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Propositions

1) When species continue to support each other under increasingly harsh conditions they
may, eventually, collapse simultaneously because they depend on each other for survival.

(this thesis)

2) Delayed negative feedbacks are underestimated as a potential cause of critical
transitions in complex ecosystems.

(this thesis)

3) Measures to prevent small-scale failures in complex systems should not be taken
because they undermine a system’s capacity to adapt to changing circumstances.

4) Field observations of complex ecosystems should focus on the rates at which different
processes occur rather than on diversity and species abundances.

5) Scientists should be as engaged in defending scientific freedom, the freedom to
imagine, explore, and discover, as artists are in defending artistic freedom.

6) Rather than well-planned scientific research we should promote a process of scientific
evolution where progress is made by making random mistakes.

7) Future generations will criticize us for defining efficiency in terms of productivity
rather than in terms of minimum wasted time, effort, or resources.

8) All social developments start with education or a lack thereof.
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8 GENERAL INTRODUCTION

1.1 A HISTORY OF NETWORKS IN ECOLOGY

The earliest evidence of life of Earth dates from at least 3,770 million years ago (Rosing
1999; Ohtomo et al. 2014; Dodd et al. 2017) and, today, the Earth is inhabited by an
estimated 8.7 million species (Mora et al. 2011). The far majority of these species still
awaits description. It is, therefore, only logical that we continue to try to understand
more about the world in which we live by classifying and describing the intrinsic, e.g.
the morphological, physiological, and genetic, properties of species and their common
ancestors. The description and classification of species, however, only provides limited
insight. Observations need to be accompanied by the development of theories that explain
observed patterns in order to achieve real understanding, and species are embedded in
complex ecosystems of many interacting species and of interactions between species and
their environment that have properties of their own. Network approaches towards study-
ing ecosystems attempt to study these properties, for example, by describing the patterns
of interactions among species, i.e. the way in which these interactions are arranged in
complex ‘ecological networks’. These patterns are likely to be crucial for the maintenance
of biodiversity because they allow species to coexist, and may affect the specific way in
which ecosystems may respond to changing environmental conditions.

An early, perhaps the first, graphical representation of a network of interacting species
was made by Lorenzo Camerano in 1880 (Camerano 1880, 1994; Cohen 1994 and Fig.
1.1). Other relatively early studies studies included descriptions of such networks as well
(e.g. Forbes 1925 and Shelford 1913). Ecological networks, however, only became central
to ecology when Charles Elton proposed four main organizing principles by which species
communities are organized; food chains, ecological niches, food size ranges, and trophic
pyramids (Elton, 1927). These principles were an attempt to describe general patterns in
ecosystems, varying from the observation that different species may occupy a similar place
or ‘niche’ in food webs, i.e. networks of predator-prey relationships, that species tend to
eat food between certain size limits, and the idea that species at the base of food chains
tend to be more abundant than those at the top. An important further step was made by
Lindeman (1942), who described ecosystems as systems that transform energy obtained
from sunlight by plants. Lindeman (1942) suggested that this transfer of energy to higher
trophic levels is inefficient: a potential explanation for the loss in abundance as trophic
levels increase as described by Elton (1927). When describing flows of energy in lakes,
Lindeman proposed, following Tansley (1935), that lakes should be seen as integrated
systems of biotic and abiotic interactions, and, as such, provided the basis for our modern
understanding of the word ‘ecosystem’.

The work of Lindeman (1942) was developed further by the brothers Howard and Eugene
Odum. Howard was the first to use an energy flow diagram to describe the trophic struc-
ture and productivity of ecosystems (Odum, 1957), and Eugene wrote, with the help of
his brother, several revised editions of an influential textbook that introduced the holistic,
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Figure 1.1: An early graphical representation of interacting species groups as published by
Camerano (1880, 1994). Phytophagous Coleoptera, i.e. herbivorous beetles, eat vegetation
and are decimated by predators (left) and parasites (right). These in turn are decimated by
other animal predators and parasites and so on. Adapted version taken from Bersier (2007).

systems view of Lindeman (1942) to a wider audience (e.g. Odum 1953 and Odum & Bar-
rett 2005). The Odum brothers considered ecosystems to be self-organizing. Ecosystems
would develop, i.e. change in composition, abiotic factors and the interactions between
them, during a process of succession ultimately leading to a stage of ‘homeostasis’, i.e. a
stable end state (Odum, 1953, 1957, 1969, 1988). The complexity of species communi-
ties, i.e., the number of species and/or interactions, increases during succession and an
ecosystem’s end or ‘climax’ state was, according to the Odum brothers, the result of a
selective process. Odum (1953, 1969) suggested that such complex communities are stable
due to the relatively large number of alternative pathways by which the energy collected
by autotrophes, e.g. plants, may flow through a system. Stable communities were, in
the view of Odum (1953), communities in which species abundances tend to stay quite
constant. As the complexity of an ecosystem increases, so does the number pathways,
which reduces the cascading effects of perturbations through a food web which, in turn,
promotes stability. MacArthur (1955) used Shannon’s measure of information entropy
(Shannon & Weaver, 1949) to further develop and illustrate the point of Odum, and El-
ton (1958) arrived to a similar conclusion. As a measure of stability, MacArthur (1955)
proposed to use the effect of a change in abundance in one species on the abundances of
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other species.

While the previous work focused on the upward flows of energy through food webs, lit-
tle attention was given to the top-down effects of predators on prey until Hairston et al.
(1960) published their influential work on food chains in terrestrial communities. Hairston
et al. (1960) argued that predators reduce the abundance of herbivores and therefore allow
plants to flourish, an hypothesis referred to as the ‘green world hypothesis’. The impor-
tance of top-down effects was later confirmed by Paine (1966), who showed experimentally
that the removal of a top-predator may lead to secondary extinctions due to increased
competition between species on lower trophic levels. He later coined the terms keystone
species (Paine, 1969) and trophic cascade (Paine, 1980) to describe species that have a
disproportionately large effect on the integrity and stability of species communities and
the indirect effects these species may have on other species.

By explicitly incorporating, and showing the relevance of, top-down effects in species
communities, Hairston et al. (1960) and Paine (1969) paved the way for a re-evaluation
of the relationship between the complexity and stability of ecosystems. Eventually, it was
May (1972, 1973) who suggested that a general study of Gardner & Ashby (1970) on the
relationship between the complexity and stability of complex systems, was of relevance for
ecology as well. With model systems they showed that, when randomly taking interaction
strengths from a normal distribution with mean zero, the chance of a system to be stable,
i.e., to exhibit a stable nontrivial equilibrium point at which all species may coexist stably,
declines rapidly when the number of interactions or species passes a critical value.

The analysis of May (1972, 1973) triggered a longstanding debate in ecology on the rela-
tionship between the complexity and stability of ecosystems, because the observation that
simple systems are more likely to be stable than large, complex ones, was the opposite of
what was commonly believed and previously suggested by Odum (1953) and MacArthur
(1955). The model systems of May (1972, 1973), however, did not include much ecological
realism as interactions were assigned randomly and allowed for negative nontrivial equi-
librium abundances (Roberts, 1974), and May hinted in his 1972 paper that alternative
arrangements, i.e. a modular ‘block’ structure, could promote the stability of complex
ecosystems. Eventually, it was Yodzis (1981), building on the work of Pimm & Lawton
(1978), who showed that model systems to which interactions are assigned such that they
mimic real ecosystems are more likely to exhibit a stable nontrivial equilibrium point than
their randomized counterparts. A strong suggestion that the non-random way in which
interactions are arranged in complex ecological networks may provide an explanation for
the stable coexistence of species in complex ecosystems.

1.2 THE STRUCTURE OF ECOLOGICAL NETWORKS

One of the pioneers in searching for structural patterns in complex ecological networks
was Joel Cohen. Cohen used a framework provided by Hutchinson (1957), who defined a
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species’ niche as an n-dimensional hypervolume in a space with environmental conditions
or resource traits on the axes to study the niche structure of species communities (Cohen,
1977; Cohen & Stephens, 1978). By determining the prey shared by predators, Cohen
determined the overlap in the trophic niche occupied by predators and suggested that
a single niche axis is usually sufficient to explain who interacts with whom in complex
food webs. Discussions continue about what this single axis might represent, some have
suggested that it could simply be the body-size of prey (Warren & Lawton, 1987; Lawton
& Warren, 1988; Cohen et al., 1993, 2003), but it might differ among ecosystems.

A way to test whether basic rules based on the aforementioned organizing principle may
explain observed patterns is to generate model networks and comparing them with data.
Cohen & Newman (1985) made a first attempt to generate such networks by arranging
species in a ‘cascade’ or hierarchical order and assuming that species feed, with a certain
probability, only on species that are lower in hierarchy (Cohen & Newman, 1985; Cohen
et al., 1990). The approach of Cohen & Newman (1985) was developed further by Williams
& Martinez (2000), who randomly assigned species with a ‘niche value’ and assumed
species to feed on species within a niche range of which the mean is lower than a species
own value. Other notable work building on the work of Cohen (1977) can be found in
Sugihara (1980, 1983), Cattin et al. (2004), and Stouffer et al. (2005). In this work,
other, similar methods to generate model networks are proposed that were, to a more or
lesser extent, able to reproduce several features common to all food webs, such as the
fractions of species at top, intermediate and basal levels, the variability in the number of
interactions per prey and predator species, and the degrees of cannibalism, omnivory, and
trophic similarity. Stouffer et al. (2005) suggests that this will be the case for any model
satisfying two conditions: (1) the species’ niche values form a totally ordered set and
(2) each species has a specific exponentially decaying probability of preying on a given
fraction of the species with lower niche values.

Another approach to detect commonalities in food-web structure is to study the frequency
of network motifs, i.e. subnetworks of n species within larger food webs. In ecology,
several simple patterns of interactions involving three or more species received a lot of
attention, i.e. trophic cascades in food chains, omnivory, exploitative competition, and
apparent competition (Elton, 1927; Hairston et al., 1960; Holt, 1977; Pimm & Lawton,
1978; Tilman, 1982; Holt et al., 1994). Following earlier work by Milo et al. (2002), Stouffer
et al. (2007) were the first to rigorously explore whether such relationships are common
in empirical and model-generated food webs by studying the frequency of three-species
motifs. Stouffer et al. (2007) found that simple food chains and omnivory were over-
represented in most empirical and in model-generated food webs, while exploitative and
apparent competition were under-represented relative to randomized versions of the same
food webs. A notable exception, however, did occur in some empirical networks where
omnivory was under-represented and exploitative and apparent competition were over-
represented. The implications of these patterns for the dynamics of complex food-webs
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are still part of ongoing research (Prill et al., 2005; Kondoh, 2008; Stouffer & Bascompte,
2010).

A further understanding of why some patterns are more likely to occur in ecological
networks can, most likely, be obtained when studying feedbacks in complex ecosystems.
Three types of feedbacks are of importance; direct negative feedbacks, positive feedbacks,
and delayed negative feedbacks (Levins, 1974). Direct negative feedbacks, e.g. intraspe-
cific competition, have stabilizing effects. Positive or ‘reinforcing’ feedbacks, e.g. the
feedback between two mutualistically interacting species, amplify change away from an
existing equilibrium and are thus destabilizing. Delayed negative feedbacks, i.e. negative
feedbacks with a time lag usually occurring as the result of an uneven number of negative
interactions in feedback loops of two or more species, can lead to oscillating dynamics, and
the interplay between several delayed negative feedbacks may cause chaotic or other com-
plex dynamics. A well-known example is provided by Rosenzweig & MacArthur (1963)
and Rosenzweig (1971) who showed that ‘enriching’ a prey population by providing it with
more resources could destabilize predator-prey systems, a phenomenon referred to as the
‘paradox of enrichment’. When providing prey with more resources, the direct negative
feedback due to intraspecific competition becomes weaker relative to the delayed, indirect
negative effect due to a prey’s interaction with a predator. Such a change in the balance
between direct and delayed negative feedbacks may lead to oscillations in the abundances
of predators and prey (Levins, 1974; Puccia & Levins, 1985). McCann et al. (1998) later
suggested that weak trophic interactions may stabilize subsystems of strongly interacting
prey and predator species that would show oscillating or chaotic dynamics in isolation,
and idea that was later build further upon by Berlow (1999), Neutel et al. (2002), and
Bascompte et al. (2005). Delayed negative feedback may also undermine the resilience of
systems with strong positive feedbacks, such as shallow lakes. The interplay between a
delayed negative feedback and such a positive feedback may lead to a ‘slow-fast cycle’,
causing a system to repeatedly switch between alternative states, e.g. a clear-water and
a turbid state (Van Nes et al., 2007).

Networks of trophic, predator-prey interactions remained the main object of study when
describing ecological network structure until Jordano (1987) presented his work on com-
plex communities of mutualistically interacting plant and pollinator species or seed dis-
persers. Jordano (1987) found, among other patterns, that the distribution of relative
mutualistic interaction strengths is highly skewed. Most interactions were found to be
weak, and the few cases in which species depended strongly on a single species did not nec-
essarily imply a strong mutual dependence. Pairwise dependencies were, instead, found to
be asymmetric, i.e., plant species depend relatively strongly on seed disperses that do not
depend strongly on them and vice versa. Building further on the work of Jordano (1987),
Bascompte et al. (2006) showed that such asymmetric relationships promote the stability
of mutualistic networks. The work of Jordano (1987) paved the way for the later finding
that mutualistic networks tend to be highly nested, i.e., specialists tend to interact with
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a subset of the species interacting with the more generalist species (Bascompte et al.,
2003). An automatic consequence of such a structure is that specialist species depend
relatively strongly on generalist species, thus explaining the asymmetry in relative inter-
action strengths as described by Jordano (1987). Bastolla et al. (2009) later showed that
nestedness reduces effective interspecific competition and promotes indirect facilitation in
mutualistic communities which, in turn, enhances the number of species that may coexist
stably. These findings may have wider implications for other disassortative networks, i.e.,
networks in which nodes with few interactions tend to interact with nodes that have many
interactions, such as scale-free networks in social, economic, technological, biological, and
physical systems (Barabési & Albert 1999; May et al. 2008, but see Jordano et al. 2003).
Such disassortative structures were found to promote the robustness of networks to the
random removal, but increases the dependence of networks on a few highly connected
nodes (Albert et al., 2000; Memmott et al., 2004).

Studies on the structural properties of communities dominated by other interaction types
are less common. An early exception is the work of Cody (1974) on competitive bird
communities further analyzed by Sugihara (1983). More recent work has focused on the
ways in which networks of trophic, mutualistic, competitive and/or other interaction types
combine into larger networks (Chase et al., 2002; Arim & Marquet, 2004; Lafferty et al.,
2008; Melian et al., 2009; Pocock et al., 2012; Mougi & Kondoh, 2012; Pilosof et al.,
2017). Our knowledge, in particular of the structural patterns and dynamic behavior of
such complex ‘multilayer’ systems, is however still far from complete.

1.3 STABILITY CONCEPTS

The search for common patterns in the structure of ecological networks, i.e. the way in
which interactions are arranged, is a first step towards understanding the rules determining
the dynamics and stability of ecosystems. It is, however, certainly not the last step.
Ecosystems may exhibit a wide variety of dynamical properties that may correspond to
different aspects of stability. When studying the interrelationship between the structure
and stability of ecological networks, it is thus of importance to determine which aspects
of stability are of interest, and whether these aspects are interrelated.

In one of few field experiments on the relationship between the complexity and stability
of ecosystems, Tilman et al. (2006) showed, for example, that greater numbers of plant
species increase the temporal stability of grassland communities. Temporal stability was
defined as the mean divided by the standard deviation of fluctuating plant abundances, a
measure of stability that roughly corresponds to the way in which the early contributors
to the diversity-stability debate thought of stability (e.g. MacArthur 1955 and Elton
1958). An important distinction between the level at which a system’s temporal stability
is measured, however, needs to be made. While the temporal stability of the community’s
total biomass was found to increase, the temporal stability of individual species was
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found to decrease with increasing species number. A greater temporal stability of the
total biomass of diverse communities may be caused by a higher productivity, statistical
averaging, and negative correlations between species abundances (Tilman et al., 1998;
Lehman & Tilman, 2000). In Fig. 1.2 and Fig. Al.1 in Supplementary Information, I
show that similar differences in temporal stability may be found in food webs. Strong
correlations between species abundances can be expected when species recover slowly from
perturbations along a particular line in a system’s phase space, i.e. a multidimensional
space in which each axis corresponds to the abundance of a species. Such slow recovery
may occur when the dominant eigenvalue of the Jacobian matrix corresponding to a
system’s nontrivial equilibrium is close to zero, a measure used by May (1972, 1973) to
distinguish between stable and unstable ecosystems. A slow recovery from perturbations
along a particular line in the system’s phase space, which is generally seen as ‘unstable’,
may thus simultaneously lead to relatively small fluctuations in the total abundance of
species groups, which is seen as ‘stable’, when abundances are negatively correlated.
Discussions on whether certain ecosystem properties, e.g. the number of species, promote
or undermine stability may only be clarified when such different aspects of stability are
clearly defined.

Other notions of stability exist. For instance, the aforementioned method used by May
(1972, 1973), i.e. the local stability of a system’s nontrivial equilibrium, has the draw-
back that it misses non-equilibrium attractors that may allow species to coexist while
abundances are oscillating or following other more complex dynamics. A criterion used
to determine whether the coexistence of species is possible, even when there is no stable
nontrivial equilibrium, is referred to as ‘permanence’. A permanent set of species has
the property that all species may persist over time, i.e. have nonzero abundances, even
when dynamics are fairly complex because the boundaries to the system’s phase space are
repelling (Hutson & Vickers, 1983; Hutson & Law, 1985; Hofbauer & Sigmund, 1988; Law
& Morton, 1996). Others may want to use a more strict definition of stability, and want
to check whether a system’s nontrivial equilibrium point is ‘globally stable’, i.e. there are
no alternative attractors to which a system my shift. Conditions to determine whether
a nontrivial equilibrium of a Lotka-Volterra competition model is globally stable can be
found in Goh (1977) and Logofet (1993). Both definitions of permanence and global sta-
bility are conceptually attractive. Determining whether a set of species is permanent, or
whether a system’s nontrivial equilibrium is globally stable is, however, usually not easy
and may often be impossible. Evaluating the local stability of a system’s nontrivial equi-
librium is, perhaps for this reason, the most commonly used method when studying the
interrelationship between the complexity and stability of ecosystems. In addition to the
here described methods, graph theoretical approaches are used to study the stability of
complex ecosystems, e.g. the likelihood of co-extinctions when species are removed from
a network (Albert et al., 2000; Solé & Montoya, 2001; Memmott et al., 2004; Rezende
et al., 2007).
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Figure 1.2: Fluctuations in the abundances of primary producers (green), consumers (blue)
and top-predators (red) when forming part of a simple food chain (A) and a more complex
food web (B). Colored time series show the sum of all species belonging to a single trophic
level. Time series in black show the fluctuations in species abundances when they are pro-
jected on the line in the network’s phase space along which variance is highest, i.e. the first
principal component as determined with a principal component analysis. A similar regime
of random perturbations leads to relatively large fluctuations in the abundances of basal and
consumer species in the simple food chain when compared to the total biomass of basal and
consumer species in the more complex food web. Fluctuations along the system’s first prin-
cipal component are, however, substantially smaller. These opposing patterns in variability
may occur when the abundances of species belonging to the same trophic level are anti-
correlated. Relatively large fluctuations along a system’s first principal component and strong
(anti-)correlations in species abundances can be expected when the dominant eigenvalue of
a system’s Jacobian matrix is close to zero (see Chapter 4). Horizontal lines indicate the
mean and standard deviations. Competition among primary produces and the feeding rates
of consumers and predators are assumed to be substantially lower in the simple food chain
(see Appendix Al.1 and Fig. Al.1 in Supporting Information).

Apart from stability concepts that were developed in the context of the aforementioned
complexity-stability debate, two important theories, i.e. chaos theory and catastrophe
theory, are of major importance for the way in which ecologist evaluate ecosystem sta-
bility. Chaos theory deals with the fact that even relatively simple systems may show
complex dynamical behavior that never repeats itself (Poincaré, 1890; Lorenz, 1963; May,
1976). More importantly, small differences in a system’s initial state, or small external
perturbations to this state, will expand exponentially over time and may lead to a wide
variety of outcomes when systems exhibit such chaotic dynamics, which makes it hard
to predict their long-term behavior. This complex behavior is determined by the deter-
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ministic rules governing a system’s dynamics and not the result of a stochastic process.
Catastrophe theory deals with another type of perturbations, namely with changes in the
parameters of a system and is embedded in a wider framework on the structural stability
of complex biological systems developed by René Thom (Thom, 1972, 1975). A system is
structurally unstable when infinitely small changes to a system’s parameters lead to quali-
tative changes in the dynamical behavior of a system (such as the existence of equilibrium
points, limit cycles, or deterministic chaos). The size of the area in a system’s parameter
space within which a system exhibits the same qualitative behavior is used as a measure
of the extent in which a system’s dynamical behavior is structurally stable (Thom, 1972;
Vandermeer, 1975; Thom, 1977; Alberch, 1989; Bastolla et al., 2005, 2009; Rohr et al.,
2014). Catastrophe theory deals with the nature of the boundaries to such areas and in
particular with the cases in which gradual changes in the properties of a system lead to
abrupt changes in behavior, e.g. a shift from one stable state to another. Thom (1972)
shows that there are seven ‘elementary’ catastrophes, i.e. catastrophes that involve stable
equilibrium points, when dynamics are controlled by no more than four parameters. The
simplest of these elementary catastrophes, and the most commonly used when explaining
abrupt shifts in ecosystems, are the fold and cusp catastrophe that are controlled by 1
and 2 parameters respectively (Fig. 1.3). Despite some controversy in the past (Zahler &
Sussmann, 1977), the cusp and fold catastrophe are now considered to capture the essence
of a wide variety of systems varying from ecosystems (May, 1977; Wilson & Agnew, 1992;
Scheffer et al., 2001), to human cells (Hasty et al., 2002; Ferrell Jr, 2002; Lee et al., 2002;
Tyson et al., 2003; Angeli et al., 2004), and the climate (Hare & Mantua, 2000; Clark
et al., 2002; Alley et al., 2003; Lenton et al., 2008).

Published around the same time, and highly related to the work if René Thom, is the work
of Buzz Holling (Holling, 1973, 1996). Holling (1973) uses several examples to illustrate
that abrupt regime shifts or ‘critical transitions’ may occur in ecosystems, e.g. towards a
eutrophic or ‘highly productive’ state under the influence of nutrient enrichment in lakes,
in fish populations due to harvesting (Ricker, 1963; Smith, 1968; Hutchinson et al., 1970),
and in tree cover due to grazing in terrestrial ecosystems (Glendening, 1952). Holling
(1973) noted that for such systems the important question is not how stable a system
is in the classical sense as described by MacArthur (1955) and Elton (1958), but how
likely it is for a system to switch from one state to another. As a way to estimate such
probability, he proposes to use the size of the domain of attraction in a system’s phase
space(Fig. 1.4). In later work, Holling refers to the magnitude of a disturbance that can
be absorbed before a system shifts into another stability domain as ‘ecological resilience’,
and to the resistance to disturbance or the speed of return to equilibrium as ‘engineering
resilience’ (Holling 1996, Fig. 1.4, and 1.5). More lose definitions of ecological resilience
are, however, also used such as: ‘a system’s ability to absorb changes of state variables,
driving variables, and parameters, and still persist’ (Holling, 1973) and ‘the capacity of a
system to absorb disturbance and reorganize while undergoing change so as to still retain
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Figure 1.3: The density of algae as described by a model with two control parameters;
nutrient availability and lake depth. (A) Cusp catastrophe in which two alternative stable
states, i.e. a non-turbid state with low algae density and a turbid state with high algae density,
may exist depending on nutrient availability and lake depth. The surface corresponds to the
algae’s equilibrium density. Unstable equilibrium densities are plotted in grey. (B-D) Ways
in which in which the algae’s equilibrium density depends on nutrient availability in a deep
(B), intermediate (C), and shallow lake (D). Panel D corresponds to a fold catastrophe. The
dashed middle section in panel D corresponds to an unstable equilibrium. This figure is based
on a model in Scheffer (1990), and Scheffer et al. (1993).

essentially the same function, structure, identity, and feedbacks’ (Walker et al., 2004).
The work of Thom (1972) and Holling (1973) was further introduced to ecology by May
(1977) and Scheffer et al. (2001). This work shows that, as conditions change, ecological
resilience might be lost until a ‘critical point’ is reached beyond which a transition towards
an alternative state becomes inevitable (Fig. 1.4). Recovery from such shifts may require
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Figure 1.4: Ecological resilience far from (top panels) and close to a bifurcation point (bot-
tom panels) as determined by the size of a system’s attraction basin. Left panels show the
equilibrium curve of a system with two alternative stable states, i.e. a fold catastrophe as in
Fig. 1.3.D. Dots indicate stable (S) and unstable equilibrium points (U) far from (top panel)
and close to a bifurcation point B; (bottom panel). Ecological resilience is large, i.e. the
indicated range or amount of change in abundance a system may tolerate without shifting
into an alternative attraction basin, is large far from a bifurcation point. When conditions
change further towards a bifurcation point, the amount of change a system can handle goes to
zero and a regime shift or ‘critical transition’ toward an alternative state becomes inevitable.
Right panels show stability landscapes for the conditions at which stable and unstable equi-
librium points are indicated on the fold catastrophe. Balls correspond to stable and hilltops
to unstable equilibrium points.

more than a simple return to the conditions at which a transition occurred, a phenomenon
called ‘hysteresis’.

One of the challenges when dealing with such critical transitions is that it might be hard
to know whether a system is approaching a critical point because the state of a system
may show little change before a tipping point is reached. A concern for those who may
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Figure 1.5: Engineering resilience, or the speed at which a system returns to equilibrium
after a perturbation. Top panels correspond to a system with a high engineering resilience,
lower panels to a system with a low engineering resilience. The speed of recovery, and thus
the time it takes to return to equilibrium, is roughly determined by the slope of a system’s
stability landscape. This figure is based on work in Van Nes & Scheffer (2007).

want to prevent critical transitions from happening. Wissel (1984) and Van Nes & Scheffer
(2007), however, showed that an increasingly slow recovery from small disturbances may
be indicative of a loss of ecological resilience prior to a critical transition, a phenomenon
known as ‘critical slowing down’. This work, in turn, provided the basis for a wide variety
of indicators often obtained through time series analysis, e.g. an increase in variance,
autocorrelation, and skewness, that may serve to detect an increase in the likelihood of
critical transitions (reviewed in Scheffer et al. 2009 and Dakos et al. 2012).

