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Propositions 
 

1. Solving matrix effects is crucial for generating reliable data  

  in quantitative analysis on LC-MS. 

(this thesis) 

 

2. Detection of QTLs for ratios between different groups of hormones may  

reflect complex molecular mechanisms underlying hormone crosstalk. 

(this thesis) 

 

3. Map studies for interactome networks, such as done by the Arabidopsis  

Interactome Mapping Consortium (2011, Science 333, 601-607), provide  

splendid graphics but ambiguous interpretation. 

 

4. The term ‘evolutionary’ in relation to natural variation incorrectly implies  

that this variation explains species diversity.  

 

5. An individual's political disposition depends on which media he/she is  

exposed to. 

 

6. The reason that organic farming in South Korea contributes only about 1%  

to agricultural food production is that it is not profitable. 
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Chapter 1

As sedentary organisms, plants are exposed to enormous environmental challenges during growth and 

development. In plants, environmental conditions are translated into cellular responses through 

internal signals, including plant hormones. The interplay between external cues and internal signals 

results in plant adaptation. Furthermore, plant hormones, alone or in interactions, play important roles 

in rapid adjustment of development via changes in their levels and/or changes in their perception. This 

thesis contains a number of studies on plant hormones: how quantitative levels of diverse plant 

hormones can be determined reliably; what extent of variation in endogenous hormones exists across 

Arabidopsis natural accessions; is it possible to detect quantitative trait loci for hormone levels using a 

set of recombinant inbred lines in Arabidopsis thaliana. The findings described in this thesis 

contribute to a better understanding of the genetic basis of the regulation of hormone levels in the 

experimental plant model, A. thaliana. 

1. Roles of plant hormones in growth and development

Plant hormones are a group of organic substances present in low concentrations that mediate an array 

of physiological processes. In 1928, Went in the Netherlands first isolated a chemical compound from 

wheat coleoptiles, showed curvature of the coleoptile towards light a phenomenon called 

phototropism. This substance was originally named Wuchsstoff by Went, and later this was changed to 

indole-3-acetic acid (IAA), also known as auxin (Went and Thimann, 1937). Other investigations led 

to a series of discoveries of other hormones: studies in plant-pathogen interactions resulted in the 

finding of gibberellins (GAs); attempts to culture tissues in vitro led to the discovery of cytokinins 

(CKs); studies on dormancy and abscission led to the discovery of abscisic acid (ABA) (although 

abscission was later shown not to be regulated by ABA but by ethylene); the effects of gas used in 

streetlights on nearby trees led to the discovery of the gaseous hormone ethylene (ET) (Vanstraelen 

and Benkova, 2012). 

Auxin is by far the most abundant and physiologically significant in plants. IAA moves mainly 

from the apical (shoot meristem) to the basal end (root tip), so called polar transport. Auxin stimulates 

the rate of cell elongation, although in roots it can also inhibit cell elongation at the higher 

concentrations. Phototropism and gravitropism are also closely linked to the action of auxin; both 

tropisms are mediated by the lateral redistribution of auxin. 

It is recognized that ABA plays an important role in stomatal closure, seed maturation and 

dormancy. An increase in cytosolic calcium is responsible for ABA-induced stomatal closure. 

Desiccation tolerance is also acquired under ABA control. Seed dormancy is controlled by the 

ABA/GA balance, in which DELLA family proteins are degraded under elevated ABA levels. 

The GAs, a family of compounds based on the ent-gibberellane structure, is known for its stem 

elongation stimulation. Among more than 125 chemical members of the GAs, GA1 and GA4 are the 
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most important in plants as bioactive compound, with biological activities that differ depending on the 

plant species. GA promotes seed germination and stimulates growth of stem and root. Pollen 

development and male fertility are also regulated by bioactive GAs. One of the molecular mechanisms 

is the activation of α-amylase gene expression by GA through a MYB transcription factor (Kaneko et 

al., 2004). 

Although many previous studies revealed substances to be active for cell division, such as kinetin, 

trans-zeatin was the first cytokinin isolated from maize in the early 1960s. Together with auxin, CK is 

generally accepted to regulate the cell division cycle, and it has been known that the balance between 

these two hormones governs a large range of developmental aspects in plants. There are many 

naturally occurring CK metabolites, including sugar-conjugates and the basic outline of the metabolic 

pathways leading to these diverse CK species has been elucidated. 

Jasmonic acid (JA) and salicylic acid (SA) play important roles in plant defence against insect 

feeding, and in resistance to pathogens involved in the systemic acquired resistance response (SAR), 

respectively. Other hormones, such as ET, brassinosteroids (BRs) and strigolactones, also play a 

significant role in plants but they are out of scope of this thesis, mainly because of limitations in their 

detection in complex matrices of plant extracts. 

In recent years remarkable progress in our understanding of the plant hormone biosynthesis and 

signal transduction pathways have brought us a big step forward to understanding the complicated 

cross-talk (interactions) between hormones and how this is coordinated at the molecular level. The 

hormone-mediated plant response to environmental changes or challenges results from integrated 

signalling networks of multiple hormones, which are unlikely to be linked by linear pathways 

(Chandler, 2009). A large array of functional interactions exists among the individual hormones: e.g., 

auxin interacts with CK, ET, GA, ABA, BR, JA, and the recently discovered strigolactones (Davis, 

2010; Moubayidin et al., 2009; Stirnberg et al., 2010; Swarup et al., 2002; Teale et al., 2008). For 

example, subtle spatial differences in the concentrations of auxin and CK determine root formation 

and its development (Bishopp et al., 2011). Such interconnectedness of plant hormone signalling 

pathways is also found in responses to environmental stresses. SA, JA, ABA and ET interact in the 

regulation of plant defence to biotic (pathogens and pests) and abiotic stresses (temperature and 

wounding) (Bari and Jones, 2009). Moreover, the signal-transduction pathways of different hormones 

show several similarities: e.g., the ubiquitin-proteasome pathway plays a key role in most hormone-

signalling pathways (Nemhauser et al., 2006; Santner and Estelle, 2009). To shed more light on these 

cross-talk mechanisms underlying the regulation of plant responses by hormones, I decided to target a 

range of different hormones in a natural variation study and QTL analyses. 



2. Significance of hormone analysis

Plants synthesize a huge array of metabolites. Like many other metabolites, plant hormones display 

structural diversity possibly as a consequence of their homeostasis pathways. Within a certain 

hormone group, usually only a few are biologically active, such as GA1, GA3 and GA4, while many 

others are inactive in physiological processes. Now a wealth of information of hormone metabolism 

has become available for the classical groups of plant hormones. Common features found in hormone 

pathways are considerable redundancy and adaptive plasticity in the network of their pathways 

leading to homeostasis. 

Enzymes in metabolic pathways play a pivotal role in chemical reactions and their feedback 

loops between substrates (precursors) and products, eventually maintaining homeostasis in a series of 

intermediates. However, metabolic flux (the flow of molecules through a metabolic pathway) may 

also be regulated by the metabolites themselves (Farre et al., 2014). Therefore, it is better to target a 

wide range of hormone metabolites rather than a single active compound, in order to find diverse 

regulatory genetic loci in plant hormone metabolism when genetic mapping analysis is applied. 

Figure 1. Plant hormones targeted in this PhD study 

auxin (IAA) abscisic acid (ABA) Gibberellic acid A3 (GA) 

COOH

OH

O

COOH

 trans-zeatin (CK) salicylic acid (SA) jasmonic acid (JA) 
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The analysis of plant hormones is challenging due to their low concentrations. Most plant 

hormones are present in concentrations of 10-6M to 10-9M and are rapidly decomposed by light and 

enzymatic reactions unless samples are carefully kept in a controlled manner. Moreover, each 

hormone has distinctive physico-chemical properties that limit extraction efficiency in a given solvent. 

These obstacles have partially been overcome by the advancement of instrumentation technologies, 

which allowed the simultaneous analysis of a wide range of hormones with high sensitivity and 

selectivity. For hormone profiling analyses, several mass spectrometry-based methods have been 

developed with state-of-the-art instruments such as GC-MS or UPLC-ESI-MS/MS that enable the 

quantitative analysis of secondary metabolites (Chiwocha et al., 2003). By virtue of these analytical 

tools, more sophisticated studies can be designed to investigate regulatory networks existing between 

different endogenous hormones in plants. For my thesis I decided to work on three groups of 

hormones - IAA, ABA and CK - which are known to display cross-talk and interact in determining 

root system architecture (RSA) (Figure 1). 

2. Natural variation studies in Arabidopsis thaliana

Genetic variation can be defined as the molecular polymorphism that is present within wild as well as 

in domesticated plants species (Alonso-Blanco et al., 2009). The analysis of natural variation in plant 

species may help to elucidate loci (genes) that are associated with important quantitative traits 

(Koornneef et al., 2004; Price, 2006). Due to the advances of molecular markers and statistical 

genomics, linkage mapping analysis has become an important tool to exploit genetic components 

responsible for polygenic traits. To facilitate these genetic analyses, many mapping populations have 

been developed in a variety of species (Brachi et al., 2010; Huang et al., 2011; Keurentjes et al., 

2011; Kover et al., 2009). The principle of QTL mapping has also been applied to studies of transcript 

abundance (expression QTLs) and other intermediate molecular phenotypes (e.g., metabolic QTLs) 

(Carreno-Quintero et al., 2012; Cubillos et al., 2012; Feng et al., 2012; Keurentjes et al., 2008b; 

Kliebenstein, 2009; Lisec et al., 2009; Mackay et al., 2009; Takehisa et al., 2012; Toubiana et al., 

2012; Wang et al., 2010). Metabolic profiling can be used for the identification of natural variants and 

genetic entities that contribute to shaping phenotypes and versatile biosynthetic pathways (Keurentjes 

et al., 2008a; Kliebenstein et al., 2001a; Kliebenstein et al., 2001b). 

In the early 2000s, there was a period of rapid scientific progress in the extension of genomic 

resources. Rapid advances of whole genome sequencing (WGS) technology gave plant scientists 

access to full coverage of genetic information in model plants, such as Arabidopsis (2000) and 

important grain crop, such as rice (2002). Consequently, statistical approaches to find quantitative 

genetic elements in a species have been developed: association or linkage disequilibrium (LD) 

mapping using longstanding recombination outcomes (Clark et al., 2007; Kim et al., 2007; Nordborg 

et al., 2002; Nordborg and Innan, 2002). With the advent of high-throughput technologies for re-
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sequencing and high-density single nucleotide polymorphism (SNP) genotyping, genome-wide 

association (GWA) studies are rapidly becoming a leading method for dissecting the genetic 

architecture of complex traits in plants (Ingvarsson and Street, 2011; Weigel and Mott, 2009). Owing 

to high-density haplotype map information, present GWA studies have been applied to the model 

plant, Arabidopsis thaliana and some crop plants (Atwell et al., 2010; Buntjer et al., 2005; Ganal et 

al., 2009; Huang et al., 2012). 

Advantages of using GWAS for mapping are that many alleles for each gene may be present, thus 

increasing the variation, and that the resolution of the mapping is higher. A disadvantage is the 

demand for a larger population size (it is estimated that at least 350~400 lines are required to obtain 

reliable data), which is a major drawback especially when expensive and/or time consuming analyses 

have to be done, and population structure may make the interpretation of data complicated (Atwell et 

al., 2010). Advantages and drawbacks of the GWA approach have been outlined in detail in various 

reviews (Alonso-Blanco et al., 2009; Koornneef et al., 2004; Weigel, 2012). As an alternative to 

GWAS, elaborate multi-parent based recombinant inbred line (RIL) populations were constructed 

(Huang et al., 2011; Keurentjes et al., 2011; Yu et al., 2008). They include an Arabidopsis multi-

parent RIL (AMPRIL) population and multi-parent advanced generation inter-cross (MAGIC). A 

draw 

back of using multi-parent lines still lies in the required large population size needed to cover all 

recombination events (≥500). 

Bi-parental RILs are often chosen as an initial experimental material for the identification of 

QTLs. In Arabidopsis, advantages of linkage mapping using RILs are: 1. the availability of various 

populations, 2. the relatively small size of the population to be investigated (100~150 lines is 

sufficient for QTL mapping in Arabidopsis) and 3. such populations have already been studied for a 

wide range of phenotypic traits, thus allowing integration of prior data (Borevitz et al., 2002; 

Sergeeva et al., 2006). More than 60 Arabidopsis RIL populations are available from the world stock 

centres, and other types of inbred families, such as near isogenic lines (NILs) are also available 

(Weigel, 2012). Therefore, I chose the approach of using a RIL population, selected based on natural 

variation analysis of levels of endogenous hormones. 

3. Challenges in this thesis

Despite extensive studies of quantitative phenotypic traits, several research topics have seldom been 

explored, for example, the variation of levels of plant hormones and application of that data to 

quantitative genetic analysis in plants. With regard to variation in the levels of hormones, two aspects 

should be prioritised when studied: determining the levels of hormones in different organs (roots and 

shoots) and possible interactions between hormones for regulating plant development. 
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A concern of quantitative analysis using UPLC-ESI-MS/MS: matrix interference 

Numerous reports describe simultaneous quantification of multiple plant hormones (Durgbanshi et al., 

2005; Kojima et al., 2009; Pan et al., 2010). However, there is a limitation to the application of these 

methods directly in the present study, because I pursued the concomitant analysis of a range of 

different metabolic intermediates of hormones preferably with a simple purification step, which 

assures acceptable recoveries of the analytes. In this approach a serious drawback of the LC-MS 

detector is the so called matrix effect or matrix interference caused impurities in the sample. Matrix 

effects are observed as either ion suppression or ion enhancement compared to the mass/charge (m/z) 

signal of the analyte without any interference of impurity. The matrix effect occurs early in the 

ionization process in the LC-MS interface as the result of co-eluted matrix components, affecting the 

sensitivity and the detection capability. This is presented as a loss or gain in response, leading to 

unreliable quantitative results. Therefore, I set out to develop a series of proper methods, especially 

for extraction and purification. For this task, commercially available SPE sorbents retaining acidic 

and/or basic compounds with different ionic strengths were compared to establish a method that 

purifies targeted hormones from the crude extract (Chapter 2). 

Phenotyping of complex Arabidopsis roots 

The root system plays a pivotal role in the physical support for the shoot and nutrient uptakes from the 

soil. The root system is plastic and dynamic. Roots consist of various cells/tissues that build up 

different structures such as root apical meristem and root cap, where the biosynthesis of various 

hormones arises. Nothing is known about natural variation in plant hormone content in roots and how 

this affect root architecture. Therefore, I first focused on the root system to study the interaction 

between hormones and root phenotypic traits. 

Root initiation and branching are well-known examples of plant developmental processes, 

controlled by plant hormones. In order to analyse correlations between hormone levels and root 

phenotypic traits in a relatively mature root stage, I introduced the term, “mature root unit (MRU), as 

a descriptive developmental unit in complex root structure. Subsequently, complex root architecture 

was described in newly conceptualized phenotypic traits from two dimensional root images. A set of 

ecotypes was selected, and target hormones were analysed in roots at one well-defined stage. Using 

these two sets of data, possible roles of plant hormones mediating root system architecture (RSA) are 

illustrated (Chapter 3). 

Linkage mapping analysis for QTLs of hormone levels 

The strength of my study is the use of genetic resources and natural variation to unravel the regulation 

of hormone levels and their metabolism. In order to understand genetic components underlying 
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metabolism in a range of hormones, as a newly adopted tool I concentrated on the classical linkage 

mapping analysis. QTL analysis at the 50% flowering stage allowed me to distinguish developmental 

specificity of loci in a single experiment. In addition, QTLs for metabolite-ratios in the biosynthetic 

pathways were analysed and provide new insights into the genetic regulations of plant hormone 

metabolism (Chapter 4 and Chapter 5). 

4. Outline of the thesis

The thesis consists of six chapters including four experiment chapters. In Chapter 1 I introduce the 

importance of plant hormones for the regulation of plant responses to the environment and how my 

PhD study will contribute to furthering our understanding of this. Chapters 2 to 5, as research articles, 

describe the major findings of the research. 

In Chapter 2 I describe the methodological validation: how to quantitatively analyse various classes 

of plant hormones in leaves and roots of Arabidopsis using UPLC-ESI-MS/MS. 

In Chapter 3 I analyse the natural variation in hormone levels in Arabidopsis roots and correlations 

with complex root architecture. 

In Chapter 4 I use quantitative trait loci analysis of hormone levels in Arabidopsis roots and in 

Chapter 5 I use quantitative trait loci analysis of hormone levels in Arabidopsis leaves and pinpoint 

loci that are underlying several aspects of hormone metabolism in Arabidopsis.  

Finally, in Chapter 6, the General discussion, all findings are discussed and integrated. 
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Abstract 

The analysis of natural variation in a plant species sheds light on understanding the molecular bases of 

phenotypic differences related to adaptation and ecological significance. A study of natural variation 

in plant hormone levels demands high through-put and concise methods to handle the required large 

numbers of lines/accessions with sufficient precision. UPLC-ESI-MS/MS is a suitable instrumental 

tool to achieve this, but extraction and purification should be optimized prior to its application on a 

population scale. Here, we validated several key- points, critical for determining the levels of a wide 

range of plant hormones in Arabidopsis extracts based on single solid phase extraction (SPE) 

purification. A commercially available hydrophilic-lipophilic balance (HLB) sorbent was chosen to 

recover a chemically wide range of hormone analytes. Initially, substantial matrix interference was 

observed in the form of ion suppression and ion enhancement, which hindered the acquisition of 

reliable results. Dilution using a smaller starting sample (e.g., 2.5 mg) reduced the matrix effects 

considerably but additional measures were required for most of the analytes. Flushing the HLB-SPE 

column with acidic methanol was more effective to reduce matrix effect than acetonitrile. The present 

approach, based on a single SPE purification step, provides a methodological perspective for the 

analysis of a wide range of plant hormones in partially purified Arabidopsis samples with minor 

interferences of the matrix. 

Key words: plant hormone analysis, matrix effect, LC-ESI-MS/MS, ion suppression, ion 

enhancement 
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Introduction 

Plant hormones are small organic molecules in plants, present at low concentration, that act as 

chemical messengers mediating a plethora of developmental processes. Plant hormones consist of 

different groups of diverse chemical structures that have a wide range of polarity, from strong acids 

(e.g., salicylic acid) to volatiles (e.g., ethylene). The amounts of endogenous hormones in plants are 

low and quantitative measurements are not easily achieved because of interference by impurities 

present in extracts. In addition, most hormone classes are metabolically complex due to the activity of 

anabolic and catabolic pathways (Hedden and Thomas, 2012; Weng, 2014). In many instances, plant 

hormones regulate developmental processes in complex interactions rather than acting alone. Thus, 

simultaneous analysis of various hormones is desirable to understand their integrative physiological 

roles in plant development (Jones et al., 2010; Unterholzner et al., 2015). 

Crude plant extracts contain thousands of chemically diverse compounds, challenging 

researchers to develop reliable quantitative methods for the targeted analysis of hormonal compounds, 

usually through chromatographic separation (Verpoorte, 1998). In general, after the initial extraction 

process, two main steps are required to conduct hormone analysis for multiple targeted compounds: 

(i) purification using solid-phase extraction (SPE) columns and (ii) detection in the proper analytical 

instrument, such as a tandem mass spectrometry coupled with liquid chromatography (LC). 

SPE is a reliable and fast method to purify extracts, to reduce interference of the targeted 

analysis of compounds of interest by other chemical constitutes. Appropriate SPE sorbents should be 

chosen by considering the chemical properties of the target compounds and the contaminants. To 

increase purification efficiency SPE purification on one column is often combined with another type 

of column with different chemical affinity. Fractionation using different polarity and ionic strength of 

aqueous eluates can be another way to retrieve the compounds of interest. Various purification 

schemes using these methodological choices have been developed to attain both satisfactory recovery 

rates and simultaneous quantification (Kojima et al., 2009; Svacinova et al., 2012). Since such 

stepwise approaches of fractionations based on multiple SPE columns generate large numbers of 

fractions to be analysed, it is costly and time-consuming. Such issues are increasingly prohibiting 

research progress when large numbers of plant samples have to be analysed, e.g., in genetic studies 

(Chen et al., 2014; Matsuda et al., 2015). 

Electrospray ionization (ESI) mass spectrometry coupled with LC has been used to analyse a 

wide range of biological compounds in many research fields. Due to its ultra-high sensitivity to 

monitor ion fragments based on mass-to-charge ratios of organic compounds, tandem mass 

spectrometry has been applied to the simultaneous detection of multiple target compounds in 



Chapter 2

20

Chapter 2 

 

phytochemical studies (Schafer et al., 2016; Tarkowska et al., 2014). However, during the 

vaporization stage in the mass analyser, co-eluting impurities can cause ion suppression or ion 

enhancement, so called matrix effects (MEs) (Taylor, 2005). These results in either decrease or 

increase, respectively, of the signal of the target compound compared to that of a chemical standard in 

pure solvent in the same concentration, resulting in unreliable quantitative data. ME has been 

evaluated for animal plasma and fluids (Van Eeckhaut et al., 2009), but it has been very little studied 

for plant extracts, although these are chemically complex, even after SPE purification, and thus have a 

high potential for displaying ME. 

In the model plant Arabidopsis thaliana, the wealth of knowledge from natural variation studies 

has led to the understanding of molecular mechanisms for plant development, adaptation and 

speciation (Mitchell-Olds and Schmitt, 2006). Unravelling the genetic and biochemical bases of 

metabolic traits has been accelerated by recent natural variation studies coupled with advances of 

genotyping/sequencing technology (Alonso-Blanco et al., 2009; Chen et al., 2014), but little has been 

done on variation of hormone levels, even in Arabidopsis.  

The study of natural variation for levels of endogenous plant hormones and their metabolites 

necessitates a high through-put purification strategy to deal with the large number of samples required 

in quantitative genetic studies. Variation in hormone levels may be relatively small compared to those 

in gene expression (Delker et al., 2010). Moreover, many of the compounds of interest are chemically 

unstable in aqueous solutions, requiring simplified and rapid quantitative analytical methods. Hence, 

we set out to develop and validate a simple purification scheme for simultaneous extraction and 

quantification of plant hormones, which can be used in quantitative genetics analyses. In this study we 

assessed several key-issues such as extraction efficacies, affinity properties of SPE sorbents to 

chemically diverse hormones, and evaluation of MEs occurring in partially purified samples, aiming 

to enable the study of natural variation in plant hormones in A. thaliana. Our results based on a single 

HLB-SPE purification platform provide a methodological perspective for the simultaneous analysis of 

a wide range of different hormones with satisfactorily reduced levels of matrix interferences in 

UPLC-ESI-MS/MS analysis. 

Materials and Methods 

Plant materials and sampling 

For germination, Arabidopsis seeds (Columbia-0) were placed on wet filter paper in a Petri-dish at 

4℃ for 4 days and subsequently sown in a 0.5 mL cylindrical plastic tube, from which the bottom had 

been cut off and that was filled with 0.5% agar in half strength Hoagland nutrient solution (pH 5.5). 

