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Interpretive summary 1 

Exploration of variance, autocorrelation, and skewness of deviations from lactation curves as 2 

resilience indicators for breeding. Poppe et al. Cows differ in their ability to cope with diseases 3 

and other challenges. We explored methods to describe the ability of a cow to handle unknown 4 

challenges by studying the fluctuation pattern in deviations from a lactation curve. Variance of 5 

deviations was most heritable and was genetically related to health and functionality. 6 

Autocorrelation and skewness had a lower heritability than the variance and had weak or 7 

unexpected genetic correlations with health and functionality. Therefore, variance in milk yield 8 

is the most promising indicator of resilience.  9 
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ABSTRACT 26 

The ability of a cow to cope with environmental disturbances, such as pathogens and heat 27 

waves, is called resilience. To improve resilience by breeding we need resilience indicators, 28 

which could be based on the fluctuation pattern in milk yield resulting from disturbances. The 29 

aim of this study was to explore three traits that describe fluctuations in milk yield as indicators 30 

for breeding resilient cows: the variance, autocorrelation, and skewness of the deviations from 31 

individual lactation curves. We used daily milk yield records of 198,754 first parity cows, 32 

recorded by automatic milking systems. First, we estimated a lactation curve for each cow using 33 

4 different methods: moving average, moving median, quantile regression, and Wilmink curve. 34 

We then calculated the log-transformed variance (LnVar), lag-1 autocorrelation (rauto), and 35 

skewness (Skew) of the daily deviations from these curves as resilience indicators. A genetic 36 

analysis of the resilience indicators was performed and genetic correlations between resilience 37 

indicators and health, longevity, fertility, metabolic, and production traits were estimated. The 38 

heritabilities differed between LnVar (0.20 – 0.24), rauto (0.08 – 0.10) and Skew (0.01 – 0.02), 39 

and the genetic correlations among the indicators were weak to moderate. For rauto and Skew, 40 

the genetic correlations with the health, longevity, fertility, and metabolic traits were weak or 41 

the opposite of what we expected. Therefore, rauto and Skew have limited value as resilience 42 

indicators. However, a lower LnVar was genetically associated to a better udder health (genetic 43 

correlations from -0.22 to -0.32), a better longevity (-0.28 to -0.34), less ketosis (-0.27 to -0.33), 44 

a better fertility (-0.06 to -0.17), a higher BCS (-0.29 to -0.40), and a higher dry matter intake 45 

(-0.53 to -0.66) at the same level of milk yield. These correlations support that LnVar is an 46 

indicator of resilience. Of all 4 curve fitting methods, LnVar based on quantile regression 47 

systematically had the strongest genetic correlations with the health, longevity, and fertility 48 

traits. Thus, quantile regression is considered the best curve fitting method. In conclusion, 49 



3 
 

LnVar based on deviations from a quantile regression curve is a promising resilience indicator 50 

that can be used to breed cows that are better at coping with disturbances. 51 

 52 

Key words: resilience, variance, milk yield, automatic milking system, dairy cow 53 

 54 

INTRODUCTION 55 

Cows differ in their ability to cope with environmental disturbances such as pathogens, heat 56 

waves, and changes in feed composition and feed quantity. A cow that is unaffected by a 57 

disturbance, or that quickly returns to her normal level of functioning, is labelled resilient 58 

(Colditz and Hine, 2016; Berghof et al., 2019). Resilience could be improved through genetic 59 

selection, but to do so we need to measure it on individual cows. Several studies have quantified 60 

the response to and recovery from an experimental disturbance in animals (Friggens et al., 2016; 61 

Revilla et al., 2019). However, such challenge experiments cannot be carried out routinely on 62 

commercial farms. Moreover, challenge experiments focus on one type of disturbance, whereas 63 

our interest is in improving the general resilience to unknown disturbances.  64 

 65 

Alternatively, a data-driven approach can be used. Scheffer et al. (2018) proposed methods to 66 

quantify resilience in cows using frequently measured data. These methods rely on the 67 

assumption that cows are constantly subject to unknown disturbances, which result in 68 

fluctuations in frequently measured traits. Cows with few fluctuations are less affected by 69 

disturbances than cows with more fluctuations. Therefore, the fluctuation pattern is expected to 70 

be informative about resilience. Several resilience indicators describing fluctuations in 71 

frequently measured traits have been suggested, such as the variance of the trait, which indicates 72 

the variability of the frequently measured trait, the lag-1 autocorrelation of the trait, which 73 

indicates stretches of values above or below the expected level, and skewness of the trait, which 74 
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indicates asymmetry (Scheffer et al., 2018; Berghof et al., 2019). Up to know, it is difficult to 75 

validate resilience indicators by relating them to response to disturbances, because of the lack 76 

of data on disturbances. However, genetic analysis can be used to better understand the biology 77 

of a trait and as such increase our understanding of new resilience indicators, similar to 78 

validating subjectively scored traits such as BCS (Veerkamp et al., 2002).  79 

 80 

A trait that is frequently measured and that shows response to disturbances is milk yield. 81 

Variance of milk yield has been studied by several researchers. Elgersma et al. (2018) showed 82 

that variance of daily recorded milk yield was heritable and that cows with a lower variance 83 

had genetically a better udder health, less ketosis and a better longevity. Therefore, variance of 84 

daily milk yield has potential as a resilience indicator. However, Elgersma et al. (2018) did not 85 

account for the lactation curve shape, which is expected to influence the level of variance in 86 

milk yield. Other studies showed genetic variation in environmental variance in milk yield using 87 

a random regression model, which did account for lactation curve shape (Rönnegård et al., 88 

2013; Vandenplas et al., 2013; Ehsaninia et al., 2019). However, these authors used test-day 89 

records, which are not frequent enough to detect all fluctuations in milk yield. Overall, there is 90 

room for improvement of variance in milk yield as a resilience indicator. Furthermore, 91 

autocorrelation and skewness of daily recorded milk yield may provide additional information 92 

about resilience. 93 

 94 

The aim of this study was to explore the use of variance, autocorrelation and skewness of 95 

deviations in daily milk yield level from a lactation curve as indicators for breeding resilient 96 

cows. We explored 4 methods to fit the lactation curve: moving average, moving median, 97 

quantile regression, and Wilmink curve. The heritabilities of all resilience indicators were 98 

estimated, as well as genetic correlations among the resilience indicators and genetic 99 
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correlations among the curve fitting methods. In addition, genetic correlations between the 100 

resilience indicators and health, production, longevity, fertility, and metabolic traits were 101 

estimated.  102 
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MATERIALS AND METHODS 103 

In this study, we performed a genetic analysis on three potential resilience indicators. The 104 

initial data contained 1,782,373,113 milk yield records on 1,120,550 cows obtained during 105 

single milk visits of automatic milking systems (AMS) and conventional milking systems. 106 

The potential resilience indicators were calculated from these data for 198,754 first parity 107 

Holstein Friesian cows milked by AMS (see section ‘data editing’). The calculation of the 108 

potential resilience indicators was performed in 2 steps: (1) fitting of individual lactation 109 

curves, (2) defining resilience indicators based on deviations from lactation curves. We will 110 

first describe the 2 steps that generated the resilience indicators, followed by the data editing 111 

and the genetic analysis. 112 

 113 

Fitting individual lactation curves 114 

The aim of fitting individual lactation curves for each cow based on daily milk yield records, 115 

was to get the expected milk yield of a cow at each day. Ideally, a fitted lactation curve would 116 

be as close as possible to the curve that a cow would have realized in the absence of 117 

disturbances, because then the deviations from the curve would contain most information 118 

about responses to disturbances. The deviations from such a curve could thus be used to 119 

indicate resilience (see Figure 1 for an example of a fitted lactation curve and the deviations 120 

from that lactation curve). Fitting a lactation curve that a cow would have realized in the 121 

absence of disturbances was difficult, because information about disturbances was lacking 122 

and disturbances may even be cow-specific and unknown. Therefore, different methods were 123 

explored for fitting the individual lactation curves using only the daily milk yield records as 124 

input. The choice of the best curve fitting method is per definition arbitrary. However, the 125 

results of this study will generate insight in which method has most potential and how 126 

sensitive genetic parameters are when changing the curve fitting method. There are two 127 
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generic ways of fitting a trend through a time series: nonparametric trend estimation and 128 

model based estimation (Brockwell and Davis, 2016). Because it was unknown which method 129 

would generate the best results, it was decided to explore both. Four methods were used: two 130 

nonparametric (moving average and moving median), and two model based methods (the 131 

Wilmink lactation curve (Wilmink, 1987) and a quantile polynomial regression method). See 132 

