
ABSTRACT

Advances in technology and improved data collection 
have increased the availability of genomic estimated 
breeding values (gEBV) and phenotypic information 
on dairy farms. This information could be used for the 
prediction of complex traits such as survival, which can 
in turn be used in replacement heifer management. In 
this study, we investigated which gEBV and phenotypic 
variables are of use in the prediction of survival. Sur-
vival was defined as survival to second lactation, plus 
2 wk, a binary trait. A data set was obtained of 6,847 
heifers that were all genotyped at birth. Each heifer 
had 50 gEBV and up to 62 phenotypic variables that 
became gradually available over time. Stepwise variable 
selection on 70% of the data was used to create mul-
tiple regression models to predict survival with data 
available at 5 decision moments: distinct points in the 
life of a heifer at which new phenotypic information 
becomes available. The remaining 30% of the data were 
kept apart to investigate predictive performance of the 
models on independent data. A combination of gEBV 
and phenotypic variables always resulted in the model 
with the highest Akaike information criterion value. 
The gEBV selected were longevity, feet and leg score, 
exterior score, udder score, and udder health score. 
Phenotypic variables on fertility, age at first calving, 
and milk quantity were important once available. It 
was impossible to predict individual survival accurately, 
but the mean predicted probability of survival of the 
surviving heifers was always higher than the mean pre-
dicted probability of the nonsurviving group (difference 
ranged from 0.014 to 0.028). The model obtained 2.0 to 
3.0% more surviving heifers when the highest scoring 
50% of heifers were selected compared with randomly 
selected heifers. Combining phenotypic information and 
gEBV always resulted in the highest scoring models 
for the prediction of survival, and especially improved 

early predictive performance. By selecting the heif-
ers with the highest predicted probability of survival, 
increased survival could be realized at the population 
level in practice.
Key words: dairy cow, survival, longevity, individual 
prediction

INTRODUCTION

Optimally, not all female calves born on a farm should 
be kept as replacements heifers to avoid unnecessary 
costs (Mohd Nor et al., 2012, 2015). To have insight 
into these costs, economic models have been developed 
to help farmers make the best choices in terms of heifer 
management (Mourits et al., 1997; Groenendaal et al., 
2004). However, despite the availability of these mod-
els, many Dutch farmers keep more than the optimal 
number of replacement heifers (Mourits et al., 2000; 
Mohd Nor et al., 2015). Uncertainty about the survival 
and future performance of replacement heifers and 
dairy cows is one of the reasons for a farmer to keep a 
surplus of replacement heifers (Mohd Nor et al., 2015). 
Studies in the United Kingdom, France, and Sweden 
show that between 86 and 88% of heifer calves reach 
their first lactation (Hultgren et al., 2008; Brickell and 
Wathes, 2011; Raboisson et al., 2013), and between 83 
and 96% of all first-lactation heifers survive to their 
second lactation (Dechow and Goodling, 2008; Bach, 
2011; Brickell and Wathes, 2011). In the Netherlands, 
86.6% of first lactation heifers born between 2009 and 
2013 reached their second lactation (van Pelt et al., 
2016b). Because it takes on average around 1.5 lacta-
tions to repay the rearing costs of a dairy cow, reducing 
the number of replacement heifers raised is important 
for farm profitability (Bach, 2011; Boulton et al., 2017). 
Surplus heifers may be sold, but this does not always 
cover the rearing costs (Mohd Nor et al., 2015), or may 
be used to replace older dairy cows that are voluntarily 
culled. However, because resilience and longevity of the 
dairy herd are becoming increasingly important from a 
societal and welfare point of view (Ortiz-Pelaez et al., 
2008; LTO, 2011; Mohd Nor et al., 2014; Barkema et 
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al., 2015), it may become preferable to not cull older 
dairy cows simply because a younger replacement is 
available.

Despite the importance of survival, it is rarely in-
cluded in heifer management models and even when 
survival is taken into account, there is no consideration 
for individual differences between heifers (Mohd Nor et 
al., 2015). Individual prediction of survival in heifers is 
often not attempted because of the difficulty of predict-
ing phenotypic survival accurately. Survival traits are 
affected by a combination of production, fertility, and 
health traits (Heise et al., 2016), and environmental 
factors such as farm management. Furthermore, risk of 
culling is not constant over time. The complex nature 
of survival and the fact that true survival can only 
be measured in retrospect (the animal is culled or has 
died) has also led to many different definitions of sur-
vival traits being used (Essl, 1998; Fetrow et al., 2006). 
Estimated breeding values for at least one survival trait 
are available in most countries for breeding purposes 
(Forabosco et al., 2009). However, the heritability of 
these traits is almost invariably very low (van Pelt et 
al., 2015; Heise et al., 2016), making the phenotypic 
prediction of individual survival based on parent infor-
mation alone not very accurate.

Combining available genomic estimated breeding 
values (gEBV) and phenotypic information might 
yield more accurate predictions for individual survival. 
Genotyping costs in dairy cattle have decreased to the 
point where it is economically feasible to obtain gEBV 
for production animals at birth (Pryce et al., 2012; 
Weigel et al., 2012; Calus et al., 2015). More phenotypic 
information on individual animals is also available on 
farms. The aim of this study is to investigate the pos-
sibility of combining phenotypic information and gEBV 
for the phenotypic prediction of survival. Five distinct 
moments were chosen for prediction of survival. These 
“decision moments” were moments in the lifetime of a 
dairy cow where new phenotypic information becomes 
available on which a management decision could be 
made.