Seedlings were grown in hydroponics containers (70 plants per 10 litres, renewing the solution once a 
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week). Plants were grown at 21℃ during the light period (10 h) and at 18℃ during the dark period 

(14 h). Light intensity and humidity were fixed at 125 μMol/m2s and 70% respectively. After 21 days 

of culture, rosette leaves and roots were harvested between the 5th and 8th hour during the 10 hours 

daytime for hormone analysis. The two largest rosette leaves of 4 plants were selected and pooled for 

a replicate. The roots were carefully dried with paper tissue and five to six root systems were 

combined for a replicate. Pooled samples were immediately frozen in liquid nitrogen, ground and 

freeze-dried for 24 hours. 

Hormone extraction 

A carefully weighed amount of lyophilized powder of leaves or roots was sonicated with 2 ml of 

methanol : water : formic acid (15:4:1, v/v/v), containing isotope-labelled internal standards (100 nM 

final concentration, OlChemIm Ltd, Czech) for 15 min and extracted by shaking for 2 hours at 4°C in 

darkness. After centrifugation at 2,000 rpm for 10 min (swinging bucket rotor-type, Model-The 

Centaur 2, MSE, UK), the supernatant was collected, and the pellet was re-extracted with 2 ml of 

ethylacetate : formic acid (19:1, v/v) for 2 hours at 4 °C in darkness. For the extraction efficacy test, 

isotope-labelled internal standards were dissolved in the first extraction solvents (either methanol or 

ethylacetate based). Pooled supernatants were evaporated to dryness under vacuum (SpeedVac 

Concentrator, Savant SC210A, Savant RVT5105, Thermo, US). The extract was suspended in 1 ml of 

methanol : water : formic acid (15:4:1, v/v/v) and purified on SPE columns. 

SPE purifications for recovery rate test 

All SPE columns were manufactured by Waters (30 mg cartridge-1, Oasis®, US), except C18 (500 mg 

cartridge-1, GRACE®, US. The different SPE sorbents were eluted as follows: 

HLB and C18: 4 ml of methanol was used for conditioning, followed by 4 ml of water for 

equilibrating. After loading of the aqueous sample, the column was washed with 1% methanol in 

water. The compounds were eluted from the column with 4 ml of 5% formic acid in methanol and 

evaporated to dryness under vacuum. For the purification of plant extracts using HLB (hydrophilic-

lipophilic balance), after loading of aqueous sample, the column was flushed with 1.5 ml of water. 

The elution was done with 2 ml of 1% formic acid in methanol, followed by 1.7 ml of 0.05% 

formic acid in acetonitrile. In order to retrieve all the target hormone analytes, the two eluates were 

combined into the same tube and evaporated to dryness under vacuum. 

MCX: 2 ml of methanol was used for conditioning, followed by 1 ml of water for equilibrating. 

After loading of the aqueous sample, the column was washed with 1 ml of 1M formic acid (pH 1.4) 

in water. The column was eluted with three eluents, 1 ml of methanol, 1 ml of 0.35M NH4OH (pH 
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11.0) in water, and 1 ml of 0.35M NH4OH in 60% methanol. The three fractions were combined 

and evaporated to dryness under vacuum. 

MAX: 1 ml of 1M formic acid was used for conditioning, followed by 2 ml of methanol for 

equilibrating. After loading the aqueous sample, the column was washed with 1 ml of 10 mM, 

KH2PO4 (pH 7.0) in water and followed by 1 ml of water. The column was eluted with two eluents, 

1 ml of methanol and 1 ml of 2% formic acid in methanol. The two fractions were combined and 

evaporated to dryness under vacuum. 

WCX: 2 ml of methanol was used for conditioning, followed by 1 ml of water for equilibrating. 

After loading of the aqueous sample, the column was washed with 1 ml of 5% NH4OH in water. 

The column was eluted with two eluents, 1 ml of methanol and 1 ml of 2% formic acid in methanol. 

The two fractions were combined and evaporated to dryness under vacuum. 

WAX: 2 ml of methanol was used for conditioning, followed by 1 ml of water for equilibrating. 

After loading of the aqueous sample, the column was washed with 1 ml of 2% formic acid in water. 

The column was eluted with two eluents, 1 ml of methanol and 1 ml of 5% NH4OH in methanol. 

The two fractions were combined and evaporated to dryness under vacuum. 

Quantitative analysis of plant hormones 

Quantitative analysis of hormones was conducted using an Acquity UPLC® System (Waters, US) 

coupled with a triple quadrupole mass spectrometer (Xevo™ TQ, Waters). Dried samples were 

resuspended in 200 µl of acetonitrile : water : formic acid (5:95:0.1, v/v/v) and filtered through 0.45 µm 

PTFE membrane (Phenomenex, US). Each sample was injected twice, onto an Acquity UPLC BEH C18 

column (100x2.1 mm, 1.7 µm; Waters), with two different mobile phase schemes to separate target 

compounds: one for IAA, ABA and gibberellins (GAs), the second for cytokinins (CKs). For IAA, 

ABA, and GAs, 20 µl was injected and eluted by a binary gradient, consisting of 0.1% formic acid in 

water (A) and 0.1% formic acid in acetonitrile (B), for 11 min at constant flow rate (0.5 ml min-1) at 

40°C of analytical column temperature. The linear gradient was performed as follows: 0~1.0 min, 5% 

of eluent B; 1.0~6.67 min, 5 to 50% of eluent B; 6.67~7.33 min, 50 to 90% of eluent B; 7.33~9.0 min, 

90% of eluent B; 9.0~9.5 min, 90 to 5% of eluent B. At the end of the gradient, the column was 

equilibrated to initial conditions for 1.5 min. For CKs, 20 µl was injected and eluted using a gradient 

with the same A and B mobile phases as above and at constant flow rate (0.6 ml min-1) at 40°C of 

column temperature for 14 min. The linear gradient elution was performed as follows: 0~1.5 min, 0.2% 

of eluent B; 1.5~8.5 min, 0.2 to 20% of eluent B; 8.5~9.5 min, 20 to 70% of eluent B; 9.5~10.2 min, 

70% of eluent B; 10.2~10.5 min, 70 to 0.2% of eluent B. At the end of gradient, the column was 

equilibrated to initial conditions for 3.5 min. The effluent was introduced into the electrospray ion 
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source (ESI) of the mass spectrometer with operating parameters: capillary voltage, 3 kV; cone voltage, 

22 V; source and desolvation temperature, 150 °C and 650 °C, respectively; cone and desolvation gas 

flow, 50 and 1000 L hour-1; MS mode collision energy, 2 V; MS/MS mode collision energy, 10 V. Per 

analyte, two selective transitions were used for multiple reaction monitoring (MRM). The MRM 

channels for each compound were grouped into time window clusters to reduce loss-of-signal during 

monitoring. Data were processed by TargetLynx in MassLynxTM Software (Version 4.1, Waters). The 

quantification of each target analyte was determined by a linear calibration curve that covered the range 

of concentrations of compounds in the samples, and then corrected by the recovery rate of deuterium- 

or 13C isotope-labelled internal standards. 

Evaluation of MEs 

The MEs were evaluated as follows: spike solutions containing the same concentrations of both 

isotope-labelled internal standard and non-labelled standard (100 nM final concentration) for each 

target hormone were added into purified eluates in volumetric ratio of 1 to 1. Ten microliters of the 

spiked solution were injected onto the UPLC system with above-given instrumental conditions. Peak 

areas of both the analyte and its internal standard were obtained and the percentage of ME was 

calculated with the following formula:  

where S = peak area of analyte in the spiked sample; A = peak area of analyte in the sample without 

the spike solution; C = peak area of standards in pure solvent. 

Results and Discussion 

Comparison of SPE columns 

To analyse recovery rates, mixtures of 4 different groups of hormone standards (Fig. 1) were purified 

with seven kinds of SPE columns (see Materials and Methods for details). The HLB cartridge had a 

similar recovery rate as the C18 sorbent for the tested compounds except for tZ and DZR, which 

displayed higher and lower recovery rates on HLB, respectively (Fig. 2). The wide range of affinities 

of HLB to diverse hormone compounds results from the chemistry of its sorbent, consisting of a 

pyrrolidine moiety that provides both positive and negative charges. Because of these ambivalent 

chemical properties, HLB has been widely used to purify plant extracts containing diverse chemicals 

(Fontanals et al., 2007; Jeong et al., 2017; Kanaujia et al., 2007). In addition, HLB is advantageous to 

recover tZ, a compound not retained by the C18 sorbent. Increasing the size of the C18 cartridge 

improved recovery rates for some of the tested hormones, for example, IAA, but not proportional to 

the increased size. 
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Figure 1.  Chemical structures of plant hormones analysed in this study. 
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WCX, a mixed-mode weak cation exchange sorbent for strong bases and quaternary amines, 

displayed a recovery of about 50% for all of the six tested CK metabolites, but a very low recovery 

for acidic compounds, such as auxin and ABA. Both MAX and WAX that have anion exchange 

sorbent for acids presented substantial recovery rates (75~95%) for IAA but had only weak affinity 

for ABA and CK metabolites. The poor recovery rate of MAX for ABA is in contrast to the study by 

Dobrev et al. (2005) who reported a high recovery rate (above 90%) for ABA analysed with diode 

array UV-detector. Considering the differences of methodological conditions, it is assumed that the 

difference of recovery might be due to eluent conditions of used solvents and matrix interference, e.g., 

ion suppression in the mass analyser. 

 

 

Figure 2. Recovery rates of hormones upon purification with various SPE sorbents. X-axes indicate SPE 

sorbents and their weights of packing material. 

Since ABA and its catabolites are recovered well with hydrophilic SPE sorbents such as silica 

(Bai et al., 2018), a choice within polar sorbents is recommended for ABA although it belongs to the 

acid plant hormones. The amino SPE column only retained acidic compounds, such as IAA and ABA. 

Over all, these results show that HLB is the most versatile for the wide variety of target hormones and 

their metabolites, since a single purification strategy was desired. A one-step purification procedure 

will allow to analyse large series of plant samples, e.g. from accessions or segregating populations. 
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Efficiencies of extraction solvents 

For the extraction of a wide range of hormones from plant materials, usually acidified solvents are 

used. Moderate acids such as formic acid and acetic acid provide acidic forms of analytes, which are 

favourable for ionization in the mass spectrometer. For example, Bieleski buffer has been chosen as a 

standard extraction solvent in plant hormone analyses, especially for CKs (Chen et al., 2010; 

Hoyerova et al., 2006). In order to find an effective extraction solvent for a wide range of hormones, a 

number of different extraction procedures using Bieleski buffer and acidic ethylaceate as well as 

combinations were compared (Fig. 3). Two consecutive extractions with Bieleski buffer showed 

similar quantitative results with that of acidic ethylacetate in four different hormone groups, except 

for IAA. However, an extraction using Bieleski buffer followed by acidic ethylacetate resulted in 

higher recoveries of various hormones, such as ABAGE and some of the CKs. We accordingly 

concluded that two successive extractions using Bieleski buffer and acidic ethylacetate are 

recommended to increase yields of various hormones and their metabolites. 

 

Figure 3. Comparison of extraction efficacies of different solvents. Lyophilized powder (12.5mg) of 

Arabidopsis roots (Columbia-0) was extracted and purified on an HLB column (packing size: 150mg). B 

indicates Bieleski buffer (based on methanol) and E indicates ethylacetate with 0.1% formic acid. See Materials 

and Method for details. 

ME interferences in LC-ESI-MS/MS analysis 

In LC-MS analysis, even after SPE purification, the presence of remaining impurities can cause signal 

distortion of analytes in the mass analyser, the so-called, matrix effect (ME), inducing responsive 

suppression or enhancement of ion fragments in the gas phase of droplets at the early stage of 

ionization, and resulting in unreliable quantitative results (Annesley, 2003; Jessome and Volmer, 
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2006). Figure 4 shows two contrasting MEs, ion suppression and enhancement, for two isotope-

labelled hormones, when they were added to a crude extract of Arabidopsis roots. In case of ABA, the 

signal value of the same amount of isotope-labelled internal standard in the crude extract was reduced 

by nearly 70% compared to that in the mobile phase solution (Fig. 4A). On the contrary, the internal 

standard of IAA represented ion enhancement, with an up to 1.8 times increased signal compared to 

that in the mobile phase solution (Fig. 4B). These two opposite results show that when plant extract 

samples are not properly purified, the signals of analytes in LC-ESI-MS/MS may not be 

representative of the real quantitative levels. When ion suppression and enhancement occur at target 

analytes, recovery rates of internal standards that elute closely to the target analytes may also be 

distorted. 

 

 

Figure 4.  The influence of matrix effect on hormone quantification in Arabidopsis extract.  (A) Ion 

suppression for the internal standard of ABA. (B) Ion enhancement for the internal standard of IAA. Isotope-

labelled internal standards were added to pure solvent (methanol : water : formic acid = 5 : 95 : 0.1, v/v/v) or a 

crude extract of Arabidopsis roots (Bayreuth-0, 15 mg). The root powder was extracted with Bieleski buffer and 

acidic ethyl acetate (0.1% formic acid) consecutively. The dried extract was dissolved in a mixture of methanol : 

water (1 : 60, v/v) with sonication for 30 minutes. Peak areas were obtained using UPLC-ESI-MS/MS analysis 

(see Materials and Methods for details). 

Several strategies to reduce MEs in LC-MS analysis have been suggested. Chambers et al. 

(2007) validated that polymeric mixed-mode SPE purification using a combination of reversed and 

ion exchange sorbents strikingly reduced MEs in biological plasma samples. Dilution of samples can 

also be a useful method to reduce MEs. It was reported that the reduction of MEs for pesticide 

residues in plant extracts correlated to the logarithm of the concentration of co-eluting matrix 

components, suggesting that the higher the dilution, the better (Li et al., 2016; Stahnke et al., 2012). 

We analysed how the reduction of sample weight can alleviate MEs. To do this, we used HLB for 

purification and examined changes in quantitative levels using three different sample weights (Fig. 5). 
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If there is any reduction in ME by reducing sample weight from 13 to 6.5 and 3.25 mg, quantifications 

of hormones will change by virtue of the reduction in impurities. For all four hormones tested (IAA, 

ABA, iP and tZ) higher quantities (expressed per mg tissue) were obtained with decreased sample 

weights. In cases of ABA and tZ, the quantity increased 3-fold when 3.25 mg instead of 13 mg was 

used. 

It was surprising that the higher hormone quantities were obtained from lower sample weights, 

despite that the quantities were commonly presented as pico-gram per milligram of sample weight. 

In addition, except for IAA, recovery rates of ABA, iP and tZ did not increase as sample weights 

were reduced (Fig. 5). To proof whether these results were caused by MEs, not by analytical 

inaccuracy, we evaluated MEs for individual compounds in the semi-purified extracts. 

 

 

Figure 5.  Effects of sample weight on hormone quantities and recovery rates in Arabidopsis root extracts. 

(A) IAA. (B) ABA. (C) iP. (D) tZ. X-axes indicate sample weight. Hormone levels are presented as pg mg-1, dry 

weight of roots. Recovery rates were calculated using isotope-labelled internal standards for each hormone, for 

example [13C6]-IAA for IAA. 
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Evaluation of MEs based on post-extraction spiking 

Two leading methods have been suggested to evaluate MEs on quantitative analyses of 

phytochemicals using LC-MS: post-extraction addition and post-column infusion (Annesley, 2003; 

Taylor, 2005). We assessed the degree of ME present in leaf extracts using the post-extraction 

addition method (Van Eeckhaut et al., 2009). With this method, the relative abundances of ion 

fragments for exogenous analytes and their isotope-labelled internal standards added after SPE 

purification are compared to those in the mobile phase solution at the same concentration (Taylor, 

2005). Figure 6 shows the degree of ME for the four different sample weights. As described above, 

the types of ME were different for the different analytes: ion suppression for ABA and GA3 and ion 

enhancements for IAA, tZ and tZ9G. 

 

Figure 6. Effect of sample weight on matrix effect. (A) IAA. (B) ABA. (C) GA3. (D) tZ. (E) tZ9G. X-axes 

indicate sample weight (mg) used for extraction. Rosette leaves of Arabidopsis (Columbia-0) were used. The 

signal intensity of the analytes in pure solvent (methanol : water : formic acid = 5 : 95 : 0.1, v/v/v) was set at 

100%. 

In case of 20 mg of leaf sample, signal intensities for IAA and tZ were 30 and 6 times higher, 

respectively, than those in pure solvent. These MEs were strikingly reduced as lower sample weights 

were used. For tZ9G, the degree of ion enhancement maximized when 10 mg was used but rather 

decreased for 20 mg. This reduced signal at 20 mg might be caused by the decrease of sensitivity in 
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the mass analyser. For most analytes, the ME degrees differed between the analyte and its internal 

standard even though they eluted very closely together. These results show that degree of ME might 

be sensitive and changeable with co-eluted impurities within a deci-second RT frame: RTs for IAA 

and [13C6] isotope-labelled internal standard were virtually the same at 2.54 minute but nevertheless 

there was a large difference in ME degree with the highest sample weight (Fig. 6). The effects of 

sample weigh on ion suppression were similar for ABA, GA3 and their isotope-labelled standards, and 

close to zero when sample weights below 5 and 10 mg, respectively, were used. These results show 

that ion suppression can be substantially reduced through dilution of sample solution. The ion 

enhancement on IAA is more difficult to be solved effectively. 

 

Figure 7. Degree of matrix effect observed in extracts of leaves and roots. (A) Degrees of matrix effect 

(ME) for hormone analytes and their internal standards observed in the extract of rosette leaves. (B) Degrees of 

ME for hormone analytes and their internal standards observed in the extract of roots. The signal intensity of the 

analytes in extracts is shown relative to the signal intensity of the analytes in the pure solvent (methanol : water : 

formic acid = 5 : 95 : 0.1, v/v/v), which was set at 100%. 

Effects of different plant tissues on matrix interferences 

The chemical composition of plants varies according to plant species, organ and growing conditions 

(Shahidi et al., 1999; Tine et al., 2017; Wajs-Bonikowska et al., 2012). Since we are interested in 

hormone analysis in both roots and shoots we decided to analyse how ME differs between root and 
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leaf extracts. Figure 7 shows that the over-all patterns and degrees of ME for each analyte in leaf 

extracts were similar to those in root extracts, except IAA, tZ and tZR. This suggests that the 

distinctively increased and decreased MEs result from differences in the concentration of co-eluting 

impurities. Hence, there is no guarantee that a purification/analytical LC-ESI-MS method optimised 

to reduce ME to zero for a particular extract will be equally effective for extracts prepared from 

different tissues/organs. With respect to determining quantification of analytes by using internal 

standards, serious errors may be introduced if the degree of ME for an analyte and its internal 

standard differ. In addition, since different genotypes of the same plant species may have different 

background of impurities in extracts, it is necessary to develop a proper purification method for the 

alleviation of ME. 
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Figure 8. Effect of eluent solvent conditions on matrix effect. (A) Schematic representation of sample 

preparation. For E1, two sequential solvents based on methanol and acetonitrile were used. For E2, both 

solvents were methanol-based. For each elution scheme, the two sequential eluates were combined an then 

analysed on ESI-MS/MS. (B) Relative matrix effect (ME) observed in the two elution schemes (black bars for 

E1 and blue bars for E2). The signal intensity of the internal standard in pure solvent (methanol : water : formic 

acid = 5 : 95 : 0.1, v/v/v) was set at 100%. The degree of ME was assessed based on the post-extraction spike 

method using internal standards. 

Effects of elution solvents on matrix interference 

Because impurities in the sample cause ME, the solvent used to elute the SPE cartridges will 

considerably affect the degree of ME. To assess this effect, we compared two elution schemes on the 

HLB column: E1 consisted of two sequential elutions with acidic methanol and acetonitrile (routinely 

used in the present study) and E2 which only used acidic methanol eluents (Fig. 8A). Despite that the 

polarity index of methanol (5.1) is similar to that of acetonitrile (5.8), this moderate decrease in the 

polarity of the eluent resulted in a considerably reduced matrix interference, with both ion 

enhancement and suppression being alleviated (Fig. 8B). This suggests that exclusion of polar 

compounds in the eluent is desirable to attain reliable response signals with low ME. Hence, it is 

recommended that when a SPE is used to purify plant extracts, eluting solvent condition should be 

carefully chosen by comparing degrees of ME according to different solvents on polarity 

Conclusion 

In this study, we have shown several methodological approaches related to extraction and purification 

aiming at reliable quantitative determination of diverse hormones in Arabidopsis extracts using 

UPLC-ESI-MS/MS. A key factor to make quantitative data of hormone levels reliable and accurate is 

the degree of ME (ion suppression and ion enhancement) that should ideally be close to zero. Here we 

propose that when a sample preparation protocol is being developed with regard to sample weight, 

extraction and SPE purification, also the degrees of ME for the target analytes should be evaluated 

and optimized. The following procedure can be recommended: i) select solvents for the elution of 

analytes from a SPE sorbent such that it results in negligible ion suppression/enhancement of target 

analytes, ii) adjust sample weight to ensure the lowest ME in combination with sufficient signal 

intensity of the target analytes, and iii) consider recovery rates only when the degree of ME is close to 

zero. We conclude that matrix effects in plant extracts, described as the “Achilles heel” of LC-ESI-

tandem mass spectrometry (Taylor, 2005), should be critically assessed and suppressed, for which the 

present study give a number of suggestions. 
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Figure S1. Recovery rates of isotope-labelled gibberellin standards on SPE sorbents. 
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Abstract 

Studies on natural variation are an important tool to unravel the genetic basis of quantitative traits in 

plants. Despite the significant roles of phytohormones in plant development, including root 

architecture, hardly any studies were done to investigate natural variation in endogenous hormone 

levels in plants. Therefore, in the present study a range of hormones were quantified in root extracts of 

thirteen Arabidopsis thaliana accessions using a UPLC triple quadrupole mass spectrometer. Root 

system architecture of the set of accessions was quantified, using a new parameter (mature root unit) 

for complex root systems, and correlated with the phytohormone data. Significant variations in 

phytohormone levels among the accessions were detected, but were remarkably small, viz., less than 

three-fold difference between extremes. For cytokinins, relatively larger variations were found for 

ribosides and glucosides, as compared to the free bases. For root phenotyping, length-related traits—

lateral root length and total root length—showed larger variations than lateral root number-related 

ones. For root architecture, antagonistic interactions between hormones, for example, IAA to trans-

zeatin were detected in correlation analysis. These findings provide conclusive evidence for the 

presence of natural variation in phytohormone levels in Arabidopsis roots, suggesting that quantitative 

genetic analyses are feasible. 

 

KEY WORDS: Phytohormones, natural variation, root system architecture, correlations, Arabidopsis 

thaliana 
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Introduction 

As sessile organisms, plants have to respond adequately to the environment they are growing in. 

Environmental cues are perceived by plants and translated into internal signals including 

phytohormones. These hormones, alone, or in interactions, regulate the growth and development of 

the plant, ensuring optimal survival and reproduction. Within a species, natural variation occurs for 

many traits, due to adaptation of populations to local environments (Alonso-Blanco et al., 2009). 

Natural accessions and sets of recombinant inbred lines (RIL), derived from such ecotypes, vary 

considerably for primary and secondary metabolite contents, such as for instance flavonoids in 

Arabidopsis seeds (Kliebenstein et al., 2001b; Routaboul et al., 2012). It thus seems logical to assume 

that natural variation will also be present for hormone contents in plants. Although some reports 

describe variation for the response to exogenous hormone application (Dobon et al., 2011; Kanno et 

al., 2010; Novakova et al., 2005; Pilet and Saugy, 1987) and for hormone levels in leaves and root 

exudates (Cardoso et al., 2014; Monchgesang et al., 2016; Nam et al., 2017), data on natural variation 

in endogenous hormone concentrations in Arabidopsis roots are absent.  