Figure 2 for illustrations of the 4 lactation curve fitting methods. 133 

 134 

Nonparametric trend estimation. The first nonparametric method was a two-sided 135 

moving average filter with a window of 21 days. This means that the expected milk yield on a 136 

certain day is the average of the milk yield of the 10 days before that day, the 10 days after that 137 

day and the day itself. Window sizes different from 21 days were explored as well. However, 138 

based on visual inspection of fitted trends for random cows from the data set it was decided to 139 

focus only on a window of 21 days. Because a moving average is relatively sensitive to drops 140 

in milk yield, it was decided to also fit a moving median filter with a window of 21 days. A 141 

moving median is the same as a moving average, but the expected milk yield is the median, and 142 

not the average, of a series of milk yield records. Both the moving average and the moving 143 

median filter were applied using the rollapply function in the zoo package in R (Zeileis and 144 

Grothendieck, 2005). The advantage of a moving average and moving median is that they are 145 

flexible, because expected yields are only dependent on the data points that are close in time. 146 

However, the risk is that the moving average and moving median are too flexible, which results 147 

in lost information on drops in milk yield in the deviations of the curve.  148 

 149 

 Model building. The first model based method was the Wilmink lactation curve 150 

(Wilmink, 1987):  151 

 152 
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𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑑𝑑𝑡𝑡 =  𝛽𝛽0 +  𝛽𝛽1𝑡𝑡 +  𝛽𝛽2𝑦𝑦−0.05𝑡𝑡 + 𝜀𝜀 , 153 

 154 

where 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑑𝑑𝑡𝑡 is the observed milk yield on day in milk (DIM) 𝑡𝑡, 𝛽𝛽0 is related to the level of 155 

production, 𝛽𝛽1 describes the production decrease after the peak yield, 𝛽𝛽2 describes the increase 156 

in milk yield at the start of the lactation, and 𝜀𝜀 is the error term. The regression coefficients 157 

were estimated for each cow using the lm function in R and they were used to calculate the 158 

expected lactation curves. The advantage of the Wilmink curve is that it is a commonly used 159 

regression method for fitting lactation curves (Schaeffer et al., 2000; CRV, 2018a), and is 160 

therefore easy to understand. However, it might not fit the data for individual cows well enough, 161 

resulting in incomplete removal of the general trend. 162 

 163 

The second model based method was fourth order polynomial quantile regression using a 0.7 164 

quantile: 165 

 166 

𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑑𝑑𝑡𝑡 =  𝛽𝛽0 +  𝛽𝛽1𝑡𝑡 + 𝛽𝛽2𝑡𝑡2 + 𝛽𝛽3𝑡𝑡3 + 𝛽𝛽4𝑡𝑡4 + 𝜀𝜀  167 

 168 

where 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑑𝑑𝑡𝑡 is the observed milk yield on DIM 𝑡𝑡 and 𝜀𝜀 is the error term. Polynomial regression 169 

is commonly used in time series analysis (Brockwell and Davis, 2016). Similarly, most test-day 170 

models used in genetic evaluation use Legendre polynomials with random regression (Van der 171 

Werf et al., 1998; Pool and Meuwissen, 2000; Swalve, 2000; CRV, 2018a). The advantage of 172 

fourth order polynomial regression is that it is more flexible than a Wilmink curve, partly 173 

because of additional parameters, but the risk of being too flexible is smaller than for the trend 174 

estimation methods. Quantile regression was used instead of classical linear regression, to make 175 

the resulting curves less sensitive to drops in milk yield and thus closer to the potential curves 176 

in absence of disturbances. Whereas classical regression models estimate the conditional mean 177 
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milk yield given certain values of DIM, quantile regression models estimate the conditional 178 

median or other quantile (Koenker, 2005). By using a quantile higher than 0.5, low milk yield 179 

values have less influence on the predicted milk yield curve than high milk yield values. In 180 

other words, drops in milk yield have less influence on the predicted milk yield curve when 181 

using quantile regression with a quantile >0.5 than when using classical linear regression, and 182 

the negative deviations from the quantile regression curve are larger. As a result, a quantile 183 

regression curve using a quantile >0.5 was expected to better match the potential milk yield in 184 

absence of disturbances than classical linear regression and thus to generate deviations that 185 

contain more information on resilience. Different quantiles higher than 0.5 were explored, but 186 

upon visual inspection of fitted curves for random cows from the data set it was decided to 187 

focus on only the 0.7 quantile. The regression coefficients of the fourth order polynomial 188 

quantile regression model using the 0.7 quantile were estimated for each cow using the quantreg 189 

package (Koenker, 2018) and the poly function in R. The estimated regression coefficients for 190 

each cow were then used to calculate individual expected lactation curves. 191 

 192 

Defining resilience indicators based on deviations from lactation curves 193 

The deviations from the fitted lactation curves (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑑𝑑 − 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑑𝑑� ) were expected to contain 194 

information about responses to environmental disturbances, and they were therefore used to 195 

calculate 3 potential resilience indicators: the variance, the lag-1 autocorrelation, and the 196 

skewness of the deviations. A low variance of the deviations was expected to indicate a good 197 

resilience, because resilient cows have a smaller range of deviations from their lactation curve 198 

than less resilient cows. A low lag-1 autocorrelation of the deviations was expected to indicate 199 

a good resilience, because resilient cows have less and shorter stretches of negative deviations 200 

than less resilient cows. A close to zero skewness of the deviations was expected to indicate a 201 

good resilience, because resilient cows have as many positive as negative deviations, whereas 202 
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less resilient cows have more negative than positive deviations (Scheffer, 2009; Scheffer et al., 203 

2018; Berghof et al., 2019). Because the lactation curve models had a poor fit in the beginning 204 

and end of lactation, and because the moving average and moving median were based on less 205 

than 21 days in the beginning and end of lactation, the first and last 10 DIMs of each cow were 206 

excluded from the calculation of the resilience indicators.  207 

 208 

The variance of the deviations was transformed with a natural logarithm, which made the trait 209 

normally distributed upon visual inspection. The transformation made the resulting genetic 210 

variance directly comparable to previous work on heritable variance in residual variance, that 211 

used an exponential model on the variance (SanCristobal-Gaudy et al., 1998; Hill and Mulder, 212 

2010; Sell-Kubiak et al., 2015). From now on, log-transformed variance of deviations from a 213 

lactation curve will be referred to as LnVar, lag-1 autocorrelation will be referred to as rauto, and 214 

skewness will be referred to as Skew. Because each resilience indicator was calculated for 4 215 

curve fitting methods, each cow had in total 12 potential resilience indicators. In addition to 216 

LnVar, rauto, and Skew, the average daily milk yield and the natural log of the variance of the 217 

raw daily milk yield records (RawVar) were calculated for each cow. RawVar was used to 218 

compare our results to Elgersma et al. (2018) and the average daily milk yield was used to adjust 219 

genetic correlations between the resilience indicators and the health, longevity, fertility, and 220 

metabolic traits for milk yield level (see section “Genetic analysis”). 221 

 222 

Data editing 223 

The initial dataset was provided by Cooperation CRV and CRV BV (Arnhem, The 224 

Netherlands), and contained milk yield records obtained during single milk visits of AMS and 225 

conventional milking systems, resulting in multiple records per day for each cow. The data 226 

consisted of 1,782,373,113 milk yield records on 1,120,550 cows, recorded between 1998 and 227 
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2018. However, the resilience indicators were calculated only for first parity Holstein Friesian 228 

cows that were milked by AMS, that were herd-book registered, that calved after 640 days of 229 

age and before the 1st of June 2017, and that had not more than 5% missing daily milk yield 230 

records. Moreover, the resilience indicators were only based on the first 350 DIM. Daily milk 231 

yield records were obtained from the records on single AMS visits by summing the milk yield 232 

of the single AMS visits per day for each cow. However, the milk yield of the first AMS visit 233 

of each day was partly assigned to the previous day depending on the milk produced per minute 234 

since the previous AMS visit and the time between the previous AMS visit and midnight. After 235 

calculating the resilience indicators, resilience indicator records of individual cows were set to 236 

missing if they deviated more than 4 standard deviations from the mean of that resilience 237 

indicator. To adjust for herd, year of calving, and season of calving, herd-year-season (HYS) 238 

classes were made with 4 seasons (January-March, April-June, July-September, October-239 

December). HYS classes with less than 5 cows were removed. Finally, 198,754 cows were used 240 

for the genetic analysis of the resilience indicators. Data editing was performed using the AWK 241 

programming language (Aho et al., 1988) and R (R v 3.2.2; R Project for Statistical Computing, 242 

Vienna, Austria). All data editing steps, with information on the number of remaining records 243 

and number of cows after each editing step, are shown in Table 1. 244 

 245 

Genetic analysis 246 

For all resilience indicators and average daily milk yield, heritabilities and EBV were estimated 247 

with univariate analyses, and genetic correlations among traits were estimated with bivariate 248 

analyses using ASReml 4.1 (Gilmour et al., 2015). The pedigree included 5 generations of 249 

ancestors.  250 

 251 



12 
 

Univariate Analysis. Heritabilities and EBV were estimated using the following 252 

univariate linear mixed animal model: 253 

 254 

𝐲𝐲 = 𝐗𝐗𝐗𝐗 + 𝐙𝐙𝐙𝐙 + 𝐞𝐞 , 255 

 256 

where 𝐲𝐲 was a vector with observations of a certain resilience indicator; 𝐗𝐗 was a vector 257 

containing fixed effects, which were HYS, age at first calving in months, and lactation length 258 