MATERIALS AND METHODS

Data

A data set was obtained from cattle improvement 
cooperative CRV (Arnhem, the Netherlands) to in-
vestigate which gEBV and phenotypic variables could 
serve as predictors for survival. The data were available 
from animals born on 463 different Dutch and Flem-
ish farms that participate in a “data plus” program, 
where additional information is gathered on dairy cows 
on commercial farms. All animals in this study were 

genotyped at birth, herd book registered, and had at 
least 87.5% Holstein blood. Survival was defined as the 
binary trait “survival until second calving, plus 2 wk,” 
henceforth referred to as “survival to second lactation.” 
This point in time was selected due to limitations of our 
data and because the lactation following second calv-
ing is economically significant (Bach, 2011). Two ad-
ditional weeks were included to avoid counting animals 
that died during or as a consequence of their second 
calving. To have a known observation for survival, all 
cows included had to be born at least 46 mo before 
the end of data collection (March 2017), and were not 
exported abroad during this time. Animals exported 
abroad were excluded because they had unknown dates 
of death and could not be used in the analysis. Ani-
mals sold to other Dutch farms could be used because 
records from other farms were available in our data set. 
As the cause of death was unknown for all heifers, all 
deaths were included. This included deaths on farm, 
involuntary culling, and voluntary culling. Twenty-four 
animals were removed from the data set due to having 
only second calving records available. The final data set 
consisted of 6,847 female cows born between January 
2012 and June 2013. Out of these cows, 5,872 (85.8%) 
cows survived until second lactation and 975 (14.2%) 
cows did not.

Five different data sets were created to predict surviv-
al with data available at 5 different “decision moments” 
during the life of a cow: at birth, at 18 mo of age, at 
first calving, 6 wk after first calving, and at 200 days 
after first calving. These moments were selected as they 
were points in time when more phenotypic information 
becomes available and where relevant decisions related 
to survival could be made. This includes not only the 
decision to cull or not cull an animal, but for example 
also if an animal should be inseminated again or not. 
The decision not to inseminate a heifer is effectively 
an early culling decision, as without getting pregnant 
it is not possible to enter the next lactation, even if 
the heifer is kept in the herd for another few months. 
Appendix Table A1 shows all variables, as well as the 
decision moment in which they become available, and 
if the variables were originally continuous. Information 
was cumulative; all records available on the first deci-
sion moment were also available during the subsequent 
decision moments. Each animal had 50 gEBV, scaled 
to a value between 0 and 10 where the largest value 
was set to 10 and the smallest value set to 0. These 
gEBV are direct genomic values, which did not include 
any own performance. If regular gEBV were used, own 
information included would have led to a residual co-
variance between the gEBV and survival. Using this 
regular gEBV in a survival prediction would have led to 
auto-correlation. Because historical gEBV for the vari-
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ous decision moments were not available, only gEBV 
based solely on genotype were used. Phenotypic records 
were available on gestation duration and dam parity, 
herd book status, birth records, calving records, records 
on moves between different farms, insemination records 
of the first and second parity, and first parity milk re-
cords. Calving ease scores were scored 1 to 6, where 1 
was an easy birth, 2 was normal, and scores 3 to 6 were 
considered difficult births, because they denoted long 
labor and various veterinarian interventions. The milk 
records at “6 wk postcalving” were of the most recent 
milk test day record before the end of 6 wk. Milk re-
cords in the decision moment “200 d postcalving” were 
an average of all milk records available of an animal up 
to that point. Fertility records were used to determine 
nonreturn status at the decision moment “18 mo of age” 
and “200 d postcalving.” If a heifer had AI records, but 
received no AI in the 56 d before the 2 aforementioned 
decision moments, it was listed as nonreturn, because it 
had not received another insemination at least 56 d af-
ter the last insemination. Heifers with an insemination 
in the 56 d before the decision moment, no recorded 
inseminations at that point in time or subject to natu-
ral mating were listed as unknown. In these cases the 
exact insemination or conception date was unknown 
or it could not otherwise be determined if the animal 
was pregnant. Animals with missing records were al-
ways included in the data sets. Missing records could 
have reflected active management decisions (e.g., not 
inseminating an animal) or could reflect, for example, 
a fertility problem, and thus could have been useful 
in prediction. This was modeled by adding a class 
“unknown” to all factorial variables to identify missing 
values. Continuous variables with missing values were 
transformed into factors with between 5 and 8 classes, 
depending on the distribution of individual variables. 
We chose to select at least 5 levels to keep sufficient 
variation within each variable. In total, each animal 
had 50 gEBV (available at each decision moment), and 
up to 62 additional phenotypic variables accumulating 
throughout their lifetime.

Model and Analysis

To determine if survival to second lactation could be 
predicted, logistic regression models were constructed 
for each decision moment. Each of the 5 data sets (one 
for each decision moment) were split into sets of 70% 
training and 30% testing data, stratified by survival 
group to ensure a representative amount of both sur-
vival groups in the testing and training sets. Stratified 
sampling meant that the training and the testing data 
sets included identical proportions of nonsurviving and 

surviving heifers. We used the statistical program R 
(R Core Team 2016), version 3.3.1, and the package 
‘caret’ (Kuhn, 2008) to select models for each decision 
moment. Both forward stepwise selection and stepwise 
selection combining forward and backward stepwise 
selection were tested on the 5 training data sets using 
the following general model:

