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ABSTRACT

Advances in technology and improved data collection
have increased the availability of genomic estimated
breeding values (gEBV) and phenotypic information
on dairy farms. This information could be used for the
prediction of complex traits such as survival, which can
in turn be used in replacement heifer management. In
this study, we investigated which gEBV and phenotypic
variables are of use in the prediction of survival. Sur-
vival was defined as survival to second lactation, plus
2 wk, a binary trait. A data set was obtained of 6,847
heifers that were all genotyped at birth. Each heifer
had 50 gEBV and up to 62 phenotypic variables that
became gradually available over time. Stepwise variable
selection on 70% of the data was used to create mul-
tiple regression models to predict survival with data
available at 5 decision moments: distinct points in the
life of a heifer at which new phenotypic information
becomes available. The remaining 30% of the data were
kept apart to investigate predictive performance of the
models on independent data. A combination of gEBV
and phenotypic variables always resulted in the model
with the highest Akaike information criterion value.
The gEBV selected were longevity, feet and leg score,
exterior score, udder score, and udder health score.
Phenotypic variables on fertility, age at first calving,
and milk quantity were important once available. It
was impossible to predict individual survival accurately,
but the mean predicted probability of survival of the
surviving heifers was always higher than the mean pre-
dicted probability of the nonsurviving group (difference
ranged from 0.014 to 0.028). The model obtained 2.0 to
3.0% more surviving heifers when the highest scoring
50% of heifers were selected compared with randomly
selected heifers. Combining phenotypic information and
gEBV always resulted in the highest scoring models
for the prediction of survival, and especially improved
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early predictive performance. By selecting the heif-
ers with the highest predicted probability of survival,
increased survival could be realized at the population
level in practice.

Key words: dairy cow, survival, longevity, individual
prediction

INTRODUCTION

Optimally, not all female calves born on a farm should
be kept as replacements heifers to avoid unnecessary
costs (Mohd Nor et al., 2012, 2015). To have insight
into these costs, economic models have been developed
to help farmers make the best choices in terms of heifer
management (Mourits et al., 1997; Groenendaal et al.,
2004). However, despite the availability of these mod-
els, many Dutch farmers keep more than the optimal
number of replacement heifers (Mourits et al., 2000;
Mohd Nor et al., 2015). Uncertainty about the survival
and future performance of replacement heifers and
dairy cows is one of the reasons for a farmer to keep a
surplus of replacement heifers (Mohd Nor et al., 2015).
Studies in the United Kingdom, France, and Sweden
show that between 86 and 88% of heifer calves reach
their first lactation (Hultgren et al., 2008; Brickell and
Wathes, 2011; Raboisson et al., 2013), and between 83
and 96% of all first-lactation heifers survive to their
second lactation (Dechow and Goodling, 2008; Bach,
2011; Brickell and Wathes, 2011). In the Netherlands,
86.6% of first lactation heifers born between 2009 and
2013 reached their second lactation (van Pelt et al.,
2016b). Because it takes on average around 1.5 lacta-
tions to repay the rearing costs of a dairy cow, reducing
the number of replacement heifers raised is important
for farm profitability (Bach, 2011; Boulton et al., 2017).
Surplus heifers may be sold, but this does not always
cover the rearing costs (Mohd Nor et al., 2015), or may
be used to replace older dairy cows that are voluntarily
culled. However, because resilience and longevity of the
dairy herd are becoming increasingly important from a
societal and welfare point of view (Ortiz-Pelaez et al.,
2008; LTO, 2011; Mohd Nor et al., 2014; Barkema et
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al., 2015), it may become preferable to not cull older
dairy cows simply because a younger replacement is
available.

Despite the importance of survival, it is rarely in-
cluded in heifer management models and even when
survival is taken into account, there is no consideration
for individual differences between heifers (Mohd Nor et
al., 2015). Individual prediction of survival in heifers is
often not attempted because of the difficulty of predict-
ing phenotypic survival accurately. Survival traits are
affected by a combination of production, fertility, and
health traits (Heise et al., 2016), and environmental
factors such as farm management. Furthermore, risk of
culling is not constant over time. The complex nature
of survival and the fact that true survival can only
be measured in retrospect (the animal is culled or has
died) has also led to many different definitions of sur-
vival traits being used (Essl, 1998; Fetrow et al., 2006).
Estimated breeding values for at least one survival trait
are available in most countries for breeding purposes
(Forabosco et al., 2009). However, the heritability of
these traits is almost invariably very low (van Pelt et
al., 2015; Heise et al., 2016), making the phenotypic
prediction of individual survival based on parent infor-
mation alone not very accurate.

Combining available genomic estimated breeding
values (gEBV) and phenotypic information might
yield more accurate predictions for individual survival.
Genotyping costs in dairy cattle have decreased to the
point where it is economically feasible to obtain gEBV
for production animals at birth (Pryce et al., 2012;
Weigel et al., 2012; Calus et al., 2015). More phenotypic
information on individual animals is also available on
farms. The aim of this study is to investigate the pos-
sibility of combining phenotypic information and gEBV
for the phenotypic prediction of survival. Five distinct
moments were chosen for prediction of survival. These
“decision moments” were moments in the lifetime of a
dairy cow where new phenotypic information becomes
available on which a management decision could be
made.