(remaining number of days after removing the first and last 10 DIM) in 7 classes, each 259 

containing a range of 40 days (50-90 days, 91-130 days etc.); 𝐙𝐙 was a vector containing the 260 

additive genetic effects, 𝐙𝐙~N(𝟎𝟎,𝐀𝐀𝜎𝜎𝑎𝑎2), where 𝐀𝐀 is the additive genetic relationship matrix and 261 

𝜎𝜎𝑎𝑎2 is the additive genetic variance; and 𝐞𝐞 was a vector containing the residuals, 𝐞𝐞~N(𝟎𝟎, 𝐈𝐈𝜎𝜎𝑒𝑒2), 262 

where 𝐈𝐈 is the identity matrix and 𝜎𝜎𝑒𝑒2 is the residual variance. 𝐗𝐗 and 𝐙𝐙 were incidence matrices 263 

linking the records in 𝐲𝐲 to the fixed effects and additive genetic effects, respectively. For the 264 

LnVar traits and RawVar a genetic coefficient of variation (GCV) was calculated as 𝜎𝜎𝑎𝑎, because 265 

using the ln-transformation of the variance assumes an exponential model and GCV in the 266 

exponential model for variance is equal to 𝜎𝜎𝑎𝑎 (see Mulder et al., 2007). For the other resilience 267 

indicators a GCV was calculated as 𝜎𝜎𝑎𝑎
𝜇𝜇

. 268 

 269 

Bivariate Analysis. Genetic correlations between the different resilience indicators, 270 

between the same resilience indicators based on different lactation curve fitting methods, and  271 

between the resilience indicators and average daily milk yield, were estimated using the 272 

following bivariate mixed animal model: 273 

 274 

�
𝐲𝐲𝟏𝟏
𝐲𝐲𝟐𝟐� = �𝐗𝐗𝟏𝟏 𝟎𝟎

𝟎𝟎 𝐗𝐗𝟐𝟐
� �𝐗𝐗𝟏𝟏𝐗𝐗𝟐𝟐

� + �𝐙𝐙𝟏𝟏 𝟎𝟎
𝟎𝟎 𝐙𝐙𝟐𝟐

� �
𝐙𝐙𝟏𝟏
𝐙𝐙𝟐𝟐� +  �

𝐞𝐞𝟏𝟏
𝐞𝐞𝟐𝟐� , 275 
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 276 

where 𝐲𝐲𝑖𝑖 was a vector with observations on trait 𝑦𝑦; 𝐗𝐗𝑖𝑖 was a vector with the fixed effects for 277 

trait 𝑦𝑦, which were the same as in the univariate analysis; 𝐙𝐙𝑖𝑖 was a vector with the additive 278 

genetic effects for trait 𝑦𝑦; and 𝐞𝐞𝑖𝑖 was a vector with the residuals for trait 𝑦𝑦. 𝐗𝐗𝑖𝑖 and 𝐙𝐙𝑖𝑖 were 279 

incidence matrices linking the records in 𝐲𝐲𝑖𝑖 to the fixed effects and additive genetic effects, 280 

respectively. The additive genetic effects for all traits were assumed normally distributed with 281 

a mean of zero, a genetic variance of 𝜎𝜎𝑎𝑎𝑖𝑖
2  for trait 𝑦𝑦 and a genetic covariance between traits of 282 

𝜎𝜎𝑎𝑎1𝑎𝑎2: �
𝐙𝐙𝟏𝟏
𝐙𝐙𝟐𝟐�~N��𝟎𝟎𝟎𝟎� ,𝐀𝐀⨂�

𝜎𝜎𝑎𝑎1
2 𝜎𝜎𝑎𝑎1𝑎𝑎2

𝜎𝜎𝑎𝑎1𝑎𝑎2 𝜎𝜎𝑎𝑎2
2 ��. The residuals were assumed normally distributed 283 

as well, with a mean of zero, a residual variance of 𝜎𝜎𝑒𝑒1
2 for trait 𝑦𝑦, and a residual covariance 284 

between traits of 𝜎𝜎𝑒𝑒1𝑒𝑒2: �
𝐞𝐞𝟏𝟏
𝐞𝐞𝟐𝟐�~N��𝟎𝟎𝟎𝟎� , 𝐈𝐈⨂�

𝜎𝜎𝑒𝑒1
2 𝜎𝜎𝑒𝑒1𝑒𝑒2

𝜎𝜎𝑒𝑒1𝑒𝑒2 𝜎𝜎𝑒𝑒2
2 ��. 285 

 286 

Because of long computing times for the bivariate analyses, the dataset was randomly split into 287 

5 subsets based on herd. The bivariate analyses were then performed on the 5 subsets and 288 

weighted averages of the parameters were calculated. See Appendix for an explanation of the 289 

weighting of the parameters resulting from the bivariate analyses on the subsets. 290 

 291 

Genetic Correlations with Health, Longevity, Fertility, Metabolic, and Production 292 

Traits. Genetic correlations between the resilience indicators and several health, longevity, 293 

fertility, metabolic, and production traits were estimated using the Multiple trait Across Country 294 

Evaluation (MACE) procedure: the MACE procedure is used by Interbull (Interbull, 2017) to 295 

evaluate bulls in different countries for the same trait, but can also be used to estimate genetic 296 

correlations between de-regressed sire EBV of different traits (Schaeffer, 1994; Klei, 1998; 297 

Larroque and Ducrocq, 1999). De-regressed EBV are used to make the variance of the EBV 298 
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independent from their reliabilities and to take out the contribution by the parents (Larroque 299 

and Ducrocq, 1999). The MACE procedure was used instead of bivariate analysis because it 300 

allows for inclusion of all available records on health, longevity, fertility, metabolic, and 301 

production traits in the national population, without the need for the actual data and models that 302 

accompany these traits. For the resilience indicators, de-regressed sire EBV resulting from the 303 

univariate analyses were used as input for the MACE procedure. For the health, longevity, 304 

fertility, metabolic, and production traits, de-regressed sire EBV from Cooperation CRV and 305 

CRV BV from the official run of December 2018 were used as input. All available health 306 

indexes and EBV, which were the udder health index (CRV, 2017b), the hoof health index 307 

(CRV, 2015), and ketosis resistance in first lactation (Vosman et al., 2015), were included 308 

because resilient cows are expected to be healthier than less resilient cows. For these three traits, 309 

a higher value means a better health or less ketosis. Productive longevity (CRV, 2018c) and the 310 

fertility index (CRV, 2017a), were also included because resilient cows are expected to live 311 

longer and to be more fertile than less resilient cows. For these two traits, a higher value means 312 

a better fertility or longevity. In addition, the metabolic traits BCS (CRV, 2018b) and dry matter 313 

intake (CRV, 2018e) were included because of the expected relation between resilience and the 314 

amount of resources a cow has available to respond to disturbances. For these two traits, a 315 

higher value means a higher BCS or a higher dry matter intake. The production trait fat-protein 316 

persistency in first lactation was included to investigate the differences in effect of persistency 317 

on RawVar and LnVar. The sire EBV for fat-protein persistency were based on daily EBV for 318 

kilograms of fat and protein resulting from a random regression model (CRV, 2018a). For this 319 

trait, a higher value means a flatter lactation curve. Finally, the production trait milk yield 320 

(CRV, 2018a) was included to compare the average daily milk yield calculated in the current 321 

AMS dataset to the official breeding value for milk yield based on the total Dutch-Flemish cow 322 

population. 323 
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 324 

Genetic Correlations Adjusted for Milk Yield. Considerable genetic correlations 325 

between some of the resilience indicators and average daily milk yield were observed. 326 

Therefore, partial genetic correlations between the resilience indicators and the health, 327 

longevity, fertility, and metabolic traits, adjusted for average daily milk yield (𝑟𝑟𝑥𝑥𝑥𝑥,𝑧𝑧), were 328 

calculated as: 329 

 330 

𝑟𝑟𝑥𝑥𝑥𝑥,𝑧𝑧 = 𝑟𝑟𝑥𝑥𝑥𝑥−𝑟𝑟𝑥𝑥𝑥𝑥𝑟𝑟𝑥𝑥𝑥𝑥

�1−𝑟𝑟𝑥𝑥𝑥𝑥2 �1−𝑟𝑟𝑥𝑥𝑥𝑥2
, 331 

 332 

where 𝑥𝑥 is the resilience indicator, 𝑦𝑦 is the existing trait, and 𝑧𝑧 is average daily milk yield. The 333 

correlations between the resilience indicators and average daily milk yield were genetic 334 

correlations obtained from the bivariate analyses. The other correlations were genetic 335 

correlations estimated using the MACE procedure.  336 
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RESULTS 337 

