider implications for other disassortative networks, i.e.,

networks in which nodes with few interactions tend to interact with nodes that have many

interactions, such as scale-free networks in social, economic, technological, biological, and

physical systems (Barabási & Albert 1999; May et al. 2008, but see Jordano et al. 2003).

Such disassortative structures were found to promote the robustness of networks to the

random removal, but increases the dependence of networks on a few highly connected

nodes (Albert et al., 2000; Memmott et al., 2004).

Studies on the structural properties of communities dominated by other interaction types

are less common. An early exception is the work of Cody (1974) on competitive bird

communities further analyzed by Sugihara (1983). More recent work has focused on the

ways in which networks of trophic, mutualistic, competitive and/or other interaction types

combine into larger networks (Chase et al., 2002; Arim & Marquet, 2004; La↵erty et al.,

2008; Melián et al., 2009; Pocock et al., 2012; Mougi & Kondoh, 2012; Pilosof et al.,

2017). Our knowledge, in particular of the structural patterns and dynamic behavior of

such complex ‘multilayer’ systems, is however still far from complete.

1.3 STABILITY CONCEPTS

The search for common patterns in the structure of ecological networks, i.e. the way in

which interactions are arranged, is a first step towards understanding the rules determining

the dynamics and stability of ecosystems. It is, however, certainly not the last step.

Ecosystems may exhibit a wide variety of dynamical properties that may correspond to

di↵erent aspects of stability. When studying the interrelationship between the structure

and stability of ecological networks, it is thus of importance to determine which aspects

of stability are of interest, and whether these aspects are interrelated.

In one of few field experiments on the relationship between the complexity and stability

of ecosystems, Tilman et al. (2006) showed, for example, that greater numbers of plant

species increase the temporal stability of grassland communities. Temporal stability was

defined as the mean divided by the standard deviation of fluctuating plant abundances, a

measure of stability that roughly corresponds to the way in which the early contributors

to the diversity-stability debate thought of stability (e.g. MacArthur 1955 and Elton

1958). An important distinction between the level at which a system’s temporal stability

is measured, however, needs to be made. While the temporal stability of the community’s

total biomass was found to increase, the temporal stability of individual species was
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found to decrease with increasing species number. A greater temporal stability of the

total biomass of diverse communities may be caused by a higher productivity, statistical

averaging, and negative correlations between species abundances (Tilman et al., 1998;

Lehman & Tilman, 2000). In Fig. 1.2 and Fig. A1.1 in Supplementary Information, I

show that similar di↵erences in temporal stability may be found in food webs. Strong

correlations between species abundances can be expected when species recover slowly from

perturbations along a particular line in a system’s phase space, i.e. a multidimensional

space in which each axis corresponds to the abundance of a species. Such slow recovery

may occur when the dominant eigenvalue of the Jacobian matrix corresponding to a

system’s nontrivial equilibrium is close to zero, a measure used by May (1972, 1973) to

distinguish between stable and unstable ecosystems. A slow recovery from perturbations

along a particular line in the system’s phase space, which is generally seen as ‘unstable’,

may thus simultaneously lead to relatively small fluctuations in the total abundance of

species groups, which is seen as ‘stable’, when abundances are negatively correlated.

Discussions on whether certain ecosystem properties, e.g. the number of species, promote

or undermine stability may only be clarified when such di↵erent aspects of stability are

clearly defined.

Other notions of stability exist. For instance, the aforementioned method used by May

(1972, 1973), i.e. the local stability of a system’s nontrivial equilibrium, has the draw-

back that it misses non-equilibrium attractors that may allow species to coexist while

abundances are oscillating or following other more complex dynamics. A criterion used

to determine whether the coexistence of species is possible, even when there is no stable

nontrivial equilibrium, is referred to as ‘permanence’. A permanent set of species has

the property that all species may persist over time, i.e. have nonzero abundances, even

when dynamics are fairly complex because the boundaries to the system’s phase space are

repelling (Hutson & Vickers, 1983; Hutson & Law, 1985; Hofbauer & Sigmund, 1988; Law

& Morton, 1996). Others may want to use a more strict definition of stability, and want

to check whether a system’s nontrivial equilibrium point is ‘globally stable’, i.e. there are

no alternative attractors to which a system my shift. Conditions to determine whether

a nontrivial equilibrium of a Lotka-Volterra competition model is globally stable can be

found in Goh (1977) and Logofet (1993). Both definitions of permanence and global sta-

bility are conceptually attractive. Determining whether a set of species is permanent, or

whether a system’s nontrivial equilibrium is globally stable is, however, usually not easy

and may often be impossible. Evaluating the local stability of a system’s nontrivial equi-

librium is, perhaps for this reason, the most commonly used method when studying the

interrelationship between the complexity and stability of ecosystems. In addition to the

here described methods, graph theoretical approaches are used to study the stability of

complex ecosystems, e.g. the likelihood of co-extinctions when species are removed from

a network (Albert et al., 2000; Solé & Montoya, 2001; Memmott et al., 2004; Rezende

et al., 2007).
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Figure 1.2: Fluctuations in the abundances of primary producers (green), consumers (blue)

and top-predators (red) when forming part of a simple food chain (A) and a more complex

food web (B). Colored time series show the sum of all species belonging to a single trophic

level. Time series in black show the fluctuations in species abundances when they are pro-

jected on the line in the network’s phase space along which variance is highest, i.e. the first

principal component as determined with a principal component analysis. A similar regime

of random perturbations leads to relatively large fluctuations in the abundances of basal and

consumer species in the simple food chain when compared to the total biomass of basal and

consumer species in the more complex food web. Fluctuations along the system’s first prin-

cipal component are, however, substantially smaller. These opposing patterns in variability

may occur when the abundances of species belonging to the same trophic level are anti-

correlated. Relatively large fluctuations along a system’s first principal component and strong

(anti-)correlations in species abundances can be expected when the dominant eigenvalue of

a system’s Jacobian matrix is close to zero (see Chapter 4). Horizontal lines indicate the

mean and standard deviations. Competition among primary produces and the feeding rates

of consumers and predators are assumed to be substantially lower in the simple food chain

(see Appendix A1.1 and Fig. A1.1 in Supporting Information).

Apart from stability concepts that were developed in the context of the aforementioned

complexity-stability debate, two important theories, i.e. chaos theory and catastrophe

theory, are of major importance for the way in which ecologist evaluate ecosystem sta-

bility. Chaos theory deals with the fact that even relatively simple systems may show

complex dynamical behavior that never repeats itself (Poincaré, 1890; Lorenz, 1963; May,

1976). More importantly, small di↵erences in a system’s initial state, or small external

perturbations to this state, will expand exponentially over time and may lead to a wide

variety of outcomes when systems exhibit such chaotic dynamics, which makes it hard

to predict their long-term behavior. This complex behavior is determined by the deter-
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ministic rules governing a system’s dynamics and not the result of a stochastic process.

Catastrophe theory deals with another type of perturbations, namely with changes in the

parameters of a system and is embedded in a wider framework on the structural stability

of complex biological systems developed by René Thom (Thom, 1972, 1975). A system is

structurally unstable when infinitely small changes to a system’s parameters lead to quali-

tative changes in the dynamical behavior of a system (such as the existence of equilibrium

points, limit cycles, or deterministic chaos). The size of the area in a system’s parameter

space within which a system exhibits the same qualitative behavior is used as a measure

of the extent in which a system’s dynamical behavior is structurally stable (Thom, 1972;

Vandermeer, 1975; Thom, 1977; Alberch, 1989; Bastolla et al., 2005, 2009; Rohr et al.,

2014). Catastrophe theory deals with the nature of the boundaries to such areas and in

particular with the cases in which gradual changes in the properties of a system lead to

abrupt changes in behavior, e.g. a shift from one stable state to another. Thom (1972)

shows that there are seven ‘elementary’ catastrophes, i.e. catastrophes that involve stable

equilibrium points, when dynamics are controlled by no more than four parameters. The

simplest of these elementary catastrophes, and the most commonly used when explaining

abrupt shifts in ecosystems, are the fold and cusp catastrophe that are controlled by 1

and 2 parameters respectively (Fig. 1.3). Despite some controversy in the past (Zahler &

Sussmann, 1977), the cusp and fold catastrophe are now considered to capture the essence

of a wide variety of systems varying from ecosystems (May, 1977; Wilson & Agnew, 1992;

Sche↵er et al., 2001), to human cells (Hasty et al., 2002; Ferrell Jr, 2002; Lee et al., 2002;

Tyson et al., 2003; Angeli et al., 2004), and the climate (Hare & Mantua, 2000; Clark

et al., 2002; Alley et al., 2003; Lenton et al., 2008).

Published around the same time, and highly related to the work if René Thom, is the work

of Buzz Holling (Holling, 1973, 1996). Holling (1973) uses several examples to illustrate

that abrupt regime shifts or ‘critical transitions’ may occur in ecosystems, e.g. towards a

eutrophic or ‘highly productive’ state under the influence of nutrient enrichment in lakes,

in fish populations due to harvesting (Ricker, 1963; Smith, 1968; Hutchinson et al., 1970),

and in tree cover due to grazing in terrestrial ecosystems (Glendening, 1952). Holling

(1973) noted that for such systems the important question is not how stable a system

is in the classical sense as described by MacArthur (1955) and Elton (1958), but how

likely it is for a system to switch from one state to another. As a way to estimate such

probability, he proposes to use the size of the domain of attraction in a system’s phase

space(Fig. 1.4). In later work, Holling refers to the magnitude of a disturbance that can

be absorbed before a system shifts into another stability domain as ‘ecological resilience’,

and to the resistance to disturbance or the speed of return to equilibrium as ‘engineering

resilience’ (Holling 1996, Fig. 1.4, and 1.5). More lose definitions of ecological resilience

are, however, also used such as: ‘a system’s ability to absorb changes of state variables,

driving variables, and parameters, and still persist’ (Holling, 1973) and ‘the capacity of a

system to absorb disturbance and reorganize while undergoing change so as to still retain
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Figure 1.3: The density of algae as described by a model with two control parameters;

nutrient availability and lake depth. (A) Cusp catastrophe in which two alternative stable

states, i.e. a non-turbid state with low algae density and a turbid state with high algae density,

may exist depending on nutrient availability and lake depth. The surface corresponds to the

algae’s equilibrium density. Unstable equilibrium densities are plotted in grey. (B-D) Ways

in which in which the algae’s equilibrium density depends on nutrient availability in a deep

(B), intermediate (C), and shallow lake (D). Panel D corresponds to a fold catastrophe. The

dashed middle section in panel D corresponds to an unstable equilibrium. This figure is based

on a model in Sche↵er (1990), and Sche↵er et al. (1993).

essentially the same function, structure, identity, and feedbacks’ (Walker et al., 2004).

The work of Thom (1972) and Holling (1973) was further introduced to ecology by May

(1977) and Sche↵er et al. (2001). This work shows that, as conditions change, ecological

resilience might be lost until a ‘critical point’ is reached beyond which a transition towards

an alternative state becomes inevitable (Fig. 1.4). Recovery from such shifts may require
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Figure 1.4: Ecological resilience far from (top panels) and close to a bifurcation point (bot-

tom panels) as determined by the size of a system’s attraction basin. Left panels show the

equilibrium curve of a system with two alternative stable states, i.e. a fold catastrophe as in

Fig. 1.3.D. Dots indicate stable (S) and unstable equilibrium points (U) far from (top panel)

and close to a bifurcation point B1 (bottom panel). Ecological resilience is large, i.e. the

indicated range or amount of change in abundance a system may tolerate without shifting

into an alternative attraction basin, is large far from a bifurcation point. When conditions

change further towards a bifurcation point, the amount of change a system can handle goes to

zero and a regime shift or ‘critical transition’ toward an alternative state becomes inevitable.

Right panels show stability landscapes for the conditions at which stable and unstable equi-

librium points are indicated on the fold catastrophe. Balls correspond to stable and hilltops

to unstable equilibrium points.

more than a simple return to the conditions at which a transition occurred, a phenomenon

called ‘hysteresis’.

One of the challenges when dealing with such critical transitions is that it might be hard

to know whether a system is approaching a critical point because the state of a system

may show little change before a tipping point is reached. A concern for those who may
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Figure 1.5: Engineering resilience, or the speed at which a system returns to equilibrium

after a perturbation. Top panels correspond to a system with a high engineering resilience,

lower panels to a system with a low engineering resilience. The speed of recovery, and thus

the time it takes to return to equilibrium, is roughly determined by the slope of a system’s

stability landscape. This figure is based on work in Van Nes & Sche↵er (2007).

want to prevent critical transitions from happening. Wissel (1984) and Van Nes & Sche↵er

(2007), however, showed that an increasingly slow recovery from small disturbances may

be indicative of a loss of ecological resilience prior to a critical transition, a phenomenon

known as ‘critical slowing down’. This work, in turn, provided the basis for a wide variety

of indicators often obtained through time series analysis, e.g. an increase in variance,

autocorrelation, and skewness, that may serve to detect an increase in the likelihood of

critical transitions (reviewed in Sche↵er et al. 2009 and Dakos et al. 2012).

1.4 NETWORK THEORY AND CRITICAL TRANSITIONS

Despite a longstanding interest in the structure and stability ecological networks, the

common ground between studying the structure of ecological networks and the potential

causes and consequences of critical transitions remains largely unexplored. Or, more



1

20 GENERAL INTRODUCTION

specifically, most studies on the structure and stability of ecological networks have focused

on stability concepts that are unrelated with critical transitions, while studies of critical

transitions have often focused on the dynamics of individual populations rather than on

the complex networks of interactions between species that maintain them. This thesis

aims to fill this gap by merging network theory with theory on critical transitions.

InChapter 2, we build further on the work of Bastolla et al. (2009) and show that indirect

facilitation occurring nested mutualistic networks may come at a cost; when pollinators

continue to facilitate each other under increasingly harsh conditions they may eventually

collapse simultaneously, because they depend on each other for survival. Recovery from

such a simultaneous collapse may require a relatively large improvement in conditions.

Findings that may have large implications for our view on the sustainability of pollinator

communities and the services they provide in a time when pollinator populations are

rapidly declining. Pollinator communities may, however, also be able to persist longer

under increasingly harsh circumstances when indirect facilitation is strong. A trade-o↵

between di↵erent aspects of stability, e.g. persistence and the potential for a large-scale

systemic collapse, thus appears to exist.

In Chapter 3, we build further on previous work (implicitly) pointing towards delayed

negative feedbacks as a potential cause of instability in complex food webs, e.g. McCann

et al. (1998), Berlow (1999), and Neutel et al. (2002). Inspired by previous work on

critical transitions and the structural stability of dynamical systems, e.g. Thom (1972)

and Kuznetsov (1995), we describe a variety of transitions, associated with di↵erent types

of boundaries in parameter space, that may occur when stabilizing, damping patterns

in complex food webs are undermined, and explore how structural network patterns, i.e.

species number, connectance, and variability in interaction strength, might influence the

occurrence of such transitions. The findings in this chapter are of importance because

most previous work on critical transitions in ecosystems has focused on positive feedbacks

as a potential cause of instability. As such, this chapter may thus point towards an

important other potential cause of critical transitions in complex ecosystems.

In Chapter 4, we build further on previous work on critical slowing down prior to critical

transitions, e.g. Wissel (1984) and Van Nes & Sche↵er (2007). Previous studies on critical

slowing down aimed to detect a change in the proximity to a critical point (Sche↵er et al.,

2009; Dakos et al., 2012) and did not address the question of what a system’s future state

might be like after an impending critical transition. Complex ecosystems may, however,

shift to many di↵erent, alternative states. Whether impending transitions in such systems

have minor, positive or catastrophic e↵ects thus remains unclear. Predicting a system’s

future state is di�cult in particular when complex, unpredictable dynamics occur when

a critical point is passed. Some systems may, however, behave more predictably than

others. The dynamics of mutualistic communities can, for example, be expected to be

relatively simple, because delayed negative feedbacks leading to oscillatory or other com-
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plex dynamics are weak. This relative simplicity may allow us to look beyond impending

critical transitions and foresee a community’s future state. To predict the future state

of complex mutualistic communities, we take advantage of the fact that resilience is not

lost equally in all directions. Disturbances have a size (i.e. the total amount of change)

and a direction (i.e. the relative amount of change in each species). The more similar

a disturbance’s direction to the direction in which increasingly small perturbations may

cause critical transitions, the stronger the e↵ect of critical slowing down. Provided that

there are no oscillating, chaotic or other complex dynamics, a system’s future state will

most likely lie in the same approximate direction.

In Chapter 5, the final chapter of this thesis, I reflect on the findings in the previous

chapters and place them in a broader context. In a time when ecosystems are confronted

with rapid environmental change, it is becoming increasingly clear that predicting the

consequences of changing environmental conditions requires a fundamental understanding

of the processes occurring in ecosystems. In particular, because such changes are likely to

bring ecosystems outside of the range in conditions for which data are available. Applied

questions on the stability of a particular ecosystem in the context of such changes may

thus require the development of novel, fundamental theories and hypothesis that may

apply to a wide variety of ecosystems. In this thesis, I hope to have contributed to the

development of such theories and hypothesis.
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A1.1 A SIMPLE FOOD CHAIN AND A MORE COMPLEX WEB

We use a Lotka-Volterra style model to describe the dynamics of primary producers,

consumers and top-predators. Primary producers obtain resources from abiotic sources,

e.g. soil nutrients and sunlight, consumers feed on primary producers and predators prey

on consumers. Changes in the biomass of species are described as follows:

dBi

dt
= riBi �

X

k=cons

�ik
1� �ik

BiCk �
X

cijBiBj + ✏i,

dCk

dt
= �ikBiCk �

X

l=pred

�kl
1� �kl

CkPl � tkCk + ✏k,

dPl

dt
= �klCkPl � tlPl✏l,

(A1.1)

in which primary producer i has abundance Bi, consumer k abundance Bk, and top-

predator l abundance Pl. The rate at which primary producers grow in abundance is

described by growth rate ri, and competition among basal species is described by com-

petitive interaction strength cij. Trophic interactions are described by feeding rate, �ik,

and the fraction of ingested biomass lost to feces and other losses, �ik. The rate at which

biomass production is lost due to respiration and other losses, e.g. death, is described by

mortality rate, tk. Species experience small stochastic perturbations incorporated through

noise term ✏i:

✏i = �i
dW

dt
. (A1.2)

✏i fluctuates in time due to Wiener process, W , with mean zero and standard deviation

�i. The Wiener process is a continuous-time stochastic process generating white noise.

To prevent noise leading to negative abundances, we assume that dN/dt = 0 when N <

0.001.

Parameters settings of the simple food chain in Fig. 1.2.A are as follows: B̂1 = 3, Ĉ2 = 2,

P̂3 = 1, c11 = 0.17, �12 = 0.12, �23 = 0.1, �12 = 0.55, and �23 = 0.15, and the parameter

settings of the more complex food web in Fig. 1.2.B as follows: B̂1 = 1, B̂2 = 1, B̂3 = 1,

Ĉ4 = 1, Ĉ5 = 1, P̂6 = 1, c11 = 0.9, c12 = 2.1, c13 = 0, c21 = 0.3, c22 = 0.9, c23 = 1.8,

c31 = 1.5, c32 = 0, c33 = 1.5, �14 = 1.2, �24 = 1.8, �15 = 1.2, �25 = 0.9, �35 = 0.9,

�46 = 0.4, �56 = 0.6, �13 = 0.55, �14 = 0.55, �24 = 0.55, �15 = 0.55, �25 = 0.55, �35 = 0.55,

�46 = 0.15, �56 = 0.15. The growth rates of primary producers, ri, and mortality rates, tk,
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of consumers and top-predators are assigned such that dB̂i/dt, dĈi/dt, and dP̂i/dt, are

zero. B̂, Ĉ, and P̂ correspond to the species’ nontrivial equilibrium abundances.
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A1.2 SUPPLEMENTARY FIGURE

Figure A1.1: Fluctuations in the abundances of individual species belonging to the more

complex food web described in Appendix A1.1 and displayed in Fig. 1.2.B. The abundances

of primary producers (green) and consumers (blue) are (anti-)correlated. The bottom time

series belongs to primary producer ‘1’ and the top time series to top-predator ‘6’ as described

in Appendix A1.1. Horizontal lines indicate the mean and standard deviations.
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ABSTRACT

Declines in pollinator populations may harm biodiversity and agricultural productivity.

Little attention has, however, been paid to the systemic response of mutualistic com-

munities to global environmental change. By using a modelling approach and merging

network theory with theory on critical transitions, we show that the scale and nature of

critical transitions is likely to be influenced by the architecture of mutualistic networks.

Specifically, we show that pollinator populations may collapse suddenly once drivers of

pollinator decline reach a critical point. A high connectance and/or nestedness of the mu-

tualistic network increases the capacity of pollinator populations to persist under harsh

conditions. However, once a tipping point is reached, pollinator populations collapse si-

multaneously. Recovering from this single community-wide collapse requires a relatively

large improvement of conditions. These findings may have large implications for our view

on the sustainability of pollinator communities and the services they provide.
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2.1 INTRODUCTION

Widespread declines in wild and domesticated pollinator populations raise concerns about

the future of biodiversity and agricultural productivity (Allen-Wardell et al. 1998; Diaz

et al. 2005; Biesmeijer et al. 2006; Potts et al. 2010; Burkle et al. 2013; Garibaldi et al.

2013). The majority of flowering plants depend on animals for pollination. Those plants

are in turn at the basis of food webs and provide food for livestock and human populations

(Klein et al. 2007; Ollerton et al. 2011). Pollinators thus provide an essential service to

ecosystems and humanity. Assessing the potential for further degradation of this service

is therefore of great importance.

A considerable e↵ort is being made to identify the potential causes of declining pollinator

abundances. Recently, field experiments showed how commonly used insecticides strongly

increase pollinator mortality (Henry et al. 2012; Whitehorn et al. 2012). Habitat destruc-

tion, parasites, and disease are also seen as important drivers of pollinator decline. Most

likely, a mix of those causes increases the mortality of pollinator populations (Diaz et al.

2005; Potts et al. 2010; Bryden et al. 2013).

The impact of a further increase in drivers of pollinator decline will depend strongly

on the capacity of plant-pollinator communities to withstand a further increase in those

drivers. Determination of the response of natural communities to environmental change is

however notably hard, primarily because the response of these relatively complex systems

depends on more than the intrinsic properties of species. A central role is likely to be

played by the strength, number, and nature of interactions between species, and the way

in which those interactions are arranged in ecological networks (May 1972; McCann 2000;

Bascompte et al. 2006; May 2006; Ives & Carpenter 2007; Sche↵er et al. 2012). When

assessing the impact of a further increase in the drivers of pollinator decline, it is thus of

fundamental importance to take the topology of mutualistic networks (i.e., the number

and way in which mutualistic interactions are arranged) into account.

Mutualistic networks, such as those made out of the interactions between plants and

pollinators, are known to display a high degree of nestedness, i.e., the more specialist

species tend to interact with subsets of the species interacting with the more generalist

species (Fig. 2.1; Bascompte et al. 2003; Bascompte & Jordano 2007). Theoretical work

has shown that the nestedness of mutualistic networks increases the robustness of plant-

pollinator communities to species extinctions (Memmott et al. 2004; Burgos et al. 2007)

and habitat loss (Fortuna & Bascompte 2006), the proportion of coexisting species once

an equilibrium is reached (Bastolla et al. 2009; Thébault & Fontaine 2010), and the speed

at which the community returns to equilibrium after a perturbation (Okuyama & Holland

2008; Thébault & Fontaine 2010).

Little attention, however, is given to the influence of mutualistic network topology on

potential critical transitions in the size of pollinator populations. Ecosystems may respond
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Figure 2.1: Matrix representations of a randomly structured network (left) and a nested

network (right, N=0.6). Filled squares indicate interactions between species. Column and

row numbers correspond to individual plant and pollinator species. Species are ordered based

upon their number of interactions.

in various ways to changing environmental conditions, such as the change in conditions

caused by a further increase in drivers of pollinator decline, which may have profound

implications for their resilience to environmental change (Sche↵er et al. 2001; Sche↵er &

Carpenter 2003). When conditions change gradually, the state of some systems (e.g., the

size of populations) may change likewise, in a smooth, gradual manner. Other systems

may respond strongly to change within a narrow range of environmental conditions, but

are relatively insensitive to change outside of this range. Particularly sudden shifts may

occur when a system has more than one stable state. Such a system cannot change

smoothly from a one stable state (e.g., large population sizes) to an alternative stable

state (e.g., small population sizes). Instead, a sudden shift occurs when environmental

conditions pass a critical point. We refer to such shifts as ‘critical transitions’. To return

back to the original state after a critical transition, a return to conditions prior to the

transition is often not su�cient; instead, a larger change in conditions is needed until

another critical point is reached at which the system shifts back to the original state. The

existence of a di↵erence between the critical conditions at which a forward and backward

transition occurs, is known as ‘hysteresis’.

The notion that alternative stable states exist is supported by observations in a wide

variety of ecological and experimental systems (Sche↵er et al. 2001; Sche↵er & Carpenter

2003; Rietkerk et al. 2004; Kefi et al. 2007; Drake & Gri↵en 2010; Veraart et al. 2011;

Hirota et al. 2011; Dai et al. 2012). The complexity of many natural communities has

however made it hard to develop the existing theory on alternative stable states further
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into a framework that helps us to assess their resilience (Sche↵er et al. 2012). Here, we try

to contribute to the development of such a framework, by merging theory on alternative

stable states with theory on the structure of ecological networks. Specifically, we do

this by examining the potential occurrence of critical transitions in the size of pollinator

populations due to a change in a driver of pollinator decline. Subsequently, we study

the way in which the connectance and nestedness of mutualistic networks may a↵ect the

community-wide implications of these shifts between alternative stable states. This will

be done with the help of a mathematical model.

2.2 METHODS

Nestedness algorithm

Networks with a di↵erent degree of nestedness were generated by using an algorithm

similar to the one described by Medan et al. (2007). This algorithm was shown to generate

networks that are similar to empirically studied plant-pollinator networks (also by Medan

et al. 2007). The algorithm allows us to vary nestedness of networks with a given number

of species, connectance and fraction of “forbidden links”. Connectance is the fraction of all

possible interactions that is occurring in the network. Forbidden links are interactions that

cannot occur, for example because of a morphological or phenological uncoupling (e.g.,

between late-flowering plant species and early seasonal pollinator species, see Jordano

et al. 2003).

Initially, the algorithm assigns with a predefined probability mutualistic interactions and

forbidden links between two species groups. This results in a network with a random

structure, of which the probability of having an interaction corresponds to the connectance

of the network and the probability of a forbidden link to the fraction of forbidden links.

In case any of the species has no interactions, a new randomly structured network is

generated.

In order to generate nested networks, interactions are re-arranged within the network.

During each iteration the algorithm randomly selects an interaction between two species

a and b. This interaction is changed into an interaction between species a and randomly

selected species c, when this species has more interactions than species b. During the

iterative process, species thus start to interact more with species that already have many

interactions. This “rich get richer” mechanism increases the nestedness of the network.

Iterations are continued until a desired nestedness is reached.

Two exceptions to the above mentioned rule exist. The interaction is not changed from

an interaction with species b to an interaction with species c, when species b has only one

interaction, or when the interaction between species a and c is forbidden. This ensures

that each species remains having at least one interaction, and that the identity of forbidden

links is not changed by the algorithm.
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We derive the nestedness of the entire network, N , as in Bastolla et al. (2009):

N =

PSP

i<j Nij +
PSA

i<j Nij

SP (SP � 1)

2
+

SA(SA � 1)

2

, (2.1)

where the first sum is across all pairs of plant species, the second sum is across all pairs

of pollinator species, SP is the number of plant species, SA is the number of pollinator

species. Nij is the nestedness of species pair i and j, which is derived as follows:

Nij =
nij

min(ni, nj)
, (2.2)

where nij is the number of times species i and j interact with the same mutualistic partner,

ni is the number of interactions of species i and nj is the number of interactions of species

j.

All networks generated with the procedure above were checked for the potential presence

of more than one component (i.e., a group of species that is completely disconnected

from the rest of the network). If more than one component was found, the network was

dismissed from our analysis, and replaced with a newly generated network, consisting of

only one component.

Model of mutualistically interacting species

In an attempt to disentangle the relationship between network structure and the response

of plant-pollinator communities to environmental change, we studied the impact of mu-

tualistic network topology on the behaviour of a dynamic model. Our dynamic model

describes two mutualistically interacting species groups; plants and pollinators. Species

belonging to the same group are in direct competition with each other, while mutualistic

interactions occur between species belonging to a di↵erent group. The pollinators are

subjected to a gradual change in mortality and/or growth rate, caused by a change in one

of the drivers of pollinator decline.

The model, describing a group of SP plant species and SA pollinator species, is as fol-

lows:

dPi

dt
= riPi +

SAP
k=1

�ikAk

1 + hi

SAP
k=1

�ikAk

Pi �
SPX

j=1

CijPjPi + µP ,

dAk

dt
= (rk � dA)Ak +

SPP
i=1

�kiPi

1 + hk

SPP
i=1

�kiPi

Ak �
SAX

l=1

CklAlAk + µA,

(2.3)
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where Pi represents the abundance of plant species i and Ak represents the abundance of

pollinator species k. Intrinsic growth rates, i.e., the growth independent from mutualis-

tic and competitive interactions, are represented by r, which is species-specific and can

either be positive or negative. A general reduction of pollinator growth rates or increase

in pollinator mortality rates, a↵ecting all pollinator species, is included with driver of

pollinator decline, dA.

Population growth is enhanced by mutualistic partners (i.e. the pollinator or plant species

providing a service or resource to the plant or pollinator population). Like Okuyama

& Holland (2008) and Bastolla et al. (2009), we assume that the beneficial e↵ect of

mutualistic partners on population growth saturates when the abundance of mutualistic

partners is high. The extent of this saturation is determined by half-saturation constants

h. We assume mutualistic interactions to be either absent, in which case mutualistic

interaction strength, �, is equal to zero, or to be present, in which case the mutualistic

interaction strength is assumed to depend on the degree of the node benefiting from the

interaction in the following manner:

�mn =
�0
Kn

t , (2.4)

in which, for each interaction, �0 is taken from a uniform distribution, Kn is the number

of interactions of the species befitting from the interaction, and t determines strength of

the trade-o↵ between interaction strength and number of interactions. Both t = 0 (no

trade-o↵) and t = 1 (full trade-o↵), represent “neutral” cases. Assuming no trade-o↵ is

neutral in the sense that the strength of mutualistic interactions is not changed by the

topology of the network, while a full trade-o↵ assumes that the gain species have from their

mutualistic interactions is not changed by the topology of the network. Ecological reality

is likely to lie somewhere in between those two extremes. The strength of competition

between individuals of the same species group is determined by C. We study a system

where species do not outcompete each other when mutualistic partners are absent (as

in Van Nes & Sche↵er 2004). Intraspecific competition, Cii, is therefore assumed to be

substantially stronger than interspecific competition Cij. Lastly, a small immigration

factor µ is incorporated in order to allow for the (re-)establishment of otherwise extinct

species. µ is not supposed to influence the dynamics of the model.