MATERIALS AND METHODS
Data

A data set was obtained from cattle improvement
cooperative CRV (Arnhem, the Netherlands) to in-
vestigate which gEBV and phenotypic variables could
serve as predictors for survival. The data were available
from animals born on 463 different Dutch and Flem-
ish farms that participate in a “data plus” program,
where additional information is gathered on dairy cows
on commercial farms. All animals in this study were
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genotyped at birth, herd book registered, and had at
least 87.5% Holstein blood. Survival was defined as the
binary trait “survival until second calving, plus 2 wk,”
henceforth referred to as “survival to second lactation.”
This point in time was selected due to limitations of our
data and because the lactation following second calv-
ing is economically significant (Bach, 2011). Two ad-
ditional weeks were included to avoid counting animals
that died during or as a consequence of their second
calving. To have a known observation for survival, all
cows included had to be born at least 46 mo before
the end of data collection (March 2017), and were not
exported abroad during this time. Animals exported
abroad were excluded because they had unknown dates
of death and could not be used in the analysis. Ani-
mals sold to other Dutch farms could be used because
records from other farms were available in our data set.
As the cause of death was unknown for all heifers, all
deaths were included. This included deaths on farm,
involuntary culling, and voluntary culling. Twenty-four
animals were removed from the data set due to having
only second calving records available. The final data set
consisted of 6,847 female cows born between January
2012 and June 2013. Out of these cows, 5,872 (85.8%)
cows survived until second lactation and 975 (14.2%)
cows did not.

Five different data sets were created to predict surviv-
al with data available at 5 different “decision moments”
during the life of a cow: at birth, at 18 mo of age, at
first calving, 6 wk after first calving, and at 200 days
after first calving. These moments were selected as they
were points in time when more phenotypic information
becomes available and where relevant decisions related
to survival could be made. This includes not only the
decision to cull or not cull an animal, but for example
also if an animal should be inseminated again or not.
The decision not to inseminate a heifer is effectively
an early culling decision, as without getting pregnant
it is not possible to enter the next lactation, even if
the heifer is kept in the herd for another few months.
Appendix Table A1l shows all variables, as well as the
decision moment in which they become available, and
if the variables were originally continuous. Information
was cumulative; all records available on the first deci-
sion moment were also available during the subsequent
decision moments. Each animal had 50 gEBV, scaled
to a value between 0 and 10 where the largest value
was set to 10 and the smallest value set to 0. These
gEBYV are direct genomic values, which did not include
any own performance. If regular gEBV were used, own
information included would have led to a residual co-
variance between the gEBV and survival. Using this
regular gEBV in a survival prediction would have led to
auto-correlation. Because historical gEBV for the vari-
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ous decision moments were not available, only gEBV
based solely on genotype were used. Phenotypic records
were available on gestation duration and dam parity,
herd book status, birth records, calving records, records
on moves between different farms, insemination records
of the first and second parity, and first parity milk re-
cords. Calving ease scores were scored 1 to 6, where 1
was an easy birth, 2 was normal, and scores 3 to 6 were
considered difficult births, because they denoted long
labor and various veterinarian interventions. The milk
records at “6 wk postcalving” were of the most recent
milk test day record before the end of 6 wk. Milk re-
cords in the decision moment “200 d postcalving” were
an average of all milk records available of an animal up
to that point. Fertility records were used to determine
nonreturn status at the decision moment “18 mo of age”
and “200 d postcalving.” If a heifer had Al records, but
received no Al in the 56 d before the 2 aforementioned
decision moments, it was listed as nonreturn, because it
had not received another insemination at least 56 d af-
ter the last insemination. Heifers with an insemination
in the 56 d before the decision moment, no recorded
inseminations at that point in time or subject to natu-
ral mating were listed as unknown. In these cases the
exact insemination or conception date was unknown
or it could not otherwise be determined if the animal
was pregnant. Animals with missing records were al-
ways included in the data sets. Missing records could
have reflected active management decisions (e.g., not
inseminating an animal) or could reflect, for example,
a fertility problem, and thus could have been useful
in prediction. This was modeled by adding a class
“unknown” to all factorial variables to identify missing
values. Continuous variables with missing values were
transformed into factors with between 5 and 8 classes,
depending on the distribution of individual variables.
We chose to select at least 5 levels to keep sufficient
variation within each variable. In total, each animal
had 50 gEBV (available at each decision moment), and
up to 62 additional phenotypic variables accumulating
throughout their lifetime.

Model and Analysis

To determine if survival to second lactation could be
predicted, logistic regression models were constructed
for each decision moment. Each of the 5 data sets (one
for each decision moment) were split into sets of 70%
training and 30% testing data, stratified by survival
group to ensure a representative amount of both sur-
vival groups in the testing and training sets. Stratified
sampling meant that the training and the testing data
sets included identical proportions of nonsurviving and
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surviving heifers. We used the statistical program R
(R Core Team 2016), version 3.3.1, and the package
‘caret’ (Kuhn, 2008) to select models for each decision
moment. Both forward stepwise selection and stepwise
selection combining forward and backward stepwise
selection were tested on the 5 training data sets using
the following general model:

Logit (P) = 3, + X6,X;,

where logit (P) is the estimated probability of survival,
3, is the population mean, and 3,X; is the set of predictor
variables, consisting of phenotypic variables and gEBV.
The Akaike information criterion (AIC) was used to
determine the best possible model for each decision
moment. The stepwise procedure combining forward
and backward selection resulted in the models with the
lowest AIC value and thus only the models derived us-
ing this procedure were used for analysis. The stepwise
procedure was first used on the training sets containing
both gEBV and phenotypic variables to identify which
variables are significant for the prediction of survival.
The models were tested on their corresponding test data
set to get probabilities of survival for the heifers in the
test set. By applying the model to the data, predicted
probabilities of survival were obtained for each heifer.
These were values between 0 and 1, where values close
to 1 indicate a high probability to reach the second
lactation, and values closer to 0 a lower probability to
reach second lactation. To compare and validate the
models, the prediction accuracy, specificity, sensitivity,
positive predictive value, and negative predictive value
were calculated. The predicted probability of survival
was transformed into a survival prediction of 1 when
equal to or above the average probability for survival in
our data (0.858), and to a survival prediction of 0 below
the average probability of survival. The accuracy was
the proportion of correct predictions. The sensitivity
was calculated as the true positive outcomes divided
by the true positives plus the false negatives, and the
specificity as the true negatives divided by the true
negatives plus the false positives. The positive predic-
tive value is the true positive value divided by the true
positive value plus the false positive value, and simi-
larly the negative predictive value is the true negative
value divided by the true negative value plus the false
negative value. We also calculated the balanced accu-
racy and the area under the receiver operating curve
(ROC), the area under the curve (AUC) value. The
balanced accuracy is the average of the accuracy for
nonsurviving heifers and the accuracy of the surviving
heifers. The AUC value is the predictive ability of the
model including all possible cut-offs and was calculated
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using the pROC package (Robin et al., 2011). These
metrics were selected as survival was an imbalanced
trait, with more survivors than nonsurvivors. Both bal-
anced accuracy and AUC value are more robust against
imbalanced predictors than accuracy.

To investigate if there was merit in including both
¢gEBV and phenotypic traits, we also selected models
for each decision moment using either only gEBV or
only phenotypic information as input for the variable
selection. For each decision moment, the 3 resulting
models were tested on a new 70/30 split of training and
testing data. The AIC was recorded as indication of
model fit and the AUC value calculated using pROC as
an indication of model performance.

RESULTS

Figure 1 shows the distribution of age in days at
death for heifers in our data set. This figure indicates
that in our data set most heifers reached 18 mo of age,
with few early deaths. The number of culled and dead
animals increased after 18 mo, most due to the avail-
ability of phenotypic records on which selective culling
could take place.

An overview of the gEBV and phenotypic variables
selected using stepwise selection for each decision mo-
ment when including only living heifers at a decision
moment is shown in Table 1. The coefficients of the
selected variables are shown in Appendix Tables A2,
A3, A4, A5, and A6, separated by decision moment.
The gEBV for longevity was selected at all decision
moments, and was in each case positively associated

Age at death for nonsurviving heifers

with survival. While different gEBV were selected at
different decision moments, at each decision moment
they broadly fell into the same categories: fertility, ex-
terior score, udder score, udder health, and feet and leg
gEBV. The gEBV for production variables were not
prominent among the selected variables, although they
were selected at the first 3 decision moments. At 200
d after first calving, several gEBV regarding longev-
ity, exterior score, udder conformation, and health and
fertility were still selected. The phenotypic variables
selected at birth were season of birth and year of birth.
Year of birth and season of birth were selected up to
the last decision moment, where season of first calv-
ing was selected as an alternative for season of birth.
Phenotypic information new to a decision moment
was always selected, with some variables remaining
important over the next decision moment(s). Age at
first calving, for example, was strongly associated with
survival in all decision moments after first calving (Ap-
pendix Tables A4 to A6). Earlier calving ages had a
more positive association with survival. Phenotypic
fertility information appears important in general, as
nonreturn status and number of inseminations were
selected in both decision moments when these variables
became available (Appendix Tables A3 and A6). At 200
d after calving, both the number of inseminations at 18
mo and at 200 d after calving were selected. Phenotypic
information on production traits was also important:
kg of milk produced at the milk test day closest to 6 wk
postcalving and the average milk production per test
milk day at 200 d after calving were both significantly
associated with survival (Appendix Tables A5 and A6).

301
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0 200 400 600
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Figure 1. The distribution of age at death in days for nonsurviving heifers. Gray lines indicate the decision moments. The decision moment

at first calving was set at the average age at first calving in the data set.
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Table 1. Selected variables for the best model in each decision moment'

Estimate for selected variable decision moments

18 mo At first 6 wk after 200 d after

Variable Birth of age calving first calving first calving
gEBV

Longevity 0.128 0.212 0.261 0.242 0.207

Foot angle —0.115 —0.078 —0.086 —0.085

Udder depth —0.102 —0.137 —0.140 —0.106

Frame 0.074

kg of fat 0.061 0.122

Nonreturn at 56 d —0.092 —0.088

Interval first-last insemination 0.140 —0.213 0.106

Overall fertility 0.145 0.091 0.242

Milking speed 0.061

NVP? —0.122

Overall exterior score 0.143 0.256

SCC 0.196 0.212

Udder health —0.283 —0.289 —0.153

Rear udder height 0.072

Feet and legs —0.066

Chest width 0.099 0.131

Rear legs hind view —0.162

Locomotion 0.125

kg of lactose —0.073

Stature —0.094

Udder support 0.074
Phenotypic variables

Season of birth 0.434 0.474 0.423 0.600

Year of birth —0.372 —0.268 —0.270 —0.342 —0.239

Number of inseminations at 18 mo 1.305 1.553

Coat color —0.208

Nonreturn status at 18 mo —0.426

Season of first calving 0.725

Age in days at first calving 1.700 1.881 2.831

Sex of first calf 0.378 0.272

Calf survival 1 wk after birth 14.392

kg of milk produced at milk test day closest to 6 wk postcalving 2.512

Total number of transports at 200 d postcalving 15.215

Average kg of milk per test milk day at 200 d postcalving 1.899

Average cell count (x 1,000) per test milk day at 200 d postcalving 1.032

Average percentage of protein per test milk day at 200 d postcalving 1.414

Negative indication at test milking 6 wk postcalving 1.401

Number of negative indications at test milk days before 200 d —0.788

postcalving
Number of inseminations at 200 d postcalving 1.553
Nonreturn status at 200 d postcalving —1.065

'The table shows the coefficients for the genomic estimated breeding values (¢EBV). For the factorial phenotypic variables, this table shows the
difference in coefficient between the highest and the lowest class for a variable. The coefficient of the referent class is 0. The maximum difference
was used because class variables have more than one coefficient. For the exact coefficients for each variable, see Appendix Tables A2 to AG6.