Comparison of Resilience Indicators 338 

The resilience indicators LnVar and RawVar had the highest heritability (0.20 to 0.24) and 339 

genetic coefficient of variation (0.23 to 0.26), whereas Skew had the lowest heritability (0.01 340 

to 0.02) and genetic coefficient of variation (0.05 to 0.10; Table 3). Although RawVar had a 341 

comparable heritability to LnVar, they were genetically different traits, because the genetic 342 

correlations between RawVar and LnVar based on all curve fitting methods were 0.45 and 343 

lower. In addition to LnVar and RawVar, also LnVar, rauto, and Skew genetically differed from 344 

each other. The genetic correlations between LnVar and rauto ranged from -0.12 to 0.05, the 345 

genetic correlations between LnVar and Skew ranged from 0.06 to 0.65 and the genetic 346 

correlations between rauto and Skew ranged from -0.35 to 0.37 (Table 4). In summary, the 347 

genetic correlations show that RawVar, LnVar, rauto, and Skew are genetically different traits. 348 

 349 

Comparison of Lactation Curve Fitting Methods 350 

The four lactation curve fitting methods resulted in different means of the resilience indicators 351 

(Table 2). We observed the most extreme difference between means for Skew based on a 352 

moving median and a Wilmink curve, where the deviations from a Wilmink curve were less 353 

skewed than the deviations from a moving median curve. In addition to the mean, also the 354 

genetic variance and heritability differed between the curve fitting methods, especially for Skew 355 

(Table 3). Skew based on a Wilmink curve genetically differed from the other curve fitting 356 

methods, with genetic correlations ranging from 0.31 to 0.60 (Table 5). The other curve fitting 357 

methods resulted in Skew traits that were genetically more similar, with genetic correlations 358 

ranging from 0.81 to 0.95. In comparison to Skew, LnVar and rauto had stronger genetic 359 

correlations between the curve fitting methods (>0.89). In summary, for LnVar and rauto different 360 
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curve fitting methods resulted in genetically similar traits, whereas for Skew the different curve 361 

fitting methods resulted in genetically less similar traits. 362 

 363 

Genetic Correlations with Health, Longevity, Fertility, Metabolic, and Production Traits 364 

LnVar and RawVar were the resilience indicators with the strongest genetic correlations with 365 

the health, longevity, fertility, metabolic, and production traits (Table 6). Both a lower LnVar 366 

and a lower RawVar were genetically related to a better udder health, a better hoof health, a 367 

better longevity, a better fertility, a higher BCS, less ketosis and a lower milk yield level. 368 

However, LnVar and RawVar differed in the sign of their genetic correlations with persistency 369 

and dry matter intake. LnVar had a positive genetic correlation of only 0.08 to 0.14 with 370 

persistency, whereas RawVar had a negative genetic correlation with persistency of -0.51. 371 

LnVar had a positive genetic correlation of 0.24 to 0.29 with dry matter intake, whereas RawVar 372 

had a negative genetic correlation with dry matter intake of only -0.04. If we now turn to rauto, 373 

we see that its genetic correlations with the health, longevity, fertility, metabolic, and 374 

production traits were generally in the same direction as for LnVar: a lower rauto was genetically 375 

related to a better health, fertility, and longevity, a higher dry matter intake and BCS, and a 376 

lower milk yield level. However, rauto had weaker genetic correlations (-0.21 to 0.20) with the 377 

health, longevity, fertility, metabolic, and production traits than LnVar. For Skew, the genetic 378 

correlations with the health, longevity, fertility, and metabolic traits were in general negligible 379 

or weak (-0.25 to 0.17), where a higher Skew was weakly genetically associated to more ketosis, 380 

a lower BCS, and a lower longevity (Table 6). The genetic correlations between Skew and 381 

average daily milk yield were moderate, and negative for Skew based on a Wilmink curve (-382 

0.40) and positive for Skew based on the other curve fitting methods (0.19 to 0.30). 383 

 384 
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Average daily milk yield had a strong genetic correlation (0.95) with official milk yield 385 

produced in 305 days in first lactation (Table 6). This strong genetic correlation indicates that 386 

the studied dataset is a good representation of the total Dutch-Flemish population. The genetic 387 

correlations between LnVar and average daily milk yield were positive and strong (0.75 to 388 

0.79), and for both LnVar and average daily milk yield the genetic correlations with the health 389 

traits and fertility, BCS, dry matter intake, and ketosis resistance were in the same direction. 390 

Interestingly though, LnVar and average daily milk yield had an opposite but weak genetic 391 

correlation with productive longevity.  392 

 393 

To disentangle the effect of milk yield level and variance in milk yield on the genetic 394 

correlations between LnVar and the health, longevity, fertility, and metabolic traits, the original 395 

genetic correlations were converted to partial genetic correlations, adjusted for milk yield level. 396 

Most partial genetic correlations between LnVar and the health, longevity, fertility, and 397 

metabolic traits were weaker (Table 7) than the original genetic correlations (Table 6). 398 

However, the partial genetic correlations between LnVar and longevity were stronger (-0.28 to 399 

-0.34) than the original genetic correlations. Moreover, the partial genetic correlations between 400 

LnVar and dry matter intake were negative (-0.53 to -0.66), whereas the original genetic 401 

correlations were positive: at an equal milk yield across cows, a less variable milk was 402 

genetically related to a higher dry matter intake. Although rauto and Skew had weaker genetic 403 

correlations with average daily milk yield than LnVar (Table 6), their partial genetic 404 

correlations with dry matter intake were stronger and in most cases had a different sign than 405 

their original genetic correlations with dry matter intake (Table 7). In summary, of the three 406 

resilience indicators, LnVar had the strongest genetic correlations with the health, longevity, 407 

fertility, and metabolic traits, where at an equal level of milk yield across cows, a lower LnVar 408 
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was genetically related to a better health, longevity, and fertility, and a higher BCS and dry 409 

matter intake.  410 
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DISCUSSION 411 

We explored the use of LnVar, rauto, and Skew of deviations in daily milk yield from different 412 

types of lactation curves as indicators of resilience that can be used for breeding. LnVar had the 413 

highest heritability and the strongest genetic correlations with health, longevity, fertility, 414 

metabolic, and production traits. In addition, the three potential resilience indicators were 415 

genetically different from each other, whereas the different lactation curve fitting methods 416 

resulted in genetically similar traits for LnVar and rauto, and to a lesser extent Skew.  417 

 418 

As far as we know, we are the first to perform a genetic analysis on autocorrelation and 419 

skewness of a production trait in dairy cattle. However, a similar analysis has been performed 420 

on deviations in body weight in layer chickens (Berghof et al., submitted). Although the 421 

heritability of autocorrelation based on body weight deviations in chickens was similar to the 422 

heritability of autocorrelation based on milk yield deviations in cattle, the rest of the results 423 

differed between the two studies. In chickens, the heritability of skewness was ~10 times higher 424 

and the heritability of variance was ~2 times lower than in cattle. In addition, the genetic 425 

correlations among the three resilience indicators differed largely between the two species. The 426 

main reason for the differences between the traits in the two studies is likely that we used 427 

deviations from individually fitted lactation curves, whereas deviations from cohort averages 428 

were used in the chicken study. Therefore, the interpretation of autocorrelation and skewness 429 

differs between the studies. In addition, in this study we had many more records available per 430 

animal than in the chicken study. 431 

 432 

Whereas autocorrelation and skewness of milk yield have not been studied genetically before, 433 

the variance has. Compared to previous studies on variance in milk yield, our study provided 434 

two novelties. The first novelty was that we analyzed the variance in deviations from a lactation 435 



21 
 

curve instead of the variance of raw milk yield values (Elgersma et al., 2018). As expected, 436 

fitting a lactation curve removed the effect of persistency on variance: LnVar had only a weak 437 

and positive genetic correlation with persistency (0.08 to 0.14), whereas RawVar had a 438 

considerable negative genetic correlation with persistency (-0.51). In addition, the genetic 439 

correlation between RawVar and LnVar was only moderate. Because of the removed effect of 440 

persistency, LnVar has improved value as a resilience indicator compared to variance in raw 441 

milk yield as studied by Elgersma et al. (2018).  The second novelty of this study compared to 442 

most previous studies (Rönnegård et al., 2013; Vandenplas et al., 2013; Ehsaninia et al., 2019), 443 

but in line with Elgersma et al. (2018), was that we used daily recorded milk yield instead of 444 

test-day records to calculate the variance of deviations in milk yield. As expected, the higher 445 

number of records per cow used in our study than in the previous studies resulted in a lower 446 

environmental variance and a higher heritability of LnVar (Berghof et al., 2019). Rönnegård et 447 

al. (2013), Vandenplas et al. (2013), and Ehsaninia et al. (2019) analyzed their milk yield 448 

records with a double hierarchical generalized linear model (DHGLM), which effectively 449 

means they did a genetic analysis immediately on test day milk yield records. This genetic 450 

analysis gave them genetic parameters for the mean milk yield and the variance of the deviations 451 

from an estimated lactation curve simultaneously. On the contrary, we used a two-step approach 452 

and first estimated individual lactation curves and then summarized the deviations into one 453 

resilience indicator per cow, on which we performed a genetic analysis. In theory, the DHGLM 454 

could be applied to our daily milk yield records as well, but is expected to yield similar EBV 455 

and genetic variance in residual variance as our LnVar (Berghof et al., submitted), whereas it 456 

is computationally much more challenging to apply and more difficult to understand. 457 