1.4 NETWORK THEORY AND CRITICAL TRANSITIONS

Despite a longstanding interest in the structure and stability ecological networks, the
common ground between studying the structure of ecological networks and the potential
causes and consequences of critical transitions remains largely unexplored. Or, more
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specifically, most studies on the structure and stability of ecological networks have focused
on stability concepts that are unrelated with critical transitions, while studies of critical
transitions have often focused on the dynamics of individual populations rather than on
the complex networks of interactions between species that maintain them. This thesis
aims to fill this gap by merging network theory with theory on critical transitions.

In Chapter 2, we build further on the work of Bastolla et al. (2009) and show that indirect
facilitation occurring nested mutualistic networks may come at a cost; when pollinators
continue to facilitate each other under increasingly harsh conditions they may eventually
collapse simultaneously, because they depend on each other for survival. Recovery from
such a simultaneous collapse may require a relatively large improvement in conditions.
Findings that may have large implications for our view on the sustainability of pollinator
communities and the services they provide in a time when pollinator populations are
rapidly declining. Pollinator communities may, however, also be able to persist longer
under increasingly harsh circumstances when indirect facilitation is strong. A trade-off
between different aspects of stability, e.g. persistence and the potential for a large-scale
systemic collapse, thus appears to exist.

In Chapter 3, we build further on previous work (implicitly) pointing towards delayed
negative feedbacks as a potential cause of instability in complex food webs, e.g. McCann
et al. (1998), Berlow (1999), and Neutel et al. (2002). Inspired by previous work on
critical transitions and the structural stability of dynamical systems, e.g. Thom (1972)
and Kuznetsov (1995), we describe a variety of transitions, associated with different types
of boundaries in parameter space, that may occur when stabilizing, damping patterns
in complex food webs are undermined, and explore how structural network patterns, i.e.
species number, connectance, and variability in interaction strength, might influence the
occurrence of such transitions. The findings in this chapter are of importance because
most previous work on critical transitions in ecosystems has focused on positive feedbacks
as a potential cause of instability. As such, this chapter may thus point towards an
important other potential cause of critical transitions in complex ecosystems.

In Chapter 4, we build further on previous work on critical slowing down prior to critical
transitions, e.g. Wissel (1984) and Van Nes & Scheffer (2007). Previous studies on critical
slowing down aimed to detect a change in the proximity to a critical point (Scheffer et al.,
2009; Dakos et al., 2012) and did not address the question of what a system’s future state
might be like after an impending critical transition. Complex ecosystems may, however,
shift to many different, alternative states. Whether impending transitions in such systems
have minor, positive or catastrophic effects thus remains unclear. Predicting a system’s
future state is difficult in particular when complex, unpredictable dynamics occur when
a critical point is passed. Some systems may, however, behave more predictably than
others. The dynamics of mutualistic communities can, for example, be expected to be
relatively simple, because delayed negative feedbacks leading to oscillatory or other com-



1.4 NETWORK THEORY AND CRITICAL TRANSITIONS 21

plex dynamics are weak. This relative simplicity may allow us to look beyond impending
critical transitions and foresee a community’s future state. To predict the future state
of complex mutualistic communities, we take advantage of the fact that resilience is not
lost equally in all directions. Disturbances have a size (i.e. the total amount of change)
and a direction (i.e. the relative amount of change in each species). The more similar
a disturbance’s direction to the direction in which increasingly small perturbations may
cause critical transitions, the stronger the effect of critical slowing down. Provided that
there are no oscillating, chaotic or other complex dynamics, a system’s future state will
most likely lie in the same approximate direction.

In Chapter 5, the final chapter of this thesis, I reflect on the findings in the previous
chapters and place them in a broader context. In a time when ecosystems are confronted
with rapid environmental change, it is becoming increasingly clear that predicting the
consequences of changing environmental conditions requires a fundamental understanding
of the processes occurring in ecosystems. In particular, because such changes are likely to
bring ecosystems outside of the range in conditions for which data are available. Applied
questions on the stability of a particular ecosystem in the context of such changes may
thus require the development of novel, fundamental theories and hypothesis that may
apply to a wide variety of ecosystems. In this thesis, I hope to have contributed to the
development of such theories and hypothesis.
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Al.1 A SIMPLE FOOD CHAIN AND A MORE COMPLEX WEB

We use a Lotka-Volterra style model to describe the dynamics of primary producers,
consumers and top-predators. Primary producers obtain resources from abiotic sources,
e.g. soil nutrients and sunlight, consumers feed on primary producers and predators prey
on consumers. Changes in the biomass of species are described as follows:

dB; ik
E = riBi — Z 1_ 5ZkBle — ZcijBiBj + €,

k=cons

dC
—* — 4 B,Cy — Z ] T Cp P — t,Cy + €,

dt 1= (A1.1)
ap

= v Cp P — 4 P,
dt = YLkt 1€,

in which primary producer ¢ has abundance B;, consumer k abundance Bj, and top-
predator [ abundance F;. The rate at which primary producers grow in abundance is
described by growth rate r;, and competition among basal species is described by com-
petitive interaction strength c¢;;. Trophic interactions are described by feeding rate, i,
and the fraction of ingested biomass lost to feces and other losses, d;,. The rate at which
biomass production is lost due to respiration and other losses, e.g. death, is described by
mortality rate, t;. Species experience small stochastic perturbations incorporated through
noise term ¢;:

aw

= 5 Al1.2
=0 (A12)

¢; fluctuates in time due to Wiener process, W, with mean zero and standard deviation
0;. The Wiener process is a continuous-time stochastic process generating white noise.
To prevent noise leading to negative abundances, we assume that dN/dt = 0 when N <
0.001.

Parameters settings of the simple food chain in Fig. 1.2.A are as follows: B =3,0,=2,
Py = 1, c11 = 0.17, v12 = 0.12, 793 = 0.1, 412 = 0.55, and o3 = 0.15, and the parameter
settmgs of the more complex food web in Fig. 1.2.B as follows: B, = 1, By = 1, By = 1,
C'4 =1, C5 =1, P6 =1,c11 =09, ¢c1o0 =21, c13 =0, co1 = 0.3, coa = 0.9, c93 = 1.8,
cs1 = 1.5, c30 = 0, c33 = 1.5, yia = 1.2, 794 = 1.8, 715 = 1.2, 725 = 0.9, 735 = 0.9,
Va6 = 0.4, y56 = 0.6, d13 = 0.55, 914 = 0.55, doq = 0.55, 915 = 0.55, do5 = 0.55, d35 = 0.55,
046 = 0.15, 656 = 0.15. The growth rates of primary producers, r;, and mortality rates, tx,
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of consumers and top-predators are assigned such that dB; /dt, dC; /dt, and dPp, /dt, are
zero. B, C, and P correspond to the species’ nontrivial equilibrium abundances.
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Figure A1l.1: Fluctuations in the abundances of individual species belonging to the more
complex food web described in Appendix Al.1 and displayed in Fig. 1.2.B. The abundances
of primary producers (green) and consumers (blue) are (anti-)correlated. The bottom time
series belongs to primary producer ‘1’ and the top time series to top-predator ‘6’ as described
in Appendix Al.1. Horizontal lines indicate the mean and standard deviations.
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ABSTRACT

Declines in pollinator populations may harm biodiversity and agricultural productivity.
Little attention has, however, been paid to the systemic response of mutualistic com-
munities to global environmental change. By using a modelling approach and merging
network theory with theory on critical transitions, we show that the scale and nature of
critical transitions is likely to be influenced by the architecture of mutualistic networks.
Specifically, we show that pollinator populations may collapse suddenly once drivers of
pollinator decline reach a critical point. A high connectance and/or nestedness of the mu-
tualistic network increases the capacity of pollinator populations to persist under harsh
conditions. However, once a tipping point is reached, pollinator populations collapse si-
multaneously. Recovering from this single community-wide collapse requires a relatively
large improvement of conditions. These findings may have large implications for our view
on the sustainability of pollinator communities and the services they provide.



2.1 INTRODUCTION 27

2.1 INTRODUCTION

Widespread declines in wild and domesticated pollinator populations raise concerns about
the future of biodiversity and agricultural productivity (Allen-Wardell et al. 1998; Diaz
et al. 2005; Biesmeijer et al. 2006; Potts et al. 2010; Burkle et al. 2013; Garibaldi et al.
2013). The majority of flowering plants depend on animals for pollination. Those plants
are in turn at the basis of food webs and provide food for livestock and human populations
(Klein et al. 2007; Ollerton et al. 2011). Pollinators thus provide an essential service to
ecosystems and humanity. Assessing the potential for further degradation of this service
is therefore of great importance.

A considerable effort is being made to identify the potential causes of declining pollinator
abundances. Recently, field experiments showed how commonly used insecticides strongly
increase pollinator mortality (Henry et al. 2012; Whitehorn et al. 2012). Habitat destruc-
tion, parasites, and disease are also seen as important drivers of pollinator decline. Most
likely, a mix of those causes increases the mortality of pollinator populations (Diaz et al.
2005; Potts et al. 2010; Bryden et al. 2013).

The impact of a further increase in drivers of pollinator decline will depend strongly
on the capacity of plant-pollinator communities to withstand a further increase in those
drivers. Determination of the response of natural communities to environmental change is
however notably hard, primarily because the response of these relatively complex systems
depends on more than the intrinsic properties of species. A central role is likely to be
played by the strength, number, and nature of interactions between species, and the way
in which those interactions are arranged in ecological networks (May 1972; McCann 2000;
Bascompte et al. 2006; May 2006; Ives & Carpenter 2007; Scheffer et al. 2012). When
assessing the impact of a further increase in the drivers of pollinator decline, it is thus of
fundamental importance to take the topology of mutualistic networks (i.e., the number
and way in which mutualistic interactions are arranged) into account.

Mutualistic networks, such as those made out of the interactions between plants and
pollinators, are known to display a high degree of nestedness, i.e., the more specialist
species tend to interact with subsets of the species interacting with the more generalist
species (Fig. 2.1; Bascompte et al. 2003; Bascompte & Jordano 2007). Theoretical work
has shown that the nestedness of mutualistic networks increases the robustness of plant-
pollinator communities to species extinctions (Memmott et al. 2004; Burgos et al. 2007)
and habitat loss (Fortuna & Bascompte 2006), the proportion of coexisting species once
an equilibrium is reached (Bastolla et al. 2009; Thébault & Fontaine 2010), and the speed
at which the community returns to equilibrium after a perturbation (Okuyama & Holland
2008; Thébault & Fontaine 2010).

Little attention, however, is given to the influence of mutualistic network topology on
potential critical transitions in the size of pollinator populations. Ecosystems may respond
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Figure 2.1: Matrix representations of a randomly structured network (left) and a nested
network (right, N=0.6). Filled squares indicate interactions between species. Column and
row numbers correspond to individual plant and pollinator species. Species are ordered based
upon their number of interactions.

in various ways to changing environmental conditions, such as the change in conditions
caused by a further increase in drivers of pollinator decline, which may have profound
implications for their resilience to environmental change (Scheffer et al. 2001; Scheffer &
Carpenter 2003). When conditions change gradually, the state of some systems (e.g., the
size of populations) may change likewise, in a smooth, gradual manner. Other systems
may respond strongly to change within a narrow range of environmental conditions, but
are relatively insensitive to change outside of this range. Particularly sudden shifts may
occur when a system has more than one stable state. Such a system cannot change
smoothly from a one stable state (e.g., large population sizes) to an alternative stable
state (e.g., small population sizes). Instead, a sudden shift occurs when environmental
conditions pass a critical point. We refer to such shifts as ‘critical transitions’. To return
back to the original state after a critical transition, a return to conditions prior to the
transition is often not sufficient; instead, a larger change in conditions is needed until
another critical point is reached at which the system shifts back to the original state. The
existence of a difference between the critical conditions at which a forward and backward

transition occurs, is known as ‘hysteresis’.

The notion that alternative stable states exist is supported by observations in a wide
variety of ecological and experimental systems (Scheffer et al. 2001; Scheffer & Carpenter
2003; Rietkerk et al. 2004; Kefi et al. 2007; Drake & Griffen 2010; Veraart et al. 2011;
Hirota et al. 2011; Dai et al. 2012). The complexity of many natural communities has
however made it hard to develop the existing theory on alternative stable states further
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into a framework that helps us to assess their resilience (Scheffer et al. 2012). Here, we try
to contribute to the development of such a framework, by merging theory on alternative
stable states with theory on the structure of ecological networks. Specifically, we do
this by examining the potential occurrence of critical transitions in the size of pollinator
populations due to a change in a driver of pollinator decline. Subsequently, we study
the way in which the connectance and nestedness of mutualistic networks may affect the
community-wide implications of these shifts between alternative stable states. This will
be done with the help of a mathematical model.

2.2 METHODS
Nestedness algorithm

Networks with a different degree of nestedness were generated by using an algorithm
similar to the one described by Medan et al. (2007). This algorithm was shown to generate
networks that are similar to empirically studied plant-pollinator networks (also by Medan
et al. 2007). The algorithm allows us to vary nestedness of networks with a given number
of species, connectance and fraction of “forbidden links”. Connectance is the fraction of all
possible interactions that is occurring in the network. Forbidden links are interactions that
cannot occur, for example because of a morphological or phenological uncoupling (e.g.,
between late-flowering plant species and early seasonal pollinator species, see Jordano
et al. 2003).

Initially, the algorithm assigns with a predefined probability mutualistic interactions and
forbidden links between two species groups. This results in a network with a random
structure, of which the probability of having an interaction corresponds to the connectance
of the network and the probability of a forbidden link to the fraction of forbidden links.
In case any of the species has no interactions, a new randomly structured network is
generated.

In order to generate nested networks, interactions are re-arranged within the network.
During each iteration the algorithm randomly selects an interaction between two species
a and b. This interaction is changed into an interaction between species a and randomly
selected species ¢, when this species has more interactions than species b. During the
iterative process, species thus start to interact more with species that already have many
interactions. This “rich get richer” mechanism increases the nestedness of the network.
I[terations are continued until a desired nestedness is reached.

Two exceptions to the above mentioned rule exist. The interaction is not changed from
an interaction with species b to an interaction with species ¢, when species b has only one
interaction, or when the interaction between species a and c¢ is forbidden. This ensures
that each species remains having at least one interaction, and that the identity of forbidden
links is not changed by the algorithm.
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We derive the nestedness of the entire network, IV, as in Bastolla et al. (2009):

NG+ oA Ny
T Sp(Sp—1)  S4(Sa—1) (2.1)
2 * 2

N

where the first sum is across all pairs of plant species, the second sum is across all pairs

of pollinator species, Sp is the number of plant species, S, is the number of pollinator

species. N;; is the nestedness of species pair ¢ and j, which is derived as follows:
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where n;; is the number of times species ¢ and j interact with the same mutualistic partner,

n; is the number of interactions of species ¢ and n; is the number of interactions of species

VE

All networks generated with the procedure above were checked for the potential presence
of more than one component (i.e., a group of species that is completely disconnected
from the rest of the network). If more than one component was found, the network was
dismissed from our analysis, and replaced with a newly generated network, consisting of
only one component.

Model of mutualistically interacting species

In an attempt to disentangle the relationship between network structure and the response
of plant-pollinator communities to environmental change, we studied the impact of mu-
tualistic network topology on the behaviour of a dynamic model. Our dynamic model
describes two mutualistically interacting species groups; plants and pollinators. Species
belonging to the same group are in direct competition with each other, while mutualistic
interactions occur between species belonging to a different group. The pollinators are
subjected to a gradual change in mortality and/or growth rate, caused by a change in one
of the drivers of pollinator decline.

The model, describing a group of Sp plant species and S4 pollinator species, is as fol-

lows:
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where P, represents the abundance of plant species 7 and Ay represents the abundance of
pollinator species k. Intrinsic growth rates, i.e., the growth independent from mutualis-
tic and competitive interactions, are represented by r, which is species-specific and can
either be positive or negative. A general reduction of pollinator growth rates or increase
in pollinator mortality rates, affecting all pollinator species, is included with driver of
pollinator decline, d 4.

Population growth is enhanced by mutualistic partners (i.e. the pollinator or plant species
providing a service or resource to the plant or pollinator population). Like Okuyama
& Holland (2008) and Bastolla et al. (2009), we assume that the beneficial effect of
mutualistic partners on population growth saturates when the abundance of mutualistic
partners is high. The extent of this saturation is determined by half-saturation constants
h. We assume mutualistic interactions to be either absent, in which case mutualistic
interaction strength, v, is equal to zero, or to be present, in which case the mutualistic
interaction strength is assumed to depend on the degree of the node benefiting from the
interaction in the following manner:

Yo

TYmn = F7

(2.4)

in which, for each interaction, =, is taken from a uniform distribution, K, is the number
of interactions of the species befitting from the interaction, and t determines strength of
the trade-off between interaction strength and number of interactions. Both ¢ = 0 (no
trade-off) and ¢t = 1 (full trade-off), represent “neutral” cases. Assuming no trade-off is
neutral in the sense that the strength of mutualistic interactions is not changed by the
topology of the network, while a full trade-off assumes that the gain species have from their
mutualistic interactions is not changed by the topology of the network. Ecological reality
is likely to lie somewhere in between those two extremes. The strength of competition
between individuals of the same species group is determined by C. We study a system
where species do not outcompete each other when mutualistic partners are absent (as
in Van Nes & Scheffer 2004). Intraspecific competition, Cj;, is therefore assumed to be
substantially stronger than interspecific competition Cj;. Lastly, a small immigration
factor p is incorporated in order to allow for the (re-)establishment of otherwise extinct
species. p is not supposed to influence the dynamics of the model.

Simulations and parameter settings

We examined the response of pollinator populations to increasingly harsh conditions,
by gradually increasing the driver of pollinator decline, d4. This gradual increase was
simulated by a stepwise increase in the driver of pollinator decline, with step size 0.01.
For each step, we ran our model until equilibrium was reached, by applying a Runge-
Kutta method that numerically solves our model. We increased the driver of pollinator
decline past the point where all pollinator species are extinct (i.e., have an abundance
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lower than 0.01). After this point was reached, we simulated improving conditions by
gradually decreasing the driver of pollinator decline, again with a step size of 0.01. This
allowed us to check for hysteresis.

We scanned for the occurrence of sudden changes in pollinator abundance within a small
range of change in the driver of pollinator decline. We defined a “sudden change” as a
change in pollinator abundance that was larger than 0.2 over an in- or decrease in the
driver of pollinator decline of 0.01 (one step in our simulations). This allowed us to
differentiate between a sudden and a gradual extinction or recovery of pollinator popula-
tions.

In our default approach, we made simulations for communities consisting out of 25 plants
and 25 pollinator species. The impact of connectance on the behaviour of the model
was tested by varying the connectance of communities with a random network topology.
The impact of nestedness was studied by comparing networks differing in nestedness, but
equal in connectance (D=0.15) and fraction of forbidden links (F=0.3). We, however,
made sure that the qualitative behaviour of our model does not depend on a specific
number of species, connectance or fraction of forbidden links chosen (see Appendix A2.3
in Supporting Information). For each level of connectance and nestedness, we tested 250
different networks created with the above algorithm.

Unless stated otherwise, parameters were sampled from the following uniform distri-
butions: r; ~ U(0.05,0.35), Yomn ~ U(0.8,1.2), h; ~ U(0.15,0.3), C;; ~ U(0.8,1.1),
Ci; ~ U(0.01,0.05) or given the following values: ¢ = 0.5, u = 0.0001.

The feasibility of networks

In order to allow for partial collapses of the plant-pollinator community, a substantial
variation in growth rate, competition, and mutualistic interaction strength is needed. As
a result of this variation, we did not always find a feasible solution, where the abundances
of all species were higher than 0.01. If no feasible solution was found for a certain network,
parameters were re-sampled until a feasible solution was found. If after 500 attempts no
solution was found, the network was discarded as non-feasible.

The net effect of species on each other

Net relationships between pollinators were studied by numerically determining the influ-
ence of a small change in growth rate of species [ on the abundance of species k (dAy/dr;).
If an increase in growth rate of species [ leads to an increased abundance of species k, the
net effect of species | on species k is positive (following Stone & Roberts 1991).
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2.3 RESULTS

The majority of pollinator populations collapse suddenly to extinction once the driver
of pollinator decline, d4, reaches a critical value. These sudden collapses occur due to a
positive feedback mechanism that results from the positive interactions between plants
and pollinators. A large pollinator population size enhances the growth and thus the
population size of plants, which in turn enhances the growth of the pollinator populations.
As the strength of the driver pollinator decline, d4, increases, this positive feedback
mechanism maintains pollinator populations under conditions where they cannot recover
from extinction (see Appendix A2.1). Under these conditions, multiple alternative stable
states may therefore exist, varying from a state where all pollinator populations are present
to a state where some or all pollinator species are extinct. As the strength of the driver of
pollinator decline, d 4, increases further, a critical point is reached at which the strength
of this feedback mechanism is no longer sufficient to maintain pollinator populations.
At this point a critical transition occurs, leading to the sudden collapse of some or all
pollinator populations. In communities with a random network topology and a relatively
low connectance, we typically observe several partial collapses involving the extinction of
few species. Nested communities with an equal connectance, however, tend to exhibit only
one point of collapse, involving the extinction of the entire community (Fig. 2.2).

Once the driver of pollinator decline has increased beyond the point where all pollinator
populations have collapsed, a small decrease in mortality rates may not be sufficient
for species to recover. As was the case with the sudden collapses, observed when the
driver of pollinator decline, d4, was increased, pollinator populations may also recover
suddenly when the driver of pollinator decline is decreased (Fig. 2.3). Especially in
nested communities, the difference between the first point of recovery and the final point
of collapse can be substantial when compared to randomly structured communities. A
considerable improvement of conditions might thus be necessary before species can recover
from collapse, which is indicative of hysteresis.

Multiple points of recovery were typically observed within communities that also exhib-
ited several network collapses. In randomly structured communities, with a connectance
of 0.15, for example, multiple points of sudden recovery were found in 92% of the feasible
communities in which also multiple collapses were observed. More than one sudden re-
covery was however only observed in 21% of the feasible communities that exhibited one
point of collapse.

The ranking of species recovery was, in most feasible communities, similar to the order
in which they collapsed. E.g., the species who were the last to collapse when the driver
of pollinator decline, d4, was increased, always recovered before or simultaneously with
species that collapsed at a lower value of pollinator decline, in 79% of randomly structured
communities with a connectance of 0.15.
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Figure 2.2: The collapse of pollinator populations when the driver of pollinator decline,
da, affecting growth and/or mortality of pollinators, is gradually increased from zero to one.
Results are shown for a random (left) and a nested (right, N=0.6) network. Connectance of
both networks is equal (D=0.15). Several extinction events precede the final collapse of the
randomly structured plant-pollinator community, while the nested community exhibits only
one point of community-wide collapse.
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Figure 2.3: The recovery of pollinator populations when the driver of pollinator decline, d4,
is gradually decreased from one to zero. The points of recovery are not necessarily equal to
the points of collapse (see Fig. 2.2). Especially in the nested community a large difference
is observed between the final point of collapse and the first point of recovery. A substantial
reduction of the driver of pollinator decline might thus be necessary for pollinator populations
to recover from a collapse.
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Further, sudden changes in the pollinator community always coincided with sudden
changes in the plant community (see Appendix A2.2).

The potential for a single community-wide collapse

The probability of having a single community-wide collapse, instead of having several par-
tial collapses, is strongly influenced by the connectance and/or nestedness of mutualistic
networks. The fraction of networks, equal in connectance and nestedness, in which a single
community-wide collapse was observed, can be seen as a measure of this probability.

The left panel of Fig. 2.4 shows the impact of connectance on the number of collapses
that occur when the driver of pollinator decline, dy, is increased. As the connectance
of randomly structured communities increases, the fraction of communities that exhibit
only one single point of community-wide collapse grows, until eventually almost no partial
collapses are observed.

In the right panel of Fig. 2.4, we show what happens when the nestedness of communities
with a connectance of 0.15 is increased. A small increase in nestedness from 0.2 to
0.25 is already sufficient to observe a substantial decrease in the occurrence of partial
collapses. When nestedness is increased further, almost no partial collapses are observed
any more. Consequently, by increasing the nestedness, we thus observe a strong reduction
in the occurrence of partial collapses, even though the connectance of those networks was
fixed.

The cases where we did find a partial collapse in a highly nested community represent an
extreme case where a large fraction of specialists interacts only with one single generalist.
This generalist may, together with the specialists associated to it, collapse independent
of the rest of a highly nested community.

As described in the Methods section, we needed a substantial variation in growth rate,
competition and mutualistic interaction strength in order to allow for partial collapses of
the plant-pollinator community. As a result of this variation, the parameters drawn from
uniform distributions did not always give a feasible solution. A large fraction of randomly
structured networks with a connectance of 0.15, however, gave a feasible solution, and the
majority of them also showed partial collapses. Surprisingly, the feasibility of networks
was lowest for intermediate values of nestedness. Feasible solutions were thus most easily
found in networks that where either fully random, or fully nested (Fig. 2.4 and Appendix
A2.3). Networks for which it was hard to find a feasible solution, often had a small
fraction of species that, during all attempts made to find a feasible solution, could not
coexist with all others. Non-feasibility was thus almost always a property of this small
fraction of species, rather than a property of the community as a whole.
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Figure 2.4: The number of collapses observed in randomly structured communities with
different levels of connectance (left), and in communities with increasingly nested network
topologies with a fixed connectance of 0.15 and fraction of forbidden links of 0.3 (right). The
coloured bars represent the fraction of feasible networks in which a certain number of collapses
is found. The fraction of networks for which feasible solutions are found is indicated with the
green diamonds.
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Figure 2.5: Points of collapse (circles) when the driver of pollinator decline, dy, is increased,
and points of recovery (triangles) when the driver of pollinator decline, d4, is decreased. As in
Fig. 2.4, results are shown for randomly structured networks that vary in connectance (left),
and for increasingly nested networks with a connectance of 0.15 and fraction of forbidden links
of 0.3 (right). In case of multiple collapses and/or recoveries, the final point of collapse and
the first point of recovery was plotted.
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Pollinator persistence under changing environmental conditions

Network topology influences not only the probability of a single community-wide collapse;
it is also important for the capacity of pollinator communities to persist under increasingly
harsh conditions. Here, we measure this capacity as the amount of increase in the driver
of pollinator decline, d 4, needed to reach the “final point of collapse”. This final point of
collapse is the point where the last pollinator collapses to extinction (as indicated in Fig.
2.2). Similarly, we can measure the ease of recovery by measuring the value of the driver
of pollinator decline, where the first pollinator recovers from extinction. This would be
the “first point of recovery” (as indicated in Fig. 2.3). The points of collapse and recovery
as they were found for a certain value of connectance and nestedness are plotted in Fig.
2.5. For each value of connectance and nestedness, multiple networks were tested.