Simulations and parameter settings

We examined the response of pollinator populations to increasingly harsh conditions,

by gradually increasing the driver of pollinator decline, dA. This gradual increase was

simulated by a stepwise increase in the driver of pollinator decline, with step size 0.01.

For each step, we ran our model until equilibrium was reached, by applying a Runge-

Kutta method that numerically solves our model. We increased the driver of pollinator

decline past the point where all pollinator species are extinct (i.e., have an abundance
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lower than 0.01). After this point was reached, we simulated improving conditions by

gradually decreasing the driver of pollinator decline, again with a step size of 0.01. This

allowed us to check for hysteresis.

We scanned for the occurrence of sudden changes in pollinator abundance within a small

range of change in the driver of pollinator decline. We defined a “sudden change” as a

change in pollinator abundance that was larger than 0.2 over an in- or decrease in the

driver of pollinator decline of 0.01 (one step in our simulations). This allowed us to

di↵erentiate between a sudden and a gradual extinction or recovery of pollinator popula-

tions.

In our default approach, we made simulations for communities consisting out of 25 plants

and 25 pollinator species. The impact of connectance on the behaviour of the model

was tested by varying the connectance of communities with a random network topology.

The impact of nestedness was studied by comparing networks di↵ering in nestedness, but

equal in connectance (D=0.15) and fraction of forbidden links (F=0.3). We, however,

made sure that the qualitative behaviour of our model does not depend on a specific

number of species, connectance or fraction of forbidden links chosen (see Appendix A2.3

in Supporting Information). For each level of connectance and nestedness, we tested 250

di↵erent networks created with the above algorithm.

Unless stated otherwise, parameters were sampled from the following uniform distri-

butions: ri ⇠ U(0.05, 0.35), �0,mn ⇠ U(0.8, 1.2), hi ⇠ U(0.15, 0.3), Cii ⇠ U(0.8, 1.1),

Cij ⇠ U(0.01, 0.05) or given the following values: t = 0.5, µ = 0.0001.

The feasibility of networks

In order to allow for partial collapses of the plant-pollinator community, a substantial

variation in growth rate, competition, and mutualistic interaction strength is needed. As

a result of this variation, we did not always find a feasible solution, where the abundances

of all species were higher than 0.01. If no feasible solution was found for a certain network,

parameters were re-sampled until a feasible solution was found. If after 500 attempts no

solution was found, the network was discarded as non-feasible.

The net e↵ect of species on each other

Net relationships between pollinators were studied by numerically determining the influ-

ence of a small change in growth rate of species l on the abundance of species k (dAk/drl).

If an increase in growth rate of species l leads to an increased abundance of species k, the

net e↵ect of species l on species k is positive (following Stone & Roberts 1991).
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2.3 RESULTS

The majority of pollinator populations collapse suddenly to extinction once the driver

of pollinator decline, dA, reaches a critical value. These sudden collapses occur due to a

positive feedback mechanism that results from the positive interactions between plants

and pollinators. A large pollinator population size enhances the growth and thus the

population size of plants, which in turn enhances the growth of the pollinator populations.

As the strength of the driver pollinator decline, dA, increases, this positive feedback

mechanism maintains pollinator populations under conditions where they cannot recover

from extinction (see Appendix A2.1). Under these conditions, multiple alternative stable

states may therefore exist, varying from a state where all pollinator populations are present

to a state where some or all pollinator species are extinct. As the strength of the driver of

pollinator decline, dA, increases further, a critical point is reached at which the strength

of this feedback mechanism is no longer su�cient to maintain pollinator populations.

At this point a critical transition occurs, leading to the sudden collapse of some or all

pollinator populations. In communities with a random network topology and a relatively

low connectance, we typically observe several partial collapses involving the extinction of

few species. Nested communities with an equal connectance, however, tend to exhibit only

one point of collapse, involving the extinction of the entire community (Fig. 2.2).

Once the driver of pollinator decline has increased beyond the point where all pollinator

populations have collapsed, a small decrease in mortality rates may not be su�cient

for species to recover. As was the case with the sudden collapses, observed when the

driver of pollinator decline, dA, was increased, pollinator populations may also recover

suddenly when the driver of pollinator decline is decreased (Fig. 2.3). Especially in

nested communities, the di↵erence between the first point of recovery and the final point

of collapse can be substantial when compared to randomly structured communities. A

considerable improvement of conditions might thus be necessary before species can recover

from collapse, which is indicative of hysteresis.

Multiple points of recovery were typically observed within communities that also exhib-

ited several network collapses. In randomly structured communities, with a connectance

of 0.15, for example, multiple points of sudden recovery were found in 92% of the feasible

communities in which also multiple collapses were observed. More than one sudden re-

covery was however only observed in 21% of the feasible communities that exhibited one

point of collapse.

The ranking of species recovery was, in most feasible communities, similar to the order

in which they collapsed. E.g., the species who were the last to collapse when the driver

of pollinator decline, dA, was increased, always recovered before or simultaneously with

species that collapsed at a lower value of pollinator decline, in 79% of randomly structured

communities with a connectance of 0.15.
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Figure 2.2: The collapse of pollinator populations when the driver of pollinator decline,

dA, a↵ecting growth and/or mortality of pollinators, is gradually increased from zero to one.

Results are shown for a random (left) and a nested (right, N=0.6) network. Connectance of

both networks is equal (D=0.15). Several extinction events precede the final collapse of the

randomly structured plant-pollinator community, while the nested community exhibits only

one point of community-wide collapse.
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Figure 2.3: The recovery of pollinator populations when the driver of pollinator decline, dA,

is gradually decreased from one to zero. The points of recovery are not necessarily equal to

the points of collapse (see Fig. 2.2). Especially in the nested community a large di↵erence

is observed between the final point of collapse and the first point of recovery. A substantial

reduction of the driver of pollinator decline might thus be necessary for pollinator populations

to recover from a collapse.
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Further, sudden changes in the pollinator community always coincided with sudden

changes in the plant community (see Appendix A2.2).

The potential for a single community-wide collapse

The probability of having a single community-wide collapse, instead of having several par-

tial collapses, is strongly influenced by the connectance and/or nestedness of mutualistic

networks. The fraction of networks, equal in connectance and nestedness, in which a single

community-wide collapse was observed, can be seen as a measure of this probability.

The left panel of Fig. 2.4 shows the impact of connectance on the number of collapses

that occur when the driver of pollinator decline, dA, is increased. As the connectance

of randomly structured communities increases, the fraction of communities that exhibit

only one single point of community-wide collapse grows, until eventually almost no partial

collapses are observed.

In the right panel of Fig. 2.4, we show what happens when the nestedness of communities

with a connectance of 0.15 is increased. A small increase in nestedness from 0.2 to

0.25 is already su�cient to observe a substantial decrease in the occurrence of partial

collapses. When nestedness is increased further, almost no partial collapses are observed

any more. Consequently, by increasing the nestedness, we thus observe a strong reduction

in the occurrence of partial collapses, even though the connectance of those networks was

fixed.

The cases where we did find a partial collapse in a highly nested community represent an

extreme case where a large fraction of specialists interacts only with one single generalist.

This generalist may, together with the specialists associated to it, collapse independent

of the rest of a highly nested community.

As described in the Methods section, we needed a substantial variation in growth rate,

competition and mutualistic interaction strength in order to allow for partial collapses of

the plant-pollinator community. As a result of this variation, the parameters drawn from

uniform distributions did not always give a feasible solution. A large fraction of randomly

structured networks with a connectance of 0.15, however, gave a feasible solution, and the

majority of them also showed partial collapses. Surprisingly, the feasibility of networks

was lowest for intermediate values of nestedness. Feasible solutions were thus most easily

found in networks that where either fully random, or fully nested (Fig. 2.4 and Appendix

A2.3). Networks for which it was hard to find a feasible solution, often had a small

fraction of species that, during all attempts made to find a feasible solution, could not

coexist with all others. Non-feasibility was thus almost always a property of this small

fraction of species, rather than a property of the community as a whole.
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Figure 2.4: The number of collapses observed in randomly structured communities with

di↵erent levels of connectance (left), and in communities with increasingly nested network

topologies with a fixed connectance of 0.15 and fraction of forbidden links of 0.3 (right). The

coloured bars represent the fraction of feasible networks in which a certain number of collapses

is found. The fraction of networks for which feasible solutions are found is indicated with the

green diamonds.
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Figure 2.5: Points of collapse (circles) when the driver of pollinator decline, dA, is increased,

and points of recovery (triangles) when the driver of pollinator decline, dA, is decreased. As in

Fig. 2.4, results are shown for randomly structured networks that vary in connectance (left),

and for increasingly nested networks with a connectance of 0.15 and fraction of forbidden links

of 0.3 (right). In case of multiple collapses and/or recoveries, the final point of collapse and

the first point of recovery was plotted.
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Pollinator persistence under changing environmental conditions

Network topology influences not only the probability of a single community-wide collapse;

it is also important for the capacity of pollinator communities to persist under increasingly

harsh conditions. Here, we measure this capacity as the amount of increase in the driver

of pollinator decline, dA, needed to reach the “final point of collapse”. This final point of

collapse is the point where the last pollinator collapses to extinction (as indicated in Fig.

2.2). Similarly, we can measure the ease of recovery by measuring the value of the driver

of pollinator decline, where the first pollinator recovers from extinction. This would be

the “first point of recovery” (as indicated in Fig. 2.3). The points of collapse and recovery

as they were found for a certain value of connectance and nestedness are plotted in Fig.

2.5. For each value of connectance and nestedness, multiple networks were tested.

Connectance and nestedness both postpone the final point of collapse. Consequently,

the persistence of the pollinator community to an increase in the driver of pollinator

decline, dA, increases with connectance and/or nestedness. Highly connected, and/or

nested communities also recover from a collapse at higher values of the driver of pollinator

decline. The distance between the final point of collapse and the first point of recovery,

however, increases with connectance and/or nestedness. This means that a larger change

in the driver of pollinator decline is needed for pollinators to recover, after the final

threshold is passed.

The net e↵ect of species on each other

Our results show that the connectance and/or nestedness of mutualistic networks a↵ects

the stability of pollinator communities in various ways. The di↵erent aspects of stability

discussed so far are the fraction of networks in which feasible solutions are found, the

number of collapses and persistence of pollinator populations when the driver of pollinator

decline, dA, is increased, and the ease of recovery when the driver of pollinator decline,

dA, is decreased. Fortunately, these very di↵erent implications of network topology can

all be understood when studying the “net e↵ects” of species on each other.

Pollinators have a direct negative e↵ect on each other due to competition. An indirect

positive e↵ect between pollinators may however occur when pollinator species interact

with the same plant species. It is the interplay between these direct and indirect e↵ects

that ultimately determines the net e↵ect of pollinators on each other (Bastolla et al. 2009).

In Fig. 2.6, two pollinators interacting with the same plant species are shown to have

an increasingly strong positive e↵ect on each other. Not surprisingly, these pollinators

can endure a larger increase in the driver of pollinator decline, dA, than the pollinator

not benefiting from this facilitation (also shown in Fig. 2.6). Once the tipping point is

reached, the two pollinators interacting with the same plant species, however, collapse

simultaneously, because they both depend on the same plant species.
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Figure 2.6: The net e↵ect of species

on each other while the driver of polli-

nator decline increases. Pollinators that

share a mutualistic partner have an in-

creasingly positive e↵ect on each other and

collapse simultaneously. Pollinators that

do not share mutualistic partners have an

increasingly negative e↵ect on each other

and collapse independently. (A) A sim-

ple network of mutualistic interactions be-

tween plants and pollinators. Pollinator

A1 and A2 share mutualistic partner P1,

while pollinator A3 does not share its mu-

tualistic partner P2. Dashed lines indi-

cate net relationships between pollinators.

Although pollinators are in direct com-

petition with each other, net positive re-

lationships may exist between pollinator

A1 and A2. (B) Net e↵ect (dAk/drl) of

pollinator species on each other. In blue

the net e↵ects of pollinators A1 and A2

on each other. In green the net relation-

ships between pollinator A3 and the other

two pollinators. (C) Abundance of pol-

linators A1 and A2 (blue), and pollina-

tor A3 (red). Parameter settings: ri ⇠
U(0.15, 0.25), �0,mn ⇠ U(0.9, 1.1), t = 0.5,

hi ⇠ U(0.5, 0.6), Cii ⇠ U(0.4, 0.6), Cij ⇠
U(0.025, 0.075), and µ = 0.0001.
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Increased connectance and nestedness both increase the fraction of mutualistic partners

shared by pollinators. The behaviour of highly connected, and/or highly nested com-

munities, is therefore similar to the behaviour of the two pollinator species who share an

interaction with the same plant species (Fig. 2.6). With increasing connectance the “over-

lap” in identity of the mutualistic partners of pollinators is simply increased because a

larger number of interactions has to be distributed over an equal number of plant species.

The “rich get richer” mechanism that lies at the basis of the algorithm we used to generate

nested networks, makes pollinators interact with mutualistic partners where many other

pollinators already interact with. With the algorithm we thus achieve a similar increase

in overlap while maintaining the number of interactions equal. As with the two species

sharing an interaction with the same mutualistic partner in Fig. 2.6, pollinators who form

part of a nested and/or highly connected community indirectly support each other when

stress levels are high. This makes the community survive higher levels of the driver of

pollinator decline, dA, but also leads to a simultaneous collapse, because species depend

on each other when stress levels are high.

Feasible solutions can be found in two types of regimes. The first regime would be one

in which the combined e↵ect of direct and indirect e↵ects between pollinators is positive.

An alternative regime is one where these net e↵ects are mostly negative. This second

regime is only feasible when these negative e↵ects are relatively equal in strength. With

increasing nestedness we move from the second to the first regime. Intermediate values

of nestedness might be less likely to be in either of the two regimes. Some species have

already benefited from the increase in nestedness, while others have not, which leads to an

unbalanced community. This may explain why the probability of finding a feasible solution

is smallest for intermediate values of nestedness (Fig. 2.4 and Appendix A2.3).

2.4 DISCUSSION

Studies addressing the occurrence of critical transitions between alternative stable states

in ecosystems have provided us with myriad examples of potential positive feedback mech-

anisms that might lay at the basis of them (May 1977; Sche↵er et al. 2001; Sche↵er &

Carpenter 2003; Rietkerk et al. 2004; Kefi et al. 2007; Hirota et al. 2011). These positive

feedback mechanisms propel change towards an alternative stable state when environ-

mental conditions pass a critical point (e.g., when a decline in population size reduces the

growth of a population). It has, however, been challenging to understand how such mech-

anisms may a↵ect the response of structurally complex systems, such as plant-pollinator

communities, to changing environmental conditions (Sche↵er et al. 2012). In this paper,

we try to address this challenge by merging theory on alternative stable states with theory

on the structure of ecological networks. Specifically, we show that pollinator populations

may collapse suddenly to extinction, due to a positive feedback mechanism that results

from the positive interactions between plants and pollinators. Each pollinator population
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described with our model is engaged in a unique positive feedback mechanism, of which

the strength may vary substantially. Here, we show that such local positive feedback

mechanisms may nonetheless provide the potential for a single community-wide collapse

of pollinator populations, depending on the topology of mutualistic networks.

Our results can be understood intuitively by considering the “net e↵ects” of species on

each other and the way in which these e↵ects are mediated by the topology of mutualis-

tic networks. Pollinators have a direct negative e↵ect on each other due to competition,

while indirect positive e↵ects may occur between pollinator species who interact with

the same plant species. The extent to which pollinators interact with the same plant

species increases with connectance and/or nestedeness. A high nestedness of the mutu-

alistic network may therefore promote the occurrence of indirect positive e↵ects between

pollinators. Earlier work has shown that these indirect positive e↵ects may reduce the ef-

fective competition between pollinators, and promote the coexistence of species in nested

communities (Bastolla et al. 2009).

In this study, we show that the relative strength of indirect facilitation between pol-

linators becomes stronger as the driver of pollinator decline, dA, increases (Fig. 2.6).

This corresponds to the increasingly popular ‘stress-gradient hypothesis’ which suggests

that facilitative e↵ects grow in importance as environmental stress increases (Bertness

& Callaway 1994; Holmgren et al. 1997; He et al. 2013). A high nestedness of mutual-

istic networks may therefore not only minimize e↵ective competition to a level required

for species coexistence; under stressful conditions, it may even promote strong indirect

facilitation between pollinators.

We found that pollinators who are part of highly connected and/or nested communities

can maintain themselves substantially longer than pollinators who are part of communities

with a low nestedness as the driver of pollinator decline, dA, is increased. This large

persistence of pollinator populations under increasingly stressful conditions is, most likely,

the result of the aforementioned indirect facilitation. Pollinator species who are part of

either a highly nested or highly connected community can maintain themselves under

stressful conditions because they indirectly support each other.

On the other hand, when species can survive under stressful conditions because they

indirectly support each other, they also increasingly depend on each other as conditions

get more stressful. As a consequence, pollinators collapse simultaneously once the driver

of pollinator decline, dA, passes a critical point. What we see in our model is therefore

a surprising relationship between the capacity of species to coexist, to survive under

stressful conditions, and the risk for a single community-wide collapse. They are all the

result of the indirect positive e↵ects, which are promoted by a high connectance and/or

nestedness of mutualistic networks. Importantly, once collapsed, highly connected and/or

nested communities may not necessarily recover more easily. In fact, our model shows the

contrary. Recovery of pollinator populations who form part of highly nested communities
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require a quite large decrease in the driver of pollinator decline, dA, in comparison to

pollinator populations who form part of communities with a low nestedness.

Our findings may have large implications for our view on the sustainability of natural

communities and the ecosystem services provided by them. Based on the insurance hy-

pothesis, one expects ecosystems services to be more reliable when supported by a large

number of species (Naeem & Li 1997; Yachi & Loreau 1999). Functional redundancy of

species is often seen as a valuable ‘commodity’, because it makes ecosystems more reliable

in terms of the ecosystem services they provide (see Naeem & Li 1997). Our analysis,

however, illustrates that the functional overlap of pollinators, which is related to the con-

nectivity and/or nestedness of mutualistic networks, may simultaneously increase the risk

for a single community-wide collapse. A valuable ecosystem service, namely pollination,

can therefore be lost suddenly, despite the fact that it is provided by a large number

of species who are, when taking only their intrinsic properties into account, not equally

sensitive to the driver of pollinator decline, dA.

Our study is one of many small steps needed to bring theory on critical transitions and

the structure of ecological networks together and we realize that this paper raises new

questions that require further exploration. First, even though our model is substan-

tially more complex than many others that study critical transitions, it is constrained to

mutualistically interacting plant-pollinator communities. Multiple types of interactions

co-occur in natural communities (Melián et al. 2009), and future studies should explore

how the structuring of multiple types of interactions a↵ect critical transitions. Secondly,

our results underline the importance of developing early-warning signals for critical tran-

sitions in ecological networks (Sche↵er et al. 2009). Third and finally, as the mechanisms

we describe are generic, it is possible that a similar trade-o↵ between persistence under

severe conditions and potential for a systemic collapse occurs in other systems as well.

This is reinforced by previous studies finding notable similarities between the structure of

mutualistic networks and that of financial systems (Uzzi 1996; May et al. 2008; Saavedra

et al. 2009; Haldane & May 2011; Saavedra et al. 2011).
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A2.1 NULLCLINES
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Figure A2.1: Nullclines of two mutualistically interacting species. Filled dots indicate stable

equilibria, open dots indicate unstable equilibria. Fundamentally di↵erent configurations exist

when (a) the driver of pollinator decline, dA, is smaller than intrinsic growth rate rA, (b) when

the driver of pollinator decline, dA, is bigger than intrinsic growth rate rA and, (c) when the

driver of pollinator decline, dA, is substantially larger than intrinsic growth rate rA. By

increasing the driver of pollinator decline, dA, we change from a regime with one stable state,

presented in a, to the regime with two alternative stable states presented in b, until eventually

a tipping point is reached where pollinators collapse to extinction. For a further analysis of

models with two mutualistically interacting species see May (1978), Dean (1983), and Wright

(1989)
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A2.2 PLANT POPULATIONS
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Figure A2.2: Collapse of plant populations when increasing the mortality dA of pollinators.

Results are shown for a random (left) and a nested (right, N=0.6) network. Parameter settings

are the same as in Fig. 2.2.
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Figure A2.3: Re-establishment of plant populations when decreasing the mortality of pol-

linators dA. Results are shown for a random (left) and a nested (right, N=0.6) network.

Parameter settings are the same as in Fig. 2.3.
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A2.3 NETWORK TOPOLOGY

We tested the extent to which our results depend on the specific number of species,

connectance or fraction of forbidden links chosen (Fig. A2.4, A2.5, A2.6 and A2.7).

Furthermore, we show in Fig. A2.8 and A2.9 what our results look like if we do not

allow any species to have less than 2 partners during any step of the algorithm we used

to generate nested networks.

We only found qualitative di↵erences in the behaviour of our model.
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Figure A2.4: Results when using the same parameter settings as in Fig. 2.4, only now the

community consists out of 35 plant and 35 pollinator species. As in Fig. 2.4, the coloured

bars represent the fractions of feasible networks in which a certain number of collapses is

found. The fraction of networks in which feasible solutions are found is indicated with the

green diamonds.
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Figure A2.5: Points of collapse (circles) when the driver of pollinator decline, dA, is in-

creased, and points of recovery (triangles) when the driver of pollinator decline, dA, is de-

creased. In case of multiple collapses and/or recoveries, the final point of collapse and the first

point of recovery was plotted. Parameter settings are as in Fig. A2.4.
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Figure A2.6: Results when using the same parameter settings as in Fig. 2.4, only now

competition between species is a bit stronger, Cij ⇠ U(0.025, 0.075), and in communities with

increasingly nested network topologies (right panel), the connectance is fixed to 0.25, and the

fraction of forbidden links is fixed to 0.25. As in Fig. 2.4, the coloured bars represent the

fractions of feasible networks in which a certain number of collapses is found. The fraction of

networks in which feasible solutions are found is indicated with the green diamonds.
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Figure A2.7: Points of collapse (circles) when the driver of pollinator decline, dA, is in-

creased, and points of recovery (triangles) when the driver of pollinator decline, dA, is de-

creased. In case of multiple collapses and/or recoveries, the final point of collapse and the first

point of recovery was plotted. Parameter settings are as in Fig. A2.6.
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Figure A2.8: Results when using the same parameter settings as in Fig. A2.6, only now

each species has at least two interactions. As in Fig. A2.6, the coloured bars represent the

fractions of feasible networks in which a certain number of collapses is found. The fraction of

networks in which feasible solutions are found is indicated with the green diamonds.
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Figure A2.9: Points of collapse (circles) when the driver of pollinator decline, dA, is in-

creased, and points of recovery (triangles) when the driver of pollinator decline, dA, is de-

creased. In case of multiple collapses and/or recoveries, the final point of collapse and the first

point of recovery was plotted. Parameter settings are as in Fig. A2.8.
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ABSTRACT

One of the main goals of studies on ecological networks is to understand how these often

large and complex networks of interactions between species remain stable. While most

of these studies try to identify network structural patterns that promote biodiversity, i.e.

allow for a large number of coexisting species, less attention has been given to the specific

ways in which biodiversity might be lost. In a time when ecosystems are under increasing

pressure from anthropogenic drivers such as climate change, land use, and pollution, this

question is however of great importance, in particular because critical transitions may

occur towards other potentially less desirable states. Food-web theory and observations in

real ecosystems suggest that destabilizing oscillatory dynamics caused by strong predator-

prey interactions are damped by many weak interactions. Inspired by previous work

on critical transitions and the structural stability of dynamical systems, we describe a

variety of transitions, associated with di↵erent types of boundaries in parameter space,

that may occur when such stabilizing, damping patterns are undermined and explore

how structural network patterns, i.e. species number, connectance, and variability in

interaction strength, might influence the occurrence of such transitions. These findings

may have large implications for the way in which we evaluate the stability of complex

ecosystems.
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3.1 INTRODUCTION

That biodiversity is in decline is no longer in question (Vitousek et al., 1997; Millenium

Ecosystem Assessment, 2005; Ste↵en et al., 2006; Rockström et al., 2009; Ste↵en et al.,

2015). Which and when measures should be taken to prevent the extinction of species

remains, however, subject of debate. Recent work has shown that changing environmental

conditions may alter the strengths of interactions between species (Winder & Schindler,

2004; Suttle et al., 2007; Tylianakis et al., 2008; Doney et al., 2012; Blois et al., 2013;

Burkle et al., 2013; Urban et al., 2016; Romero et al., 2018). Such changes may jumble

structural patterns in the networks of trophic, mutualistic and/or other interactions that

are crucial for the stable coexistence of species (Kareiva et al., 1993; McCann, 2000;

Montoya et al., 2006; Bastolla et al., 2009). An increasing number of studies suggests

therefore that a more holistic approach should be taken towards protecting biodiversity

(Thompson, 1994; McCann, 2007; Gaston & Fuller, 2008; Tylianakis et al., 2010). Such an

approach would not focus only on the well-being of endangered or iconic species, but tries

to protect the natural communities in which they are embedded. Predicting the response

of natural communities to changing environmental conditions is however di�cult (but

see Chapter 4). In particular, because this response depends in complex and, often,

unknown ways on the intrinsic properties of species, the interactions between them, and

the specific ways in they are a↵ected by environmental change. This makes it hard to

determine which ecosystems, species or interactions should be the focal point of e↵orts to

maintain ecosystem stability.

Ecosystems may respond in various ways to changing environmental conditions. When

conditions change gradually, the abundances of species may change likewise, in a smooth,

gradual manner. Empirical studies of lakes, arid ecosystems, coral reefs, and tropical

forests, have however shown that this is not always the case. Sudden, critical transitions

towards alternative stable states may occur when critical points are passed (Sche↵er et al.,

2001). The most commonly studied cause of such transitions is a positive, reinforcing

feedback that amplifies change when changing conditions or abundances pass a critical

value. Such positive feedbacks are a necessary condition for the existence of alternative

stable states (Thomas, 1981; Snoussi, 1998; Gouzé, 1998), and may, for example, occur

in plant-pollinator communities where a decline in pollinator abundances may negatively

a↵ect plants, which in turn is bad for pollinators (Dean 1983; Wright 1989 and Chapter

2), or between a pair of competing species and in three-species omnivore loops in food

webs (e.g. Van Nes & Sche↵er 2004; Neutel & Thorne 2014 and Fig. 3.1.A-C). Critical

transitions towards alternative stable states become increasingly likely when changing

environmental conditions alter the relative strengths of feedbacks such that positive or

other destabilizing feedbacks gain in strength relative to stabilizing, immediate negative

feedbacks, and recovery from such transitions may require a relatively large change in

conditions, a phenomenon known as ‘hysteresis’.
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Figure 3.1: Examples of positive and negative feedback loops in a small food web. (A) The

food web consisting of three primary producers, e.g. plants, 1-3, and three consumers, e.g.

herbivores/omnivores, 4-6. primary producers compete with other producers. Consumers feed

on other consumers and/or primary producers. (B) Positive feedback between species 3, 6,

and 5 that may lead to an increase in the abundance of species 3 and 6, and a decrease in the

abundance of species 5 or vice versa. (C) Positive feedback between species 1, 5, 6, and 4 that

may lead to an increase in species 1, 5, and 6, and a decrease in species 4 or vice versa. (D)

Negative feedback of species 3 on itself. This feedback is fast, because only a single species is

involved. It has, therefore, a stabilizing e↵ect on the dynamics of the network. (E) Negative

feedback between species 1, 3, 6, and 4. This feedback is slow, because a relatively large

number of species is involved in the feedback. It may, therefore, lead to oscillatory dynamics.

Feedbacks are positive when there is an even number, and negative when there is an odd

number of negative interactions in a feedback loop.

An early mathematical, theoretical foundation of transitions caused by an increase in the

relative strength of a positive feedback was laid by the work of René Thom on catas-

trophe theory and the structural stability of dynamical systems. Thom (1972) describes

seven ‘elementary catastrophes’ for processes controlled by up to four parameters (Thom,

1975). Despite some controversy in the past (Zahler & Sussmann, 1977), the cusp (two

control parameters) and fold catastrophe (one control parameter), as described by Thom

(1972), are now assumed to capture the essence of a wide variety of systems varying from

ecosystems (May, 1977; Wilson & Agnew, 1992; Rietkerk & Van de Koppel, 1997; Sche↵er

et al., 2001), to human cells (Hasty et al., 2002; Ferrell Jr, 2002; Lee et al., 2002; Tyson

et al., 2003; Angeli et al., 2004), and the climate (Hare & Mantua, 2000; Clark et al., 2002;

Alley et al., 2003; Lenton et al., 2008). A particularly well known example in ecology is

found in lakes where the equilibrium abundance of algae is controlled by lake depth and

nutrient availability. When considering both these parameters, a cusp catastrophe may

be obtained (see Chapter 1 and Fig. 1.3). A fold catastrophe may be obtained when

plotting the equilibrium abundance of algae against nutrient availability for a given depth,
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i.e. for shallow lakes (Sche↵er 1990; Sche↵er et al. 1993, and Fig. 1.3.D).

Highly related to the work of René Thom, is the work of Buzz Holling who noted that

for many ecosystems the important question is not how stable a system is in terms of

the speed at which a system recovers from external perturbations, but how likely it is for

a system to switch from one state to another under the influence of such perturbations

(Holling, 1973). As a way to estimate such probability, he proposed to use the size of the

domain of attraction in a system’s phase space and later refers to the size of this domain

as a measure of ‘ecological resilience’ (Holling, 1996). When conditions change such that

a critical or ‘bifurcation’ point is approached, the minimum perturbation size required

to cause a critical transition, as determined by the size of this domain, i.e. ecological

resilience, goes to zero and a transition becomes inevitable (Fig. 1.4).