Root initiation and branching are well-known examples of plant developmental processes, 

mediated by plant hormones. Lateral root initiation is controlled by hormone interactions (Garay-

Arroyo et al., 2012; Tanimoto, 2005). Specifically, cytokinins (CK) and auxin are key phytohormones 

that regulate root development, vascular differentiation and gravitropism (Aloni et al., 2006). The 

observed auxin maximum in the root apical region, resulting from specific cellular localization of 

auxin efflux carriers (PIN proteins), suggests that an IAA gradient plays a significant role in the 

dynamics of root growth (Petersson et al., 2009; Tanimoto, 2005). CKs, acting as negative regulators 

of lateral root initiation, are known to perturb the auxin gradient by controlling PIN-dependent 

transport (Laplaze et al., 2007; Marhavy et al., 2011; Marhavy et al., 2014). Recently concentration 

gradients for different CK metabolites were found in the primary root zones and different cells/tissues 

(Antoniadi et al., 2015; Bielach et al., 2012). Despite a wealth of studies aimed at unravelling 

biological functions of phytohormones in various root developmental processes, at least the following 

points have not been answered yet, and will be the focus of the present study: 1. Is natural variation 

present for hormone contents, and if so, to what extent?; 2. How does this natural variation of 

phytohormone levels correlate with root system architecture (RSA)?  

Recently many studies were published addressing effective methods for quantitative high-

throughput root phenotyping, coupled with computational software (Clark et al., 2013; De Smet et al., 

2012; Iyer-Pascuzzi et al., 2010; Slovak et al., 2014). In order to describe and quantify root traits in 

dicotyledonous species, for instance Arabidopsis thaliana, most descriptive traits are determined by 
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two key components—the primary root and the lateral roots—concerning both lengths and numbers 

(Smith and De Smet, 2012; Tian et al., 2014).  

Up to now, most studies on RSA in Arabidopsis have been conducted at seedling stages to avoid 

the complexity of measuring root traits in mature plants (Dubrovsky and Forde, 2012). The vertical 

agar plate, a common in vitro culture method for Arabidopsis, results in two-dimensional patterns of 

root growth and allows relatively easy scanning of roots. Such root phenotypings have been 

conducted exclusively to seedlings—younger than two weeks after germination—because of the space 

limitation in Petri dishes and difficulties to separate each individual root from others in case of a 

complex root system. Little attention has been given to more mature roots (older than 3 weeks), or 

root traits beyond the seedling stages. 

Analysing the natural variation in phytohormone levels will be an important tool to increase our 

understanding of the genetic variation governing the molecular mechanisms of hormonal regulation in 

developmental processes (Korstanje and Paigen, 2002). Here we report the variation in endogenous 

phytohormone levels in roots of 13 A. thaliana accessions. Simultaneously, the RSA was analysed 

using a new descriptive phenotypic trait coined Mature Root Unit (MRU), as a descriptive 

developmental unit. Our finding that natural variation in root phytohormones in Arabidopsis exists, 

suggests that quantitative genetic approaches are feasible to dissect the molecular elements 

responsible for phytohormone levels and their effect on changes in root architecture. 

Materials and Methods 

Plant growth and sampling  

Thirteen Arabidopsis thaliana L. Heynh. accessions (An-1, Bayeuth-0, Bor-4, Bur-0, Columbia-0, 

Cvi-0, Est-1, Fei-0, Ler-0, RRS-7, Shahdara-0, Ts-1, Tsu-0) from the Arabidopsis Seed Stock of the 

Laboratory of Genetics at Wageningen University were used. For germination, seeds were placed on 

wet filter paper in a Petri dish at 4 °C in darkness for 4 days, seeds were then sowed on the top of 0.5 

ml tubes, with the bottom cut off, and filled with 0.5% agar in half strength Hoagland's nutrient 

solution (pH 5.5). Tubes with germinating seeds were placed in a hydroponics tank filled with half 

strength of Hoagland’s nutrient solution (pH 5.5, 9 L), renewing the solution once a week and 

approximately 70 plants per tank). Plants were kept at 21 °C during the light period (10 h) and at 

18 °C during the dark period (14 h), from sowing (day 0) until harvesting. Light intensity and 

humidity were fixed at 125 μmol photons m-2 per second and 70 percent, respectively. 

To avoid that individual root systems get entangled with roots from neighbouring plants, each 

whole root system was comparted individually in a plastic column (diameter 3 cm, depth 6 cm, open 

at top and bottom) in the hydroponics tank (Figure S1). After 23 days of culture, roots were harvested 
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between the 5th and 8th hour during the 10 hours light period for hormone analysis and phenotyping. 

Root length and weight were measured. Thereafter, roots of five to six plants were pooled for a 

biological replicate. Four biological replicates of each accession were used for hormone analyses. 

Pooled roots were ground in liquid nitrogen and freeze-dried for 24 hours. Ten intact roots of each 

accession, which were grown at the same batch as for hormone analyses, were also harvested, put to 

Petri dishes filled with water and preserved at -20 °C until two-dimensional phenotyping. 

Two-dimensional root image and phenotyping 

Frozen roots were de-frosted in two steps to prevent roots from being broken into pieces: at 4 °C for 

two hours and after that at room temperature (~22 °C). Roots were spread in square Petri-dishes (12.5 

× 12.5 cm), containing 0.1% Tween 20 in water. Each branch root was unravelled from other roots 

with a brush in such a way that the whole root system was kept intact without any overlapping among 

roots. Two-dimensional root images were generated by a photo scanner (Epson, Perfection V700). 

The software package, WinRhizo (Regent Instruments Inc., Canada), was used to measure total root 

length (TRL, cm) from the resulting TIF file image. Total root-tip number (TRTN) was counted based 

on all emerged roots that were longer than 0.5 mm in length. In most cases identifying the primary 

root was not possible, since lateral roots had formed, which were indistinguishable from the primary 

root in length and diameter. Therefore, we introduced a new descriptor, as a basic unit of phenotyping, 

“mature root unit (MRU)” to measure complex root architecture (Figure 2). Lateral root number 

(LRN) and lateral root length (LRL) were assessed separately for each MRU. Within each MRU, 

lateral roots were further divided into four sections of equal length from top to bottom, and numbers 

(N) and lengths (L) were determined, resulting in these parameters: LRN-1Q/2Q/3Q/4Q and LRL-

1Q/2Q/3Q/4Q. Traits of the secondary lateral roots attached to the lateral roots were designated as 2′-

LRN and 2′-LRL. To measure real length of roots in scanned images, the ruler dimension of ImageJ 

was corrected based on dimensions of the Petri dish. After blotting the roots with soft paper tissues, 

root fresh weight (RFW, mg root-1) was determined in three to four replicates, each replicate 

consisting of roots from five to six plants. For the experiment on the dynamics of hormone 

concentrations during development, also root dry weight (RDW, mg root-1) was measured after 24 

hours of freeze-drying. 

Sensitivity test of primary root growth towards exogenous IAA  

For germination, seeds (Ler-0, Col-0, Cvi-0) were placed on wet filter paper in a petri-dish at 4 °C in 

darkness for 4 days, germinated seeds were then sowed on vertical plates with half strength of MS 

media with 0.8% agar and 1% sucrose, containing IAA (0.01 µM, or 0.05 µM). Plants were kept at 

23 °C during the light period (16 h) and at 20 °C during the dark period (8 h), from sowing (day 0) 
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until harvesting. Light intensity and humidity were fixed at 125 µmol photons m-2 per second and 70 

percent, respectively. Primary root lengths were measured after 10 days.  

Hormone extraction and purification  

For each accession, four biological replicates were used to extract and quantify endogenous hormones. 

Powder of lyophilized roots (2.5 mg), as a replicate, was sonicated with 2 ml of methanol : water : 

formic acid (15:4:1, v/v/v), containing isotope-labelled internal standards (each chemical, 100 nM 

final concentration, OlChemIm Ltd, Czech, see supplementary data, Table S1) for 15 min and 

extracted by shaking for 2 hours at 4 °C in darkness. After centrifugation at 1200 g for 10 min 

(swinging bucket rotor-type, Model-The Centaur2, MSE, UK), the supernatant was collected, and the 

pellet was re-extracted with 2 ml of ethylacetate : formic acid (19:1, v/v) for 2 hours at 4 °C in 

darkness. Pooled supernatants were evaporated to dryness under vacuum (SpeedVac Concentrator, 

Savant SC210A and refrigerated vapour trap, Savant RVT5105, Thermo, US). The extract was 

suspended in 1 ml of methanol : water : formic acid (15:4:1, v/v/v) and was purified on an Oasis-HLB 

column (150 mg, Waters, US) using the following procedure: the column was activated with 6 ml of 

methanol, followed by 4 ml of water. After loading the sample, the column was washed with 1 ml of 

water. Phytohormones were eluted with two sequential eluents; 1 ml of methanol : formic acid 

(99.9:0.1, v/v) and 2 ml of methanol : formic acid (99:1, v/v). Both fractions were combined and dried 

under vacuum.  

Quantitative analysis of phytohormones  

Quantitative analysis of hormones was conducted using an Acquity UPLC® System (Waters, US) 

coupled with a triple quadrupole mass spectrometer (Xevo™ TQ, Waters). Purified samples were 

suspended in 200 µl of acetonitrile : water : formic acid (5:95:0.1, v/v/v), filtered through 0.45 µm 

PTFE membrane (Phenomenex, US) and injected onto an Acquity UPLC BEH C18 column (100 x 2.1 

mm, 1.7 µm; Waters). Two independent injections were chromatographed with different mobile phase 

schemes to separate targeted compounds: one for IAA, ABA and gibberellins, the second for CKs. For 

IAA, ABA and gibberellic acids, 20 µl of sample were injected and eluted by a binary gradient, 

consisting of 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B), for 11 min at 

constant flow rate (0.5 ml min-1) at 50 °C of analytical column temperature for 11 min. The linear 

gradient elution was performed as follows: 0-1.0 min, 5% eluent B; 1.0-6.67 min, 5 to 50% eluent B; 

6.67-7.33 min, 50 to 90% eluent B; 7.33-9.0 min, 90% eluent B; 9.0-9.5 min, 90 to 5% eluent B. At the 

end of gradient, the column was equilibrated to initial conditions for 1.5 min. For CKs, 20 µl of sample 

was eluted by another mobile phase gradient with the same A and B mobile phases at constant flow rate 

(0.6 ml min-1) at 50 °C of analytical column temperature for 14 min. The linear gradient elution was 

performed as follows: 0-1.5 min, 0.2% eluent B; 1.5-8.5 min, 0.2 to 20% eluent B; 8.5-9.5 min, 20 to 
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70% eluent B; 9.5-10.2 min, 70% eluent B; 10.2-10.5 min, 70 to 0.2%. At the end of gradient, the 

column was equilibrated to initial conditions for 3.5 min. The effluent was introduced in electrospray 

ionization source (ESI) of mass spectrometer with operating parameters: capillary voltage, 3 kV; cone 

voltage, 22 V; source and desolvation temperature, 150 °C and 650 °C; cone and desolvation gas flow, 

50 and 1000 L hour-1; MS mode collision energy, 2 V; MS/MS mode collision energy, 10 V. Two 

selective transitions were used to perform multiple reaction monitoring (MRM) detections (Table S1). 

MRM for each compound was grouped into a few of distinct functions in order to reduce loss-of-signal 

during monitoring times. Data were processed by TargetLynx in MassLynxTM Software (Version 4.1, 

Waters). The quantification of each targeted analyte was determined using a linear calibration curve 

that covered the range of concentrations of compounds in samples and corrected by the recovery rate of 

the deuterium-labelled internal standard ([13C6] for IAA). 

Statistical analysis 

Correlations were calculated using XLSTAT (http://www.xlstat.com). A linear model of Pearson's 

coefficient was used for principal component analysis (PCA). Hierarchical cluster analysis was 

performed in R-program using hclust package. 

Results 

Accessions and hydroponic culture 

Thirteen accessions were selected based on genetic variation (Horton et al., 2012), and on earlier 

observed variations in growth patterns and primary metabolites (El-Lithy et al., 2010). The set of 

accessions largely overlapped with collections used for natural variation studies of various traits 

(McKhann et al., 2004; Sutka et al., 2011). The first objective was to develop a reliable method of 

cultivation, in order to uniformly grow roots, suitable for phenotyping, and yielding sufficient 

biomass for the hormone analyses. 0.5 mL Eppendorf tubes, of which the tip and the lid were 

removed, were filled with 0.5% agar in half strength Hoagland’s solution and used as seed support. 

Roots of seedlings easily grew through the agar and subsequently reached the hydroponic solution 

underneath (Figure S1). In comparison with spray-type aeroponics, hydroponics turned out to be more 

suitable for uniform root development (data not shown). In order to extend the period of vegetative 

development and to avoid physiological changes due to initiation of flowering, plants were grown 

under short days. Under the applied culture conditions, none of the 13 accessions showed visible signs 

of flowering transition before 40 days after germination. In a more extended time-course experiment 

with Col-0 and Ler-0, no sign of flowering was observed until 62 days. Twenty three day-old plants 

were used as they have a root system with multiple-order branching, but were still suitable for two-
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dimensional root phenotyping. At that time point, the accessions displayed a wide diversity in root 

architecture (Figure 1).  

 

 1r 2r 3r 4r  1r 2r 3r 4r 

An-1   Fei-0 

Bay-0   Ler-0 

Bor-4  RRS-7 

Bur-0   Sha-0 

Col-0   Ts-1 

Cvi-0   Tsu-0 

Est-1      

 

Figure 1. 2D-root images of 13 Arabidopsis accessions after 23 day of culture on hydroponics. From left to 

right, four replicates of each accession are presented. At the upper-left corner in the first replicate of An-1, the 

length of scale bar is 3 cm. 

Parameters to quantify root traits 

Identifying the primary root with certainty was only possible for three accessions (Cvi-0, Fei-0, Ts-1), 

since the other accessions had several main roots with similar characteristics. Hence, we introduced 

the term “mature root unit (MRU)” as a basic unit for phenotyping RSA (Figure 2; the MRU number 

(MRUN) is 3, indicated with the ellipses). In this article, the term “main root” will be used for the 

longest root observed in each MRU, the term “lateral root” (LR) for the first-order branch roots 

attached to the main root in individual MRUs and the term “secondary lateral root” (2′-LR) for the 

second-order branch roots attached to “lateral root” in individual MRUs. Since in most accessions 

lateral roots were not evenly distributed along the main root, we quantified the distribution of lateral 
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roots in individual MRUs, by dividing them into four sections of equal length, 1Q-4Q (Figure 2) and 

in each of these categories determined lateral root length (LRL) and number (LRN) (Figure 3). 

 

Figure 2. Schematic concept of mature root unit (MRU) and the quarterly distribution of lateral roots. In 

this example image, the root system consists of three mature root units (MRUs), indicated by the ellipses. A 

MRU on the right side is magnified in a linear way. Lateral roots alongside the main root axis are coloured 

differently (blue, yellow, black, red) in four quarterly panels from root base (1Q) to root tip (4Q). Secondary 

lateral roots (2´-LR, orange colour, indicated by short arrows) are roots originating from lateral roots in MRUs. 

Variations of complex RSA 

In the quarterly division analysis of lateral root branching, LRL generally showed larger variation 

than LRN (Figure 3). This was observed in all four quarters and there was a tendency that the 

variation of these traits increased in the lower sections, where lateral roots have emerged later.  

Other root phenotypic traits also varied between accessions, but not all to the same degree 

(Figure 4). Root fresh weight (RFW) showed more than five-fold difference between extremes (Cvi, 

Tsu), ranging from 0.5 to nearly 3 mg. Also mature root unit number (MRUN), total root length 

(TRL), total root-tip number (TRTN), LRL and secondary lateral root length (2′-LRL) displayed large 

variation. Smaller variation was observed for primary root length (PRL), LRN and lateral root density 

traits. Just as 2′-LRL showed larger variation than LRL, also 2′-LRN displayed a larger variation than 

LRN. Secondary lateral roots were present in most accessions, except in Ts-1, which also showed the 
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shortest TRL. Among root traits, primary root length (PRL) showed the smallest variation. Lateral 

root density (LRD) showed limited variation since it was closely linked to lateral root number, which 

also showed small variation. 

 

Figure 3. Quarterly distribution of lateral root length and lateral root number in 13 Arabidopsis 

accessions. (A) Lateral root length (LRL). (B) Lateral root number (LRN). Vertical bars on columns indicate 

standard errors (n=6~8), see legends in Fig. 2 for different colours. 

RSA and their hierarchical relationships of 13 accessions in this study were obviously different 

from those of accessions analysed in previous studies, in which roots were grown on agar plates 

(Figure S2) (Armengaud et al., 2009; Kellermeier et al., 2013). Selection of accessions, method of 

culture and plant age in the present report differ too much from the cited studies to allow direct 

comparison. 

Table 1 shows correlations between root phenotypic traits observed in 23-day-old roots of 13 

natural accessions. Several obvious correlations were observed, e.g., between TRL and RFW. Our 

data allowed the study of more complex traits, including lateral-root related ones, and we will 

therefore focus on traits describing the complexity of the root system. RFW was highly correlated 
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with the second quarter of lateral root length (LRL-2Q, r2=0.82), followed by LRL-3Q (r2 = 0.7). TRL 

that is a determinant of RFW was the highest correlated with LRL-2Q, followed by LRL-1Q. These 

correlations imply that LRL-1Q and LRL-2Q contribute most to TRL. LRN was the highest correlated 

with LRL-3Q, followed by LRL-2Q, showing that Arabidopsis develops more lateral roots in the 

middle than in the top section of the main root. TRTN, an indicator of branch complexity in the whole 

root system, was the highest correlated (r2 = 0.97) with 2′-LRN, showing that phenotyping of mature 

root systems such as used in the present study requires sophisticated measurements including 

secondary and tertiary lateral root traits.  

 

Figure 4. Natural variations of root system architecture (RSA) of 23-d-old roots. (A) Root fresh weight 

(RFW). (B) Mature root unit number (MRUN). (C) Total root length (TRL). (D) Total root-tip number (TRTN). 

(E) Total root density (TRD = TRTN TRL-1). (F) Primary root length (PRL, as the linear stretch of whole root 

system). (G) Lateral root length (LRL). (H) Lateral root number (LRN).  (I) Lateral root density (LRD = LRN 

PRL-1). (J) Secondary-lateral root length (2′-LRL). (K) Secondary-lateral root number (2′-LRN). (L) Secondary-

lateral root density (2′-LRD = 2′-LRN TRL-1). 
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Table 1. Correlations between root phenotypic traits. Significant correlations (p<0.01) are marked with an 

asterisk superscript. Abbreviations are: RFW, root fresh weight; MRUN, mature root unit number; TRL, total 

root length (cm); TRTN, total root-tip number; TRD, total root density; PRL, primary root length as the linear 

stretch of whole root system; LRL, lateral root length; LRN, lateral root number; LRD, lateral root density; 2′-

LRL, secondary-lateral root length; 2′-LRN, secondary-lateral root number; 2′-LRD, secondary-lateral root 

density. 

variables RFW MRUN TRL TRTN TRD PRL LRL LRN LRD 2ʹ-LRL 2ʹ-LRN 2ʹ-LRD LRL-1Q LRL-2Q LRL-3Q LRL-4Q LRN-1Q LRN-2Q LRN-3Q 

MRUN 0.45 
                  

TRL 0.82* 0.79* 
                 

TRTN 0.45 0.71* 0.79* 
                

TRD -0.72* -0.45 -0.68* -0.15 
               

PRL 0.29 0.61 0.66 0.80* -0.17 
              

LRL 0.83* 0.66 0.96* 0.82* -0.59 0.58 
             

LRN 0.40 0.29 0.58 0.79* -0.05 0.68 0.69* 
            

LRD 0.31 -0.13 0.21 0.35 0.04 -0.01 0.44 0.73* 
           

2ʹ-LRL 0.75* 0.84* 0.95* 0.68 -0.73* 0.65 0.82* 0.40 -0.02 
          

2ʹ-LRN 0.42 0.80* 0.80* 0.97* -0.18 0.77* 0.79* 0.63 0.16 0.72* 
         

2ʹ-LRD -0.20 0.32 0.16 0.64 0.55 0.45 0.20 0.36 0.08 0.09 0.67 
        

LRL-1Q 0.66 0.68 0.89* 0.82* -0.51 0.85* 0.84* 0.65 0.13 0.85* 0.80* 0.27 
       

LRL-2Q 0.82* 0.66 0.93* 0.78* -0.59 0.47 0.98* 0.60 0.41 0.80* 0.76* 0.18 0.74* 
      

LRL-3Q 0.70* 0.26 0.59 0.44 -0.41 -0.02 0.76* 0.48 0.71* 0.38 0.38 0.02 0.33 0.80* 
     

LRL-4Q 0.24 -0.08 0.04 -0.11 -0.24 -0.42 0.21 0.10 0.60 -0.13 -0.18 -0.23 -0.13 0.20 0.67 
    

LRN-1Q 0.23 0.33 0.40 0.56 -0.12 0.75* 0.39 0.71* 0.26 0.37 0.45 0.11 0.64 0.23 -0.05 -0.20 
   

LRN-2Q 0.48 0.41 0.62 0.71* -0.19 0.74* 0.62 0.86* 0.47 0.56 0.58 0.21 0.66 0.53 0.26 -0.12 0.80* 
  

LRN-3Q 0.38 0.23 0.55 0.78* 0.03 0.64 0.68 0.97* 0.73* 0.35 0.62 0.44 0.62 0.60 0.50 0.09 0.57 0.76* 
 

LRN-4Q 0.08 -0.13 0.13 0.33 0.14 -0.06 0.38 0.49 0.75* -0.12 0.23 0.31 0.09 0.38 0.67 0.56 -0.11 0.01 0.60 

 

Natural variation in hormone concentrations in roots  

In total, 33 phytohormones and related metabolites in four different classes were targeted for hormone 

quantification (Table S1). Eleven phytohormones—auxin, abscisic acid (ABA), gibberellin A9 (GA9) 

and eight CKs—could reliably be quantified in 23-day-old roots of all 13 accessions. Among 12 

targeted gibberellins, four GAs (GA1, GA3, GA7, GA20) were detected in some accessions, while GA9 

was commonly determined in all accessions.  

Overall, phytohormone levels showed a limited range of variation among accessions (Figure 5). 

However, the extent of the variation strongly depended on the type of hormone and metabolites. 

Variations in the levels of auxin and ABA were within ± 25% from the average values for all 

accessions, and the difference between the extremes was less than twofold (Table S2). For CKs, the 

levels of isopentenyl adenine (iP) and trans-zeatin (tZ) were maintained in a very narrow range (± 

10%), whereas CK ribosides showed relatively larger variations, viz., ± 50%. Trans-zeatin glucosides 

(tZG) showed around ± 30% variation, larger than for the free bases. The variation in cis-zeatin (cZ) 
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level was within ± 50%, similar to the ribosides. GA9 displayed larger variation, up to threefold, 

between the extremes.  