 458 

Our research focused on fluctuations in milk yield level for defining resilience indicators. 459 

However, fluctuations in milk components may also be related to resilience. For example, 460 
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fluctuations in fat content may indicate resilience to ketosis or rumen acidosis, and fluctuations 461 

in somatic cell score may indicate resilience to mastitis (De Haas et al., 2008; Urioste et al., 462 

2012). Rönnegård et al. (2013) and Vandenplas et al. (2013) showed genetic variation in 463 

variability of somatic cell count measured on test-days, and Vandenplas et al. (2013) also 464 

showed genetic variation in variability of different types of fatty acids. Furthermore, Ehsaninia 465 

et al. (2019) showed genetic variation in variability of fat and protein content measured on test-466 

days. It would be interesting to also analyze variability of these traits using daily records and to 467 

investigate their genetic correlations with health traits. However, until now daily measurements 468 

of milk components are not available on a large scale. 469 

 470 

In our study, as well as in Rönnegård et al. (2013), Vandenplas et al. (2013), Elgersma et al. 471 

(2018), and Ehsaninia et al. (2019), the variance of (deviations in) milk yield was studied as a 472 

resilience indicator. Alternative measures could be the mean of absolute deviations or using the 473 

variance of only negative deviations. The mean of absolute deviations may give similar 474 

information as the variance, but a variance gives more weight to large deviations than to small 475 

deviations, because a variance is essentially the mean of squared deviations. Because small 476 

deviations can be just due to noise, we expect that the variance is more powerful as a resilience 477 

indicator than the mean of absolute deviations. The use of only negative deviations to calculate 478 

the variance may seem better than using also positive deviations because disturbances cause 479 

drops in milk yield and not peaks. However, work on daily feed intake in turkeys has shown 480 

that variance based on only negative deviations had a considerably smaller heritability than the 481 

variance based on all deviations, while the genetic correlation between them was 0.98 (H. A. 482 

Mulder, unpublished data). Thus, we expect the variance of all deviations to be more 483 

informative about resilience than the mean of absolute deviations or the variance of only 484 

negative deviations. 485 
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 486 

All our resilience indicators were based on data from complete lactations up to DIM 350. 487 

However, resilience may differ between lactation stages because of differences in disease 488 

susceptibility (Ingvartsen et al., 2003). Therefore, it would be interesting to test if resilience 489 

indicators based on data from different lactation stages are genetically different from each other 490 

and if they differ in their genetic correlations with health, longevity, fertility, metabolic, and 491 

production traits.         492 

 493 

The Suitability of Traits Used as Resilience Indicators 494 

The suitability of a resilience indicator depends on its heritability and its genetic correlations 495 

with health, longevity, fertility, metabolic, and production traits. A high heritability indicates 496 

that family members are more alike than other animals, and indicates therefore that the indicator 497 

is not simply random noise. Furthermore, resilience is expected to be genetically correlated to 498 

a better health, longevity, and fertility (Elgersma et al., 2018; Berghof et al., 2019), and a higher 499 

dry matter intake, a higher BCS, and a lower milk yield level. The expected correlations with 500 

dry matter intake, BCS, and milk yield level can be explained by resource allocation theory. If 501 

the demand for resources for milk yield is high, less resources are left for coping with 502 

disturbances than when demand for resources for milk yield is low. Therefore, a high milk yield 503 

can make a cow less resilient. Alternatively, a high dry matter intake or a high BCS can cause 504 

a cow to have enough resources to cope with disturbances, even at a high milk yield, which 505 

makes her more resilient (Rauw, 2008). If a lower LnVar and rauto indicate a better resilience, 506 

they are expected to have negative genetic correlations with udder health, hoof health, 507 

longevity, fertility, ketosis resistance, dry matter intake, and BCS, and positive correlations 508 

with milk yield level. If a higher (more positive) Skew indicates a better resilience, it is expected 509 

to have positive genetic correlations with udder health, hoof health, longevity, fertility, ketosis 510 
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resistance, dry matter intake, and BCS, and negative correlations with milk yield level. In the 511 

following sections we will discuss which of the resilience indicators best behaves according to 512 

these expectations. 513 

 514 

Variance. In our results, LnVar based on all curve fitting methods had a considerable 515 

heritability. In addition, a lower LnVar was genetically correlated with a better health, 516 

longevity, and fertility, and to a higher BCS, which was as expected. These results support that 517 

LnVar indicates resilience. Most of the genetic correlations with the health, longevity, fertility, 518 

and metabolic traits were only moderate, but this is favorable: LnVar should indicate general 519 

resilience, and not resilience to specific diseases (Putz et al., 2019). Other studies that 520 

investigated resilience indicators also found moderate genetic correlations with health and 521 

functional traits (Elgersma et al., 2018; Putz et al., 2019). More importantly, all genetic 522 

correlations consistently showed that a low LnVar was related to a good health and 523 

functionality.  524 

 525 

Although the health, longevity, fertility, and metabolic traits did not have strong genetic 526 

correlations with LnVar, the average daily milk yield did have strong positive correlations. 527 

There are two possible explanations for these strong genetic correlations. The first explanation 528 

is that cows with a higher milk yield level have a worse resilience than cows with a lower milk 529 

yield level. High producing cows are expected to have fewer resources available to respond to 530 

disturbances than low producing cows due the high resource demand for their milk yield, and 531 

thus have a larger tendency to take resources away from production (Rauw, 2008; Berghof et 532 

al., 2019). The second explanation for the strong genetic correlation between LnVar and 533 

average daily milk yield is a scale effect (Falconer and Mackay, 1996; Berghof et al., 2019). A 534 

scale effect means that the same disturbance results in a larger drop in milk yield in high 535 
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producing cows than in low producing cows, whereas the size of the drop relative to the 536 

production level is equal for cows with different production levels.  537 

 538 

Because of the strong positive genetic correlations between LnVar and average daily milk yield 539 

and the generally unfavorable genetic correlation between milk yield and functionality, one 540 

could argue that the genetic correlations between LnVar and the health, longevity, fertility, and 541 

metabolic traits were mainly caused by milk yield level and not by variability in milk yield. 542 

However, the partial genetic correlations between LnVar and most functional traits, adjusted 543 

for milk yield, were still considerable and in the expected direction (a low LnVar was related 544 

to good health and functionality). These considerable partial genetic correlations indicate that 545 

LnVar does contain information about health and functionality that is not covered by milk yield 546 

level. Moreover, the partial genetic correlations between LnVar and both dry matter intake and 547 

longevity were closer to our expectations of LnVar as a resilience indicator than the original 548 

genetic correlations. The negative partial genetic correlation between LnVar and longevity was 549 

stronger than the original one, which was closer to our expectation because we expected a lower 550 

LnVar to be related to a higher longevity (resilient cows live longer). The change in strength of 551 

the genetic correlation between LnVar and longevity after adjustment for milk yield level is 552 

caused by the weak genetic correlation between average daily milk yield and longevity: the 553 

genetic correlation between LnVar and longevity was “suppressed” by the weak genetic 554 

correlation between average daily milk yield and longevity. The partial genetic correlation 555 

between LnVar and dry matter intake was quite strong and negative, which means that at an 556 

equal level of milk yield across all cows, cows with a low variance in milk yield tend to have a 557 

higher dry matter intake than cows with a high variance, which probably gives the low variance 558 

cows the resources they need to respond to disturbances. The partial genetic correlation between 559 

LnVar and dry matter intake was opposite from the original positive genetic correlation that 560 
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indicated that a higher LnVar was related to a higher dry matter intake. This difference is caused 561 

by the positive genetic correlation between milk yield level and dry matter intake: cows with a 562 

genetically higher milk yield tend to eat more than less productive cows, but they also have a 563 

higher variance in milk yield. The negative partial genetic correlations between LnVar and dry 564 

matter intake and the negative partial genetic correlations between LnVar and longevity confirm 565 

that LnVar corrected for milk yield is informative about resilience. 566 

 567 

Although most genetic correlations between LnVar and the functional traits became only 568 

slightly weaker after adjusting them for milk yield level, the genetic correlations between LnVar 569 

and hoof health became negligible. Apparently, LnVar does not contain information about hoof 570 

health that is not covered yet by milk yield level. The negligible partial correlation is probably 571 

caused by the inability of the curve fitting methods to capture long-term declines in milk yield 572 

that are typical for lameness (Green et al., 2002). LnVar based on the curve fitting methods 573 

applied in this study is therefore not suitable for long-term disturbances such as claw disorders. 574 