’NVI = the Dutch/Flemish merit index score.

Furthermore, the average percentage of protein per test
milk day was selected at 200 d postcalving. Phenotypic
traits on udder health were also selected as number of
negative outcomes, which include mastitis and other
illnesses, negative indication (yes/no) at test milking
closest to 6 wk postcalving, and average cell count per
test milk day at 200 d postcalving.

To determine if adding genotype information has ad-
ditional value, we compared a model using only geno-
types, a model using only phenotypes, and the results
of the combined model (Table 2). The combined model
has the highest AUC value at all decision moments, ex-
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cept at first calving where all methods perform equally,
and at 200 d post-first calving, where it performs equal
to the model containing only phenotypic variables. The
AIC value was always highest for the combined model,
as a model containing both gEBV and phenotypic vari-
ables was always selected through stepwise selection
(Table 1).

On average, the predicted probability for the surviv-
ing group was between 0.014 (at birth) and 0.028 (at
200 d post-first calving) higher than the probability
of survival for the nonsurviving group (Table 3). This
means that while overlap occurred, a difference was
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Table 2. The area under the curve (AUC) of the receiver operator
curve (ROC) value for a model including both genomic estimated
breeding values (gEBV) and phenotypic information, only phenotype
information, and only gEBV

gEBV Phenotype gEBV and
Decision moment only only phenotype
Birth 0.557 0.562 0.584
18 mo 0.580 0.594 0.606
First calving 0.597 0.597 0.596
6 wk after first calving 0.560 0.646 0.677
200 d after first calving 0.573 0.731 0.731

observed between the 2 groups on average. The accu-
racy of the models increased from 0.562 to 0.776 in
later decision moments (Table 4). The AUC values also
increased from 0.578 at birth to 0.648 at 200 d post-
calving. This means that the model improved at later
decision moments. However, the balanced accuracy did
not increase, remaining around 0.56 at all decision mo-
ments. It appears that the models improved by predict-
ing surviving heifers better. This can be seen from an
increase in the sensitivity of the models from 0.566 at
birth to 0.816 at 200 d postcalving and an increase
in positive predictive value from 0.880 to 0.933. This
means that both a larger proportion of all surviving
heifers in the data set were predicted correctly as sur-
viving, and a larger proportion of the heifers predicted
to survive actually survive. In contrast, although the
model was able to better predict which heifers survived,
predicting which heifers did not survive proved more
difficult. The negative predictive value did not increase
consistently, and was actually lowest at 200 d postcalv-
ing. Furthermore, the specificity of the model varied
inconsistently, ranging from 0.295 to 0.534, meaning
that the proportion of nonsurviving heifers that is iden-
tified did not improve.

Rather than focusing on individual prediction, a
situation could be considered where the models were
used to select 50% of heifer calves to become replace-
ment heifers. Table 5 shows the average probability
of survival in a decision moment and the probability

Table 3. Mean and SD of the predicted probability of survival for
the survival and the nonsurvival heifer groups in the testing set of
each decision moment, including only alive heifers at the start of the
decision moment

Survival = no Survival = yes

Decision moment Mean SD Mean SD

Birth 0.847 0.049 0.861 0.044
18 mo 0.842 0.075 0.868 0.060
At first calving 0.873 0.073 0.897 0.052
6 wk after first calving 0.869 0.072 0.896 0.052
200 d after first calving 0.867 0.064 0.896 0.054
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of survival of the selected group. For example, in the
first decision moment, 85.8% of calves reached second
lactation in a random selection, compared with 88.6%
of the calves selected through the model. This meant
that out of the 1,026 selected calves in our testing data
set, 909 of heifers selected by our model would reach
second lactation, compared with 880 random heifers. In
subsequent decision moments, using a model resulted in
up to 3% more surviving heifers compared with random
selection.

DISCUSSION

Our research showed that it was possible to predict
the survival outcome of heifers at a population level.
Predicting nonsurviving animals proved difficult even
with large amounts of phenotypes and gEBV available.
This was not unexpected because a cow could have
been culled for a myriad of reasons that often influence
each other, and the decision to cull is time dependent
and based on decisions made by individual farmers
(Hadley et al., 2006; Zijlstra et al., 2013). Our data
set also included unpredictable causes of death such as
random accidents (Brickell and Wathes, 2011). Predic-
tion may have been improved by including the exact
causes of death or culling (e.g., allowing us to remove
deaths caused by accidents), but this information was
not available.

The difficulty of predicting survival meant that in-
dividual predictions obtained by our models were too
inaccurate for the purpose of identifying nonsurviving
heifers. Because the negative predictive value ranged
from 0.12 to 0.17, any heifer predicted as not surviving
only had a 12 to 17% chance of not reaching second
lactation. However, if applied on a large group of indi-
viduals, it was possible to use these models to select the
heifers with the highest probability of survival. When
50% of the heifers with the highest probability of sur-
vival were selected, 2.0 to 3.0% more heifers reached
second lactation compared with random selection.
When selecting at birth, this would have resulted in
a 2.8% increase in surviving heifers. Although a 2.8%
increase does not seem like a large improvement, this
represented a 15.5% reduction of nonsurviving heifers.