 

Figure 5. Natural variations of endogenous hormone levels in 23-d-old roots of Arabidopsis. (A) Indole-3-

acetic acid (IAA). (B) Abscisic acid (ABA). (C) Isopentenyl adenine (iP). (D) Isopentenyl adenine riboside 

(iPR). (E) Trans-zeatin (tZ). (F) Trans-zeatin riboside (tZR). (G) Trans-zeatin-7-glucoside (tZ7G). (H) Trans-

zeatin-(O and 9)-glucosides (tZ(O, 9)G). (I) Gibberellin A9 (GA9). Y-axis is percentage of variance, obtained 

from the formula, Y = ((X-A)/A)100: X is the hormone concentration in a given accession and A is the average 

of concentration of hormone found in all accessions. Vertical bars on columns indicate standard errors (n = 3~4). 

tZOG and tZ9G were quantified together because peaks of compounds were overlapped in the chromatograms. 

See Table S2 for absolute quantities of hormones. 

Correlations between phytohormone levels and root system architecture 

Several significant correlations between phytohormone levels and RSA traits were found (Table 2). 

MRUN and TRTN, describing root maturity and global complexity, positively correlated with IAA 

level although the correlation was not significant. Secondary lateral root traits also positively 

correlated with auxin. However, RFW showed little correlation with auxin. These relationships reflect 
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the important role of auxin in shaping the root system, particularly regarding lateral root branching 

and elongation. 

Table 2. Correlations between hormone levels and RSA. Significant correlations are marked with an asterisk 

on bold figures: single and double asterisks indicate significance levels at p<0.05 and p<0.01, respectively. Blue 

and red colours indicate negative and positive correlations, respectively. Darker colours show higher 

correlations. Abbreviations of hormones are: IAA, indole-3-acetic acid; ABA, abscisic acid; iP, isopentenyl 

adenine; iPR, isopentenyl adenine riboside; cZ, cis-zeatin; tZ, trans-zeatin; tZR, trans-zeatin ribosides; tZ7G, 

trans-zeatin-7-glucoside; tZ(O,9)G, trans-zeatin-O and 9-glucosides; GA9, gibberellin A9. Refer to as the 

description of abbreviations for root phenotypic traits in Table 1. 

 RFW MRUN TRL TRTN TRD PRL LRL LRN LRD 2ʹ-LRL 2-LRN 2ʹ-LRD 
LRL- 

1Q 

LRL- 

2Q 

LRL- 

3Q 

LRL- 

4Q 

LRN- 

1Q 

LRN- 

2Q 

LRN- 

3Q 

LRN- 

4Q 

IAA -0.01 0.49 0.21 0.38 0.10 0.07 0.18 0.07 -0.01 0.24 0.47 0.37 0.04 0.26 0.14 -0.17 0.09 0.10 -0.01 -0.05 

ABA 0.07 -0.30 0.04 -0.05 -0.03 -0.12 0.14 -0.02 0.11 -0.06 -0.05 0.03 0.08 0.12 0.28 0.15 -0.27 -0.32 0.06 0.51 

iP 0.26 0.01 0.01 -0.11 -0.25 -0.19 0.10 0.13 0.33 -0.06 -0.19 -0.54 -0.12 0.13 0.29 0.32 0.20 0.10 0.06 0.04 

iPR 0.55 0.74** 0.66* 0.48 -0.54 0.24 0.63* 0.25 0.14 0.65* 0.52 0.02 0.35 0.69** 0.56* 0.23 0.14 0.40 0.15 -0.05 

cZ 0.69** 0.06 0.45 0.22 -0.48 -0.12 0.63* 0.30 0.57* 0.23 0.16 -0.23 0.28 0.66* 0.86** 0.64* -0.10 0.08 0.35 0.59* 

tZ -0.37 -0.53 -0.37 -0.26 0.38 -0.31 -0.24 -0.16 0.06 -0.46 -0.28 0.14 -0.36 -0.20 0.05 0.08 -0.52 -0.49 -0.02 0.53 

tZR 0.64* 0.36 0.56* 0.33 -0.57* 0.04 0.67* 0.45 0.64* 0.43 0.25 -0.19 0.34 0.65* 0.84** 0.76** 0.16 0.32 0.42 0.46 

tZ7G 0.57* 0.29 0.50 0.41 -0.34 0.36 0.56 0.47 0.36 0.38 0.33 0.04 0.58* 0.47 0.41 0.31 0.34 0.42 0.47 0.27 

tZ(O,9)G 0.48 0.23 0.33 0.28 -0.23 0.04 0.43 0.33 0.48 0.20 0.23 0.03 0.35 0.36 0.49 0.56* 0.24 0.26 0.30 0.30 

GA9 -0.28 -0.65* -0.45 -0.27 0.30 -0.15 -0.28 0.27 0.51 -0.59* -0.46 -0.24 -0.27 -0.38 -0.04 0.37 0.29 0.15 0.22 0.27 

 

Most of the root traits, except TRD and LRN-4Q, negatively correlated with tZ, for which an 

antagonistic interaction with IAA in root development has been described (Pernisova et al., 2009; 

Ruzicka et al., 2009). Another active free base, iP showed different correlations with various root 

traits, viz., RFW, TRD, 2′-LRD and LRN-1Q/2Q, indicating that each free base may have different 

physiological effects on RSA. Cis-zeatin showed significant positive correlations with RFW, LRD, 

LRL-2Q/3Q/4Q and LRN-4Q, and its overall correlation pattern was similar with those of the 

ribosides and glucosides.  

ABA negatively correlated with most of the root traits, except LRN-4Q, where very short lateral 

roots (shorter than 0.5 mm) were dominant. Overall correlations of GA9 to each root trait were similar 

with those of tZ, except LRN in the upper main root axis.  

In order to have a global view of interactions between phytohormone levels and RSA, we 

performed a principal component analysis (PCA) based on Pearson’s coefficients (Figure 6). 

Approximately, 58% of the variation was explained by the first two principal components (PC1, PC2), 
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reaching 71% cumulative explanation with PC3 (Table S3). The first principal component (PC1) is 

composed mainly of all root traits and some CKs, such as tZR, iPR and tZ7G. The other 

phytohormones mainly contributed to PC2. CK ribosides and glucosides clustered closely with some 

of the root phenotypic traits, for example, RFW to tZ7G. Trans-zeatin clustered with ABA and GA9, 

which were diagonally opposite to IAA.  

 

Figure 6. Principal component analysis of hormone levels and root system architecture (RSA) traits in 23-

d-old roots of Arabidopsis. Red-triangles indicate hormone traits and black circles show root phenotypic trait. 

Meanings of abbreviations are given in the legends of Figure 4 (root traits) and Figure 5 (hormones). For 

simplicity, LRL and LRN for quarterly distribution are abbreviated as L-1Q/2Q/3Q/4Q and N-1Q/2Q/3Q/4Q, 

respectively. 

Hormone levels versus hormone sensitivity  

The response of a plant developmental process to hormones is the result of hormone level and the 

sensitivity towards that hormone. In a pilot experiment we assayed the sensitivity for auxin of three 

accessions, which have been widely used for the generation of recombinant inbred lines (RILs). Since 

long term application under non-sterile hydroponic conditions will result in rapid breakdown of IAA, 

we used a sterile plate-assay instead. Figure 7 shows that roots of Ler and Col, in the absence of 

exogenous IAA, are longer than Cvi roots. This is consistent with various root-length related traits as 

measured for the same accessions in later developmental stages from the hydroponic system (Figure 

4). The addition of IAA to the plates resulted in shorter roots. This would imply that IAA inhibits root 



Chapter 3

50

Chapter 3 

 

elongation, a well-known phenomenon (Rahman et al., 2007; Swarup et al., 2007). Thus, if root 

elongation would only be controlled by the level of endogenous IAA, levels in Ler and Col would be 

expected to be lower than in Cvi. This is obviously not consistent with the data presented in Figure 5. 

Then, can differences in root length between these three accessions be explained by differences in 

sensitivities towards IAA? Figure 7 shows that Ler, and especially Col are much less sensitive to 

exogenous IAA than Cvi: within the tested range of concentrations, Col hardly responds, whereas Cvi 

shows a 30% decrease in root length already at the lowest concentration tested. Ler showed an 

intermediate behaviour.  

 

Figure 7. Effect of indole-3-acetic acid (IAA) on primary root length in Arabidopsis seedlings. Plants were 

grown on vertical plates with half strength of Murashige and Skoog media, containing IAA. Primary root 

lengths were measured after 10 d of culturing. 

Quantitative changes in hormone contents during mature root development  

Quantitative changes and profiling of phytohormones in organs/tissues have been reported in some 

plants (Kanno et al., 2010; Powell et al., 2013; Taylor and vanStaden, 1997). In Arabidopsis, most 

studies on hormone quantification have focused on young seedlings, and hence data on dynamic 

changes during rapid root growth in later stages are missing. Information on quantitative changes in 

hormones, if occurring, may help to understand their biochemical and functional roles in root growth. 

Therefore, we measured quantitative changes in phytohormones in the roots of two representative 

accessions (Col-0, Ler-0), which showed vigorous vegetative growth during five weeks (23-58 days, 

before transition to flowering) (Figure S3).  
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Overall, each phytohormone showed similar time-course patterns in both accessions (Figure 8), 

although there were some minor differences. Auxin level decreased between 30 and 58 days in both 

accessions, with a 40% decrease in Col-0 and 32% in Ler. ABA sharply decreased in both accessions 

from 23 days to around 40 days. Thereafter, ABA levels became below the detection limit. Levels of 

CK free bases were fairly stable for the whole period, although tZ in Col-0 slightly decreased (22%) 

between 23 and 44 days. CK ribosides (iPR, tZR, DZR) did not change much in both lines, while 

levels of glucosides (tZ7G, tZ(O, 9)G) gradually increased after 37 days: tZ7G, 73% in Col-0 and 

156% in Ler; tZ(O, 9)G, 112% in Col-0 and 274% in Ler. Levels of dihydrozeatin (DZ) and 

gibberellins, which could be measured in 23-day-old roots, were below the detection limit after 30 

days.  

 

Figure 8. Temporal changes of hormone levels in Arabidopsis roots during mature root development. (A) 

Indole-3-acetic acid (IAA). (B) Abscisic acid (ABA). (C) Isopentenyl adenine (iP). (D) Isopentenyl adenine 

riboside (iPR). (E) Trans-zeatin (tZ).  (F) Trans-zeatin riboside tZR). (G) Dihydrozeatin riboside (DZR). (H) 

Trans-zeatin-7-glucoside (tZ7G). (I) Trans-zeatin-(O and 9)-glucosides (tZ(O, 9)G). Red triangles and blue 

squares indicate Columbia-0 and Ler-0, respectively. Unit of Y-axes is pg mg-1 in dry weight commonly. 

Vertical bars on markers indicate standard errors (n = 4). Data of 51st d were missed. ABA levels were below 

the detection limit after 37 d for Ler-0 and 44 d for Col-0. 
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Discussion 

Roots are vital for plant growth and survival, and their development should adequately respond to 

environmental cues. Hormones are supposed to be essential in this process, transducing the external 

signals to internal ones. Different accessions of one species may have adapted to a specific local 

environment, thus resulting in natural variation within the species for root-related traits. We tried to 

answer the question whether, and to what extent, endogenous hormones are involved in such 

adaptations, by determining endogenous levels of a series of hormones, and how they correlate with 

root phenotypic traits. Since the root architecture in later stages of the development plays an important 

role in the adaptation to the environment, we decided to focus on mature plants, rather than seedlings 

that have been investigated in many other studies related to root architecture (Slovak et al., 2014; Zhu 

et al., 2011).  

Evaluation of mature RSA requires proper root phenotypic traits  

Variation in phenotypic traits in 23-day-old mature roots was large and different for each trait, similar 

as found in growth-related traits in the shoot (El-Lithy et al., 2004). The larger variation in LRL traits, 

as compared to LRN, for example, shows that Arabidopsis displays a smaller genetic variation for 

lateral root numbers than for length. The obvious differences in lateral root lengths, despite the 

homogeneous hydroponic culture, suggest that phenotypic plasticity of Arabidopsis root system to 

environmental constraints. e.g., drought, may be considerable. A large variation was also observed in 

root weight as was shown earlier for young seedlings (Clark et al., 2013; Slovak et al., 2014). 

However, PRL and LRD, important traits to evaluate phenotypes of seedling roots, were less variable 

in the present study, suggesting that phenotypic traits of interest in mature roots should be carefully 

chosen for proper description and quantification.  

Arabidopsis roots show homeostasis for phytohormone levels  

The natural variation in the levels of hormones in the present study was surprisingly low, differences 

being less than two-folds between extremes, except for GA9. These conserved levels of hormones are 

in stark contrast with other studies on primary and secondary metabolites in plants. The 

concentrations of flavonoids in seeds of 41 Arabidopsis ecotypes showed large variation: 39-fold for 

quercetin-3-rhamnoside and 9.6-fold for biflavonols (Routaboul et al., 2012). There was a twenty-fold 

difference for total aliphatic glucosinolate levels among leaves of 39 Arabidopsis ecotypes 

(Kliebenstein et al., 2001b). Also in a metabolite study in tomato, the variation in levels of primary 

and secondary metabolites was large, for instance, tocopherol contents showed 10-fold differences 

between extreme lines (Sauvage et al., 2014).  
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Earlier reports described large natural variation in the response to hormones and stresses, as 

detected in transcriptome studies (Delker et al., 2010; Sofo et al., 2013). The limited variation in 

hormone levels, including biologically inactive conjugates and other products of inactivation that we 

found in the present study, would imply that levels of phytohormones are controlled by sophisticated 

homeostasis mechanisms, presumably involving conjugation, oxidation, transport and synthesis. More 

fine-tuned homeostatic control can be found for active hormone compounds, e.g., CK free bases, as 

described in the present study, which are regulated in coordination with complex signalling 

mechanisms in non-linear pathways (Vanstraelen and Benkova, 2012).  

It should be noted, however, that hormone levels in our study were determined in a whole-root 

extract, thus not including information on possible differential concentrations, which have been 

founded at the cellular or tissue level (Antoniadi et al., 2015; Bielach et al., 2012). Though 

incomplete, the present data are still valuable to advance our understanding of the natural variation in 

homeostatic regulation of phytohormones between active forms and intermediates in Arabidopsis 

roots.  

The variation in auxin level (± 25%) in our study can be a consequence of two features: genetic 

polymorphism for genes involved in auxin metabolism, and variation for transporters, such as 

PINs/ABCBs and AUXs (Kramer and Bennett, 2006; Petersson et al., 2009), resulting in local 

differences of levels in the root system. The larger variation in the level of GA9 may be a feature of an 

inactive GA as a precursor for the biologically active GA4 (Hedden and Thomas, 2012) but more 

quantitative information for other GA species is required to understand the natural variation for this 

large class of hormones, which are relatively more abundant in leaves than in roots (Nam et al., 2017).  

Correlation analysis between hormones and RSA may help to understand the hormonal cross-

talk that determines root architecture 

Positive correlations of auxin level to TRTN and TRL were consistent with previous findings in 

seedlings. This would imply that the local maxima for auxin in the root apices, as observed in 

seedlings, are also present in mature roots. In our study, RSA seems to be controlled mainly by 

antagonistic relationships between IAA on the one hand, and CKs (tZ, iP), ABA and GA9 on the other 

hand (Figure 6). Cross-talks between CK signalling and PIN-FORMED (PIN) expression occur in the 

early embryonic root development (Bishopp et al., 2011; Muller and Sheen, 2008). The underlying 

mechanism may be that CK suppresses the expression of PIN1, thus depleting polarly localized PIN 

proteins at the basal membrane, consequently decreasing directional auxin flow (Marhavy et al., 

2014). Auxin-CK balance also regulates the root meristem size in Arabidopsis, through triggering of 

CK signalling, thus affecting root biomass (Dello Ioio et al., 2008; Ruzicka et al., 2009). 
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Another antagonistic hormone interaction for mature root development that showed up in the 

PCA was that between GA9 and auxin (Figure 6). According to Moubayidin et al. (2010), gibberellin 

(GA3) induces PIN expression via repression of ARABIDOPSIS RESPONSE REGULATOR 1 (ARR1) 

and IAA3/SHY2 transcription but attenuates CK activity. This positive regulation of auxin by GA 

conflicts with the present study that GA9 clustered with tZ rather than with IAA. This discrepancy 

may be due to the large differences between different GAs, with the biologically active GAs (GA3, 

GA4), showing opposite behaviour from the inactive ones such as GA9, similar to the opposite 

behaviour between CK ribosides (iPR, tZR) and tZ as seen in the PCA (Figure 6). 

In the present study, clustering of ABA with tZ could be compatible with the results presented 

by Shkolnik-Inbar and Bar-Zvi (2010), showing that LR growth can be altered by the ABSCISIC 

ACID INSENSITIVE 4 (ABI4) transcription factor, whose expression is enhanced by ABA and CK, 

and reduces polar auxin transport, finally causing inhibition of LR formation. Overall, these possible 

hormonal cross-talks seem also compatible with  previous results, showing comparable phenotypic 

plasticity in wild-type (Col-0) and a number of Arabidopsis mutants (axr4, abi4, cre1) under various 

treatments (IAA, ABA, CK) (Ristova et al., 2013).  

The experiment with exogenously applied hormone (Figure 7) shows the importance of 

hormone-sensitivity in controlling root growth. However, the various significant positive and negative 

correlations between hormone levels and root traits (Table 2) also indicate a prominent role for the 

endogenous hormone levels themselves. 

Changes in hormone concentrations during root growth may reflect changes in spatial 

distribution and localization  

Based on quantitative changes during root development (Figure 8), phytohormones can be divided 

into three groups: decreasing (IAA, ABA), constant (tZ, tZR, iP, iPR) and increasing (tZ7G, tZ(O, 

9)G). Auxin levels show local maxima in root apices (Grieneisen et al., 2007, Petersson et al. 2009); 

thus the gradual decrease in the auxin level during root development and elongation likely reflects a 

dilution effect, with relatively less apices as compared to total root mass in older roots. Hydroponic 

culture provides a homogenous environment for roots that may normally be sensitive to dryness in the 

rhizosphere, inducing local ABA accumulation as observed in potatoes (Puertolas et al., 2015). In 

maize, younger roots have higher ABA levels than older roots (Zhang and Tardieu, 1996), which is 

consistent with the decrease in ABA levels during root maturation in the present study. 

In a current model of CK biosynthesis in plants, ribosides and free bases are synthesized through 

two paths; one is from tZRMP to tZR and finally to tZ, including two enzymatic steps and the other is 

from tZRMP directly to tZ catalysed by LONELY GUY (LOG) without tZR as an intermediate 

(Kamada-Nobusada and Sakakibara 2009). Studies using multiple mutants and overexpression lines 
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for LOG genes, show that the levels of CK ribosides and free bases are cumulatively affected by LOG 

homologues, each of them having a small additive effect (Kuroha et al. 2009, Tokunaga et al. 2012). 

Both non-linear biosynthetic pathways and polygenic regulation for a given enzymatic conversion 

may support long-term homeostasis of ribosides and free bases as found in the present study of 

Arabidopsis roots.  

CK N-glucosides are products of a linear metabolic pathway and are synthesized irreversibly 

from free bases by N-glucosyltransferases, followed by CK oxidases/dehydrogenases (CKX) for 

degradation. The significant positive correlation of tZ7G with RFW and TRL in the 23-day-old roots 

and the accumulation of tZ(7, 9)G during rapid root growth are consistent with the findings of 

Kollmer et al. (2014) that decreased levels of N-glucosides, due to overexpression of CKX7, result in 

an early termination of the primary root growth, complete suppression of lateral root initiation and 

aberration of root vascular development. It is yet unknown how the accumulation of CK N-glucosides 

is controlled, their levels depending on two enzymatic reactions, between N-glucosylation and 

oxidation. Presumably, CK N-glucosides may have a physiological role in Arabidopsis root growth, 

different from O-glucosides that are relevant for homeostatic regulation of biologically active CK.  

In summary, here we report that endogenous hormone levels in roots of natural accessions of 

Arabidopsis are maintained within a narrow range of concentrations. Complex RSA in mature plants, 

consisting of multiple-order lateral roots, should be studied using appropriate phenotypic traits, since 

the use of only two components—the primary and the lateral roots—structuring young roots, is not 

suitable to effectively describe mature root systems. In correlation analyses we showed that some 

phenotypic traits in mature roots can be explained by hormone cross-talk. Since natural variation is an 

important premise to unravel genetic elements through quantitative traits analyses (Koornneef et al., 

2004), this study suggests that quantitative trait loci (QTL) analysis for phytohormone levels is 

feasible, using mapping populations derived from divergent accessions, for example, Ler and Cvi 

(Figure S4). This way, the molecular mechanisms by which root architecture in plants is determined, 

will be further unravelled. 
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[Supplementary Information] 

Table S1. Summary of multiple reaction monitor (MRM) transitions used for hormone quantification in 

ESI-TQ mass spectrometer. 

Analytes UPLC  
Gradient  

RT ESI MRM 
Function 

Transition 
(m/z) 

Cone 
voltage 

Collision 
energy  

Internal 
standard 

RT Transition 
(m/z) 

Cone 
voltage 

Collision 
energy 

tZ 1 3.78 + 2 220.1>136.1 20 18 [2H6] tZ 3.75 225.1>136.9 20 18 
tZR 1 5.04 + 3 352.1>136.1 28 20 [2H5] tZR 5.01 357.1>136.9 28 20 
iP 1 6.15 + 1 204.1>136.1 20 18 [2H6] iP 6.11 210.1>137.1 20 18 
iPR 1 7.60 + 1 336.1>204.1 28 18 [2H6] iPR 7.55 342.2>210.2 28 18 
cZ 1 4.01 + 2 220.1>136.1 20 18 [2H6] tZ 3.75 225.1>136.9 20 18 
cZR 1 5.31 + 3 352.1>136.1 28 16 [2H5] tZR 5.01 357.1>136.9 28 20 
tZOG 1 3.84 + 2 382.1>220.1 30 16 [2H5] tZ9G 4.02 387.2>225.2 30 20 
tZ7G 1 3.86 + 2 382.1>220.1 30 20 [2H5] tZ9G 4.02 387.2>225.2 30 20 
tZ9G 1 4.04 + 2 382.1>220.1 30 20 [2H5] tZ9G 4.02 387.2>225.2 30 20 
DZ 1 3.95 + 2 222.1>136.1 20 18 [2H3] DZ 3.91 225.1>136.1 20 18 
DZR 1 5.10 + 3 354.1>136.1 28 22 [2H3] DZR 5.06 357.2>149.1 28 22 
DZ7G 1 4.07 + 2 384.1>136.1 30 20      
DZ9G 1 4.17 + 2 384.1>136.1 30 20      
DZROG 1 5.12 + 3 516.1>222.1 34 20      
tZRMP 1 3.58 + 2 432.1>220.1 34 22      
tZROG 1 4.94 + 3 514.1>382.2 34 22      
mT 1 4.92 + 3 242.1>77.0 20 18      
mTR 1 6.45 + 1 374.1>242.1 30 20      
oT 1 5.94 + 1 242.1>136.1 20 18      
oTR 1 7.55 + 1 374.1>242.1 28 20      
IAA 2 4.15 + 1 176.1>130.1 18 16 [13C6] IAA 4.14 182.1>136.1 18 16 
ABA 2 4.80 - 5 263.1>219.1 18 14 [2H6] ABA 4.77 269.1>225.1 18 14 
GA1 2 3.67 + 4 349.2>285.2 20 16 [2H2] GA1 3.65 351.2>287.2 20 16 
GA3 2 3.61 - 7 345.2>239.2 28 14 [2H2] GA3 3.60 347.2>241.2 28 14 
GA4 2 6.15 - 6 331.2>257.2 28 14 [2H2] GA4 6.13 333.2>259.2 28 14 
GA5 2 4.83 + 3 331.2>285.2 12 10      
GA7 2 6.06 - 6 329.2>223.2 26 14 [2H2] GA7 6.04 331.2>225.2 26 14 
GA8 2 2.69 + 4 365.2>301.2 14 10      
GA9 2 7.18 + 2 317.2>271.2 16 14 [2H2] GA4 6.13 333.2>259.2 28 14 
GA19 2 4.80 + 3 363.2>299.2 14 12      
GA20 2 4.95 + 3 333.2>287.2 18 12 [2H2] GA20 4.93 335.2>289.2 18 12 
GA44 2 5.05 + 3 347.2>301.2 22 14      
GA53 2 5.65 + 6 347.2>329.2 48 22      

 

Table S2. Hormone levels in 23-d-old roots of 13 Arabidopsis accessions (unit: pg mg-1 .dry weight). 