 575 

In summary, LnVar contains information about health and functionality that is not covered by 576 

milk yield level. Therefore, LnVar is a promising resilience indicator and seems a good 577 

candidate to include in breeding goals. The economic value of resilience is already partly 578 

accounted for in breeding goals by health traits. However, resilience has an additional economic 579 

value, because resilient cows require less time from farmers for checking and monitoring than 580 

less resilient cows. In addition, resilience may account for the costs of diseases that are not yet 581 

included in the breeding goal (Berghof et al., 2019), such as ketosis and rumen acidosis in the 582 

Netherlands (CRV, 2018d). Additional research is needed to determine the correct economic 583 

value of LnVar in the breeding goal. Alternatively, a desired gains approach could be used 584 
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(Brascamp, 1984). Such an approach should aim for a decrease in LnVar while simultaneously 585 

increasing milk yield level, health, longevity, and fertility, and decreasing dry matter intake. 586 

 587 

Autocorrelation. The heritability of rauto was not high, but was still considerable, which 588 

suggests that rauto contains information and is not just random noise. We expected that the 589 

information that rauto contained would be mostly about the recovery aspect of resilience 590 

(Berghof et al., 2019). A higher rauto was expected to indicate longer stretches of negative (or 591 

positive) deviations and thus a slower recovery. Because the EBV for the health traits are more 592 

informative about resistance to diseases than recovery from diseases, the genetic correlations 593 

between rauto and the disease traits may be of limited value for validating rauto as an indicator of 594 

recovery time. Indeed, the genetic correlations between rauto and udder health and hoof health 595 

were weak and negligible, respectively. Nevertheless, they were in the expected direction, 596 

where a lower rauto indicated a better health. The association between rauto and udder health 597 

could be caused by the positive genetic association between mastitis resistance and recovery 598 

rate (Welderufael et al., 2018). Based on this observation one may expect a positive genetic 599 

correlation between rauto and LnVar, but we found a weak and negative genetic correlation. In 600 

summary, we cannot conclude from our results whether rauto is informative about recovery time, 601 

and more research is needed. If rauto turns out to contain information about recovery time that 602 

LnVar lacks, the two traits could be combined in a resilience index. However, as a single 603 

indicator of overall resilience, rauto is less suitable than LnVar.  604 

 605 

Skewness. Skew contained less genetic variation than LnVar and rauto, indicated by the 606 

low GCV, and more noise, indicated by the low heritability. In addition, Skew had weak or 607 

unexpected genetic correlations with both LnVar and the health, longevity, fertility, and 608 

metabolic traits. For instance, a higher (closer to 0) Skew was expected to indicate a better 609 
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resilience, but was weakly genetically related to a shorter longevity, a lower BCS, more ketosis, 610 

and a higher LnVar. Therefore, Skew is not considered a good resilience indicator. The reason 611 

that Skew was unable to reflect resilience could be that this trait was too sensitive to incorrect 612 

milk yield records: only one outlier could have a large effect on Skew. We were not able to 613 

remove all outliers from the data, because if we would be too strict, we would also remove 614 

extreme records that were informative about resilience. Because of the sensitivity to outliers, 615 

Skew is not suitable as a resilience indicator using commercial data. 616 

 617 

Which curve fitting method is best? 618 

Because of its heritability and genetic correlations with health, longevity, fertility, metabolic, 619 

and production traits, LnVar is the most promising resilience indicator. However, we should 620 

also decide which curve fitting method generates the best LnVar. All 4 curve fitting methods 621 

resulted in genetically similar LnVar traits (Table 5), which indicates that for LnVar it is not 622 

important which curve fitting method is used. However, small differences were observed in the 623 

genetic parameters. Moving average and moving median resulted in the highest heritability, 624 

whereas polynomial quantile regression generated the strongest genetic correlations with the 625 

health, longevity, fertility, and metabolic traits. To decide which method is best, we can 626 

calculate the indirect response in a health trait, such as udder health, that results from selection 627 

on reduced LnVar based on the 4 curve fitting methods. If we consider genomic selection using 628 

20,000 cows in the reference population and we assume that the number of independent 629 

chromosomal segments is 1,200, then the accuracy of a genomic EBV (Daetwyler et al., 2010) 630 

for LnVar would be ~0.90 based on moving average and moving median, and ~0.88 based on 631 

polynomial quantile regression and a Wilmink curve. Note that this comparison is not affected 632 

by the assumption on the number of independent chromosomal segments; getting an appropriate 633 

value is an unresolved scientific issue (Brard and Ricard, 2014). Assuming the selection 634 
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intensity to be 1, the genetic improvement in udder health would be 0.24, 0.23, 0.28 and 0.25 635 

genetic standard deviations when selection is on LnVar based on moving average, moving 636 

median, polynomial quantile regression, and Wilmink curve, respectively. This shows that 637 

polynomial quantile regression would lead to the highest genetic improvement in udder health 638 

if selection is on LnVar. The same was observed for hoof health, ketosis, longevity, and fertility. 639 

Therefore, polynomial quantile regression is considered the best curve fitting method among 640 

the methods studied here.  641 
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CONCLUSION 642 

All potential resilience indicators explored in this study were heritable, although the 643 

heritabilities ranged from low to moderate. LnVar had the largest heritability and the strongest 644 

genetic correlations with health, longevity, fertility, and metabolic traits, in the expected 645 

direction. Therefore, it has most potential as a resilience indicator. The genetic correlations of 646 

rauto with the health, longevity, fertility, and metabolic traits were weak, but more research is 647 

needed to investigate whether rauto could indicate recovery time. Skew had a negligible 648 

heritability and had unexpected genetic correlations with the health, longevity, fertility, and 649 

metabolic traits. Skew is thus not considered a good resilience indicator. The lactation curve 650 

fitting methods on which LnVar was based resulted in genetically similar traits, but selection 651 

on LnVar based on quantile regression would consistently result in the largest correlated 652 

responses in health, longevity, and fertility traits. Therefore, this curve fitting method is 653 

recommended. This research is an important stepping stone to further explore the use of log-654 

transformed variance of deviations in milk yield as an indicator that can be used to breed 655 

resilient cows. 656 
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APPENDIX 813 

 814 

Bivariate analyses using subsets 815 

Because of the long computing time, genetic correlations between the resilience indicators were 816 

estimated on subsets of the complete data. Weighted averages were subsequently estimated, 817 

which are presented in this paper. In this appendix we provide additional information about the 818 

aggregation of the genetic correlations estimated on subsets of the data. 819 

 820 

The complete data set was randomly split into 5 subsets based on herd. On each subset, genetic 821 

correlations between resilience indicators were estimated. Weighted averages of the genetic 822 

correlations (�̅�𝑥) were estimated as: 823 

 824 

�̅�𝑥 = ∑ 𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖5
𝑖𝑖=1
∑ 𝑤𝑤𝑖𝑖
5
𝑖𝑖=1

 , 825 

 826 

where 𝑤𝑤𝑖𝑖 was the number of animals in subset 𝑦𝑦 and 𝑥𝑥𝑖𝑖 was the estimated genetic correlation of 827 

subset 𝑦𝑦. Weighted standard deviations of the genetic correlations (𝑠𝑠) were estimated as: 828 

 829 

𝑠𝑠 = �
∑ 𝑤𝑤𝑖𝑖(𝑥𝑥𝑖𝑖−�̅�𝑥)25
𝑖𝑖=1
4∑ 𝑤𝑤𝑖𝑖

5
𝑖𝑖=1
5

. 830 

 831 

To calculate the standard error of the weighted average genetic correlations, the weighted 832 

standard deviations were divided by the square root of 5. In addition to the weighted genetic 833 

correlations, also weighted residual and phenotypic correlations were calculated, which are 834 

shown in Table A1.  835 
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TABLES 836 

Table 1. Data editing steps and the number of records, the number of missing records, and the 837 

number of cows present after each editing step 838 

Editing step Number of 

records 

Number of 

missing 

records 

Number of 

cows 

Original dataset 1,782,373,113 0 1,120,550 

Select cows with parity 1 537,289,288 0 774,241 

Select cows milked by AMS 450,627,626 0 588,541 

Select cows that are registered and at 

least 87.5% Holstein Friesian 

354,900,725 0 457,607 

Remove records with 0 milk yield 354,899,345 0 457,607 

Remove cows that moved between herds 351,722,320 0 453,535 

Remove duplicate records 345,144,971 0 453,535 

Calculate daily milk yield 128,155,982 14,171,909 453,251 

Remove records at more than 350 days in 

milk 

116,450,351 13,038,628 453,251 

Remove cows with less than 20 records1 116,388,475 12,670,122 446,158 

Remove cows that calved before 640 

days of age 

115,913,747 12,608,713 444,281 

Set outliers to missing based on Wilmink 

curve (CRV, 2018a) 