The selected variables gave insight into which vari-
ables were associated with survival at the various deci-
sion moments. The first variables selected were birth
season and year of birth. Because these variables were
cohort variables, these variables were not animal spe-
cific and did not distinguish between calves born in the
same season and year. This meant they could not be
used for an individual farmer to distinguish between
calves born in the same season or year. Birth season and
year are important correction factors at the population
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Table 4. The accuracy, balanced accuracy, sensitivity, specificity, positive and negative predictive values, and area under the curve (AUC)

values of the models at each decision moment

Balanced
Decision moment Accuracy® accuracy” Specificity* Sensitivity® Neg. pred. value® Pos. pred. value’ AUCt
Birth 0.562 0.550 0.534 0.566 0.170 0.880 0.578
18 mo 0.634 0.577 0.498 0.656 0.186 0.893 0.606
At first calving 0.756 0.545 0.276 0.813 0.150 0.904 0.594
6 wk after first calving 0.755 0.567 0.329 0.806 0.168 0.910 0.620
200 d after first calving 0.776 0.555 0.295 0.816 0.117 0.933 0.648

!Survival was scored as 1 when the predicted probability of survival was above the average probability of survival (0.858) and scores below the

average probability of survival were scored as 0.
*The proportion of correct predictions.

The average of the accuracy for nonsurviving heifers and the accuracy of the surviving heifers.

*The true positive outcomes divided by the true positives plus the false negatives.

The true negatives outcomes divided by the true negatives plus the false positives.

The true positive outcomes divided by the true positive outcomes plus the false positive outcomes.
"The true negative outcomes divided by the true negative outcomes plus the false negative outcomes.

8The AUC of the receiver operating characteristic.

level, however, and were selected in all but the last de-
cision moment, where calving season was used instead
of season of birth. Production gEBV were surprisingly
not selected at every decision moment. This may be
explained by the fact that longevity was uncorrected
for production, and thus possibly served as a substitute
for production gEBV. Phenotypic production traits
such as (average) kg of milk produced were selected
once available, because there is a known increased risk
of culling for animals with low milk production (Hadley
et al., 2006). Most of the other associations found were
not surprising. The association between feet and leg
traits and survival is well known in literature (Buenger
et al., 2001; Caraviello et al., 2004). The gEBV for
foot angle was associated with lameness specifically
(Wells et al., 1993), which is an important reason for
culling (Olechnowicz and Jaskowski, 2011; Zijlstra et
al., 2013). Udder conformation traits (Caraviello et al.,
2004; Kern et al., 2015) and udder health (Mohd Nor
et al., 2014) are known to be strongly associated with
survival. Udder and health traits are correlated (Carl-
strom et al., 2016), and udder traits have even been

Table 5. The average chance of survival at a decision moment, the
average chance of survival for the animals in the top 50% predicted
probabilities of survival, and the difference in percentage between the
two

Probability of survival (%)

Difference
Item Mean  Predicted top 50% (%)
Birth 85.8 88.6 2.8
18 mo 86.4 89.4 3.0
At first calving 89.0 91.4 2.4
6 wk after first calving 90.4 92.4 2.0
200 d after first calving 92.3 95.3 3.0
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suggested as candidate traits for indirect prediction
of longevity (Kern et al., 2015). Udder health pheno-
type variables were selected in the form of negative
indication counts and SCC, which is associated with
increased risk of culling (Beaudeau et al., 2000). The
exterior score gEBV selected in this study were mostly
related to size. Body size has been associated with lon-
gevity and efficiency (Getu and Misganaw, 2015; Kern
et al., 2015); however, the direction of the associations
found varied, and some studies find no effect at all
(Sewalem et al., 2004). Even when studies find negative
associations, culling decisions may be influenced by a
(regional) farmer preference for larger cows (Hansen et
al., 1999; Caraviello et al., 2004). Lastly, fertility had
been reported as one of the most important reason for
culling in Dutch Holstein cows (Zijlstra et al., 2013),
and there is a well-documented relation between fertil-
ity and survival (Pritchard et al., 2013). Age at first
calving, which is also an indication of fertility, was al-
ways selected when available. A higher age at first calv-
ing was associated with higher costs, lower fertility, and
higher risk of culling overall (Sewalem et al., 2008; van
Pelt et al., 2016a). Interestingly, despite the availability
of 2 parities worth of phenotypic fertility records, fertil-
ity gEBV were still selected by the combined model in
the fifth decision moment.