 IAA ABA iP iPR cZ tZ tZR tZ7G tZ(O,9)G GA9 

An-1 385.8 ± 11.8 22.3 ± 2.6 14.1 ± 0.5 10.3 ± 0.9 60.2 ± 2.6 21.5 ± 0.6 50.0 ± 9.2 194.3 ± 10.4 307.8 ± 7.9 107.6 ± 28.9 

Bay-1 504.9 ± 14.2 17.5 ± 2.0 15.1 ± 0.1 21.8 ± 0.8 55.7 ± 1.4 21.2 ± 0.4 64.4 ± 6.5 148.4 ± 10.4 240.5 ± 16.7 108.9 ± 14.1 

Bor-4 396.4 ± 19.4 16.2 ± 1.1 14.1 ± 0.3 19.4 ± 1.2 53.9 ± 4.4 20.9 ± 0.4 44.5 ± 2.9 178.6 ± 11.1 269.4 ± 13.2 68.4 ± 2.5 

Bur-0 318.2 ± 35.6 16.0 ± 2.6 14.3 ± 0.2 13.0 ± 0.8 58.1 ± 1.4 20.4 ± 0.3 46.6 ± 2.5 199.2 ± 13.7 287.8 ± 26.8 209.0 ± 56.0 

Col-0 387.6 ± 2.2 15.5 ± 0.6 13.8 ± 0.4 13.7 ± 2.1 53.2 ± 6.9 22.3 ± 0.2 50.8 ± 4.3 140.7 ± 17.9 229.2 ± 10.5 105.2 ± 23.2 

Cvi-0 377.7 ± 18.7 28.0 ± 2.0 13.4 ± 0.9 10.0 ± 1.0 58.7 ± 3.7 32.0 ± 4.0 37.1 ± 5.9 138.2 ± 10.0 212.5 ± 10.5 142.9 ± 23.1 

Est-1 468.6 ± 6.1 16.3 ± 1.1 13.8 ± 0.3 13.8 ± 1.4 52.1 ± 4.3 21.1 ± 0.6 41.8 ± 4.2 164.9 ± 6.6 300.5 ± 18.4 139.8 ± 11.4 

Fei-0 410.9 ± 14.2 15.2 ± 1.1 14.6 ± 0.1 12.0 ± 0.5 46.7 ± 5.4 21.4 ± 0.7 41.5 ± 0.3 145.7 ± 4.8 265.4 ± 26.7 121.5 ± 19.1 

Ler-0 457.6 ± 6.0 16.6 ± 1.0 15.2 ± 0.3 17.0 ± 2.3 74.3 ± 2.8 21.5 ± 0.4 48.6 ± 2.8 191.4 ± 11.8 305.4 ± 9.8 95.0 ± 23.0 

RRS-7 329.0 ± 4.1 16.0 ± 2.1 15.4 ± 0.6 9.5 ± 1.9 63.4 ± 5.2 24.2 ± 1.2 47.1 ± 4.4 212.7 ± 26.0 314.0 ± 23.7 168.6 ± 28.8 

Sha-0 381.1 ± 15.7 20.4 ± 2.3 15.1 ± 0.3 18.1 ± 1.0 87.8 ± 2.0 23.2 ± 0.6 78.8 ± 10.6 192.5 ± 22.1 339.7 ± 13.8 178.3 ± 5.6 

Ts-1 377.2 ± 28.7 17.0 ± 2.1 15.7 ± 0.5 11.6 ± 0.8 61.1 ± 5.9 22.0 ± 0.8 42.1 ± 3.4 142.0 ± 16.1 244.8 ± 15.3 172.3 ± 30.0 

Tsu-0 360.5 ± 8.9 20.1 ± 4.0 14.9 ± 0.2 16.5 ± 1.6 90.9 ± 1.9 22.0 ± 0.2 61.1 ± 2.0 208.5 ± 9.8 307.9 ± 26.4 104.9 ± 11.7 

Median 391.8 16.4 14.7 13.5 58.7 21.9 46.8 172.1 286.8 120.5 

Mean 402.7 17.8 14.6 14.7 63.1 22.2 50.7 174.1 280.7 126.7 

S.D 57.6 4.3 0.9 4.4 14.8 2.6 13.7 34.1 45.1 49.8 
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Table S3. Contribution of variables (hormones and root phenotypic traits) on PCA (unit: %). 

variables PC1 PC2 PC3 PC4 PC5 

RFW 5.07 0.68 4.07 0.04 2.45 
MRUN 4.20 4.48 2.45 0.32 1.28 
TRL 7.26 0.50 0.95 0.48 1.36 
TRTN 6.16 1.54 3.03 0.63 0.49 
TRD 2.34 0.12 12.94 0.20 4.89 
RL 3.50 5.66 3.33 0.83 2.72 
LRL 7.77 0.08 0.07 0.90 0.41 
LRN 4.79 0.15 8.40 1.11 0.35 
LRD 1.79 8.45 4.41 0.26 4.55 
2ʹ-LRL 5.55 2.50 2.88 0.20 1.89 
2ʹ-LRN 5.43 3.18 1.13 2.05 0.42 
2ʹ-LRD 0.46 2.71 10.31 5.54 1.98 
LRL-1Q 6.07 1.46 0.18 0.05 6.85 
LRL-2Q 7.06 0.11 0.56 2.29 0.01 
LRL-3Q 3.90 6.85 0.38 3.24 1.34 
LRL-4Q 0.29 13.02 0.73 0.03 2.42 
LRN-1Q 2.27 1.48 3.26 11.65 0.01 
LRN-2Q 4.38 0.73 2.61 5.92 0.31 
LRN-3Q 4.32 0.37 10.08 0.10 0.01 
LRN-4Q 0.79 8.05 5.85 5.93 0.30 
IAA 0.36 3.10 0.27 4.09 25.55 
ABA 0.01 2.21 0.87 14.09 10.86 
iP 0.19 3.37 2.54 8.51 5.09 
iPR 3.32 0.28 5.61 0.70 10.00 
cZ 2.34 10.06 1.13 0.39 0.97 
tZ 1.25 2.28 3.59 13.72 3.06 
tZR 3.60 5.27 1.82 0.01 3.08 
tZ7G 2.99 1.76 0.08 4.07 7.20 
tZ(O,9)G 1.99 3.68 0.03 3.71 0.04 
GA9 0.41 5.76 6.31 8.80 0.01 
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Figure S1. Illustration of hydroponic culture. The black plate ① is placed and covered on the hydroponic 

tank. A sprout on the top of holder-tube (0.5ml) ② filled with 0.5 % agar in half of Hoagland’s nutrient solution, 

grows and develops root system in the hydroponic tank. A small ring ③ inside the tube was tightly placed to 

prevent agar medium from being slipped down out of the tube during culture, with no physical hindrance for 

root development.  In order to avoid roots to be entangled with roots of neighbour plants, a polypropylene 

column (diameter 3 cm,  height 5.5 cm) ④ was equipped underneath the black plate, allowing nutrient solution 

and roots not to be blocked on the bottom ⑤. Right picture ⑥ shows how upper shoots settle and grow on the 

black plate.  

 

 

Figure S2. Hierarchical cluster analysis of RSA traits in 13 Arabidopsis accessions. 
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Figure S3. Dry root weights of Col-0 and Ler-0 during 5 weeks of root development. Data of 51th day was 

missed. 

 

 

Figure S4. Re-partition of 13 Arabidopsis accessions in PCA of hormone levels and RSA traits. 
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Abstract 

Quantitative trait loci (QTL) analyses for five groups of hormones, including cytokinins in 

Arabidopsis roots were performed using recombinant inbred lines (Ler×Cvi). Significant QTLs were 

detected for cytokinins, jasmonic acid and salicylic acid. Separate analysis of two sub-populations, 

viz., vegetative and flowering plants revealed that many of the QTLs were development-specific. 

Using near-isogenic lines, several significant QTLs were confirmed; three co-localized QTL regions 

were responsible for determining several cytokinin metabolites. Using a knock-out plant, a functional 

role of zeatin N-glucosyltransferase gene (UGT76C2) underlying a large-effect QTL for levels of tZ-

N-glucosides and tZRMP was evaluated in the metabolism of cytokinins. Pleotropic effects of this 

gene were found for cytokinin levels in both roots and leaves, but significant changes of 

morphological traits were observed only in roots. Hormone QTL analysis reveals development-

specific and organ-dependent aspects of the regulation of plant hormone content and metabolism. 

 

Key words: Arabidopsis thaliana, quantitative trait loci (QTLs), plant hormones, recombinant inbred 

lines (RILs), near-isogenic lines (NILs) 
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Introduction 

Plant hormones are naturally occurring organic substances that influence complex processes in plant 

development at extremely low concentrations. Hormone levels vary during plant development, 

between organs, e.g., roots and shoots, and between vegetative and flowering stages (Alvim et al., 

1978; Novakova et al., 2005; Powell et al., 2013). Within a species, hormone concentrations may also 

vary between different varieties (Powell et al., 2013). Such variations of plant hormones are obviously 

determined by genes involved in anabolic and catabolic pathways, transport facilitators and/or 

signalling components (Mashiguchi et al., 2011; Spiess et al., 2014). 

Naturally occurring variations among different accessions for a particular trait are due to allelic 

diversity and insertion/deletion (INDELs) of bases including gene duplication in genomes in a species 

(Cao et al., 2011). Even allelic difference at a single locus can contribute to pleiotropic differences in 

growth and fitness (Todesco et al., 2010). Such allelic variations may induce changes in metabolic 

profiles, as shown by Chayut et al. (2015); allelic variation of the melon’s Or gene (CmOr) resulted in 

an increase of beta-carotene accumulation in melon fruit. Hence, the quantitative variation of plant 

hormones within a species is also expected to be due to genetic heterogeneity. 

The quantitative variation of hormone levels can be considered as a complex phenotypic trait, 

determined by multiple loci, which may interact with each other. Quantitative trait loci (QTL) 

analysis has been used to identify genomic regions responsible for polygenic traits. In comparison 

with direct-mutagenesis approach, QLT analysis is more likely to identify genes encoding regulatory 

proteins or rate-determining enzymes, which will reveal important biochemical targets (Korstanje and 

Paigen, 2002). 

Natural genetic variation controlling various traits has intensively been studied using 

recombinant inbred lines (RILs) in plants, especially in the model species Arabidopsis thaliana 

(Alonso-Blanco et al., 2009). Several genes regulating glucosinolate contents have been elucidated 

through linkage mapping in Arabidopsis (Pfalz et al., 2009; Zhang et al., 2006). Except two studies 

about loci related to levels of abscisic acid (ABA) in maize and salicylic acid (SA) in Arabidopsis 

(Dobon et al., 2011; Tuberosa et al., 1998), to our knowledge, there are at present no QTL-based data 

yet on genetic elements determining hormone contents in Arabidopsis or other plant species, despite 

the crucial roles of hormones in plant growth and development. 

In this study, we investigated if, and to what extent, a quantitative genetic approach based on 

hormone levels in roots, may reveal genes involved in regulatory or metabolic pathways. We chose a 

RIL population, derived from the parental lines Landsberg erecta (Ler-0) and Cape Verde Island (Cvi-

0), since these lines showed divergent traits for root hormone contents in our previous study (Lee et 

al., 2017). Several QTLs for levels of cytokinins (CKs) and jasmonic acid (JA) were confirmed using 
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near-isogenic lines (NILs). Further, by using a loss-of-function mutant of a CK N-glucosyltransferase 

gene situated at a QTL region of CK metabolites, its functional role was evaluated.  

The present study shows that genetic elements controlling hormone levels in plants can be 

unravelled through quantitative genetic analysis, providing a powerful method to understand hormone 

metabolism. 

Materials and methods 

Plant materials and phenotyping 

Ler×Cvi RILs, developed and genotyped by Alonso-Blanco et al. (Alonso-Blanco et al., 1998b), were 

chosen based on our previous study on the natural variation of  hormone levels in roots of Arabidopsis 

accessions (Lee et al., 2017). Seeds of 149 lines were placed on wet filter paper in a Petri-dish at 4℃ 

for 4 days in darkness and after that sown on the top of 0.5 mL cylindrical plastic tube, from which 

the bottom had been cut off, and that was filled with 0.5% agar in half strength of Hoagland's nutrient 

solution (pH 5.5). Tubes with seedlings of each line were grown in hydroponic containers (70 plants 

per 10 litres, renewing the nutrient solution once a week). Plants were grown at 21℃ during the light 

period (10 h) and at 18℃ during the dark period (14 h). Light intensity and humidity were fixed at 

125 μMol m-2s-1 and 70% respectively. 

After 5 weeks of culture, roots were harvested between the 5th and 8th hour within the 10 hours 

daytime period. For hormone analysis of RILs, NILs and knockout (KO) plants, six to seven roots of 

each line were pooled for one biological replicate. Pooled roots were immediately ground in liquid 

nitrogen and freeze-dried for 24 hours. For hormone analysis in leaves (Columbia-0 and KO plants), 

two largest rosette leaves in each plant were chosen and leaves of four plants were pooled for one 

biological replicate. On the day of harvest, the developmental stage (vegetative or flowering) and root 

phenotypic traits of each line were recorded. If any of the replicates within a line showed visible 

bolting, the line was scored as ‘flowering’. Before phenotyping of root fresh weight, the drops of 

liquid on roots were removed with paper tissue.  

Hormone extraction and purification 

For each RIL, one biological replicate was used to extract endogenous hormones and further analysed 

for hormone quantification. For parental lines, NILs and KO plants, 4 to 5 biological replicates were 

used. Powder of lyophilized roots (2.5 mg) was extracted and purified with the same methods used in 

our previous study (Lee et al., 2017). 
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Quantitative analysis of plant hormones 

For IAA, ABA, CKs, JA and SA, all of ultra-pressure liquid chromatography (UPLC)-tandem mass 

spectrometer methods were the same as those of our previous study (Lee et al., 2017). In order to 

achieve better chromatographic separation of isomers of CK glucoside (e.g., tZ7G, tZ9G and tZOG) 

in NILs and KO plants, ammonium formate was used as described by Novak et al. (2008). Ten 

microliter of sample was injected onto an Acquity UPLC HSS column (50 x 2.1 mm, 1.8 µm; Waters) 

and eluted by binary mobile phases, A (15mM ammonium formate, pH 4.0) and B (100% methanol), 

with a constant flow rate (0.25 ml min-1) at 40°C for 14 min. The linear gradient elution was 

performed as follows: 0~0.01 min, 10 % eluent B; 0.01~8.0 min, 10 to 50 % eluent B; 8.0~8.5 min, 

50 to 100 % eluent B; 8.5~9.5 min, 100 % eluent B; 9.5~10.5 min, 100 to 10 % eluent B. At the end 

of gradient, the column was equilibrated to initial conditions for 3.5 min. The effluent was introduced 

in electrospray ion (ESI) source of mass spectrometer with operating parameters: capillary voltage, 3 

kV; cone voltage, 22 V; source and desolvation temperature, 150°C and 650°C; cone and desolvation 

gas flow, 50 and 1000 L hour-1; MS mode collision energy, 2 V; MS/MS mode collision energy, 10 V. 

Two selective transitions were used to perform multiple reaction monitoring (MRM) detections (S1 

Table). All data were processed by TargetLynx in MassLynxTM Software (Version 4.1, Waters, USA). 

The quantification of each targeted analyte was based on a linear calibration curve that covered the 

range of concentrations of compounds in samples, and corrected by the recovery rates of the isotope-

labelled internal standards.  

QTL analysis 

To map QTLs using the RIL population, a set of 99 markers spaced over the Arabidopsis genetic map 

was selected from the previous published RIL Ler/Cvi map (Alonso-Blanco et al., 1998b). These 

markers spanned 482 cM, with an average distance between consecutive markers of 5 cM and the 

largest genetic distance being 12 cM. QTL analysis was performed using the computer program 

MapQTL version 6.0 (Ooijen, 2004) as described by Bentsink et al. (Bentsink et al., 2003). Both 

interval mapping and multiple QTL model (MQM) methods were used to locate QTLs linked to the 

molecular markers as described in the reference manual. The estimated additive effect and the 

percentage of variance explained by each QTL affecting a trait, were obtained with MapQTL in the 

final MQM model. For this, different cofactor markers were tested around the putative QTL positions 

(Ooijen, 2004), selecting as final cofactors the closest marker to each QTL. A logarithm of odds 

(LOD) threshold of 2.5 was applied to declare a significant QTL, which corresponds to a general 

genome-wide significance of P<0.05, as determined by permutation tests (1,000 repetitions). QTL 

regions for 95% confidence were determined by 2-LOD support interval that constructs two positions, 

left and right of the point estimate of the QTL, which have a LOD score of two less than the 

maximum. 
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For the purpose of revealing developmental stage-specific QTLs, all RILs were sorted into two 

groups according to the transition of plants for flowering at day 35, i.e., the day of sampling (the ratio 

between vegetative and flowering line was 48.9 : 51.1). For each trait in the two groups, QTL regions 

were independently determined by MQM analysis with automated suggested cofactors.  

QTL confirmation analysis 

A selected set of NILs carrying small Cvi introgressions in Ler background, which was developed by 

Keurentjes et al. (2007a), was tested to confirm some chosen QTLs in the Ler×Cvi RIL population. 

Significant differences of tested traits were compared between Ler and NILs through analysis of 

variance (ANOVA, p<0.05).  

PCR to confirm homozygous KO plants 

Candidate T-DNA (KO) plants were chosen from TAIR (www.arabidopsis.org) website and obtained 

from the European Arabidopsis Stock Centre (NASC, UK). The PCR was performed to screen T-

DNA insertion and its homozygosity for the gene of interest. Forward and reverse primers were 

designed on the website, T-DNA Primer Design (http://signal.salk.edu/tdnaprimers.2): for SAIL 

801B03 and SAIL 1151A08, forward 5’-TCGAAAAACGTCAACAAAACC-3’,  reverse 5’-

AGAGTCCTCTGCTTCCGATTC-3’; SALK 102337, forward 5’-

GCAGATCATAGGAACCCCTTC3’, reverse 5’- TCCGAACCAAGGGATATCTTC-3’. Reaction 

mixtures were prepared with reagents: 1 µl, d’NTPs (5mM); 0.4 µl, forward and reverse primer (10 

pM); 0.15 µl, Firepol (1U); 7.15 µl, water; 1.2 µl, PCR buffer; 1.5 µl, MgCl (2.5mM); 1.0 µl, DNA. 

The following conditions were performed to amplify DNA fragments: denaturation at 95 °C for 5 min 

followed by 30 s at 95 °C, annealing at 55 °C for 30s and extension at 55 °C for 2 min, which was 

cycled 30 times and ended with final amplification at 72 °C for 10 min.  

Results 

Variation of hormone levels in roots of Ler×Cvi RIL population 

To identify the genetic loci affecting endogenous hormone levels in Arabidopsis roots, hormone 

levels were determined in 35-day-old-roots of a Ler×Cvi RIL population. For most hormones and 

their metabolites, transgressive segregation was found within the population (Fig 1), the levels 

ranging 10- to 30-fold between extremes. It indicates that both parental lines carry allelic variants that 

increase or decrease values of traits. For ABA, only a limited range of concentration variation was 

observed, viz., three-fold between extremes. In most cases, normal distributions were found, although 

the distribution ranges were skewed for several compounds, e.g. cis-zeatin riboside (cZR) and JA. 

Weight phenotypic traits showed transgressive segregations below the parental values. 
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Figure 1. Frequency distributions of root hormone levels and phenotypic traits in the Ler×Cvi RIL 

population. Arrows indicate levels of hormones in parental lines: Ler, black; Cvi, white. Abbreviations for 

hormone compounds and phenotypic traits are: isopentenyl riboside monophosphate (iPRMP), trans-zeatin 

riboside monophosphate (tZRMP), ), trans-zeatin riboside (tZR), cis-zeatin riboside (cZR), isopentenyl ladenine 

(iP), trans-zeatin (tZ), trans-zeatin-O-glucoside (tZOG), dihyro-zeatin-O-glucoside (DZOG), trans-zeatin-7,9-

glucoside (tZ7,9G), abscisic acid (ABA), indole-3-acetic acid (IAA), 2-oxindole-3-acetic acid (OxIAA), 

jasmonic acid (JA), salicylic acid (SA), root length (RL), root fresh weight (RFW) and shoot fresh weight 

(SFW). 
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In several cases, significant correlations were found between levels of hormone compounds 

(Table 1). Among CK metabolites, tZ positively correlated with its two precursor metabolites, tZRMP 

and tZR. The two CK N-glucosides (tZ7G and tZ9G) showed highly significant positive correlations 

between each other, and both were positively correlated with tZOG. A significantly positive 

correlation was found between the two CK ribosides (tZR and cZR), and both of them showed similar 

pattern of correlations to other hormones. 2-oxindole-3-acetic acid (OxIAA) that is known as an 

irreversible catabolite of IAA (Tanaka et al., 2014; Zhao et al., 2013) negatively correlated with IAA. 

Low correlation values were observed between ABA and other hormones. Also, some correlations 

between phenotypic traits and hormones were found. Root fresh weight (RFW) and root length (RL) 

showed significantly negative correlations with levels of JA, whereas levels of CK glucosides 

positively correlated with RFW and shoot fresh weight (SFW). 

Table 1. Correlations between hormone levels and phenotypic traits in roots of 35-day-old plants of the 

Ler×Cvi RIL population. Star marker (*) indicates the significant correlation (p<0.01). Abbreviations for 

hormone compounds and phenotypic traits are: isopentenyl riboside monophosphate (iPRMP), 

isopentenyladenine (iP), trans-zeatin riboside monophosphate (tZRMP), trans-zeatin riboside (tZR), trans-zeatin 

(tZ), trans-zeatin-O-glucoside (tZOG), trans-zeatin-7,9-glucoside (tZ7,9G) dihyro-zeatin-O-glucoside (DZOG), 

cis-zeatin riboside (cZR), indole-3-acetic acid (IAA), 2-oxindole-3-acetic acid (OxIAA), abscisic acid (ABA), 

jasmonic acid (JA), salicylic acid (SA), root length (RL), root fresh weight (RFW) and shoot fresh weight 

(SFW). 