Positive feedbacks associated with a fold or cusp catastrophe are, however, not the only

likely cause of instability in complex ecosystems. Feedbacks can be immediate, for example

when members of the same species directly influence the growth of a population through

intraspecific competition or facilitation. Delayed feedbacks may, for example, occur when

they are mediated through other species, e.g. the indirect negative e↵ect of prey species

on themselves when promoting the growth of a predator population. Feedbacks in long

loops, i.e. involving many species, tend to be slower than those in shorter loops. A

system may exhibit oscillatory or other more complex dynamics when delayed negative

feedbacks are strong relative to faster negative feedbacks (Levins, 1974; Puccia & Levins,

1985; Neutel & Thorne, 2014). Chaotic dynamics are found when there are two or more

interacting sub-systems that, on their own, would show oscillatory dynamics (Goldbeter,

1996; Tyson et al., 2003; Novák & Tyson, 2008). Transitions towards such oscillatory

or other more complex dynamics may occur when delayed negative feedbacks gain in

strength relative to more immediate negative feedbacks (Marsden & McCracken, 1976;

Kuznetsov, 1995).

Food webs of predator-prey interactions might be particularly susceptible to showing oscil-

latory or other more complex dynamics. A classical example is the ‘paradox of enrichment’

that may lead to oscillations in the abundances of predators and prey at high prey den-

sities (Rosenzweig & MacArthur, 1963; Rosenzweig, 1971). Such oscillations may occur

when increased nutrient availability reduces intraspecific competition among prey such

that the destabilizing e↵ect of the delayed, indirect negative feedback between predators

and prey becomes apparent. Chaotic dynamics may occur in simple tritrophic food chains

with, by definition, two delayed negative feedbacks of the aforementioned type (Hastings

& Powell, 1991; McCann & Yodzis, 1994; De Feo & Rinaldi, 1998). The occurrence of such

complex dynamics is best understood when considering such chains as coupled oscillators,

i.e. one for each trophic interaction. In more complex food webs delayed negative feedback

loops of more than two species may lead to oscillatory or other more complex dynamics

as well (Fig. 3.1.D-E). Food-web theory and observations in real ecosystems suggests that
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oscillatory or other chaotic dynamics are damped because subsets of strongly interacting

species, that would show oscillatory dynamics in isolation, are embedded in food-webs

with many weak interactions (McCann et al., 1998; Berlow, 1999; Neutel et al., 2002;

Bascompte et al., 2005). Such an asymmetric distribution of interaction strengths may

provide one of several answers to the question posed by May (1972, 1973) of what makes

complex ecosystems of many species and interactions stable (Pimm, 1984; McCann, 2000).

A wide variety of studies suggest, however, that changing environmental conditions may

alter the strengths of trophic interactions (Winder & Schindler, 2004; Suttle et al., 2007;

Tylianakis et al., 2008; Doney et al., 2012; Blois et al., 2013; Urban et al., 2016; Romero

et al., 2018). Such changes may undermine the aforementioned damping e↵ects and lead

to critical transitions when delayed negative feedbacks gain in strength relative to more

immediate negative feedbacks.

As mentioned previously, critical transitions become inevitable when changing environ-

mental conditions change such that a critical or ‘bifurcation’ point is reached. At such a

point, a system may be considered ‘structurally unstable’, i.e. an infinitely small change in

parameters (conditions) may lead to a qualitative change in a system’s dynamical behav-

ior, e.g. the existence of equilibrium points, limit cycles, or chaotic dynamics. The size of

the area in a system’s parameter space within which a system shows the same qualitative

behavior (in some domain within a system’s phase space) may be used as a measure of

the extent to which a system’s dynamical behavior (within the aforementioned domain)

is structurally stable (Thom, 1972; Alberch, 1989; Bastolla et al., 2005, 2009; Kuznetsov,

1995; Rohr et al., 2014). Questions on the structural stability of complex dynamical

systems and the occurrence of critical transitions are thus closely related.

Inspired by previous work on critical transitions and the structural stability of dynamical

systems, e.g. Thom (1972) and Kuznetsov (1995), we describe a series of catastrophes,

i.e. di↵erent types of boundaries in parameter space, associated with the aforementioned

changes in complex food webs. As a rough indication of which network structural prop-

erties might promote the occurrence of such catastrophes, we explore which properties,

i.e. species number, connectance, and variability in interaction strengths, might influ-

ence the occurrence of such catastrophes. To illustrate that abrupt transitions towards

alternative stable states, oscillatory or other more complex dynamics may occur when

such boundaries are passed even under basic dynamical assumptions, we assume that the

functional response of predators, i.e. the relation between a predator’s intake rate and

prey availability, is linear. Parameters are assigned such that at a system’s nontrivial

equilibrium, i.e. the equilibrium point at which all species have a non-zero abundance,

the species’ growth, feeding and respiration rates follow allometric scaling laws, i.e. they

depend on a species’ body mass. A species’ body mass depends, in turn, on a species’ po-

sition in a food web. Food-web topology, i.e. who interacts with whom, is determined by

the niche model of Williams & Martinez (2000). Future work may build on this study to

include also more complex, non-linear functional responses such that we may get a more
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full understanding of the complex and potentially catastrophic ways in which changing

environmental conditions may undermine food-web stability.

3.2 METHODS

We use a dynamic food-web model describing two species groups: primary producers

and consumers. Primary producers, i.e. plants and other autotrophs, obtain resources

from abiotic sources, e.g. soil nutrients and sunlight, while consumers, i.e. herbivores,

omnivores, and carnivores, feed on other species. The dynamics of species i are described

as follows:

dBi

dt
= RiBi

✓
1�

X

j✏{prod.}

cijBj

Ki

◆
+

X

k✏{prey}

Ji i✓kiBkBi �
X

l✏{pred.}

Jl
 l✓ilBi

(1� �il)fil
Bl � TiBi,

(3.1)

in which Bi represents the biomass of species i. The growth of primary producers is

determined by growth rate Ri, carrying capacity Ki, and competitive interaction strength

cij. Feeding rates and other biomass flows are determined by a consumer’s maximum

assimilation rate Ji, the fraction of a consumer’s maximum assimilation rate realized

per prey biomass  i, relative feeding preference ✓ki, the fraction of killed prey biomass

that is ingested or feeding e�ciency fil, the fraction of ingested biomass lost to feces

�il, and the loss in consumer biomass production due to respiration Ti. Consumers may

prey on primary producers, i.e. herbivore interactions, as well as on other consumers, i.e.

carnivore interactions. Species j is a primary producer. Species k is a prey, and species l a

predator of species i. Ri is assumed to be zero for consumers, while Ji and Ti are assumed

to be zero for primary producers. The fraction of a consumer’s maximum assimilation

rate realized at a system’s nontrivial equilibrium, ⇠i is determined by:

⇠i =
X

k✏{prey}

 i✓kiB̂k, (3.2)

in which B̂k is the nontrivial equilibrium abundance of prey k. Parameters are assigned

such that this fraction is smaller than one.

The intrinsic growth rate, Ri, of primary producers, a consumer’s maximum assimilation

rate, Ji, and respiration rate Ti, depend on a species’ body mass, Mi, as follows:



3

56 CRITICAL TRANSITIONS IN COMPLEX FOOD WEBS

Ri = ↵RMi
�0.25,

Ji = ↵JMi
�0.25,

Ti = ↵TMi
�0.25,

(3.3)

in which ↵R, ↵J , and ↵T are allometric scaling coe�cients. This way of assigning pa-

rameters facilitates comparison with empirical data, e.g. Huxley (1932), Kleiber (1932),

Cohen et al. (1993), West et al. (1997), Enquist et al. (1999), Gillooly et al. (2001), Cohen

et al. (2003), Ernest et al. (2003), Brown et al. (2004), Woodward et al. (2005), and Brose

et al. (2006a), as well as with theoretical studies that make more complex assumptions

when describing a consumer’s functional response, e.g. Yodzis & Innes (1992), Brose et al.

(2006b), Williams et al. (2007), Stou↵er & Bascompte (2010), Purves et al. (2013), and

Quévreux & Brose (2019). The entire model may be rewritten in a simpler form when

determining the e↵ective competitive and trophic interaction strengths, i.e. the combined

e↵ect of all parameters describing an interaction (see Appendix A3.1.1 in Supporting

Information).

Food-web topology

The topology of our model food webs, i.e. who eats whom, is determined by the niche

model of Williams & Martinez (2000). According to this model, species are randomly

assigned a niche value taken from a uniform distribution. Consumers tend to eat prey

with a similar or lower niche value, i.e. with niche values falling within a range of which

the center is lower than a consumer’s own niche value. The niche model of Williams

& Martinez (2000) was shown to generate food webs with structural properties that are

similar to those observed empirically in food webs (Williams & Martinez, 2000; Stou↵er

et al., 2005) and is based on the empirical observation that a single niche axis is often

su�cient to explain who interacts with whom in complex food webs (Cohen, 1977; Cohen

& Stephens, 1978; Cohen & Newman, 1985). With the help of this model we generate

food webs with a predefined number of species, S, and average directed connectance,

C, i.e the number of trophic interactions, L, divided by the number of possible interac-

tions, S2. Food-webs consisting out of more than one component are discarded from our

analysis.

Coexistence and the body-mass of species

As the complexity of food webs, i.e. the number of species and/or interactions, increases,

it becomes increasingly di�cult to assign parameters such that species may coexist stably

(May, 1972, 1973; Roberts, 1974; Gilpin, 1975). Assigning parameters such that species



3

3.2 METHODS 57

may coexist stably in complex communities thus requires assumptions about the nonran-

dom way in these communities are organized. A primary condition for stable coexistence

is that a community is feasible, i.e. the amount of resources available to species is suf-

ficient to maintain a population while being predated upon by other species or su↵ering

other losses. A food web may be considered feasible when the net biomass production

at lower trophic levels is su�cient to maintain species at higher levels, and a food-web’s

nontrivial equilibrium is feasible when all nontrivial equilibrium abundances are larger

than zero (Roberts, 1974; Gilpin, 1975). Such an equilibrium may be considered stable

when the real part of the dominant eigenvalue of the Jacobian matrix corresponding to

this equilibrium is smaller than zero (May, 1972).

Feasibility of the here studied model food webs is largely dependent on the specific way in

which body masses are assigned. The intrinsic growth rate of producers and the maximum

assimilation rate of consumers with a small body mass is larger than the net production

and the maximum assimilation rate of larger producers or consumers. Two patterns in

the body mass of species may therefore promote feasibility: 1) primary producers that

are directly or indirectly preyed upon by many species, i.e. that have a low niche value,

tend to be smaller than primary producers that need to sustain fewer species, and 2)

predators are larger than prey. We are not aware of empirical studies that have explicitly

described the first pattern, but it is known that the body mass of primary producers

may vary widely which makes such a pattern likely. The body mass of consumers was,

in line with the above described second pattern, found to increase with trophic level and

predator-prey body-mass ratios were found to vary within some limited range in empirical

food webs (Cohen et al. 1993, 2003; Emmerson & Ra↵aelli 2004; Woodward et al. 2005;

Brose et al. 2006a, but see Carbone et al. 1999).

In this study, we take feasible, stable food webs as the starting point of our analysis and

we assign body masses such that this is the case. Nontrivial equilibrium abundances, B̂i,

and parameters that do not depend on a species’ body mass are taken from predefined

probability distributions (see parameter settings). To assign body masses, we use an

algorithm that randomly updates body masses until a desired feasible, stable solution is

reached (see Appendix A3.1.2). The outcome of this algorithm is a body-mass distribution

that roughly follows the above described patterns. The feasibilty and stability of the here

studied model food webs depends on the relative di↵erences in body mass and not on the

absolute body mass of species.

Analysis and parameter settings

To explore how the response of ecosystems depends on the overall structure of food webs,

we analyze several data sets each consisting of 2500 model-generated food webs. The

structure of food webs, i.e. the topology and the distributions from which parameters

are sampled, may di↵er among data sets. More specifically, we explore how di↵erences in



3

58 CRITICAL TRANSITIONS IN COMPLEX FOOD WEBS

species number, S, connectance, C, the distribution of relative feeding preferences, ✓ik,

and the distribution of feeding e�ciencies, fik, may a↵ect the dynamical behavior of food

webs.

Allometric scaling coe�cients are, as in other studies, assigned as follows: ↵R = 1,

↵J = 2.512, and ↵T = 0.314 (consumers are assumed to be invertebrates, Brown et al.

2004; Brose et al. 2006b). The fraction of ingested biomass lost to feces, �ij, is taken from

U(0.4, 0.7) for herbivore interactions and from U(0.05, 0.25) for carnivore interactions.

Interspecific competitive interaction strengths, cij, are taken from U(0.1, 0.5). Intraspe-

cific competitive interaction strengths, cii, are one. Carrying capacities, Ki, are assigned

such that they scale with a producer’s intrinsic growth rate. We do this by assigning

primary producers with Ri/Ki ratio, ⇢i, taken from U(0.2, 1). Ri is determined by equa-

tion 3.3 and Ki = Ri/⇢i. Ri/Ki ratios play an important role in ecological literature

(MacArthur, 1962; Cody, 1966; MacArthur & Wilson, 1967; Pianka, 1970; Grime, 1979)

and equal the e↵ective intraspecific competitive interaction strength as described in Ap-

pendix A3.1.1.

Relative feeding preferences, ✓ik, are taken from a scaled, symmetric Dirichlet distribution.

The distribution’s concentration parameter ↵ is, unless stated otherwise, assigned such

that the expected variance in relative preference of consumers preying on two prey species

is 0.03 (↵ = 2.875). Preferences of other consumers are sampled from distributions with

the same ↵. A consumer’s minimum relative feeding preference is 0.1 divided by the

number of prey, and the sum of all a consumer’s relative preferences is one. Feeding

e�ciencies, fik, are taken from a scaled beta distribution with range (0.1, 1). Unless

stated otherwise, shape parameters ↵ and � are assigned such that the expected mean

feeding e�ciency is 0.75 and the expected variance 0.11.

Consumers are assumed to have a preference for, and prey more e�ciently on species

that are in the center of a consumer’s niche range. Feeding preferences, ✓ik, and feeding

e�ciencies, fik, are therefore sorted such that this is the case. To make sure that our

results do not critically depend on this assumption, we test networks in which this order

is random as well.

Body masses are, with the help of the aforementioned algorithm (see Appendix A3.1.2),

assigned such that the system’s nontrivial equilibrium is stable, i.e. the real part of

the Jacobian’s dominant eigenvalue is smaller than -1e-4. The fractions of a consumer’s

maximum assimilation rate realized at a system’s nontrivial equilibrium, �i, fall within

the range (0.05, 0.75), and predator-prey body-mass ratios within (0.5, 20). Nontrivial

equilibrium abundances, B̂i, are taken from a uniform distribution with range (1.5, 2.5).

The fraction of a consumer’s maximum assimilation rate realized per prey biomass is

determined as follows:
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 i =
�iP

k✏{prey}
✓kiB̂k

.
(3.4)

When nothing is stated about the number of species, S, and connectance, C, we study

food webs of 22 species with an average directed connectance of 0.16.

Alternative stable states

Because we assume a linear functional response there is only one single nontrivial equi-

librium at which all species may coexist stably. In addition to this nontrivial equilibium,

trivial equilibria exist at which one or more species are extinct. Perhaps counterintu-

itively, because alternative stable states are usually separated by unstable equilibria in

simple one- or two-dimensional models, multiple alternative stable states may exist in

addition to a stable nontrivial equilibrium in systems with three or more species, even

when assuming a linear functional response (Goh, 1977). Critical transitions away from a

system’s stable nontrivial equilibrium may occur towards such partially collapsed states

when such trivial equilibria are stable. To determine the potential for such partial network

collapses, we analytically determine for each subset of species whether a stable equilib-

rium exist at which all species belonging to a subset have positive abundances while the

abundances of other species are zero (see Appendix A3.1.3).

The total feedback on each level

As mentioned in the introduction, feedbacks may have a di↵erent length depending on

the number of species involved k. We determine the total feedback on each level k as

follows:

FK =
X

(�1)m+1L(m, k), (3.5)

where L(m,k) is the product of each element in the Jacobian matrix at a system’s nontrivial

equilibrium, ↵ij, corresponding to m disjunct, i.e, non-overlapping, loops together having

k elements (Levins, 1974; Puccia & Levins, 1985). The total feedback on level k is thus

determined by the strengths of feedbacks with length k and smaller. The first necessary

condition for the local stability of a system’s nontrivial equilibrium is that the total

feedback, FK , is negative at each level k. The second condition for stability is that

the strength of slow negative feedbacks cannot be too large when compared to the faster

negative feedbacks at lower levels (Levins, 1974; Puccia & Levins, 1985; Neutel & Thorne,

2014). By determining the total feedback, we may know at which level feedbacks might

be destabilizing a system.
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The total feedback on level k of a three-species system in which primary producer 1 has

a direct negative e↵ect on itself and where trophic interactions occur between species 1

and 2, 1 and 3, and 2 and 3, is as follows: F1 = ↵11, F2 = ↵12↵21 + ↵13↵31 + ↵23↵32,

and F3 = ↵13↵32↵21 + ↵12↵23↵31 � (↵23↵32)↵11. Delayed negative feedbacks destabilize

this system when F1 > 0, or when F1F2 + F3 > 0. More complex relationships exist in

n-species systems, e.g. F1(F1F4 + F5)� F3(F1F2 + F3) > 0. Generally speaking, one may

assume that a stable system requires that the total feedback on higher levels is not too

large when compared to the total feedback on lower levels (Hurwitz, 1895; Gantmacher,

1959; Levins, 1974; Puccia & Levins, 1985).

As an intuitive measure of the extend in which a certain initial distribution of total

feedbacks on di↵erent levels k, FI,k, may or may not promote stability, we determine

the threshold value, FT,k, below or above which food webs with the same total-feedback

distribution become unstable. FT,k is determined computationally by gradually in- or

decreasing Fk by multiplying the total feedback at all levels with the same factor  ((FT,k =

FI,k).

Boundaries to the area in which species may coexist stably

Boundaries to the area in which species coexist stably may occur when a species’ abun-

dance goes to zero, i.e. a loss of feasibility, or when a system’s feasible, nontrivial equi-

librium becomes unstable. In case of a transcritical bifurcation a system’s nontrivial

equilibrium may simultaneously become unfeasible and unstable. We refer to this case

as a loss of feasibility because this is the ecologically relevant aspect of the bifurcation

(equilibria with negative abundances are ecologically irrelevant). Because we assume a

linear functional response, a fold bifurcation is not possible. Stability of a system’s fea-

sible, nontrivial equilibrium may, however, be lost when a system approaches a Hopf

bifurcation. Such Hopf bifurcations may either be supercritical, in which case a stable

limit cycle of increasing amplitude appears, or subcritical, in which case a system shifts

abruptly to an alternative attractor. There are thus two di↵erent ways in which the sys-

tem’s feasible, nontrivial equilibrium may become unstable (when assuming codimension

one, i.e. change in a single parameter). To illustrate how a food web’s response depends

on the nature of the boundary crossed, we study how the dynamical behavior of a simple

six-species food webs with the topology in Fig. 3.1.A may depend on the top predator’s

relative feeding preferences, ✓ki. More specifically, we determine for the full network and

for each subset of species the area in the top predator’s parameter space where each set of

species may coexist stably as well as the nature of the boundaries to areas with a single

or multiple alternative stable states. We provide examples of three di↵erent parameter

settings which are chosen such that the area in which a system’s nontrivial equilibrium

is stable exhibits a di↵erent type of boundary (see Appendix A3.1.4). Two cases of the

specific way in which crossing a boundary may a↵ect food web dynamics are explored for



3

3.2 METHODS 61

each setting; one in which there is an alternative stable subset and one in which there is

no alternative stable subset to which a food web may shift at the time of a transition. In

total we thus distinguish six di↵erent ways in which a food web may respond to changing

environmental conditions.

Studying the parameter space of large and complex food webs is complicated, in partic-

ular because all trophic interaction strengths as well as all other parameters may change

simultaneously. For each of the 2500 model generated food webs belonging to a data

set, we study therefore how a random change in the relative feeding preferences of con-

sumers may alter the feasibility and stability of our model generated food webs. We do

this by simultaneously altering the relative feeding preferences of all consumers, ✓, as

follows:

✓⇤ki = ✓0,ki + (✓final,ki � ✓0,ki)E, (3.6)

in which ✓0,ki is the initial, ✓⇤final,ki the final, and ✓⇤ki the actual feeding preference of

consumer species i. Environmental condition, E, is changed in a step-wise manner from

0 to 1 with steps of 0.0001. This approach is equivalent to choosing a random direction

in parameter space and checking what kind of boundary to the area in which species may

coexist stably is crossed. For each food web we explore 100 di↵erent directions, i.e. 100

randomly assigned values of ✓final,ki. Like the initial feeding preferences, final feeding

preferences are taken from a symmetric Dirichlet distribution such that the sum of all a

consumer’s relative feeding preferences is one. The distribution of final feeding preferences

is assumed to be uniform, i.e. concentration parameter ↵ of the Dirichlet distribution is

one.

We assume the presence of alternative stable states at the system’s initial conditions, i.e.

at E = 0, to be indicative of the frequency at which alternative stable states are present

when a boundary is crossed. To test whether this assumption is true, we determine

whether alternative stable states are present one step before a boundary is reached and

determine whether results are qualitatively the same. We also assume that our results are

not crucially dependent on the assumption that the fraction of a consumer’s maximum

assimilation rate realized per prey biomass,  k, stays the same as relative feeding pref-

erences change. To test whether this assumption is true, we explore scenarios in which

the fraction of a consumer’s maximum assimilation rate realized per prey biomass,  k,

and/or the body mass of species changes as well. We do this by altering these fractions

as follows:

 ⇤
i =  0,i + ( final,i �  0,i)E,

M⇤
i = M0,i + (Mfinal,i �M0,i)E,

(3.7)
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in which  0,i is the initial,  final,i the final, and  ⇤
i the actual feeding preference M0,i

is the initial, Mfinal,i the final, and M⇤
i the actual body mass of consumer species i.

 final,i = i 0,i, and Mfinal,i = iM0,i. i is taken from a uniform distribution with range

(0.75,1.25).

We assume a food web to be unfeasible when the nontrivial equilibrium abundance of at

least one species is smaller than 0.0001. We assume to be dealing with a loss of stability

when the real part of at least one of the eigenvalues of the Jacobian matrix becomes larger

than zero while all abundances are greater than 0.0001. In practice we were (nearly) always

dealing with a pair of complex conjugate eigenvalues that would become larger than zero

when a system is feasible, as is typical for Hopf bifurcations. When a Hopf bifurcation

is found, we determine whether we are dealing with a supercritical or subcritical by

determining the first Lyaponov coe�cient. If the first Lyapunov coe�cient is negative

we are dealing with a supercritical Hopf bifurcation towards a stable limit cycle of which

the amplitude increases as conditions change further. If the first Lyapunov coe�cient is

positive we are dealing with a subcritical Hopf bifurcation towards other potentially more

complex dynamics (Marsden & McCracken 1976; Kuznetsov 1995).

3.3 RESULTS

The nature of di↵erent types of boundaries in parameter space and the associated critical

transitions occurring in the here studied food webs is best understood when studying some

stereotypical examples. To provide such examples, we explore the dynamic response of

relatively simple food webs, i.e. with the topology in Fig. 3.1.A, to changes in the relative

feeding preferences of the food-web’s top predator (Fig. 3.2 and Appendix A3.1.4). Each

example is associated with a di↵erent type of boundary in the top-predator’s parameter

space to the area in which all species may coexist stably, i.e. a loss of feasibility, a super-

critical, or a subcritical Hopf bifurcation. Three types of areas in the predator’s parameter

space can be distinguished: areas with a single stable state, areas with multiple stable

states, and areas in which no single combination of species may coexist stably. Areas with

multiple, alternative stable states are of special interest as these are areas in which there

is hysteresis. Oscillatory or other more complex dynamics occur in areas where there are

no stable states, potentially allowing species to coexist in an ‘unstable’ manner, i.e. per-

manence (Hutson & Vickers, 1983; Hutson & Law, 1985). More complex possibilities exist

when there are multiple alternative oscillatory, chaotic, or other complex attractors. In

this study, we focus on such attractors only when they are directly associated with a shift

towards instability of a system’s feasible, nontrivial equilibrium. In addition to the here

described catastrophes, specific points in parameter space may mark connecting points

between di↵erent types of boundaries (Fig. A3.1). When such points exist, the behavior

of a system is particularly (structurally) unstable in the sense that small di↵erences in

the specific way in which changing conditions a↵ect parameters may cause a system to
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respond in a fundamentally di↵erent way. Growth, feeding and respiration rates of all

species and interactions are di↵erent in each example (see Appendix A3.1.4).

For each boundary type we indicate two directions away from an initial situation in which

all species may coexist stably: a direction leading to a transition when no alternative

subset of species is stable and a direction leading to a transition when an alternative

subset is stable at the time of a transition (Fig. 3.2). Time series of all six species when

conditions are changed along these directions are shown in Fig. 3.3. Perhaps surprisingly,

we found that sudden transitions towards alternative stable subsets potentially leading

to the loss of several species may be triggered by the decline of a single species, i.e. a

loss of feasibility (Fig. 3.3.A). Recovery from such transitions may require a relatively

large change in conditions, e.g. back towards the area in parameter space in which a

system’s nontrivial equilibrium is the only stable state. Although technically a Hopf

bifurcation occurring when the abundance of a single species is nearly, but still slightly

above zero, such transitions are associated with the gradual decline towards extinction of

a single species after which the remaining subset of all-but-one species remains unstable

(Fig. 3.3.A, direction 2). When this subset is stable, we are dealing with a transcritical

bifurcation (Fig. 3.3.A, direction 1). Oscillatory dynamics with an increasing amplitude

occur after a supercritical Hopf bifurcation is passed (Fig. 3.3.B). After such transitions a

system may continue to oscillate until, in this example, a system’s nontrivial equilibrium

becomes stable again, or may shift towards an alternative stable subset once the amplitude

of the oscillations is large enough to invoke a shift, e.g. when a limit cycle collides with a

stable trivial equilibrium; a global bifurcation. Recovery from a such a shift may require a

relatively large change in conditions. The, perhaps, most striking di↵erence in dynamics

is found when comparing dynamics after a subcritical Hopf bifurcation for the two cases

with and without the presence of an alternative stable subset (Fig. 3.3.C). In the first

case we found an abrupt transition towards chaotic or other complex dynamics. In the

second case an abrupt transition occurred from one stable state to another. This last

case shares some important characteristics with a classical fold bifurcation, i.e. it is a

shift between alternative stable states and there is hysteresis. The cause of instability,

i.e. an increase in the strength of a delayed negative feedback relative to more immediate

negative feedbacks, is, however, fairly di↵erent.

A hint of what might happen after an impending regime shift may be found when studying

the e↵ect of changing environmental conditions on a system’s feedbacks (see Chapter 4).

An increase in the relative strength of the positive feedback in Fig. 3.1.B likely plays an

important role in the existence of alternative stable states in Fig. 3.2.A and 3.2.B. This

feedback promotes either an increase in species 5 (blue) and a decrease in species 3 (yellow)

and 6 (red) as observed in Fig. 3.3.A.2, or a decrease in species 5 and increase in species 3

and 6 as observed in Fig. 3.3.B.2. A similar role might be played by the feedback in Fig.

3.1.C prior to the regime shift observed in Fig. 3.3.C.2 where it may promote the observed

strong increase in species 1 (orange), 5 (blue), and 6 (red) and a decrease in species 4
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Figure 3.2: Boundaries in parameter space

for three di↵erent parameter settings, e.g.

feeding preferences, feeding e�ciencies, and

body masses of all species for food webs

with the topology in Fig. 3.1.A. Results are

shown for the relative feeding preferences of

top predator 6 for prey species 5, 4, and 3.

All species may coexist stably when relative

feeding preferences remain within the blue

area. Boundaries are crossed when a species’

abundance goes to zero (black solid lines),

i.e. a loss of feasibility, or when a feasible

food web becomes unstable (striped lines).

Areas in which subsets of species may coex-

ist stably are shown in green when contain-

ing all but one species and in red when con-

taining fewer species. Striped areas contain

multiple alternative stable states. There are

no stable states in fully grey areas. (A) A

loss of feasibility leads to the gradual de-

cline and extinction of a single species when

change occurs along direction 1. A similar

decline leads to an abrupt transition to an

alternative stable subset when change oc-

curs along direction 2. (B) A supercritical

Hopf bifurcation leads to oscillatory dynam-

ics when change occurs along direction 1. A

similar loss of stability may lead, once the

amplitude of oscillations is large enough, to

an abrupt regime shift towards an alterna-

tive stable subset when change occurs along

direction 2. (C) A subcritical Hopf bifurca-

tion leads to complex dynamics when change

occurs along direction 1. A similar loss

of stability leads to an abrupt regime shift

towards an alternative stable subset when

change occurs along direction 2. Legends

correspond to stable species combinations or

types of dynamical behavior. See Appendix

A3.1.4 for parameter settings. The panels

are triangular because the sum of the top

predator’s three feeding preferences is one.
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Figure 3.3: Time series of all six species when the top predator’s relative feeding preferences

change along the arrows in Fig. 3.2. Each example corresponds to a di↵erent type of critical

transition. The type of boundary crossed is di↵erent in panels A, B, and C. Panels 1 and 2

di↵er in the presence or absence of an alternative stable subset at the time of a transition.

Bars below the time series correspond to the areas in Fig. 3.2. (A) The abundance of a

single species (1) declines gradually and goes extinct, i.e. a loss of feasibility. In panel A.2

this gradual extinction is accompanied by the sudden collapse of a second species (6) and a

shift towards a stable four-species subset (2,3,4,5). (B) The system approaches a supercritical

Hopf bifurcation and shows oscillatory dynamics after it becomes unstable (see Fig. A3.2). In

panel B.2 the cycle disappears when the system shifts to an stable four-species subset occurs

(1,2,3,6). (C) The system approaches a subcritical Hopf bifurcation and shows complex

dynamics after it becomes unstable (see Fig. A3.3). In panel C.2 this leads to an abrupt shift

towards a stable three-species subset (1,5,6).
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(purple). An increase in the relative strength of the delayed negative feedback in Fig.