Connectance and nestedness both postpone the final point of collapse. Consequently,
the persistence of the pollinator community to an increase in the driver of pollinator
decline, dg4, increases with connectance and/or nestedness. Highly connected, and/or
nested communities also recover from a collapse at higher values of the driver of pollinator
decline. The distance between the final point of collapse and the first point of recovery,
however, increases with connectance and/or nestedness. This means that a larger change
in the driver of pollinator decline is needed for pollinators to recover, after the final
threshold is passed.

The net effect of species on each other

Our results show that the connectance and/or nestedness of mutualistic networks affects
the stability of pollinator communities in various ways. The different aspects of stability
discussed so far are the fraction of networks in which feasible solutions are found, the
number of collapses and persistence of pollinator populations when the driver of pollinator
decline, d4, is increased, and the ease of recovery when the driver of pollinator decline,
dy, is decreased. Fortunately, these very different implications of network topology can
all be understood when studying the “net effects” of species on each other.

Pollinators have a direct negative effect on each other due to competition. An indirect
positive effect between pollinators may however occur when pollinator species interact
with the same plant species. It is the interplay between these direct and indirect effects
that ultimately determines the net effect of pollinators on each other (Bastolla et al. 2009).
In Fig. 2.6, two pollinators interacting with the same plant species are shown to have
an increasingly strong positive effect on each other. Not surprisingly, these pollinators
can endure a larger increase in the driver of pollinator decline, d4, than the pollinator
not benefiting from this facilitation (also shown in Fig. 2.6). Once the tipping point is
reached, the two pollinators interacting with the same plant species, however, collapse
simultaneously, because they both depend on the same plant species.
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Increased connectance and nestedness both increase the fraction of mutualistic partners
shared by pollinators. The behaviour of highly connected, and/or highly nested com-
munities, is therefore similar to the behaviour of the two pollinator species who share an
interaction with the same plant species (Fig. 2.6). With increasing connectance the “over-
lap” in identity of the mutualistic partners of pollinators is simply increased because a
larger number of interactions has to be distributed over an equal number of plant species.
The “rich get richer” mechanism that lies at the basis of the algorithm we used to generate
nested networks, makes pollinators interact with mutualistic partners where many other
pollinators already interact with. With the algorithm we thus achieve a similar increase
in overlap while maintaining the number of interactions equal. As with the two species
sharing an interaction with the same mutualistic partner in Fig. 2.6, pollinators who form
part of a nested and/or highly connected community indirectly support each other when
stress levels are high. This makes the community survive higher levels of the driver of
pollinator decline, d4, but also leads to a simultaneous collapse, because species depend
on each other when stress levels are high.

Feasible solutions can be found in two types of regimes. The first regime would be one
in which the combined effect of direct and indirect effects between pollinators is positive.
An alternative regime is one where these net effects are mostly negative. This second
regime is only feasible when these negative effects are relatively equal in strength. With
increasing nestedness we move from the second to the first regime. Intermediate values
of nestedness might be less likely to be in either of the two regimes. Some species have
already benefited from the increase in nestedness, while others have not, which leads to an
unbalanced community. This may explain why the probability of finding a feasible solution
is smallest for intermediate values of nestedness (Fig. 2.4 and Appendix A2.3).

2.4 DISCUSSION

Studies addressing the occurrence of critical transitions between alternative stable states
in ecosystems have provided us with myriad examples of potential positive feedback mech-
anisms that might lay at the basis of them (May 1977; Scheffer et al. 2001; Scheffer &
Carpenter 2003; Rietkerk et al. 2004; Kefi et al. 2007; Hirota et al. 2011). These positive
feedback mechanisms propel change towards an alternative stable state when environ-
mental conditions pass a critical point (e.g., when a decline in population size reduces the
growth of a population). It has, however, been challenging to understand how such mech-
anisms may affect the response of structurally complex systems, such as plant-pollinator
communities, to changing environmental conditions (Scheffer et al. 2012). In this paper,
we try to address this challenge by merging theory on alternative stable states with theory
on the structure of ecological networks. Specifically, we show that pollinator populations
may collapse suddenly to extinction, due to a positive feedback mechanism that results
from the positive interactions between plants and pollinators. Each pollinator population
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described with our model is engaged in a unique positive feedback mechanism, of which
the strength may vary substantially. Here, we show that such local positive feedback
mechanisms may nonetheless provide the potential for a single community-wide collapse
of pollinator populations, depending on the topology of mutualistic networks.

Our results can be understood intuitively by considering the “net effects” of species on
each other and the way in which these effects are mediated by the topology of mutualis-
tic networks. Pollinators have a direct negative effect on each other due to competition,
while indirect positive effects may occur between pollinator species who interact with
the same plant species. The extent to which pollinators interact with the same plant
species increases with connectance and/or nestedeness. A high nestedness of the mutu-
alistic network may therefore promote the occurrence of indirect positive effects between
pollinators. Earlier work has shown that these indirect positive effects may reduce the ef-
fective competition between pollinators, and promote the coexistence of species in nested
communities (Bastolla et al. 2009).

In this study, we show that the relative strength of indirect facilitation between pol-
linators becomes stronger as the driver of pollinator decline, dy4, increases (Fig. 2.6).
This corresponds to the increasingly popular ‘stress-gradient hypothesis” which suggests
that facilitative effects grow in importance as environmental stress increases (Bertness
& Callaway 1994; Holmgren et al. 1997; He et al. 2013). A high nestedness of mutual-
istic networks may therefore not only minimize effective competition to a level required
for species coexistence; under stressful conditions, it may even promote strong indirect
facilitation between pollinators.

We found that pollinators who are part of highly connected and/or nested communities
can maintain themselves substantially longer than pollinators who are part of communities
with a low nestedness as the driver of pollinator decline, d4, is increased. This large
persistence of pollinator populations under increasingly stressful conditions is, most likely,
the result of the aforementioned indirect facilitation. Pollinator species who are part of
either a highly nested or highly connected community can maintain themselves under
stressful conditions because they indirectly support each other.

On the other hand, when species can survive under stressful conditions because they
indirectly support each other, they also increasingly depend on each other as conditions
get more stressful. As a consequence, pollinators collapse simultaneously once the driver
of pollinator decline, d4, passes a critical point. What we see in our model is therefore
a surprising relationship between the capacity of species to coexist, to survive under
stressful conditions, and the risk for a single community-wide collapse. They are all the
result of the indirect positive effects, which are promoted by a high connectance and/or
nestedness of mutualistic networks. Importantly, once collapsed, highly connected and/or
nested communities may not necessarily recover more easily. In fact, our model shows the
contrary. Recovery of pollinator populations who form part of highly nested communities
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require a quite large decrease in the driver of pollinator decline, d4, in comparison to
pollinator populations who form part of communities with a low nestedness.

Our findings may have large implications for our view on the sustainability of natural
communities and the ecosystem services provided by them. Based on the insurance hy-
pothesis, one expects ecosystems services to be more reliable when supported by a large
number of species (Naeem & Li 1997; Yachi & Loreau 1999). Functional redundancy of
species is often seen as a valuable ‘commodity’, because it makes ecosystems more reliable
in terms of the ecosystem services they provide (see Naeem & Li 1997). Our analysis,
however, illustrates that the functional overlap of pollinators, which is related to the con-
nectivity and/or nestedness of mutualistic networks, may simultaneously increase the risk
for a single community-wide collapse. A valuable ecosystem service, namely pollination,
can therefore be lost suddenly, despite the fact that it is provided by a large number
of species who are, when taking only their intrinsic properties into account, not equally
sensitive to the driver of pollinator decline, dy4.

Our study is one of many small steps needed to bring theory on critical transitions and
the structure of ecological networks together and we realize that this paper raises new
questions that require further exploration. First, even though our model is substan-
tially more complex than many others that study critical transitions, it is constrained to
mutualistically interacting plant-pollinator communities. Multiple types of interactions
co-occur in natural communities (Melidn et al. 2009), and future studies should explore
how the structuring of multiple types of interactions affect critical transitions. Secondly,
our results underline the importance of developing early-warning signals for critical tran-
sitions in ecological networks (Scheffer et al. 2009). Third and finally, as the mechanisms
we describe are generic, it is possible that a similar trade-off between persistence under
severe conditions and potential for a systemic collapse occurs in other systems as well.
This is reinforced by previous studies finding notable similarities between the structure of
mutualistic networks and that of financial systems (Uzzi 1996; May et al. 2008; Saavedra
et al. 2009; Haldane & May 2011; Saavedra et al. 2011).
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A2.1 NULLCLINES

P P P

Figure A2.1: Nullclines of two mutualistically interacting species. Filled dots indicate stable
equilibria, open dots indicate unstable equilibria. Fundamentally different configurations exist
when (a) the driver of pollinator decline, dg4, is smaller than intrinsic growth rate 74, (b) when
the driver of pollinator decline, d 4, is bigger than intrinsic growth rate 74 and, (¢) when the
driver of pollinator decline, d4, is substantially larger than intrinsic growth rate r4. By
increasing the driver of pollinator decline, d 4, we change from a regime with one stable state,
presented in a, to the regime with two alternative stable states presented in b, until eventually
a tipping point is reached where pollinators collapse to extinction. For a further analysis of
models with two mutualistically interacting species see May (1978), Dean (1983), and Wright
(1989)
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A2.2 PLANT POPULATIONS
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Figure A2.2: Collapse of plant populations when increasing the mortality d4 of pollinators.
Results are shown for a random (left) and a nested (right, N=0.6) network. Parameter settings
are the same as in Fig. 2.2.
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Figure A2.3: Re-establishment of plant populations when decreasing the mortality of pol-
linators d4. Results are shown for a random (left) and a nested (right, N=0.6) network.
Parameter settings are the same as in Fig. 2.3.
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A2.3 NETWORK TOPOLOGY

We tested the extent to which our results depend on the specific number of species,
connectance or fraction of forbidden links chosen (Fig. A2.4, A2.5, A2.6 and A2.7).

Furthermore, we show in Fig. A2.8 and A2.9 what our results look like if we do not
allow any species to have less than 2 partners during any step of the algorithm we used
to generate nested networks.

We only found qualitative differences in the behaviour of our model.
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Figure A2.4: Results when using the same parameter settings as in Fig. 2.4, only now the
community consists out of 35 plant and 35 pollinator species. As in Fig. 2.4, the coloured
bars represent the fractions of feasible networks in which a certain number of collapses is
found. The fraction of networks in which feasible solutions are found is indicated with the
green diamonds.
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Figure A2.5: Points of collapse (circles) when the driver of pollinator decline, dy, is in-
creased, and points of recovery (triangles) when the driver of pollinator decline, d4, is de-
creased. In case of multiple collapses and/or recoveries, the final point of collapse and the first
point of recovery was plotted. Parameter settings are as in Fig. A2.4.
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Figure A2.6: Results when using the same parameter settings as in Fig. 2.4, only now
competition between species is a bit stronger, C;; ~ U(0.025,0.075), and in communities with
increasingly nested network topologies (right panel), the connectance is fixed to 0.25, and the
fraction of forbidden links is fixed to 0.25. As in Fig. 2.4, the coloured bars represent the
fractions of feasible networks in which a certain number of collapses is found. The fraction of
networks in which feasible solutions are found is indicated with the green diamonds.
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Figure A2.7: Points of collapse (circles) when the driver of pollinator decline, dy, is in-
creased, and points of recovery (triangles) when the driver of pollinator decline, d4, is de-
creased. In case of multiple collapses and/or recoveries, the final point of collapse and the first
point of recovery was plotted. Parameter settings are as in Fig. A2.6.
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Figure A2.8: Results when using the same parameter settings as in Fig. A2.6, only now
each species has at least two interactions. As in Fig. A2.6, the coloured bars represent the
fractions of feasible networks in which a certain number of collapses is found. The fraction of
networks in which feasible solutions are found is indicated with the green diamonds.
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Figure A2.9: Points of collapse (circles) when the driver of pollinator decline, dy, is in-
creased, and points of recovery (triangles) when the driver of pollinator decline, d4, is de-
creased. In case of multiple collapses and/or recoveries, the final point of collapse and the first
point of recovery was plotted. Parameter settings are as in Fig. A2.8.
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ABSTRACT

One of the main goals of studies on ecological networks is to understand how these often
large and complex networks of interactions between species remain stable. While most
of these studies try to identify network structural patterns that promote biodiversity, i.e.
allow for a large number of coexisting species, less attention has been given to the specific
ways in which biodiversity might be lost. In a time when ecosystems are under increasing
pressure from anthropogenic drivers such as climate change, land use, and pollution, this
question is however of great importance, in particular because critical transitions may
occur towards other potentially less desirable states. Food-web theory and observations in
real ecosystems suggest that destabilizing oscillatory dynamics caused by strong predator-
prey interactions are damped by many weak interactions. Inspired by previous work
on critical transitions and the structural stability of dynamical systems, we describe a
variety of transitions, associated with different types of boundaries in parameter space,
that may occur when such stabilizing, damping patterns are undermined and explore
how structural network patterns, i.e. species number, connectance, and variability in
interaction strength, might influence the occurrence of such transitions. These findings
may have large implications for the way in which we evaluate the stability of complex
ecosystems.
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3.1 INTRODUCTION

That biodiversity is in decline is no longer in question (Vitousek et al., 1997; Millenium
Ecosystem Assessment, 2005; Steffen et al., 2006; Rockstrom et al., 2009; Steffen et al.,
2015). Which and when measures should be taken to prevent the extinction of species
remains, however, subject of debate. Recent work has shown that changing environmental
conditions may alter the strengths of interactions between species (Winder & Schindler,
2004; Suttle et al., 2007; Tylianakis et al., 2008; Doney et al., 2012; Blois et al., 2013;
Burkle et al., 2013; Urban et al., 2016; Romero et al., 2018). Such changes may jumble
structural patterns in the networks of trophic, mutualistic and/or other interactions that
are crucial for the stable coexistence of species (Kareiva et al., 1993; McCann, 2000;
Montoya et al., 2006; Bastolla et al., 2009). An increasing number of studies suggests
therefore that a more holistic approach should be taken towards protecting biodiversity
(Thompson, 1994; McCann, 2007; Gaston & Fuller, 2008; Tylianakis et al., 2010). Such an
approach would not focus only on the well-being of endangered or iconic species, but tries
to protect the natural communities in which they are embedded. Predicting the response
of natural communities to changing environmental conditions is however difficult (but
see Chapter 4). In particular, because this response depends in complex and, often,
unknown ways on the intrinsic properties of species, the interactions between them, and
the specific ways in they are affected by environmental change. This makes it hard to
determine which ecosystems, species or interactions should be the focal point of efforts to
maintain ecosystem stability.

Ecosystems may respond in various ways to changing environmental conditions. When
conditions change gradually, the abundances of species may change likewise, in a smooth,
gradual manner. Empirical studies of lakes, arid ecosystems, coral reefs, and tropical
forests, have however shown that this is not always the case. Sudden, critical transitions
towards alternative stable states may occur when critical points are passed (Scheffer et al.,
2001). The most commonly studied cause of such transitions is a positive, reinforcing
feedback that amplifies change when changing conditions or abundances pass a critical
value. Such positive feedbacks are a necessary condition for the existence of alternative
stable states (Thomas, 1981; Snoussi, 1998; Gouzé, 1998), and may, for example, occur
in plant-pollinator communities where a decline in pollinator abundances may negatively
affect plants, which in turn is bad for pollinators (Dean 1983; Wright 1989 and Chapter
2), or between a pair of competing species and in three-species omnivore loops in food
webs (e.g. Van Nes & Scheffer 2004; Neutel & Thorne 2014 and Fig. 3.1.A-C). Critical
transitions towards alternative stable states become increasingly likely when changing
environmental conditions alter the relative strengths of feedbacks such that positive or
other destabilizing feedbacks gain in strength relative to stabilizing, immediate negative
feedbacks, and recovery from such transitions may require a relatively large change in
conditions, a phenomenon known as ‘hysteresis’.
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Figure 3.1: Examples of positive and negative feedback loops in a small food web. (A) The
food web consisting of three primary producers, e.g. plants, 1-3, and three consumers, e.g.
herbivores/omnivores, 4-6. primary producers compete with other producers. Consumers feed
on other consumers and/or primary producers. (B) Positive feedback between species 3, 6,
and 5 that may lead to an increase in the abundance of species 3 and 6, and a decrease in the
abundance of species 5 or vice versa. (C) Positive feedback between species 1, 5, 6, and 4 that
may lead to an increase in species 1, 5, and 6, and a decrease in species 4 or vice versa. (D)
Negative feedback of species 3 on itself. This feedback is fast, because only a single species is
involved. It has, therefore, a stabilizing effect on the dynamics of the network. (E) Negative
feedback between species 1, 3, 6, and 4. This feedback is slow, because a relatively large
number of species is involved in the feedback. It may, therefore, lead to oscillatory dynamics.
Feedbacks are positive when there is an even number, and negative when there is an odd
number of negative interactions in a feedback loop.

An early mathematical, theoretical foundation of transitions caused by an increase in the
relative strength of a positive feedback was laid by the work of René Thom on catas-
trophe theory and the structural stability of dynamical systems. Thom (1972) describes
seven ‘elementary catastrophes’ for processes controlled by up to four parameters (Thom,
1975). Despite some controversy in the past (Zahler & Sussmann, 1977), the cusp (two
control parameters) and fold catastrophe (one control parameter), as described by Thom
(1972), are now assumed to capture the essence of a wide variety of systems varying from
ecosystems (May, 1977; Wilson & Agnew, 1992; Rietkerk & Van de Koppel, 1997; Scheffer
et al., 2001), to human cells (Hasty et al., 2002; Ferrell Jr, 2002; Lee et al., 2002; Tyson
et al., 2003; Angeli et al., 2004), and the climate (Hare & Mantua, 2000; Clark et al., 2002;
Alley et al., 2003; Lenton et al., 2008). A particularly well known example in ecology is
found in lakes where the equilibrium abundance of algae is controlled by lake depth and
nutrient availability. When considering both these parameters, a cusp catastrophe may
be obtained (see Chapter 1 and Fig. 1.3). A fold catastrophe may be obtained when
plotting the equilibrium abundance of algae against nutrient availability for a given depth,
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i.e. for shallow lakes (Scheffer 1990; Scheffer et al. 1993, and Fig. 1.3.D).

Highly related to the work of René Thom, is the work of Buzz Holling who noted that
for many ecosystems the important question is not how stable a system is in terms of
the speed at which a system recovers from external perturbations, but how likely it is for
a system to switch from one state to another under the influence of such perturbations
(Holling, 1973). As a way to estimate such probability, he proposed to use the size of the
domain of attraction in a system’s phase space and later refers to the size of this domain
as a measure of ‘ecological resilience’ (Holling, 1996). When conditions change such that
a critical or ‘bifurcation’ point is approached, the minimum perturbation size required
to cause a critical transition, as determined by the size of this domain, i.e. ecological
resilience, goes to zero and a transition becomes inevitable (Fig. 1.4).

Positive feedbacks associated with a fold or cusp catastrophe are, however, not the only
likely cause of instability in complex ecosystems. Feedbacks can be immediate, for example
when members of the same species directly influence the growth of a population through
intraspecific competition or facilitation. Delayed feedbacks may, for example, occur when
they are mediated through other species, e.g. the indirect negative effect of prey species
on themselves when promoting the growth of a predator population. Feedbacks in long
loops, i.e. involving many species, tend to be slower than those in shorter loops. A
system may exhibit oscillatory or other more complex dynamics when delayed negative
feedbacks are strong relative to faster negative feedbacks (Levins, 1974; Puccia & Levins,
1985; Neutel & Thorne, 2014). Chaotic dynamics are found when there are two or more
interacting sub-systems that, on their own, would show oscillatory dynamics (Goldbeter,
1996; Tyson et al., 2003; Novdk & Tyson, 2008). Transitions towards such oscillatory
or other more complex dynamics may occur when delayed negative feedbacks gain in
strength relative to more immediate negative feedbacks (Marsden & McCracken, 1976;
Kuznetsov, 1995).

Food webs of predator-prey interactions might be particularly susceptible to showing oscil-
latory or other more complex dynamics. A classical example is the ‘paradox of enrichment’
that may lead to oscillations in the abundances of predators and prey at high prey den-
sities (Rosenzweig & MacArthur, 1963; Rosenzweig, 1971). Such oscillations may occur
when increased nutrient availability reduces intraspecific competition among prey such
that the destabilizing effect of the delayed, indirect negative feedback between predators
and prey becomes apparent. Chaotic dynamics may occur in simple tritrophic food chains
with, by definition, two delayed negative feedbacks of the aforementioned type (Hastings
& Powell, 1991; McCann & Yodzis, 1994; De Feo & Rinaldi, 1998). The occurrence of such
complex dynamics is best understood when considering such chains as coupled oscillators,
i.e. one for each trophic interaction. In more complex food webs delayed negative feedback
loops of more than two species may lead to oscillatory or other more complex dynamics
as well (Fig. 3.1.D-E). Food-web theory and observations in real ecosystems suggests that
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oscillatory or other chaotic dynamics are damped because subsets of strongly interacting
species, that would show oscillatory dynamics in isolation, are embedded in food-webs
with many weak interactions (McCann et al., 1998; Berlow, 1999; Neutel et al., 2002;
Bascompte et al., 2005). Such an asymmetric distribution of interaction strengths may
provide one of several answers to the question posed by May (1972, 1973) of what makes
complex ecosystems of many species and interactions stable (Pimm, 1984; McCann, 2000).
A wide variety of studies suggest, however, that changing environmental conditions may
alter the strengths of trophic interactions (Winder & Schindler, 2004; Suttle et al., 2007;
Tylianakis et al., 2008; Doney et al., 2012; Blois et al., 2013; Urban et al., 2016; Romero
et al., 2018). Such changes may undermine the aforementioned damping effects and lead
to critical transitions when delayed negative feedbacks gain in strength relative to more
immediate negative feedbacks.

As mentioned previously, critical transitions become inevitable when changing environ-
mental conditions change such that a critical or ‘bifurcation’ point is reached. At such a
point, a system may be considered ‘structurally unstable’, i.e. an infinitely small change in
parameters (conditions) may lead to a qualitative change in a system’s dynamical behav-
ior, e.g. the existence of equilibrium points, limit cycles, or chaotic dynamics. The size of
the area in a system’s parameter space within which a system shows the same qualitative
behavior (in some domain within a system’s phase space) may be used as a measure of
the extent to which a system’s dynamical behavior (within the aforementioned domain)
is structurally stable (Thom, 1972; Alberch, 1989; Bastolla et al., 2005, 2009; Kuznetsov,
1995; Rohr et al., 2014). Questions on the structural stability of complex dynamical
systems and the occurrence of critical transitions are thus closely related.

Inspired by previous work on critical transitions and the structural stability of dynamical
systems, e.g. Thom (1972) and Kuznetsov (1995), we describe a series of catastrophes,
i.e. different types of boundaries in parameter space, associated with the aforementioned
changes in complex food webs. As a rough indication of which network structural prop-
erties might promote the occurrence of such catastrophes, we explore which properties,
i.e. species number, connectance, and variability in interaction strengths, might influ-
ence the occurrence of such catastrophes. To illustrate that abrupt transitions towards
alternative stable states, oscillatory or other more complex dynamics may occur when
such boundaries are passed even under basic dynamical assumptions, we assume that the
functional response of predators, i.e. the relation between a predator’s intake rate and
prey availability, is linear. Parameters are assigned such that at a system’s nontrivial
equilibrium, i.e. the equilibrium point at which all species have a non-zero abundance,
the species’ growth, feeding and respiration rates follow allometric scaling laws, i.e. they
depend on a species’ body mass. A species’ body mass depends, in turn, on a species’ po-
sition in a food web. Food-web topology, i.e. who interacts with whom, is determined by
the niche model of Williams & Martinez (2000). Future work may build on this study to
include also more complex, non-linear functional responses such that we may get a more
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full understanding of the complex and potentially catastrophic ways in which changing
environmental conditions may undermine food-web stability.

3.2 METHODS

We use a dynamic food-web model describing two species groups: primary producers
and consumers. Primary producers, i.e. plants and other autotrophs, obtain resources
from abiotic sources, e.g. soil nutrients and sunlight, while consumers, i.e. herbivores,
omnivores, and carnivores, feed on other species. The dynamics of species ¢ are described
as follows:

dB, ¢iiB; i B;
PoRrB(1- Y W Y JibuBiBi Y B~ TB,
( 2K, >+ Vit W—anfa
je{prod.} ke{prey} le{pred.}
(3.1)

in which B; represents the biomass of species i. The growth of primary producers is
determined by growth rate R;, carrying capacity K;, and competitive interaction strength
c;j. Feeding rates and other biomass flows are determined by a consumer’s maximum
assimilation rate J;, the fraction of a consumer’s maximum assimilation rate realized
per prey biomass v;, relative feeding preference 6y;, the fraction of killed prey biomass
that is ingested or feeding efficiency f;;, the fraction of ingested biomass lost to feces
0;1, and the loss in consumer biomass production due to respiration 7;. Consumers may
prey on primary producers, i.e. herbivore interactions, as well as on other consumers, i.e.
carnivore interactions. Species j is a primary producer. Species k is a prey, and species [ a
predator of species i. R; is assumed to be zero for consumers, while J; and T; are assumed
to be zero for primary producers. The fraction of a consumer’s maximum assimilation
rate realized at a system’s nontrivial equilibrium, &; is determined by:

fi: Z ¢i9kiék> (3.2)

ke{prey}

in which By is the nontrivial equilibrium abundance of prey k. Parameters are assigned
such that this fraction is smaller than one.

The intrinsic growth rate, R;, of primary producers, a consumer’s maximum assimilation
rate, J;, and respiration rate T;, depend on a species’ body mass, M;, as follows:
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in which ag, ay, and ar are allometric scaling coefficients. This way of assigning pa-
rameters facilitates comparison with empirical data, e.g. Huxley (1932), Kleiber (1932),
Cohen et al. (1993), West et al. (1997), Enquist et al. (1999), Gillooly et al. (2001), Cohen
et al. (2003), Ernest et al. (2003), Brown et al. (2004), Woodward et al. (2005), and Brose
et al. (2006a), as well as with theoretical studies that make more complex assumptions
when describing a consumer’s functional response, e.g. Yodzis & Innes (1992), Brose et al.
(2006b), Williams et al. (2007), Stouffer & Bascompte (2010), Purves et al. (2013), and
Quévreux & Brose (2019). The entire model may be rewritten in a simpler form when
determining the effective competitive and trophic interaction strengths, i.e. the combined
effect of all parameters describing an interaction (see Appendix A3.1.1 in Supporting
Information).