Variables iPRMP iP tZRMP tZR tZ tZ7G tZOG tZ9G DZOG cZR IAA OxIAA ABA JA SA 

iP 0.18               

tZRMP 0.21 0.02              

tZR -0.23* -0.12 0.31*             

tZ 0.10 0.03 0.22* 0.42*            

tZ7G 0.06 0.13 -0.11 -0.06 0.16           

tZOG -0.01 0.19 -0.13 -0.12 0.10 0.22*          

tZ9G 0.19 0.21 -0.14 -0.20 0.12 0.83* 0.22*         

DZOG 0.10 0.17 -0.03 -0.22* 0.07 0.38* 0.12 0.35*        

cZR -0.40* -0.24* -0.04 0.57* 0.21* 0.09 -0.10 -0.12 -0.18       

IAA 0.20 0.11 0.14 0.05 0.03 -0.24* -0.05 -0.09 -0.01 -0.08      

OxIAA -0.19 -0.09 0.11 0.22* 0.16 0.16 -0.02 0.00 -0.06 0.29* -0.33*     

ABA -0.02 0.10 0.05 -0.02 -0.03 -0.06 -0.09 -0.06 0.01 0.10 0.19 -0.05    

JA -0.13 -0.23* -0.03 0.32* 0.23* 0.13 -0.07 -0.12 -0.18 0.51* -0.18 0.38* -0.04   

SA 0.12 0.01 -0.01 0.00 -0.09 -0.27* 0.04 -0.16 0.00 -0.08 0.33* -0.23* 0.11 -0.04  

RL 0.21 0.04 -0.07 -0.11 0.00 -0.05 0.21* 0.09 -0.08 -0.18 0.15 -0.23* -0.08 -0.21* 0.02 
RFW 0.19 0.20 -0.06 -0.30* -0.05 0.14 0.30* 0.32* 0.04 -0.27* -0.03 0.05 -0.05 -0.28* -0.20 
SFW 0.03 0.08 -0.07 -0.05 0.07 0.35* 0.30* 0.39* 0.00 -0.06 -0.15 0.31* -0.13 0.01 -0.29* 
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QTLs for CKs, SA, JA and root phenotypic traits 

Among five classes of hormone, significant QTLs for CK, JA, SA and several phenotypic traits were 

observed (Fig 2, S2 Table). The explained variances of these loci for the various traits ranged from 

5% (tZOG on the chromosome 4) up to 25% (tZ9G on the chromosome 5). Twelve QTL regions 

related to CK metabolites and only one QTL for JA and SA were observed. Within CK metabolites, a 

few QTLs co-localized, but the directions of additive effects of these were not the same. No 

significant QTLs were found for IAA, OxIAA and ABA. 

 

Figure 2. Genetic locations of hormonal and root phenotypic QTLs. Numbered bars represent 

chromosomes; the numbers along the bars are genetic map position in centi-Morgans. Directions of arrows 

indicate additive (allelic) effects: upward, Ler alleles increase trait values; downward, Cvi alleles increase trait 

values. Lengths of arrows indicate 2-LOD intervals (95% confidence). Dots in arrows indicate the highest LOD 

position for each QTL. Circles indicate four QTL regions that were tested with related NILs for QTL 

confirmation analysis. 
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QTLs for levels of tZ9G, DZOG and SA were detected at the upper arm of chromosome 1, but 

with different positions. The QTLs for tZ9G co-localised with those for RFW, SFW and flowering 

time, and they all showed the same allelic effect. This region coincides with the earlier reported QTLs 

for flowering time and root growth in the same RIL population (El-Din El-Assal et al., 2001; 

Keurentjes et al., 2007a; Sergeeva et al., 2006). Interestingly, a QTL for tZ9G was found, but no 

significant QTL for its isomer (tZ7G) was detected at the same region.  

Biosynthetic pathways in plant metabolism are composed of a series of precursor-to-product 

pathway, in which rate-controlling steps (usually enzymatic reactions) are involved (Harpaz-Saad et 

al., 2007; Hasunuma et al., 2010). Several cases of such precursor-to-product relation existed within 

CK metabolites measured in this study. Since most of the conversions are catalysed by enzymes, 

which are encoded by genes, we expected that QTLs for ratios of metabolic compounds should be 

also detectable. Indeed, within CK metabolites, six metabolite ratio QTLs were found. Most of these 

QTLs co-localized with those of single CK compounds except one for tZ7G/tZ9G ratio, which was 

newly detected at the lower arm of chromosome 5. 

Development stage-dependent QTLs for hormone levels 

At the time the samples for hormone analyses were taken (35 day), 51% (76 out of total 149) of the 

lines were visibly bolting. Therefore, we wondered if QTL analysis could be done for vegetative and 

flowering lines separately, and to what extent the results would be different from the analysis based 

on the whole population. Using the same RIL population, Keurentjes et al. (2007b) demonstrated that 

values of LOD and the number of detected QTLs decreased with decreasing population size and that 

the degree of the changes differed from trait to trait. In our case, most QTLs detected in the whole 

population were detectable in the sub-populations, but some of them were no longer significant. 

Among 23 significant QTLs for hormones and root traits found in the whole population, 13 QTLs 

appeared to be below the significance threshold (2.5 LOD score) due to lower power in the smaller 

subsets. Interestingly, some new QTLs were detected in the subsets that had not been detected in the 

full set of lines. 

Fifteen of the QTLs from the sub-sets could be categorized into three classes: vegetative-specific 

(8 QTLs), flowering-specific (5 QTLs) and non-development-specific (2 QTLs) (Fig 3). Among the 8 

QTLs specific for the vegetative stage, two QTLs for SA and RL were newly detected in vegetative 

lines and had not been found in the whole population (§ superscript marked in Fig 3, S2 Table). In 

some cases, two developmentally distinct QTLs for the same trait were observed: two QLTs for RFW, 

one for the vegetative stage on the top of chromosome 1, the other specific for the flowering stage on 

chromosome 5; two QTLs for tZ9G, one for vegetative stage on the top of chromosome 3 and the 

other for flowering stage on chromosome 5. For the level of tZOG, two QTLs were found, one on the 
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top of chromosome 3 was flowering-specific, and the other on chromosome 2 was non-development-

specific. Among four QTLs for metabolite-ratio traits, developmental specificities of three QTLs were 

the same as those for either precursors or products, e.g., flowering-specific QTLs for the level of 

tZRMP and tZRMP/tZR ratio on chromosome 5. This implies that the same genetic loci may underlie 

both QTLs, being functional during the same developmental stage. 

 

Figure 3. Development-specific QTLs based on vegetative- and flowering lines. (A) vegetative-specific 

QTLs. (B) flowering-specific QTLs. (C) non-development-specific QTLs. X-axes present genetic markers. 

Black lines are QTL-profiles when all lines (149) were included, green lines from only vegetative plants, and 

red lines from only flowering plants. Numbers in the boxes refer to chromosome number. Only the parts of 

chromosomes containing significant QTLs are depicted. 
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Confirmation analyses of hormone QTLs 

Four QTL regions, affecting levels of CK and JA, were further investigated using available NILs, 

with small Cvi introgressions into Ler background (Keurentjes et al., 2007a).  

a. QTL for CK metabolites at chromosome 5: Maps of two NILs (5-1 and 5-2) and QTL regions for 

three CK compounds and their metabolite-ratios at the top of chromosome 5 are described in Fig 4A. 

For tZ7G and tZ9G, significant lower levels of the compounds were observed in both NILs, and 

NIL5-1 showed significantly lower levels of compounds than NIL5-2 (Fig 4B). It implies that the 

QTL region may include two different loci, being divided around BH.144L, one in the upper position 

having a stronger effect than the other in the lower position. Both NILs showed higher levels of 

tZRMP compared to Ler, which is consistent with the presence of a locus affecting tZRMP level, 

although the differences were not significant.  

b. QTL for tZOG at chromosome 2: A large-effect QTL (11.7 LOD score) for the level of tZOG on 

chromosome 2 was confirmed using three NILs (S1A Fig). Significant lower levels of tZOG were 

observed in both NIL2-17 and NIL2-18, but not in NIL2-8 (Fig 5A). This might indicate that a 

responsible gene is located slightly below the above-described major QTL position, or that more than 

one locus is involved. In the overlapping introgression region of NIL2-17 and NIL2-18 several genes 

related to CK biosynthetic pathways are located (LOG2, LOG3, UGT73C1 and UGT73C5) (Hou et 

al., 2004; Kuroha et al., 2009).  

c. QTL for iPRMP and tZR at chromosome 5: A locus for levels of iPRMP and tZR on the bottom 

of chromosome 5 was evaluated using NIL5-15. The NIL showed significantly lower level of iPRMP 

than Ler, but the level of tZR was similar to that of Ler (Fig 5B, S1B Fig). These results suggest that a 

locus for the lower level of iPRMP is indeed located in the Cvi introgression region. While, a locus 

for the higher level of tZR may be located below CH.331L-Col because the introgression region for 

Cvi alleles in NIL5-15 does not fully cover the QTL region between CH.331L-Col and EG.205L. 

However, since these were only minor QTLs (2.5~3.0 LOD scores), the statistical power in the 

analyses might have been too low to detect allelic effects in the NILs. A known CK 

oxidase/dehydrogenase (CKX3) locates at the top of both QTL and the Cvi introgression in NIL5-15 

(Bartrina et al., 2011). 
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Figure 4. Confirmation of QTLs for levels of tZ7G, tZ9G and tZRMP. (A), genotype of NIL5-1 and NIL5-2. 

L (Ler-0) and C (Cvi-0) in the black columns on the left indicate allelic identities of parental lines at the markers 

found in the two NILs. In the middle bars, diagonally-striped areas represent Cvi introgression regions in the 

NILs. On the right, black columns indicate QTL regions in 2-LOD confidence interval for traits of tZ7G, tZ9G, 

tZRMP and CK metabolite-ratios. Plus and minus in parentheses in front of trait names indicate additive effects. 

Horizontal arrows represent positions of known genes related to CK biosynthetic pathways in Arabidopsis: two 

Lonely Guy (LOG) genes and two CK N-glucosyltransferases (CK-UGT). (B), compound levels in tested lines, 

(Ler-0, Cvi-0, NIL5-1 and NIL5-2). Vertical lines on the bars present standard errors and letters on the top of 

each bar indicate significant differences between lines with a confidence interval of 95 % (ANOVA, Duncan). 
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Figure 5. Confirmation of QTLs for tZOG, iPRMP, tZR and JA. (A), tZOG levels found in parental lines 

and three NILs, with Cvi-0 introgression in Ler-0 background (2-8, 2-17 and 2-18). For details, see maps of 

NILs in the supporting information (S1A Fig). (B), levels of iPRMP and tZR in NIL5-15 (S1B Fig). (C), JA 

levels in NIL3-15 (S1C Fig). Vertical bars present standard errors and letters on the top of each bar indicate 

significant differences between lines with a confidence interval of 95 % (ANOVA, Duncan). 

d. QTL for JA at chromosome 3: The QTL for the level of JA at the bottom of chromosome 3 was 

evaluated with NIL3-15 (S1C Fig). The level of JA in NIL3-15 was higher than that in Ler, although 

there was no significant difference (Fig 5C). Since the region of Cvi introgression in NIL3-15 fully 

covers the significant interval of the QTL, a locus for the higher level of JA in Cvi can be located in 

between AD.182C and BH.109L-Col. 

Effects of loss-of-function of UGT76C2 on CK metabolites and root phenotypic traits 

To further elucidate genes affecting levels of CKs (tZRMP, tZ7G and tZ9G), we zoomed in on QTL 

regions at the top of chromosome 5. At this region (Fig 4A), containing QTLs for  tZRMP, tZ7G , 

tZ9G and some of CK metabolite-ratios, several known CK genes are situated: two LOGs (LOG6 and 

LOG7) and two UGTs (UGT76C2 and UGT76C1) (Kuroha et al., 2009). Lonely Guy (LOG) converts 

cytokinin nucleoside 5´-monophosphates (e.g., iPRMP and tZRMP) to free-bases (e.g., iP and tZ) 
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(Kurakawa et al., 2007). Biologically active free bases are deactivated by N-glucosyltransferase, 

resulting in e.g., tZ7G (Hou et al., 2004; Kuroha et al., 2009).  

All these biosynthetic genes are supposed to be directly responsible for determining 

concentrations of tZRMP, tZ7G and tZ9G detected in the present QTL analysis. Thus, we chose 

LOG7 gene (At5g06300) and two zeatin N-glucosyltransferase genes (At5g05860 for UGT76C2 and 

At5g05870 for UGT76C1) that are known to be clearly expressed in roots of young seedling stages, as 

genetic components for further KO analyses (Winter et al., 2007). 

Among the tested KO lines for these genes, we obtained a homozygous T-DNA insertion line 

(SAIL 801B03) of UGT76C2 gene (Fig 6A, S2 Fig), which is known to be higher expressed in roots 

during the vegetative stage, as compared to UGT76C1 (Smehilova et al., 2016). For genes of LOG7 

and UGT76C1, no homozygous T-DNA insertion line was obtained from the given KO lines. 

Fig 6B illustrates part of the CK biosynthetic pathways and the changes of metabolic contents 

between the wild type and the KO plant. The KO plant of UGT76C2 showed dramatic decreases of 

concentrations of tZ7G and tZ9G in roots. Levels of other CK N-glucosides (iP9G, DZ7G and DZ9G) 

from different side chains also decreased, which may be direct consequences of the loss-of-function of 

the gene. However, levels of CK O-glucosides (iPOG and tZOG) in both roots and leaves were hardly 

changed, showing N-glucosylation specificity of UGT76C2. The knocking-out of the gene also 

affected a wide range of levels of other CK metabolites. In roots, levels of the various metabolites 

(iPR, iP, tZRMP, tZR, tZ7G, tZ9G, DZ7G, DZ9G, cZR and cZG) decreased, whereas in leaves also 

opposite effects were found (iP and cZ). For this KO plant, significant morphological changes in roots 

were also observed. RL and RFW decreased by more than 60% in the KO plant compared to the wild 

type (Fig 6C), while only 9% reduction of SFW was observed. 

Discussion 

Hormone quantities and their correlations 

A wide range of concentrations of hormones and their metabolites were found in the RILs. Except for 

ABA and cZR, concentration differences were several ten-fold between extremes in the segregating 

population, which was in strong contrast to the very limited variations of hormone levels found in 23-

day-old roots of 13 Arabidopsis natural accessions in our previous study (e.g., iP and tZ, < 1.5 fold 

differences) (Lee et al., 2017). Transgressive segregation has been found in many studies using bi-

parent populations (Bentsink et al., 2010; Keurentjes et al., 2007a; Vreugdenhil et al., 2004). 
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The most likely explanation for this phenomenon is the presence of both positive and negative alleles 

in each of the parental lines. In the RILs new allelic combinations will occur, leading to more extreme 

phenotypes. The limited natural variation, as observed in the accessions, points to natural selection 

leading to less extreme phenotypes. 

Positive correlations between levels of tZ N-glucosides and RFW are similar to our previous 

results on natural accessions (r2= 0.48 ~ 0.57) (Lee et al., 2017). These are in agreement with the 

findings of Novak et al. (Kollmer et al., 2014) showing that the reduction of CK N-glucoside levels 

caused by CK oxidase/dehydrogenase (CKX7) overexpression resulted in the reduction of primary 

root elongation and lateral root growth. In the present study, similar morphological changes in root 

development were found in the KO plant of CK N-glucosyltransferase, proving a significant role of 

CK N-glucoside in root growth and development (Fig 6C). The underlying mechanism on how CK 

glucosides play a role in promoting root growth is unknown, but it has been used for exogenous 

application as a sugar-conjugate plant growth regulator (Nonomura et al., 2011). The significant role 

of CK N-glucoside in plant productivity suggests that the regulation of CK glucoside contents can be 

a biochemical target in breeding programs, particularly for root systems.  

Significant correlations between hormone compounds may point to common molecular 

mechanisms in their metabolism. It is noteworthy that a high correlation (r2= 0.83) between tZ7G and 

tZ9G was observed. The average concentration ratio (peak area comparison in chromatograms) 

observed in the whole RILs was 0.97 : 1 (tZ7G : tZ9G). The transgressive segregation of this trait (Fig 

1) suggests that the ratio may be a consequence of polygenic inheritance. Hou et al. (2004) suggested 

that the abundance of tZ7G compared to tZ9G may result from the specificity of CK N-

glucosyltransferases (thus a biological reaction), but the amount of tZ9G may also be the result of 

tautomerism between two constitutional isomers in aqueous solution (non-biological reaction). But 

Leon et al. (Leon, 1998) estimated that N9-glucosylation of tZ is rather stable in relation with entropic 

contribution (∆G°), concluding that approximately equal or lower amounts of N7-isomer should be 

present at room temperature. In the present study, the existence of at least two independent QTLs for 

tZ9G level provides empirical evidence that the quantitative genetic component is involved in 

determining the trait (Fig 2), implying that an unknown enzymatic pathway (isomerization) might be 

involved in the conversion of two CK N-glucoside isomers. 

QTLs for hormone metabolites and their ratio traits 

The total number of significant QTLs for 15 metabolites in five groups of hormones was 14. The 

average number of QTL per hormone metabolite was strikingly lower compared to those of diverse 

growth-related traits, mineral contents, or seed traits as reported in previous studies using the same 

RIL population (Alonso-Blanco et al., 1999; Alonso-Blanco et al., 1998a; Bentsink et al., 2003; 
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Sergeeva et al., 2004; Vreugdenhil et al., 2004). Except for the two loci for tZOG, tZ7G and tZ9G, 

most QTLs explained less than 20% of phenotypic variance, suggesting that other minor-effect loci 

remained undetected. It is also likely that hormone variations found in the RILs are partly contributed 

by non-genetic factors, e.g. environmental perturbation, despite all attempts to control and standardize 

the growth conditions of the plants. 

Another reason to explain the relative low number of hormone QTLs is differential spatial 

distributions of hormone metabolites in distinct root tissues and/or cell types. The described auxin 

maximum in the root apex indicates that local biosynthesis and polar transport results in auxin 

gradients and differential distribution (Petersson et al., 2009). Antoniadi et al. (2015) reported that a 

concentration gradient and cell-type-specific distribution for CKs are present in the Arabidopsis root 

apex. Since hormone quantification in our study was determined from homogeneous powders of the 

whole root system, it is impossible to draw conclusions on differential hormone concentrations in 

different cell types. Such mean effects present in the root samples could influence QTL numbers and 

their relative contribution on LOD scores for hormones and their metabolites. It can also explain why 

no QTLs for levels of auxin and ABA were above the significant threshold (data not included). A way 

to avoid this problem—local dissection of the complex root system before extraction—would have 

also brought about heterogeneity of sampling due to unclear boundaries in the continuous meristem-

elongation-differentiation-transition zones, and the sensitivity of the detection method might have 

been too low, and hence why it was not done in this study. 

The co-localization of QTLs for metabolite-ratios with those for single compound suggests that 

the underpinning gene(s) can be involved in the metabolism of either early or late pathways (e.g., at 

chromosome 2 and 5 in Fig 2). In addition, a newly observed QTL for the ratio between tZ7G and 

tZ9G in chromosome 5 would be another indication that the metabolic conversion of these tZ N-

glucosides is controlled genetically, differing with the previous assertion that it resulted from either 

non-biological reaction or enzymatic N-glucosylation (Hou et al., 2004). 

Detection of developmental-specific QTLs from vegetative and flowering lines 

The difference of QTL profiles between vegetative and flowering sub-populations suggests that some 

QTLs related to hormone levels in roots are development-specific (Fig 3). The transition to flowering 

can trigger changes of source-sink relationships in leaves through hormone signalling (e.g., 

gibberellins in Arabidopsis) (Xing et al., 2015; Yamaguchi et al., 2014). Our finding of differential 

QTL profiles for two distinct development stages implies that the transition to flowering affects root 

traits and hormone contents. 

Using rather mature plants provides advantages to analyse the flowering-specific loci that would 

not have been possible in seedlings. QTLs for specific developmental stages have been also identified 
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in other studies, e.g., for linolenic acid content in soybean seed, plant height in Brassica and fruit size 

in cucumber (Han et al., 2011; Wang et al., 2015; Weng et al., 2015). All these studies used whole 

RIL populations repetitively for different developmental stages, and then a QTL for each group was 

re-analysed separately. Our approach can be applied to find whether an interesting QTL is temporally 

functional at a particular stage, especially in roots, that do not show such obvious developmental 

changes as seen in shoots. In the present study, numbers of significant QLTs for the three categories 

were 8 : 5 : 2 (vegetative : flowering : non-development-specific or constant). It implies that a large 

number of loci for root growth and hormone levels are temporally functional rather than being 

continuously active for the two developmental stages. 

In the vegetative lines, two QTLs were newly found that were detected neither in the whole 

populations, nor in the flowering lines, viz., for SA and RL. Thus, these loci are only (or mainly) 

active in the vegetative stage, and including data from flowering plants only adds non-genetic 

variation, thus obscuring the QTLs. RFW has a vegetative- and a flowering-specific QTL, but RL 

only has a vegetative-specific QTL, suggesting that at the flowering stage root weight is still regulated 

by other genetic factor, or triggered by signalling from upper parts of the plant. 

Pleiotropic effects of UGT76C2 gene on CK metabolism and different roles of CK glucosides in 

roots and leaves 

Since the two trans-zeatin N-glucosyltransferase genes (At5g05860 and At5g05870) both closely 

positioned to BH-144L on chromosome 5 where LOD scores of the QTL regions were highest, it is 

likely that one of these genes (or both) are responsible for determining levels of tZ7G and tZ9G. 

However, due to lack of detailed makers in the region between the end-point of Cvi introgression in 

NIL5-1 and the start-point of Cvi introgression in NIL5-2, it was uncertain which of the two genes 

caused (most of) the effect. 

Pleotropic effects of UGT76C2 gene, encoding an N-glucosyltransferase, on many CK 

metabolites were found in the present study. In Arabidopsis roots, the loss-of-function of this gene 

greatly reduced levels of not only N-glucosides, but also other upstream metabolites in both tZ 

pathway and other side (lateral) chains in CK metabolism. In leaves, contents of CK metabolites were 

less affected, except compounds in the tZ pathway, as also found in a recent study (Smehilova et al., 

2016). Wang et al. (Wang et al., 2011) also elucidated the functional role of UGT76C2 in Arabidopsis 

seedling (2 weeks) using KO plants and overexpressors. They reported significant reductions of levels 

of CK N-glucosides but little changes of other CK metabolites. In comparison with the findings of 

Wang et al. (Wang et al., 2011), the observation of more extensive changes of the contents of CK 

metabolites in the present study may be caused by differences of organs (only roots in the present 

study) and age (5 weeks). Unlike CK N-glucosides, levels of O-glucosides in the KO plants hardly 
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changed in both studies. This is consistent with another study that two N-glucosyltransferases 

(UGT76C2 and UGT76C1) in Arabidopsis are involved in CK N-glucosylation, and three other UGTs 

are separately responsible for O-glucosylation (Hou et al., 2004). The reduction of CK N-glucoside 

levels resulted in significant dwarfism of root phenotypes in our study. This is consistent with the 

findings of Kollmer et al. (2014) showing that levels of CK N-glucosides positively correlated with 

root growth and development. However, it is difficult to evaluate to what extent the changes of levels 

of other CK metabolites directly affected root growth. 