3.1.E may promote the oscillatory dynamics observed in Fig. 3.3.B as the consecutive

order in which species gain and lose in abundance over time corresponds to the way in

which the species belonging to this loop relate to each other (Fig. A3.2). The complex

dynamics in Fig. 3.3.C are resulting from the interplay between several delayed negative

feedbacks.

The potential for large-scale critical transitions in complex food webs

The nature of a system’s feedbacks, and thus its dynamical behavior, depends on the

topology of food webs as well as on the distribution of trophic interaction strengths. In

Fig. 3.4, we show how such di↵erent network structural patterns may a↵ect the presence

of alternative stable states. We found that, as the number of species or the connectance

of food webs increases, alternative stable states become increasingly common (Fig. 3.4.A-

B) and that the maximum number of species that could go extinct due to a regime

shift towards such alternative states increases as well. Opposing e↵ects are observed

when studying the e↵ect of an increase in the variance in relative feeding preferences and

feeding e�ciencies. When predators have an almost equally strong preference for all prey

species, i.e. a low variance, we found alternative stable states to be relatively common

(Fig. 3.4.C). A shift towards these states would lead to the loss of a relatively large

number of species. A high variance in feeding e�ciencies on the other hand, promotes

the occurrence of alternative states and the extinction of species in case of a regime shift

(Fig. 3.4.D).

In Fig. 3.5, we show the frequency at which di↵erent types of boundaries are crossed

when gradually altering the relative feeding preferences of predators. The fractions of a

consumer’s maximum assimilation rate realized per prey biomass were, in this example,

assumed to stay the same, i.e.  final,k =  0,k. We found that the structural patterns

that were found to promote the existence of alternative stable states (Fig. 3.4) are also

the ones promoting complex regime shifts to oscillatory, chaotic or other complex dy-

namics (Fig. 3.5). As the number of species or the connectance of food webs increases,

for example, Hopf bifurcations become increasingly common (Fig. 3.5.A-B). Supercritical

Hopf bifurcations to oscillatory dynamics tend to be more common than subcritical Hopf

bifurcations to more complex dynamics. Despite this di↵erence, subcritical Hopf bifurca-

tions to complex dynamics may still occur frequently, e.g., slightly more than 30% of the

regime shifts were found to be caused by a subcritical Hopf bifurcation in food webs with

a relatively large number of species or a high connectance. As with the occurrence of al-

ternative stable states, opposing e↵ects are found when studying the e↵ect of an increase

in the variance in relative feeding preferences and feeding e�ciencies (Fig. 3.5.C-D).

The average amount of change, dM , needed to cross a boundary, i.e. the value at which

environmental condition M leads to species loss, is strongly influenced by the structure
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Figure 3.4: The fraction of food webs that exhibit two (blue), three (orange) or four or more

(green) alternative stable states (left axis) and the maximum number of species that would go

extinct in case of a regime shift towards one of these states, i.e. the total number of species

minus the number of species in belonging to the smallest alternative stable subset (black, right

axis). (A-B) As the number of species or the connectance of food webs increases, alternative

stable states become increasingly common. The maximum number of species that could go

extinct in case of a regime shift towards these states increases as well. (C-D) Two opposing

e↵ects are observed when studying the e↵ect of an increase in the variance in relative feeding

preferences and feeding e�ciencies. When predators have an almost equally strong preference

for all prey species, i.e. a low variance, we found alternative stable states to be relatively

common. A shift towards these states would lead to the loss of a relatively large number of

species. A high variance in feeding e�ciencies on the other hand, promotes the occurrence of

alternative states and the extinction of species in case of a regime shift.
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Figure 3.5: The frequency at which di↵erent types of boundaries are crossed under changing

environmental conditions and the average amount of change needed to cross a boundary. Re-

sults are shown for a loss of feasibility (blue), supercritical transitions to oscillatory dynamics

(orange), and subcritical transitions to more complex dynamics (green). The average amount

of change needed to cross a boundary is indicated in black. (A-B) As the number of species or

the connectance increases, complex transitions to oscillatory or other more complex dynamics

become increasingly common. The amount of change needed to cause a regime shift becomes

increasingly small. (C-D) A high variance in relative feeding preferences was found to pro-

mote sudden regime shifts to oscillatory or other more complex dynamics. The opposite is

true for the variance in feeding e�ciencies. The amount of change needed to cross a boundary

was found to be relatively large when the variance in relative feeding preferences and when the

variance in feeding e�ciencies is low. Results are shown for a gradual change in the relative

feeding preference of predators, other parameters are assumed to stay the same.
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food webs. For three of the four structural patterns tested, we found that food webs that

can handle a relatively large change in M are also the ones that tend to lose species due

to a loss of feasibility, i.e. a gradual decline in abundance leading to extinction. A notable

exception to this pattern, however, exists. When the variance in the feeding preferences of

predators is low, we found abrupt regime shifts due to Hopf bifurcations to be relatively

common and the amount of change needed to reach a bifurcation point to be relatively

large. The mean growth rates of primary producers, the average connectance, and the

average predator-prey body-mass ratios as observed in di↵erent data sets can be found in

Fig. A3.5-A3.7.

Total feedback as an indicator of systemic risk

A more in-depth understanding of the interrelationship between network structural prop-

erties and the occurrence of abrupt regime shifts, i.e. super- and subcritical Hopf bifur-

cations, may be obtained when analyzing the nature of positive and negative feedbacks

in complex food webs. The criterion that the strength of delayed negative feedbacks, i.e.

in longer loops, cannot be too large compared to the more immediate negative feedbacks

in shorter loops, as described in Hurwitz (1895) and Levins (1974), allows for a - not

too large - increase in the strength of the total negative feedback on lower levels k. We

indeed found that such an increase occurred in our model-generated food webs, such that

the strength of the total negative feedback was usually largest around level 5-6 in food

webs with 22 species (Fig. 3.6.A-B, A3.4 and A3.8). Above those levels a strong decline

in total negative feedback with increasing level k was observed and required for stability.

Notable di↵erences were found in the strength of the total negative feedback on di↵erent

levels k among data sets. Data sets containing food webs that were more likely to exhibit

Hopf bifurcations showed a weaker total negative feedback across all levels k, with the

exception of data sets that had di↵erent numbers of species. Within data sets we can also

distinguish food webs that are highly likely and food webs that are unlikely to exhibit

Hopf bifurcations, i.e. the frequency of Hopf bifurcations when food webs are subjected

to change in a randomly chosen directions (Fig. 3.6.C-E). The total negative feedback of

food webs that were likely to exhibit Hopf bifurcations was found to be weaker across all

levels k as well.

The distribution of the median strength of total feedback across di↵erent levels, FM,k,

could vary somewhat among data sets, e.g. we found that as the average connectance

increases in food webs of 22 species, the peak at which the total negative feedback is

strongest, moved from level 6 to 5 (Fig. 3.6.A-B). In all cases we found on all levels k

that, for a given distribution of median total feedback, an overall decrease in the total

feedback would lead to instability below threshold value FT,k, i.e. FT,k < FM,k (Fig.

A3.9. An overall increase in the strength of the total negative feedback never led to

instability. Some distributions allow threshold values to be lower than other distributions.
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Figure 3.6: Interrelationships between the average directed connectance, the frequency of

Hopf bifurcations, and the total feedback on di↵erent levels as observed in data sets of 2500

model-generated food webs. (A-B) The median total feedback as observed in data sets of

food webs with a di↵erent average connectance. The total negative feedback of networks with

a high connectance is weaker in particular around levels 4-6. (C) The frequency of Hopf

bifurcations after gradually altering relative feeding preferences in each food web in a 100

di↵erent ways as observed in a single data set with average directed connectance 0.16. (D-E)

The total feedback in networks belonging to the upper (orange) and the lower (blue) quartile

in panel C. As in networks with a low connectance, the total negative feedback of networks

that are likely to exhibit a Hopf bifurcation is generally weaker in particular around level 4-6.

Panel A and B, and D and E contain the same data on a linear and a logarithmic scale.

The small shift in the level around which the total negative feedback is strongest to lower

level 5 as observed with increasing connectance, was found to lower the threshold value

FT,k suggesting that having a peak in total negative feedback on a lower level promotes

stability. The increased stability arising from such a more optimal distribution does,

however, not seem to make up for the loss in stability caused by an overall decrease in
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the total negative feedback, as Hopf bifurcations were found to be increasingly common

with increasing connectance.

3.4 DISCUSSION

The long-standing debate on the complexity and stability of ecosystems has mainly fo-

cused on the interrelationship between the number of species or interactions and the local

stability of a system’s nontrivial equilibrium (May, 1972, 1973; Pimm, 1984; McCann,

2000). As a consequence, relatively little is known about the specific ways in which

biodiversity might be lost when environmental conditions change. By merging network

theory with theory on critical transitions, we hope to provide a framework that allows us

to better evaluate the risk of large, systemic changes in ecosystems under the influence

of global environmental change. Our results show that complex transitions may occur

even when assuming a linear relationship between the intake rate of predators and prey

availability. The nature of such transitions is determined by the specific way in which

feasibility or stability is lost and by the presence of alternative stable states at the time

of a transition. Whether small changes in food-web parameters, e.g. growth, mortality,

feeding and respiration rates, are likely to lead to catastrophic regime shifts depends on

the size of the area in parameter space within which species may coexist stably and the

nature of the boundaries to such an area. Systemic risk, i.e. the likelihood of a large

and/or hardly reversible regime shifts, is high when a system’s initial parameter values

are close to a catastrophic boundary in parameter space.

By analyzing data sets of many model-generated food webs, we found that strong in-

terrelationships exists between the complexity and the structure of food webs and the

likelihood and nature of critical transitions occurring when the aforementioned bound-

aries are crossed. Complex food webs, i.e. with a large number of species and/or a

high connectance, are more likely to exhibit alternative stable states and are also more

likely to go through sudden transitions to oscillatory or other more complex dynamics.

The same is true for food webs with a low variance in relative feeding preferences and a

high variance in feeding e�ciencies. We found that the structural properties we found

to simultaneously promote the occurrence of alternative stable states and of transitions

to oscillatory or other more complex dynamics are associated with an overall decline in

the total negative feedback on all levels k, and we found that an overall decline in total

negative feedback, i.e. while maintaining the same distribution across all levels k, leads

to transitions to oscillatory or other more complex dynamics below a critical value FT,k.

Slight changes in distribution would decrease critical level FT,k, suggesting that they have

an opposing e↵ect on the occurrence of the aforementioned transitions. A relatively weak

total negative feedback across all levels k thus seems the most likely explanation for the

increased occurrence of transitions to oscillatory or other more complex dynamics asso-

ciated with the aforementioned network structural properties. A possible explanation for
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the simultaneous increase in the occurrence of alternative stable states and of transitions

to oscillatory or other more complex dynamics might be an increase in the strength of

relatively short positive feedback loops, e.g. apparent competition. Positive feedbacks in

short loops may lower the total negative feedback on all levels k larger than the length

of these loops (the total feedback on level k is determined by the strengths of feedbacks

with length k and smaller) and, as all other positive feedbacks, increase the potential for

alternative stable states in the here studied systems.

We believe that, by assuming a linear functional response, we made a conservative estimate

of the potential presence of alternative stable states and the occurrence of abrupt of

critical transitions, i.e. transitions to oscillating or other more complex dynamics. When

assuming a non-linear response, multiple stable and unstable nontrivial equilibria may

exist. Such unstable equilibria may lead to saddle-node, e.g. fold, bifurcations when

colliding with the system’s initial state and are associated with thresholds between the

attraction basins of alternative stable states. In preliminary work (not shown here),

we found that a non-linear functional response of predators may indeed promote the

existence of alternative stable states and the potential for abrupt critical transitions. A

non-linear functional response may simultaneously promote the occurrence of oscillating

dynamics because it reduces a the strength of a direct negative e↵ect of prey species

on themselves (as described by the Jacobian matrix). Future research should, however,

further explore when and whether this is indeed the case, as the magnitude of the increase

in the occurrence of alternative stable states and abrupt regime shifts was found to be

highly sensitive to the specific function and parameter values chosen to describe predator-

prey relationships.

Our findings may have large implications for the way in which we evaluate stability of

food webs and the sustainability of the services they provide in the context of global en-

vironmental change. Our results suggest that, in addition to conservation e↵orts focused

on the survival of rare or iconic species, it is of importance to monitor which changes

are likely to undermine the overall stability of complex food webs. Two requirements for

species coexistence should therefore be distinguished; feasibility and stability. A commu-

nity is feasible when the amount of resources available to species is su�cient to maintain

a population while being predated upon by other species. Stability requires that the re-

lationships between species are such that they do not exclude each other. Conservation

e↵orts have traditionally focused on preventing the decline of species abundances, i.e. on

maintaining feasibility. Structural properties that promote feasibility, however, do not

necessarily promote stability and vice versa. Conservation e↵orts that aim to prevent a

decline in species abundances, i.e. a loss of feasibility, may thus pave the way for more

large scale critical transitions when altering the interrelationships between species and

the feedbacks providing stability to ecosystems as a whole.

This study a first step towards a better understanding of the relationship between struc-
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ture of complex food webs and the nature of critical transitions, and we realize that some

important questions remain unexplored. First, we believe that a further development

of the here presented theory could help identify the subsets of species that may cause

instability and/or alternative stable states in food webs. The possibility to identify such

(groups of) species could be of great importance in the context of nature conservation.

Second, the number of ways in which parameters are assigned and the ways in which food

web dynamics may be described provide a range of possibilities that is far too wide to

be explored in a single study. Any study on complex food webs is, therefore, limited. In

this study, we chose for mathematical simplicity, i.e. a linear functional response, while

assigning ‘plausible’ parameters based on allometric scaling relationships. Future research

could explore the impact of making more complex dynamical assumptions, in particular

when describing predator-prey relationships, and will almost certainly show that a more

accurate assignment of parameters is possible. By doing this, we hope to facilitate com-

parison with classical studies on food web stability that have used similar simple models

as well as with empirical studies providing information on the flows of biomass through

food webs. Future research should further explore which assumptions are crucial for our

findings and which ones are of a lesser importance. Third and finally, the here described

regime shifts may not only be important in the context of global environmental change.

In principal, any complex system of many interacting components could exhibit the feed-

backs and di↵erent types of critical transitions as described in this study. Some of the

theoretical ideas used in this study were developed in the context of regulatory networks

(Levins, 1974; Tyson et al., 2003; Novák & Tyson, 2008) and morphogenesis (Thom,

1975). Future research could further explore whether our findings are also of relevance

for other types of complex systems.
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A3.1 SUPPLEMENTARY METHODS

A3.1.1 LOTKA-VOLTERRA MODEL

The food-web model presented in the main text (equation 3.1) is equivalent to the follow-

ing simple Lotka-Volterra model:

dBi

dt
= Bi(gi +

nX

j=1

↵ijBj), (A3.1)

in which Bi corresponds to the biomass of (basal or non-basal) species, gi to a species’

growth or respiration rate, and ↵ij to the e↵ective competitive or trophic interaction

strengths. Growth or respiration rate gi = Ri for basal species and gk = �Tk for non-

basal species.

E↵ective competitive interaction strengths between basal species i and j are determined

as follows:

↵ij = �Ri
cij
Ki

, (A3.2)

in which Ri is a basal species’ intrinsic growth rate, cij the competitive interaction

strength, and Ki a species’ carrying capacity. Please note that competitive e↵ect of

species on themselves, ↵ii, is equal to �Ri/Ki because cii = 1. When assigning Ri/Ki ra-

tio  i (see parameter settings), we thus determine the strength of the e↵ective intraspecific

competition, ↵ii.

The e↵ects of prey species l on predator species k and of predator species k on prey species

l are determined as follows:

↵lk = Jk k✓lk,

↵kl = �Jk
 k✓lk

(1� �lk)flk
,

(A3.3)

in which Jk is the maximum assimilation rate of predator k at the system’s non-trivial

equilibrium,  k, the total capture rate of predator k, and ✓lk, the relative preference of

predator k for prey species l, flk is the fraction of killed prey biomass that is ingested and

�lk the fraction of ingested biomass lost to feces.
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A3.1.2 BODY-MASS ASSIGNMENT

To assign body masses, we use an algorithm that randomly updates body masses until

a desired feasible, stable solution is reached. Initially, all consumers are assigned a body

mass taken from a uniform distribution, i.e. Mk,0 ⇠ U(1, 100). The body masses of

consumers are at each iterative step simultaneously updated as follows:

Mk,s+1 = ⌘k,sMk,s, (A3.4)

in which Mk,s is the body mass of consumer k at step s and Mk,s+1 its body mass at step

s + 1. Random number ⌘k,s is drawn from a uniform distribution with range (0.9,1.1).

The body masses, Mi, of primary producers are, at every iteration, assigned such that

they meet the feeding demands of non-basal species:

Mi =
⇣ X

j✏{prod.}

⇢icijB̂j

↵R
+

X

k✏{pred.}

Jk
 k✓ik

(1� �ik)fik↵R
B̂k

⌘�4

, (A3.5)

in which ⇢i is the Ri/Ki ratio of primary producer i and B̂k the nontrivial equilibrium

abundance of (producer or consumer) species k. Three stages can be distinguished while

the algorithm updates the body mass of species. During each stage, updated body masses

are either accepted, when they bring a system closer to a desired outcome, or rejected in

which case body masses are assigned the values of the previous step. In the first stage,

body masses are updated such that the fractions of the consumers’ maximum assimilation

rates realized at a system’s nontrivial equilibrium, �k, fall within a predefined range. This

range must lay somewhere between zero and one, e.g., (0.05,0.75), i.e. the system is

feasible. The fraction of the maximum assimilation rate of consumer k realized at a

system’s nontrivial equilibrium, �k, is defined as follows:

�k =
X

k✏{prey}

 k✓jkB̂j, (A3.6)

in which B̂j is the nontrivial equilibrium abundance of prey species j. In the second stage,

body masses are updated such that the dominant eigenvalue of the Jacobian at a system’s

nontrivial equilibrium is below a certain threshold value. This value is chosen below zero

such that the system is stable. In the third stage, body masses are updated such that

all predator-prey body-mass ratios fall within a predefined range. This prevents some

unrealistically large or small predator-prey body-mass ratios from occurring. Changes in

body mass that violate a criterion fulfilled in a previous stage are not accepted.
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More specifically, we determine the fraction of a consumer’s maximum assimilation rate

realized at a system’s non-trivial equilibrium, �k, as follows:

2

66664

�k
...

�l

3

77775
=

2

66666666666666664

JkB̂k �
Jk✓kkB̂kB̂k

(1� �kk)fkk
P

j✏{prey}
✓jkB̂j

. . . � Jl✓klB̂kB̂l

(1� �kl)fkl
P

j✏{prey}
✓jlB̂j

...
. . .

...

� Jl✓lkB̂lB̂k

(1� �lk)flk
P

j✏{prey}
✓jkB̂j

. . . JlB̂l �
Jl✓llB̂lB̂l

(1� �ll)fll
P

j✏{prey}
✓jlB̂j

3

77777777777777775

�1

2

66664

TkB̂k
...

TlB̂l

3

77775
,

(A3.7)

in which maximum assimilation rate Jk and respiration rate Tk are determined with the

allometric scaling relationships in equation 3.3 (see Methods). Other parameters are taken

from a predefined probability distribution (see parameter settings).

After the initial assignment of body masses, the algorithm updates body-masses such that

all �k fall within a predefined range. At each iterative step the di↵erences between the

realized �k, and the desired range (�min,�max) are determined. This di↵erence is equal to

�min � �k when �k < �min, or �k � �max when �k > �max. In this first stage, a change in

body mass is accepted when the sum of these di↵erences is smaller than at the previous

step. When this is not the case, body masses are changed back to the body masses of

the previous step. The network is discarded when the fractions of a predator’s maximum

assimilation rate, �k, are not with the desired range after 10.000 iterative steps.

When all fractions of a predator’s maximum assimilation rate, �k, are within desired

range (�min,�max), we determine the dominant eigenvalue of the Jacobian matrix at the

system’s non-trivial equilibrium. In this second stage, the algorithm continues to update

body masses according to equations A3.4 and A3.5 (see Methods). A change in body

mass is accepted when all assimilation rates, �k, remain within desired range (�min,�max)

and when the real part of the dominant eigenvalue is lower than at the previous step.

The algorithm continues to update body masses until the dominant eigenvalue is below a

predefined minimum value (see parameter settings). This value is smaller than zero, such

that the system’s non-trivial equilibrium is stable. The network is discarded when the

dominant eigenvalue is not below the desired value after 10.000 iterative steps.

Once a stable equilibrium is found, we determine for each interaction the predator-prey

body-mass ratios as follows:

⌫jk =
Mk

Mj
, (A3.8)
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in which ⌫jk is the predator-prey body-mass ratio of the interaction between predator

species k and prey species j. At each of the following iterative steps, the algorithm

determines the di↵erence between the realized predator-prey body-mass ratio ⌫ik, and

desired range (⌫min,⌫max). This di↵erence is equal to ⌫min � ⌫ik when ⌫ik < ⌫min, or

⌫ik�⌫max when ⌫ik > ⌫max. A di↵erent range might be used for herbivore, i.e., the prey is

a basal species, and carnivore interactions, i.e., the prey is a non-basal species. A change

in abundance is accepted in this third stage when all assimilation rates, �k, remain within

desired range (�min,�max), when the real part of the dominant eigenvalue remains lower

than the predefined minimum value, and when the sum of these di↵erences is smaller than

at the previous step. The network is discarded when the predator-prey body-mass ratios,

⌫ik, are not with the desired range after 10.000 iterative steps. When all predator-prey

body-mass ratios are within the desired range, we have obtained the final distribution of

body-masses Mi.

The average connectance of the networks contained by a data set may di↵er from the

assigned average directed connectance, C, because some of the networks generated by

the niche model are discarded by the here described body-mass algorithm. To make sure

that the eventual connectance of the networks contained by a data set does not deviate

too much from the assigned connectance, we discard all networks that deviate more than

±0.02 from the assigned average connectance, C.
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A3.1.3 GLOBAL VS. LOCAL STABILITY

To determine whether a system’s nontrivial equilibrium is globally or locally stable, we

determine for each combination of species, S, whether a feasible, stable equilibrium can

be found. Because we are dealing with a simple linear functional response, the equilibrium

abundances of every subset can be determined analytically by constructing growth vector

GS and interaction matrix IS:

GS =

2

6664

gi
gj
...

gk

3

7775
, IS =

2

6664

↵ii �↵ij . . . ↵ik

↵ji ↵jj . . . ↵jk
...

...
. . .

...

↵ik ↵jk . . . ↵kk

3

7775
, (A3.9)

in which gi is a species’ growth or respiration rate and ↵ij the e↵ective competitive

or trophic interaction strength (see supplementary section A3.1.1). Only species and

interactions between species that belong to subset S are included when constructing GS

and IS. After constructing growth vector GS and interaction matrix IS, the equilibrium

abundances of species, B̂S, can be determined as follows:

B̂S = �I�1
S GS (A3.10)

in which B̂S is a vector containing the equilibrium abundances of the species belonging

to subset S. We consider the subset to be feasible when the abundances of all species

belonging to the subset are larger than zero. When the subset is feasible, we evaluate the

stability of the equilibrium point at which the abundances of species belonging to subset

S are equal to BS. The abundances of other species are zero. We do this by determining

whether the eigenvalues of the Jacobian matrix are smaller than zero. The subset is thus

only considered to be stable when the subset is both intrinsically stable, i.e., the properties

of species and interactions belonging to the subset allow for stable coexistence, and when

it cannot easily be invaded by species not belonging to the subset.
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A3.1.4 PARAMETER SETTINGS SIX-SPECIES MODEL

To find intuitive examples of di↵erent types of boundaries, we explored the parameter

space of the top-predator in the simple six-species food web in Fig. 3.1.A for a large

number of randomly generated parameter settings. For illustrative purposes, we selected

parameter spaces that were relatively simple in terms of the number of areas in which

di↵erent subsets are stable, and we deliberately choose examples where the same boundary

could be crossed either to an area in which an alternative subset is stable or to an area

in which this is not the case. The parameter settings we ended up with are as mentioned

below:

Fig. 3.2.A: R1 = 3.3555, R2 = 6.6080, R3 = 2.2813, K1 = 1.8342, K2 = 5.1387,

K3 = 1.3700, c12 = 0.2270, c13 = 0.2270, c21 = 0.2064, c23 = 0.2064, c31 = 0.4844,

c32 = 0.2064, J4 = 1.6062, J5 = 1.7076, J6 = 1.1427,  4 = 0.3935,  5 = 0.6612,  6 =

0.2113, ✓14 = 0.9108, ✓15 = 0.2480, ✓24 = 0.0892, ✓25 = 0.3571, ✓35 = 0.4048, �14 = 0.55,

�15 = 0.55, �24 = 0.55, �25 = 0.55, �35 = 0.55, �36 = 0.55, �46 = 0.15, �56 = 0.15,

f14 = 0.6734, f15 = 0.6030, f24 = 0.2138, f25 = 0.1038, f35 = 0.7853, f36 = 0.6674,

f46 = 0.7167, f56 = 0.2593, T4 = 0.2008, T5 = 0.2135, and T6 = 0.1428.

Fig. 3.2.B: R1 = 1.1023, R2 = 0.2100, R3 = 0.5569, K1 = 1.7882, K2 = 0.8971,

K3 = 2.7318, c12 = 0.3160, c13 = 0.4207, c21 = 0.3160, c23 = 0.1751, c31 = 0.4207,

c32 = 0.1751, J4 = 1.5681, J5 = 1.3614, J6 = 0.8867,  4 = 0.2252,  5 = 0.2253,  6 =

0.6646, ✓14 = 0.8647, ✓15 = 0.3752, ✓24 = 0.1353, ✓25 = 0.2117, ✓35 = 0.4131, �14 = 0.55,

�15 = 0.55, �24 = 0.55, �25 = 0.55, �35 = 0.55, �36 = 0.55, �46 = 0.15, �56 = 0.15,

f14 = 0.5754, f15 = 0.2333, f24 = 0.7876, f25 = 0.3429, f35 = 0.1187, f36 = 0.6306,

f46 = 0.3235, f56 = 0.8870, T4 = 0.1960, T5 = 0.1702, and T6 = 0.1108.

Fig. 3.2.C: R1 = 4.0681, R2 = 0.8409, R3 = 0.3336, K1 = 1.7424, K2 = 1.9634,

K3 = 1.8962, c12 = 0.1503, c13 = 0.2288, c21 = 0.1503, c23 = 0.4104, c31 = 0.2288,

c32 = 0.4104, J4 = 3.3152, J5 = 2.8221, J6 = 1.9674,  4 = 0.7150,  5 = 0.4486,  6 =

0.6947, ✓14 = 0.6436, ✓15 = 0.2970, ✓24 = 0.3564, ✓25 = 0.6241, ✓35 = 0.0789, �14 = 0.55,

�15 = 0.55, �24 = 0.55, �25 = 0.55, �35 = 0.55, �36 = 0.55, �46 = 0.15, �56 = 0.15,

f14 = 0.1510, f15 = 0.8682, f24 = 0.8989, f25 = 0.6748, f35 = 0.2277, f36 = 0.7995,

f46 = 0.1495, f56 = 0.9993, T4 = 0.4144, T5 = 0.3528, and T6 = 0.2459.

Fig. A3.1: R1 = 1.2729, R2 = 4.5236, R3 = 0.9246, K1 = 1.5391, K2 = 3.5850,

K3 = 1.2361, c12 = 0.4335, c13 = 0.2160, c21 = 0.4335, c23 = 0.1134, c31 = 0.2160,

c32 = 0.1134, J4 = 2.5666, J5 = 2.5855, J6 = 1.4720,  4 = 0.3689,  5 = 0.2276,  6 =

0.2956, ✓14 = 0.0826, ✓15 = 0.0728, ✓24 = 0.9174, ✓25 = 0.6098, ✓35 = 0.3174, �14 = 0.55,

�15 = 0.55, �24 = 0.55, �25 = 0.55, �35 = 0.55, �36 = 0.55, �46 = 0.15, �56 = 0.15,

f14 = 0.8277, f15 = 0.1971, f24 = 0.1028, f25 = 0.6687, f35 = 0.7428, f36 = 0.9125,

f46 = 0.1010, f56 = 0.6803, T4 = 0.3083, T5 = 0.3230, and T6 = 0.1840.
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A3.2 SUPPLEMENTARY FIGURES

Figure A3.1: Specific points in parameter space (open circles) may mark connecting points

between di↵erent types of boundaries. When such points exist, the behavior of the system is

highly unstable in the sense that small di↵erences in the way in which parameters change may

cause the system to respond in a fundamentally di↵erent way. At these points two nullclines

are parallel to each other in the network’s state space, i.e., vertical bifurcation points.
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Figure A3.2: Oscillating dynamics after passing a supercritical Hopf bifurcatoin.
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Figure A3.3: Complex dynamics after passing a subcritical Hopf bifurcatoin.
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Figure A3.4: Median total feedback as observed in data sets of 2500 food webs for di↵erent

network structural properties. Panels (A-D) correspond to the network structural patterns

for which results are shown in Fig. 3.4 and Fig. 3.5.
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Figure A3.5: Average growth rate ri as observed in data sets of 2500 food webs for di↵erent

network structural properties. Panels (A-D) correspond to the network structural patterns

for which results are shown in Fig. 3.4 and Fig. 3.5.
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Figure A3.6: Average connectance as observed in data sets of 2500 food webs for di↵erent

network structural properties. Panels (A-D) correspond to the network structural patterns

for which results are shown in Fig. 3.4 and Fig. 3.5.
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Figure A3.7: Average body-mass ratio as observed in data sets of 2500 food webs for di↵erent

network structural properties. Panels (A-D) correspond to the network structural patterns

for which results are shown in Fig. 3.4 and Fig. 3.5.
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Figure A3.8: Median total feedback as observed in data sets of 2500 food webs for di↵erent

network structural properties (log-scale). Panels (A-D) correspond to the network structural

patterns for which results are shown in Fig. 3.4 and Fig. 3.5.
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Figure A3.9: The median to-

tal feedback, FI,k, as observed

in data sets of 2500 food webs

with a di↵erent average con-

nectance, C, and the thresh-

old values, FT,k, below which

food webs with the same total-

feedback distribution become

unstable. As in Fig. 3.6.A-

B, results are shown for data

sets with an average directed

connectance of 0.08 (A), 0.12

(B), 0.16 (C), and 0.20 (D).