Food-web topology

The topology of our model food webs, i.e. who eats whom, is determined by the niche
model of Williams & Martinez (2000). According to this model, species are randomly
assigned a niche value taken from a uniform distribution. Consumers tend to eat prey
with a similar or lower niche value, i.e. with niche values falling within a range of which
the center is lower than a consumer’s own niche value. The niche model of Williams
& Martinez (2000) was shown to generate food webs with structural properties that are
similar to those observed empirically in food webs (Williams & Martinez, 2000; Stouffer
et al., 2005) and is based on the empirical observation that a single niche axis is often
sufficient to explain who interacts with whom in complex food webs (Cohen, 1977; Cohen
& Stephens, 1978; Cohen & Newman, 1985). With the help of this model we generate
food webs with a predefined number of species, S, and average directed connectance,
C, i.e the number of trophic interactions, L, divided by the number of possible interac-
tions, S2. Food-webs consisting out of more than one component are discarded from our
analysis.

Coexistence and the body-mass of species

As the complexity of food webs, i.e. the number of species and/or interactions, increases,
it becomes increasingly difficult to assign parameters such that species may coexist stably
(May, 1972, 1973; Roberts, 1974; Gilpin, 1975). Assigning parameters such that species
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may coexist stably in complex communities thus requires assumptions about the nonran-
dom way in these communities are organized. A primary condition for stable coexistence
is that a community is feasible, i.e. the amount of resources available to species is suf-
ficient to maintain a population while being predated upon by other species or suffering
other losses. A food web may be considered feasible when the net biomass production
at lower trophic levels is sufficient to maintain species at higher levels, and a food-web’s
nontrivial equilibrium is feasible when all nontrivial equilibrium abundances are larger
than zero (Roberts, 1974; Gilpin, 1975). Such an equilibrium may be considered stable
when the real part of the dominant eigenvalue of the Jacobian matrix corresponding to
this equilibrium is smaller than zero (May, 1972).

Feasibility of the here studied model food webs is largely dependent on the specific way in
which body masses are assigned. The intrinsic growth rate of producers and the maximum
assimilation rate of consumers with a small body mass is larger than the net production
and the maximum assimilation rate of larger producers or consumers. Two patterns in
the body mass of species may therefore promote feasibility: 1) primary producers that
are directly or indirectly preyed upon by many species, i.e. that have a low niche value,
tend to be smaller than primary producers that need to sustain fewer species, and 2)
predators are larger than prey. We are not aware of empirical studies that have explicitly
described the first pattern, but it is known that the body mass of primary producers
may vary widely which makes such a pattern likely. The body mass of consumers was,
in line with the above described second pattern, found to increase with trophic level and
predator-prey body-mass ratios were found to vary within some limited range in empirical
food webs (Cohen et al. 1993, 2003; Emmerson & Raffaelli 2004; Woodward et al. 2005;
Brose et al. 2006a, but see Carbone et al. 1999).

In this study, we take feasible, stable food webs as the starting point of our analysis and
we assign body masses such that this is the case. Nontrivial equilibrium abundances, Ei,
and parameters that do not depend on a species’ body mass are taken from predefined
probability distributions (see parameter settings). To assign body masses, we use an
algorithm that randomly updates body masses until a desired feasible, stable solution is
reached (see Appendix A3.1.2). The outcome of this algorithm is a body-mass distribution
that roughly follows the above described patterns. The feasibilty and stability of the here
studied model food webs depends on the relative differences in body mass and not on the
absolute body mass of species.

Analysis and parameter settings

To explore how the response of ecosystems depends on the overall structure of food webs,
we analyze several data sets each consisting of 2500 model-generated food webs. The
structure of food webs, i.e. the topology and the distributions from which parameters
are sampled, may differ among data sets. More specifically, we explore how differences in
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species number, S, connectance, C, the distribution of relative feeding preferences, 6;,
and the distribution of feeding efficiencies, f;;, may affect the dynamical behavior of food
webs.

Allometric scaling coefficients are, as in other studies, assigned as follows: arp = 1,
ay = 2.512, and ar = 0.314 (consumers are assumed to be invertebrates, Brown et al.
2004; Brose et al. 2006b). The fraction of ingested biomass lost to feces, d;;, is taken from
U(0.4,0.7) for herbivore interactions and from U(0.05,0.25) for carnivore interactions.
Interspecific competitive interaction strengths, ¢;;, are taken from U(0.1,0.5). Intraspe-
cific competitive interaction strengths, c¢;;, are one. Carrying capacities, K;, are assigned
such that they scale with a producer’s intrinsic growth rate. We do this by assigning
primary producers with R;/Kj; ratio, p;, taken from U(0.2,1). R; is determined by equa-
tion 3.3 and K; = R;/p;. R;/K; ratios play an important role in ecological literature
(MacArthur, 1962; Cody, 1966; MacArthur & Wilson, 1967; Pianka, 1970; Grime, 1979)
and equal the effective intraspecific competitive interaction strength as described in Ap-
pendix A3.1.1.

Relative feeding preferences, 0;, are taken from a scaled, symmetric Dirichlet distribution.
The distribution’s concentration parameter « is, unless stated otherwise, assigned such
that the expected variance in relative preference of consumers preying on two prey species
is 0.03 (a = 2.875). Preferences of other consumers are sampled from distributions with
the same a. A consumer’s minimum relative feeding preference is 0.1 divided by the
number of prey, and the sum of all a consumer’s relative preferences is one. Feeding
efficiencies, fi, are taken from a scaled beta distribution with range (0.1,1). Unless
stated otherwise, shape parameters a and [ are assigned such that the expected mean
feeding efficiency is 0.75 and the expected variance 0.11.

Consumers are assumed to have a preference for, and prey more efficiently on species
that are in the center of a consumer’s niche range. Feeding preferences, 6;;, and feeding
efficiencies, f;., are therefore sorted such that this is the case. To make sure that our
results do not critically depend on this assumption, we test networks in which this order
is random as well.

Body masses are, with the help of the aforementioned algorithm (see Appendix A3.1.2),
assigned such that the system’s nontrivial equilibrium is stable, i.e. the real part of
the Jacobian’s dominant eigenvalue is smaller than -1le-4. The fractions of a consumer’s
maximum assimilation rate realized at a system’s nontrivial equilibrium, ~;, fall within
the range (0.05,0.75), and predator-prey body-mass ratios within (0.5,20). Nontrivial
equilibrium abundances, Bi, are taken from a uniform distribution with range (1.5,2.5).
The fraction of a consumer’s maximum assimilation rate realized per prey biomass is
determined as follows:
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Yi
S 0By (3.4)

ke{prey}

i =

When nothing is stated about the number of species, S, and connectance, C', we study
food webs of 22 species with an average directed connectance of 0.16.

Alternative stable states

Because we assume a linear functional response there is only one single nontrivial equi-
librium at which all species may coexist stably. In addition to this nontrivial equilibium,
trivial equilibria exist at which one or more species are extinct. Perhaps counterintu-
itively, because alternative stable states are usually separated by unstable equilibria in
simple one- or two-dimensional models, multiple alternative stable states may exist in
addition to a stable nontrivial equilibrium in systems with three or more species, even
when assuming a linear functional response (Goh, 1977). Critical transitions away from a
system’s stable nontrivial equilibrium may occur towards such partially collapsed states
when such trivial equilibria are stable. To determine the potential for such partial network
collapses, we analytically determine for each subset of species whether a stable equilib-
rium exist at which all species belonging to a subset have positive abundances while the
abundances of other species are zero (see Appendix A3.1.3).

The total feedback on each level

As mentioned in the introduction, feedbacks may have a different length depending on
the number of species involved k. We determine the total feedback on each level k as
follows:

Fi =Y (=1)""'L(m, k), (3.5)

where L(m k) is the product of each element in the Jacobian matrix at a system’s nontrivial
equilibrium, «;;, corresponding to m disjunct, i.e, non-overlapping, loops together having
k elements (Levins, 1974; Puccia & Levins, 1985). The total feedback on level k is thus
determined by the strengths of feedbacks with length &£ and smaller. The first necessary
condition for the local stability of a system’s nontrivial equilibrium is that the total
feedback, Fk, is negative at each level k. The second condition for stability is that
the strength of slow negative feedbacks cannot be too large when compared to the faster
negative feedbacks at lower levels (Levins, 1974; Puccia & Levins, 1985; Neutel & Thorne,
2014). By determining the total feedback, we may know at which level feedbacks might
be destabilizing a system.
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The total feedback on level k£ of a three-species system in which primary producer 1 has
a direct negative effect on itself and where trophic interactions occur between species 1
and 2, 1 and 3, and 2 and 3, is as follows: F} = a1, Fb = 12001 + Q13031 + Qraziso,
and F3 = 330091 + arpaiazaig; — (iozarga)agp. Delayed negative feedbacks destabilize
this system when F} > 0, or when FiF; + F3 > 0. More complex relationships exist in
n-species systems, e.g. Fy(F\Fy+ F5) — F3(F1Fy + F3) > 0. Generally speaking, one may
assume that a stable system requires that the total feedback on higher levels is not too
large when compared to the total feedback on lower levels (Hurwitz, 1895; Gantmacher,
1959; Levins, 1974; Puccia & Levins, 1985).

As an intuitive measure of the extend in which a certain initial distribution of total
feedbacks on different levels k, F7j;, may or may not promote stability, we determine
the threshold value, Frp, below or above which food webs with the same total-feedback
distribution become unstable. Frj is determined computationally by gradually in- or
decreasing Fj, by multiplying the total feedback at all levels with the same factor x ((Fry =
KE [Jg).

Boundaries to the area in which species may coexist stably

Boundaries to the area in which species coexist stably may occur when a species’” abun-
dance goes to zero, i.e. a loss of feasibility, or when a system’s feasible, nontrivial equi-
librium becomes unstable. In case of a transcritical bifurcation a system’s nontrivial
equilibrium may simultaneously become unfeasible and unstable. We refer to this case
as a loss of feasibility because this is the ecologically relevant aspect of the bifurcation
(equilibria with negative abundances are ecologically irrelevant). Because we assume a
linear functional response, a fold bifurcation is not possible. Stability of a system’s fea-
sible, nontrivial equilibrium may, however, be lost when a system approaches a Hopf
bifurcation. Such Hopf bifurcations may either be supercritical, in which case a stable
limit cycle of increasing amplitude appears, or subcritical, in which case a system shifts
abruptly to an alternative attractor. There are thus two different ways in which the sys-
tem’s feasible, nontrivial equilibrium may become unstable (when assuming codimension
one, i.e. change in a single parameter). To illustrate how a food web’s response depends
on the nature of the boundary crossed, we study how the dynamical behavior of a simple
six-species food webs with the topology in Fig. 3.1.A may depend on the top predator’s
relative feeding preferences, 6;;. More specifically, we determine for the full network and
for each subset of species the area in the top predator’s parameter space where each set of
species may coexist stably as well as the nature of the boundaries to areas with a single
or multiple alternative stable states. We provide examples of three different parameter
settings which are chosen such that the area in which a system’s nontrivial equilibrium
is stable exhibits a different type of boundary (see Appendix A3.1.4). Two cases of the
specific way in which crossing a boundary may affect food web dynamics are explored for
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each setting; one in which there is an alternative stable subset and one in which there is
no alternative stable subset to which a food web may shift at the time of a transition. In
total we thus distinguish six different ways in which a food web may respond to changing
environmental conditions.

Studying the parameter space of large and complex food webs is complicated, in partic-
ular because all trophic interaction strengths as well as all other parameters may change
simultaneously. For each of the 2500 model generated food webs belonging to a data
set, we study therefore how a random change in the relative feeding preferences of con-
sumers may alter the feasibility and stability of our model generated food webs. We do
this by simultaneously altering the relative feeding preferences of all consumers, 6, as
follows:

ki = ok + (Oinatki — Ooxi) (36)

in which o ; is the initial, 0%, ,, the final, and 6}, the actual feeding preference of
consumer species ¢. Environmental condition, F, is changed in a step-wise manner from
0 to 1 with steps of 0.0001. This approach is equivalent to choosing a random direction
in parameter space and checking what kind of boundary to the area in which species may
coexist stably is crossed. For each food web we explore 100 different directions, i.e. 100
randomly assigned values of 0finq k. Like the initial feeding preferences, final feeding
preferences are taken from a symmetric Dirichlet distribution such that the sum of all a
consumer’s relative feeding preferences is one. The distribution of final feeding preferences
is assumed to be uniform, i.e. concentration parameter a of the Dirichlet distribution is
one.

We assume the presence of alternative stable states at the system’s initial conditions, i.e.
at F = 0, to be indicative of the frequency at which alternative stable states are present
when a boundary is crossed. To test whether this assumption is true, we determine
whether alternative stable states are present one step before a boundary is reached and
determine whether results are qualitatively the same. We also assume that our results are
not crucially dependent on the assumption that the fraction of a consumer’s maximum
assimilation rate realized per prey biomass, ¥, stays the same as relative feeding pref-
erences change. To test whether this assumption is true, we explore scenarios in which
the fraction of a consumer’s maximum assimilation rate realized per prey biomass, ¥,
and/or the body mass of species changes as well. We do this by altering these fractions
as follows:

U7 =0 + (Vinai — Yo,) E,
(3.7)
M} = My; + (Mfina; — Moi)E,
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in which ) ; is the initial, ¥ finq, the final, and 1} the actual feeding preference M, ;
is the initial, Mynq; the final, and M; the actual body mass of consumer species i.
Ytinati = Ko, and Myina; = kiMo,;. K; is taken from a uniform distribution with range
(0.75,1.25).

We assume a food web to be unfeasible when the nontrivial equilibrium abundance of at
least one species is smaller than 0.0001. We assume to be dealing with a loss of stability
when the real part of at least one of the eigenvalues of the Jacobian matrix becomes larger
than zero while all abundances are greater than 0.0001. In practice we were (nearly) always
dealing with a pair of complex conjugate eigenvalues that would become larger than zero
when a system is feasible, as is typical for Hopf bifurcations. When a Hopf bifurcation
is found, we determine whether we are dealing with a supercritical or subcritical by
determining the first Lyaponov coefficient. If the first Lyapunov coefficient is negative
we are dealing with a supercritical Hopf bifurcation towards a stable limit cycle of which
the amplitude increases as conditions change further. If the first Lyapunov coefficient is
positive we are dealing with a subcritical Hopf bifurcation towards other potentially more
complex dynamics (Marsden & McCracken 1976; Kuznetsov 1995).

3.3 RESULTS

The nature of different types of boundaries in parameter space and the associated critical
transitions occurring in the here studied food webs is best understood when studying some
stereotypical examples. To provide such examples, we explore the dynamic response of
relatively simple food webs, i.e. with the topology in Fig. 3.1.A, to changes in the relative
feeding preferences of the food-web’s top predator (Fig. 3.2 and Appendix A3.1.4). Each
example is associated with a different type of boundary in the top-predator’s parameter
space to the area in which all species may coexist stably, i.e. a loss of feasibility, a super-
critical, or a subcritical Hopf bifurcation. Three types of areas in the predator’s parameter
space can be distinguished: areas with a single stable state, areas with multiple stable
states, and areas in which no single combination of species may coexist stably. Areas with
multiple, alternative stable states are of special interest as these are areas in which there
is hysteresis. Oscillatory or other more complex dynamics occur in areas where there are
no stable states, potentially allowing species to coexist in an ‘unstable’ manner, i.e. per-
manence (Hutson & Vickers, 1983; Hutson & Law, 1985). More complex possibilities exist
when there are multiple alternative oscillatory, chaotic, or other complex attractors. In
this study, we focus on such attractors only when they are directly associated with a shift
towards instability of a system’s feasible, nontrivial equilibrium. In addition to the here
described catastrophes, specific points in parameter space may mark connecting points
between different types of boundaries (Fig. A3.1). When such points exist, the behavior
of a system is particularly (structurally) unstable in the sense that small differences in
the specific way in which changing conditions affect parameters may cause a system to



3.3 RESULTS 63

respond in a fundamentally different way. Growth, feeding and respiration rates of all
species and interactions are different in each example (see Appendix A3.1.4).

For each boundary type we indicate two directions away from an initial situation in which
all species may coexist stably: a direction leading to a transition when no alternative
subset of species is stable and a direction leading to a transition when an alternative
subset is stable at the time of a transition (Fig. 3.2). Time series of all six species when
conditions are changed along these directions are shown in Fig. 3.3. Perhaps surprisingly,
we found that sudden transitions towards alternative stable subsets potentially leading
to the loss of several species may be triggered by the decline of a single species, i.e. a
loss of feasibility (Fig. 3.3.A). Recovery from such transitions may require a relatively
large change in conditions, e.g. back towards the area in parameter space in which a
system’s nontrivial equilibrium is the only stable state. Although technically a Hopf
bifurcation occurring when the abundance of a single species is nearly, but still slightly
above zero, such transitions are associated with the gradual decline towards extinction of
a single species after which the remaining subset of all-but-one species remains unstable
(Fig. 3.3.A, direction 2). When this subset is stable, we are dealing with a transcritical
bifurcation (Fig. 3.3.A, direction 1). Oscillatory dynamics with an increasing amplitude
occur after a supercritical Hopf bifurcation is passed (Fig. 3.3.B). After such transitions a
system may continue to oscillate until, in this example, a system’s nontrivial equilibrium
becomes stable again, or may shift towards an alternative stable subset once the amplitude
of the oscillations is large enough to invoke a shift, e.g. when a limit cycle collides with a
stable trivial equilibrium; a global bifurcation. Recovery from a such a shift may require a
relatively large change in conditions. The, perhaps, most striking difference in dynamics
is found when comparing dynamics after a subcritical Hopf bifurcation for the two cases
with and without the presence of an alternative stable subset (Fig. 3.3.C). In the first
case we found an abrupt transition towards chaotic or other complex dynamics. In the
second case an abrupt transition occurred from one stable state to another. This last
case shares some important characteristics with a classical fold bifurcation, i.e. it is a
shift between alternative stable states and there is hysteresis. The cause of instability,
i.e. an increase in the strength of a delayed negative feedback relative to more immediate
negative feedbacks, is, however, fairly different.

A hint of what might happen after an impending regime shift may be found when studying
the effect of changing environmental conditions on a system’s feedbacks (see Chapter 4).
An increase in the relative strength of the positive feedback in Fig. 3.1.B likely plays an
important role in the existence of alternative stable states in Fig. 3.2.A and 3.2.B. This
feedback promotes either an increase in species 5 (blue) and a decrease in species 3 (yellow)
and 6 (red) as observed in Fig. 3.3.A.2, or a decrease in species 5 and increase in species 3
and 6 as observed in Fig. 3.3.B.2. A similar role might be played by the feedback in Fig.
3.1.C prior to the regime shift observed in Fig. 3.3.C.2 where it may promote the observed
strong increase in species 1 (orange), 5 (blue), and 6 (red) and a decrease in species 4
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Figure 3.2: Boundaries in parameter space

A & 5L for three different parameter settings, e.g.
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area. Boundaries are crossed when a species’
abundance goes to zero (black solid lines),
i.e. a loss of feasibility, or when a feasible
food web becomes unstable (striped lines).
Areas in which subsets of species may coex-
ist stably are shown in green when contain-
ing all but one species and in red when con-
taining fewer species. Striped areas contain
multiple alternative stable states. There are
no stable states in fully grey areas. (A) A
loss of feasibility leads to the gradual de-

cline and extinction of a single species when
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types of dynamical behavior. See Appendix
A3.1.4 for parameter settings. The panels
are triangular because the sum of the top
predator’s three feeding preferences is one.
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Figure 3.3: Time series of all six species when the top predator’s relative feeding preferences
change along the arrows in Fig. 3.2. Each example corresponds to a different type of critical
transition. The type of boundary crossed is different in panels A, B, and C. Panels 1 and 2
differ in the presence or absence of an alternative stable subset at the time of a transition.
Bars below the time series correspond to the areas in Fig. 3.2. (A) The abundance of a
single species (1) declines gradually and goes extinct, i.e. a loss of feasibility. In panel A.2
this gradual extinction is accompanied by the sudden collapse of a second species (6) and a
shift towards a stable four-species subset (2,3,4,5). (B) The system approaches a supercritical
Hopf bifurcation and shows oscillatory dynamics after it becomes unstable (see Fig. A3.2). In
panel B.2 the cycle disappears when the system shifts to an stable four-species subset occurs
(1,2,3,6). (C) The system approaches a subcritical Hopf bifurcation and shows complex
dynamics after it becomes unstable (see Fig. A3.3). In panel C.2 this leads to an abrupt shift
towards a stable three-species subset (1,5,6).
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(purple). An increase in the relative strength of the delayed negative feedback in Fig.
3.1.E may promote the oscillatory dynamics observed in Fig. 3.3.B as the consecutive
order in which species gain and lose in abundance over time corresponds to the way in
which the species belonging to this loop relate to each other (Fig. A3.2). The complex
dynamics in Fig. 3.3.C are resulting from the interplay between several delayed negative

feedbacks.

The potential for large-scale critical transitions in complex food webs

The nature of a system’s feedbacks, and thus its dynamical behavior, depends on the
topology of food webs as well as on the distribution of trophic interaction strengths. In
Fig. 3.4, we show how such different network structural patterns may affect the presence
of alternative stable states. We found that, as the number of species or the connectance
of food webs increases, alternative stable states become increasingly common (Fig. 3.4.A-
B) and that the maximum number of species that could go extinct due to a regime
shift towards such alternative states increases as well. Opposing effects are observed
when studying the effect of an increase in the variance in relative feeding preferences and
feeding efficiencies. When predators have an almost equally strong preference for all prey
species, i.e. a low variance, we found alternative stable states to be relatively common
(Fig. 3.4.C). A shift towards these states would lead to the loss of a relatively large
number of species. A high variance in feeding efficiencies on the other hand, promotes
the occurrence of alternative states and the extinction of species in case of a regime shift

(Fig. 3.4.D).

In Fig. 3.5, we show the frequency at which different types of boundaries are crossed
when gradually altering the relative feeding preferences of predators. The fractions of a
consumer’s maximum assimilation rate realized per prey biomass were, in this example,
assumed to stay the same, i.e. Vfinar = Yor. We found that the structural patterns
that were found to promote the existence of alternative stable states (Fig. 3.4) are also
the ones promoting complex regime shifts to oscillatory, chaotic or other complex dy-
namics (Fig. 3.5). As the number of species or the connectance of food webs increases,
for example, Hopf bifurcations become increasingly common (Fig. 3.5.A-B). Supercritical
Hopf bifurcations to oscillatory dynamics tend to be more common than subcritical Hopf
bifurcations to more complex dynamics. Despite this difference, subcritical Hopf bifurca-
tions to complex dynamics may still occur frequently, e.g., slightly more than 30% of the
regime shifts were found to be caused by a subcritical Hopf bifurcation in food webs with
a relatively large number of species or a high connectance. As with the occurrence of al-
ternative stable states, opposing effects are found when studying the effect of an increase
in the variance in relative feeding preferences and feeding efficiencies (Fig. 3.5.C-D).

The average amount of change, dM, needed to cross a boundary, i.e. the value at which
environmental condition M leads to species loss, is strongly influenced by the structure
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Figure 3.4: The fraction of food webs that exhibit two (blue), three (orange) or four or more
(green) alternative stable states (left axis) and the maximum number of species that would go
extinct in case of a regime shift towards one of these states, i.e. the total number of species
minus the number of species in belonging to the smallest alternative stable subset (black, right
axis). (A-B) As the number of species or the connectance of food webs increases, alternative
stable states become increasingly common. The maximum number of species that could go
extinct in case of a regime shift towards these states increases as well. (C-D) Two opposing
effects are observed when studying the effect of an increase in the variance in relative feeding
preferences and feeding efficiencies. When predators have an almost equally strong preference
for all prey species, i.e. a low variance, we found alternative stable states to be relatively
common. A shift towards these states would lead to the loss of a relatively large number of
species. A high variance in feeding efficiencies on the other hand, promotes the occurrence of
alternative states and the extinction of species in case of a regime shift.
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Figure 3.5: The frequency at which different types of boundaries are crossed under changing
environmental conditions and the average amount of change needed to cross a boundary. Re-
sults are shown for a loss of feasibility (blue), supercritical transitions to oscillatory dynamics
(orange), and subcritical transitions to more complex dynamics (green). The average amount
of change needed to cross a boundary is indicated in black. (A-B) As the number of species or
the connectance increases, complex transitions to oscillatory or other more complex dynamics
become increasingly common. The amount of change needed to cause a regime shift becomes
increasingly small. (C-D) A high variance in relative feeding preferences was found to pro-
mote sudden regime shifts to oscillatory or other more complex dynamics. The opposite is
true for the variance in feeding efficiencies. The amount of change needed to cross a boundary
was found to be relatively large when the variance in relative feeding preferences and when the
variance in feeding efficiencies is low. Results are shown for a gradual change in the relative
feeding preference of predators, other parameters are assumed to stay the same.
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food webs. For three of the four structural patterns tested, we found that food webs that
can handle a relatively large change in M are also the ones that tend to lose species due
to a loss of feasibility, i.e. a gradual decline in abundance leading to extinction. A notable
exception to this pattern, however, exists. When the variance in the feeding preferences of
predators is low, we found abrupt regime shifts due to Hopf bifurcations to be relatively
common and the amount of change needed to reach a bifurcation point to be relatively
large. The mean growth rates of primary producers, the average connectance, and the
average predator-prey body-mass ratios as observed in different data sets can be found in
Fig. A3.5-A3.7.

Total feedback as an indicator of systemic risk

A more in-depth understanding of the interrelationship between network structural prop-
erties and the occurrence of abrupt regime shifts, i.e. super- and subcritical Hopf bifur-
cations, may be obtained when analyzing the nature of positive and negative feedbacks
in complex food webs. The criterion that the strength of delayed negative feedbacks, i.e.
in longer loops, cannot be too large compared to the more immediate negative feedbacks
in shorter loops, as described in Hurwitz (1895) and Levins (1974), allows for a - not
too large - increase in the strength of the total negative feedback on lower levels k. We
indeed found that such an increase occurred in our model-generated food webs, such that
the strength of the total negative feedback was usually largest around level 5-6 in food
webs with 22 species (Fig. 3.6.A-B, A3.4 and A3.8). Above those levels a strong decline
in total negative feedback with increasing level k was observed and required for stability.
Notable differences were found in the strength of the total negative feedback on different
levels k among data sets. Data sets containing food webs that were more likely to exhibit
Hopf bifurcations showed a weaker total negative feedback across all levels k, with the
exception of data sets that had different numbers of species. Within data sets we can also
distinguish food webs that are highly likely and food webs that are unlikely to exhibit
Hopf bifurcations, i.e. the frequency of Hopf bifurcations when food webs are subjected
to change in a randomly chosen directions (Fig. 3.6.C-E). The total negative feedback of
food webs that were likely to exhibit Hopf bifurcations was found to be weaker across all
levels k as well.