	 Logit (P) = β0 + ΣβiXi,	

where logit (P) is the estimated probability of survival, 
β0 is the population mean, and βiXi is the set of predictor 
variables, consisting of phenotypic variables and gEBV. 
The Akaike information criterion (AIC) was used to 
determine the best possible model for each decision 
moment. The stepwise procedure combining forward 
and backward selection resulted in the models with the 
lowest AIC value and thus only the models derived us-
ing this procedure were used for analysis. The stepwise 
procedure was first used on the training sets containing 
both gEBV and phenotypic variables to identify which 
variables are significant for the prediction of survival. 
The models were tested on their corresponding test data 
set to get probabilities of survival for the heifers in the 
test set. By applying the model to the data, predicted 
probabilities of survival were obtained for each heifer. 
These were values between 0 and 1, where values close 
to 1 indicate a high probability to reach the second 
lactation, and values closer to 0 a lower probability to 
reach second lactation. To compare and validate the 
models, the prediction accuracy, specificity, sensitivity, 
positive predictive value, and negative predictive value 
were calculated. The predicted probability of survival 
was transformed into a survival prediction of 1 when 
equal to or above the average probability for survival in 
our data (0.858), and to a survival prediction of 0 below 
the average probability of survival. The accuracy was 
the proportion of correct predictions. The sensitivity 
was calculated as the true positive outcomes divided 
by the true positives plus the false negatives, and the 
specificity as the true negatives divided by the true 
negatives plus the false positives. The positive predic-
tive value is the true positive value divided by the true 
positive value plus the false positive value, and simi-
larly the negative predictive value is the true negative 
value divided by the true negative value plus the false 
negative value. We also calculated the balanced accu-
racy and the area under the receiver operating curve 
(ROC), the area under the curve (AUC) value. The 
balanced accuracy is the average of the accuracy for 
nonsurviving heifers and the accuracy of the surviving 
heifers. The AUC value is the predictive ability of the 
model including all possible cut-offs and was calculated 
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using the pROC package (Robin et al., 2011). These 
metrics were selected as survival was an imbalanced 
trait, with more survivors than nonsurvivors. Both bal-
anced accuracy and AUC value are more robust against 
imbalanced predictors than accuracy.

To investigate if there was merit in including both 
gEBV and phenotypic traits, we also selected models 
for each decision moment using either only gEBV or 
only phenotypic information as input for the variable 
selection. For each decision moment, the 3 resulting 
models were tested on a new 70/30 split of training and 
testing data. The AIC was recorded as indication of 
model fit and the AUC value calculated using pROC as 
an indication of model performance.

RESULTS

Figure 1 shows the distribution of age in days at 
death for heifers in our data set. This figure indicates 
that in our data set most heifers reached 18 mo of age, 
with few early deaths. The number of culled and dead 
animals increased after 18 mo, most due to the avail-
ability of phenotypic records on which selective culling 
could take place.

An overview of the gEBV and phenotypic variables 
selected using stepwise selection for each decision mo-
ment when including only living heifers at a decision 
moment is shown in Table 1. The coefficients of the 
selected variables are shown in Appendix Tables A2, 
A3, A4, A5, and A6, separated by decision moment. 
The gEBV for longevity was selected at all decision 
moments, and was in each case positively associated 

with survival. While different gEBV were selected at 
different decision moments, at each decision moment 
they broadly fell into the same categories: fertility, ex-
terior score, udder score, udder health, and feet and leg 
gEBV. The gEBV for production variables were not 
prominent among the selected variables, although they 
were selected at the first 3 decision moments. At 200 
d after first calving, several gEBV regarding longev-
ity, exterior score, udder conformation, and health and 
fertility were still selected. The phenotypic variables 
selected at birth were season of birth and year of birth. 
Year of birth and season of birth were selected up to 
the last decision moment, where season of first calv-
ing was selected as an alternative for season of birth. 
Phenotypic information new to a decision moment 
was always selected, with some variables remaining 
important over the next decision moment(s). Age at 
first calving, for example, was strongly associated with 
survival in all decision moments after first calving (Ap-
pendix Tables A4 to A6). Earlier calving ages had a 
more positive association with survival. Phenotypic 
fertility information appears important in general, as 
nonreturn status and number of inseminations were 
selected in both decision moments when these variables 
became available (Appendix Tables A3 and A6). At 200 
d after calving, both the number of inseminations at 18 
mo and at 200 d after calving were selected. Phenotypic 
information on production traits was also important: 
kg of milk produced at the milk test day closest to 6 wk 
postcalving and the average milk production per test 
milk day at 200 d after calving were both significantly 
associated with survival (Appendix Tables A5 and A6). 
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Figure 1. The distribution of age at death in days for nonsurviving heifers. Gray lines indicate the decision moments. The decision moment 
at first calving was set at the average age at first calving in the data set.
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Furthermore, the average percentage of protein per test 
milk day was selected at 200 d postcalving. Phenotypic 
traits on udder health were also selected as number of 
negative outcomes, which include mastitis and other 
illnesses, negative indication (yes/no) at test milking 
closest to 6 wk postcalving, and average cell count per 
test milk day at 200 d postcalving.

To determine if adding genotype information has ad-
ditional value, we compared a model using only geno-
types, a model using only phenotypes, and the results 
of the combined model (Table 2). The combined model 
has the highest AUC value at all decision moments, ex-

cept at first calving where all methods perform equally, 
and at 200 d post-first calving, where it performs equal 
to the model containing only phenotypic variables. The 
AIC value was always highest for the combined model, 
as a model containing both gEBV and phenotypic vari-
ables was always selected through stepwise selection 
(Table 1).

On average, the predicted probability for the surviv-
ing group was between 0.014 (at birth) and 0.028 (at 
200 d post-first calving) higher than the probability 
of survival for the nonsurviving group (Table 3). This 
means that while overlap occurred, a difference was 
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Table 1. Selected variables for the best model in each decision moment1