Grey areas indicate unstable

areas. Colored lines indi-

cate the observed median to-

tal feedback on di↵erent levels

k. The total negative feedback

is stronger in food webs with

a lower connectance and, de-

spite a decline in the strength

below which food webs with

the same total-feedback dis-

tribution become unstable as

connectance increases, a larger

reduction of total feedback is

needed to cause instability in

food webs with a low con-

nectance. An increase in feed-

back levels while maintaining

the same distribution did not

lead to instability.
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ABSTRACT

Changing conditions may lead to sudden shifts in the state of ecosystems when critical

thresholds are passed. Some well-studied drivers of such transitions lead to predictable

outcomes such as a turbid lake or a degraded landscape. Many ecosystems are, however,

complex systems of many interacting species. While detecting upcoming transitions in

such systems is challenging, predicting what comes after a critical transition is terra

incognita altogether. The problem is that complex ecosystems may shift to many di↵erent,

alternative states. Whether an impending transition has minor, positive or catastrophic

e↵ects is thus unclear. Some systems may, however, behave more predictably than others.

The dynamics of mutualistic communities can be expected to be relatively simple, because

delayed negative feedbacks leading to oscillatory or other complex dynamics are weak.

Here, we address the question of whether this relative simplicity allows us to foresee a

community’s future state. As a case study, we use a model of a bipartite mutualistic

network and show that a network’s post-transition state is indicated by the way in which

a system recovers from minor disturbances. Similar results obtained with a unipartite

model of facilitation suggest that our results are of relevance to a wide range of mutualistic

systems.
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4.1 INTRODUCTION

Empirical studies of lakes, arid ecosystems, coral reefs, and tropical forests suggest that

remarkably sudden transitions to alternative stable states may occur when changing envi-

ronmental conditions pass a critical value (Sche↵er et al. 1993; Rietkerk & Van de Koppel

1997; Sche↵er et al. 2001; Hirota et al. 2011). While the outcome of such transitions is

relatively predictable when a few leading species or species groups determine the state

of an ecosystem, this may not be the case when ecosystem dynamics are determined by

many interacting species. Species traits as well as their sensitivity to changing conditions

are known to be highly diverse, and many drivers of environmental change are known to

have multiple simultaneous e↵ects on species communities. A change in climate may, for

example, a↵ect the distribution, phenology, physiology, behavior, and relative abundances

of species, and these changes may, in turn, a↵ect the strengths of interactions between

species (Kareiva et al. 1993; Memmott et al. 2007; Suttle et al. 2007; Tylianakis et al.

2008; Burkle et al. 2013; Høye et al. 2013; Usinowicz & Levine 2018). The specific ways

in which interactions are arranged in complex ecological networks are known to be crucial

for the stability of ecosystems (Kareiva et al. 1993; De Ruiter et al. 1995; McCann 2000;

Solé & Montoya 2001; Neutel et al. 2002; Montoya et al. 2006; Bastolla et al. 2009; Rohr

et al. 2014). Gradual changes in these patterns and other complex simultaneous e↵ects

of changing environmental conditions may therefore lead to regime shifts of which the

outcomes are highly unpredictable (Sche↵er et al., 2012).

The response of ecosystems to a change in environmental conditions is determined by the

relative strengths of positive and negative feedback loops in the networks of interactions

between species or between species and their environment. Immediate negative feedbacks,

e.g. due to intraspecific competition, have stabilizing e↵ects, while positive or ‘reinforcing’

feedbacks are destabilizing and a necessary condition for the existence of alternative stable

states (Thomas 1981; Snoussi 1998; Gouzé 1998). Critical transitions towards such states

may occur when changing conditions alter a system’s feedbacks such that destabilizing,

positive feedbacks gain in strength relative to stabilizing, immediate negative feedbacks.

A classic example is found in shallow lakes where an increase in algae leads to an increased

turbidity and the suppression of aquatic plants. As a consequence, more nutrients become

available to algae which enhances algae growth. A clear-water, plant-dominated state may

therefore switch to a turbid, algae-dominated state when gradually increasing nutrient

levels pass a critical value. Recovery from such transitions requires a relatively large

reduction in nutrient availability, a phenomenon called ‘hysteresis’ (Sche↵er et al. 1993).

Other examples of such switching behavior are found in coral reefs, woodlands, deserts,

and oceans (May 1977; Wilson & Agnew 1992; Sche↵er et al. 2001), as well as in many

other systems such as the climate (Hare & Mantua 2000; Sche↵er et al. 2001; Clark et al.

2002; Alley et al. 2003; Lenton et al. 2008), the economy (Diamond & Dybvig 1983; Arthur

1989; Easley & Kleinberg 2010), and human cells (Hasty et al. 2002; Ferrell Jr 2002; Lee

et al. 2002; Tyson et al. 2003; Angeli et al. 2004).
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Mutually beneficial interactions are, perhaps, the most intuitive examples of positive feed-

back loops in complex ecological networks, metapopulations, or other complex environ-

mental systems. Previous studies have emphasized the importance of such interactions in

communities of flowering plants and animal pollinators or seed dispersers (Jordano, 1987;

Bascompte et al., 2003). Mutually beneficial interactions between zooxanthellae, coral

species and invertebrates occur in coral reefs where a diversity of coral species provide

food, shelter and reproduction sites for other organisms (Moberg & Folke 1999; Wilson

et al. 2006; Stella et al. 2011). Nutrient exchange with mycorrhizal fungi and nitrogen-

fixing bacteria is fundamental for plant communities (Kiers et al. 2011), and mutualistic

interactions are of importance for microbial communities where multiple species are in-

volved in the degradation of organic substrates (Schink 2002; Stolyar et al. 2007). Indirect

facilitation may occur between plant species when modifying harsh environments (Wilson

& Agnew 1992; Callaway 1995; Holmgren et al. 1997; Rietkerk et al. 2004), and the ex-

change of individuals between habitat patches may be fundamental for metapopulations

(Hanski 1998). Previous work suggested that critical transitions may occur due to the

positive feedback resulting from such mutually beneficial relationships in plant-pollinator

communities because a decline in pollinator abundances may negatively a↵ect plant abun-

dances, which in turn is bad for pollinators (see Chapter 2). Similar transitions may

occur in metapopulations due to a ‘rescue e↵ect’ (Hanski 1998) and in facilitative com-

munities due to an ‘Allee e↵ect’ (Rietkerk et al. 2004; Courchamp et al. 1999; Stephens

et al. 1999). The observation that the relative strength of facilitative interactions tends to

increase with environmental stress (Bertness & Callaway 1994; Maestre et al. 2009; Tur

et al. 2016), suggests that competitive communities may become increasingly mutualistic

as conditions change. The aforementioned positive feedbacks and associated critical tran-

sitions may thus also occur in communities where mutually beneficial interactions were

not particularly strong under more advantageous conditions.

Here, we propose a new class of indicators that may allow us to detect the specific way

in which species are a↵ected by an increase in the relative strength of a positive feedback

prior to a critical transition. The essence of our approach is that we seek the direction

in a system’s phase space, i.e. a multidimensional space in which each axis corresponds

to the abundance of a species, in which a system becomes increasingly sensitive to small

subcritical disturbances. Earlier studies have shown that an increasingly slow recovery

from small disturbances may be indicative of a loss of resilience prior to critical transitions

(Wissel 1984; Van Nes & Sche↵er 2007). Various indicators of this phenomenon known as

‘critical slowing down’ may therefore serve to detect an increase in the likelihood of critical

transitions (Sche↵er et al. 2009; Dakos et al. 2012). Here, we take advantage of the fact

that resilience is not lost equally in all directions. Disturbances have a size (i.e. the total

amount of change) and a direction (i.e. the relative amount of change in each species).

The more similar a disturbance’s direction to the direction in which increasingly small

perturbations may cause critical transitions, the stronger the e↵ect of critical slowing
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down. Provided that there are no oscillatory, chaotic or other complex dynamics, a

system’s future state will most likely lie in the same approximate direction.

To get an intuitive understanding of the principle behind our approach, consider a small

plant-pollinator community of which the dynamics can be represented by a landscape

of valleys, hills and ridges (Fig. 4.1.A and Appendix A4.2 in Supporting Information).

In this landscape, every possible combination of pollinator abundances is represented by

a unique point, while the speed and direction in which abundances change corresponds

roughly to the slope of the landscape. The lowest points of the landscape’s valleys or

‘attraction basins’ represent alternative stable states. As conditions change, the shape

of the landscape changes and new basins appear. When a threshold comes close to the

network’s initial state, a small perturbation in the right direction can invoke a transition

into another attraction basin. Eventually, the basin around the network’s initial state

disappears altogether and the system inevitably shifts into one of the alternative basins.

The question we ask is whether we may know beforehand to which of the alternative

attractors a system will most likely shift. The clue is that the slope of the initial state’s

attraction basin changes in a characteristic way before the transition occurs. A ‘mountain

pass’ towards the system’s future state is formed, marked by a ‘saddle point’ in the land-

scape. The initial state’s attraction basin becomes increasingly shallow in the direction

of this pass and the recovery from perturbations increasingly slow (Fig. 4.1.B-C and Fig.

A4.2). This direction is what we refer to as the ‘direction of critical slowing down’ and

is indicative of the relative gain or loss in abundance of each species after an impending

critical transition.

To explore whether the direction of critical slowing down might be indicative of the fu-

ture state of mutualistic communities, we use a model of a bipartite mutualistic network

in which critical transitions are known to occur (see Chapter 2, Dakos & Bascompte

2014; Jiang et al. 2018). This model was originally developed to describe the interac-

tions between flowering plants and animal pollinators or seed dispersers (Bastolla et al.

2009), but may describe any system characterized by competition within and cooperation

between species groups. Previous work has shown that indirect facilitation occurs be-

tween pollinators when they interact with the same plant species (Moeller 2004; Ghazoul

2006; Bastolla et al. 2009). This indirect facilitation makes a network more resilient, i.e.

the minimum size of perturbations or the amount of change in environmental conditions

needed to cause a critical transition is larger. When pollinators continue to facilitate each

other under increasingly harsh environmental conditions they may, however, also collapse

simultaneously because they depend on each other for survival (see Chapter 2).

We generate time series in which the resilience of a network’s initial state is gradually

undermined by altering the relative strength of mutualistic interactions. Oscillatory, or

other complex dynamics occurring after a threshold is passed may negatively a↵ect the

performance of the here proposed class of indicators but are unlikely in purely mutualistic
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Figure 4.1: Stability properties for a small network of two pollinators (shown) and two

plants (not shown). (A) Attraction basins (valleys) of alternative stable states (balls) are

separated by thresholds (dashed curves). Initially, the only alternative to pristine state 1

is fully collapsed state 2 (A.I). When conditions change, two additional, partially collapsed

states appear (states 3 and 4). The initial, pristine state loses resilience after state 3 appears

(A.II-A.III). Eventually, the threshold towards state 3 approaches the pristine state so closely

that a critical transition towards this state becomes inevitable (A.III-A.IV). (B) Alternative

stable states, saddle points (yellow dots), and hilltops (grey dots) are surrounded by areas in

which the landscape’s slope, and thus the rate at which abundances change, is nearly zero

(indicated in orange). Higher speeds are found further away from these points. The direction

of slowest recovery changes substantially before future state 3 appears (yellow arrow, B.I-

B.II). After state 3 appears, the system slows down in the direction of the saddle point on

the approaching threshold (B.II-B.III). (C) Slow recovery from a perturbation towards the

saddle point (C.I) as opposed to the much faster recovery from an equally large perturbation

in another direction (C.II).

systems, i.e. systems in which all interspecific interactions are positive, because they

require at least one delayed negative feedback, i.e. a negative feedback with a time lag,

usually occurring as the result of an uneven number of negative interactions in feedback

loops of two or more species (Levins 1974; Thomas 1981; Puccia & Levins 1985; Goldbeter
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1996; Hastings & Powell 1991; Snoussi 1998; Gouzé 1998; McCann et al. 1998; Dambacher

et al. 2003). Few real ecosystems can, however, be expected to be purely mutualistic.

Di↵erent scenarios are therefore explored, varying from a scenario where positive feedbacks

are the only cause of instability, i.e. in purely mutualistic systems, to scenarios in which

the destabilizing e↵ects of delayed negative feedbacks are stronger, i.e. in mixed systems

with mutualistic and competitive interactions. To determine the direction of critical

slowing down, we study changes in the fluctuations around the species mean abundances

and determine whether they can be used to predict a network’s post-transition state.

To explore whether the results obtained with this model may hold for a wider class of

mutualistic systems, we investigate whether similar results are obtained with a more

general, unipartite model of competition and facilitation between species.

4.2 COMMUNITY MODEL

We use a dynamic model describing the interactions between two types of species: plants

(P ) and pollinators (A). As in Bastolla et al. (2009), species of the same type compete

with each other, while species belonging to a di↵erent type interact mutualistically. The

dynamics of species i belonging to a group of S(A) pollinator species are as follows:

dN (A)
i

dt
=

Ri(N (P ))

1 + hiRi(N (P ))
N (A)

i �
S(A)X

j=1

cijN
(A)
j N (A)

i � diN
(A)
i + ✏i. (4.1)

Plant dynamics are described by a similar formula, which can be found by exchanging

indices A and P . Unless stated otherwise, this procedure can be applied to all formulas

in this chapter.

Species i has abundance Ni, which may increase due to mutualistic interactions with

members of the other species type. The rate at which the abundance of species i increases

depends on the total amount of resources provided by mutualistic partners, Ri(N (P )), i.e.

nectar for pollinators and pollen for plants. As in Okuyama & Holland (2008) and Bastolla

et al. (2009), we assume that species are limited in their capacity to process resources

and become saturated when the amount of resources provided is high. The rate at which

species become saturated is determined by saturation term hi. The total mutualistic

benefit, Ri(N (P )), depends on the abundance of mutualistic partners as follows:

Ri(N
(P )) =

S(P )X

k=1

�ikN
(P )
k , (4.2)

in which �ik is the mutualistic interaction strength, i.e. the rate at which resources become

available to species i, due to its interaction with species k.
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Species of the same type compete directly amongst each other, e.g. plants for soil nu-

trients and pollinators for nesting sites. Intraspecific competition, cii, is assumed to be

substantially stronger than interspecific competition, cij, such that species do not easily

outcompete each other. Independent of mutualistic and competitive interactions, several

processes may simultaneously enhance or reduce population growth. We assume that the

combined e↵ect of these processes is negative, which is incorporated by mortality rate

di.

Species experience small stochastic perturbations incorporated through noise term

✏i:

✏i = �i
dW

dt
. (4.3)

✏i fluctuates in time due to a Wiener process, W , with mean zero and standard deviation

�i. The Wiener process is a continuous-time stochastic process generating white noise.

To prevent noise leading to negative abundances, we assume that dN/dt = 0 when N <

0.001.

Coexistence and relative mutualistic benefits

As the number of species and/or the strength of interspecific competition increases, it

becomes increasingly di�cult to assign parameters such that all species may stably coex-

ist. In previous work, a trade-o↵ was assumed between the number and the strength of

mutualistic interactions which prevented species with many interactions from becoming

overly abundant and outcompeting other species (see Chapter 2, Bastolla et al. 2009;

Dakos & Bascompte 2014; Jiang et al. 2018). Here, we assume mutualistic interaction

strengths to vary continuously, i.e. pollinators may interact with all plant species and

vice versa, which allows us to explore gradual changes in interaction structure beyond the

fixed structure of a predefined mutualistic network. A di↵erent kind of balancing rela-

tionship is therefore required, and mutualistic interaction strengths, �ik, are determined

as follows:

�ik =
✓ikRi(N̂ (P ))

N̂ (P )
k

, (4.4)

in which the relative mutualistic benefit, ✓ik, corresponds to the fraction of the total

amount of resources provided by species k, and Ri(N̂ (P )) to the total amount of resources

received by species i at the system’s nontrivial equilibrium, i.e. the equilibrium point at

which all species have a non-zero abundance. There are di↵erent costs and benefits asso-

ciated to di↵erent feeding strategies, e.g. being a specialist or a generalist or interacting
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with specialists or generalists (Morales & Traveset, 2008; Tur et al., 2016). This way of

assigning mutualistic interaction strengths makes sure that a species’ total amount of re-

sources received is independent from a species’ relative feeding preferences, i.e. we assume

the sum of these costs and benefits to be approximately the same for each strategy. The

sum of a species’ relative mutualistic benefits,
S(P )P
k=1

✓ik, is one. A change in relative mu-

tualistic benefits does not a↵ect the equilibrium abundances of species, because the total

amount of resources provided to each species remains the same (see Appendix A4.5).

Changing environmental conditions and the direction in which resilience is

lost

To test whether the direction of critical slowing down is indicative of a system’s future

state, we study our ability to predict a system’s future state when changing conditions

lead to substantial changes in the strength of positive feedbacks and the direction in

which they have destabilizing e↵ects. Such changes may occur when changing conditions

fundamentally alter the ways in which species relate to each other.

Positive feedbacks and the direction in which resilience is lost can be studied when de-

termining the elements of the Jacobian matrix at a system’s nontrivial equilibrium. Each

element in this matrix describes how a change in the abundance of species i a↵ects the

growth of species j, dNj/dt. At a tipping point, the dominant eigenvalue of the Jacobian

matrix is zero and the slope of the direction in which a system recovers slowest from per-

turbations is indicated by the eigenvector corresponding to this eigenvalue. The strength

of the positive feedback between pollinator i and plant j can be determined by multiplying

the Jacobian’s o↵-diagonal elements; ↵ij ⇤ ↵ji. In a two-species system, a tipping point is

reached when the strength of this feedback is equal to the multiplication of the two direct

negative feedbacks; ↵ii ⇤ ↵jj. Similar relationships can be obtained when studying larger

systems (Levins 1974; Thomas 1981; Puccia & Levins 1985; Goldbeter 1996; Snoussi 1998;

Gouzé 1998; Dambacher et al. 2003; De Ruiter et al. 1995; Neutel et al. 2002; Neutel &

Thorne 2014).

Some species contribute more to the instability caused by positive feedbacks than others.

The e↵ect of a temporary change in the abundance of mutualistic partners, as described by

the Jacobian matrix, for example, is small when species are highly saturated, i.e. Ri(N̂ (P ))

and/or hi is large. Positive feedbacks are therefore weak and the resilience of the here

studied networks is high when relative mutualistic benefits, ✓ik, are distributed such that

most resources are obtained from the same, highly saturated species (see Appendix A4.1

and Fig. A4.1). In more complex communities such a distribution resembles a nested

structure as is commonly observed in mutualistic networks, as in those networks species

tend to obtain resources from the same mutualistic partners as well (Bascompte et al. 2003

and Fig. A4.6.A). The interrelationships between saturated and non-saturated species are
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asymmetrical as in Bascompte et al. (2006).

As a starting point for further research, we explore a scenario in which a change in the

aforementioned distribution of relative mutualistic benefits, ✓ik, undermines the resilience

of the mutualistic networks while keeping all other properties, e.g. nontrivial equilibrium

abundances and the negative e↵ects of inter- and intraspecific competition, constant (see

Appendix A4.5). Increasingly strong positive feedbacks emerge when two or more non-

saturated species start to interact increasingly strongly with each other. Eventually, this

will lead to a full or partial network collapse depending on the specific way in which relative

mutualistic benefits are changed. Conditions, M , a↵ect relative mutualistic benefits as

follows:

✓⇤ik = ✓0,ik + (✓final,ik � ✓0,ik)M, (4.5)

in which ✓0,ik is the initial, ✓final,ik the final, and ✓⇤ik the actual relative mutualistic benefit.

Conditions, M , change from zero to one over time, t, such that dM/dt = 1/T , in which

T is the total simulation time. Mutualistic interaction strengths, �ik, are updated as

described in equation 4.4. The species and interactions involved in the positive feedback

leading to a critical transition, the direction in which this feedback amplifies change,

and the nature of a system’s future state, are determined by the specific way in which

interactions are altered.

In addition to the scenario in which only the relative mutualistic benefits change, we

explore scenarios in which the nontrivial equilibrium abundances of species change as well

due to a change in the total amount of resources received from mutualistic partners (see

Appendix A4.5).

Determining the direction of critical slowing down

Although measuring the recovery rate from experimental perturbations is the most direct

way to determine the direction of critical slowing down, an experimental approach may

be impractical or even impossible when studying complex networks. The development

of alternative methods to determine the direction of critical slowing down is therefore of

importance. Previous studies suggested that small changes in the statistical properties of

time series, e.g. an increase in variance, autocorrelation, skewness, and spatial correlation,

may be used as an indicator of a change in the proximity to a tipping point (Sche↵er et al.

2009; Dakos et al. 2012). Here, we explore whether changes in the statistical properties

of time series may be used to predict the future state of mutualistic communities.

When assuming a continuous regime of random perturbations, a system will spend most

time away from its equilibrium state in the direction in which it recovers slowest from

perturbations (see Appendix A4.2). When approaching a tipping point, the distribution
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of natural fluctuations around the species’ mean abundances should therefore become in-

creasingly elongated in the direction in which a system slows down (Fig. A4.3). To detect

such change, we analyze our model-generated times series by determining the direction

and magnitude of such asymmetry in a rolling window. This window has a fixed size and

is moved along the time series as new data become available. To determine the direction

in which abundances are distributed asymmetrically, we use a principal component anal-

ysis of which the first principal component corresponds to the line in the network’s phase

space along which variance is highest (see Held & Kleinen 2004; Chen et al. 2012; Suweis

& D’Odorico 2014; Dakos 2018 and Chen et al. 2019 for related approaches). Abundances

are distributed asymmetrically either in an up- or downward direction along this compo-

nent. To determine the direction of our indicator, we orthogonally project the time series

on the first principal component and determine the direction in which the projected time

points are skewed (Fig. A4.4.A-E). The magnitude of the indicator is determined by the

fraction of the total variance explained by the first principal component. This direction

and magnitude together form a vector which is our indicator of a network’s future state

(Fig. A4.4.F).

A network’s phase space has as many axes as there are nodes in a network. Our indicator

thus has multiple components; one for each species (Fig. A4.4.F). Each component, or

‘score on the indicator’, gives an indication of the extent and direction in which the abun-

dance of each individual species is distributed asymmetrically. The indicator accurately

points towards the future state when its components, or ‘scores’, are directly proportional

to the di↵erence in abundance between a network’s initial and future state. Species with a

negative score are expected to decrease, while species with a positive score are expected to

increase. Species with a relatively large score are expected to change more in abundance

than species with a comparably smaller score. An increase in the indicator’s magnitude

is reflected by more extreme (positive or negative) scores.

To assess the quality of the prediction, we determine the angle between the indicator’s

slope, as determined by the first principal component, and the direction of the observed

shift in abundance. As a measure of similarity, we take one minus the probability that the

angle between two unrelated, random vectors is smaller (see Appendix A4.3). We consider

the indicator’s slope to be accurate when this measure of similarity is above 0.99. When

time points are also skewed towards a network’s future state, we consider the prediction

to be fully accurate.

Simulations and parameter settings

We analyze several data sets consisting of 1000 model-generated time series in which the

above described mutualistic networks approach a tipping point. For each time series,

we compute the change in direction and magnitude of the indicator on the pollinator

abundances (see Appendix A4.4). The distribution from which interspecific competitive
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interaction strengths are sampled, the number of plant and pollinator species, and the way

in which changing conditions a↵ect nontrivial equilibrium abundandances di↵er among

data sets (see Appendix A4.5). The resilience of mutualistic networks is, in all cases,

undermined by a change in the distribution of mutualistic benefits leading to a substan-

tial increase in the relative strength of positive feedbacks or delayed negative feedbacks.

Declining abundances may have an additional negative e↵ect on resilience.

To explore the e↵ects of oscillatory, chaotic or other complex dynamics, we analyze data

sets of which the strength and variability in interspecific competitive interaction strengths,

cij, varies. Delayed negative feedbacks become stronger as the strength and variability

of interspecific competition increases. To provide a clue as to how (un)likely it is to find

transitions to oscillatory, chaotic or other complex dynamics, we determine for each time

series whether the system approaches a Hopf or a saddle-node bifurcation.

Networks were discarded from a data set when they were unstable at initial conditions,

M = 0. We determined the frequency at which this occurred as a measure of how di�cult

it is to find a stable solution. The final distribution of relative mutualistic benefits, ✓final,ik,

was redrawn either when a network would become unstable within the range of conditions

M = (0, 0.5), or when a network would still be stable at M = 1.

A more general, unipartite model of competition and facilitation

To explore whether the indicator may work for a wider class of systems, we investigate

whether similar results are obtained with a more general model of competition and facil-

itation. The positive feedback between plants and pollinators in the previously described

communities can be seen as an Allee e↵ect, i.e. a positive relationship between the growth

and density of populations (Courchamp et al. 1999; Stephens et al. 1999). The indirect

facilitation occurring between pollinators when interacting with the same plant species

is not fundamentally di↵erent from the facilitation occurring between plant species when

ameliorating the same harsh environment, or other forms of interspecific facilitation oc-

curring in ecosystems. The most essential properties of a group of pollinator species may

therefore be captured as follows:

dNi

dt
= riNi

✓PS
j=1 �ijNj

Ai
� 1

◆✓
1�

PS
j=1 cijNj

Ki

◆
� diNi + ✏i, (4.6)

in which Ni is the abundance of species i. When the abundances of other species and

mortality rates, di, are zero, species may grow in abundance until they reach carrying

capacity Ki, or collapse to extinction when abundances are below critical abundance Ai.

The speed at which species abundances change is determined by growth rate ri. Facili-

tation is mediated by facilitation rate �ij. Strong interspecific facilitation allows species
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to recover from large disturbances, i.e. below critical abundance Ai. Species with a high

critical abundance Ai depend strongly on this facilitation, and a community’s overall re-

silience is highest when such species are facilitated relatively strongly by species with a low

Ai. The relative strength of interspecific competition is determined by cij. Other causes

of abundance loss are incorporated through mortality rate di. Species are assumed to

experience small stochastic perturbations, as in the bipartite mutualistic network model,

through noise term ✏i.

The main di↵erence between the here presented model and the previously described plant-

pollinator model is that it is a unipartite model, i.e. it describes one set of interacting

species. The means by which facilitation occurs are, in contrast to the above described

plant-pollinator model, not explicitly described. Parameter settings and results can be

found in Appendix A4.6 and A4.7.

4.3 RESULTS

We found that, when interspecific competitive interaction strengths are weak, instability

nearly always arises from the positive feedback between plants and pollinators or from the

Allee e↵ect in the above described mutualistic or facilitative communities. Instability is

caused by a saddle point approaching the communities’ initial state and at least one species

will collapse to extinction when a tipping point is passed. Other species may either gain or

lose in abundance depending on the communities’ initial properties and the way in which

they are a↵ected by changing environmental conditions (Fig. 4.2.A). Critical transitions

were nearly always preceded by a period in which the indicator’s magnitude would increase

significantly, indicating that the distribution of fluctuating species abundances becomes

increasingly asymmetric (see Appendix A4.7, Fig. 4.2.B-D and Fig. A4.7-A4.9). As with

the small mutualistic network in Fig. 4.1, the indicated direction typically shifts towards

a system’s future state at the beginning of this period. The indicator thus consistently

pointed towards a community’s future state while increasing in magnitude prior to a

critical transition, when interspecific competitive interactions were weak.

A notable exception to this general pattern occurred when competitive interaction

strengths were taken from a low to intermediate range, e.g. ⇠ U(0.02, 0.08). We found

that, for such a range, full network collapses were not always indicated accurately. Transi-

tions would lead either to the collapse of relatively few species or to a collapse of the entire

network (Fig. A4.9). Both the inaccurate prediction of full network collapses and the ab-

sence of intermediate-size, partial network collapses may occur because critical transitions

lead to a series of cascading, partial network collapses. The likelihood of an additional

collapse increases as more species collapse (Solé & Montoya 2001; Memmott et al. 2004;

Rezende et al. 2007). The most likely outcome of a series of cascading, partial network

collapses is therefore a collapse of the entire network. In such a scenario, the indicator will

accurately indicate the initial regime shift but will not foresee the cascade of partial net-



4

102 MUTUALISTIC COMMUNITIES BEYOND COLLAPSE

Figure 4.2: Directional slowing down in a mutualistic network as detected by our indicator.

(A) Time series of species belonging to one part of a bipartite mutualistic network, i.e. the

pollinators. At the tipping point two species collapse to extinction (light blue and yellow). (B)

The indicator of the future state measuring the direction in which fluctuations are distributed

asymmetrically. Scores on the indicator indicate the relative predicted gain or loss of each

node. (C) The magnitude of the indicator, reflecting the extent to which fluctuations are

distributed asymmetrically, plotted together with the accuracy measured as the similarity

between its direction and the observed shift in abundance. Grey bands indicate the period

in which the indicator’s magnitude increases significantly. This period likely corresponds to

the period in which the network rapidly loses resilience (as in Fig. 4.1.A.II-III). The accuracy

increases rapidly at the beginning of this period. (C) The observed changes in abundance

versus the scores on the indicator just before the tipping point. Extinct species are indicated

with crosses. The observed shift is nearly proportional to the scores on the indicator as points

are close to a straight line through the origin.
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Figure 4.3: Cascading collapses and the indicator’s performance when predicting the future

state of mutualistic networks. (A-C) Examples of the relationship between the scores on

the indicator and the observed shifts in abundance when a single, when four, and when all

pollinator species collapse to extinction. The change in abundance of winners, losers and two

or three collapsed species was almost always accurately indicated. The loss in abundance of

additional species collapsing (red circles) was underestimated. (D) The fraction of regime

shifts after which a certain number species collapsed to extinction. The fraction for which the

change in abundance was not accurately indicated is shown in red. Inaccurate predictions (as

in panel C) usually occurred prior to a full network collapse. (E) Relationship between the

number of species collapsing and the number of species with a negative score on the indicator

(mean and SD). When the number of species indicated to lose in abundance was high, we were

often dealing with a full network collapse. (F-G) Combined plots of the 900 best indicated

transitions in a data set of 1000 regime shifts. Species remaining after a regime shift (blue

dots, panel F) are indicated more accurately than collapsing species (red crosses, panel F).