The distribution of the median strength of total feedback across different levels, Fi,
could vary somewhat among data sets, e.g. we found that as the average connectance
increases in food webs of 22 species, the peak at which the total negative feedback is
strongest, moved from level 6 to 5 (Fig. 3.6.A-B). In all cases we found on all levels k
that, for a given distribution of median total feedback, an overall decrease in the total
feedback would lead to instability below threshold value Frg, i.e. Fry < Fuy (Fig.
A3.9. An overall increase in the strength of the total negative feedback never led to
instability. Some distributions allow threshold values to be lower than other distributions.
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Figure 3.6: Interrelationships between the average directed connectance, the frequency of
Hopf bifurcations, and the total feedback on different levels as observed in data sets of 2500
model-generated food webs. (A-B) The median total feedback as observed in data sets of
food webs with a different average connectance. The total negative feedback of networks with
a high connectance is weaker in particular around levels 4-6. (C) The frequency of Hopf
bifurcations after gradually altering relative feeding preferences in each food web in a 100
different ways as observed in a single data set with average directed connectance 0.16. (D-E)
The total feedback in networks belonging to the upper (orange) and the lower (blue) quartile
in panel C. As in networks with a low connectance, the total negative feedback of networks
that are likely to exhibit a Hopf bifurcation is generally weaker in particular around level 4-6.
Panel A and B, and D and E contain the same data on a linear and a logarithmic scale.

The small shift in the level around which the total negative feedback is strongest to lower
level 5 as observed with increasing connectance, was found to lower the threshold value
Fr, suggesting that having a peak in total negative feedback on a lower level promotes
stability. The increased stability arising from such a more optimal distribution does,
however, not seem to make up for the loss in stability caused by an overall decrease in
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the total negative feedback, as Hopf bifurcations were found to be increasingly common
with increasing connectance.

3.4 DISCUSSION

The long-standing debate on the complexity and stability of ecosystems has mainly fo-
cused on the interrelationship between the number of species or interactions and the local
stability of a system’s nontrivial equilibrium (May, 1972, 1973; Pimm, 1984; McCann,
2000). As a consequence, relatively little is known about the specific ways in which
biodiversity might be lost when environmental conditions change. By merging network
theory with theory on critical transitions, we hope to provide a framework that allows us
to better evaluate the risk of large, systemic changes in ecosystems under the influence
of global environmental change. Our results show that complex transitions may occur
even when assuming a linear relationship between the intake rate of predators and prey
availability. The nature of such transitions is determined by the specific way in which
feasibility or stability is lost and by the presence of alternative stable states at the time
of a transition. Whether small changes in food-web parameters, e.g. growth, mortality,
feeding and respiration rates, are likely to lead to catastrophic regime shifts depends on
the size of the area in parameter space within which species may coexist stably and the
nature of the boundaries to such an area. Systemic risk, i.e. the likelihood of a large
and/or hardly reversible regime shifts, is high when a system’s initial parameter values
are close to a catastrophic boundary in parameter space.

By analyzing data sets of many model-generated food webs, we found that strong in-
terrelationships exists between the complexity and the structure of food webs and the
likelihood and nature of critical transitions occurring when the aforementioned bound-
aries are crossed. Complex food webs, i.e. with a large number of species and/or a
high connectance, are more likely to exhibit alternative stable states and are also more
likely to go through sudden transitions to oscillatory or other more complex dynamics.
The same is true for food webs with a low variance in relative feeding preferences and a
high variance in feeding efficiencies. We found that the structural properties we found
to simultaneously promote the occurrence of alternative stable states and of transitions
to oscillatory or other more complex dynamics are associated with an overall decline in
the total negative feedback on all levels k, and we found that an overall decline in total
negative feedback, i.e. while maintaining the same distribution across all levels k, leads
to transitions to oscillatory or other more complex dynamics below a critical value Fr .
Slight changes in distribution would decrease critical level Fr, suggesting that they have
an opposing effect on the occurrence of the aforementioned transitions. A relatively weak
total negative feedback across all levels k thus seems the most likely explanation for the
increased occurrence of transitions to oscillatory or other more complex dynamics asso-
ciated with the aforementioned network structural properties. A possible explanation for
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the simultaneous increase in the occurrence of alternative stable states and of transitions
to oscillatory or other more complex dynamics might be an increase in the strength of
relatively short positive feedback loops, e.g. apparent competition. Positive feedbacks in
short loops may lower the total negative feedback on all levels k larger than the length
of these loops (the total feedback on level k is determined by the strengths of feedbacks
with length k& and smaller) and, as all other positive feedbacks, increase the potential for
alternative stable states in the here studied systems.

We believe that, by assuming a linear functional response, we made a conservative estimate
of the potential presence of alternative stable states and the occurrence of abrupt of
critical transitions, i.e. transitions to oscillating or other more complex dynamics. When
assuming a non-linear response, multiple stable and unstable nontrivial equilibria may
exist. Such unstable equilibria may lead to saddle-node, e.g. fold, bifurcations when
colliding with the system’s initial state and are associated with thresholds between the
attraction basins of alternative stable states. In preliminary work (not shown here),
we found that a non-linear functional response of predators may indeed promote the
existence of alternative stable states and the potential for abrupt critical transitions. A
non-linear functional response may simultaneously promote the occurrence of oscillating
dynamics because it reduces a the strength of a direct negative effect of prey species
on themselves (as described by the Jacobian matrix). Future research should, however,
further explore when and whether this is indeed the case, as the magnitude of the increase
in the occurrence of alternative stable states and abrupt regime shifts was found to be
highly sensitive to the specific function and parameter values chosen to describe predator-
prey relationships.

Our findings may have large implications for the way in which we evaluate stability of
food webs and the sustainability of the services they provide in the context of global en-
vironmental change. Our results suggest that, in addition to conservation efforts focused
on the survival of rare or iconic species, it is of importance to monitor which changes
are likely to undermine the overall stability of complex food webs. Two requirements for
species coexistence should therefore be distinguished; feasibility and stability. A commu-
nity is feasible when the amount of resources available to species is sufficient to maintain
a population while being predated upon by other species. Stability requires that the re-
lationships between species are such that they do not exclude each other. Conservation
efforts have traditionally focused on preventing the decline of species abundances, i.e. on
maintaining feasibility. Structural properties that promote feasibility, however, do not
necessarily promote stability and vice versa. Conservation efforts that aim to prevent a
decline in species abundances, i.e. a loss of feasibility, may thus pave the way for more
large scale critical transitions when altering the interrelationships between species and
the feedbacks providing stability to ecosystems as a whole.

This study a first step towards a better understanding of the relationship between struc-
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ture of complex food webs and the nature of critical transitions, and we realize that some
important questions remain unexplored. First, we believe that a further development
of the here presented theory could help identify the subsets of species that may cause
instability and/or alternative stable states in food webs. The possibility to identify such
(groups of) species could be of great importance in the context of nature conservation.
Second, the number of ways in which parameters are assigned and the ways in which food
web dynamics may be described provide a range of possibilities that is far too wide to
be explored in a single study. Any study on complex food webs is, therefore, limited. In
this study, we chose for mathematical simplicity, i.e. a linear functional response, while
assigning ‘plausible’ parameters based on allometric scaling relationships. Future research
could explore the impact of making more complex dynamical assumptions, in particular
when describing predator-prey relationships, and will almost certainly show that a more
accurate assignment of parameters is possible. By doing this, we hope to facilitate com-
parison with classical studies on food web stability that have used similar simple models
as well as with empirical studies providing information on the flows of biomass through
food webs. Future research should further explore which assumptions are crucial for our
findings and which ones are of a lesser importance. Third and finally, the here described
regime shifts may not only be important in the context of global environmental change.
In principal, any complex system of many interacting components could exhibit the feed-
backs and different types of critical transitions as described in this study. Some of the
theoretical ideas used in this study were developed in the context of regulatory networks
(Levins, 1974; Tyson et al., 2003; Novak & Tyson, 2008) and morphogenesis (Thom,
1975). Future research could further explore whether our findings are also of relevance
for other types of complex systems.
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A3.1 SUPPLEMENTARY METHODS

A3.1.1 LOTKA-VOLTERRA MODEL

The food-web model presented in the main text (equation 3.1) is equivalent to the follow-
ing simple Lotka-Volterra model:

dB; _
prai Bi(g: + ]21 ai;Bj), (A3.1)

in which B; corresponds to the biomass of (basal or non-basal) species, g; to a species’
growth or respiration rate, and «;; to the effective competitive or trophic interaction
strengths. Growth or respiration rate g; = R; for basal species and g = —T}, for non-
basal species.

Effective competitive interaction strengths between basal species ¢ and j are determined
as follows:

Gij

Qi = —Rz'K,
i

(A3.2)

in which R; is a basal species’ intrinsic growth rate, ¢;; the competitive interaction
strength, and K; a species’ carrying capacity. Please note that competitive effect of
species on themselves, a;;, is equal to —R;/K; because ¢; = 1. When assigning R;/K; ra-
tio 1); (see parameter settings), we thus determine the strength of the effective intraspecific
competition, ay;.

The effects of prey species [ on predator species k£ and of predator species k on prey species
[ are determined as follows:

g, = SO,

VO
(1 —0w) fur’

(A3.3)
g = —Jj

in which J is the maximum assimilation rate of predator k at the system’s non-trivial
equilibrium, 1, the total capture rate of predator k, and 6, the relative preference of
predator k for prey species [, f; is the fraction of killed prey biomass that is ingested and
0 the fraction of ingested biomass lost to feces.
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A3.1.2 BODY-MASS ASSIGNMENT

To assign body masses, we use an algorithm that randomly updates body masses until
a desired feasible, stable solution is reached. Initially, all consumers are assigned a body
mass taken from a uniform distribution, i.e. My, ~ U(1,100). The body masses of
consumers are at each iterative step simultaneously updated as follows:

Mk,s—H = nk,sMk,& (A34)

in which Mj, 5 is the body mass of consumer k at step s and My, ;11 its body mass at step
s + 1. Random number 7, s is drawn from a uniform distribution with range (0.9,1.1).
The body masses, M;, of primary producers are, at every iteration, assigned such that
they meet the feeding demands of non-basal species:

iCi 1/} 0; s\ 4
yoB CJ + 3 s fk)’}lkaRBk) , (A3.5)

je{prod.} ke{pred.}

in which p; is the R;/K; ratio of primary producer i and Ek the nontrivial equilibrium
abundance of (producer or consumer) species k. Three stages can be distinguished while
the algorithm updates the body mass of species. During each stage, updated body masses
are either accepted, when they bring a system closer to a desired outcome, or rejected in
which case body masses are assigned the values of the previous step. In the first stage,
body masses are updated such that the fractions of the consumers’ maximum assimilation
rates realized at a system’s nontrivial equilibrium, 7y, fall within a predefined range. This
range must lay somewhere between zero and one, e.g., (0.05,0.75), i.e. the system is
feasible. The fraction of the maximum assimilation rate of consumer k realized at a
system’s nontrivial equilibrium, =, is defined as follows:

> B, (A3.6)

ke{prey}

in which Bj is the nontrivial equilibrium abundance of prey species j. In the second stage,
body masses are updated such that the dominant eigenvalue of the Jacobian at a system’s
nontrivial equilibrium is below a certain threshold value. This value is chosen below zero
such that the system is stable. In the third stage, body masses are updated such that
all predator-prey body-mass ratios fall within a predefined range. This prevents some
unrealistically large or small predator-prey body-mass ratios from occurring. Changes in
body mass that violate a criterion fulfilled in a previous stage are not accepted.
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More specifically, we determine the fraction of a consumer’s maximum assimilation rate
realized at a system’s non-trivial equilibrium, ~;, as follows:

JB — Ji0r Bi By B Ji0u BBy )
(1= 6re) fer Do 0D, (I =) fu > 0uB; .
Yk je{prey} je{prey} T} By,
gl _ 16 Bi By 5B - Ji6u BB T,B,
(1—0w)fic >, 0B (L—=46u)fu > 0B,
je{prey} je{prey} _

(A3.7)

in which maximum assimilation rate J, and respiration rate T} are determined with the
allometric scaling relationships in equation 3.3 (see Methods). Other parameters are taken
from a predefined probability distribution (see parameter settings).

After the initial assignment of body masses, the algorithm updates body-masses such that
all v, fall within a predefined range. At each iterative step the differences between the
realized 7y, and the desired range (Ymin,Ymaz) are determined. This difference is equal to
Ymin — Y& When vi < Ymin, OF Y& — Vmaz When g > Yimae. In this first stage, a change in
body mass is accepted when the sum of these differences is smaller than at the previous
step. When this is not the case, body masses are changed back to the body masses of
the previous step. The network is discarded when the fractions of a predator’s maximum
assimilation rate, 7, are not with the desired range after 10.000 iterative steps.

When all fractions of a predator’s maximum assimilation rate, vy, are within desired
range (Ymin,Ymaz), We determine the dominant eigenvalue of the Jacobian matrix at the
system’s non-trivial equilibrium. In this second stage, the algorithm continues to update
body masses according to equations A3.4 and A3.5 (see Methods). A change in body
mass is accepted when all assimilation rates, -, remain within desired range (Yomin,Ymaz)
and when the real part of the dominant eigenvalue is lower than at the previous step.
The algorithm continues to update body masses until the dominant eigenvalue is below a
predefined minimum value (see parameter settings). This value is smaller than zero, such
that the system’s non-trivial equilibrium is stable. The network is discarded when the
dominant eigenvalue is not below the desired value after 10.000 iterative steps.

Once a stable equilibrium is found, we determine for each interaction the predator-prey
body-mass ratios as follows:

M,

7 )
M;

(A3.8)
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in which v is the predator-prey body-mass ratio of the interaction between predator
species k and prey species j. At each of the following iterative steps, the algorithm
determines the difference between the realized predator-prey body-mass ratio vy, and
desired range (Vmin,Vmaz). This difference is equal to Vi — vie when vy < Vpin, OF
Vik — Vpmaz When vy, > Upae. A different range might be used for herbivore, i.e., the prey is
a basal species, and carnivore interactions, i.e., the prey is a non-basal species. A change
in abundance is accepted in this third stage when all assimilation rates, 7, remain within
desired range (Vmin,Ymaz), When the real part of the dominant eigenvalue remains lower
than the predefined minimum value, and when the sum of these differences is smaller than
at the previous step. The network is discarded when the predator-prey body-mass ratios,
Vi, are not with the desired range after 10.000 iterative steps. When all predator-prey
body-mass ratios are within the desired range, we have obtained the final distribution of
body-masses M;.

The average connectance of the networks contained by a data set may differ from the
assigned average directed connectance, C, because some of the networks generated by
the niche model are discarded by the here described body-mass algorithm. To make sure
that the eventual connectance of the networks contained by a data set does not deviate
too much from the assigned connectance, we discard all networks that deviate more than
£0.02 from the assigned average connectance, C.
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A3.1.3 GLOBAL VS. LOCAL STABILITY

To determine whether a system’s nontrivial equilibrium is globally or locally stable, we
determine for each combination of species, S, whether a feasible, stable equilibrium can
be found. Because we are dealing with a simple linear functional response, the equilibrium
abundances of every subset can be determined analytically by constructing growth vector
(Gs and interaction matrix Ig:

9i Qi — QG 07%7%
gj Qg Q4 e Qg

GS = ] Is = . . . . ) <A39)
9k Qi QG .. Ok

in which g; is a species’ growth or respiration rate and c;; the effective competitive
or trophic interaction strength (see supplementary section A3.1.1). Only species and
interactions between species that belong to subset S are included when constructing G
and Ig. After constructing growth vector Gg and interaction matrix Ig, the equilibrium
abundances of species, Bg, can be determined as follows:

Bg = —I5'Gy (A3.10)

in which Bg is a vector containing the equilibrium abundances of the species belonging
to subset S. We consider the subset to be feasible when the abundances of all species
belonging to the subset are larger than zero. When the subset is feasible, we evaluate the
stability of the equilibrium point at which the abundances of species belonging to subset
S are equal to Bg. The abundances of other species are zero. We do this by determining
whether the eigenvalues of the Jacobian matrix are smaller than zero. The subset is thus
only considered to be stable when the subset is both intrinsically stable, i.e., the properties
of species and interactions belonging to the subset allow for stable coexistence, and when
it cannot easily be invaded by species not belonging to the subset.
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A3.1.4 PARAMETER SETTINGS SIX-SPECIES MODEL

To find intuitive examples of different types of boundaries, we explored the parameter
space of the top-predator in the simple six-species food web in Fig. 3.1.A for a large
number of randomly generated parameter settings. For illustrative purposes, we selected
parameter spaces that were relatively simple in terms of the number of areas in which
different subsets are stable, and we deliberately choose examples where the same boundary
could be crossed either to an area in which an alternative subset is stable or to an area
in which this is not the case. The parameter settings we ended up with are as mentioned
below:

Fig. 3.2.A: R, = 3.3555, R, = 6.6080, Ry = 2.2813, K; = 1.8342, K, = 5.1387,
Ks = 1.3700, ¢1o = 0.2270, ¢15 = 0.2270, ¢y = 0.2064, co3 = 0.2064, c5; = 0.4844,
g0 = 0.2064, Jy = 1.6062, J; = 1.7076, Jg = 1.1427, 1, = 0.3935, 15 = 0.6612, g =
0.2113, 614 = 0.9108, 615 = 0.2480, oy = 0.0892, o5 = 0.3571, O35 = 0.4048, 614 = 0.55,
615 = 0.55, doq = 0.55, do5 = 0.55, 035 = 0.55, 836 = 0.55, dy = 0.15, d55 = 0.15,
fia = 0.6734, fi5 = 0.6030, foq = 0.2138, fo5 = 0.1038, f35 = 0.7853, f3s = 0.6674,
fa6 = 0.7167, fs6 = 0.2593, T, = 0.2008, T5 = 0.2135, and Ty = 0.1428.

Fig. 3.2.B: R, = 1.1023, R, = 0.2100, R; = 0.5569, K; = 1.7882, K, = 0.8971,
Ks = 2.7318, ¢15 = 0.3160, ¢15 = 0.4207, ¢y = 0.3160, co3 = 0.1751, ¢35 = 0.4207,
cgp = 0.1751, Jy = 1.5681, J; = 1.3614, Js = 0.8867, vy = 0.2252, 15 = 0.2253, 1)g =
0.6646, 014 = 0.8647, 015 = 0.3752, 0oy = 0.1353, o5 = 0.2117, O35 = 0.4131, 614 = 0.55,
015 = 0.55, dos = 0.55, do5 = 0.55, 035 = 0.55, 836 = 0.55, dyg = 0.15, ds5 = 0.15,
fia = 0.5754, fi5 = 0.2333, foy = 0.7876, fo5 = 0.3429, f35 = 0.1187, f3s = 0.6306,
fa6 = 0.3235, fs6 = 0.8870, T, = 0.1960, T5 = 0.1702, and Ty = 0.1108.

Fig. 3.2.C: R, = 4.0681, Ry, = 0.8409, R; = 0.3336, K; = 1.7424, K, = 1.9634,
Ky = 1.8962, ¢1o = 0.1503, 15 = 0.2288, ¢ = 0.1503, co3 = 0.4104, c5; = 0.2288,
g0 = 0.4104, Jy = 3.3152, J; = 2.8221, Jg = 1.9674, 14 = 0.7150, 15 = 0.4486, g =
0.6947, 614 = 0.6436, 615 = 0.2970, 0oy = 0.3564, o5 = 0.6241, 35 = 0.0789, 614 = 0.55,
015 = 0.55, 8oy = 0.55, do5 = 0.55, 035 = 0.55, 836 = 0.55, dsg = 0.15, ds¢ = 0.15,
fia = 0.1510, fi5 = 0.8682, foq = 0.8989, fo5 = 0.6748, f35 = 0.2277, f3¢ = 0.7995,
f16 = 0.1495, fss = 0.9993, Ty = 0.4144, Ty = 0.3528, and Ty = 0.2459.

Fig. A3.1: R, = 1.2729, Ry, = 4.5236, R; = 0.9246, K; = 1.5391, K, = 3.5850,
K5 = 1.2361, c1o = 0.4335, ¢15 = 0.2160, ¢y = 0.4335, co3 = 0.1134, ¢35, = 0.2160,
cg0 = 0.1134, Jy = 2.5666, J; = 2.5855, Jg = 1.4720, 1, = 0.3689, 15 = 0.2276, g =
0.2956, 614 = 0.0826, 015 = 0.0728, Oy = 0.9174, o5 = 0.6098, O35 = 0.3174, 614 = 0.55,
615 = 0.55, 894 = 0.55, 85 = 0.55, d35 = 0.55, d36 = 0.55, dug = 0.15, d5¢ = 0.15,
fia = 0.8277, fi5 = 0.1971, foq = 0.1028, fo5 = 0.6687, f35 = 0.7428, f3s = 0.9125,
f16 = 0.1010, f56 = 0.6803, Ty = 0.3083, T5 = 0.3230, and Ty = 0.1840.




80 CRITICAL TRANSITIONS IN COMPLEX FOOD WEBS

A3.2 SUPPLEMENTARY FIGURES

=
N

0 0.2 0.4 0.6 08 1 0 0.2 0.4 0.6 08 1
> >

Conditions/Network structure Conditions/Network structure

%

2 %

)
Relative interaction strength (w1)

Figure A3.1: Specific points in parameter space (open circles) may mark connecting points
between different types of boundaries. When such points exist, the behavior of the system is
highly unstable in the sense that small differences in the way in which parameters change may
cause the system to respond in a fundamentally different way. At these points two nullclines
are parallel to each other in the network’s state space, i.e., vertical bifurcation points.
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Figure A3.2: Oscillating dynamics after passing a supercritical Hopf bifurcatoin.
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Figure A3.3: Complex dynamics after passing a subcritical Hopf bifurcatoin.
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Figure A3.4: Median total feedback as observed in data sets of 2500 food webs for different
network structural properties. Panels (A-D) correspond to the network structural patterns

for which results are shown in Fig. 3.4 and Fig. 3.5.
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for which results are shown in Fig. 3.4 and Fig. 3.5.



A3.2 SUPPLEMENTARY FIGURES

85

Connectance

Connectance

Figure

0.159 A

0.158 A

0.157 A

0.156 A

0.155

0.159 A

0.158 A

0.157 A

0.156 A

0.155

P % e B O D

Number of species

1% o o 1% o Qo 1%
Y S R T s

Variance in feeding preference

0.2 A

0.18

0.16

0.14

0.12

0.1 4

0.08

0.06

0.161

0.16

0.159 |

0.158 |

0.157 |

0.156 |

0.155

o o
06‘ 06’ 7 );-, )'7

o, o o o o
‘0, “g "o “on “g

1%
"7

7

Q
> s

Variance in feeding efficiency

A3.6: Average connectance as observed in data sets of 2500 food webs for different

network structural properties. Panels (A-D) correspond to the network structural patterns

for which results are shown in Fig. 3.4 and Fig. 3.5.



86 CRITICAL TRANSITIONS IN COMPLEX FOOD WEBS
A B
5 5
4.8 { 4.8
R = = I N o S
w44 } 4.4
£ 424 424
8 17 4-{'
3.8 3.8 1
3.6 3.6 1
B e v > % % % %, 2, o %y s Uy %
Number of species Connectance
C D
5 5
............ 1
4.8 4.8 1
'}E I
o A4 4.4
g 1. i
g€ 42y I I 4.2 1 E
> U I AP
g S J1
381 E 381
3.6 I """"""" I 3.6 1

o o o o o [2] [2]
0, e %o %o % %y Y U

Variance in feeding preference

o o o o o o, o
G > R e s

Variance in feeding efficiency

Figure A3.7: Average body-mass ratio as observed in data sets of 2500 food webs for different
network structural properties. Panels (A-D) correspond to the network structural patterns
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ABSTRACT

Changing conditions may lead to sudden shifts in the state of ecosystems when critical
thresholds are passed. Some well-studied drivers of such transitions lead to predictable
outcomes such as a turbid lake or a degraded landscape. Many ecosystems are, however,
complex systems of many interacting species. While detecting upcoming transitions in
such systems is challenging, predicting what comes after a critical transition is terra
incognita altogether. The problem is that complex ecosystems may shift to many different,
alternative states. Whether an impending transition has minor, positive or catastrophic
effects is thus unclear. Some systems may, however, behave more predictably than others.
The dynamics of mutualistic communities can be expected to be relatively simple, because
delayed negative feedbacks leading to oscillatory or other complex dynamics are weak.
Here, we address the question of whether this relative simplicity allows us to foresee a
community’s future state. As a case study, we use a model of a bipartite mutualistic
network and show that a network’s post-transition state is indicated by the way in which
a system recovers from minor disturbances. Similar results obtained with a unipartite
model of facilitation suggest that our results are of relevance to a wide range of mutualistic
systems.
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4.1 INTRODUCTION

Empirical studies of lakes, arid ecosystems, coral reefs, and tropical forests suggest that
remarkably sudden transitions to alternative stable states may occur when changing envi-
ronmental conditions pass a critical value (Scheffer et al. 1993; Rietkerk & Van de Koppel
1997; Scheffer et al. 2001; Hirota et al. 2011). While the outcome of such transitions is
relatively predictable when a few leading species or species groups determine the state
of an ecosystem, this may not be the case when ecosystem dynamics are determined by
many interacting species. Species traits as well as their sensitivity to changing conditions
are known to be highly diverse, and many drivers of environmental change are known to
have multiple simultaneous effects on species communities. A change in climate may, for
example, affect the distribution, phenology, physiology, behavior, and relative abundances
of species, and these changes may, in turn, affect the strengths of interactions between
species (Kareiva et al. 1993; Memmott et al. 2007; Suttle et al. 2007; Tylianakis et al.
2008; Burkle et al. 2013; Hgye et al. 2013; Usinowicz & Levine 2018). The specific ways
in which interactions are arranged in complex ecological networks are known to be crucial
for the stability of ecosystems (Kareiva et al. 1993; De Ruiter et al. 1995; McCann 2000;
Solé & Montoya 2001; Neutel et al. 2002; Montoya et al. 2006; Bastolla et al. 2009; Rohr
et al. 2014). Gradual changes in these patterns and other complex simultaneous effects
of changing environmental conditions may therefore lead to regime shifts of which the
outcomes are highly unpredictable (Scheffer et al., 2012).