The selection criteria for our data were very stringent
because they included only animals genotyped at birth.
This was done to avoid a winners’ bias; genotyping was
more expensive previously, and so only promising heif-
ers and proven cows were genotyped. This means that
cows that were genotyped either already had reached
second lactation, or were more likely to reach the sec-
ond lactation than an average cow in the population.
Less than 7% of heifers do not reach the second lacta-
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tion if we included all genotyped cows in our data set.
As we did not include all genotyped heifers, the heifers
in our data set were limited to those born within a
period of around a year and a half. This meant it was
impossible to investigate true survival or beyond the
fourth lactation, since these lactations would require
an opportunity group born before the heifers available
in our data set. The limited number of heifers also
explains why some variables such as “number of move-
ments” and “calf survival at 2 wk” were selected. Both
variables had very strong associations with survival
for some classes (Appendix Table A6). These classes
had less than 10 heifers each, all of which survived by
chance. All heifers of a class surviving resulted in a
strong association with survival for these variables.
In future studies, classes with very few cases could be
excluded or merged with other classes, if they prove
problematic for the analysis. Increasing the amount of
animals in the data set should also reduce the number
of very small classes. In this study, as survival is dif-
ficult to predict and information was already limited on
some causes of death, we chose not to merge or remove
classes, resulting in some artifacts. Another effect of the
limited number of heifers was that many farms only had
a small number of calves. The average number of calves
per farm was 15, with many farms having fewer calves
and some farms having a much larger number of calves.
Farm identification numbers could have functioned as
a proxy for herd and farm management, which were
not included in the data. However, farm identification
numbers were not selected due to the large number of
farms with very few calves. Next to requiring all heifers
to be genotyped, this study included only phenotypic
information that was readily available. This meant
that information gaps still existed at each decision mo-
ment. For example, between birth and 18 mo of age
only fertility variables and movements between farms
were recorded on a large scale. Variables such as the
occurrence of diseases (Svensson and Hultgren, 2008;
Heinrichs and Heinrichs, 2011) or simple body (size)
measurements of calves (Wathes et al., 2008) could
have provided valuable information on the health and
development of the animal during the first 18 mo of
life. Weight or size of the heifer may also be useful for
predicting fertility, because while earlier first calving
ages seemed preferable, it may be beneficial for some
heifers to be inseminated later as early inseminations
may have detrimental effects (Hoffman and Funk, 1992;
Heinrichs, 1993).

Because a multiple regression was used in this study,
the direction and the strength of the association of the
variables with survival was only valid in the context
of the whole model. It is important in the interpre-
tation that the values cannot be taken individually.
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For example, gEBV for interval between first and last
insemination had both a negative and a positive as-
sociations with survival depending on the decision
moment. Appendix Table A7 shows an example of the
differences in direction and strength of associations
when some variables available at birth were tested
in a single or multiple regression model. The differ-
ences between a single and multiple regression model
could be explained by high correlations between some
variables, because collinearity is known to cause issues
with multiple regression (Whittingham et al., 2006;
Yoo et al., 2014). Antagonistic relations between mul-
tiple gEBV that were both associated with survival
(such as fertility and production; Zavadilova and Zink,
2013) could also explain some of the unusual relations
found. The combination of various related gEBV could
be somewhat mitigated by more stringent selection of
the gEBV wvariables provided. Each decision moment
appeared to included one or multiple selected gEBV
of several groups: feet and legs, udder, udder health,
exterior, and fertility. We tested the consistent selection
of groups of gEBV by building a model that included
gEBV for longevity, overall fertility, udder score, udder
health, feet and legs, and overall exterior at all deci-
sion moments. These general models also included the
phenotypic records normally selected at each decision
moment. The general models performed identically to
the models described in this paper (data not shown).

This study shows that there is merit in the combina-
tion of phenotypic information and gEBV for the pre-
diction of survival, because gEBV were always selected
in combination with phenotypic information. Accura-
cies for the combined model were also higher than for
models using only gEBV or phenotype information in
all but the last decision moment. The literature already
shows an increased interest in multiple fields to develop
methods to combine phenotypic and genomic informa-
tion for various purposes (Javed et al., 2014; Blake et al.,
2016; Haendel et al., 2016), and has proven valuable for
example in disease prognosis in human diseases (Perlee
et al., 2013; Javed et al., 2014). In cattle, a recent paper
estimating the lifetime profitability of a dairy cow also
combines gEBV with a small amount of phenotypic
variables to obtain more accurate estimates (Kelleher
et al.,, 2015). Because there is interest in combining
genotype and phenotypic information, future research
could explore the exact benefit of including genotypes
for performance measures, as well as investigate other
methods compared with multiple regression.

CONCLUSIONS

In this study, genomic information in the form of
¢EBV was combined with phenotypic information to
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predict survival to second lactation in Holstein dairy
cows at 5 different decision moments. A combination
of gEBV and phenotypic information resulted in better
models than using only one type of information. The
addition of gEBV especially improved early prediction.
A combination of gEBV and phenotypic information
also resulted in the best predictive performance up to
the last decision moment. While accurate individual
prediction of survival outcome could not be achieved,
surviving heifers were predicted to have a higher prob-
ability of survival than nonsurviving heifers on aver-
age. By selecting the heifers with the highest predicted
probability of survival, increased survival could be real-
ized at the population level in practice.
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APPENDIX

Table A1. All 62 phenotypic variables and 50 genomic estimated breeding values (gEBV) available and the decision moment in which each