Species of which the loss in abundance prior to a collapse was underestimated usually belonged

to networks of which 5 or more species were indicated to lose in abundance (green dots and

crosses, panel G). Competitive interaction strengths were taken from a low to intermediate

range (i.e. 0.02-0.08).
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work collapses immediately following it (Fig.4.3). In some time series, we observed that

regime shifts consisted of several consecutive collapses (Fig. A4.10.A-B). The amount of

time in between two consecutive collapses can, however, be extremely small. Also when

cascades were not clearly visible, we suspect therefore that the inaccurate prediction of a

full network collapse is caused by a cascading collapse.

Cascading, full network collapses were uncommon when interspecific competitive interac-

tion strengths were drawn from other ranges (Fig. A4.9). When there is no competition

between species, full network collapses are very common, well indicated and do not show

signs of being caused by a cascade of partial network collapses (as in Fig. A4.10.C). When

competitive interactions are strong, few species tend to collapse to extinction, while most

or all other species gain in abundance from a transition. Apart from the specific range

from which competitive interaction strengths were drawn, cascading collapses were found

to become increasingly common when the noise level increases suggesting that they, in

part, result from a low resilience of a system’s future state (Fig. A4.11-A4.12). A rela-

tively large number of species was usually indicated to lose in abundance when a, likely,

cascading collapse occurred (e.g. 7 out of 10 on average, Fig. 4.3.E). As an alternative

indicator of the likelihood of a cascading, full network collapse we propose therefore to

use the number of species indicated to lose in abundance.

As the strength and variability of interspecific competition increases, Hopf bifurcations,

leading to oscillatory, chaotic or other complex dynamics, become increasingly common.

After such transitions, the system remains highly sensitive to small-scale stochastic per-

turbations and may end up in any of several potential future states (Fig. 4.4.A-B, and

Fig. A4.13-A4.15). To which of these states a system will shift is determined by chance

and thus hard to predict. For the highest competition level we tested, we found that such

hard-to-predict regime shifts made up about 60% of a data set. Higher levels were not

tested because, as the strength of competition increases, it becomes increasingly di�cult

to generate networks of which the initial, nontrivial state is stable. More specifically, we

found that the probability of a network to be stable at initial conditions, M = 0, is nearly

one when interspecific competitive interaction strengths were taken from the aforemen-

tioned lower ranges and below 0.01 when they were taken from the highest here reported

range (Fig. A4.16). The indicator accurately indicated about 50% of the regime shifts in

this ‘worst-case scenario’ (some of the hard-to-predict regime shifts were indicated accu-

rately). When there is no competition between species, this percentage was nearly 100%

(Fig. 4.4.C-D).

Qualitatively similar results were found when, in addition to a change in relative mutualis-

tic benefits, the species’ nontrivial equilibrium abundances changed as well (see Appendix

A4.7 and Fig. A4.17). Full network collapses are more frequent when abundances tend

to decrease and the period in which the indicator’s magnitude increases prior to a critical

transition tends to be somewhat shorter when abundances change over time. The exam-
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Figure 4.4: Hopf bifurcations and the predictability of a network’s future state when sam-

pling competitive interaction strengths from di↵erent parameter ranges (ranges are indicated

on the x-axis). As the strength and variability of competition increases, Hopf bifurcations

become increasingly frequent as well as the number of networks of which the future state is

determined by chance. (A) The frequency of saddle-node (blue) and Hopf bifurcations (red)

for di↵erent data sets. A high frequency of Hopf bifurcations indicates that transitions to-

wards oscillatory, chaotic or other complex dynamics are common. (B) The fraction of cases

in which, after five simulations in which a network’s resilience was undermined in the exact

same way, a network would always shift to the same state (blue), to one out of two states

(orange), to one out of three states (green), or to one of four or more potential future states

(purple). (C) The fraction of accurately indicated regime shifts (dark blue), the fraction ac-

curately indicated by the first principal component, i.e. the slope of the indicator is accurate,

but not by the direction in which time points are skewed (light blue), and the fraction of inac-

curately indicated regime shifts (red). (C) The skewness of time points projected on the first

principal component. A positive skewness means that time points are skewed in the direction

of a network’s future state. The skewness is shown for regime shifts that were accurately

indicated by the first principal component.
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ples in Fig. A4.18-A4.20 suggest that the direction of the first principal component is

initially determined by the way in which abundances change over time. It may, therefore,

take longer before the direction in which abundances are distributed asymmetrically is

determined by the direction of critical slowing down. The application of a detrending

method may prolong this period when trends are strong.

Qualitatively similar results were also found when analyzing data sets of communities

with di↵erent numbers of species (see Appendix A4.7). Full network collapses became

less common as the number of species increased, and Hopf bifurcations leading to oscilla-

tory, chaotic or other complex dynamics became more frequent (Fig. A4.21-A4.22). These

changes occurred, most likely, due to a change in the balance between intra- and inter-

specific competition. Interaction strengths were assigned such that the relative di↵erence

between intra- and interpecific competitive interaction strengths remained approximately

the same (see Appendix A4.5). The number of interspecific competitive interactions, how-

ever, increases as the number of species increases. The combined e↵ect of all interspecific

competitive interactions is therefore larger. Systems with many species may, due to the

way in which we assigned competitive interaction strengths, therefore be comparable with

smaller networks in which interspecific competition is relatively strong.

Simulations with the more general, unipartite model of facilitation between species gave

roughly the same qualitative results as the bipartite plant-pollinator model (see Appendix

A4.7). The resilience of communities of 10, 20 and 40 species was generally a bit lower than

the resilience of plant-pollinator networks with the same number of plant and pollinator

species. To prevent networks from collapsing almost immediately, we chose a lower noise

level with standard deviation �i = 0.05. A relatively low resilience may also explain the

relatively high frequency of likely cascading collapses in facilitative communities of 10

species (Fig. A4.23). A di↵erent way of assigning critical abundances, Ai, could have

increased the resilience of the here studied facilitative communities.

4.4 DISCUSSION

Human activities alter the Earth’s climate and its ecosystems at unprecedented rates

(Vitousek et al. 1997; Millenium Ecosystem Assessment 2005; Rockström et al. 2009;

Intergovernmental Panel on Climate Change 2014; Ste↵en et al. 2015). These changes

may jumble the patterns in the networks of interactions between species that hold complex

species communities together (Kareiva et al. 1993; McCann 2007; Tylianakis et al. 2008).

Monitoring and forecasting the e↵ects of such changes thus requires a systems approach,

i.e. an approach that explicitly studies the properties emerging from the complex and

often unknown ways in which species relate to each other. Here, we try to make a

further step towards developing such an approach by determining the direction in which

destabilizing positive feedbacks undermine resilience. With model-generated time series

we show that this direction is indicative of the future state of mutualistic communities,



4

4.4 DISCUSSION 107

potentially providing us with a tool to assess the impact of impending critical transitions

in natural communities and other complex systems.

Ecologists have emphasized the importance of improving our ability to predict the future

state of ecosystems previously, and predicting future developments in complex systems is

common practice in various fields of research, e.g. economics, engineering, and climatology

(Clark et al. 2001; Sutherland 2006; Coreau et al. 2009; Beckage et al. 2011; Novak et al.

2011; Evans et al. 2012, 2013; Purves et al. 2013; Petchey et al. 2015). Concerns about the

forecastability of ecosystems and the limits to our capacity to predict the future state of

ecosystems have however also been strong (Coreau et al. 2009; Beckage et al. 2011). Some

of these concerns stem from a misunderstanding of why predictions are made. Making

predictions is fundamentally di↵erent from describing a scientific law. Predictions are

made when a limited amount of knowledge is available, and people rely on predictions

even when they are known to often be inaccurate simply because better predictions are

not available. Predictions may also be made when evaluating the risks associated with

di↵erent ecological scenarios. In this spirit, we also see the indicator we propose here; as

an indication of where a system’s future state might lay. There is no absolute certainty

as complex dynamics may occur after a critical threshold is passed.

Some general properties may, however, give a clue about the predictability of ecosystem

dynamics. We found that, as the strength and variability of interspecific competition

increases, dynamics change from a situation where positive feedbacks are the main cause

of instability, to a mixed, intermediate situation, and, eventually, to a situation in which

delayed negative feedbacks govern ecosystem dynamics. Our results suggest that the

indicator performs well at predicting a system’s future state when positive feedbacks are

strong. Performance was reasonably good and transitions caused by positive feedbacks

remained quite common in the aforementioned mixed situation, i.e. more than 50%

accurate predictions. When dynamics were governed by delayed negative feedbacks, we

found that the initial pristine state of the here studied systems was unlikely to be stable,

i.e. the probability of a system’s nontrivial equilibrium to be stable was below 0.01.

The indicator could not be applied and the interplay between several delayed negative

feedbacks was likely to lead to chaotic dynamics.

Ecosystems exhibit positive feedbacks when species have direct or indirect positive e↵ects

on themselves, i.e. in loops with an even number of negative interactions, and do not only

occur as the result of mutually beneficial interactions. Positive feedbacks may, for ex-

ample, also occur when species positively a↵ect themselves by suppressing other species,

e.g. between a pair of competing species and in three-species omnivore loops in food

webs (e.g. Van Nes & Sche↵er 2004 and Neutel & Thorne 2014). Despite a longstanding

interest in the occurrence of complex ecosystem dynamics (May 1974; Hastings & Pow-

ell 1991; Huisman & Weissing 1999), no real classification of where and when to expect

unpredictable, complex dynamics exists. As a first speculative proposal, we suggest that
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all the various types of mutualistic communities are likely to exhibit relatively strong

positive feedbacks and predictable dynamics. Terrestrial foodwebs, where the top-down

e↵ects of herbivory are relatively small (Cyr & Face 1993), may fall in the aforementioned

mixed category, while aquatic food webs are more likely to exhibit chaotic dynamics (e.g.

Benincà et al. 2008). Complex dynamics are likely to occur in competitive communi-

ties when competitive interaction strengths are variable and asymmetrical. When pairs

of interacting species have similar competitive e↵ects on each other, positive feedbacks

between some pairs of species are more likely to be strong and dynamics may be fairly

predictable (e.g. Van Nes & Sche↵er 2004). Further research into where and when to

expect complex dynamics will greatly improve our capacity to evaluate the performance

of the here proposed indicator and the predictability of ecosystem dynamics in general.

Such research may, for example, involve a further investigation of the interrelationship

between the structural properties of ecological networks and the occurrence of di↵erent

types of critical transitions and may include transitions that are not preceded by critical

slowing down (see Grebogi et al. 1983 and Hastings & Wysham 2010).

Earlier studies explored di↵erent ways in which changing environmental conditions may

lead to critical transitions in mutualistic networks, for example by increasing pollinator

mortality rates (see Chapter 2, Jiang et al. 2018) or by declining mutualistic interaction

strengths (Dakos & Bascompte 2014). In this work, assumptions were made that make the

e↵ects of these changes fairly simple from a dynamical perspective, e.g. the assumption

that the intrinsic properties of species and the e↵ects of changing environmental conditions

are similar for all species, and the assumption that the structure of whom interacts with

whom remains unchanged. As a consequence, there is little change in the direction of

slowest recovery and the nature of the systems’ alternative stable states. Here, we chose

to study a more complex dynamical scenario because we wanted to test whether the

direction of critical slowing down is indicative of a community’s future state even when the

direction of slowest recovery changes substantially prior to the period in which resilience

is lost. There is no reason to assume that the indicator would perform worse at predicting

a system’s future state when changing conditions a↵ect a group of similar species in one

of the aforementioned more simple ways.

The here proposed indicator has a number of advantages compared to previous methods

to predict the future state of ecosystems such as extrapolation and the use of mechanis-

tic models. Extrapolation is risky, because it assumes trends to continue outside of the

range in conditions for which data are collected, and the behavior of mechanistic models,

e.g. aiming to simulate feeding, reproduction, death, and other rates with as much accu-

racy as possible, often depends on many unknown parameters, in particular when these

rates depend on environmental conditions and species abundances. Using the direction of

critical slowing down as an indicator of a system’s future state has the advantage that it

directly relates to an emerging property of complex ecosystems, i.e. the direction in which

resilience is lost. As such, it avoids the often di�cult process of parameter estimation
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needed to develop mechanistic models, and it specifically aims to predict a system’s future

state when abrupt shifts away from existing trends, i.e. critical transitions, occur.

The above described results consider scenarios in which plenty of data are available. When

time series are short, i.e. contain few data points, or when the rolling window used to

analyze time series contains few data points, predictions become less accurate (Fig. A4.24-

A4.29). This brings us to the question of how we may determine the data requirements

in practice. In this context, it is important to consider the two di↵erent aspects of our

analysis: ‘critical slowing down’ and ‘the direction of slowest recovery’. Critical slowing

down can only be detected over a longer time periods, i.e. in which conditions change,

while the direction of slowest recovery can be determined for a given set of conditions, i.e.

over a short period of time. When determining critical slowing down it is not necessary to

monitor the abundances of all species per se, while this is important when determining the

direction of slowest recovery. A more economical approach could thus be to monitor only

few species for indicators of critical slowing down, e.g. using the methods in Sche↵er et al.

(2009) and Dakos et al. (2012), and to determine the direction of slowest recovery only

once these indicators suggest that the system approaches a tipping point. In some cases,

one may even consider to skip monitoring of critical slowing down indicators altogether

and focus on determining the direction of slowest recovery in systems that are known to

be under stress.

Two aspects could cause our approach to be less data-hungry than expected. First, we are

only interested in the slope indicated by the first principal component and require, there-

fore, fewer data when compared to analysis in which also the higher-order components

are of importance. Secondly, we expect the distribution of abundances to become highly

asymmetric when a system approaches a tipping point. Dynamics become similar to a

low-dimensional system and the number of observations needed to accurately determine

the direction of slowest recovery becomes smaller when a system approaches a tipping

point (Fig. A4.30). It remains, however, di�cult to determine a priori what the data

demands are.

Previous studies have proposed rules of thumb that give an indication of the minimum

sample size required to perform principal component analysis, i.e. the method used to

determine the slope of the indicator. Such rules are often a function of the number of

variables, e.g. species abundances, and suggest that the minimum sample size required to

perform a principal component analysis should be at least n, e.g. 2, 10 or 20, times more

than the number of variables. Velicer & Fava (1998) and MacCallum et al. (1999) showed,

however, that such rules of thumb are invalid and that the required sample size depends

on the underlying correlation structure. A better approach to determine the minimum

sample size is therefore to draw subsets from the data and compare results for the subset

with those for the full set (Barrett & Kline 1981; Arrindell & Van der Ende 1985). When

subsets give similar results to the full set, enough data is likely obtained. Methods to
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determine the e↵ect of a change in sample size may vary form a simple comparison of the

direction indicated (as in Fig. A4.30) to more advanced bootstrapping techniques (as in

Shaukat et al. 2016).

In this study, we chose to use time-series analysis because it links closely with previous

work on early warning signals (Sche↵er et al. 2009; Dakos et al. 2012), and because data

collection e↵orts have, traditionally, focused on species abundances. For some ecosystems

it may, however, be easier to monitor changes in the structural properties of ecological

networks rather than in the specific way in which a system recovers from small perturba-

tions. When such monitoring e↵orts could be used to estimate (changes in) the e↵ective

relationships between species as described by the di↵erent elements of the Jacobian ma-

trix, we may be able to obtain a more direct measure of (changes in) the relative strengths

of feedback loops in ecosystems, their proximity to a tipping point, and their likely future

states. Our analysis suggests, for example, that the extent to which species are saturated

and the relative benefits received from mutualistic partners play a crucial role in determin-

ing the resilience and future state of mutualistic communities. These properties might be

measured in more direct ways, for example by determining the time spent by pollinators

on handling and searching for nectar and their relative visitation rates to di↵erent plant

species. Other theoretically-informed measures for other types of ecosystems may likely

provide us with other potential indicators of the direction of critical slowing down.

In a time when humanity’s biggest challenges and opportunities depend upon our capac-

ity to manage complex natural systems, new tools to foresee the risks and opportunities

associated with critical transitions are of increasing importance. Such tools may not only

be useful when addressing the question of what a system’s future state might be like, but

may also help to address questions such as to what extent individual species or inter-

actions are contributing to network resilience and which deliberate human interventions

could prevent or alter the outcome of impending critical transitions. Such approaches

are becoming increasingly useful as the availability of data on natural and other complex

systems is rapidly increasing.
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A4.1 EXAMPLE: UNDERMINING THE RESILIENCE

OF A 3-SPECIES NETWORK

To illustrate how di↵erences in the intrinsic properties of species and the arrangement

of interactions between them may a↵ect the overall resilience of mutualistic networks,

we use a model in which one pollinator species interacts mutualistically with two plant

species. The system’s overall resilience is highest when this pollinator species obtains

most resources from the more saturated plant species.

As conditions change from a situation in which pollinators obtain most resources from

highly saturated plant species P1, i.e. with high saturation term h1, to a situation in which

they obtain most resources from less saturated plant species P2, the network becomes

increasingly sensitive to small-scale stochastic perturbations. Eventually, a critical tran-

sition occurs away from the initial pristine state of the network towards a fully collapsed

network state in which both plant species and the pollinator species are extinct.

For illustrative purposes, we assume plants to be in steady-state and determine how chang-

ing conditions a↵ect the relationship between the net growth of the pollinator species,

dN (A)/dt, and the abundance of the pollinator species, N (A) (Fig. A4.1). The net growth

of the pollinator species is negative at low abundances. As a result, there are two alterna-

tive stable states; a pristine state in which the pollinator species has a positive abundance

and a collapsed state in which the abundance of the pollinator species is zero. These

two alternative stable states can be visualized more intuitively by a stability landscape of

which the slope corresponds to the rate at which the abundance of the pollinator species

changes, dN (A)/dt, valleys to the attraction basins of the alternative stable states, and

hilltops to the threshold between the two attraction basins. As conditions change, the

attraction basin of the initial pristine state of the network becomes increasingly small

and a small perturbation becomes su�cient to cross the threshold and cause a critical

transition towards the alternative fully collapsed state of the network.

Parameter settings: N̂i = 2, cii = 0.4, cij = 0.1, di = 0.2, h(A) = 0.3, h(P )
1 = 0.3,

h(P )
2 = 0.1, and ✏i = 0.01. Initial interaction strengths: (M = 0): ✓A0,11 = 1, ✓A0,12 = 0,

✓P0,11 = 1, and ✓P0,21 = 1. Final interaction strengths: (M = 1): ✓Afinal,11 = 0, ✓Afinal,12 = 1,

✓Pfinal,11 = 1, and ✓Pfinal,21 = 1.
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A4.2 EXAMPLE: CRITICAL SLOWING DOWN

IN A 4-SPECIES NETWORK

To illustrate the direction in which a community slows down prior to a critical transition

and how this might be used to predict a community’s future state, we use a model in

which two pollinator species interact mutualistically with two plant species. As described

in the main text, changing conditions undermine the resilience of this small network

by altering relative mutualistic benefits, ✓. As was the case with the earlier studied

3-species network (see Appendix A4.1), regime shifts occur in the here studied 4-species

community because the community’s initial pristine state is approached by a threshold (i.e.

a boundary between two attraction basins, Fig. 4.1). As conditions change, the minimum

size needed for perturbations to push the system over the approaching threshold becomes

smaller. The likelihood of a transition caused by the small-scale stochastic perturbations

incorporated in our model therefore increases and, eventually, a regime shift towards an

alternative state becomes inevitable.

The outcome of a transition depends on the way in which changing conditions undermine a

community’s resilience. One, some or all species may collapse to extinction and remaining

species may either gain or lose in abundance from a regime shift. Multiple thresholds

separating the community’s initial pristine state from di↵erent alternative stable states,

or ‘potential future states’, may exist prior to a regime shift. Changing conditions may

alter the number and nature of these alternative stable states, and the thresholds towards

them may or may not approach the network’s initial pristine state. Which alternative state

eventually becomes the community’s future state depends on which threshold towards

which future state eventually approaches a community’s initial state.

For illustrative purposes, we assume plants to be in steady state and determine how

changing conditions a↵ect the dynamics of the network. These dynamics can be visu-

alized intuitively by a stability landscape of which the slope corresponds approximately

to the rate at which the abundances of pollinator species change, dN (A)/dt (see methods

below). Every possible combination of pollinator abundances is represented by a unique

point in the stability landscape and alternative stable states are at the lowest point of

the landscapes valleys or ‘attraction basins’. Thresholds between attraction basins are

represented by ridges in the stability landscape. These thresholds are not equally high

at all places and have local maxima at hilltops and local minima at saddle points in the

network’s stability landscape. Attraction basins are shallow in between alternative stable

states and the saddle points on the thresholds that separate them. When approached by

a threshold, the attraction basin of the initial pristine state becomes increasingly shallow

and the network increasingly slow when recovering from perturbations in the direction of

the saddle point on the approaching threshold.

For the here studied 4-species network (Fig. 4.1) we found that the network’s pristine

state is initially accompanied only by a fully collapsed state, i.e. a state in which the
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abundance of all species is zero. The pristine state’s distance from the threshold towards

this state, however, remains large even when conditions change. A regime shift towards

a fully collapsed state remains, therefore, unlikely. Changing conditions start to rapidly

undermine the network’s resilience only after the appearance of the first of two additional

alternative stable states. These states correspond to partially collapsed network states

in which the abundance of some but not all species is zero. Both thresholds towards

both partially collapsed states approach the network’s pristine state. One threshold,

however, approaches the initial pristine state more closely than the other and eventually

a regime shift, caused by the small-scale stochastic perturbations to which the network

is permanently subjected, towards the partially collapsed state in the attraction basin

behind this threshold becomes inevitable.

As conditions change there are two decisive moments which are both preceded by a partic-

ular change in the network’s dynamics. The first is the moment at which the future state

of the network comes into existence as an alternative stable state in the network’s stability

landscape, and the second is the moment at which the regime shift towards this alter-

native stable state actually occurs. The direction in which the network recovers slowly

from perturbations changes substantially before the future state of the network comes into

existence from a direction that roughly indicates a full collapse to a direction that indi-

cates the future partially collapsed state of the network. The speed at which the network

recovers from perturbations, however, remains approximately the same. After the future

state of the network comes into existence, the network slows down dramatically when

recovering from perturbations in approximately the same direction (Fig. A4.2).
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Methods: To determine the rate at which pollinator abundances change as illustrated

in Fig. 1.B, we analytically determined this rate, v(A), for di↵erent pollinator abundances

at 200 by 200 grid points in the network’s phase plane as follows:

v(A) =

0

@
S(A)X

i=1

 
dN (A)

i

dt

!2
1

A
0.5

, (A4.1)

in which N (A)
i is the abundance and dN (A)

i /dt the net growth rate of pollinator species

i. At the same grid points we determined the height of the stability landscape with an

algorithm that keeps updating the height of the landscape until all slopes in between these

points are within a certain margin of error from the pollinators net growth rate. This

allows us to intuitively show the position of alternative stable states, which are found at the

bottom of the landscapes valleys or ‘attraction basins’, and the thresholds between them,

which correspond to hills or ridges in the landscape. The stability landscape produced

with this algorithm, is a useful tool to intuitively illustrate the idea behind our method.

As our system is non-gradient, it is not a way to determine the potential energy of the

system.

Parameter settings: N̂i = 2, cii = 0.4, cij = 0.1, di = 0.2, h(A)
1 = 0.1, h(A)

2 = 0.3,

h(P )
i = 0.3, and ✏i = 0.04. Initial interaction strengths: (M = 0): ✓A11 = 0.7, ✓A12 = 0.3,

✓A21 = 0.5, ✓A22 = 0.5, ✓P11 = 0.5, ✓P12 = 0.5, ✓P21 = 0.3, ✓P22 = 0.7. Final interaction strengths:

(M = 1): ✓A11 ⇡ 0.83, ✓A12 ⇡ 0.17, ✓A21 ⇡ 0.10, ✓A22 ⇡ 0.90, ✓P11 ⇡ 0.90, ✓P12 ⇡ 0.10, ✓P21 ⇡ 0.17,

and ✓P22 ⇡ 0.83

Conditions analyzed for Fig. 1 in the main text: M = 0.31, M = 0.66, and

M = 0.87.



4

A4.3 SIMILARITY INDICATED AND OBSERVED SHIFT 115

A4.3 SIMILARITY BETWEEN THE INDICATED

AND OBSERVED SHIFT

As explained in the main text, the slope of the indicator is determined by the first principal

component (Fig. A4.4.C), while the eventual (up- or downward) direction of the indicator

along the first principal component is determined by the direction in which time points

are skewed (Fig. A4.4.D-E). To asses the performance of our indicator, we evaluate the

performance of the first principal component and the skewness of the projected time points

independently. An accurate slope, means that the indicator performs well at predicting

the relative gain or loss of species and which species shift in opposite directions (i.e. an

‘accurate PC1’). The indicated direction is, however, only fully ‘accurate’ when the actual

winners and losers are also indicated correctly. This depends on the direction along the

first principal component in which time points are skewed.

To evaluate the performance of the first principal component, we determine the di↵erence

between the slope of our indicator and the direction of the observed shift in abundance.

We do this by determining the angle, ✓, between the direction of the indicator and the

observed shift as follows:

✓ = cos�1 I ·�N (A)

|I||�N (A)| ,
(A4.2)

in which I is the indicator of a network’s future state and �N (A) the observed shift in

pollinator abundances. I · �N (A) indicates that we take the dot product between these

two vectors. To determine �N (A), we take the mean abundances over 200 time steps at

500 steps before the tipping point and subtract it from the mean abundances 500 steps

after the tipping point was found. Because we want to evaluate the accuracy of the first

principal component, and not whether points are also skewed in the right direction, we

take �I as the input for the formula above when we find an angle > ⇡/2 (i.e. > 90

degrees). Both I and �N (A) are vectors of which the number of dimensions is equal to

the number of species analyzed. The smaller the angle, the more similar the direction of

the two vectors.

Two random vectors in a ten-dimensional space are more likely to be orthogonal than two

random vectors in a three-dimensional space. More extreme small or large angles become

less likely as the number of dimensions increases (Fig. A4.5). How ‘special’ it is to find a

certain angle between the indicated and the observed shift thus depends on the number

of dimensions in a system. As a measure of how di↵erent the indicated direction is from

the observed regime shift, we determine for the observed angle, ✓, the likelihood that two

unrelated random vectors have an equal or smaller angle. As a measure of similarity, we

take one minus this probability, and we consider the indicator’s slope to be accurate when

this measure of similarity is above 0.99.
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To determine the aforementioned probability, we use the following probability density

function:

h(✓) =
1p
⇡

�(
S(A)

2
)

�(
S(A) � 1

2
)

· (sin ✓)S(A)�2, (A4.3)

in which S(A) is the number of dimensions and h(✓) the probability density for a certain

angle ✓ (ref. Cai et al. (2013)). Our method may be interpreted as a test whether the null

hypothesis that I and N are two random vectors is true. This hypothesis is rejected when

angle is found to be significantly smaller than the expected angle between two random

vectors, when the one-sided p-value is smaller than 0.01 (i.e. similarity > 0.99).

To evaluate the tendency of time points to be skewed in the direction of a network’s

future state, we determine the skewness of the time points projected on the first principal

component. When points are skewed in the direction of the network’s future state, we

report a positive skewness. When points are skewed in the opposite direction, we report a

negative skewness. We consider a positive skewness as accurate and a negative skewness

as inaccurate. A strong positive or negative skewness is considered more accurate or

inaccurate than a weak positive or negative skewness.
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A4.4 TIME SERIES ANALYSIS

Unless stated otherwise, we determine the dominant direction of fluctuations in a rolling

window of 10% of the entire time series (e.g., 2000 out of 20.000 time points) to detect

changes in the direction and extent in which time points are distributed asymmetrically.

The choice of this window size is to some extent arbitrary. A too small window leads to

irregular trends, while a too large window smooths out the trends. To test whether the

size of the window chosen influences our results, we make additional analysis in which we

use a window size of 0.005, 0.1, 0.5, 0.1, 5,10, 20 and of 50% of the time series. The rolling

window is moved along the time series with steps of 1% of the time series, independent

of the window size. As time passes by, the direction and magnitude of the indicator is

thus computed every 200 time steps in a window containing the last 2000 time steps when

using a window size of 10% of a time series with a length of 20.000 time points.

Far from a tipping point, time points may be skewed only weakly. When this is the case,

sudden shifts of nearly 180 degrees may occur in the direction of the indicator when time

points are skewed in a di↵erent direction along the first principal component. Clearly, such

large shifts in direction do not occur because the network’s future state has changed. We,

therefore, correct previously found indicator values such that there is no change larger

than 90 degrees between two consecutive points at which the indicator’s direction was

determined. We assume the last direction in which time points were found to be skewed

to be the accurate one.

To determine whether there is a significant increase in the indicator’s magnitude, we

determine the Kendall rank correlation coe�cient, ⌧ , for the last ten points at which

the indicator’s magnitude was computed. We consider the increase significant when this

coe�cient was positive and its p-value < 0.05. Once a significant increase was found, we

tested whether the increase remained significant by determining Kendall’s correlation for

the last eleven points the next time the indicator’s magnitude is determined, for twelve

points the time after that, and so on until the tipping point is reached. We would again

look at the last ten points when the increase was found to not be significant anymore. By

doing this, we could determine the range in conditions in which the indicator’s magnitude

increased significantly.

As a measure of a ‘regime shift’ we determined whether there was a change in abundance

of more than 1.5 over a period of 1% of the entire time series (200 time steps). We did

this by taking the mean abundances over a period of 200 time steps before this period and

200 time steps after this period and determining Euclidean distance between these two

mean abundances. To make sure that this large shift in abundances was not a temporal

large deviation from the species’ mean abundances, we added as a second criterion that

the abundance of at least one species should be near extinction, i.e. below 0.1.