The response of ecosystems to a change in environmental conditions is determined by the
relative strengths of positive and negative feedback loops in the networks of interactions
between species or between species and their environment. Immediate negative feedbacks,
e.g. due to intraspecific competition, have stabilizing effects, while positive or ‘reinforcing’
feedbacks are destabilizing and a necessary condition for the existence of alternative stable
states (Thomas 1981; Snoussi 1998; Gouzé 1998). Critical transitions towards such states
may occur when changing conditions alter a system’s feedbacks such that destabilizing,
positive feedbacks gain in strength relative to stabilizing, immediate negative feedbacks.
A classic example is found in shallow lakes where an increase in algae leads to an increased
turbidity and the suppression of aquatic plants. As a consequence, more nutrients become
available to algae which enhances algae growth. A clear-water, plant-dominated state may
therefore switch to a turbid, algae-dominated state when gradually increasing nutrient
levels pass a critical value. Recovery from such transitions requires a relatively large
reduction in nutrient availability, a phenomenon called ‘hysteresis’ (Scheffer et al. 1993).
Other examples of such switching behavior are found in coral reefs, woodlands, deserts,
and oceans (May 1977; Wilson & Agnew 1992; Scheffer et al. 2001), as well as in many
other systems such as the climate (Hare & Mantua 2000; Scheffer et al. 2001; Clark et al.
2002; Alley et al. 2003; Lenton et al. 2008), the economy (Diamond & Dybvig 1983; Arthur
1989; Easley & Kleinberg 2010), and human cells (Hasty et al. 2002; Ferrell Jr 2002; Lee
et al. 2002; Tyson et al. 2003; Angeli et al. 2004).
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Mutually beneficial interactions are, perhaps, the most intuitive examples of positive feed-
back loops in complex ecological networks, metapopulations, or other complex environ-
mental systems. Previous studies have emphasized the importance of such interactions in
communities of flowering plants and animal pollinators or seed dispersers (Jordano, 1987;
Bascompte et al., 2003). Mutually beneficial interactions between zooxanthellae, coral
species and invertebrates occur in coral reefs where a diversity of coral species provide
food, shelter and reproduction sites for other organisms (Moberg & Folke 1999; Wilson
et al. 2006; Stella et al. 2011). Nutrient exchange with mycorrhizal fungi and nitrogen-
fixing bacteria is fundamental for plant communities (Kiers et al. 2011), and mutualistic
interactions are of importance for microbial communities where multiple species are in-
volved in the degradation of organic substrates (Schink 2002; Stolyar et al. 2007). Indirect
facilitation may occur between plant species when modifying harsh environments (Wilson
& Agnew 1992; Callaway 1995; Holmgren et al. 1997; Rietkerk et al. 2004), and the ex-
change of individuals between habitat patches may be fundamental for metapopulations
(Hanski 1998). Previous work suggested that critical transitions may occur due to the
positive feedback resulting from such mutually beneficial relationships in plant-pollinator
communities because a decline in pollinator abundances may negatively affect plant abun-
dances, which in turn is bad for pollinators (see Chapter 2). Similar transitions may
occur in metapopulations due to a ‘rescue effect’ (Hanski 1998) and in facilitative com-
munities due to an ‘Allee effect’ (Rietkerk et al. 2004; Courchamp et al. 1999; Stephens
et al. 1999). The observation that the relative strength of facilitative interactions tends to
increase with environmental stress (Bertness & Callaway 1994; Maestre et al. 2009; Tur
et al. 2016), suggests that competitive communities may become increasingly mutualistic
as conditions change. The aforementioned positive feedbacks and associated critical tran-
sitions may thus also occur in communities where mutually beneficial interactions were
not particularly strong under more advantageous conditions.

Here, we propose a new class of indicators that may allow us to detect the specific way
in which species are affected by an increase in the relative strength of a positive feedback
prior to a critical transition. The essence of our approach is that we seek the direction
in a system’s phase space, i.e. a multidimensional space in which each axis corresponds
to the abundance of a species, in which a system becomes increasingly sensitive to small
subcritical disturbances. Earlier studies have shown that an increasingly slow recovery
from small disturbances may be indicative of a loss of resilience prior to critical transitions
(Wissel 1984; Van Nes & Scheffer 2007). Various indicators of this phenomenon known as
‘critical slowing down’ may therefore serve to detect an increase in the likelihood of critical
transitions (Scheffer et al. 2009; Dakos et al. 2012). Here, we take advantage of the fact
that resilience is not lost equally in all directions. Disturbances have a size (i.e. the total
amount of change) and a direction (i.e. the relative amount of change in each species).
The more similar a disturbance’s direction to the direction in which increasingly small
perturbations may cause critical transitions, the stronger the effect of critical slowing
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down. Provided that there are no oscillatory, chaotic or other complex dynamics, a
system’s future state will most likely lie in the same approximate direction.

To get an intuitive understanding of the principle behind our approach, consider a small
plant-pollinator community of which the dynamics can be represented by a landscape
of valleys, hills and ridges (Fig. 4.1.A and Appendix A4.2 in Supporting Information).
In this landscape, every possible combination of pollinator abundances is represented by
a unique point, while the speed and direction in which abundances change corresponds
roughly to the slope of the landscape. The lowest points of the landscape’s valleys or
‘attraction basins’ represent alternative stable states. As conditions change, the shape
of the landscape changes and new basins appear. When a threshold comes close to the
network’s initial state, a small perturbation in the right direction can invoke a transition
into another attraction basin. Eventually, the basin around the network’s initial state
disappears altogether and the system inevitably shifts into one of the alternative basins.
The question we ask is whether we may know beforehand to which of the alternative
attractors a system will most likely shift. The clue is that the slope of the initial state’s
attraction basin changes in a characteristic way before the transition occurs. A ‘mountain
pass’ towards the system’s future state is formed, marked by a ‘saddle point’ in the land-
scape. The initial state’s attraction basin becomes increasingly shallow in the direction
of this pass and the recovery from perturbations increasingly slow (Fig. 4.1.B-C and Fig.
A4.2). This direction is what we refer to as the ‘direction of critical slowing down’ and
is indicative of the relative gain or loss in abundance of each species after an impending
critical transition.

To explore whether the direction of critical slowing down might be indicative of the fu-
ture state of mutualistic communities, we use a model of a bipartite mutualistic network
in which critical transitions are known to occur (see Chapter 2, Dakos & Bascompte
2014; Jiang et al. 2018). This model was originally developed to describe the interac-
tions between flowering plants and animal pollinators or seed dispersers (Bastolla et al.
2009), but may describe any system characterized by competition within and cooperation
between species groups. Previous work has shown that indirect facilitation occurs be-
tween pollinators when they interact with the same plant species (Moeller 2004; Ghazoul
2006; Bastolla et al. 2009). This indirect facilitation makes a network more resilient, i.e.
the minimum size of perturbations or the amount of change in environmental conditions
needed to cause a critical transition is larger. When pollinators continue to facilitate each
other under increasingly harsh environmental conditions they may, however, also collapse
simultaneously because they depend on each other for survival (see Chapter 2).

We generate time series in which the resilience of a network’s initial state is gradually
undermined by altering the relative strength of mutualistic interactions. Oscillatory, or
other complex dynamics occurring after a threshold is passed may negatively affect the
performance of the here proposed class of indicators but are unlikely in purely mutualistic
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Figure 4.1: Stability properties for a small network of two pollinators (shown) and two
plants (not shown). (A) Attraction basins (valleys) of alternative stable states (balls) are
separated by thresholds (dashed curves). Initially, the only alternative to pristine state 1
is fully collapsed state 2 (A.I). When conditions change, two additional, partially collapsed
states appear (states 3 and 4). The initial, pristine state loses resilience after state 3 appears
(A.II-A.III). Eventually, the threshold towards state 3 approaches the pristine state so closely
that a critical transition towards this state becomes inevitable (A.III-A.IV). (B) Alternative
stable states, saddle points (yellow dots), and hilltops (grey dots) are surrounded by areas in
which the landscape’s slope, and thus the rate at which abundances change, is nearly zero
(indicated in orange). Higher speeds are found further away from these points. The direction
of slowest recovery changes substantially before future state 3 appears (yellow arrow, B.I-
B.II). After state 3 appears, the system slows down in the direction of the saddle point on
the approaching threshold (B.II-B.III). (C) Slow recovery from a perturbation towards the
saddle point (C.I) as opposed to the much faster recovery from an equally large perturbation

in another direction (C.II).

systems, i.e. systems in which all interspecific interactions are positive, because they
require at least one delayed negative feedback, i.e. a negative feedback with a time lag,
usually occurring as the result of an uneven number of negative interactions in feedback
loops of two or more species (Levins 1974; Thomas 1981; Puccia & Levins 1985; Goldbeter
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1996; Hastings & Powell 1991; Snoussi 1998; Gouzé 1998; McCann et al. 1998; Dambacher
et al. 2003). Few real ecosystems can, however, be expected to be purely mutualistic.
Different scenarios are therefore explored, varying from a scenario where positive feedbacks
are the only cause of instability, i.e. in purely mutualistic systems, to scenarios in which
the destabilizing effects of delayed negative feedbacks are stronger, i.e. in mixed systems
with mutualistic and competitive interactions. To determine the direction of critical
slowing down, we study changes in the fluctuations around the species mean abundances
and determine whether they can be used to predict a network’s post-transition state.
To explore whether the results obtained with this model may hold for a wider class of
mutualistic systems, we investigate whether similar results are obtained with a more
general, unipartite model of competition and facilitation between species.

4.2 COMMUNITY MODEL

We use a dynamic model describing the interactions between two types of species: plants
(P) and pollinators (A). As in Bastolla et al. (2009), species of the same type compete
with each other, while species belonging to a different type interact mutualistically. The
dynamics of species i belonging to a group of S pollinator species are as follows:

(4)
diN®  R(N®) 43 o "
dt :1+hiRi(N(P))Ni _Zlciij N7 = d;iN; + €. (4.1)
]:

Plant dynamics are described by a similar formula, which can be found by exchanging
indices A and P. Unless stated otherwise, this procedure can be applied to all formulas
in this chapter.

Species ¢ has abundance N;, which may increase due to mutualistic interactions with
members of the other species type. The rate at which the abundance of species i increases
depends on the total amount of resources provided by mutualistic partners, R;(N®)), i.e.
nectar for pollinators and pollen for plants. As in Okuyama & Holland (2008) and Bastolla
et al. (2009), we assume that species are limited in their capacity to process resources
and become saturated when the amount of resources provided is high. The rate at which
species become saturated is determined by saturation term h;. The total mutualistic
benefit, R;(N®)), depends on the abundance of mutualistic partners as follows:

S(P)

RN =3 "Ny, (4.2)
k=1

in which v, is the mutualistic interaction strength, i.e. the rate at which resources become
available to species i, due to its interaction with species k.
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Species of the same type compete directly amongst each other, e.g. plants for soil nu-
trients and pollinators for nesting sites. Intraspecific competition, ¢;;, is assumed to be
substantially stronger than interspecific competition, ¢;;, such that species do not easily
outcompete each other. Independent of mutualistic and competitive interactions, several
processes may simultaneously enhance or reduce population growth. We assume that the
combined effect of these processes is negative, which is incorporated by mortality rate
d;.

Species experience small stochastic perturbations incorporated through noise term

€.

dW
= 4. ) 4.3
EZ (] dt ( )

¢; fluctuates in time due to a Wiener process, W, with mean zero and standard deviation
0;. The Wiener process is a continuous-time stochastic process generating white noise.
To prevent noise leading to negative abundances, we assume that dN/dt = 0 when N <
0.001.

Coexistence and relative mutualistic benefits

As the number of species and/or the strength of interspecific competition increases, it
becomes increasingly difficult to assign parameters such that all species may stably coex-
ist. In previous work, a trade-off was assumed between the number and the strength of
mutualistic interactions which prevented species with many interactions from becoming
overly abundant and outcompeting other species (see Chapter 2, Bastolla et al. 2009;
Dakos & Bascompte 2014; Jiang et al. 2018). Here, we assume mutualistic interaction
strengths to vary continuously, i.e. pollinators may interact with all plant species and
vice versa, which allows us to explore gradual changes in interaction structure beyond the
fixed structure of a predefined mutualistic network. A different kind of balancing rela-
tionship is therefore required, and mutualistic interaction strengths, ~;., are determined
as follows:

0 Ri(ND))
Yik = T (py 4.4
N 44

in which the relative mutualistic benefit, #;,, corresponds to the fraction of the total
amount of resources provided by species k, and Rl(N P )) to the total amount of resources
received by species ¢ at the system’s nontrivial equilibrium, i.e. the equilibrium point at
which all species have a non-zero abundance. There are different costs and benefits asso-
ciated to different feeding strategies, e.g. being a specialist or a generalist or interacting



4.2 COMMUNITY MODEL 97

with specialists or generalists (Morales & Traveset, 2008; Tur et al., 2016). This way of
assigning mutualistic interaction strengths makes sure that a species’ total amount of re-
sources received is independent from a species’ relative feeding preferences, i.e. we assume

the sum of these costs and benefits to be approximately the same for each strategy. The
S(P)

sum of a species’ relative mutualistic benefits, > 6, is one. A change in relative mu-
k=1

tualistic benefits does not affect the equilibrium abundances of species, because the total

amount of resources provided to each species remains the same (see Appendix A4.5).

Changing environmental conditions and the direction in which resilience is
lost

To test whether the direction of critical slowing down is indicative of a system’s future
state, we study our ability to predict a system’s future state when changing conditions
lead to substantial changes in the strength of positive feedbacks and the direction in
which they have destabilizing effects. Such changes may occur when changing conditions
fundamentally alter the ways in which species relate to each other.

Positive feedbacks and the direction in which resilience is lost can be studied when de-
termining the elements of the Jacobian matrix at a system’s nontrivial equilibrium. Each
element in this matrix describes how a change in the abundance of species ¢ affects the
growth of species j, dN;/dt. At a tipping point, the dominant eigenvalue of the Jacobian
matrix is zero and the slope of the direction in which a system recovers slowest from per-
turbations is indicated by the eigenvector corresponding to this eigenvalue. The strength
of the positive feedback between pollinator ¢ and plant j can be determined by multiplying
the Jacobian’s off-diagonal elements; o;; * o;;. In a two-species system, a tipping point is
reached when the strength of this feedback is equal to the multiplication of the two direct
negative feedbacks; a;; * j;. Similar relationships can be obtained when studying larger
systems (Levins 1974; Thomas 1981; Puccia & Levins 1985; Goldbeter 1996; Snoussi 1998;
Gouzé 1998; Dambacher et al. 2003; De Ruiter et al. 1995; Neutel et al. 2002; Neutel &
Thorne 2014).

Some species contribute more to the instability caused by positive feedbacks than others.
The effect of a temporary change in the abundance of mutualistic partners, as described by
the Jacobian matrix, for example, is small when species are highly saturated, i.e. RZ(N (7))
and/or h; is large. Positive feedbacks are therefore weak and the resilience of the here
studied networks is high when relative mutualistic benefits, 6;;, are distributed such that
most resources are obtained from the same, highly saturated species (see Appendix A4.1
and Fig. A4.1). In more complex communities such a distribution resembles a nested
structure as is commonly observed in mutualistic networks, as in those networks species
tend to obtain resources from the same mutualistic partners as well (Bascompte et al. 2003
and Fig. A4.6.A). The interrelationships between saturated and non-saturated species are
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asymmetrical as in Bascompte et al. (2006).

As a starting point for further research, we explore a scenario in which a change in the
aforementioned distribution of relative mutualistic benefits, 0;;, undermines the resilience
of the mutualistic networks while keeping all other properties, e.g. nontrivial equilibrium
abundances and the negative effects of inter- and intraspecific competition, constant (see
Appendix A4.5). Increasingly strong positive feedbacks emerge when two or more non-
saturated species start to interact increasingly strongly with each other. Eventually, this
will lead to a full or partial network collapse depending on the specific way in which relative
mutualistic benefits are changed. Conditions, M, affect relative mutualistic benefits as
follows:

05, = Oo,ike + (O pinat,i — Goi6) M, (4.5)

in which 6y ;1 is the initial, 0 fine 4 the final, and 07, the actual relative mutualistic benefit.
Conditions, M, change from zero to one over time, ¢, such that dM/dt = 1/T, in which
T is the total simulation time. Mutualistic interaction strengths, 7;z, are updated as
described in equation 4.4. The species and interactions involved in the positive feedback
leading to a critical transition, the direction in which this feedback amplifies change,
and the nature of a system’s future state, are determined by the specific way in which
interactions are altered.

In addition to the scenario in which only the relative mutualistic benefits change, we
explore scenarios in which the nontrivial equilibrium abundances of species change as well
due to a change in the total amount of resources received from mutualistic partners (see
Appendix A4.5).

Determining the direction of critical slowing down

Although measuring the recovery rate from experimental perturbations is the most direct
way to determine the direction of critical slowing down, an experimental approach may
be impractical or even impossible when studying complex networks. The development
of alternative methods to determine the direction of critical slowing down is therefore of
importance. Previous studies suggested that small changes in the statistical properties of
time series, e.g. an increase in variance, autocorrelation, skewness, and spatial correlation,
may be used as an indicator of a change in the proximity to a tipping point (Scheffer et al.
2009; Dakos et al. 2012). Here, we explore whether changes in the statistical properties
of time series may be used to predict the future state of mutualistic communities.

When assuming a continuous regime of random perturbations, a system will spend most
time away from its equilibrium state in the direction in which it recovers slowest from
perturbations (see Appendix A4.2). When approaching a tipping point, the distribution
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of natural fluctuations around the species’ mean abundances should therefore become in-
creasingly elongated in the direction in which a system slows down (Fig. A4.3). To detect
such change, we analyze our model-generated times series by determining the direction
and magnitude of such asymmetry in a rolling window. This window has a fixed size and
is moved along the time series as new data become available. To determine the direction
in which abundances are distributed asymmetrically, we use a principal component anal-
ysis of which the first principal component corresponds to the line in the network’s phase
space along which variance is highest (see Held & Kleinen 2004; Chen et al. 2012; Suweis
& D’Odorico 2014; Dakos 2018 and Chen et al. 2019 for related approaches). Abundances
are distributed asymmetrically either in an up- or downward direction along this compo-
nent. To determine the direction of our indicator, we orthogonally project the time series
on the first principal component and determine the direction in which the projected time
points are skewed (Fig. A4.4.A-E). The magnitude of the indicator is determined by the
fraction of the total variance explained by the first principal component. This direction

and magnitude together form a vector which is our indicator of a network’s future state
(Fig. A44.F).

A network’s phase space has as many axes as there are nodes in a network. Our indicator
thus has multiple components; one for each species (Fig. A4.4.F). Each component, or
‘score on the indicator’, gives an indication of the extent and direction in which the abun-
dance of each individual species is distributed asymmetrically. The indicator accurately
points towards the future state when its components, or ‘scores’, are directly proportional
to the difference in abundance between a network’s initial and future state. Species with a
negative score are expected to decrease, while species with a positive score are expected to
increase. Species with a relatively large score are expected to change more in abundance
than species with a comparably smaller score. An increase in the indicator’s magnitude
is reflected by more extreme (positive or negative) scores.

To assess the quality of the prediction, we determine the angle between the indicator’s
slope, as determined by the first principal component, and the direction of the observed
shift in abundance. As a measure of similarity, we take one minus the probability that the
angle between two unrelated, random vectors is smaller (see Appendix A4.3). We consider
the indicator’s slope to be accurate when this measure of similarity is above 0.99. When
time points are also skewed towards a network’s future state, we consider the prediction
to be fully accurate.

Simulations and parameter settings

We analyze several data sets consisting of 1000 model-generated time series in which the
above described mutualistic networks approach a tipping point. For each time series,
we compute the change in direction and magnitude of the indicator on the pollinator
abundances (see Appendix A4.4). The distribution from which interspecific competitive
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interaction strengths are sampled, the number of plant and pollinator species, and the way
in which changing conditions affect nontrivial equilibrium abundandances differ among
data sets (see Appendix A4.5). The resilience of mutualistic networks is, in all cases,
undermined by a change in the distribution of mutualistic benefits leading to a substan-
tial increase in the relative strength of positive feedbacks or delayed negative feedbacks.
Declining abundances may have an additional negative effect on resilience.

To explore the effects of oscillatory, chaotic or other complex dynamics, we analyze data
sets of which the strength and variability in interspecific competitive interaction strengths,
cij, varies. Delayed negative feedbacks become stronger as the strength and variability
of interspecific competition increases. To provide a clue as to how (un)likely it is to find
transitions to oscillatory, chaotic or other complex dynamics, we determine for each time
series whether the system approaches a Hopf or a saddle-node bifurcation.

Networks were discarded from a data set when they were unstable at initial conditions,
M = 0. We determined the frequency at which this occurred as a measure of how difficult
it is to find a stable solution. The final distribution of relative mutualistic benefits, 0 ti,q01.i,
was redrawn either when a network would become unstable within the range of conditions
M = (0,0.5), or when a network would still be stable at M = 1.

A more general, unipartite model of competition and facilitation

To explore whether the indicator may work for a wider class of systems, we investigate
whether similar results are obtained with a more general model of competition and facil-
itation. The positive feedback between plants and pollinators in the previously described
communities can be seen as an Allee effect, i.e. a positive relationship between the growth
and density of populations (Courchamp et al. 1999; Stephens et al. 1999). The indirect
facilitation occurring between pollinators when interacting with the same plant species
is not fundamentally different from the facilitation occurring between plant species when
ameliorating the same harsh environment, or other forms of interspecific facilitation oc-
curring in ecosystems. The most essential properties of a group of pollinator species may
therefore be captured as follows:

S S
A YN "N
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in which NN; is the abundance of species i. When the abundances of other species and
mortality rates, d;, are zero, species may grow in abundance until they reach carrying
capacity Kj;, or collapse to extinction when abundances are below critical abundance A;.
The speed at which species abundances change is determined by growth rate r;. Facili-
tation is mediated by facilitation rate «;;. Strong interspecific facilitation allows species
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to recover from large disturbances, i.e. below critical abundance A;. Species with a high
critical abundance A; depend strongly on this facilitation, and a community’s overall re-
silience is highest when such species are facilitated relatively strongly by species with a low
A;. The relative strength of interspecific competition is determined by ¢;;. Other causes
of abundance loss are incorporated through mortality rate d;. Species are assumed to
experience small stochastic perturbations, as in the bipartite mutualistic network model,
through noise term ¢;.

The main difference between the here presented model and the previously described plant-
pollinator model is that it is a unipartite model, i.e. it describes one set of interacting
species. The means by which facilitation occurs are, in contrast to the above described
plant-pollinator model, not explicitly described. Parameter settings and results can be
found in Appendix A4.6 and A4.7.

4.3 RESULTS

We found that, when interspecific competitive interaction strengths are weak, instability
nearly always arises from the positive feedback between plants and pollinators or from the
Allee effect in the above described mutualistic or facilitative communities. Instability is
caused by a saddle point approaching the communities’ initial state and at least one species
will collapse to extinction when a tipping point is passed. Other species may either gain or
lose in abundance depending on the communities’ initial properties and the way in which
they are affected by changing environmental conditions (Fig. 4.2.A). Critical transitions
were nearly always preceded by a period in which the indicator’s magnitude would increase
significantly, indicating that the distribution of fluctuating species abundances becomes
increasingly asymmetric (see Appendix A4.7, Fig. 4.2.B-D and Fig. A4.7-A4.9). As with
the small mutualistic network in Fig. 4.1, the indicated direction typically shifts towards
a system’s future state at the beginning of this period. The indicator thus consistently
pointed towards a community’s future state while increasing in magnitude prior to a
critical transition, when interspecific competitive interactions were weak.

A notable exception to this general pattern occurred when competitive interaction
strengths were taken from a low to intermediate range, e.g. ~ U(0.02,0.08). We found
that, for such a range, full network collapses were not always indicated accurately. Transi-
tions would lead either to the collapse of relatively few species or to a collapse of the entire
network (Fig. A4.9). Both the inaccurate prediction of full network collapses and the ab-
sence of intermediate-size, partial network collapses may occur because critical transitions
lead to a series of cascading, partial network collapses. The likelihood of an additional
collapse increases as more species collapse (Solé & Montoya 2001; Memmott et al. 2004;
Rezende et al. 2007). The most likely outcome of a series of cascading, partial network
collapses is therefore a collapse of the entire network. In such a scenario, the indicator will
accurately indicate the initial regime shift but will not foresee the cascade of partial net-
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Figure 4.2: Directional slowing down in a mutualistic network as detected by our indicator.
(A) Time series of species belonging to one part of a bipartite mutualistic network, i.e. the
pollinators. At the tipping point two species collapse to extinction (light blue and yellow). (B)
The indicator of the future state measuring the direction in which fluctuations are distributed
asymmetrically. Scores on the indicator indicate the relative predicted gain or loss of each
node. (C) The magnitude of the indicator, reflecting the extent to which fluctuations are
distributed asymmetrically, plotted together with the accuracy measured as the similarity
between its direction and the observed shift in abundance. Grey bands indicate the period
in which the indicator’s magnitude increases significantly. This period likely corresponds to
the period in which the network rapidly loses resilience (as in Fig. 4.1.A.II-IIT). The accuracy
increases rapidly at the beginning of this period. (C) The observed changes in abundance
versus the scores on the indicator just before the tipping point. Extinct species are indicated
with crosses. The observed shift is nearly proportional to the scores on the indicator as points
are close to a straight line through the origin.
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Figure 4.3: Cascading collapses and the indicator’s performance when predicting the future
state of mutualistic networks. (A-C) Examples of the relationship between the scores on
the indicator and the observed shifts in abundance when a single, when four, and when all
pollinator species collapse to extinction. The change in abundance of winners, losers and two
or three collapsed species was almost always accurately indicated. The loss in abundance of
additional species collapsing (red circles) was underestimated. (D) The fraction of regime
shifts after which a certain number species collapsed to extinction. The fraction for which the
change in abundance was not accurately indicated is shown in red. Inaccurate predictions (as
in panel C) usually occurred prior to a full network collapse. (E) Relationship between the
number of species collapsing and the number of species with a negative score on the indicator
(mean and SD). When the number of species indicated to lose in abundance was high, we were
often dealing with a full network collapse. (F-G) Combined plots of the 900 best indicated
transitions in a data set of 1000 regime shifts. Species remaining after a regime shift (blue
dots, panel F) are indicated more accurately than collapsing species (red crosses, panel F).
Species of which the loss in abundance prior to a collapse was underestimated usually belonged
to networks of which 5 or more species were indicated to lose in abundance (green dots and
crosses, panel G). Competitive interaction strengths were taken from a low to intermediate
range (i.e. 0.02-0.08).
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work collapses immediately following it (Fig.4.3). In some time series, we observed that
regime shifts consisted of several consecutive collapses (Fig. A4.10.A-B). The amount of
time in between two consecutive collapses can, however, be extremely small. Also when
cascades were not clearly visible, we suspect therefore that the inaccurate prediction of a
full network collapse is caused by a cascading collapse.