variable is available

Ttem Decision moment Continuous
Phenotypic variable
Animal identification number Birth No
Year of birth Birth No
Birth farm identification number (UBN) Birth No
Month of birth Birth No
Birth season Birth No
Parity dam Birth Yes
Breed Birth No
Holstein % Birth No
Red factor Birth No
Calving ease dam Birth No
Gestation duration dam Birth Yes
Birth weight Birth Yes
Insemination farm 18 mo No
Insemination season 18 mo No
Countable inseminations 18 mo Yes
Nonreturn status at 18 mo 18 mo No
No insemination information at 18 mo 18 mo No
Number of farm movements at 18 mo 18 mo Yes
Age at first insemination 18 mo Yes
Type of first insemination 18 mo No
Number of inseminations 18 mo Yes
Raised at a specialty calf-rearing farm First calving No
Calving season First calving No
Total number of farm movements at calving First calving Yes
Age at first calving First calving Yes
Calving farm UBN First calving No
Calf sex First calving No
Calf survival first 24 h First calving No
Calving ease First calving No
Gestation duration First calving Yes
Birthweight calf First calving Yes
Calf survival first week First calving No
Calf survival second week First calving No
Twins First calving No
kg of milk at 6 wk 6 wk after first calving Yes
Fat percentage milk at 6 wk 6 wk after first calving Yes
Protein percentage milk at 6 wk 6 wk after first calving Yes
Cell count milk at 6 wk 6 wk after first calving Yes
Urea milk at 6 wk 6 wk after first calving Yes
Lactose percentage milk at 6 wk 6 wk after first calving Yes
Cow status indicator at 6 wk 6 wk after first calving No
Number of negative indications at 6 wk 6 wk after first calving Yes
Number of days in lactation on milk test day 6 wk after first calving Yes
Complete milk measurement available at 6 wk 6 wk after first calving No
First parity insemination farm UBN 200 d after first calving No
First parity insemination season 200 d after first calving No
First parity first insemination type 200 d after first calving No
Number of inseminations in first parity 200 d after first calving Yes
Nonreturn status at 200 d postcalving 200 d after first calving No
Age at 200 d postcalving 200 d after first calving Yes
Insemination known in the first parity 200 d after first calving No
Age at first insemination in the first parity 200 d after first calving Yes
Number of farm movements at 200 d postcalving 200 d after first calving Yes
Number of known milk testings 200 d postcalving 200 d after first calving Yes
Average kg of milk 200 d after first calving Yes
Average fat percentage of milk 200 d after first calving Yes
Average protein percentage of milk 200 d after first calving Yes
Average cell count of milk 200 d after first calving Yes
Average urea of milk 200 d after first calving Yes
Average lactose percentage of milk 200 d after first calving Yes
Continued
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Table A1l (Continued). All 62 phenotypic variables and 50 genomic estimated breeding values (gEBV) available and the decision moment in
which each variable is available

Ttem Decision moment Continuous
Number of negative indications at 200 d postcalving 200 d after first calving Yes
(mastitis, abortion, other illness, teat disorders)
Number of farm movements in the first parity 200 d after first calving Yes
gEBV
NVI' Dutch breeding goal standard Birth Yes
kg of milk Birth Yes
kg of fat Birth Yes
kg of protein Birth Yes
kg of lactose Birth Yes
“Inet” Dutch production index Birth Yes
Cell count Birth Yes
Subclinical mastitis Birth Yes
Clinical mastitis Birth Yes
Udder health Birth Yes
Lifespan Birth Yes
Lifespan with predictors Birth Yes
Birth index Birth Yes
Calving ease Birth Yes
Postcalving ease Birth Yes
Livability calving (maternal) Birth Yes
Livability birth (direct) Birth Yes
Overall fertility Birth Yes
Nonreturn status at 56 d Birth Yes
Interval calving—first insemination Birth Yes
Calving interval Birth Yes
Interval first—last insemination Birth Yes
Conception ratio Birth Yes
Claw health Birth Yes
Calf vitality 3-365 d Birth Yes
Milking speed Birth Yes
Dairy strength Birth Yes
Stature Birth Yes
Chest width Birth Yes
Body depth Birth Yes
Angularity Birth Yes
Body condition Birth Yes
Rump angle Birth Yes
Rump width Birth Yes
Rear legs hind view Birth Yes
Rear leg side view Birth Yes
Foot angle Birth Yes
Locomotion Birth Yes
Fore udder attachment Birth Yes
Front teat placement Birth Yes
Teat length Birth Yes
Udder depth Birth Yes
Rear udder height Birth Yes
Udder support Birth Yes
Rear teat placement Birth Yes
Frame Birth Yes
Robustness Birth Yes
Overall udder score Birth Yes
Feet and legs Birth Yes
Overall exterior score Birth Yes
Milking robot efficiency Birth Yes

'NVI = the Dutch/Flemish merit index score.
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Table A2. Variables selected by stepwise selection for the decision
moment “birth™

Table A3. Variables selected by stepwise selection for the decision
moment “18 mo of age”’

Item Coefficient Item Coefficient

gEBV and phenotypic variable selected gEBV and phenotypic variable selected

gEBV longevity 0.128 gEBYV overall fertility 0.145

gEBV foot angle —0.115 gEBV kg of fat 0.122

gEBV udder depth —0.102 gEBV longevity 0.212

gEBV frame 0.074 gEBV milking speed 0.061

¢EBYV interval first-last insemination 0.140 gEBYV foot angle —0.078

gEBV nonreturn at 56 d —0.092 gEBV udder depth —0.137

gEBV kg of fat 0.061 NVI? —0.122

Year of birth (referent = 2012) gEBYV overall exterior score 0.143
2013 —0.372 Birth season (referent = fall)

Birth season (referent = fall) Spring 0.411
Spring 0.338 Summer 0.474
Summer 0.286 Winter 0.410
Winter 0.434 Year of birth (referent = 2012)

"Estimated coefficients are shown for the i i d breedi 2013 —0-268

S genomic estimate reedile  Nonreturn status at 18 mo (referent = nonreturn)
values (gEBV) and for the individual classes of each phenotypic vari- Unknown —0.496
able with the referent class in parentheses. Number of inseminations at 18 mo (referent = 0)
1 0.206
2 0.317
3 0.096
4 —0.346
5+ —0.988
Unknown —0.130

"Estimated coefficients are shown for the genomic estimated breeding
values (gEBV) and for the individual classes of each phenotypic vari-
able with the referent class in parentheses.

*NVI = the Dutch/Flemish merit index score.