We did not apply any preprocessing to handle trends in the time series. We expect
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the indicator to be relatively robust against such trends, because trends only alter the

direction of the first principal component when their e↵ect on this direction is stronger

than the e↵ect of critical slowing down. Not applying any preprocessing is a good way to

test this robustness. When using the indicator as part of a di↵erent study it may, however,

be worth considering to apply a preprocessing method (see ref. Dakos et al. (2012)). It

may improve the performance of the indicator, especially when trends are strong.
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A4.5 ADDITIONAL INFORMATION BIPARTITE

MUTUALISTIC NETWORKS

Nontrivial equilibrium abundances, N̂ , competitive interaction strengths, c, mortality

rates, d, and saturation terms, h, are randomly sampled from predefined probability

distributions, and the total amount of resources received by species i at the system’s

nontrivial equilibrium, Ri(N̂ (P )), are assigned such that the rate at which abundances

change at the system’s nontrivial equilibrium, dN̂ (P )/dt, is zero:

Ri(N̂
(P )) =

PS(A)

j=1 cijN̂
(A)
j + di

1� hi(
PS(A)

j=1 cijN̂
(A)
j + di)

. (A4.4)

The total amount of resources provided at the system’s nontrivial equilibrium, Ri(N̂ (P )),

is thus approximately the same for highly specialized and more generalist species, pro-

vided that their losses due to competition, c, and mortality rates, d, and their nontrivial

equilibrium abundances, N̂ , are similar.

The extent to which species are saturated is determined by the total amount of resources

provided, Ri(N̂ (P )), and the rate at which species become saturated as determined by

saturation term hi. In our simulations, we assume nontrivial equilibrium abundances, N̂ ,

and inter- and intraspecific competition, cij and cii, to be similar for all species. Highly

saturated species are, therefore, the ones with a high hi. Species are saturated relatively

quickly, and, according to equation A4.4, the total amount of resources provided at the

system’s nontrivial equilibrium is high when species have a high hi.

Parameters are assigned such that there are substantial di↵erences in the extend in which

species are saturated by drawing saturation terms, hi, from a scaled beta distribution with

range ⇠ (0.05, 0.35) and shape parameters ↵ = 1 and � = 5. Due to this distribution,

there are few highly saturated species, i.e. hi close to 0.35, and many non-saturated

species, i.e. hi close to 0.05. Strong mutualistic interactions between non-saturated

species lead to strong positive feedbacks. Non-saturated species thus need to obtain a

relatively large share of resources from a few, highly saturated species for the network to

be stable. Relative mutualistic benefits at initial conditions, ✓0,ik, are therefore ordered

such that larger benefits are obtained from the more saturated species. To make sure

that the sum of all relative benefits is one, we take relative mutualistic benefits, ✓0,ik,

from a symmetric Dirichlet distribution. The distribution’s concentration parameter, ↵,

determines the extent in which species are specialized and is, for each species, taken from

a uniform distribution between zero and one.

To explore how transitions towards oscillating, chaotic or other complex dynamics caused

by delayed negative feedbacks may influence the performance of the indicator, we analyze
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several data sets of which the strength and variability in interspecific competitive interac-

tion strengths, cij, varies. The tested parameter ranges are: cij = 0, cij ⇠ U(0.02, 0.08),

cij ⇠ U(0.04, 0.16), cij ⇠ U(0.06, 0.24), cij ⇠ U(0.08, 0.32), cij ⇠ U(0.10, 0.40),

cij ⇠ U(0.12, 0.48), and cij ⇠ U(0.14, 0.56). Intraspecific competition strengths, cii, are

taken from ⇠ U(0.9, 1.1). Delayed negative feedbacks become stronger as the strength

and variability of interspecific competition increases. Simulations are made for commu-

nities of 10 plant and 10 pollinator species. Initial equilibrium abundances, N̂0,i, and

mortality rates, di, are taken from N̂0,i ⇠ U(1.5, 2.5) and di ⇠ U(0.15, 0.25). Initial and

final nontrivial equilibrium abundances are assumed to be equal, N̂final,i = N̂0,i.

Changing environmental conditions, M , lead to an increase in the relative mutualistic

benefits received from some, and a decrease in the relative benefits received from other

species. We assume the distribution of interaction strengths of the final network, at

M = 1, to be quite heterogeneous (Fig. A4.6). We select, therefore, with a probability

of 0.75, interactions of which the interaction strength goes to zero, ✓final,ik = 0. To the

remaining interactions, relative interaction strengths are assigned by taking them from

a uniform Dirichlet distribution (↵ = 1). The ‘diet breath’ of plants and pollinators

thus tends to become more narrow as could be the case under various scenarios of global

environmental change (Memmott et al. 2007; Burkle et al. 2013).

As conditions change, either a single eigenvalue or a pair of complex conjugate eigenvalues

goes to zero. In the first case we are dealing with a saddle-point approaching the network’s

initial state, caused by a positive feedback. In the second case, we are dealing with a Hopf

bifurcation caused by a delayed negative feedback.

Data sets consist of 100 initial networks. For each network, 10 final distributions of relative

mutualistic benefits, ✓final,ik, were drawn, allowing us to determine the extent in which a

community’s future state depends on the specific way in which relative mutualistic benefits

are changed. Parameters were assigned such that this dependency is high. Networks were

discarded from a data set when they were unstable at initial conditions, M = 0. We

determined the frequency at which this occurred as a measure of how di�cult it is to

find a stable solution for the initial networks of a given data set. The final distribution of

relative mutualistic benefits was redrawn either when the network would become unstable

within the range of conditions M = (0, 0.5), or when a network would still be stable at

M = 1.

To test whether the indicator also works when equilibrium abundances change, we ana-

lyzed networks of 10 plant and 10 pollinator species of which the final equilibrium abun-

dances are di↵erent. We do this by changing the nontrivial equilibrium abundances of

species as follows:

N̂⇤
i = N̂0,i + (N̂final,i � N̂0,i)M, (A4.5)
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in which N̂0,i is the initial, N̂final,i the final, and N̂⇤
i the actual nontrivial equilibrium

abundance of species i. The total amount of resources provided at the system’s nontrivial

equilibrium, and the strengths of mutualistic interactions are determined by equations 4.4

and A4.4. We tested three scenarios. One in which the nontrivial equilibrium abundances

of species tend to increase, N̂final,i ⇠ U(2, 3), one in which they stay the same on average

N̂final,i ⇠ U(1.5, 2.5), and one in which they tend to decrease N̂final,i ⇠ U(1, 2). Compet-

itive interaction strengths were taken from the following distributions: cii ⇠ U(0.9, 1.1)

and cij ⇠ U(0.02, 0.08). Changing abundances a↵ect all relationships as described by the

Jacobian matrix. The main e↵ect of a decline in abundance is, however, a reduction of the

direct negative e↵ects of species on themselves which undermines resilience. Increasing

abundances tend to promote resilience.

To test whether the indicator may accurately indicate the future state of larger networks,

we analyzed networks of 10 and 20, 10 and 40, 20 and 10, 20 and 20, 20 and 40, 40 and 10,

40 and 20, and 40 and 40 plant and pollinator species. We assigned competitive interaction

strengths such that the rate at which species lose in abundance due to competition,PS(A)

j=1 cijN
(A)
j N (A)

i , is approximately the same for di↵erent numbers of species, as well as

the relative di↵erence between intra- and interpecific competition, cij/cii. When a species

group consisted of 10 species we assumed cii ⇠ U(0.9, 1.1) and cij ⇠ U(0.02, 0.08). When

a group consisted of 20 species cii ⇠ U(0.67, 0.82) and cij ⇠ U(0.015, 0.06), and when a

group consisted of 40 species cii ⇠ U(0.44, 0.54) and cij ⇠ U(0.01, 0.039). Initial and final

equilibrium abundances were assumed to be equal, N̂final,i = N̂0,i.

The amount of noise, determined by standard deviation �, is assumed to be equal for

all species. Unless stated otherwise, we assume standard deviation � = 0.1. Additional

simulations were made with lower and higher noise levels, � = 0.01, � = 0.05, � = 0.15, and

� = 0.2 to make sure that this does not qualitatively alter the results. Higher noise levels

were not tested because they would lead to an almost immediate collapse. Unless stated

otherwise, model generated time series had a length, T , of 20.000 time steps. Additional

simulations were made in which time series had a length of 100, 200, 1.000, 2.000, 10.000,

and 100.000.
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A4.6 ADDITIONAL INFORMATION UNIPARTITE

MODEL OF FACILITATION

Nontrivial equilibrium abundances, N̂ , interspecific facilitation rates, �ij, critical abun-

dances Ai, interspecific competitive interaction strengths, cij, carrying capacities, K, and

mortality rates, d, are randomly sampled from predefined probability distributions. In-

traspecific facilitation rates, �ii, and intraspecific competition rates, cii, are one. To make

sure that the rate at which abundances change at the nontrivial equilibrium, dN̂i/dt, is

zero, we assign the intrinsic growth rates, r, as follows:

ri =
diN̂iAiKi

(
PS

j=1 �ijN̂j � Ai)(Ki �
PS

j=1 cijN̂j)N̂i

. (A4.6)

The contribution of species to the overall resilience of a network is determined by critical

abundance Ai. Species with a high critical abundance, Ai, collapse more easily and

the overall resilience of the community is highest when such species are facilitated by

species with a low critical abundance. A change from such a distribution to a more

random distribution of facilitative interaction strengths will undermine resilience. To

generate time series in which the resilience of the here described facilitative communities is

undermined, we assume that conditions, M , a↵ect facilitative interactions as follows:

�⇤ij = �0,ij + (�final,ij � �0,ij)M, (A4.7)

in which �0,ik is the initial, �final,ik the final, and �⇤ij the actual facilitative interaction

strength. Conditions, M , change from zero to one over time. We assume that the total

amount of facilitation received,
PS

j=1 �ijNj, remains equal as conditions change. We

therefore determine the final facilitative interaction strength as follows:

�final,ij =
✓ij
PS

k=1 �ikN̂k

N̂j

, (A4.8)

in which ✓ij is the fraction of the total facilitation received by species i from species

j.

We assign parameters such that there are substantial di↵erences in the critical abundances

of species by drawing critical abundances, Ai, from a scaled beta distribution with ↵ = 5

and � = 1 and range ⇠ (0, 1.5). Due to the beta distribution, there are few highly vigorous

species (i.e. Ai close to 0) and many non-vigorous species (i.e. Ai close to 1.5). The

initial facilitative interaction strengths are taken from the following uniform distribution:

�0,ij ⇠ U(0.2, 1.8). Initial facilitative interaction strengths are ordered such that species
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receive most facilitation, i.e. highest �0,ij, from species with the lowest Ai. We assume

that as conditions change, the strength of some facilitative interactions increases strongly

while others approach zero. Final relative facilitative benefits, ✓final,ik, are therefore

selected with a probability of 0.75 and set to zero. To the remaining interactions, relative

benefits are assigned by taking them from a uniform Dirichlet distribution (↵ = 1). As

with the model of mutualistically interacting species, we chose for this distribution of

critical abundances, Ai, and facilitative interaction strengths �ij, because it leads to a

high variety in potential future states to which a network may shift. Other parameters

and equilibrium abundances are taken from the following uniform distributions: N̂i ⇠
U(1.5, 2.5), cij ⇠ U(0.04, 0.16), di ⇠ U(0.15, 0.25).

Simulations were made with networks of 10, 20 and 40 species. As for the bipartite

model of mutualistically interacting species, we assign parameters such that the rate at

which abundance is lost due to competition,
PS

j=1 cijNj/Ki, remains approximately the

same for di↵erent species numbers, as well as the relative di↵erence between intra- and

interpecific competition (see main text). Carrying capacities, Ki, were therefore taken

from respectively Ki ⇠ U(5, 6), Ki ⇠ U(7.63, 9.15), and Ki ⇠ U(12.89, 15.47), depending

on the number of species.

The amount of noise, determined by standard deviation �, is assumed to be equal for all

species. For the results shown in this document we assume standard deviation � = 0.05.

As with the model of mutualistically interacting species time series had a length, T , of

20.000 time steps.
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A4.7 SUPPLEMENTARY RESULTS

Independent of the parameter ranges chosen, we found that regime shifts were preceded

by a substantial period in which the indicator’s magnitude increases significantly, i.e.

the ‘critical range’. Our indicator would, provided that the future state is indicated

accurately, point towards a network’s future state during a substantial part of this period

(Fig. A4.7). In Fig. A4.8 we provide information about the critical ranges as observed

in a single data set (cij ⇠ U(0.02, 0.08)). These results are exemplary for the other data

sets and show that our indicator consistently indicates a network’s future state during the

period in which the network slows down.

Cascading collapses occur at an intermediate range of competitive interaction strengths

most likely due to the nature of e↵ective relationships between species, i.e. the combined

e↵ect of all direct and indirect interactions (Fig. A4.9). When there is no competition,

e↵ective relationships are positive and species collapse as one group. When competition

is strong, most e↵ective relationships are negative and species collapse independently.

Cascading collapses are only likely when e↵ective relationships are a mix of positive and

negative relationships. When interspecific competitive interaction strengths, cij, were

taken from ⇠ U(0.02, 0.08), we found that such likely cascading, full network collapses

took up a bit more than 12% of the data set. For specific parameter ranges not tested by

us, this percentage may be higher.

In Fig. A4.10 we provide examples of two cascading collapses and one immediate network

collapse. Species that collapsed a bit later, were also the ones for which the indicated

loss in abundance was smallest, suggesting that the indicator indicates the initial regime

shift accurately. The amount of time in between two consecutive partial network collapses

can be extremely small. Also when cascades are not clearly visible, we suspect therefore

that the inaccurate prediction of a full network collapse is caused by the occurrence of a

cascading collapse.

In Fig. A4.13 we provide an example of a network for which the future state is hard

to predict because it may shift to several alternative future states. When making five

simulations in which relative mutualistic benefits, ✓ik, are changed in the exact same way

by changing conditions, M , we found that the network shifted to four di↵erent future

states. The future state of this network is determined by the only stochastic element in

our model; the small-scale perturbations to which the network is permanently subjected.

Our indicator accurately indicates two of the future states to which the network may shift,

but does not indicate the other future states. A likely explanation for the several future

states to which this system may shift is the fact that this system is approaching a Hopf

bifurcation, leading to oscillating (Fig. A4.14), chaotic or other complex dynamics (Fig.

A4.15). Such dynamics may explain a high sensitivity to perturbations in more than one

direction.
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In Fig. A4.18-A4.20, we show examples of time series in which not only the relative

benefits, ✓ij, change over time. The nontrivial equilibrium abundances, N̂i, and thus the

total gain from mutualistic interactions, Ri(N̂i), changes as well. We found that a change

in abundance over time does not have a strong e↵ect on the performance of the indicator

(Fig. A4.17). In comparison to data sets in which abundances stay (on average) the

same, full network collapses are much less frequent when abundances increase and much

more frequent when abundances decrease. Quite a large fraction of full network collapses

is indicated accurately when abundances decrease. Cascading collapses may occur less

frequently because all species experience a similar loss in resilience as a consequence of a

decline in abundance. Another di↵erence is that the length of the critical range tends to

be a bit shorter when abundances in- or decrease.

In Fig. A4.21 and A4.22, we show that the indicator performs well, also when we ap-

ply our method to networks with di↵erent numbers of plant and pollinator species. Full

network collapses become less common as the number of species increases, as well as

the occurrence of cascading network collapses. An explanation for this e↵ect of an in-

crease in species number is that the loss in abundance due to competition with other

species,
PS(A)

j=1 cijN
(A)
j N (A)

i � ciiN
(A)
i N (A)

i , increases substantially as the number of species

increases. Systems with many species may, therefore, be comparable with smaller net-

works in which interspecific competition is relatively strong. In those networks we also

observed that full network collapses were less frequent. Increasing numbers of species did

not have clear e↵ect on the length of the critical range, nor on the fraction of the critical

range in which the future state was indicated accurately by the slope of the indicator (Fig.

A4.22). We did, however, found some e↵ect on the skewness of time points projected on

the first principal component. The frequency at which we found that points were skewed

in the wrong direction increased as the number of species increases.

In Fig. A4.23, we show results for a more general model of competition and facilitation

(see main text). The general behavior and performance of the indicator is similar to the

results obtained with the mutualistic network model. The overall resilience of the networks

tested seems a bit lower than the resilience of the mutualistic networks (this depends on

parameter settings). To prevent networks from collapsing almost immediately, at M ⇡ 0,

we chose a lower noise level of � = 0.05. This relatively low resilience may also explain

the relatively high frequency of cascading collapses in networks of 10 species.
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A4.8 SUPPLEMENTARY FIGURES

Figure A4.1: Changing conditions undermining the overall resilience of a small mutualistic

network. The network consists out of one pollinator, A, and two plants species of which

plant species P1 is more saturated than plant species P2. For illustrative purposes, we assume

plants to be in steady-state. (A) Time series of the pollinator species and the network at

di↵erent conditions (I, II, and III). As indicated by the thickness of the network’s arrows,

changing conditions alter the relative mutualistic benefits, ✓, such that the pollinator species

becomes increasingly dependent on non-saturated plant species P2. This undermines the

overall resilience of the network and leads to a full collapse of the network at which both plant

species (not shown) and the pollinator species (shown) collapse to zero. (B) The net growth

rate, dA/dt, and the stability landscape of the pollinator species at conditions I, II and III. As

conditions change, the initial pristine state of the network, 1, is approached by a threshold,

i.e. a hilltop in the stability landscape, and a small perturbation becomes su�cient to cause

a regime shift towards fully collapsed state 2.
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Figure A4.2: The slope of the small mutualistic network’s stability landscape reflecting the

speed at which pollinator abundances change, va, at di↵erent conditions, M . As in Fig. 2

of the main text, alternative stable states (balls), saddle points (yellow dots), and hilltops

(grey dots) are surrounded by areas in which the landscape’s slope, and thus the rate at

which abundances change, is nearly zero (indicated in orange). Higher speeds (blue) are

found further away from these points. The network recovers slowest from perturbations in

the direction of the saddle point on the nearest threshold and slows down in the direction of

the saddle point on the threshold approaching the network’s initial pristine state. Changing

conditions alter the shape of the network’s stability landscape in a non-linear way. After a

period in which there is almost no change (M = [0, 0.31]), the direction in which the network

recovers slowest from perturbations (see yellow arrow) changes substantially from a direction

that roughly indicates a full collapse to a direction indicating the future partially collapsed

state of the network (M = [0.31, 0.59]). After the network’s future state comes into existence,

the network slows down dramatically in approximately the same direction (M = [0.59, 0.87]).
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Figure A4.3: Example of a time series in which the small mutualistic network in Appendix

A4.2 approaches a tipping point. Conditions at window I,II and III correspond to the con-

ditions for which stability landscapes are shown in Fig. 1 of the main text. (A) At the

tipping point (M ⇡ 0.9) one pollinator species collapses to extinction, while the other gains

in abundance. (B) The distribution of points in the network’s phase plane representing the

abundances of species at di↵erent moments in time for time window I, II and III (see A). Far

from the tipping point, in window I and II, deviations from the species’ mean abundances

are relatively small. Close to the tipping point, in window III, the distribution of points in

the network’s phase space is highly asymmetrical. Deviations from the mean abundances in

time window III usually involve a simultaneous increase in the abundance of species A1 and

a relatively larger decrease in the abundance of species A2, suggesting that this will also be

the direction in which the network will shift once a threshold is passed.
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Figure A4.4: The measures of asymmetry together forming our indicator as they were

determined for window III in Fig. A4.3. (A) Time series of the two pollinator species in the

moving window. (B) Time points, representing species abundances at di↵erent moments in

time, in the phase plane of the network. (C) The first principal component (grey dotted line)

corresponding to the line in the phase plane along which variance is highest. (D) Direction

along the first principal component (grey arrows) in which time points deviate the most from

the species’ mean abundance, i.e. the direction in which time points projected on the first

principal component are skewed. (E) Distribution of the projected time points. (F) The

indicator, corresponding to a vector in the phase plane of the network (grey arrow). The two

components of this vector correspond to the species ‘scores on the indicator’. In this example,

we found a large negative score (-0.79) indicating a relatively large decline in abundance for

the pollinator on the x-axis and a relatively smaller positive score (0.32) indicating a relatively

smaller increase in abundance for the pollinator on the y-axis. The length of the indicator

corresponds to the amount of variance explained by the first principal component.
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Figure A4.5: Cumulative distribution function of the angle between two random vectors.

(A) Cumulative distribution function when these vectors have three dimensions. (B) Cumu-

lative distribution function when these vectors have ten dimensions. As can be seen from the

distributions, the probability of finding an angle of, for example, 40 degrees or less is much

smaller in a high dimensional system. Cumulative distribution functions are determined with

the help of the probability density function in ref. Cai et al. (2013).



4

A4.8 SUPPLEMENTARY FIGURES 131

Figure A4.6: Example of (A) a highly resilient mutualistic network and (B) a network

with a low resilience. Plant (circles) and pollinator species (squares) are ordered from highly

saturated (green/left) to non-saturated (red/right). The thickness of the lines between nodes

indicates relative mutualistic benefit ✓ij . In the highly resilient network species receive most

of their resources from highly saturated species, while this is not the case in the network with

a low overall resilience. The resilience of a network is undermined when relative benefits are

changed from the situation in A to the situation in B.
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Figure A4.7: The critical range (grey band) in which the indicator’s magnitude increases

significantly and the fraction of this range in which the indicator’s similarity to the observed

shift in abundance is larger than 0.99. In the here shown example, the length of the critical

period is 0.8-0.46 = 0.34. The slope of the indicator accurately indicates the future state, i.e.

similarity is > 0.99, during a fraction of 0.29/0.34 = 0.85 of this period. The full time series

is shown in Fig. 2.
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Figure A4.8: Overall statistics on the performance of the indicator when competitive inter-

action strengths, cij are taken from ⇠ U(0.02, 0.08). (A) The performance of the indicator

for di↵erent numbers of collapsed species. The fraction of regime shifts for which the change

in abundance was not well indicated is shown in red. The fraction accurately indicated by the

first principal component, but not by the direction in which time points are skewed is shown

in light blue. Fully accurate predictions are indicated in dark blue. (B) The skewness of time

points projected on the first principal component. A positive skewness means that time points

were skewed in the direction of the network’s future state. (C) The length of the critical range

in which the indicator’s magnitude increases significantly. (D) Kendall’s rank correlation, ⌧ ,

as determined for the critical range. (E) The fraction of the critical range in which the slope

of the indicator accurately indicates the future state, i.e. in which the similarity between the

first principal component and the observed shift in abundance is > 0.99. Results in panels

(B-E) are shown for regime shifts that were accurately indicated by the first principal compo-

nent. Box plots show the median and the upper and lower quartiles. Whiskers correspond to

the 9th and the 91st percentile.
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Figure A4.9: The number of pollinator species collapsing to extinction as observed in data

sets of 1000 regime shifts. Each panel shows results when sampling competitive interaction

strengths from a di↵erent parameter range (see ranges indicated). In the extreme case where

there was no competition (top left panel), we found almost exclusively full network collapses

(i.e. all ten pollinator species collapsed to extinction). As the strength of competition in-

creases, full network collapses become less frequent. Partial network collapses tend to be

small independent of the strength of competition, i.e. the most common partial collapse led to

the extinction of only one single pollinator species. The fraction of regime shifts for which the

change in abundance was not well indicated is shown in red. The fraction accurately indicated

by the first principal component, i.e. the slope of the indicator is accurate, but not by the

direction in which time points are skewed is shown in light blue. Fully accurate predictions

are indicated in dark blue.
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Figure A4.10: Two cascading collapses and one immediate collapse. (A) Example of a

cascading collapse that eventually leads to the collapse of four pollinator species. Three species

(blue, green and purple) collapse to extinction rapidly. A fourth (black) species collapses

as well, but remains for a short while at a lower abundance before collapsing to extinction

(red arrow, A.I). Out of the four species that collapse to extinction, the black species is

also the one for which the indicated loss in abundance is smallest (red circle, A.II). (B)

Example of a cascading collapse that eventually leads to a full collapse of the network (i.e.

the most common outcome of a cascading collapse). Two species (black and yellow) collapse

to extinction rapidly. The other species collapse as well, but remain for a short while at

a lower abundance before collapsing to extinction (red arrow, b.I). The indicated loss in

abundance of the rapidly collapsing species is much bigger than the loss indicated for the

species that collapse a bit later (red circles, B.II). (C) Example of a full network collapse

that was accurately indicated. All species collapse at approximately the same time (C.I). All

species were indicated to lose in abundance (C.II).
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Figure A4.11: Performance of the indicator for di↵erent noise levels (noise levels, ✏i, are

indicated on the x-axis). (A) The fraction of accurately indicated regime shifts (dark blue), the

fraction accurately indicated by the first principal component, i.e. the slope of the indicator is

accurate, but not by the direction in which time points are skewed (light blue), and the fraction

of inaccurately indicated regime shifts (red). (B) The skewness of time points projected on

the first principal component. A positive skewness means that time points are skewed in

the direction of a network’s future state. The skewness is shown for regime shifts that were

accurately indicated by the first principal component.
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Figure A4.12: The number of pollinator species collapsing to extinction as observed in data

sets of 1000 regime shifts when noise levels are low (left panel, ✏i = 0.05) and when noise levels

are high (left panel, ✏i = 0.2). Full network collapses were found to occur more frequently

when noise levels are high. The fraction of regime shifts for which the change in abundance

was not well indicated is shown in red. The fraction accurately indicated by the first principal

component, i.e. the slope of the indicator is accurate, but not by the direction in which time

points are skewed is shown in light blue. Fully accurate predictions are indicated in dark blue.
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Figure A4.13: Five time

series of a network that

shows ‘unpredictable’ be-

havior. Even though the re-

silience of the network is un-

dermined in the exact same

way, the network may shift

to several alternative future

states. The future state of

the network is determined by

the only stochastic element

in our model; the small-

scale perturbations to which

the network is permanently

subjected. We found that

this network may shift to (at

least) four di↵erent future

states (i.e. Euclidean dis-

tance between future states

> 1.5). Of these future

states, future state A and

D are well indicated by the

indicator (i.e. similarity >

0.99). The future state of

the network is the same only

in time series 2 and 3.
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Figure A4.14: Example of a network approaching a supercritical Hopf bifurcation. (A)

Time series of the network as conditions change. (B) Time series at fixed conditions just

after the bifurcation point when assuming there are no external perturbations (✏ = 0). As

can be seen from the dynamics we are dealing with a limit cycle. In the presence of external

perturbations, the fluctuations caused by these dynamics are amplified and lead to a partial

collapse of the network.
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Figure A4.15: Example of a network approaching a subcritical Hopf bifurcation. (A) Time

series of the network as conditions change. (B) Time series at fixed conditions just after

the bifurcation point when assuming there are no external perturbations (✏ = 0) and when

excluding the condition that populations of a size smaller than 0.001 have a zero growth

rate (dN/dt=0). As can be seen from the dynamics we are dealing with chaotic/heteroclinic

dynamics. The condition that populations of a size smaller than 0.001 have a zero growth rate

leads to a partial collapse of the network. Which species are the first to cross this threshold is

strongly influenced by the stochastic perturbations that are constantly disturbing the network.
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Figure A4.16: The probability of finding a stable solution at initial conditions, M = 0,

when sampling competitive interaction strengths from di↵erent parameter ranges (ranges are

indicated on the x-axis). As the strength of competition increases, it becomes increasingly

di�cult to find a stable solution. When there is no competition between species, the proba-

bility of finding a stable solution is nearly one. For the highest competition level we tested,

i.e. (0.14,0.56), this probability was below 0.01. Results are shown for networks of 10 plants

and 10 pollinators as described in Appendix A4.5.
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Figure A4.17: Overall statistics on the performance of the indicator when nontrivial equi-

librium tend to increase (I), change but stay the same on average (II), and when abundances

tend to decrease (III). Results are shown for data sets of 1000 regime shifts. As in Fig. A4.8

we show: (A) the performance of the indicator for di↵erent numbers of collapsed species,

(B) the skewness of time points projected on the first principal component, (C) the length

of the critical range in which the indicator’s magnitude increases significantly, (D) Kendall’s

rank correlation, ⌧ , as determined for the critical range, and (E) the fraction of the critical

range in which the slope of the indicator accurately indicates the future state. Box plots show

the median and the upper and lower quartiles. Whiskers correspond to the 9th and the 91st

percentile.
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Figure A4.18: Directional slowing down when abundances tend to increase. (A) Time series

of species belonging to one set of a bipartite mutualistic network, i.e. the pollinators. At the

tipping point two species collapse to extinction (red and light blue). (B) The indicator of

the future state measuring the direction in which fluctuations are distributed asymmetrically.

(C) The magnitude of the indicator, reflecting the extent in which fluctuations are distributed

asymmetrically, plotted together with the accuracy measured as the similarity between its

direction and the observed shift in abundance. Grey bands indicate the period in which the

indicator’s magnitude increases significantly. (D) The observed changes in abundance versus

the scores on the indicator just before the tipping point. Extinct species are indicated with

crosses. The initial network, at M=0, is the same as in Fig. 4.2.
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Figure A4.19: Directional slowing down when abundances change, but stay the same on

average. (A) Time series of species belonging to one set of a bipartite mutualistic network,

i.e. the pollinators. At the tipping point a single species collapses to extinction (purple). (B)

The indicator of the future state measuring the direction in which fluctuations are distributed

asymmetrically. (C) The magnitude of the indicator, reflecting the extent in which fluctu-

ations are distributed asymmetrically, plotted together with the accuracy measured as the

similarity between its direction and the observed shift in abundance. Grey bands indicate the

period in which the indicator’s magnitude increases significantly. (D) The observed changes

in abundance versus the scores on the indicator just before the tipping point. Extinct species

are indicated with crosses. The initial network, at M=0, is the same as in Fig. 4.2 and Fig.

A4.18.
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Figure A4.20: Directional slowing down when abundances tend to decrease. (A) Time

series of species belonging to one set of a bipartite mutualistic network, i.e. the pollinators.

At the tipping point three species collapse to extinction (yellow, purple and orange). (B)

The indicator of the future state measuring the direction in which fluctuations are distributed

asymmetrically. (C) The magnitude of the indicator, reflecting the extent in which fluctu-

ations are distributed asymmetrically, plotted together with the accuracy measured as the

similarity between its direction and the observed shift in abundance. Grey bands indicate the

period in which the indicator’s magnitude increases significantly. (D) The observed changes

in abundance versus the scores on the indicator just before the tipping point. Extinct species

are indicated with crosses. The initial network, at M=0, is the same as in Fig. 4.2, Fig. A4.19,

and Fig. A4.18.
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Figure A4.21: The performance of the indicator for networks of di↵erent size, i.e. for

di↵erent number of plant (rows) and pollinator species (columns). Each panel shows the

number of pollinator species collapsing to extinction as observed in data sets of 1000 regime

shifts. The fraction of regime shifts for which the change in abundance was not well indicated

is shown in red. The fraction accurately indicated by the first principal component, but not by

the direction in which time points are skewed is shown in light blue. Fully accurate predictions

are indicated in dark blue.
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Figure A4.23: Overall statistics on the performance of the indicator when predicting the

future state of a more general model of competition and facilitation. Results are shown for

networks of 10 (I), 20 (II) and 40 species (III). (A) The performance of the indicator for

di↵erent numbers of collapsed species. (B) The skewness of time points projected on the first

principal component. (C) The length of the critical range in which the indicator’s magnitude

increases significantly. (D) Kendall’s rank correlation, ⌧ , as determined for the critical range.