Cascading, full network collapses were uncommon when interspecific competitive interac-
tion strengths were drawn from other ranges (Fig. A4.9). When there is no competition
between species, full network collapses are very common, well indicated and do not show
signs of being caused by a cascade of partial network collapses (as in Fig. A4.10.C). When
competitive interactions are strong, few species tend to collapse to extinction, while most
or all other species gain in abundance from a transition. Apart from the specific range
from which competitive interaction strengths were drawn, cascading collapses were found
to become increasingly common when the noise level increases suggesting that they, in
part, result from a low resilience of a system’s future state (Fig. A4.11-A4.12). A rela-
tively large number of species was usually indicated to lose in abundance when a, likely,
cascading collapse occurred (e.g. 7 out of 10 on average, Fig. 4.3.E). As an alternative
indicator of the likelihood of a cascading, full network collapse we propose therefore to
use the number of species indicated to lose in abundance.

As the strength and variability of interspecific competition increases, Hopf bifurcations,
leading to oscillatory, chaotic or other complex dynamics, become increasingly common.
After such transitions, the system remains highly sensitive to small-scale stochastic per-
turbations and may end up in any of several potential future states (Fig. 4.4.A-B, and
Fig. A4.13-A4.15). To which of these states a system will shift is determined by chance
and thus hard to predict. For the highest competition level we tested, we found that such
hard-to-predict regime shifts made up about 60% of a data set. Higher levels were not
tested because, as the strength of competition increases, it becomes increasingly difficult
to generate networks of which the initial, nontrivial state is stable. More specifically, we
found that the probability of a network to be stable at initial conditions, M = 0, is nearly
one when interspecific competitive interaction strengths were taken from the aforemen-
tioned lower ranges and below 0.01 when they were taken from the highest here reported
range (Fig. A4.16). The indicator accurately indicated about 50% of the regime shifts in
this ‘worst-case scenario’ (some of the hard-to-predict regime shifts were indicated accu-
rately). When there is no competition between species, this percentage was nearly 100%

(Fig. 4.4.C-D).

Qualitatively similar results were found when, in addition to a change in relative mutualis-
tic benefits, the species’ nontrivial equilibrium abundances changed as well (see Appendix
A4.7 and Fig. A4.17). Full network collapses are more frequent when abundances tend
to decrease and the period in which the indicator’s magnitude increases prior to a critical
transition tends to be somewhat shorter when abundances change over time. The exam-
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Figure 4.4: Hopf bifurcations and the predictability of a network’s future state when sam-
pling competitive interaction strengths from different parameter ranges (ranges are indicated
on the x-axis). As the strength and variability of competition increases, Hopf bifurcations
become increasingly frequent as well as the number of networks of which the future state is
determined by chance. (A) The frequency of saddle-node (blue) and Hopf bifurcations (red)
for different data sets. A high frequency of Hopf bifurcations indicates that transitions to-
wards oscillatory, chaotic or other complex dynamics are common. (B) The fraction of cases
in which, after five simulations in which a network’s resilience was undermined in the exact
same way, a network would always shift to the same state (blue), to one out of two states
(orange), to one out of three states (green), or to one of four or more potential future states
(purple). (C) The fraction of accurately indicated regime shifts (dark blue), the fraction ac-
curately indicated by the first principal component, i.e. the slope of the indicator is accurate,
but not by the direction in which time points are skewed (light blue), and the fraction of inac-
curately indicated regime shifts (red). (C) The skewness of time points projected on the first
principal component. A positive skewness means that time points are skewed in the direction
of a network’s future state. The skewness is shown for regime shifts that were accurately
indicated by the first principal component.
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ples in Fig. A4.18-A4.20 suggest that the direction of the first principal component is
initially determined by the way in which abundances change over time. It may, therefore,
take longer before the direction in which abundances are distributed asymmetrically is
determined by the direction of critical slowing down. The application of a detrending
method may prolong this period when trends are strong.

Qualitatively similar results were also found when analyzing data sets of communities
with different numbers of species (see Appendix A4.7). Full network collapses became
less common as the number of species increased, and Hopf bifurcations leading to oscilla-
tory, chaotic or other complex dynamics became more frequent (Fig. A4.21-A4.22). These
changes occurred, most likely, due to a change in the balance between intra- and inter-
specific competition. Interaction strengths were assigned such that the relative difference
between intra- and interpecific competitive interaction strengths remained approximately
the same (see Appendix A4.5). The number of interspecific competitive interactions, how-
ever, increases as the number of species increases. The combined effect of all interspecific
competitive interactions is therefore larger. Systems with many species may, due to the
way in which we assigned competitive interaction strengths, therefore be comparable with
smaller networks in which interspecific competition is relatively strong.

Simulations with the more general, unipartite model of facilitation between species gave
roughly the same qualitative results as the bipartite plant-pollinator model (see Appendix
A4.7). The resilience of communities of 10, 20 and 40 species was generally a bit lower than
the resilience of plant-pollinator networks with the same number of plant and pollinator
species. To prevent networks from collapsing almost immediately, we chose a lower noise
level with standard deviation §; = 0.05. A relatively low resilience may also explain the
relatively high frequency of likely cascading collapses in facilitative communities of 10
species (Fig. A4.23). A different way of assigning critical abundances, A;, could have
increased the resilience of the here studied facilitative communities.

4.4 DISCUSSION

Human activities alter the Earth’s climate and its ecosystems at unprecedented rates
(Vitousek et al. 1997; Millenium Ecosystem Assessment 2005; Rockstrom et al. 2009;
Intergovernmental Panel on Climate Change 2014; Steffen et al. 2015). These changes
may jumble the patterns in the networks of interactions between species that hold complex
species communities together (Kareiva et al. 1993; McCann 2007; Tylianakis et al. 2008).
Monitoring and forecasting the effects of such changes thus requires a systems approach,
i.e. an approach that explicitly studies the properties emerging from the complex and
often unknown ways in which species relate to each other. Here, we try to make a
further step towards developing such an approach by determining the direction in which
destabilizing positive feedbacks undermine resilience. With model-generated time series
we show that this direction is indicative of the future state of mutualistic communities,
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potentially providing us with a tool to assess the impact of impending critical transitions
in natural communities and other complex systems.

Ecologists have emphasized the importance of improving our ability to predict the future
state of ecosystems previously, and predicting future developments in complex systems is
common practice in various fields of research, e.g. economics, engineering, and climatology
(Clark et al. 2001; Sutherland 2006; Coreau et al. 2009; Beckage et al. 2011; Novak et al.
2011; Evans et al. 2012, 2013; Purves et al. 2013; Petchey et al. 2015). Concerns about the
forecastability of ecosystems and the limits to our capacity to predict the future state of
ecosystems have however also been strong (Coreau et al. 2009; Beckage et al. 2011). Some
of these concerns stem from a misunderstanding of why predictions are made. Making
predictions is fundamentally different from describing a scientific law. Predictions are
made when a limited amount of knowledge is available, and people rely on predictions
even when they are known to often be inaccurate simply because better predictions are
not available. Predictions may also be made when evaluating the risks associated with
different ecological scenarios. In this spirit, we also see the indicator we propose here; as
an indication of where a system’s future state might lay. There is no absolute certainty
as complex dynamics may occur after a critical threshold is passed.

Some general properties may, however, give a clue about the predictability of ecosystem
dynamics. We found that, as the strength and variability of interspecific competition
increases, dynamics change from a situation where positive feedbacks are the main cause
of instability, to a mixed, intermediate situation, and, eventually, to a situation in which
delayed negative feedbacks govern ecosystem dynamics. Our results suggest that the
indicator performs well at predicting a system’s future state when positive feedbacks are
strong. Performance was reasonably good and transitions caused by positive feedbacks
remained quite common in the aforementioned mixed situation, i.e. more than 50%
accurate predictions. When dynamics were governed by delayed negative feedbacks, we
found that the initial pristine state of the here studied systems was unlikely to be stable,
i.e. the probability of a system’s nontrivial equilibrium to be stable was below 0.01.
The indicator could not be applied and the interplay between several delayed negative
feedbacks was likely to lead to chaotic dynamics.

Ecosystems exhibit positive feedbacks when species have direct or indirect positive effects
on themselves, i.e. in loops with an even number of negative interactions, and do not only
occur as the result of mutually beneficial interactions. Positive feedbacks may, for ex-
ample, also occur when species positively affect themselves by suppressing other species,
e.g. between a pair of competing species and in three-species omnivore loops in food
webs (e.g. Van Nes & Scheffer 2004 and Neutel & Thorne 2014). Despite a longstanding
interest in the occurrence of complex ecosystem dynamics (May 1974; Hastings & Pow-
ell 1991; Huisman & Weissing 1999), no real classification of where and when to expect
unpredictable, complex dynamics exists. As a first speculative proposal, we suggest that
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all the various types of mutualistic communities are likely to exhibit relatively strong
positive feedbacks and predictable dynamics. Terrestrial foodwebs, where the top-down
effects of herbivory are relatively small (Cyr & Face 1993), may fall in the aforementioned
mixed category, while aquatic food webs are more likely to exhibit chaotic dynamics (e.g.
Beninca et al. 2008). Complex dynamics are likely to occur in competitive communi-
ties when competitive interaction strengths are variable and asymmetrical. When pairs
of interacting species have similar competitive effects on each other, positive feedbacks
between some pairs of species are more likely to be strong and dynamics may be fairly
predictable (e.g. Van Nes & Scheffer 2004). Further research into where and when to
expect complex dynamics will greatly improve our capacity to evaluate the performance
of the here proposed indicator and the predictability of ecosystem dynamics in general.
Such research may, for example, involve a further investigation of the interrelationship
between the structural properties of ecological networks and the occurrence of different
types of critical transitions and may include transitions that are not preceded by critical
slowing down (see Grebogi et al. 1983 and Hastings & Wysham 2010).

Earlier studies explored different ways in which changing environmental conditions may
lead to critical transitions in mutualistic networks, for example by increasing pollinator
mortality rates (see Chapter 2, Jiang et al. 2018) or by declining mutualistic interaction
strengths (Dakos & Bascompte 2014). In this work, assumptions were made that make the
effects of these changes fairly simple from a dynamical perspective, e.g. the assumption
that the intrinsic properties of species and the effects of changing environmental conditions
are similar for all species, and the assumption that the structure of whom interacts with
whom remains unchanged. As a consequence, there is little change in the direction of
slowest recovery and the nature of the systems’ alternative stable states. Here, we chose
to study a more complex dynamical scenario because we wanted to test whether the
direction of critical slowing down is indicative of a community’s future state even when the
direction of slowest recovery changes substantially prior to the period in which resilience
is lost. There is no reason to assume that the indicator would perform worse at predicting
a system’s future state when changing conditions affect a group of similar species in one
of the aforementioned more simple ways.

The here proposed indicator has a number of advantages compared to previous methods
to predict the future state of ecosystems such as extrapolation and the use of mechanis-
tic models. Extrapolation is risky, because it assumes trends to continue outside of the
range in conditions for which data are collected, and the behavior of mechanistic models,
e.g. aiming to simulate feeding, reproduction, death, and other rates with as much accu-
racy as possible, often depends on many unknown parameters, in particular when these
rates depend on environmental conditions and species abundances. Using the direction of
critical slowing down as an indicator of a system’s future state has the advantage that it
directly relates to an emerging property of complex ecosystems, i.e. the direction in which
resilience is lost. As such, it avoids the often difficult process of parameter estimation
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needed to develop mechanistic models, and it specifically aims to predict a system’s future
state when abrupt shifts away from existing trends, i.e. critical transitions, occur.

The above described results consider scenarios in which plenty of data are available. When
time series are short, i.e. contain few data points, or when the rolling window used to
analyze time series contains few data points, predictions become less accurate (Fig. A4.24-
A4.29). This brings us to the question of how we may determine the data requirements
in practice. In this context, it is important to consider the two different aspects of our
analysis: ‘critical slowing down’ and ‘the direction of slowest recovery’. Critical slowing
down can only be detected over a longer time periods, i.e. in which conditions change,
while the direction of slowest recovery can be determined for a given set of conditions, i.e.
over a short period of time. When determining critical slowing down it is not necessary to
monitor the abundances of all species per se, while this is important when determining the
direction of slowest recovery. A more economical approach could thus be to monitor only
few species for indicators of critical slowing down, e.g. using the methods in Scheffer et al.
(2009) and Dakos et al. (2012), and to determine the direction of slowest recovery only
once these indicators suggest that the system approaches a tipping point. In some cases,
one may even consider to skip monitoring of critical slowing down indicators altogether
and focus on determining the direction of slowest recovery in systems that are known to
be under stress.

Two aspects could cause our approach to be less data-hungry than expected. First, we are
only interested in the slope indicated by the first principal component and require, there-
fore, fewer data when compared to analysis in which also the higher-order components
are of importance. Secondly, we expect the distribution of abundances to become highly
asymmetric when a system approaches a tipping point. Dynamics become similar to a
low-dimensional system and the number of observations needed to accurately determine
the direction of slowest recovery becomes smaller when a system approaches a tipping
point (Fig. A4.30). It remains, however, difficult to determine a priori what the data
demands are.

Previous studies have proposed rules of thumb that give an indication of the minimum
sample size required to perform principal component analysis, i.e. the method used to
determine the slope of the indicator. Such rules are often a function of the number of
variables, e.g. species abundances, and suggest that the minimum sample size required to
perform a principal component analysis should be at least n, e.g. 2, 10 or 20, times more
than the number of variables. Velicer & Fava (1998) and MacCallum et al. (1999) showed,
however, that such rules of thumb are invalid and that the required sample size depends
on the underlying correlation structure. A better approach to determine the minimum
sample size is therefore to draw subsets from the data and compare results for the subset
with those for the full set (Barrett & Kline 1981; Arrindell & Van der Ende 1985). When
subsets give similar results to the full set, enough data is likely obtained. Methods to
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determine the effect of a change in sample size may vary form a simple comparison of the
direction indicated (as in Fig. A4.30) to more advanced bootstrapping techniques (as in
Shaukat et al. 2016).

In this study, we chose to use time-series analysis because it links closely with previous
work on early warning signals (Scheffer et al. 2009; Dakos et al. 2012), and because data
collection efforts have, traditionally, focused on species abundances. For some ecosystems
it may, however, be easier to monitor changes in the structural properties of ecological
networks rather than in the specific way in which a system recovers from small perturba-
tions. When such monitoring efforts could be used to estimate (changes in) the effective
relationships between species as described by the different elements of the Jacobian ma-
trix, we may be able to obtain a more direct measure of (changes in) the relative strengths
of feedback loops in ecosystems, their proximity to a tipping point, and their likely future
states. Our analysis suggests, for example, that the extent to which species are saturated
and the relative benefits received from mutualistic partners play a crucial role in determin-
ing the resilience and future state of mutualistic communities. These properties might be
measured in more direct ways, for example by determining the time spent by pollinators
on handling and searching for nectar and their relative visitation rates to different plant
species. Other theoretically-informed measures for other types of ecosystems may likely
provide us with other potential indicators of the direction of critical slowing down.

In a time when humanity’s biggest challenges and opportunities depend upon our capac-
ity to manage complex natural systems, new tools to foresee the risks and opportunities
associated with critical transitions are of increasing importance. Such tools may not only
be useful when addressing the question of what a system’s future state might be like, but
may also help to address questions such as to what extent individual species or inter-
actions are contributing to network resilience and which deliberate human interventions
could prevent or alter the outcome of impending critical transitions. Such approaches
are becoming increasingly useful as the availability of data on natural and other complex
systems is rapidly increasing.
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A4.1 EXAMPLE: UNDERMINING THE RESILIENCE
OF A 3-SPECIES NETWORK

To illustrate how differences in the intrinsic properties of species and the arrangement
of interactions between them may affect the overall resilience of mutualistic networks,
we use a model in which one pollinator species interacts mutualistically with two plant
species. The system’s overall resilience is highest when this pollinator species obtains
most resources from the more saturated plant species.

As conditions change from a situation in which pollinators obtain most resources from
highly saturated plant species P, i.e. with high saturation term A, to a situation in which
they obtain most resources from less saturated plant species P, the network becomes
increasingly sensitive to small-scale stochastic perturbations. Eventually, a critical tran-
sition occurs away from the initial pristine state of the network towards a fully collapsed
network state in which both plant species and the pollinator species are extinct.

For illustrative purposes, we assume plants to be in steady-state and determine how chang-
ing conditions affect the relationship between the net growth of the pollinator species,
dN™@ /dt, and the abundance of the pollinator species, N (Fig. A4.1). The net growth
of the pollinator species is negative at low abundances. As a result, there are two alterna-
tive stable states; a pristine state in which the pollinator species has a positive abundance
and a collapsed state in which the abundance of the pollinator species is zero. These
two alternative stable states can be visualized more intuitively by a stability landscape of
which the slope corresponds to the rate at which the abundance of the pollinator species
changes, dN™) /dt, valleys to the attraction basins of the alternative stable states, and
hilltops to the threshold between the two attraction basins. As conditions change, the
attraction basin of the initial pristine state of the network becomes increasingly small
and a small perturbation becomes sufficient to cross the threshold and cause a critical
transition towards the alternative fully collapsed state of the network.

Parameter settings: Nl =2,¢; =04, ¢; =01, d; =02, rY = 0.3, hgp) = 0.3,
hgp) = 0.1, and ¢ = 0.01. Initial interaction strengths: (M = 0): 634, = 1, 6, = 0,
0§11 = 1, and 6{,, = 1. Final interaction strengths: (M = 1): Oﬂnahn =0, Q;‘inal,m =1,
Hﬁml’u =1, and inmlm =1.
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A4.2 EXAMPLE: CRITICAL SLOWING DOWN
IN A 4-SPECIES NETWORK

To illustrate the direction in which a community slows down prior to a critical transition
and how this might be used to predict a community’s future state, we use a model in
which two pollinator species interact mutualistically with two plant species. As described
in the main text, changing conditions undermine the resilience of this small network
by altering relative mutualistic benefits, #. As was the case with the earlier studied
3-species network (see Appendix A4.1), regime shifts occur in the here studied 4-species
community because the community’s initial pristine state is approached by a threshold (i.e.
a boundary between two attraction basins, Fig. 4.1). As conditions change, the minimum
size needed for perturbations to push the system over the approaching threshold becomes
smaller. The likelihood of a transition caused by the small-scale stochastic perturbations
incorporated in our model therefore increases and, eventually, a regime shift towards an
alternative state becomes inevitable.

The outcome of a transition depends on the way in which changing conditions undermine a
community’s resilience. One, some or all species may collapse to extinction and remaining
species may either gain or lose in abundance from a regime shift. Multiple thresholds
separating the community’s initial pristine state from different alternative stable states,
or ‘potential future states’, may exist prior to a regime shift. Changing conditions may
alter the number and nature of these alternative stable states, and the thresholds towards
them may or may not approach the network’s initial pristine state. Which alternative state
eventually becomes the community’s future state depends on which threshold towards
which future state eventually approaches a community’s initial state.

For illustrative purposes, we assume plants to be in steady state and determine how
changing conditions affect the dynamics of the network. These dynamics can be visu-
alized intuitively by a stability landscape of which the slope corresponds approximately
to the rate at which the abundances of pollinator species change, dN4) /dt (see methods
below). Every possible combination of pollinator abundances is represented by a unique
point in the stability landscape and alternative stable states are at the lowest point of
the landscapes valleys or ‘attraction basins’. Thresholds between attraction basins are
represented by ridges in the stability landscape. These thresholds are not equally high
at all places and have local maxima at hilltops and local minima at saddle points in the
network’s stability landscape. Attraction basins are shallow in between alternative stable
states and the saddle points on the thresholds that separate them. When approached by
a threshold, the attraction basin of the initial pristine state becomes increasingly shallow
and the network increasingly slow when recovering from perturbations in the direction of
the saddle point on the approaching threshold.

For the here studied 4-species network (Fig. 4.1) we found that the network’s pristine
state is initially accompanied only by a fully collapsed state, i.e. a state in which the
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abundance of all species is zero. The pristine state’s distance from the threshold towards
this state, however, remains large even when conditions change. A regime shift towards
a fully collapsed state remains, therefore, unlikely. Changing conditions start to rapidly
undermine the network’s resilience only after the appearance of the first of two additional
alternative stable states. These states correspond to partially collapsed network states
in which the abundance of some but not all species is zero. Both thresholds towards
both partially collapsed states approach the network’s pristine state. One threshold,
however, approaches the initial pristine state more closely than the other and eventually
a regime shift, caused by the small-scale stochastic perturbations to which the network
is permanently subjected, towards the partially collapsed state in the attraction basin
behind this threshold becomes inevitable.

As conditions change there are two decisive moments which are both preceded by a partic-
ular change in the network’s dynamics. The first is the moment at which the future state
of the network comes into existence as an alternative stable state in the network’s stability
landscape, and the second is the moment at which the regime shift towards this alter-
native stable state actually occurs. The direction in which the network recovers slowly
from perturbations changes substantially before the future state of the network comes into
existence from a direction that roughly indicates a full collapse to a direction that indi-
cates the future partially collapsed state of the network. The speed at which the network
recovers from perturbations, however, remains approximately the same. After the future
state of the network comes into existence, the network slows down dramatically when
recovering from perturbations in approximately the same direction (Fig. A4.2).
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Methods: To determine the rate at which pollinator abundances change as illustrated
in Fig. 1.B, we analytically determined this rate, v4), for different pollinator abundances
at 200 by 200 grid points in the network’s phase plane as follows:

0.5
S(4) A)\ 2
dN;
oA = §< 7 ) : (A4.1)

=1

in which Ni(A) is the abundance and dNZ-(A) /dt the net growth rate of pollinator species
i. At the same grid points we determined the height of the stability landscape with an
algorithm that keeps updating the height of the landscape until all slopes in between these
points are within a certain margin of error from the pollinators net growth rate. This
allows us to intuitively show the position of alternative stable states, which are found at the
bottom of the landscapes valleys or ‘attraction basins’, and the thresholds between them,
which correspond to hills or ridges in the landscape. The stability landscape produced
with this algorithm, is a useful tool to intuitively illustrate the idea behind our method.
As our system is non-gradient, it is not a way to determine the potential energy of the
system.

Parameter settings: NZ =2,¢; =04, ¢; =01, d; = 0.2, th) = 0.1, th) = 0.3,
h) = 0.3, and ¢ = 0.04. Initial interaction strengths: (M = 0): 64 = 0.7, 4 = 0.3,
05 = 0.5, 055 = 0.5, 65, = 0.5, 67, = 0.5, 65, = 0.3, 6, = 0.7. Final interaction strengths:
(M =1): 64 ~0.83, 6, ~ 0.17, 654 ~ 0.10, 625 ~ 0.90, 65 ~ 0.90, 65, ~ 0.10, 65, ~ 0.17,
and 0L, ~ 0.83

Conditions analyzed for Fig. 1 in the main text: M = 0.31, M = 0.66, and
M = 0.87.
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A4.3 SIMILARITY BETWEEN THE INDICATED
AND OBSERVED SHIFT

As explained in the main text, the slope of the indicator is determined by the first principal
component (Fig. A4.4.C), while the eventual (up- or downward) direction of the indicator
along the first principal component is determined by the direction in which time points
are skewed (Fig. A4.4.D-E). To asses the performance of our indicator, we evaluate the
performance of the first principal component and the skewness of the projected time points
independently. An accurate slope, means that the indicator performs well at predicting
the relative gain or loss of species and which species shift in opposite directions (i.e. an
‘accurate PC1’). The indicated direction is, however, only fully ‘accurate’ when the actual
winners and losers are also indicated correctly. This depends on the direction along the
first principal component in which time points are skewed.

To evaluate the performance of the first principal component, we determine the difference
between the slope of our indicator and the direction of the observed shift in abundance.
We do this by determining the angle, 6, between the direction of the indicator and the
observed shift as follows:

(A4.2)

in which I is the indicator of a network’s future state and AN the observed shift in
pollinator abundances. I - AN® indicates that we take the dot product between these
two vectors. To determine AN, we take the mean abundances over 200 time steps at
500 steps before the tipping point and subtract it from the mean abundances 500 steps
after the tipping point was found. Because we want to evaluate the accuracy of the first
principal component, and not whether points are also skewed in the right direction, we
take —I as the input for the formula above when we find an angle > 7/2 (i.e. > 90
degrees). Both I and AN are vectors of which the number of dimensions is equal to
the number of species analyzed. The smaller the angle, the more similar the direction of
the two vectors.

Two random vectors in a ten-dimensional space are more likely to be orthogonal than two
random vectors in a three-dimensional space. More extreme small or large angles become
less likely as the number of dimensions increases (Fig. A4.5). How ‘special’ it is to find a
certain angle between the indicated and the observed shift thus depends on the number
of dimensions in a system. As a measure of how different the indicated direction is from
the observed regime shift, we determine for the observed angle, 8, the likelihood that two
unrelated random vectors have an equal or smaller angle. As a measure of similarity, we
take one minus this probability, and we consider the indicator’s slope to be accurate when
this measure of similarity is above 0.99.
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To determine the aforementioned probability, we use the following probability density
function:

—g (s f)% Y, (A4.3)

in which S™) is the number of dimensions and h(f) the probability density for a certain
angle 0 (ref. Cai et al. (2013)). Our method may be interpreted as a test whether the null
hypothesis that I and N are two random vectors is true. This hypothesis is rejected when
angle is found to be significantly smaller than the expected angle between two random
vectors, when the one-sided p-value is smaller than 0.01 (i.e. similarity > 0.99).