The decrease of levels of N-glucosides in both roots and leaves is in agreement with 

transcriptomic data studied by Schmid et al. (2005), showing that the At5g05860 gene, coding for 

UGT76C2, is substantially transcribed in both roots and leaves at the early vegetative stage, but 

becomes inactive in roots during flowering. The reduction of levels of CK N-glucosides in leaves 

hardly affected shoot weight and other aerial phenotypes. This is consistent with vegetative-specificity 

of the QTLs for levels of tZ7G and tZ9G, although it is hard to conclude whether only UGT76C2 is 

responsible for the QTL or if other genes are also involved. Based on presented data, it is likely that 

CK N-glucosides have different physiological roles in roots compared to shoots since depletion of N-

glucosides only significantly affected root growth (Fig 6C).  

Conclusion 

In conclusion, QTL analysis based on hormone levels in Arabidopsis roots revealed genetic loci 

involved in regulation and/or metabolism of CK. Flowering has a profound effect on many of the 

QTLs detected. Differential regulations of hormone QTLs in the vegetative vs. flowering stages 

suggest that it may be interesting to study other RIL populations derived from late-flowering lines, in 

which all progenies can be in the vegetative stage at the sampling time. For a better understanding of 

hormone regulation at the whole-plant level, hormone-metabolic QTL studies should be extended to 

other organs, e.g., leaves. The loss-of-function analysis of UGT76C2, a gene underlying a major QTL 

for levels of tZ7G and tZ9G suggests that CK N-glucosides play an important role in root 

development. 
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[Supplementary Information] 

Table S1. Summary of multiple reaction monitor (MRM) transitions used for hormone quantification in 

UPLC-ESI-TQ mass spectrometer. 

Analytes UPLC  

Gradient  

RT ESI MRM 

Function 

Transition Cone 

voltage 

Collision 

energy  

Internal 

standard 

RT Transition Cone 

voltage 

Collision 

energy 

tZ 1 3.78 + 2 220.1>136.1 20 18 [2H6] tZ 3.75 225.1>136.9 20 18 

tZR 1 5.04 + 3 352.1>136.1 28 20 [2H5] tZR 5.01 357.1>136.9 28 20 

iP 1 6.15 + 1 204.1>136.1 20 18 [2H6] iP 6.11 210.1>137.1 20 18 

iPR 1 7.60 + 1 336.1>204.1 28 18 [2H6] iPR 7.55 342.2>210.2 28 18 

cZ 1 4.01 + 2 220.1>136.1 20 18 [2H6] tZ 3.75 225.1>136.9 20 18 

cZR 1 5.31 + 3 352.1>136.1 28 16 [2H5] tZR 5.01 357.1>136.9 28 20 

tZOG 1 3.84 + 2 382.1>220.1 30 16 [2H5] tZ9G 4.02 387.2>225.2 30 20 

tZ7G 1 3.86 + 2 382.1>220.1 30 20 [2H5] tZ9G 4.02 387.2>225.2 30 20 

tZ9G 1 4.04 + 2 382.1>220.1 30 20 [2H5] tZ9G 4.02 387.2>225.2 30 20 

DZ 1 3.95 + 2 222.1>136.1 20 18 [2H3] DZ 3.91 225.1>136.1 20 18 

DZR 1 5.10 + 3 354.1>136.1 28 22 [2H3] DZR 5.06 357.2>149.1 28 22 

DZOG  1 4.18 + 2 384.1>222.1 30 16 [2H5] tZ9G 4.02 387.2>225.2 30 20 

DZ7G 1 4.07 + 2 384.1>136.1 30 20 [2H5] tZ9G 4.02 387.2>225.2 30 20 

DZ9G 1 4.17 + 2 384.1>136.1 30 20 [2H5] tZ9G 4.02 387.2>225.2 30 20 

tZRMP 1 3.58 + 2 432.1>220.1 34 22      

IAA 2 4.15 + 1 176.1>130.1 18 16 [13C6] IAA 4.14 182.1>136.1 18 16 

OxIAA 2 3.62 + 1 191.9>145.9 18 16      

ABA 2 5.28 + 2 265.2>247.2 18 14 [2H6] ABA 5.26 271.2>253.2 18 14 

JA 2 6.00 + 3 211.2>133.1 18 16 [2H4] JA 5.98 216.2>135.3 18 16 

SA 2 4.76 - 2 136.9>92.9 25 15 [2H4] SA 4.75 140.9>96.9 25 15 
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Table S2. Significant QTLs for hormone levels and root phenotypic traits. § indicates loci for traits observed 

by QTL analysis using only vegetative lines. 

 Trait 
Chromo-

some 

cM 

interval 

LOD 

(MQM) 

Locus 

region 

Nearest 

marker 

Explained (%), 

MQM 

Additive 

effect 

Hormone 

compounds 

iPRMP 5 94.9~117 2.5 
GB.102L-

Col/105C~HH.122C/120L 
DF.199L 8 + 

tZRMP 5 2~14.8 6.6 FD.207L~EC.198L-Col CH.690C 16 - 

tZR 5 95.9~116 2.7 
GB.102L-

Col/105C~HH.122C/120L 
DF.119L 8 - 

tZOG 

2 45.6~51.2 11.7 FD.150C~GD.298C Erecta 24 + 

3 0~5.8 4.1 DF.77C~EG.75L DF.77C 7 - 

4 39.6~80.2 3.1 
CD.84C-

Col/85L~BH.342C/DHS1 
CH.70L/71C-Col 5 - 

tZ7G 5 1~11.6 8.0 FD.207L~EC.198L-Col BH.144L 20 + 

tZ9G 

1 0~30.9 2.9 PVV4~CC.98L-CH.160L-Col PVV4 6 - 

3 0~5.8 5.2 DF.77C~EG.75L DF.77C 11 - 

5 5.3~10.6 11.0 CH.690C~EC.198L-Col BH.144L 25 + 

DZOG 
1 16.3~46.7 2.9 EC.480C~GB.112L CH.160L-Col 7 - 

1 52.1~67 3.3 GB.112L~CD.89C GD.97L 9 + 

JA 3 69.3~85.8 3.3 FD.98C~HH.90L-Col HH.171C-Col/173L 9 - 

SA 1§ 35.7~56.1 3.6 CC.98L-Col/101C~GD.97L AD.106L-Col 20 + 

Ratios 

(substrate-

to- product) 

iPRMP/tZRMP 5 0~10.6 5.9 FD.207L~EC.198L-Col BH.144L 17 + 

tZRMP/tZR 5 2~33.1 3.6 FD.207L~DF.184L-Col EC.198L-Col 10 - 

tZ/tZOG 2 38.4~51.2 6.3 FD.85C~GD.298C Erecta 16 - 

tZ/tZ7G 5 0~15.8 3.0 FD.207L~ BH.107L-Col BH.144L 8 - 

tZ/tZ9G 5 0~15.8 3.0 FD.207L~ BH.107L-Col BH.144L 9 - 

tZ7G/tZ9G 5 62.5~81.5 3.3 BH.96L-Col~AD.75C-Col CD.116L 10 - 

tZOG/DZOG 2 44.6~51.2 7.0 FD.85C~GD.298C Erecta 19 + 

Phenotypic 

traits 

RL 5§ 9.6~36.8 3.2 BH.144L~GH.117C BH.107L-Col 16 - 

RFW 
1 2~15.1 7.3 PVV4~EC.480C HH.335C-Col/PhyA 16 - 

5 93~117 4.3 CC.262C~HH.122C/120L DF.119L 10 + 

SFW 
1 0~27.3 5.6 PVV4~CH.160L-Col PVV4 14 - 

2 61.2~70.8 3.2 BH.120L-Col~EC.235L-Col EC.235L-Col 7 + 

Flowering, stalk 

number 
1 0~10 15.8 PVV4~HH.335C-Col/PhyA PVV4 34 - 
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Figure S2. Homozygosity test of two KO lines (SAIL 801B03 and SAIL 1151A08). The genotyping of T-

DNA insertion was based on a comparison between two PCR reactions: a set of the forward and the reverse 

primer in the gene, F/R; a set of Bp (BPos in T-DNA) and the reverse primer of the gene, B/R.  For SAIL 

801B03, Line 4, Line5 and Line 6 were heterozygous, but Line 7 was homozygous, which was chosen for the  

comparison test between the wild type and the KO plant (Fig 6B). For SAIL 1151A08, Line 6 was homozygous, 

but significant changes of levels of tZ N-glucosides were not observed (S3 Fig) because T-DNA insertion might 

be taken place in the intron region (Fig 6A). 

 

Figure S3. Levels of tZ7G and tZ9G in two KO lines for At5g05860. 
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Abstract

Linkage mapping analysis is a powerful tool to analyse complex traits, such as plant hormone levels. 

In this study, 5 groups of hormones were quantitatively analysed in the leaves of an Arabidopsis 

recombinant inbred line (Ler×Cvi) population using tandem mass spectrometry coupled with liquid 

chromatography. QTL analysis showed a multitude of significant loci for levels of various hormones, 

viz., IAA, ABAs and CKs. Development-specific QTLs were detected in two sub-populations, 

vegetative and flowering lines. QTLs for ratios between hormone intermediates belonging to the same 

class and also to different classes were found. Many of these ratio-QTLs co-localized with QTLs for 

one of the hormones in the pairs and additionally several new QTL regions were found. This suggests 

that hormone balances may partly be controlled by new specific loci and partly by loci for the single 

hormone compounds. The present results provide new insight towards the understanding of the 

genetic basis of hormone metabolism in plants. 

 

Key words: Arabidopsis thaliana, quantitative trait loci (QTLs), plant hormones, recombinant inbred 

lines (RILs), leaves 
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Introduction 

Quantitative trait loci (QTL) analysis has been deployed to unravel genomic regions that are 

responsible for diverse phenotypic traits of interest in a wide range of organisms. In plants, the 

identification of genes affecting polygenic traits has increased enormously over the last decades 

(Alonso-Blanco et al., 2009). Linkage mapping analysis has been applied not only to visible 

developmental and physiological traits (e.g. flowering time and dormancy), but also to biochemical 

properties of plants (Alonso-Blanco and Mendez-Vigo, 2014; Feng et al., 2012; Kliebenstein, 2009). 

The integration of QTL results, obtained at molecular and phenotypic levels may lead to a better 

understanding of plant-environment interactions. For instance, in Arabidopsis, QTL analysis of 

glucosinolates led to the identification of epithospecifier modifier-1 (ESM1), a gene controlling 

glucosinolate hydrolysis that induces structural diversity and herbivore resistance (Pfalz et al., 2009; 

Zhang et al., 2006). 

Plant hormones play important roles in growth and development as internal messengers at very 

low quantities. Hormone contents, as well as sensitivities towards hormones, are likely to be 

polygenic traits. However, the quantitative regulation of levels of plant hormones has hardly been 

studied despite their significant roles in plant development. In Arabidopsis, plant hormone levels are 

quantitative traits varying among natural accessions in roots (Lee et al., 2017). Our previous QTL 

study (Lee et al., 2019) on roots using recombinant inbred lines (RILs) of Arabidopsis revealed 

several significant QTLs for different groups of hormones. Co-localization of QTLs for cytokinin 

(CK) metabolites suggested that various hormones can be regulated by a common molecular pathway 

resulting in pleiotropic effects. For the level of a single hormone metabolite, e.g., tZ9G, multiple loci 

were involved and many loci were development-specific. This study on roots shows the feasibility of 

QTL mapping of hormones in plants, and hence raises the question about the presumed polygenic 

regulation of hormones in above-ground organs, further allowing us to compare hormone QTLs in 

leaves with those found in roots. 

Within plants, hormones are translocated by various transport systems from biosynthetic sites to 

distant organs. Long-distance transport of hormones is achieved by distinct hormone transporters 

through the vascular system (Galweiler et al., 1998; Ko et al., 2014; Lacombe and Achard, 2016). 

Metabolic conversion may occur along the transport pathway, for example in the xylem, where ratios 

between precursors and products, e.g., tZR and tZ, may depend on environmental conditions (Kang et 

al., 2015; Osugi et al., 2017). It is likely that multiple genetic components regulate hormone content 

and that there are differences between roots and leaves, but to our knowledge this has not been studied 

through quantitative genetic analysis. 
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In this study, we conducted quantitative analysis of five groups of plant hormones (auxin, ABA, 

CK, salicylic acid (SA), and jasmonic acid (JA)) including some metabolites of ABA and CK, in 

rosette leaves of Ler×Cvi recombinant inbred lines (RILs) of Arabidopsis. We asked which genetic 

loci are associated with hormone levels in leaves and how these loci can be differentially functional 

compared with those for hormones in roots. In order to compare correlations between hormones and 

phenotypic traits and between two different organs, we combined the quantitative data of hormones in 

leaves with those in roots obtained from our previous study using the same RIL population. 

Significant correlations between levels of various hormones were only observed within the same 

tissue, but not between the two distant organs. However, for CKs several QTLs in leaves co-localized 

with those in roots. According to developmental stages at the time of sampling, the RIL lines could be 

divided into two sub-populations, vegetative and flowering lines, resulting in development-specific 

QTLs. Comparative analyses of hormone QTLs between leaves and roots and between different 

hormones may provide a comprehensive understanding of how plants coordinate hormone levels in 

different organs and during various development stages. 

Materials and Methods 

Plant materials and phenotyping 

Ler×Cvi RILs, developed and genotyped by Alonso-Blanco et al. (1998b), were chosen based on our 

study on natural variation of  hormone levels in roots of Arabidopsis accessions (Lee et al., 2017). 

Seeds of 149 lines were placed on wet filter paper in a Petri-dish at 4℃ for 4 days in darkness and 

subsequently sown on the top of a 0.5 mL cylindrical plastic tube, from which the bottom had been 

cut off, and that was filled with 0.5% agar in half strength Hoagland's nutrient solution (pH 5.5). 

Seedlings were grown in hydroponic containers (70 plants per 10 litres, renewing the nutrient solution 

once a week). Plants were grown at 21℃ during the light period (10 h) and at 18℃ during the dark 

period (14 h). Light intensity and humidity were fixed at 125 μMol m-2s-1 and 70% respectively. After 

35 days of culture, two largest rosette leaves per plant were chosen and the leaves of 4 plants were 

pooled for a replicate. On the day of harvest, the developmental stage (vegetative or flowering) of 

each line was recorded. If any of the replicates within a line showed visible bolting, the line was 

scored as ‘flowering’. 

Hormone extraction and purification 

For each RIL, a replicate was used to extract endogenous hormones and further analysed for hormone 

quantification. For parental lines, five biological replicates were used. Powder of lyophilized leaves 

(2.5 mg) was extracted and purified with the same methods used in our previous study (Lee et al., 

2017). 
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Quantitative analysis of plant hormones 

For the hormone quantification, the conditions of UPLC tandem mass spectrometry were the same as 

those of our previous study (Lee et al., 2017, 2019). For CKs, ten microliter of sample was injected 

onto an Acquity UPLC HSS column (50 x 2.1 mm, 1.8 µm; Waters) and eluted by binary mobile 

phases, A (15mM ammonium formate, pH 4.0) and B (100% methanol), with at constant flow rate 

(0.25 ml min-1) at 40°C for 14 min. The linear gradient elution was performed as follows: 0~0.01 min, 

10 % eluent B; 0.01~8.0 min, 10 to 50 % eluent B; 8.0~8.5 min, 50 to 100 % eluent B; 8.5~9.5 min, 

100 % eluent B; 9.5~10.5 min, 100 to 10 % eluent B. At the end of gradient, the column was 

equilibrated to initial conditions for 3.5 min. Instrumental conditions for ESI-tandem mass 

spectrometer were same as our previous study (see Methods and Table S1 in Chapter 4). 

QTL analysis 

QTL analysis was performed using MapQTL software (Ooijen, 2004) as described by Bentsink et al. 

(2003). A LOD score threshold of 2.5 was applied to declare a significant QTL, which corresponds to 

a general genome-wide significance of P<0.05, as determined by permutation tests (1,000 repetitions). 

For the purpose of revealing developmental stage-specific QTLs, all RILs were sorted into two groups 

according to the transition of plants for flowering at day 35, i.e., the day of sampling. For each trait in 

the two groups, QTL regions were independently determined by MQM analysis with automated 

suggested cofactors. 

Results 

Hormone levels in leaves of Ler×Cvi RIL population 

Seventy-six lines (51%) of the Ler×Cvi RIL population were in the flowering-stage at the time of 

harvest, which was the same as the flowering rate of 51% in the previous experiment for hormone 

QLT analysis in roots. In total 22 hormones including 15 CK- and 4 ABA-metabolites were quantified 

in the leaves of 35-day-old plants of the RIL population (Figure 1). For CKs, levels of 

monophosphates and glucosides were strikingly higher than those of ribosides and free bases, as also 

reported in a previous study (Bielach et al., 2012). The level of tZ, the biologically most active CK 

was the lowest, followed by iP and cZ, which are both less active. Within the group of CK glucosides, 

the concentrations of tZ N-glucosides (tZ7G and tZ9G) were the highest. For ABAs, the level of ABA 

was lower than those of three ABA metabolites but fold-differences between RIL lines were not as 

large as those of CK metabolites. 
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Figure 1. Levels of hormones in 35-days-old leaves of Ler×Cvi RILs. Data are averages observed in 149 

lines of the population; Vertical bars on columns indicate standard errors. 

Despite the small variations of hormone levels in the parental lines, large variations were found 

among the RILs, showing that transgressive segregation of hormone levels is present in the population 

(Figure 2). These variations ranged from 3-fold (ABAGE) to 160-fold (tZRMP) between extremes. 

Except for a few hormones, most frequency distributions were skewed towards the higher 

concentrations. 

Correlations between hormones 

For CKs and ABA, correlations between metabolites within the same hormone group were analysed 

(Table 1). For the CKs, significant correlations were observed between metabolites in the main 

pathways and the side branches (Table 1; Figure 3). Significantly positive correlations were observed 

between tZ and its glucosides. CK glucosides were significantly correlated with each other, but 

significantly negative correlations were observed between cZRMP and ribosides (iPR, tZR) in other 

side branches. Significant positive correlations were observed between ABA and its metabolites, of 

which dihydrophaseic acid (DPA) had the highest correlation with ABA. These correlations suggest 

that the inactivation of ABA by conjugation (to ABAGE) and catabolism (to PA and DPA) is 

controlled by a common regulatory mechanism. 
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Figure 2. Frequency distributions of hormone metabolites in rosette-leaves of Arabidopsis Ler×Cvi RILs 
(x axes: pg mg-1.dw, y axes: numbers of line). Abbreviations for hormone compounds are: ABA, abscisic acid; 
ABAGE, ABA glucose ester; PA, phaseic acid; DPA, dihydrophaseic acid; IAA, indole-3-acetic acid; JA, 
jasmonic acid; SA, salicylic acid; iPRMP, isopentenyl riboside monophosphate; iPR, isopentenyladenine 
riboside; iP, isopentenyladenine; iP9G, isopentenyladenine-9-glucoside; tZRMP, trans-zeatin riboside 
monophosphate ; tZR, trans-zeatin riboside; tZ, trans-zeatin; tZOG, trans-zeatin-O-glucoside; tZ7,9G, trans-
zeatin-7,9-glucoside; DZ7,9G, dihydrozeatin-7,9-glucoside; cZRMP, cis-zeatin riboside monophosphate; cZR, 
cis-zeatin riboside; cZ, cis-zeatin. 
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Table 1. Correlations of levels of various hormone metabolites within classes of CKs and ABA, as 

determined in leaves of Arabidopsis Ler×Cvi RILs. Significant correlations (p˂0.05) are marked with an 

asterisk and bold figures. Blue and red colours indicate negative and positive correlations, respectively. 

Correlations between ABA and its metabolites are given separately in the upper right corner. 

 iPRMP iP iPR iP9G tZRMP tZ tZR tZ7G tZ9G tZOG cZRMP cZR cZ DZ7G 

iP 0.42*              

iPR 0.05 0.20        
 ABAGE ABA PA 

ABA 0.42*   

PA 0.54* 0.51*  

DPA 0.36* 0.63* 0.23* 
 

iP9G 0.23* 0.60* 0.17       

tZRMP 0.44* 0.03 -0.15 -0.06      

tZ -0.05 -0.12 0.15 0.12 0.00     

tZR -0.11 -0.08 0.59* -0.05 0.23* 0.37*    

tZ7G -0.04 0.07 0.06 0.20 0.48* 0.30* 0.50*        

tZ9G -0.04 -0.11 -0.05 -0.02 0.54* 0.31* 0.48* 0.82*       

tZOG -0.04 0.08 0.21* 0.36* 0.09 0.62* 0.32* 0.48* 0.35*      

cZRMP 0.43* -0.03 -0.25* -0.08 0.52* -0.15 -0.32* -0.05 0.12 -0.10     

cZR -0.27* -0.06 0.18 0.00 -0.18 0.05 0.16 0.01 0.07 0.17 0.16    

cZ -0.04 0.16 -0.06 0.21 0.03 -0.05 -0.09 -0.04 -0.06 0.04 0.06 0.04   

DZ7G -0.07 0.19 -0.12 0.24* 0.26* 0.09 0.11 0.56* 0.48* 0.40* 0.03 0.06 0.11  

DZ9G -0.16 -0.09 -0.18 -0.16 0.22* 0.14 0.12 0.37* 0.60* 0.17 0.19 0.16 0.01 0.69* 

 

QTLs for hormonal metabolites and their developmental-specificities 

The levels of the 22 hormones belonging to 5 different groups as analysed in the entire RIL 

population were used for QTL analysis. Among these hormones quantified in the leaves, 18 showed 

one or multiple significant QTLs. The average number of significant QTLs per compound was close 

to 3.5. No significant QTLs for JA or SA were detected. In some cases, QTLs for a hormone 

metabolite co-localized with those for metabolites in the same hormone group or for different kind of 

hormones (Figure 4, 5). For example, the QTL region on the top of chromosome 3 (DF.77C~EG.75L) 

was responsible for the levels of IAA, ABA and ABA catabolites. It implies that such QTLs might be 

responsible for determining levels of multiple hormones. 