(E) The fraction of the critical range in which the slope of the indicator accurately indicates

the future state, i.e. in which the similarity between the first principal component and the

observed shift in abundance is > 0.99. Results in panels (B-E) are shown for regime shifts

that were accurately indicated by the first principal component. Box plots show the median

and the upper and lower quartiles. Whiskers correspond to the 9th and the 91st percentile.
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Figure A4.24: Directional slowing down as detected by the indicator when the total length of

a time series is 2.000 time steps. (A) The indicator of the future state measuring the direction

in which fluctuations are distributed asymmetrically. (B) The magnitude of the indicator,

reflecting the extent in which fluctuations are distributed asymmetrically, plotted together

with the accuracy measured as the similarity between its direction and the observed shift

in abundance. Grey bands indicate the period in which the indicators magnitude increases

significantly. (C) The observed changes in abundance versus the scores on the indicator just

before the tipping point. Extinct species are indicated with crosses. The initial network, at

M = 0, and the way in which this network is a↵ected by changing environmental conditions,

M , is the same as in Fig. 4.2. Changes in the direction and magnitude of the indicator are

determined with a rolling window of 10% of the entire time series, i.e. 200 out of 2.000 time

steps.



4

150 MUTUALISTIC COMMUNITIES BEYOND COLLAPSE

Figure A4.25: Directional slowing down as detected by the indicator when the total length

of a time series is 200 time steps. (A) The indicator of the future state measuring the direction

in which fluctuations are distributed asymmetrically. (B) The magnitude of the indicator,

reflecting the extent in which fluctuations are distributed asymmetrically, plotted together

with the accuracy measured as the similarity between its direction and the observed shift

in abundance. Grey bands indicate the period in which the indicators magnitude increases

significantly. (C) The observed changes in abundance versus the scores on the indicator just

before the tipping point. Extinct species are indicated with crosses. The initial network, at

M = 0, and the way in which this network is a↵ected by changing environmental conditions,

M , is the same as in Fig. 4.2. Changes in the direction and magnitude of the indicator are

determined with a rolling window of 10% of the entire time series, i.e. 20 out of 200 time

steps.
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Figure A4.26: Performance of the indicator when time series have a di↵erent length (lengths

are indicated on the x-axis). (A) The fraction of accurately indicated regime shifts (dark

blue), the fraction accurately indicated by the first principal component, i.e. the slope of the

indicator is accurate, but not by the direction in which time points are skewed (light blue),

and the fraction of inaccurately indicated regime shifts (red). (B) The skewness of time points

projected on the first principal component. A positive skewness means that time points are

skewed in the direction of a network’s future state. The skewness is shown for regime shifts

that were accurately indicated by the first principal component. Changes in the direction and

magnitude of the indicator are determined with a rolling window of 10% of the entire time

series.
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Figure A4.27: Directional slowing down as detected by the indicator when using a rolling

window of 1% of the entire time series, i.e. 200 out of 20.000 time steps. (A) The indicator of

the future state measuring the direction in which fluctuations are distributed asymmetrically.

(B) The magnitude of the indicator, reflecting the extent in which fluctuations are distributed

asymmetrically, plotted together with the accuracy measured as the similarity between its

direction and the observed shift in abundance. Grey bands indicate the period in which the

indicators magnitude increases significantly. (C) The observed changes in abundance versus

the scores on the indicator just before the tipping point. Extinct species are indicated with

crosses. The initial network, at M = 0, and the way in which this network is a↵ected by

changing environmental conditions, M , is the same as in Fig. 4.2.
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Figure A4.28: Directional slowing down as detected by the indicator when using a rolling

window of 0.1% of the entire time series, i.e. 20 out of 20.000 time steps. (A) The indicator of

the future state measuring the direction in which fluctuations are distributed asymmetrically.

(B) The magnitude of the indicator, reflecting the extent in which fluctuations are distributed

asymmetrically, plotted together with the accuracy measured as the similarity between its

direction and the observed shift in abundance. No significant increase in the indicator’s

magnitude was detected. (C) The observed changes in abundance versus the scores on the

indicator just before the tipping point. Extinct species are indicated with crosses. The initial

network, at M = 0, and the way in which this network is a↵ected by changing environmental

conditions, M , is the same as in Fig. 4.2.
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Figure A4.29: Performance of the indicator when the rolling window has a di↵erent length

(lengths are indicated on the x-axis). (A) The fraction of accurately indicated regime shifts

(dark blue), the fraction accurately indicated by the first principal component, i.e. the slope

of the indicator is accurate, but not by the direction in which time points are skewed (light

blue), and the fraction of inaccurately indicated regime shifts (red). (B) The skewness of time

points projected on the first principal component. A positive skewness means that time points

are skewed in the direction of a network’s future state. The skewness is shown for regime shifts

that were accurately indicated by the first principal component. Time series have a length of

20.000 time steps.
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Figure A4.30: The extend in which the size of a rolling window a↵ects the slope indicated

by the first principal component far from a tipping point (blue) and close to a tipping point

(orange). The y-axis corresponds to the di↵erence in angle between the first principal compo-

nent obtained for a window of 200 observations and for a window containing the number of

observations indicated on the x-axis. The e↵ect of an increasingly small window size on the

direction of the first principal component is, in this example, much smaller close to a tipping

point. Results are shown for the time series in Fig. 4.2.A at M=0.1 (blue) and M=0.78

(orange).
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The major, unanswered questions in ecology are often separated in two main classes: the

fundamental ones, aiming to understand the basic processes shaping and occurring in

ecosystems, and the applied ones, e.g. aiming to identify or reduce the risks associated

with changing environmental conditions (Sutherland, 2006; Sutherland et al., 2013). In a

time when ecosystems are confronted with rapid environmental change (Vitousek et al.,

1997; Millenium Ecosystem Assessment, 2005; Rockström et al., 2009; Intergovernmental

Panel on Climate Change, 2014; Ste↵en et al., 2015), it is, however, becoming increasingly

clear that predicting the consequences of changing environmental conditions requires a

fundamental understanding of the processes occurring in ecosystems. In particular, be-

cause such changes are likely to bring ecosystems outside of the range in conditions for

which data are available. Questions on the stability of ecosystems in the context of such

changes are thus both applied and fundamental, because their answers require the de-

velopment of novel theories and hypothesis. Ecosystems are complex systems of many

interacting species that may reorganize and shift towards alternative, potentially less de-

sirable states when critical points are passed. Extrapolation of existing trends will thus

not necessarily provide us with an accurate prediction of a system’s future state. De-

tailed mechanistic models, on the other hand, might fail to incorporate the processes that

are truly relevant for ecosystem dynamics, while more abstract models might be overly

simplistic. Avoiding unnecessary details and/or strong simplifications requires a funda-

mental understanding of the key processes responsible for the stable coexistence of species,

the services they provide, and the specific ways in which they might be undermined by

changing environmental conditions.

Integrating basic with applied fields of research requires, in my view, an appreciation for

the di↵erences between the words ‘complex’ and ‘complicated’, and ‘simple’ and ‘sim-

plistic’. Complex systems are systems with emerging properties that result from the

interactions between many components, while complicated systems are systems that are

di�cult to understand because of their complexity. Simple ideas may accurately describe

the processes occurring in complex systems, but only when they are based on a basic un-

derstanding of how they work. When such understanding is absent, they must necessarily

be simplistic. Life itself is an emerging property resulting from the chemical interactions

and other processes involved in the functioning of complex organisms, and most biological

and many non-biological systems have a complex nature. Approaches towards studying

complexity in ecology, however, di↵er from other fields of research because it is the com-

plexity of ecosystems itself or, more specifically, a diversity of species that is seen as an

important, valuable property. We care less about complexity in other systems, e.g. we

would be equally happy with a less complex brain as long as we remain equally intelligent,

and in technological or societal systems, complexity is often something we wish to reduce

when it is ine�cient or costly. It is, perhaps, this admiration for the complexity as well as

for the di↵erences among ecosystems that may have promoted the idea that ecosystems

are not only complex, but also complicated.
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The idea that ecosystems are complicated, or at least that they are more complicated

than many other complex systems is, in my view, debatable. E↵orts made over the past

150 years, as described in Chapter 1, provide a - still incomplete - but increasingly clear

image of what ecosystems are like. Ecosystems are unique, just like humans or other

complex organisms, but they also have many properties in common. In particular, simi-

larities were found in the properties determining ecosystem dynamics, such as recurring

structural patterns in ecological networks and the body masses of species determining

metabolic rates. The overall image that arises is one of intermediate complexity. The

number of species involved in ecological networks is, for example, usually much smaller

than the number of genes involved in gene regulatory networks, and ecosystem dynamics

are not necessarily more complex than, for example, changes in local climate conditions.

When studying ecosystems, we should thus not hesitate to apply the tools already avail-

able to study complex dynamical systems as they were often developed for other, more

complicated systems.

Some fields of research are particularly likely to develop insights in the dynamics of com-

plex systems that are of importance to ecology. Debates on whether complex morphologies

and other species traits are the result of external processes and natural selection or the

result of complex self-organizing processes held in the context of evolutionary develop-

mental biology, are, for example, akin to discussions on what determines the structure

and stability of ecosystems (Alberch, 1989; Kau↵man, 1993; Bastolla et al., 2009; Rohr

et al., 2014). We all know that oil droplets in water and soap bubbles are spherical and

that snowflakes have complex structures that emerge without natural selection. In living

systems it is, most likely, the interplay between natural selection and self-organization

that determines the shapes and forms we eventually observe (Alberch, 1989; Kau↵man,

1993). Such self-organization occurs because it is impossible for certain combinations of

traits to co-occur within a single organism, just as certain combinations of species cannot

co-exist in a single ecosystem. Such combinations are, like square droplets, intrinsically

unstable. In Chapter 2 we show that ecological network structures that promote such

intrinsic stability may come with a trade-o↵ in mutualistic plant-pollinator communities.

Communities in which species indirectly support each other may survive longer under in-

creasingly harsh circumstances. Once a tipping point is passed, however, species may also

collapse simultaneously because they depend on each other for survival. Similar trade-o↵s

may occur in other complex systems, such as in financial systems where similar network

structural patterns were found (May et al., 2008; Saavedra et al., 2009). Such systemic

shifts occur because of the specific way in which they are organized. Just like, when a

soap bubble pops, it has consequences for all the molecules forming a bubble because of

the specific way in which they interact with each other.

Other fundamental insights may come from studies on the interplay between network

structural patterns and the dynamics of complex systems. The Belgian biologist René

Thomas suggested in 1981, based on his analysis of ‘regulatory circuits’ or ‘feedback
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loops’ in gene regulatory networks, that alternative stable states may exist only when a

system contains at least one positive feedback and that sustained oscillations may occur

only when there is at least one negative feedback between two or more elements (Thomas,

1981). Conjectures that were later proven more rigorously by Snoussi (1998) and Gouzé

(1998). Critical transitions between alternative stable states in ecosystems are typically

associated with a gradual increase in the relative strength of positive feedbacks (Sche↵er

et al., 2001), and are certainly the most likely cause of instability in simple one-dimensional

models of ecosystem dynamics as well as in networks of mutualistically interacting species,

because the negative feedbacks required for oscillatory or other, more complex dynamics

are weak. Positive feedbacks are, however, not the only likely cause of instability in other

systems. The delayed negative e↵ects of predators and prey on themselves when either in-

or decreasing the abundance of the species they interact with are, for example, a known

cause of oscillations in the abundances of predators and prey (Rosenzweig & MacArthur,

1963; Rosenzweig, 1971; Levins, 1974; Puccia & Levins, 1985; Goldbeter, 1996). Chaotic

dynamics may occur when two such oscillators are coupled, e.g. in a food chain (Hastings

& Powell, 1991; McCann & Yodzis, 1994; De Feo & Rinaldi, 1998).

Observations in real food webs suggest that oscillatory or other, more complex dynamics

caused by strong predator-prey interactions are damped by many weak interactions (Mc-

Cann et al., 1998; Berlow, 1999; Neutel et al., 2002; Bascompte et al., 2005). In Chapter

3 we describe di↵erent types of critical transitions that may occur when such stabilizing

patterns are gradually undermined by changing environmental conditions. Perhaps sur-

prisingly, we found that a gradual decline leading to the extinction of a single species may

trigger abrupt regime shifts when the remaining set of species is unstable. Feasible food

webs, i.e. food webs in which the amount of resources available to species is su�cient

to maintain a population while being predated upon by other species, may also become

unstable without such a decline in abundance. Stability may be lost when boundaries in

parameter space are crossed leading to oscillatory or chaotic dynamics in the absence of

alternative stable states, or to transitions to alternative stable subsets of species when

such subsets are stable at the time of a transition. These findings are important be-

cause they point towards another potential cause of abrupt critical transitions in complex

ecosystems, namely an increase in the relative strength of delayed negative feedbacks.

Predicting a system’s future state after such transitions is di�cult, in particular when

changing environmental conditions have multiple simultaneous e↵ects on species and the

interactions between them, i.e. when the e↵ects of changing environmental conditions

are complex. A scenario that seems particularly likely in the context of climate change

which is known to simultaneously alter the distribution, phenology, physiology, behavior,

and relative abundances of species. Changes that, in turn, may a↵ect the strengths of

interactions between species (Kareiva et al. 1993; Winder & Schindler 2004; Suttle et al.

2007; Tylianakis et al. 2008; Doney et al. 2012; Blois et al. 2013; Burkle et al. 2013; Urban

et al. 2016; Romero et al. 2018; Usinowicz & Levine 2018).
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Large-scale critical transitions caused by small but complex environmental changes are

only likely when a system is close to a boundary in parameter space beyond which a shift

occurs towards a fundamentally di↵erent state, e.g. a partly or fully collapsed state (Fig.

5.1 and Chapter 3). Knowing the proximity and nature of such boundaries is thus of

great importance. The interrelationships between the properties of complex ecosystems,

the size of the area, and the nature of the boundaries to the area within which species

may coexist stably are, however, largely unknown (but see Bastolla et al. 2009, Rohr

et al. 2014, and Chapter 2), which makes it di�cult to assess the likelihood of large-

scale critical transitions in complex ecosystems. Some general rules may, however, exist.

Ecosystems in which species are limited by their capacity to handle resources provided

by other species, e.g. a prey or a mutualistic partner, rather than by the amount of

resources available, are less sensitive to changes in resource availability. This, in turn,

makes a decline in abundance less likely and reduces the strength of destabilizing positive

or negative feedbacks. Such ecosystems can thus be expected to be more like the situation

depicted in Fig. 5.1.B.I or C.I. When species are less saturated, more in depth analysis

are needed to be able to distinguish between the situation in Fig. 5.1.B.II and C.II.

Results in Chapter 3 suggest that network structural properties such as the number of

species and interactions, and the distribution of interaction strengths play an important

role in the likelihood of large-scale critical transitions. Such general properties may thus

give an indication of whether large-scale critical transitions are likely to occur in complex

ecosystems. Other, more specific indicators of a system’s likely future state may be ob-

tained when studying of the specific way in which the relative strengths of destabilizing

positive of negative feedbacks change under the influence of changing environmental con-

ditions. The specific arrangement of positive and negative interactions in destabilizing

negative feedbacks leading to oscillatory dynamics, for example, determines the order in

which species in- and decrease in abundance, and the nature of positive feedbacks de-

termines which species are likely to change in opposing directions when a system moves

away from an unstable equilibrium (Fig. 5.2). The dynamics of complex ecosystems after

impending critical transitions may thus, in part, be predicted when studying the specific

nature of destabilizing feedbacks prior to such regime shifts.

Systems in which positive feedbacks are strong relative to delayed negative feedbacks are

likely to behave more predictable than systems in which this is the other way around,

simply because the amplifying e↵ects of positive feedbacks are simpler than the com-

plex dynamics that may occur due to several interacting delayed negative feedbacks. In

Chapter 4 we show that such relative simplicity may allow us to look beyond impending

critical transitions and foresee the future state of communities in which mutually benefi-

cial interactions are strong relative to other interaction types. To make such predictions,

we build further on earlier work that has shown that system’s recover increasingly slowly

from perturbations prior to critical transitions, i.e. a phenomenon known as critical slow-

ing down (Wissel, 1984; Van Nes & Sche↵er, 2007). Such disturbances have a size (i.e.
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Figure 5.1: Complex, simultaneous e↵ects of climate change on the phenology, e.g. the

period of the year in which species are or become active, and the stable coexistence of species.

(A) Stability domain within which all species may coexist stably. When such a domain is

large, a system may handle a relatively large change in conditions. A possible e↵ect of climate

change away from an initial condition is indicated by a dot and arrow. (B) Example in which

a similar change in conditions remains within the stability domain (B.I), and an example in

which a boundary is crossed leading to the extinction of a single species (B.II). (C) Example

in which a similar change in conditions remains within the stability domain (C.I), and an

example in which a boundary is crossed leading to a partial or full collapse of an ecosystem

(C.II). Striped areas indicate regions with alternative stable states. Recovery from such a

collapse thus requires a relatively large change in conditions, i.e. hysteresis. Large, systemic

transitions as a consequence of small but complex environmental changes are only likely in

panel C.II. Similar graphs can be made for any change in environmental conditions and the

multiple, simultaneous e↵ects they might have on species and the interactions between them.
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Figure 5.2: Destabilizing e↵ects of three-species feedback loops around a system’s unstable,

nontrivial equilibrium. (A) Oscillatory dynamics caused by a negative feedback of three

negative interactions. An increase in species 1 is, with some delay, followed by a decrease

in species 2 which is followed by an increase in species 3 which, in turn, is followed by a

decrease in species 1. (B) Oscillatory dynamics caused by a negative feedback of two positive

and one negative interaction. An increase in species 1 is, with some delay, followed by an

increase in species 2 which is followed by an increase in species 3 which, in turn, is followed

by a decrease in species 1. (C) Amplifying e↵ect caused by a positive feedback of one positive

and two negative interactions. Species 1 and 2 increase while species 3 declines or vice versa

(depending on initial abundances) (D) Amplifying e↵ect caused by a positive feedback of

three positive interactions. Species 1, 2, and 3 decline or increase together (depending on

initial abundances). Feedbacks are negative when they consist of an odd number and positive

when consisting of an even number of negative interactions. Species are assumed to have a

direct negative e↵ect on themselves which has a stabilizing e↵ect. Dashed grey lines indicate

nontrivial equilibrium abundances.
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the total amount of change) and a direction (i.e. the relative amount of change in each

species) in the phase space of complex systems. The more similar a disturbance’s direction

to the direction in which increasingly small perturbations may cause critical transitions,

the stronger the e↵ect of critical slowing down. Provided that there are no oscillating,

chaotic or other complex dynamics, a system’s future state will most likely lie in the same

approximate direction. This ‘direction of critical slowing down’ may thus provide us with

an indicator of a system’s future state, and may help us assess whether impending critical

transitions have large, systemic consequences. As an indicator of the direction of critical

slowing down we propose to use the direction in which the distribution of fluctuating

species abundances becomes increasingly asymmetrical, but other methods to determine

this direction may be possible as well.

Some of the currently largest and unaddressed questions in ecology involve the inter-

relationship between the fundamental processes allowing species to coexist in complex

ecosystems and the ways in which these processes might be undermined by changing

environmental conditions. While a relatively large number of studies has addressed the

classical question posed by May (1972, 1973): “When will a large complex system be

stable?”, less attention has been given to the specific ways in which biodiversity might

be lost. In a time when ecosystems are under increasing pressure from changing environ-

mental conditions, this question is however of great importance. In particular, because

critical transitions may occur towards other potentially less desirable states. In this thesis,

I hope to have provided novel ideas and insights that might help to address the question

of whether changing environmental conditions are likely to lead to large-scale systemic

regime shifts in complex ecosystems. A distinguishing feature of such transitions is that

they emerge from the specific ways in which species relate to each other and a↵ect a

large number of species rather than species in isolation. Assessing the probability and the

potential consequences of such transitions requires a fundamental understanding of the

specific ways in which species tend to relate to each other in complex ecosystems and how

these relationships might change due to changing environmental conditions. An emerging

property that may be referred to as ‘systemic risk’ (United Nations International Strategy

for Disaster Reduction, 2009).
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Bastolla, U., Fortuna, M. A., Pascual-Garćıa, A., Ferrera, A., Luque, B., & Bascompte, J.

(2009). The architecture of mutualistic networks minimizes competition and increases

biodiversity. Nature, 458 , 1018–1020.
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5

Summary

It is common knowledge that the millions of species that inhabit the Earth have adapta-

tions that enable them to survive in di↵erent environments. Fish have gills which allow

them to breath under water, while the wings of birds allow them to fly. These adaptations

are, as di↵erent as they may be, a di↵erent solution to the same problem: the problem

of staying alive and reproduce in a world where species are under the constant pressure

of natural selection. Perhaps less well known, but maybe not surprising when thought

about carefully, is that the often complex networks of interactions between species, e.g.

between plants and pollinators or between predators and prey, have certain non-random

properties as well. These ‘network structural properties’, i.e. specific ways in which the

interactions within networks are arranged most likely allow the often large numbers of

species in ecosystems to coexist. Just like similar adaptations may be found in a wide

variety of species, e.g. gills or gill-like organs in aquatic animals and wings on birds,

insects, and bats, similar network structural properties may be found in a wide variety

of ecosystems. Similarities that may occur simply because they are, like adaptations, a

solution to the same problem: the problem of coexistence in systems where species heavily

influence each other’s probability of survival.

While we are beginning to understand more about the structural properties of ecological

networks, i.e. the networks of interactions between species, and how they might allow

large numbers of species to coexist in complex ecosystems, the Earth and its ecosystems

are changing at increasingly rapid rates due to human activities. In some cases, these

changes are relatively simple in the sense that they a↵ect a large group of species sim-

ilarly, e.g. the e↵ect of pesticides on a large group of insect pollinators, while in other

cases these changes may be complex, e.g. the e↵ects of climate change on the phenology

and distribution of species which in turn leads to alterations in strengths of interspecific

interactions in a way that is unique for each interaction. Ecosystems may respond in

various ways to such changes (regardless of whether their e↵ects are simple or complex).

When conditions change gradually, the state of some ecosystems (e.g. the size of popu-

lations) may change likewise, in a smooth, gradual manner. Other systems may respond

strongly to change within a narrow range of environmental conditions, but are relatively

insensitive to change outside of this range. Particularly sudden shifts may occur when

ecosystems have multiple alternative states. Such systems cannot change smoothly from
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one state (e.g. large population sizes) to an alternative state (e.g. a state in which some

or all species are extinct). Instead, a sudden shift or ‘critical transition’ occurs when

environmental conditions pass a critical point. To return back to the original state after

such a transition, a return to conditions prior to the transition is often not su�cient;

instead, a larger change in conditions is needed until another critical point is reached at

which the system shifts back to the original state, a phenomenon called ‘hysteresis’.

While the outcome of critical transitions is relatively predictable when a few leading

species or species groups determine the state of an ecosystem, this may not be the case

when ecosystem dynamics are determined by many interacting species. The consequences

of critical transitions in such complex ecosystems might be severe, for example, when lead-

ing to the extinction of a large number of species. Not all critical transitions, however,

will have dramatic consequences. Complex ecosystems may potentially shift to many

di↵erent, alternative states. Some of those may imply minor, harmless changes in the

state of a system, or invoke positive change, whereas others may have catastrophic con-

sequences. The amount and type of change needed to cause a transition and a system’s

future state after an impending critical transition depends in complex and often unknown

ways on how ecosystems are organized, i.e. on the feedback mechanisms within it, and

thus on the structure of ecological networks and/or how this structure might be changed

by changing environmental conditions. Assessing or mitigating the risks associated with

critical transitions in complex ecosystems thus requires a fundamental insight in the in-

terrelationships between the structural properties of ecological networks, the dynamics of

ecosystems, and the way in which these properties and dynamics might be a↵ected by

changing environmental conditions.

Despite a longstanding interest in ecological networks and more recent advances in de-

tecting commonalities in the structure of ecological networks (Chapter 1), the common

ground between studying the structure of ecological networks and the potential causes

and consequences of critical transitions in complex ecosystems remains largely unexplored.

One of the causes of this lack of exploration is, most likely, that stability is a multi-faceted

concept that may be defined in various ways, e.g. the robustness of ecological networks

to the random removal of species, a system’s temporal stability and/or speed of recovery

from disturbances, and the amount of change in abundances or environmental conditions

needed to cause a critical transition (Chapter 1). Most studies on the structure and

stability of ecological networks have focused on stability concepts that are unrelated with

critical transitions, while studies of critical transitions have often focused on the dynamics

of individual populations rather than on the complex networks of interactions between

species that maintain them.

In this thesis, we merge network theory with theory on critical transitions and show that

an important trade-o↵ between di↵erent aspects of stability may occur in pollinator com-

munities (Chapter 2). The networks formed by the interactions between mutualistically
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interacting plant and pollinator species are known to be highly nested, i.e. specialists tend

to interact with a subset of the species interacting with the more generalist species. Ear-

lier work has shown that such a structure may promote indirect facilitation, i.e. species

indirectly support each other through interactions with other species, and the stable co-

existence of species. We suggest, perhaps unsurprisingly, that such indirect facilitation

also makes pollinator communities more resilient to changes in environmental conditions,

e.g. an increase in the use of pesticides. This increase in resilience may, however, come

at a cost; when pollinators continue to facilitate each other under increasingly harsh con-

ditions they may eventually collapse simultaneously, because they depend on each other

for survival. Recovery from such a simultaneous collapse may require a relatively large

improvement of conditions. Findings that may have large implications for our view on

the sustainability of pollinator communities and the services they provide in a time when

pollinator populations are rapidly declining.

The most commonly studied cause of critical transitions in ecology is a positive, reinforc-

ing feedback that amplifies change when changing conditions or abundances pass a critical

value. In the aforementioned pollinator communities, for example, a decline in pollinator

abundances may negatively a↵ect plants, which in turn is bad for pollinators and leads

to a further decline in pollinator abundances. Studies on the structure and stability of

complex ecological networks, on the other hand, often put (implicitly) more emphasis

on delayed negative feedbacks, i.e. negative feedbacks with a time lag, usually occurring

as the result of an uneven number of negative interactions in feedback loops of two or

more species, as a potential cause of instability. Food-web theory and observations in real

ecosystems, for example, suggest that destabilizing oscillatory dynamics caused by strong

predator-prey interactions are damped by many weak interactions. Transitions towards

such dynamics, and more complex, chaotic dynamics, may occur when delayed negative

feedbacks gain in strength relative to more immediate negative feedbacks (Chapter 3).

Inspired by previous work on critical transitions and the structural stability of dynamical

systems, we describe a variety of transitions, associated with di↵erent types of boundaries

in parameter space, that may occur when such stabilizing, damping patterns are under-

mined. Inspired by previous work on critical transitions and the structural stability of

dynamical systems, we describe a variety of transitions, associated with di↵erent types

of boundaries in parameter space, that may occur when such stabilizing, damping pat-

terns are undermined and explore how structural network patterns, i.e. species number,

connectance, and variability in interaction strength, might influence the occurrence of

such transitions. To illustrate that abrupt transitions towards alternative stable states,

oscillatory or other more complex dynamics may occur even under basic dynamical as-

sumptions, we assume that the functional response of predators, i.e. the relation between

a predator’s intake rate and prey availability, is linear. Future work may build on this

study to include also more complex, non-linear functional responses.

The dynamics of ecosystems are determined by the interplay between many stabilizing
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and destabilizing feedbacks and one may assume therefore that it will hardly be possible

to detect a change in a system’s proximity to a critical point. Earlier work has, however,

shown that an increasingly slow recovery from small disturbances may be indicative of a

loss of resilience prior to critical transitions. Various indicators of this phenomenon known

as ‘critical slowing down’ may therefore serve to detect an increase in the likelihood of

critical transitions. Predicting what comes after a critical transition is, however, terra

incognita altogether. In Chapter 4 we take a first step into this unexplored territory

and show that the relative simplicity of the dynamics of mutualistic communities may

allow us to look beyond impending critical transitions and foresee a community’s future

state. To make such predictions, we take advantage of the increasingly slow recovery from

perturbations prior to critical transitions. Such disturbances have a size (i.e. the total

amount of change) and a direction (i.e. the relative amount of change in each species)

in the phase space of complex systems. The more similar a disturbance’s direction to

the direction in which increasingly small perturbations may cause critical transitions,

the stronger the e↵ect of critical slowing down. Provided that there are no oscillating,

chaotic or other complex dynamics, a system’s future state will most likely lie in the

same approximate direction. This ‘direction of critical slowing down’ may thus provide us

with an indicator of a system’s future state, and may help us assess whether impending

critical transitions may have large, systemic consequences. As an indicator of the direction

of critical slowing down we propose to use the direction in which the distribution of

fluctuating species abundances becomes increasingly asymmetrical, but other methods to

determine this direction may be possible as well.

The major, unanswered questions in ecology are often separated in two main classes: the

fundamental ones, aiming to understand the basic processes shaping and occurring in

ecosystems, and the applied ones, e.g. aiming to identify or reduce the risks associated

with changing environmental conditions (Chapter 5). In a time when ecosystems are

confronted with rapid environmental change, it is, however, becoming increasingly clear

that predicting the consequences of changing environmental conditions requires a funda-

mental understanding of the processes occurring in ecosystems. In particular, because

such changes are likely to bring ecosystems outside of the range in conditions for which

data are available. Questions on the stability of ecosystems in the context of such changes

are thus both applied and fundamental because their answers require the development of

novel theories and hypothesis. In this thesis, I hope to have provided novel ideas and

insights that might help to address the question of whether changing environmental con-

ditions are likely to lead to large-scale systemic regime shifts in complex ecosystems. An

emerging property of complex ecosystems that may be referred to as ‘systemic risk’.
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