115,747,841 12,774,619 444,281 

Set milk yield >100kg to missing 115,747,816 12,774,644 444,281 
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Remove cows that have their first milk 

yield record after 14 days in milk 

108,031,488 8,005,087 402,054 

Fit lactation curves and remove cows 

with less than 50 records 

100,171,599 7,002,276 378,480 

Aggregate daily milk yield records to 

resilience indicators 

378,480 0 378,480 

Remove cows with an average milk yield 

less than the average herd yield +/- 4 SD 

378,364 0 378,364 

Remove cows that calved after the 1st of 

June 2017 

334,387 0 334,387 

Remove cows for which more than 5% of 

their entire lactation consisted of missing 

records 

255,096 0 255,096 

Set resilience indicator records to missing 

if they exceed mean +/- 4 SD and remove 

cows with a missing resilience indicator 

based on all curve fitting methods  

254,788 0 254,788 

Remove herd*year*season classes with 

less than 5 cows 

198,754 0 198,754 

1To fit a Wilmink curve, a sufficient amount of records was needed.  839 
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Table 2. Descriptive statistics of resilience indicators based on different lactation curve fitting 840 

methods, and average daily milk yield 841 

Trait1 Curve2 Mean SD Minimum Maximum Number 

of cows 

LnVar ma 0.90 0.59 -1.38 3.27 198,702 

mm 0.87 0.61 -1.59 3.33 198,712 

wilm 1.69 0.57 -0.60 3.97 198,728 

quant 1.39 0.57 -0.89 3.69 198,725 

RawVar - 2.85 0.64 0.28 5.36 198,723 

rauto ma 0.32 0.19 -0.43 0.91 198,736 

mm 0.30 0.18 -0.43 0.89 198,746 

wilm 0.65 0.18 -0.10 0.98 198,343 

quant 0.56 0.19 -0.22 0.98 198,580 

Skew ma -1.26 0.83 -4.88 2.37 197,731 

mm -1.60 1.04 -6.10 2.92 197,838 

wilm -0.82 0.65 -3.48 1.85 198,452 

quant -1.27 0.74 -4.38 1.87 198,197 

AMY - 26.60 4.99 6.34 46.29 198,736 

1Trait: LnVar = variance of deviations from lactation curve, RawVar = variance of raw milk 842 

yield, rauto = lag-1 autocorrelation of deviations, Skew = skewness of deviations, AMY = 843 

average daily milk yield.  844 

2Curve: ma = moving average, mm = moving median, wilm = Wilmink curve, quant = 845 

quantile regression. 846 

 847 
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Table 3. Variance components (𝜎𝜎𝑎𝑎2 = additive genetic variance; 𝜎𝜎𝑒𝑒2 = error variance; 𝜎𝜎𝑝𝑝2 = 848 

phenotypic variance) and heritabilities (h2) from the univariate analyses of the resilience 849 

indicators (SE in parentheses) 850 

Trait1 Curve2 𝜎𝜎𝑎𝑎2 𝜎𝜎𝑒𝑒2 𝜎𝜎𝑝𝑝2 h2 GCV 

LnVar ma 0.062 (0.002) 0.192 (0.002) 0.254 (0.001) 0.244 (0.009) 0.25 

mm 0.065 (0.003) 0.209 (0.002) 0.274 (0.001) 0.236 (0.009) 0.25 

wilm 0.054 (0.002) 0.218 (0.002) 0.272 (0.001) 0.198 (0.008) 0.23 

quant 0.056 (0.002) 0.207 (0.002) 0.264 (0.001) 0.213 (0.009) 0.24 

RawVar - 0.065 (0.003) 0.245 (0.002) 0.310 (0.001) 0.209 (0.009) 0.26 

rauto ma 0.003 (0.000) 0.028 (0.000) 0.030 (0.000) 0.095 (0.006) 0.17 

mm 0.003 (0.000) 0.027 (0.000) 0.029 (0.000) 0.090 (0.006) 0.17 

wilm 0.002 (0.000) 0.025 (0.000) 0.027 (0.000) 0.083 (0.006) 0.07 

quant 0.003 (0.000) 0.028 (0.000) 0.030 (0.000) 0.085 (0.006) 0.09 

Skew ma 0.007 (0.001) 0.571 (0.002) 0.578 (0.002) 0.011 (0.002) 0.06 

mm 0.011 (0.002) 0.906 (0.003) 0.917 (0.003) 0.012 (0.002) 0.07 

wilm 0.006 (0.001) 0.356 (0.001) 0.362 (0.001) 0.017 (0.002) 0.10 

quant 0.004 (0.001) 0.475 (0.002) 0.479 (0.002) 0.009 (0.002) 0.05 

AMY - 8.467 (0.198) 9.486 (0.130) 17.953 (0.093) 0.472 (0.009) 0.11 

1Trait: LnVar = variance of deviations from lactation curve, RawVar = variance of raw milk 851 

yield, rauto = lag-1 autocorrelation of deviations, Skew = skewness of deviations, AMY = 852 

average daily milk yield. 853 

2Curve: ma = moving average, mm = moving median, wilm = Wilmink curve, quant = quantile 854 

regression. 855 

 856 
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Table 4. Genetic correlations between the resilience indicators variance, autocorrelation, and 857 

skewness for each of the 4 lactation curve fitting methods, and genetic correlations between 858 

variance of deviations from lactation curves and variance of raw milk yield records (SE in 859 

parentheses) 860 

 Resilience indicator1 

Curve2 LnVar & rauto LnVar & Skew rauto & Skew LnVar & 

RawVar3 

ma -0.12 (0.04) 0.51 (0.12) -0.20 (0.06) 0.39 (0.02) 

mm -0.12 (0.03) 0.65 (0.10) -0.35 (0.05) 0.37 (0.02) 

wilm 0.05 (0.02) 0.06 (0.08) 0.37 (0.08) 0.45 (0.02) 

quant -0.04 (0.02) 0.49 (0.11) -0.01 (0.05) 0.45 (0.02) 

1Resilience indicator: LnVar = variance of deviations from lactation curve, rauto = lag-1 861 

autocorrelation of deviations, Skew = skewness of deviations, RawVar = variance of raw milk 862 

yield 863 

2Curve: ma = moving average, mm = moving median, wilm = Wilmink curve, quant = quantile 864 

regression. 865 

3RawVar is not based on deviations from lactation curves. Therefore, the comparison is between 866 

LnVar based on different curves and RawVar. 867 

 868 

Table 5. Genetic correlations between 4 lactation curve fitting methods for each resilience 869 

indicator (SE in parentheses) 870 

 Resilience indicator2 

Curve1 LnVar rauto Skew 

ma & mm 1.00 (0.00) 0.99 (0.01) 0.95 (0.01) 

ma & wilm 0.94 (0.01) 0.92 (0.01) 0.46 (0.07) 
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ma & quant 0.98 (0.00) 0.97 (0.00) 0.81 (0.07) 

mm & wilm 0.94 (0.01) 0.90 (0.01) 0.31 (0.06) 

mm & quant 0.98 (0.00) 0.95 (0.01) 0.83 (0.06) 

wilm & quant 0.98 (0.00) 0.96 (0.01) 0.60 (0.03) 

1Curve fitting methods: ma = moving average, mm = moving median, wilm = Wilmink curve, 871 

quant = quantile regression.  872 

2Resilience indicator: LnVar = variance, rauto = autocorrelation, Skew = skewness.873 
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Table 6. Genetic correlations between resilience indicators based on different lactation curve fitting methods and average daily milk yield, and 874 

health, functional, and production traits, estimated using the MACE procedure. Standard errors are not provided, because the MACE procedure 875 

does not give any 876 

  Health, longevity, fertility, metabolic, and production traits3 

Indicator/Trait1 Curve2 UH HH KET LON FER BCS DMI AMY (SE)4 OMY PER 

LnVar  ma -0.27 -0.13 -0.46 -0.14 -0.35 -0.36 0.26 0.76 (0.02) 0.62 0.14 

mm -0.26 -0.13 -0.45 -0.14 -0.34 -0.35 0.25 0.75 (0.02) 0.61 0.14 

wilm -0.29 -0.14 -0.45 -0.13 -0.34 -0.38 0.29 0.79 (0.02) 0.64 0.08 

quant -0.32 -0.14 -0.48 -0.16 -0.40 -0.41 0.24 0.79 (0.02) 0.64 0.12 

RawVar - -0.31 -0.10 -0.21 -0.29 -0.12 -0.32 -0.04 0.20 (0.03) 0.15 -0.51 

rauto ma -0.19 -0.02 -0.17 0.01 -0.06 -0.07 0.03 0.19 (0.04) 0.16 -0.05 

mm -0.18 -0.01 -0.18 0.02 -0.06 -0.06 0.05 0.20 (0.03) 0.18 -0.04 

wilm -0.12 -0.02 -0.08 0.01 0.01 -0.06 0.05 0.15 (0.04) 0.10 -0.09 

quant -0.21 -0.03 -0.15 -0.02 -0.09 -0.10 -0.03 0.16 (0.04) 0.12 -0.09 

Skew ma 0.06 0.02 -0.20 -0.14 -0.01 -0.17 0.03 0.23 (0.07) 0.09 -0.08 

mm 0.05 -0.01 -0.22 -0.15 -0.05 -0.17 0.02 0.30 (0.07) 0.04 -0.04 
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wilm 0.04 0.02 0.06 -0.10 0.17 -0.17 -0.15 -0.40 (0.06) -0.24 -0.32 