Variable

Estimate for selected variable decision moments

Birth
18 mo  
of age

At first  
calving

6 wk after  
first calving

200 d after  
first calving

gEBV
  Longevity 0.128 0.212 0.261 0.242 0.207
  Foot angle −0.115 −0.078 −0.086 −0.085  
  Udder depth −0.102 −0.137 −0.140   −0.106
  Frame 0.074        
  kg of fat 0.061 0.122      
  Nonreturn at 56 d −0.092     −0.088  
  Interval first–last insemination 0.140     −0.213 0.106
  Overall fertility   0.145 0.091 0.242  
  Milking speed   0.061      
  NVI2   −0.122      
  Overall exterior score   0.143     0.256
  SCC     0.196 0.212  
  Udder health     −0.283 −0.289 −0.153
  Rear udder height     0.072    
  Feet and legs     −0.066    
  Chest width     0.099 0.131  
  Rear legs hind view       −0.162  
  Locomotion       0.125  
  kg of lactose       −0.073  
  Stature         −0.094
  Udder support         0.074
Phenotypic variables
  Season of birth 0.434 0.474 0.423 0.600  
  Year of birth −0.372 −0.268 −0.270 −0.342 −0.239
  Number of inseminations at 18 mo   1.305     1.553
  Coat color     −0.208    
  Nonreturn status at 18 mo   −0.426      
  Season of first calving         0.725
  Age in days at first calving     1.700 1.881 2.831
  Sex of first calf     0.378 0.272  
  Calf survival 1 wk after birth         14.392
  kg of milk produced at milk test day closest to 6 wk postcalving       2.512  
  Total number of transports at 200 d postcalving         15.215
  Average kg of milk per test milk day at 200 d postcalving         1.899
  Average cell count (× 1,000) per test milk day at 200 d postcalving         1.032
  Average percentage of protein per test milk day at 200 d postcalving         1.414
  Negative indication at test milking 6 wk postcalving         1.401
  Number of negative indications at test milk days before 200 d  
    postcalving

        −0.788

  Number of inseminations at 200 d postcalving         1.553
  Nonreturn status at 200 d postcalving         −1.065
1The table shows the coefficients for the genomic estimated breeding values (gEBV). For the factorial phenotypic variables, this table shows the 
difference in coefficient between the highest and the lowest class for a variable. The coefficient of the referent class is 0. The maximum difference 
was used because class variables have more than one coefficient. For the exact coefficients for each variable, see Appendix Tables A2 to A6.
2NVI = the Dutch/Flemish merit index score.
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observed between the 2 groups on average. The accu-
racy of the models increased from 0.562 to 0.776 in 
later decision moments (Table 4). The AUC values also 
increased from 0.578 at birth to 0.648 at 200 d post-
calving. This means that the model improved at later 
decision moments. However, the balanced accuracy did 
not increase, remaining around 0.56 at all decision mo-
ments. It appears that the models improved by predict-
ing surviving heifers better. This can be seen from an 
increase in the sensitivity of the models from 0.566 at 
birth to 0.816 at 200 d postcalving and an increase 
in positive predictive value from 0.880 to 0.933. This 
means that both a larger proportion of all surviving 
heifers in the data set were predicted correctly as sur-
viving, and a larger proportion of the heifers predicted 
to survive actually survive. In contrast, although the 
model was able to better predict which heifers survived, 
predicting which heifers did not survive proved more 
difficult. The negative predictive value did not increase 
consistently, and was actually lowest at 200 d postcalv-
ing. Furthermore, the specificity of the model varied 
inconsistently, ranging from 0.295 to 0.534, meaning 
that the proportion of nonsurviving heifers that is iden-
tified did not improve.

Rather than focusing on individual prediction, a 
situation could be considered where the models were 
used to select 50% of heifer calves to become replace-
ment heifers. Table 5 shows the average probability 
of survival in a decision moment and the probability 

of survival of the selected group. For example, in the 
first decision moment, 85.8% of calves reached second 
lactation in a random selection, compared with 88.6% 
of the calves selected through the model. This meant 
that out of the 1,026 selected calves in our testing data 
set, 909 of heifers selected by our model would reach 
second lactation, compared with 880 random heifers. In 
subsequent decision moments, using a model resulted in 
up to 3% more surviving heifers compared with random 
selection.

DISCUSSION

Our research showed that it was possible to predict 
the survival outcome of heifers at a population level. 
Predicting nonsurviving animals proved difficult even 
with large amounts of phenotypes and gEBV available. 
This was not unexpected because a cow could have 
been culled for a myriad of reasons that often influence 
each other, and the decision to cull is time dependent 
and based on decisions made by individual farmers 
(Hadley et al., 2006; Zijlstra et al., 2013). Our data 
set also included unpredictable causes of death such as 
random accidents (Brickell and Wathes, 2011). Predic-
tion may have been improved by including the exact 
causes of death or culling (e.g., allowing us to remove 
deaths caused by accidents), but this information was 
not available.

The difficulty of predicting survival meant that in-
dividual predictions obtained by our models were too 
inaccurate for the purpose of identifying nonsurviving 
heifers. Because the negative predictive value ranged 
from 0.12 to 0.17, any heifer predicted as not surviving 
only had a 12 to 17% chance of not reaching second 
lactation. However, if applied on a large group of indi-
viduals, it was possible to use these models to select the 
heifers with the highest probability of survival. When 
50% of the heifers with the highest probability of sur-
vival were selected, 2.0 to 3.0% more heifers reached 
second lactation compared with random selection. 
When selecting at birth, this would have resulted in 
a 2.8% increase in surviving heifers. Although a 2.8% 
increase does not seem like a large improvement, this 
represented a 15.5% reduction of nonsurviving heifers.

The selected variables gave insight into which vari-
ables were associated with survival at the various deci-
sion moments. The first variables selected were birth 
season and year of birth. Because these variables were 
cohort variables, these variables were not animal spe-
cific and did not distinguish between calves born in the 
same season and year. This meant they could not be 
used for an individual farmer to distinguish between 
calves born in the same season or year. Birth season and 
year are important correction factors at the population 
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Table 2. The area under the curve (AUC) of the receiver operator 
curve (ROC) value for a model including both genomic estimated 
breeding values (gEBV) and phenotypic information, only phenotype 
information, and only gEBV

Decision moment
gEBV  
only

Phenotype  
only

gEBV and  
phenotype

Birth 0.557 0.562 0.584
18 mo 0.580 0.594 0.606
First calving 0.597 0.597 0.596
6 wk after first calving 0.560 0.646 0.677
200 d after first calving 0.573 0.731 0.731