Table A4. Variables selected by stepwise selection for the decision moment “first calving”

Item Coefficient
¢gEBV and phenotypic variable selected
gEBV longevity 0.261
gEBV udder depth —0.140
gEBV overall fertility 0.091
gEBYV foot angle —0.086
gEBV SCC 0.196
¢EBV udder health —0.283
gEBV rear udder height 0.072
gEBYV feet and legs —0.067
gEBV chest width 0.099
Year of birth (referent = 2012)
2013 —0.270
Birth season (referent = fall)
Spring 0.423
Summer 0.341
Winter 0.121
Age at first calving in days (referent = >1,000)
<650 1.531
650-700 1.700
700-750 1.549
750-800 1.417
800-850 1.307
850-900 1.053
900-950 1.005
950-1,000 1.110
Sex of calf (referent = male)
Female 0.206
Unknown —0.172
Coat color (referent = red)
Black —0.208

"Estimated coefficients are shown for the genomic estimated breeding values (gEBV) and for the individual
classes of each phenotypic variable with the referent class in parentheses.
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Table A5. Variables selected by stepwise selection for the decision moment “6 wk after first calving™

Ttem Coefficient

gEBV and phenotypic variable selected

gEBV longevity 0.242
gEBYV overall fertility 0.242
gEBYV rear legs hind view —0.162
gEBYV locomotion 0.124
gEBV chest width 0.131
gEBV foot angle —0.085
gEBV SCC 0.212
gEBV udder health —0.289
¢EBV interval first-last insemination —0.213
gEBV kg of lactose —0.073
gEBV nonreturn at 56 d —0.088
Year of birth (referent = 2012)
2013 —0.342
Birth season (referent = fall)
Spring 0.459
Summer 0.600
Winter 0.423
Age at first calving in days (referent = >1,000)
<650 1.520
650-700 1.881
700-750 1.741
750-800 1.660
800-850 1.456
850-900 1.309
900-950 0.849
950-1,000 1.097
Sex of calf (referent = male)
Female 0.156
Unknown —0.116
kg of milk produced at milk test day closest to 6 wk postcalving (referent = <15)
15-20 0.354
20-25 0.825
25-30 1.359
30-35 1.521
35-40 1.688
40+ 2.512
Unknown 0.049

'Estimated coefficients are shown for the genomic estimated breeding values (gEBV) and for the individual
classes of each phenotypic variable with the referent class in parentheses.
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Table A6. Variables selected by stepwise selection for the decision moment “200 d after first calving”

Ttem Coefficient

gEBV and phenotypic variable selected

gEBV longevity 0.207
gEBV udder health —0.153
¢EBV interval first-last insemination 0.106
gEBV leg and feet —0.247
gEBV overall exterior score 0.256
gEBV stature —0.094
gEBV udder support 0.074
gEBV udder depth —0.106
Year of birth (referent = 2012)
2013 —0.239
Age at first calving in days (referent = >1,000)
<650 2.831
650-700 1.844
700-750 1.792
750-800 1.958
800-850 1.763
850-900 1.554
900-950 0.835
950-1,000 1.385
Calving season (referent = fall)
Spring 0.510
Summer 0.725
Winter 0.331
Calf survival at 1 wk of age (referent = alive)
Died within 1 wk 14.250
Dead 24 h after calving —0.142
Unknown 0.165
Number of farm moves at 200 d
1 —0.998
2 13.527
3 12.102
4 14.217
Average kg of milk per test milk day at 200 d postcalving (referent = <20)
20-25 0.335
25-30 0.884
30-35 1.311
35-40 1.060
40+ 1.339
Unknown —0.560
Average cell count (x 1,000) per test milk day at 200 d postcalving (referent = <25)
25-50 —0.145
50-75 —0.348
75-100 0.448
100-125 —0.437
125+ —0.584
Number of inseminations at 200 d postcalving (referent = 0)
1 0.598
2 0.132
3 0.094
4 —0.308
5+ —0.091
Unknown —0.955
Nonreturn status at 200 d postcalving (referent = nonreturn)
Unknown —1.065
Average percentage of protein per test milk day at 200 d postcalving (referent = <3.0)
3.00-3.25 0.456
3.25-3.50 0.784
3.50-3.75 0.705
3.75-4.00 1.414
4.00+ 0.953
Negative indication at test milking 6 wk postcalving (referent = no)
Yes 1.401
Unknown 0.946
Negative indication count —0.788
Continued
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Table 11&6 (Continued). Variables selected by stepwise selection for the decision moment “200 d after first
calving”

Ttem Coefficient

Number of inseminations at 18 mo (referent = 0)

1 0.633
2 0.523
3 0.270
4 0.027
5+ —0.581
Unknown 0.783

"Estimated coefficients are shown for the genomic estimated breeding values (gEBV) and for the individual
classes of each phenotypic variable with the referent class in parentheses.

Table A7. Variables and estimated coefficients selected by bi-directional stepwise selection for the decision
moment at birth in both a multiple and single variable regression

Multiple regression Single regression
Item coefficient coefficient
gEBV! and phenotypic variable selected
¢EBV longevity 0.159 0.153
gEBV foot angle —0.109 —0.120
gEBV udder depth —0.068 —0.060
gEBV frame 0.062 0.017
¢EBV kg of fat 0.063 0.087
gEBV nonreturn at 56 d —0.086 0.009
gEBV dairy strength 0.057 0.043
¢EBYV interval first-last insemination 0.218 0.085
gEBV calving interval —0.106 0.048
Season of birth (referent = fall)
Spring 0.304 0.118
Summer 0.231 0.205
Winter 0.334 0.119
Year of birth (referent = 2012)
2013 —0.360 —0.220

'9EBV = genomic estimated breeding value.
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