quant 0.00 -0.05 -0.17 -0.14 -0.02 -0.25 -0.10 0.19 (0.06) 0.07 -0.17 

AMY - -0.15 -0.15 -0.37 0.07 -0.38 -0.22 0.68 - 0.95 0.37 

1Indicator/Trait: LnVar = variance of deviations from lactation curve, RawVar = variance of raw milk yield, rauto = lag-1 autocorrelation of 877 

deviations, Skew = skewness of deviations, AMY = average daily milk yield 878 

2Curve: ma = moving average, mm = moving median, wilm = Wilmink curve, quant = quantile regression. 879 

3Health, longevity, fertility, metabolic, and production traits: UH = udder health, HH = hoof health, KET = ketosis resistance in first lactation, 880 

LON = productive longevity, FER = fertility, DMI = dry matter intake, AMY = average daily milk yield from automatic milking system data, 881 

OMY = official milk yield produced in 305 days in first lactation, PER = persistency in first lactation. 882 

4Genetic correlations between the resilience indicators and average daily milk yield were estimated using a bivariate mixed animal model.  883 
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Table 7. Partial genetic correlations between resilience indicators based on different lactation curve fitting methods and commercial traits, 884 

estimated using the MACE procedure and adjusted for average daily milk yield 885 

  Health, longevity, fertility, metabolic, and production traits3 

Indicator/Trait1 Curve2 UH HH KET LON FER BCS DMI PER 

LnVar  ma -0.23 -0.03 -0.29 -0.29 -0.10 -0.31 -0.54 -0.18 

mm -0.22 -0.03 -0.28 -0.28 -0.09 -0.29 -0.53 -0.17 

wilm -0.27 -0.04 -0.27 -0.31 -0.06 -0.35 -0.56 -0.31 

quant -0.32 -0.04 -0.33 -0.34 -0.17 -0.40 -0.66 -0.24 

RawVar - -0.29 -0.07 -0.15 -0.31 -0.04 -0.29 -0.25 -0.62 

rauto ma -0.16 0.01 -0.11 -0.00 0.02 -0.03 -0.13 -0.12 

mm -0.16 0.02 -0.11 0.01 0.02 -0.01 -0.12 -0.12 

wilm -0.09 0.01 -0.02 -0.00 0.08 -0.03 -0.07 -0.15 

quant -0.19 -0.01 -0.10 -0.03 -0.03 -0.07 -0.19 -0.15 

Skew ma 0.10 0.05 -0.13 -0.16 0.09 -0.13 -0.17 -0.17 

mm 0.11 0.04 -0.12 -0.18 0.07 -0.12 -0.26 -0.15 
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wilm -0.02 -0.04 -0.11 -0.08 0.02 -0.29 0.18 -0.22 

quant 0.03 -0.03 -0.11 -0.15 0.06 -0.21 -0.31 -0.25 

1Indicator/Trait: LnVar = variance of deviations from lactation curve, RawVar = variance of raw milk yield, rauto = lag-1 autocorrelation of 886 

deviations, Skew = skewness of deviations, AMY = average daily milk yield 887 

2Curve: ma = moving average, mm = moving median, wilm = Wilmink curve, quant = quantile regression. 888 

3Health, longevity, fertility, metabolic, and production traits: UH = udder health, HH = hoof health, KET = ketosis resistance in first lactation, 889 

LON = productive longevity, FER = fertility, DMI = dry matter intake, PER = persistency in first lactation.  890 
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Table A1. Residual (above diagonal) and phenotypic correlations (below diagonal) among the resilience indicators and average daily milk yield. 891 

A dash means that no genetic correlation was estimated for this combination 892 

Trait1  LnVar RawVar rauto Skew    AMY 

 Curve2 ma mm wilm quant - ma mm wilm quant ma mm wilm quant - 

LnVar ma - 0.99 

(0.00) 

0.68 

(0.00) 

0.85 

(0.00) 

0.28 

(0.00) 

-0.18 

(0.00) 

- - - -0.13 

(0.00) 

- - - 0.04 

(0.01) 

mm 0.99 

(0.00) 

- 0.63 

(0.01) 

0.80 

(0.00) 

0.24 

(0.00) 

- -0.15 

(0.00) 

- - - -0.14 

(0.00) 

- - 0.04 

(0.01) 

wilm  0.73 

(0.00) 

0.69 

(0.00) 

- 0.79 

(0.00) 

0.46 

(0.00) 

- - 0.25 

(0.01) 

- - - -0.06 

(0.00) 

- 0.03 

(0.01) 

quant 0.87 

(0.00) 

0.84 

(0.00) 

0.82 

(0.00) 

- 0.37 

(0.00) 

- - - 0.12 

(0.01) 

- - - -0.23 

(0.00) 

0.02 

(0.01) 

RawVar - 0.30 

(0.00) 

0.27 

(0.00) 

0.46 

(0.00) 

0.38 

(0.00) 

- - - - - - - - - 0.06 

(0.00) 
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rauto ma -0.17 

(0.01) 

- - - - - 0.97 

(0.00) 

0.74 

(0.00) 

0.85 

(0.00) 

-0.08 

(0.00) 

- - - 0.10 

(0.00) 

mm - -0.14 

(0.01) 

- - - 0.97 

(0.00) 

- 0.67 

(0.00) 

0.79 

(0.00) 

- -0.19 

(0.00) 

- - 0.10 

(0.00) 

wilm - - 0.23 

(0.01) 

- - 0.75 

(0.00) 

0.69 

(0.00) 

- 0.82 

(0.00) 

- - 0.14 

(0.00) 

- 0.06 

(0.01) 

quant - - - 0.10 

(0.01) 

- 0.86 

(0.00) 

0.80 

(0.00) 

0.83 

(0.00) 

- - - - -0.09 

(0.00) 

0.06 

(0.01) 

Skew ma -0.09 

(0.01) 

- - - - -0.08 

(0.00) 

- - - - 0.96 

(0.00) 

0.59 

(0.00) 

0.75 

(0.00) 

-0.04 

(0.00) 

mm - -0.09 

(0.01) 

- - - - -0.19 

(0.00) 

- - 0.96 

(0.00) 

- 0.60 

(0.00) 

0.77 

(0.00) 

-0.04 

(0.00 

wilm  - - -0.05 

(0.00) 

- - - - 0.15 

(0.00) 

- 0.59 

(0.00) 

0.59 

(0.00) 

- 0.72 

(0.00) 

-0.02 

(0.01) 

quant - - - -0.19 

(0.01) 

- - - - -0.09 

(0.00) 

0.75 

(0.00) 

0.77 

(0.00) 

0.71 

(0.00) 

- 0.00 

(0.00) 
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AMY - 0.27 

(0.00) 

0.26 

(0.00) 

0.25 

(0.00) 

0.25 

(0.00) 

0.10 

(0.01) 

0.11 

(0.01) 

0.11 

(0.00) 

0.07 

(0.00) 

0.07 

(0.00) 

-0.02 

(0.00) 

-0.01 

(0.00) 

-0.05 

(0.00) 

0.01 

(0.00) 

- 

1Trait: LnVar = Variance of deviations from lactation curve, RawVar = Variance of raw milk yield, rauto = autocorrelation of deviations, Skew = 893 

skewness of deviations, AMY= average daily milk yield 894 

2curve: ma = moving average, mm = moving median, quant = quantile regression, wilm = wilmink curve895 



51 
 

FIGURES 896 

 897 

Figure 1: A: Observed (black line) and predicted (blue line) daily milk yield as a function of 898 

time after calving in days of an example cow. B: Deviations from predicted milk yield as a 899 

function of time after calving in days of the same example cow.  900 

 901 

Poppe – Figure 1  902 
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Figure 2: Examples of lactation curve fitting methods for an example cow. Black lines show 903 

observed milk yield and blue lines show predicted milk yield. A: moving average, B: moving 904 

median, C: Wilmink curve, D: quantile regression  905 

 906 

Poppe – Figure 2   907 