Table 3. Mean and SD of the predicted probability of survival for 
the survival and the nonsurvival heifer groups in the testing set of 
each decision moment, including only alive heifers at the start of the 
decision moment

Decision moment

Survival = no

 

Survival = yes

Mean SD Mean SD

Birth 0.847 0.049 0.861 0.044
18 mo 0.842 0.075 0.868 0.060
At first calving 0.873 0.073 0.897 0.052
6 wk after first calving 0.869 0.072 0.896 0.052
200 d after first calving 0.867 0.064 0.896 0.054
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level, however, and were selected in all but the last de-
cision moment, where calving season was used instead 
of season of birth. Production gEBV were surprisingly 
not selected at every decision moment. This may be 
explained by the fact that longevity was uncorrected 
for production, and thus possibly served as a substitute 
for production gEBV. Phenotypic production traits 
such as (average) kg of milk produced were selected 
once available, because there is a known increased risk 
of culling for animals with low milk production (Hadley 
et al., 2006). Most of the other associations found were 
not surprising. The association between feet and leg 
traits and survival is well known in literature (Buenger 
et al., 2001; Caraviello et al., 2004). The gEBV for 
foot angle was associated with lameness specifically 
(Wells et al., 1993), which is an important reason for 
culling (Olechnowicz and Jaskowski, 2011; Zijlstra et 
al., 2013). Udder conformation traits (Caraviello et al., 
2004; Kern et al., 2015) and udder health (Mohd Nor 
et al., 2014) are known to be strongly associated with 
survival. Udder and health traits are correlated (Carl-
ström et al., 2016), and udder traits have even been 

suggested as candidate traits for indirect prediction 
of longevity (Kern et al., 2015). Udder health pheno-
type variables were selected in the form of negative 
indication counts and SCC, which is associated with 
increased risk of culling (Beaudeau et al., 2000). The 
exterior score gEBV selected in this study were mostly 
related to size. Body size has been associated with lon-
gevity and efficiency (Getu and Misganaw, 2015; Kern 
et al., 2015); however, the direction of the associations 
found varied, and some studies find no effect at all 
(Sewalem et al., 2004). Even when studies find negative 
associations, culling decisions may be influenced by a 
(regional) farmer preference for larger cows (Hansen et 
al., 1999; Caraviello et al., 2004). Lastly, fertility had 
been reported as one of the most important reason for 
culling in Dutch Holstein cows (Zijlstra et al., 2013), 
and there is a well-documented relation between fertil-
ity and survival (Pritchard et al., 2013). Age at first 
calving, which is also an indication of fertility, was al-
ways selected when available. A higher age at first calv-
ing was associated with higher costs, lower fertility, and 
higher risk of culling overall (Sewalem et al., 2008; van 
Pelt et al., 2016a). Interestingly, despite the availability 
of 2 parities worth of phenotypic fertility records, fertil-
ity gEBV were still selected by the combined model in 
the fifth decision moment.

The selection criteria for our data were very stringent 
because they included only animals genotyped at birth. 
This was done to avoid a winners’ bias; genotyping was 
more expensive previously, and so only promising heif-
ers and proven cows were genotyped. This means that 
cows that were genotyped either already had reached 
second lactation, or were more likely to reach the sec-
ond lactation than an average cow in the population. 
Less than 7% of heifers do not reach the second lacta-
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Table 4. The accuracy, balanced accuracy, sensitivity, specificity, positive and negative predictive values, and area under the curve (AUC) 
values of the models at each decision moment1

Decision moment Accuracy2
Balanced  
accuracy3 Specificity4 Sensitivity5 Neg. pred. value6 Pos. pred. value7 AUC8

Birth 0.562 0.550 0.534 0.566 0.170 0.880 0.578
18 mo 0.634 0.577 0.498 0.656 0.186 0.893 0.606
At first calving 0.756 0.545 0.276 0.813 0.150 0.904 0.594
6 wk after first calving 0.755 0.567 0.329 0.806 0.168 0.910 0.620
200 d after first calving 0.776 0.555 0.295 0.816 0.117 0.933 0.648
1Survival was scored as 1 when the predicted probability of survival was above the average probability of survival (0.858) and scores below the 
average probability of survival were scored as 0.
2The proportion of correct predictions.
3The average of the accuracy for nonsurviving heifers and the accuracy of the surviving heifers.
4The true positive outcomes divided by the true positives plus the false negatives.
5The true negatives outcomes divided by the true negatives plus the false positives.
6The true positive outcomes divided by the true positive outcomes plus the false positive outcomes.
7The true negative outcomes divided by the true negative outcomes plus the false negative outcomes.
8The AUC of the receiver operating characteristic.

Table 5. The average chance of survival at a decision moment, the 
average chance of survival for the animals in the top 50% predicted 
probabilities of survival, and the difference in percentage between the 
two