To evaluate the tendency of time points to be skewed in the direction of a network’s
future state, we determine the skewness of the time points projected on the first principal
component. When points are skewed in the direction of the network’s future state, we
report a positive skewness. When points are skewed in the opposite direction, we report a
negative skewness. We consider a positive skewness as accurate and a negative skewness
as inaccurate. A strong positive or negative skewness is considered more accurate or
inaccurate than a weak positive or negative skewness.
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A4.4 TIME SERIES ANALYSIS

Unless stated otherwise, we determine the dominant direction of fluctuations in a rolling
window of 10% of the entire time series (e.g., 2000 out of 20.000 time points) to detect
changes in the direction and extent in which time points are distributed asymmetrically.
The choice of this window size is to some extent arbitrary. A too small window leads to
irregular trends, while a too large window smooths out the trends. To test whether the
size of the window chosen influences our results, we make additional analysis in which we
use a window size of 0.005, 0.1, 0.5, 0.1, 5,10, 20 and of 50% of the time series. The rolling
window is moved along the time series with steps of 1% of the time series, independent
of the window size. As time passes by, the direction and magnitude of the indicator is
thus computed every 200 time steps in a window containing the last 2000 time steps when
using a window size of 10% of a time series with a length of 20.000 time points.

Far from a tipping point, time points may be skewed only weakly. When this is the case,
sudden shifts of nearly 180 degrees may occur in the direction of the indicator when time
points are skewed in a different direction along the first principal component. Clearly, such
large shifts in direction do not occur because the network’s future state has changed. We,
therefore, correct previously found indicator values such that there is no change larger
than 90 degrees between two consecutive points at which the indicator’s direction was
determined. We assume the last direction in which time points were found to be skewed
to be the accurate one.

To determine whether there is a significant increase in the indicator’s magnitude, we
determine the Kendall rank correlation coefficient, 7, for the last ten points at which
the indicator’s magnitude was computed. We consider the increase significant when this
coefficient was positive and its p-value < 0.05. Once a significant increase was found, we
tested whether the increase remained significant by determining Kendall’s correlation for
the last eleven points the next time the indicator’s magnitude is determined, for twelve
points the time after that, and so on until the tipping point is reached. We would again
look at the last ten points when the increase was found to not be significant anymore. By
doing this, we could determine the range in conditions in which the indicator’s magnitude
increased significantly.

As a measure of a ‘regime shift” we determined whether there was a change in abundance
of more than 1.5 over a period of 1% of the entire time series (200 time steps). We did
this by taking the mean abundances over a period of 200 time steps before this period and
200 time steps after this period and determining Euclidean distance between these two
mean abundances. To make sure that this large shift in abundances was not a temporal
large deviation from the species’ mean abundances, we added as a second criterion that
the abundance of at least one species should be near extinction, i.e. below 0.1.

We did not apply any preprocessing to handle trends in the time series. We expect
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the indicator to be relatively robust against such trends, because trends only alter the
direction of the first principal component when their effect on this direction is stronger
than the effect of critical slowing down. Not applying any preprocessing is a good way to
test this robustness. When using the indicator as part of a different study it may, however,
be worth considering to apply a preprocessing method (see ref. Dakos et al. (2012)). It
may improve the performance of the indicator, especially when trends are strong.
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A4.5 ADDITIONAL INFORMATION BIPARTITE
MUTUALISTIC NETWORKS

Nontrivial equilibrium abundances, N, competitive interaction strengths, ¢, mortality
rates, d, and saturation terms, h, are randomly sampled from predefined probability
distributions, and the total amount of resources received by species ¢ at the system’s
nontrivial equilibrium, Rl(]\Af (P)), are assigned such that the rate at which abundances
change at the system’s nontrivial equilibrium, dAN®) /dt, is zero:

(A) o
ZS CijN;A) + dz

Jj=1

1-— hi(ZS(A) CUN](A) + dl) .

Jj=1

Ri(N)) = (A4.4)

A

The total amount of resources provided at the system’s nontrivial equilibrium, R;(N )

is thus approximately the same for highly specialized and more generalist species, pro-
vided that their losses due to competition, ¢, and mortality rates, d, and their nontrivial

equilibrium abundances, NV, are similar.

The extent to which species are saturated is determined by the total amount of resources
provided, Rl(N P )), and the rate at which species become saturated as determined by
saturation term h;. In our simulations, we assume nontrivial equilibrium abundances, N ,
and inter- and intraspecific competition, ¢;; and c¢;;, to be similar for all species. Highly
saturated species are, therefore, the ones with a high h;. Species are saturated relatively
quickly, and, according to equation A4.4, the total amount of resources provided at the
system’s nontrivial equilibrium is high when species have a high h;.

Parameters are assigned such that there are substantial differences in the extend in which
species are saturated by drawing saturation terms, h;, from a scaled beta distribution with
range ~ (0.05,0.35) and shape parameters « = 1 and § = 5. Due to this distribution,
there are few highly saturated species, i.e. h; close to 0.35, and many non-saturated
species, i.e. h; close to 0.05. Strong mutualistic interactions between non-saturated
species lead to strong positive feedbacks. Non-saturated species thus need to obtain a
relatively large share of resources from a few, highly saturated species for the network to
be stable. Relative mutualistic benefits at initial conditions, 0, are therefore ordered
such that larger benefits are obtained from the more saturated species. To make sure
that the sum of all relative benefits is one, we take relative mutualistic benefits, 0,
from a symmetric Dirichlet distribution. The distribution’s concentration parameter, «,
determines the extent in which species are specialized and is, for each species, taken from
a uniform distribution between zero and one.

To explore how transitions towards oscillating, chaotic or other complex dynamics caused
by delayed negative feedbacks may influence the performance of the indicator, we analyze
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several data sets of which the strength and variability in interspecific competitive interac-
tion strengths, ¢;;, varies. The tested parameter ranges are: ¢;; = 0, ¢;; ~ U(0.02,0.08),
ci; ~ U(0.04,0.16), ¢;; ~ U(0.06,0.24), ¢;; ~ U(0.08,0.32), ¢;; ~ U(0.10,0.40),
ci; ~ U(0.12,0.48), and ¢;; ~ U(0.14,0.56). Intraspecific competition strengths, c;;, are
taken from ~ U(0.9,1.1). Delayed negative feedbacks become stronger as the strength
and variability of interspecific competition increases. Simulations are made for commu-
nities of 10 plant and 10 pollinator species. Initial equilibrium abundances, Noyi, and
mortality rates, d;, are taken from Ny; ~ U(1.5,2.5) and d; ~ U(0.15,0.25). Initial and
final nontrivial equilibrium abundances are assumed to be equal, N finali = NM.

Changing environmental conditions, M, lead to an increase in the relative mutualistic
benefits received from some, and a decrease in the relative benefits received from other
species. We assume the distribution of interaction strengths of the final network, at
M =1, to be quite heterogeneous (Fig. A4.6). We select, therefore, with a probability
of 0.75, interactions of which the interaction strength goes to zero, 0tinq i = 0. To the
remaining interactions, relative interaction strengths are assigned by taking them from
a uniform Dirichlet distribution (o = 1). The ‘diet breath’ of plants and pollinators
thus tends to become more narrow as could be the case under various scenarios of global
environmental change (Memmott et al. 2007; Burkle et al. 2013).

As conditions change, either a single eigenvalue or a pair of complex conjugate eigenvalues
goes to zero. In the first case we are dealing with a saddle-point approaching the network’s
initial state, caused by a positive feedback. In the second case, we are dealing with a Hopf
bifurcation caused by a delayed negative feedback.

Data sets consist of 100 initial networks. For each network, 10 final distributions of relative
mutualistic benefits, 0fina1,ix, Were drawn, allowing us to determine the extent in which a
community’s future state depends on the specific way in which relative mutualistic benefits
are changed. Parameters were assigned such that this dependency is high. Networks were
discarded from a data set when they were unstable at initial conditions, M = 0. We
determined the frequency at which this occurred as a measure of how difficult it is to
find a stable solution for the initial networks of a given data set. The final distribution of
relative mutualistic benefits was redrawn either when the network would become unstable
within the range of conditions M = (0,0.5), or when a network would still be stable at
M =1.

To test whether the indicator also works when equilibrium abundances change, we ana-
lyzed networks of 10 plant and 10 pollinator species of which the final equilibrium abun-
dances are different. We do this by changing the nontrivial equilibrium abundances of
species as follows:

Ni* = No,i + (meal,i — No,i)M> (A4.5)
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in which NOJ is the initial, N tinal,i the final, and NZ* the actual nontrivial equilibrium
abundance of species . The total amount of resources provided at the system’s nontrivial
equilibrium, and the strengths of mutualistic interactions are determined by equations 4.4
and A4.4. We tested three scenarios. One in which the nontrivial equilibrium abundances
of species tend to increase, N finati ~ U(2,3), one in which they stay the same on average
meal’i ~ U(1.5,2.5), and one in which they tend to decrease Nﬁnal,i ~ U(1,2). Compet-
itive interaction strengths were taken from the following distributions: ¢; ~ U(0.9,1.1)
and ¢;; ~ U(0.02,0.08). Changing abundances affect all relationships as described by the
Jacobian matrix. The main effect of a decline in abundance is, however, a reduction of the
direct negative effects of species on themselves which undermines resilience. Increasing
abundances tend to promote resilience.

To test whether the indicator may accurately indicate the future state of larger networks,
we analyzed networks of 10 and 20, 10 and 40, 20 and 10, 20 and 20, 20 and 40, 40 and 10,
40 and 20, and 40 and 40 plant and pollinator species. We assigned competitive interaction
strengths such that the rate at which species lose in abundance due to competition,
Ef:i) cij N }A)Ni(A), is approximately the same for different numbers of species, as well as
the relative difference between intra- and interpecific competition, ¢;;/c;. When a species
group consisted of 10 species we assumed ¢;; ~ U(0.9,1.1) and ¢;; ~ U(0.02,0.08). When
a group consisted of 20 species ¢; ~ U(0.67,0.82) and ¢;; ~ U(0.015,0.06), and when a
group consisted of 40 species ¢; ~ U(0.44,0.54) and ¢;; ~ U(0.01,0.039). Initial and final

equilibrium abundances were assumed to be equal, Nyina; = Nojs.

)

The amount of noise, determined by standard deviation ¢, is assumed to be equal for
all species. Unless stated otherwise, we assume standard deviation 6 = 0.1. Additional
simulations were made with lower and higher noise levels, 6 = 0.01, 0 = 0.05, 6 = 0.15, and
0 = 0.2 to make sure that this does not qualitatively alter the results. Higher noise levels
were not tested because they would lead to an almost immediate collapse. Unless stated
otherwise, model generated time series had a length, T', of 20.000 time steps. Additional
simulations were made in which time series had a length of 100, 200, 1.000, 2.000, 10.000,
and 100.000.
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A4.6 ADDITIONAL INFORMATION UNIPARTITE
MODEL OF FACILITATION

Nontrivial equilibrium abundances, N , interspecific facilitation rates, ;;, critical abun-
dances A;, interspecific competitive interaction strengths, ¢;;, carrying capacities, K, and
mortality rates, d, are randomly sampled from predefined probability distributions. In-
traspecific facilitation rates, 7;;, and intraspecific competition rates, c;;, are one. To make
sure that the rate at which abundances change at the nontrivial equilibrium, dN; /dt, is
zero, we assign the intrinsic growth rates, r, as follows:

S 4 S % Y
(D25=1 7Ny — A) (K — D25, i Nj)N;

Ty =

(A4.6)

The contribution of species to the overall resilience of a network is determined by critical
abundance A;. Species with a high critical abundance, A;, collapse more easily and
the overall resilience of the community is highest when such species are facilitated by
species with a low critical abundance. A change from such a distribution to a more
random distribution of facilitative interaction strengths will undermine resilience. To
generate time series in which the resilience of the here described facilitative communities is
undermined, we assume that conditions, M, affect facilitative interactions as follows:

Yij = Y03 + (Vfinatis = Y0.) M, (A4.7)

in which 79 is the initial, Vsina i the final, and +;; the actual facilitative interaction
strength. Conditions, M, change from zero to one over time. We assume that the total
amount of facilitation received, Zle 7;INJ, remains equal as conditions change. We
therefore determine the final facilitative interaction strength as follows:

Y final,ij =

0 Zizl Vi Ni
N,

J

, (A4.8)

in which 6;; is the fraction of the total facilitation received by species ¢ from species
J.

We assign parameters such that there are substantial differences in the critical abundances
of species by drawing critical abundances, A;, from a scaled beta distribution with o =5
and f = 1 and range ~ (0, 1.5). Due to the beta distribution, there are few highly vigorous
species (i.e. A; close to 0) and many non-vigorous species (i.e. A; close to 1.5). The
initial facilitative interaction strengths are taken from the following uniform distribution:
Yo,ij ~ U(0.2,1.8). Initial facilitative interaction strengths are ordered such that species
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receive most facilitation, i.e. highest vy ,;, from species with the lowest A;. We assume
that as conditions change, the strength of some facilitative interactions increases strongly
while others approach zero. Final relative facilitative benefits, 0finqix, are therefore
selected with a probability of 0.75 and set to zero. To the remaining interactions, relative
benefits are assigned by taking them from a uniform Dirichlet distribution (v = 1). As
with the model of mutualistically interacting species, we chose for this distribution of
critical abundances, A;, and facilitative interaction strengths ;;, because it leads to a
high variety in potential future states to which a network may shift. Other parameters
and equilibrium abundances are taken from the following uniform distributions: N; ~
U(1.5,2.5), ¢;; ~ U(0.04,0.16), d; ~ U(0.15,0.25).

Simulations were made with networks of 10, 20 and 40 species. As for the bipartite
model of mutualistically interacting species, we assign parameters such that the rate at
which abundance is lost due to competition, Zle ¢;;N;/K;, remains approximately the
same for different species numbers, as well as the relative difference between intra- and
interpecific competition (see main text). Carrying capacities, K;, were therefore taken
from respectively K; ~ U(5,6), K; ~ U(7.63,9.15), and K; ~ U(12.89,15.47), depending
on the number of species.

The amount of noise, determined by standard deviation 9, is assumed to be equal for all
species. For the results shown in this document we assume standard deviation § = 0.05.
As with the model of mutualistically interacting species time series had a length, T, of
20.000 time steps.
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A4.7 SUPPLEMENTARY RESULTS

Independent of the parameter ranges chosen, we found that regime shifts were preceded
by a substantial period in which the indicator’s magnitude increases significantly, i.e.
the ‘critical range’. Our indicator would, provided that the future state is indicated
accurately, point towards a network’s future state during a substantial part of this period
(Fig. A4.7). In Fig. A4.8 we provide information about the critical ranges as observed
in a single data set (¢;; ~ U(0.02,0.08)). These results are exemplary for the other data
sets and show that our indicator consistently indicates a network’s future state during the
period in which the network slows down.

Cascading collapses occur at an intermediate range of competitive interaction strengths
most likely due to the nature of effective relationships between species, i.e. the combined
effect of all direct and indirect interactions (Fig. A4.9). When there is no competition,
effective relationships are positive and species collapse as one group. When competition
is strong, most effective relationships are negative and species collapse independently.
Cascading collapses are only likely when effective relationships are a mix of positive and
negative relationships. When interspecific competitive interaction strengths, c;;, were
taken from ~ U(0.02,0.08), we found that such likely cascading, full network collapses
took up a bit more than 12% of the data set. For specific parameter ranges not tested by
us, this percentage may be higher.

In Fig. A4.10 we provide examples of two cascading collapses and one immediate network
collapse. Species that collapsed a bit later, were also the ones for which the indicated
loss in abundance was smallest, suggesting that the indicator indicates the initial regime
shift accurately. The amount of time in between two consecutive partial network collapses
can be extremely small. Also when cascades are not clearly visible, we suspect therefore
that the inaccurate prediction of a full network collapse is caused by the occurrence of a
cascading collapse.

In Fig. A4.13 we provide an example of a network for which the future state is hard
to predict because it may shift to several alternative future states. When making five
simulations in which relative mutualistic benefits, 6;;, are changed in the exact same way
by changing conditions, M, we found that the network shifted to four different future
states. The future state of this network is determined by the only stochastic element in
our model; the small-scale perturbations to which the network is permanently subjected.
Our indicator accurately indicates two of the future states to which the network may shift,
but does not indicate the other future states. A likely explanation for the several future
states to which this system may shift is the fact that this system is approaching a Hopf
bifurcation, leading to oscillating (Fig. A4.14), chaotic or other complex dynamics (Fig.
A4.15). Such dynamics may explain a high sensitivity to perturbations in more than one
direction.
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In Fig. A4.18-A4.20, we show examples of time series in which not only the relative
benefits, 6;;, change over time. The nontrivial equilibrium abundances, Ni, and thus the
total gain from mutualistic interactions, Ri(]\Afi), changes as well. We found that a change
in abundance over time does not have a strong effect on the performance of the indicator
(Fig. A4.17). In comparison to data sets in which abundances stay (on average) the
same, full network collapses are much less frequent when abundances increase and much
more frequent when abundances decrease. Quite a large fraction of full network collapses
is indicated accurately when abundances decrease. Cascading collapses may occur less
frequently because all species experience a similar loss in resilience as a consequence of a
decline in abundance. Another difference is that the length of the critical range tends to

be a bit shorter when abundances in- or decrease.

In Fig. A4.21 and A4.22, we show that the indicator performs well, also when we ap-
ply our method to networks with different numbers of plant and pollinator species. Full
network collapses become less common as the number of species increases, as well as
the occurrence of cascading network collapses. An explanation for this effect of an in-
crease in species number is that the loss in abundance due to competition with other
species, Zf:) cij N ;A) Ni(A) — cn-Ni(A) Nz-(A), increases substantially as the number of species
increases. Systems with many species may, therefore, be comparable with smaller net-
works in which interspecific competition is relatively strong. In those networks we also
observed that full network collapses were less frequent. Increasing numbers of species did
not have clear effect on the length of the critical range, nor on the fraction of the critical
range in which the future state was indicated accurately by the slope of the indicator (Fig.
A4.22). We did, however, found some effect on the skewness of time points projected on
the first principal component. The frequency at which we found that points were skewed
in the wrong direction increased as the number of species increases.

In Fig. A4.23, we show results for a more general model of competition and facilitation
(see main text). The general behavior and performance of the indicator is similar to the
results obtained with the mutualistic network model. The overall resilience of the networks
tested seems a bit lower than the resilience of the mutualistic networks (this depends on
parameter settings). To prevent networks from collapsing almost immediately, at M ~ 0,
we chose a lower noise level of 6 = 0.05. This relatively low resilience may also explain
the relatively high frequency of cascading collapses in networks of 10 species.
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A4.8 SUPPLEMENTARY FIGURES
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Figure A4.1: Changing conditions undermining the overall resilience of a small mutualistic
network. The network consists out of one pollinator, A, and two plants species of which
plant species P; is more saturated than plant species P». For illustrative purposes, we assume
plants to be in steady-state. (A) Time series of the pollinator species and the network at
different conditions (I, II, and III). As indicated by the thickness of the network’s arrows,
changing conditions alter the relative mutualistic benefits, 8, such that the pollinator species
becomes increasingly dependent on non-saturated plant species P». This undermines the
overall resilience of the network and leads to a full collapse of the network at which both plant
species (not shown) and the pollinator species (shown) collapse to zero. (B) The net growth
rate, dA/dt, and the stability landscape of the pollinator species at conditions I, IT and III. As
conditions change, the initial pristine state of the network, 1, is approached by a threshold,
i.e. a hilltop in the stability landscape, and a small perturbation becomes sufficient to cause
a regime shift towards fully collapsed state 2.
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Figure A4.2: The slope of the small mutualistic network’s stability landscape reflecting the
speed at which pollinator abundances change, v,, at different conditions, M. As in Fig. 2
of the main text, alternative stable states (balls), saddle points (yellow dots), and hilltops
(grey dots) are surrounded by areas in which the landscape’s slope, and thus the rate at
which abundances change, is nearly zero (indicated in orange). Higher speeds (blue) are
found further away from these points. The network recovers slowest from perturbations in
the direction of the saddle point on the nearest threshold and slows down in the direction of
the saddle point on the threshold approaching the network’s initial pristine state. Changing
conditions alter the shape of the network’s stability landscape in a non-linear way. After a
period in which there is almost no change (M = [0,0.31]), the direction in which the network
recovers slowest from perturbations (see yellow arrow) changes substantially from a direction
that roughly indicates a full collapse to a direction indicating the future partially collapsed
state of the network (M = [0.31,0.59]). After the network’s future state comes into existence,
the network slows down dramatically in approximately the same direction (M = [0.59,0.87]).
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Figure A4.3: Example of a time series in which the small mutualistic network in Appendix
A4.2 approaches a tipping point. Conditions at window I,IT and IIT correspond to the con-
ditions for which stability landscapes are shown in Fig. 1 of the main text. (A) At the
tipping point (M = 0.9) one pollinator species collapses to extinction, while the other gains
in abundance. (B) The distribution of points in the network’s phase plane representing the
abundances of species at different moments in time for time window I, IT and III (see A). Far
from the tipping point, in window I and II, deviations from the species’ mean abundances
are relatively small. Close to the tipping point, in window III, the distribution of points in
the network’s phase space is highly asymmetrical. Deviations from the mean abundances in
time window III usually involve a simultaneous increase in the abundance of species Al and
a relatively larger decrease in the abundance of species A2, suggesting that this will also be
the direction in which the network will shift once a threshold is passed.
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Figure A4.4: The measures of asymmetry together forming our indicator as they were
determined for window III in Fig. A4.3. (A) Time series of the two pollinator species in the
moving window. (B) Time points, representing species abundances at different moments in
time, in the phase plane of the network. (C) The first principal component (grey dotted line)
corresponding to the line in the phase plane along which variance is highest. (D) Direction
along the first principal component (grey arrows) in which time points deviate the most from
the species’ mean abundance, i.e. the direction in which time points projected on the first
principal component are skewed. (E) Distribution of the projected time points. (F) The
indicator, corresponding to a vector in the phase plane of the network (grey arrow). The two
components of this vector correspond to the species ‘scores on the indicator’. In this example,
we found a large negative score (-0.79) indicating a relatively large decline in abundance for
the pollinator on the x-axis and a relatively smaller positive score (0.32) indicating a relatively
smaller increase in abundance for the pollinator on the y-axis. The length of the indicator
corresponds to the amount of variance explained by the first principal component.
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Figure A4.5: Cumulative distribution function of the angle between two random vectors.
(A) Cumulative distribution function when these vectors have three dimensions. (B) Cumu-
lative distribution function when these vectors have ten dimensions. As can be seen from the
distributions, the probability of finding an angle of, for example, 40 degrees or less is much
smaller in a high dimensional system. Cumulative distribution functions are determined with
the help of the probability density function in ref. Cai et al. (2013).
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Figure A4.6: Example of (A) a highly resilient mutualistic network and (B) a network
with a low resilience. Plant (circles) and pollinator species (squares) are ordered from highly
saturated (green/left) to non-saturated (red/right). The thickness of the lines between nodes
indicates relative mutualistic benefit 8;;. In the highly resilient network species receive most
of their resources from highly saturated species, while this is not the case in the network with
a low overall resilience. The resilience of a network is undermined when relative benefits are

changed from the situation in A to the situation in B.
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Figure A4.7: The critical range (grey band) in which the indicator’s magnitude increases
significantly and the fraction of this range in which the indicator’s similarity to the observed
shift in abundance is larger than 0.99. In the here shown example, the length of the critical
period is 0.8-0.46 = 0.34. The slope of the indicator accurately indicates the future state, i.e.
similarity is > 0.99, during a fraction of 0.29/0.34 = 0.85 of this period. The full time series
is shown in Fig. 2.
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Figure A4.8: Overall statistics on the performance of the indicator when competitive inter-
action strengths, ¢;; are taken from ~ U(0.02,0.08). (A) The performance of the indicator
for different numbers of collapsed species. The fraction of regime shifts for which the change
in abundance was not well indicated is shown in red. The fraction accurately indicated by the
first principal component, but not by the direction in which time points are skewed is shown
in light blue. Fully accurate predictions are indicated in dark blue. (B) The skewness of time
points projected on the first principal component. A positive skewness means that time points
were skewed in the direction of the network’s future state. (C) The length of the critical range
in which the indicator’s magnitude increases significantly. (D) Kendall’s rank correlation, T,
as determined for the critical range. (E) The fraction of the critical range in which the slope

of the indicator accurately indicates the future state, i.e. in which the similarity between the
first principal component and the observed shift in abundance is > 0.99. Results in panels
(B-E) are shown for regime shifts that were accurately indicated by the first principal compo-
nent. Box plots show the median and the upper and lower quartiles. Whiskers correspond to
the 9th and the 91st percentile.
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Figure A4.9: The number of pollinator species collapsing to extinction as observed in data
sets of 1000 regime shifts. FEach panel shows results when sampling competitive interaction
strengths from a different parameter range (see ranges indicated). In the extreme case where
there was no competition (top left panel), we found almost exclusively full network collapses
(i.e. all ten pollinator species collapsed to extinction). As the strength of competition in-
creases, full network collapses become less frequent. Partial network collapses tend to be

small independent of the strength of competition, i.e. the most common partial collapse led to
the extinction of only one single pollinator species. The fraction of regime shifts for which the
change in abundance was not well indicated is shown in red. The fraction accurately indicated
by the first principal component, i.e. the slope of the indicator is accurate, but not by the
direction in which time points are skewed is shown in light blue. Fully accurate predictions
are indicated in dark blue.
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Figure A4.10: Two cascading collapses and one immediate collapse. (A) Example of a
cascading collapse that eventually leads to the collapse of four pollinator species. Three species
(blue, green and purple) collapse to extinction rapidly. A fourth (black) species collapses
as well, but remains for a short while at a lower abundance before collapsing to extinction
(red arrow, A.I). Out of the four species that collapse to extinction, the black species is
also the one for which the indicated loss in abundance is smallest (red circle, A.II). (B)
Example of a cascading collapse that eventually leads to a full collapse of the network (i.e.
the most common outcome of a cascading collapse). Two species (black and yellow) collapse
to extinction rapidly. The other species collapse as well, but remain for a short while at
a lower abundance before collapsing to extinction (red arrow, b.I). The indicated loss in
abundance of the rapidly collapsing species is much bigger than the loss indicated for the
species that collapse a bit later (red circles, B.IT). (C) Example of a full network collapse
that was accurately indicated. All species collapse at approximately the same time (C.I). All
species were indicated to lose in abundance (C.II).
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Figure A4.11: Performance of the indicator for different noise levels (noise levels, ¢;, are
indicated on the x-axis). (A) The fraction of accurately indicated regime shifts (dark blue), the
fraction accurately indicated by the first principal component, i.e. the slope of the indicator is
accurate, but not by the direction in which time points are skewed (light blue), and the fraction
of inaccurately indicated regime shifts (red). (B) The skewness of time points projected on
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