Item

Probability of survival (%)
Difference  

(%)Mean Predicted top 50%

Birth 85.8 88.6 2.8
18 mo 86.4 89.4 3.0
At first calving 89.0 91.4 2.4
6 wk after first calving 90.4 92.4 2.0
200 d after first calving 92.3 95.3 3.0
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tion if we included all genotyped cows in our data set. 
As we did not include all genotyped heifers, the heifers 
in our data set were limited to those born within a 
period of around a year and a half. This meant it was 
impossible to investigate true survival or beyond the 
fourth lactation, since these lactations would require 
an opportunity group born before the heifers available 
in our data set. The limited number of heifers also 
explains why some variables such as “number of move-
ments” and “calf survival at 2 wk” were selected. Both 
variables had very strong associations with survival 
for some classes (Appendix Table A6). These classes 
had less than 10 heifers each, all of which survived by 
chance. All heifers of a class surviving resulted in a 
strong association with survival for these variables. 
In future studies, classes with very few cases could be 
excluded or merged with other classes, if they prove 
problematic for the analysis. Increasing the amount of 
animals in the data set should also reduce the number 
of very small classes. In this study, as survival is dif-
ficult to predict and information was already limited on 
some causes of death, we chose not to merge or remove 
classes, resulting in some artifacts. Another effect of the 
limited number of heifers was that many farms only had 
a small number of calves. The average number of calves 
per farm was 15, with many farms having fewer calves 
and some farms having a much larger number of calves. 
Farm identification numbers could have functioned as 
a proxy for herd and farm management, which were 
not included in the data. However, farm identification 
numbers were not selected due to the large number of 
farms with very few calves. Next to requiring all heifers 
to be genotyped, this study included only phenotypic 
information that was readily available. This meant 
that information gaps still existed at each decision mo-
ment. For example, between birth and 18 mo of age 
only fertility variables and movements between farms 
were recorded on a large scale. Variables such as the 
occurrence of diseases (Svensson and Hultgren, 2008; 
Heinrichs and Heinrichs, 2011) or simple body (size) 
measurements of calves (Wathes et al., 2008) could 
have provided valuable information on the health and 
development of the animal during the first 18 mo of 
life. Weight or size of the heifer may also be useful for 
predicting fertility, because while earlier first calving 
ages seemed preferable, it may be beneficial for some 
heifers to be inseminated later as early inseminations 
may have detrimental effects (Hoffman and Funk, 1992; 
Heinrichs, 1993).

Because a multiple regression was used in this study, 
the direction and the strength of the association of the 
variables with survival was only valid in the context 
of the whole model. It is important in the interpre-
tation that the values cannot be taken individually. 

For example, gEBV for interval between first and last 
insemination had both a negative and a positive as-
sociations with survival depending on the decision 
moment. Appendix Table A7 shows an example of the 
differences in direction and strength of associations 
when some variables available at birth were tested 
in a single or multiple regression model. The differ-
ences between a single and multiple regression model 
could be explained by high correlations between some 
variables, because collinearity is known to cause issues 
with multiple regression (Whittingham et al., 2006; 
Yoo et al., 2014). Antagonistic relations between mul-
tiple gEBV that were both associated with survival 
(such as fertility and production; Zavadilová and Zink, 
2013) could also explain some of the unusual relations 
found. The combination of various related gEBV could 
be somewhat mitigated by more stringent selection of 
the gEBV variables provided. Each decision moment 
appeared to included one or multiple selected gEBV 
of several groups: feet and legs, udder, udder health, 
exterior, and fertility. We tested the consistent selection 
of groups of gEBV by building a model that included 
gEBV for longevity, overall fertility, udder score, udder 
health, feet and legs, and overall exterior at all deci-
sion moments. These general models also included the 
phenotypic records normally selected at each decision 
moment. The general models performed identically to 
the models described in this paper (data not shown).

This study shows that there is merit in the combina-
tion of phenotypic information and gEBV for the pre-
diction of survival, because gEBV were always selected 
in combination with phenotypic information. Accura-
cies for the combined model were also higher than for 
models using only gEBV or phenotype information in 
all but the last decision moment. The literature already 
shows an increased interest in multiple fields to develop 
methods to combine phenotypic and genomic informa-
tion for various purposes (Javed et al., 2014; Blake et al., 
2016; Haendel et al., 2016), and has proven valuable for 
example in disease prognosis in human diseases (Perlee 
et al., 2013; Javed et al., 2014). In cattle, a recent paper 
estimating the lifetime profitability of a dairy cow also 
combines gEBV with a small amount of phenotypic 
variables to obtain more accurate estimates (Kelleher 
et al., 2015). Because there is interest in combining 
genotype and phenotypic information, future research 
could explore the exact benefit of including genotypes 
for performance measures, as well as investigate other 
methods compared with multiple regression.

CONCLUSIONS

In this study, genomic information in the form of 
gEBV was combined with phenotypic information to 
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predict survival to second lactation in Holstein dairy 
cows at 5 different decision moments. A combination 
of gEBV and phenotypic information resulted in better 
models than using only one type of information. The 
addition of gEBV especially improved early prediction. 
A combination of gEBV and phenotypic information 
also resulted in the best predictive performance up to 
the last decision moment. While accurate individual 
prediction of survival outcome could not be achieved, 
surviving heifers were predicted to have a higher prob-
ability of survival than nonsurviving heifers on aver-
age. By selecting the heifers with the highest predicted 
probability of survival, increased survival could be real-
ized at the population level in practice.
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Continued

Table A1. All 62 phenotypic variables and 50 genomic estimated breeding values (gEBV) available and the decision moment in which each 
variable is available

Item   Decision moment   Continuous

Phenotypic variable
  Animal identification number Birth No
  Year of birth Birth No
  Birth farm identification number (UBN) Birth No
  Month of birth Birth No
  Birth season Birth No
  Parity dam Birth Yes
  Breed Birth No
  Holstein % Birth No
  Red factor Birth No
  Calving ease dam Birth No
  Gestation duration dam Birth Yes
  Birth weight Birth Yes
  Insemination farm 18 mo No
  Insemination season 18 mo No
  Countable inseminations 18 mo Yes
  Nonreturn status at 18 mo 18 mo No
  No insemination information at 18 mo 18 mo No
  Number of farm movements at 18 mo 18 mo Yes
  Age at first insemination 18 mo Yes
  Type of first insemination 18 mo No
  Number of inseminations 18 mo Yes
  Raised at a specialty calf-rearing farm First calving No
  Calving season First calving No
  Total number of farm movements at calving First calving Yes
  Age at first calving First calving Yes
  Calving farm UBN First calving No
  Calf sex First calving No
  Calf survival first 24 h First calving No
  Calving ease First calving No
  Gestation duration First calving Yes
  Birthweight calf First calving Yes
  Calf survival first week First calving No
  Calf survival second week First calving No
  Twins First calving No
  kg of milk at 6 wk 6 wk after first calving Yes
  Fat percentage milk at 6 wk 6 wk after first calving Yes
  Protein percentage milk at 6 wk 6 wk after first calving Yes
  Cell count milk at 6 wk 6 wk after first calving Yes
  Urea milk at 6 wk 6 wk after first calving Yes
  Lactose percentage milk at 6 wk 6 wk after first calving Yes
  Cow status indicator at 6 wk 6 wk after first calving No
  Number of negative indications at 6 wk 6 wk after first calving Yes
  Number of days in lactation on milk test day 6 wk after first calving Yes
  Complete milk measurement available at 6 wk 6 wk after first calving No
  First parity insemination farm UBN 200 d after first calving No
  First parity insemination season 200 d after first calving No
  First parity first insemination type 200 d after first calving No
  Number of inseminations in first parity 200 d after first calving Yes
  Nonreturn status at 200 d postcalving 200 d after first calving No
  Age at 200 d postcalving 200 d after first calving Yes
  Insemination known in the first parity 200 d after first calving No
  Age at first insemination in the first parity 200 d after first calving Yes
  Number of farm movements at 200 d postcalving 200 d after first calving Yes
  Number of known milk testings 200 d postcalving 200 d after first calving Yes
  Average kg of milk 200 d after first calving Yes
  Average fat percentage of milk 200 d after first calving Yes
  Average protein percentage of milk 200 d after first calving Yes
  Average cell count of milk 200 d after first calving Yes
  Average urea of milk 200 d after first calving Yes
  Average lactose percentage of milk 200 d after first calving Yes
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Table A1 (Continued). All 62 phenotypic variables and 50 genomic estimated breeding values (gEBV) available and the decision moment in 
which each variable is available

Item   Decision moment   Continuous

  Number of negative indications at 200 d postcalving 
    (mastitis, abortion, other illness, teat disorders)

200 d after first calving Yes

  Number of farm movements in the first parity 200 d after first calving Yes
gEBV    
  NVI1 Dutch breeding goal standard Birth Yes
  kg of milk Birth Yes
  kg of fat Birth Yes
  kg of protein Birth Yes
  kg of lactose Birth Yes
  “Inet” Dutch production index Birth Yes
  Cell count Birth Yes
  Subclinical mastitis Birth Yes
  Clinical mastitis Birth Yes
  Udder health Birth Yes
  Lifespan Birth Yes
  Lifespan with predictors Birth Yes
  Birth index Birth Yes
  Calving ease Birth Yes
  Postcalving ease Birth Yes
  Livability calving (maternal) Birth Yes
  Livability birth (direct) Birth Yes
  Overall fertility Birth Yes
  Nonreturn status at 56 d Birth Yes
  Interval calving–first insemination Birth Yes
  Calving interval Birth Yes
  Interval first–last insemination Birth Yes
  Conception ratio Birth Yes
  Claw health Birth Yes
  Calf vitality 3–365 d Birth Yes
  Milking speed Birth Yes
  Dairy strength Birth Yes
  Stature Birth Yes
  Chest width Birth Yes
  Body depth Birth Yes
  Angularity Birth Yes
  Body condition Birth Yes
  Rump angle Birth Yes
  Rump width Birth Yes
  Rear legs hind view Birth Yes
  Rear leg side view Birth Yes
  Foot angle Birth Yes
  Locomotion Birth Yes
  Fore udder attachment Birth Yes
  Front teat placement Birth Yes
  Teat length Birth Yes
  Udder depth Birth Yes
  Rear udder height Birth Yes
  Udder support Birth Yes
  Rear teat placement Birth Yes
  Frame Birth Yes
  Robustness Birth Yes
  Overall udder score Birth Yes
  Feet and legs Birth Yes
  Overall exterior score Birth Yes
  Milking robot efficiency Birth Yes
1NVI = the Dutch/Flemish merit index score.
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Table A2. Variables selected by stepwise selection for the decision 
moment “birth”1

Item Coefficient

gEBV and phenotypic variable selected
gEBV longevity 0.128
gEBV foot angle −0.115
gEBV udder depth −0.102
gEBV frame 0.074
gEBV interval first-last insemination 0.140
gEBV nonreturn at 56 d −0.092
gEBV kg of fat 0.061
Year of birth (referent = 2012)  
  2013 −0.372
Birth season (referent = fall)  
  Spring 0.338
  Summer 0.286
  Winter 0.434
1Estimated coefficients are shown for the genomic estimated breeding 
values (gEBV) and for the individual classes of each phenotypic vari-
able with the referent class in parentheses.

Table A3. Variables selected by stepwise selection for the decision 
moment “18 mo of age”1

Item Coefficient

gEBV and phenotypic variable selected
  gEBV overall fertility 0.145
  gEBV kg of fat 0.122
  gEBV longevity 0.212
  gEBV milking speed 0.061
  gEBV foot angle −0.078
  gEBV udder depth −0.137
  NVI2 −0.122
  gEBV overall exterior score 0.143
Birth season (referent = fall)  
  Spring 0.411
  Summer 0.474
  Winter 0.410
Year of birth (referent = 2012)  
  2013 −0.268
Nonreturn status at 18 mo (referent = nonreturn)  
  Unknown −0.426
Number of inseminations at 18 mo (referent = 0)  
  1 0.206
  2 0.317
  3 0.096
  4 −0.346
  5+ −0.988
  Unknown −0.130
1Estimated coefficients are shown for the genomic estimated breeding 
values (gEBV) and for the individual classes of each phenotypic vari-
able with the referent class in parentheses.
2NVI = the Dutch/Flemish merit index score.

Table A4. Variables selected by stepwise selection for the decision moment “first calving”1

Item Coefficient

gEBV and phenotypic variable selected
  gEBV longevity 0.261
  gEBV udder depth −0.140
  gEBV overall fertility 0.091
  gEBV foot angle −0.086
  gEBV SCC 0.196
  gEBV udder health −0.283
  gEBV rear udder height 0.072
  gEBV feet and legs −0.067
  gEBV chest width 0.099
Year of birth (referent = 2012)  
  2013 −0.270
Birth season (referent = fall)  
  Spring 0.423
  Summer 0.341
  Winter 0.121
Age at first calving in days (referent = >1,000)  
  <650 1.531
  650–700 1.700
  700–750 1.549
  750–800 1.417
  800–850 1.307
  850–900 1.053
  900–950 1.005
  950–1,000 1.110
Sex of calf (referent = male)  
  Female 0.206
  Unknown −0.172
Coat color (referent = red)  
  Black −0.208
1Estimated coefficients are shown for the genomic estimated breeding values (gEBV) and for the individual 
classes of each phenotypic variable with the referent class in parentheses.
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Table A5. Variables selected by stepwise selection for the decision moment “6 wk after first calving”1

Item Coefficient

gEBV and phenotypic variable selected
  gEBV longevity 0.242
  gEBV overall fertility 0.242
  gEBV rear legs hind view −0.162
  gEBV locomotion 0.124
  gEBV chest width 0.131
  gEBV foot angle −0.085
  gEBV SCC 0.212
  gEBV udder health −0.289
  gEBV interval first–last insemination −0.213
  gEBV kg of lactose −0.073
  gEBV nonreturn at 56 d −0.088
Year of birth (referent = 2012)  
  2013 −0.342
Birth season (referent = fall)  
  Spring 0.459
  Summer 0.600
  Winter 0.423
Age at first calving in days (referent = >1,000)  
  <650 1.520
  650–700 1.881
  700–750 1.741
  750–800 1.660
  800–850 1.456
  850–900 1.309
  900–950 0.849
  950–1,000 1.097
Sex of calf (referent = male)  
  Female 0.156
  Unknown −0.116
kg of milk produced at milk test day closest to 6 wk postcalving (referent = <15)  
  15–20 0.354
  20–25 0.825
  25–30 1.359
  30–35 1.521
  35–40 1.688
  40+ 2.512
  Unknown 0.049
1Estimated coefficients are shown for the genomic estimated breeding values (gEBV) and for the individual 
classes of each phenotypic variable with the referent class in parentheses.
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Continued

Table A6. Variables selected by stepwise selection for the decision moment “200 d after first calving”1

Item Coefficient

gEBV and phenotypic variable selected
  gEBV longevity 0.207
  gEBV udder health −0.153
  gEBV interval first–last insemination 0.106
  gEBV leg and feet −0.247
  gEBV overall exterior score 0.256
  gEBV stature −0.094
  gEBV udder support 0.074
  gEBV udder depth −0.106
Year of birth (referent = 2012)  
  2013 −0.239
Age at first calving in days (referent = >1,000)  
  <650 2.831
  650–700 1.844
  700–750 1.792
  750–800 1.958
  800–850 1.763
  850–900 1.554
  900–950 0.835
  950–1,000 1.385
Calving season (referent = fall)  
  Spring 0.510
  Summer 0.725
  Winter 0.331
Calf survival at 1 wk of age (referent = alive)  
  Died within 1 wk 14.250
  Dead 24 h after calving −0.142
  Unknown 0.165
Number of farm moves at 200 d  
  1 −0.998
  2 13.527
  3 12.102
  4 14.217
Average kg of milk per test milk day at 200 d postcalving (referent = <20)  
  20–25 0.335
  25–30 0.884
  30–35 1.311
  35–40 1.060
  40+ 1.339
  Unknown −0.560
Average cell count (× 1,000) per test milk day at 200 d postcalving (referent = <25)  
  25–50 −0.145
  50–75 −0.348
  75–100 0.448
  100–125 −0.437
  125+ −0.584
Number of inseminations at 200 d postcalving (referent = 0)  
  1 0.598
  2 0.132
  3 0.094
  4 −0.308
  5+ −0.091
  Unknown −0.955
Nonreturn status at 200 d postcalving (referent = nonreturn)  
  Unknown −1.065
Average percentage of protein per test milk day at 200 d postcalving (referent = <3.0)  
  3.00–3.25 0.456
  3.25–3.50 0.784
  3.50–3.75 0.705
  3.75–4.00 1.414
  4.00+ 0.953
Negative indication at test milking 6 wk postcalving (referent = no)  
  Yes 1.401
  Unknown 0.946
Negative indication count −0.788
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Table A6 (Continued). Variables selected by stepwise selection for the decision moment “200 d after first 
calving”1

Item Coefficient

Number of inseminations at 18 mo (referent = 0)  
  1 0.633
  2 0.523
  3 0.270
  4 0.027
  5+ −0.581
  Unknown 0.783
1Estimated coefficients are shown for the genomic estimated breeding values (gEBV) and for the individual 
classes of each phenotypic variable with the referent class in parentheses.

Table A7. Variables and estimated coefficients selected by bi-directional stepwise selection for the decision 
moment at birth in both a multiple and single variable regression

Item
Multiple regression  

coefficient
Single regression  

coefficient

gEBV1 and phenotypic variable selected
  gEBV longevity 0.159 0.153
  gEBV foot angle −0.109 −0.120
  gEBV udder depth −0.068 −0.060
  gEBV frame 0.062 0.017
  gEBV kg of fat 0.063 0.087
  gEBV nonreturn at 56 d −0.086 0.009
  gEBV dairy strength 0.057 0.043
  gEBV interval first–last insemination 0.218 0.085
  gEBV calving interval −0.106 0.048
Season of birth (referent = fall)    
  Spring 0.304 0.118
  Summer 0.231 0.205
  Winter 0.334 0.119
Year of birth (referent = 2012)    
  2013 −0.360 −0.220
1gEBV = genomic estimated breeding value.
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