In our previous QTL study for root hormones using the same RIL population, development-

specific QTLs were found in sub-populations, viz., vegetative vs. flowering lines. We therefore 

questioned whether QTLs for leaf hormones are also development-specific. For this analysis, the 

whole population was split into two sub-populations, viz., vegetative and flowering lines. In many 

cases, QTLs detected in the whole population consisted of multiple QTLs with different 

developmental specificities. Interestingly, several QTLs that were not detected in the whole 

population were newly detected when sub-populations were used for analyses. 
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Figure 3. Scheme of CK pathways in higher plants. The pathways were adopted from review papers written 

by Kamada-Nobusada and Sakakibara (2009) and Werner and Schmulling (2009) with modification. Vertical 

arrows describe linear pathways, for example, from iPRMP to iPR to iP to iPGs. Horizontal arrows describe the 

pathways of side chain, for example, from iPRMP to tZRMP to DZRMP. Dark and gray arrows represent the 

metabolic flow with known genes and the possible pathway of unknown genes, respectively. Abbreviations of 

biosynthetic enzymes are: IPT, adenosine phosphate-isopentenyltransferase; CYP375A, cytochrome P450 

monooxygenase; ADK, adenosine kinase; LOG, cytokinin riboside 5’-monophosphate phosphoribohydrolase 

(Lonely Guy); UGT, cytokinin glucosyltransferase; CKY, cytokinin oxidase/dehydrogenase. 

a. Development-specific QTLs for IAA and ABA metabolites 

Figure 4 shows positions of significant QTLs for the levels of IAA and 4 ABA-metabolites (see Table 

S5 for details).  

In the whole population, two significant QLTs for IAA were found, which were present also in 

the vegetative stage. Three additional significant QTLs for IAA were detected only for the flowering 

lines. 

In total, 13 QTLs for ABA and its metabolites were detected. Five of them were for ABA and 

the strongest QTL was located at the top of chromosome 3, explaining 11.5 % of the phenotypic 

variance. In this region, co-localized QTLs for PA and DPA were found as well. Two QTLs for 

ABAGE on chromosome 1 were vegetative- and flowering-specific, respectively. Five significant 

QTLs for DPA were observed, explaining 3 to 22 % of the phenotypic variance. Two of them were 

functional for the vegetative stage and one for the flowering stage. 
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Figure 5. Locations of QTLs for levels of CK metabolites in Arabidopsis leaves and their development-
specificities. For details, see legends of Fig 4. 
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b. Development-specific QTLs for CK metabolites 

The different pathways of CK metabolism are partially inter-connected, as shown in Figure 3 

(Kamada-Nobusada and Sakakibara, 2009; Werner and Schmulling, 2009). In our experiments, we 

found more significant QTLs for tZ and its metabolites than for other CK metabolites, such as iP and 

its metabolites (Table S6). This shows that more genetic regulators for levels of tZ and its metabolites 

are present in this population compare with those in other pathways. 

Figure 5 shows the locations of significant QTLs for levels of CK metabolites. Each of the CK 

metabolites had one or multiple loci, explaining 4 up to 30 % of the phenotypic variance. In many 

cases, individual QTLs for different CK metabolites co-localized or partially overlapped with each 

other, indicating that a single locus may affect (part of) the entire pathway rather than the level of a 

single metabolite. In some of the co-localized regions, QTLs found in the whole population were 

composed of different development-specific QTLs. For instance, at the lower arm of chromosome 2, 

QTLs for tZ and CK glucosides comprised vegetative- and flowering-specific QTLs, as detected in 

sub-populations. Detection of such QTLs shows that multiple and complex genetic components may 

underlie a single QTL. These development-specificities were also found at other QTLs for both CK 

N-glucosides in chromosome 4 and 5. A possible explanation might be that the QTL region contains 

more than one regulating locus, or that the effect of the locus on the various metabolites is 

development-specific, probably in interaction with other loci. 

It is noteworthy that two QTLs, responsible only for 9 N-glucosides (and not for 7 N-glucosides) 

were observed on chromosome 3, one for iP9G at the top and the other for iP9G, tZ9G and DZ9G at 

the bottom of the same chromosome. Similarly, several QTLs only responsible for 7 N-glucosides 

were found at chromosomes 1 and 3. Taken together, it is conceivable that within the N-glucosides, 

specific loci play a role in determining levels of 7 N- or 9 N-glucosides separately. 

QTLs for metabolic ratios in precursor-product relationships 

The flux through a metabolic pathway is regulated by external and internal factors, often including the 

metabolites themselves in feedback regulations (Farre et al., 2014; Li et al., 2014). Illig et al. (2010) 

and Suhre et al. (2011) found that the use of metabolite-ratios in human biochemical phenotypes 

increased the statistical robustness of genome-wide association studies and detected QTLs in nearly 

all cases directly related to the biochemical function of an enzyme or transporter gene. Therefore, we 

questioned whether QTLs for metabolites-ratios can be found, by choosing precursor-product related 

compounds. Intriguingly, several QTLs for metabolite-ratios in the ABA and CK pathways were 

found (Figure 6, 7). In most cases, these QTLs co-localized with QTLs for single compounds in the 

analysed precursor-product pair. However, not all QTLs for metabolite ratios were at the same 

position as the QTL for the single compound. Interestingly, two QTLs were newly found for 
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iPRMP/tZRMP and iPR/tZR at chromosome 2 and 5, where a QTL for the single compounds of these 

pairs was not detected. 

 

Figure 6. Significant QTLs for precursor-product ratios within ABA metabolites in Arabidopsis leaves. 

 

QTLs for hormone-hormone ratios in relationship of different groups of hormone 

Plant hormone responses are the result of complex networks of interactions involving multiple 

hormones, viz., hormone crosstalk (Chandler, 2009). Molecular mechanisms are likely to (partly) 

control such hormone interactions. Therefore, we speculated that genetic component involved in 

hormone crosstalk may be detected as QTLs for traits of hormone-hormone ratios between different 

groups of hormone. Interestingly, several loci corresponding with these kinds of trait were found 

(Figure 8A, Table S9). Most of the QTL were co-localized with those for the single compounds in 

pairs. Among these QTL regions, some of them were responsible for multiple hormones, e.g., IAA-

ABAs-SA-JA, which were located at the bottom of chromosome 2. 
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Figure 8. Significant QTLs for metabolite-metabolite ratios between different groups of hormone. (A), 

genetic locations of the QTLs. (B), schematic representation of numbers of significant QTLs. Thickness of the 

arrows represents numbers of metabolite-metabolite ratio QTLs found in pairs. The thinnest line is one QTL, 

e.g., IAA/SA and IAA/ABAGE. The thickest line (of IAA/DPA ratio QTL) represents 4 QTLs. IAA was the 

hormone showing the highest number of ‘hormone-paired’ QTLs, viz., 18 QTLs in total. 

QTLs for balances of CKs and SA between leaves and roots  

In order to find a QTL that might be involved in the hormone balances between leaves and roots, we 

obtained concentration ratios of hormones by combining hormone data (IAA, ABA, JA, SA, some CK 

metabolites) from leaves (as determined in the present paper) and roots as reported before (Lee et al., 

2019). Figure 9 represents seven newly discovered QTL regions (diagonal stripes) for hormone ratios 

of CKs and SA between the two organs. For CK ratios, a new QTL was found for the leaf-

tZRMP/root-tZRMP ratio at the lower arm of chromosome 1; five other ratio-QTLs co-localized with 
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QTLs for single CK metabolites in either leaves or roots. A locus for the L/R-SA ratio was detected 

on the lower arm of chromosome 4, which positioned differently as compared to that for the SA level 

in roots found at the upper-arm of chromosome 1. 

 

 

Figure 9. Hormone-ratio QTLs between two spatial organs, leaves and roots and their co-localizations 

with QTLs for single hormones. L- and R- indicate leaves and roots, respectively. Green arrows indicate single 

hormone QTL regions found in leaves, and yellow ones in roots. Diagonal arrows with alternate green and 

yellow stripes present hormone-ratios QTLs between two distant organs, leaves and roots. Horizon-arrows in 

QTL regions indicate positions of genes involved in CK biosynthetic pathways. See Table S7 to read exact QTL 

regions. 

 

 



Hormone QTL in Arabidopsis leaves

Ch
ap

te
r 

5

103

Hormone QTL in Arabidopsis leaves 

 

 

Discussion 

Fourteen hormone metabolites were commonly analyzed in leaves and roots of plants of the 

Arabidopsis RIL population (this paper and (Lee et al., 2019)). We compared levels of these 

hormones in leaves to those in roots observed in the two parental lines and the RILs (Table S2). 

Levels of CK monophosphates in leaves were several ten-folds lower than those in roots. Leaves also 

contained several fold lower levels of CK ribosides and IAA as compared to roots, but slightly higher 

levels of CK free bases (iP, tZ) and ABA. Although there might be slight inaccuracies when 

comparing hormone quantities between two data sets obtained from different series of plantings and 

subsequent analyses, these data are in line with previous reports on differences in hormone levels 

between above-ground and below-ground organs of plants (Cai et al., 2016; Novak et al., 2008; 

Novak et al., 2012; Smehilova et al., 2016; Svacinova et al., 2012). Differences in hormone levels 

may be the results of: i), local synthesis of particular compounds; ii), organ-specific conversion to 

other metabolites, or breakdown; iii), hormone transport between organs. For example, auxin and 

activated forms of JA are spatiotemporally distributed in the root system, thus coordinating plant 

responses to environmental signals and developmental processes (Brunoud et al., 2012; Larrieu et al., 

2016). QTLs for hormone levels are due to natural variation in the genes involved in these processes. 

Development-specific QTLs for hormone levels 

In the present study, development-specific QTLs were found in two sub-populations, viz., vegetative 

and flowering, as also found in roots of plants using the same RILs (Lee et al., 2017). The number of 

non-development-specific QTLs was relatively small compared with those that were development-

specific, i.e., were observed either in the vegetative or the flowering stage. For IAA, all five detected 

QTLs displayed developmental changes in leaves and three of them were only detected in the sub-

population at the flowering stage (Figure 4). In some cases, significant QTLs observed in the whole 

population were composed of multiple development-specific QTLs, which were present either in the 

vegetative stage or in the flowering stage, e.g., co-localized QTLs at the lower arm of chromosome 2 

for tZ and CK glucosides (Figure 5). Such complex, development-specific QTLs were frequently 

observed when LOD values of the QTL detected in the whole population were relatively high. It 

implies that, in several cases, QTLs for hormone levels consisted of more than one development-

specific locus. Development-specific QTLs for linolenic acid and chlorophyll were reported in 

soybean and cotton, respectively (Han et al., 2011; Song and Zhang, 2010). Both growth-related traits 

and contents of primary and secondary metabolites are regulated by coordination of both life-long and 

development-specific QTLs (Bian et al., 2015; Li et al., 2015; Wurschum et al., 2014). In the quoted 

studies, whole populations were grown repetitively to study different developmental stages. An 

advantage of sampling when half of the lines in the whole population is vegetative, and the other half 

started to flower, is that development-specific QTLs can be determined in one experiment. This 
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approach reduces time, labour and costs of instrumental analysis, and also excludes unwanted 

environmental variation due to varying culture conditions in consecutive experiments. A possible 

drawback might be that the power to detect QTLs might be different in sub-populations when 

differing too much in number of lines. Obviously this can be minimized when the number of 

genotypes in two sub-populations is nearly same, as described by Keurentjes et al. (2007a). 

The detection of hormone-QTLs depends on the tissue 

It is remarkable that multiple significant QTLs for levels of IAA and ABA were found in leaves, 

whereas, in our previous study, no loci for these hormones were observed in roots (Lee et al., 2019). 

This implies that the chance to detect QTLs is different according to organs and tissues, especially, in 

the case of hormones and/or other metabolites. This may be due to organ- or tissue-specific 

localization of biosynthesis of a particular hormone. Relatively larger quantities of IAA and ABA are 

synthesized in leaves, and in case of IAA it is basipetally transported to the root system and 

concentrated in the root tips (Ikeda et al., 2009; Merilo et al., 2015; Novak et al., 2012). CKs are 

synthesized in both roots and leaves, although some forms of CKs, for example, tZR, are transported 

from the root to the shoot via the xylem (Lacombe and Achard, 2016). These differences may have 

caused the detection of QTLs for CKs in both leaves and roots, but only in the leaves for IAA and 

ABAs. 

It may also be that the possibility to detect hormone QTLs is influenced by differences in 

structural features of the analysed tissues between the two organs. Arabidopsis shoots consist mainly 

of leaves, which are repetitive anatomical structures, containing mesophyll cells and a vascular system 

spread out through the whole leaf. It means that the concentration of a hormone per square unit of leaf 

tissue is likely to be similar to that of other regions in the same leaf, and also probably not so much 

different from other leaves in the same rosette, although some variation is expected due to the age of 

leaves. This leads to a higher feasibility to detect a QTL for various groups of hormones. On the other 

hand, the root system is composed of different cell types horizontally and vertically, which may cause 

significant variation in hormone levels (Petersson et al., 2009). Such differential distribution of 

hormones in the root system is not taken into account when samples are prepared from whole roots, 

consequently leading to a lower power to detect QTLs. This might explain why no QTLs for IAA and 

ABA were found in the roots in our previous study (Lee et al., 2019). 

The ratio between two CK N-glucoside isomers may be a polygenic trait 

In the present study using the leaves of the Ler×Cvi RIL population, the concentration ratio between 

two CK conformational isomers (tZ7G : tZ9G) was 3.57 : 1, which was strikingly different from 

0.97 : 1 in roots of the same RILs (Table S4). These results provide metabolic evidence that the 

conversion of tZ7G to tZ9G occurs biochemically. If the ratio resulted from a non-enzymatic process 
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(tautomerism) as assumed in a previous study (Hou et al., 2004), the ratios should be the same or 

similar to each other irrespective of the difference of investigated organs. Therefore, we speculated 

that tZ9G is enzymatically converted from tZ7G. Moreover, the detection of significant QTLs for 

tZ9G and DZ9G on the bottom of chromosome 3 (Figure 5, Table S6) supports this possibility 

because these QTLs were only found without any QTL for tZ7G in the same region. Intriguingly, two 

QTLs for tZ7G/ tZ9G ratio in leaves and roots were separately located at chromosome 3 and 5, 

suggesting that the traits are polygenic and tissue-specific (Table 2, Lee et al. (2019)). 

Table 2. Significant QTLs for metabolites ratios between CK-N-glucosides in leaves and roots. 

Organ Ratio trait 
Chromo-

some 
cM 

interval 
LOD  

(MQM) 
Locus 
region 

Nearest 
marker 

Explained 
Variance (%) 

Additive
effect 

leaves 
tZ7G/tZ9G 3 85~85.8 25.8 BH.109L-Col~HH.90L-Col  HH.90L-Col 54.9 + 

DZ7G/DZ9G 3 82.4~85.8 14.7 HH.171C-Col/173L~HH.90L-Col HH.90L-Col 36.5 + 

roots tZ7G/tZ9G 5 62.5~81.5 3.3 BH.96L-Col~AD.75C-Col CD.116L 10 - 

 

In Arabidopsis, a few isomerases have been reported, for example, those of chorismate 

phosphoglycerate (Konishi et al., 2007; Romero et al., 1995; Zhao and Assmann, 2011). Hence, we 

suppose that the determination of isomeric compounds in a quantitative genetics study and the use of 

ratio data may lead us to find new genetic elements involved in biosynthetic pathways. In addition, in 

the present study precursor-product ratio QTLs co-localized with QTLs for single compounds of 

either substrates or products in pair, suggesting that some of the QTLs for the levels of single 

compounds also regulate the balance between metabolites in a given biosynthetic pathway. 

QTLs for hormone balance between different classes of hormone 

Plant hormones, e.g., auxin and CK interact with each other to modulate growth and development of 

plants (Schaller et al., 2015). CK plays a role as a positive regulator of auxin biosynthesis, resulting in 

a homeostatic feedback mechanism in roots and shoots (Jones et al., 2010). Within five different 

groups of hormone and their metabolites, the number of hormone-hormone ratio QTLs was different 

according to sorts of hormone-hormone pairs. Figure 8B depicts QTLs for the chemical pairs (lines) 

and their numbers (thickness of lines). Auxin had a central position in terms of the number of QTLs 

for specific hormone-hormone ratios and the number of interactions with other hormones. Except for 

the matching with auxin, no other QTL for ratios of CK metabolites-to-other hormones (ABAs, SA 

and JA) were observed. The detection of a multitude of QTLs for ratios of auxin-to-other hormones is 

consistent with the physiologically central role of auxin as interconnecting mediator in plant 

development and growth (Jaillais and Chory, 2010). This is also in the line with accumulated findings 
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that a large proportion of auxin hormone crosstalk is associated with effects on biosynthesis or 

metabolism of most other hormones (Nemhauser et al., 2006). 

Gene clusters related to CK biosynthetic pathways on CK QTLs 

It is noteworthy that many genes related to CK metabolism locate in significant QTL regions for 

single hormones and metabolite-ratios (Figure 6B). Regarding CK biosynthetic pathways (Figure 3), 

these genes include IPTs responsible for the first step of isoprenoid CK biosynthesis and up to CKXs 

for direct inactivation of biologically active CKs. The frequent observation of co-localized QTLs for 

metabolite-ratios (relations in precursor-product) and single hormones suggests that some of the 

genetic elements underlying QTLs are likely to be directly involved in CK biosynthetic pathways. 

This idea can be partially supported by a previous finding that IPTs play a role in the rate-limiting 

step for iP and tZ in CK biosynthesis (Miyawaki et al., 2006). 

Not all QTLs for CK contain such genes directly involved in the biosynthetic pathways. For 

example, QTL regions at the top of chromosome 1 and 2 did not hold any known genes for CK 

metabolism. These QTLs may rather include transcription factors involved in CK signalling pathway 

because it has been known that phosphorylation and signal transduction are required for the function 

in negative feedback regulation, resulting in CK metabolic balances (Werner and Schmulling, 2009). 

In cases of ratio QTLs between different groups of hormone, underlying genes may be more likely 

involved in signalling components via receptors because it is hard to conceive that a specific 

biosynthetic enzyme in a hormone metabolic pathway reacts to structurally unrelated metabolites (Li 

et al., 2014). A QTL for ratios between different groups of hormones can be an interesting target 

region for further studies in breeding programs. This is because changes in the ratios of hormones 

have a significant role in determining stress tolerances (Wilkinson et al., 2012). For instance, the 

sensitivity of stress responses is dependent on the ratio between ethylene and ABA, more so than the 

single hormones alone (Acharya and Assmann, 2009; Wilkinson and Davies, 2010). 

Genetically regulated hormone balances between leaves and roots  

In Arabidopsis, several transporters for hormones have been reported such as PINs for polar auxin 

transport (Friml et al., 2003; Sabatini et al., 1999) and ATP-binding cassette transporters (ABCGs) 

for long distance translocation of CK (Ko et al., 2014; Zhang et al., 2014). In the present study, the 

detection of QTLs for shoot-root ratios of hormone levels suggests that the underlying regions contain 

genes to be responsible for hormone balances, especially, at two loci for CK ratios (tZRMP in 

chromosome 1 and tZOG in chromosome 2) and a locus for SA on chromosome 4, which did no co-

localize with the QTL for the compounds that determine the ratio in either the leaves or the roots. All 

of these five regions did not include any known transport-related genes for hormones (Figure 7). 

Remarkably, in our study no QTLs for the balance of auxin and ABA were found, but only QTLs for 
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balances of tZRMP, tZ7G and tZ9G, although these compounds are not known as transport forms of 

CK (Osugi et al., 2017). These results suggest that the chance to detect a QTL for controlling 

hormone balances between leaves and roots is relatively low and the hormone levels might be mainly 

determined by metabolic fluxes in local tissues, rather than translocation through the vascular system. 

Conclusion 

We have found a multitude of QTLs determining the levels of several different hormones and their 

metabolites in leaves of Arabidopsis. In two sub-populations (vegetative and flowering), 

development-specific QTLs were found. In many cases, hormone ratio QTLs co-localized with the 

QTLs for either one of the single compounds in these pairs, suggesting that relevant loci also affect 

the synthesis and degradation of intermediates in hormone metabolism. The detection of QTLs for 

ratios between structurally unrelated hormones (e.g., auxin : ABA) opens up the way to unravel 

genetic elements underlying hormonal interactions in the regulation of plant development and stress 

responses. 
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[Supplementary Information] 

Table S1. Summary of multiple reaction monitor (MRM) transitions used for hormone quantification in 

UPLC-ESI-TQ MS. 

Analytes UPLC 

Gradient 

RT ESI 

mode 

Transition Cone 

voltage 

Collision 

energy 

Internal 

standard 

RT Transition Cone 

voltage 

Collision 

energy 

iPRMP  1 4.56 +  416.2>204.1 34 22 [2H5] tZRMP 1.85 437.2>225.1 34 22 

iPR  1 7.60 + 336.1>204.1 28 18 [2H6] iPR 7.55 342.1>210.1 28 18 

iP  1 6.15 + 204.1>136.1 20 18 [2H6] iP 6.11 210.1>137.1 20 18 

iP9G  1 6.52 + 366.2>204.1 30 20 [2H6] iP9G 6.46 372.2>210.1 30 20 

tZRMP  1 1.86 + 432.2>220.1 34 22 [2H5] tZRMP 1.85 437.2>225.1 34 22 

tZR  1 5.04 + 352.1>136.1 28 18 [2H5] tZR 5.01 357.1>136.9 28 18 

tZ  1 3.78 + 220.1>136.1 20 18 [2H5] tZ 3.75 225.1>136.9 20 18 

tZOG  1 3.84 + 382.1>220.1 30 20 [2H5] tZ9G 4.02 387.2>225.2 30 20 

tZ7G  1 3.86 + 382.1>220.1 30 20 [2H5] tZ9G 4.02 387.2>225.2 30 20 

tZ9G  1 4.04 + 382.1>220.1 30 20 [2H5] tZ9G 4.02 387.2>225.2 30 20 

DZ  1 3.95 + 222.1>136.1 20 18 [2H3] DZ 3.91 225.1>136.1 20 18 

DZR  1 5.10 + 354.1>136.1 28 22 [2H3] DZR 5.06 357.2>149.1 28 22 

DZ7G  1 2.97 + 384.2>222.1 30 20 [2H5] tZ9G 4.02 387.2>225.2 30 20 

DZ9G  1 3.36 + 384.2>222.1 30 20 [2H5] tZ9G 4.02 387.2>225.2 30 20 

cZRMP  1 1.92 + 432.2>220.1 34 22 [2H5] tZRMP 1.85 437.2>225.1 34 22 

cZR  1 4.49 + 352.2>220.1 28 22 [2H5] tZR 5.01 357.1>136.9 28 18 

cZ  1 4.42 + 220.1>136.1 20 18 [2H6] tZ 3.75 225.1>136.9 20 18 

IAA 2 4.23 + 176.3>130.2 25 15 [13C6] IAA  4.22 182.1>135.9 25 15 

ABA 2 5.03 - 263.1>153.1 25 10 [2H6] ABA  5.01 269.1>159.1 25 10 

ABAGE 2 3.53 - 425.0>262.7 30 15 [2H5] ABAGE  3.50 430.0>267.7 30 15 

PA 2 3.71 - 279.0>138.9 30 15 [2H3] PA  3.69 282.0>142.2 30 15 

DPA 2 1.78 - 281.0>171.2 30 20 [2H3] DPA  1.76 284.0>174.0 30 20 

JA 2 5.82 - 209.2>58.8 30 15 [2H6] JA 5.85 215.0>58.8 30 15 

SA 2 5.22 - 137.06>92.8 25 15 [2H4] SA 5.17 141.1>96.8 25 15 
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Table S2. Quantitative fold differences of hormone metabolites between roots and leaves in parental lines 

and the RILs. Numerical values were obtained from averages of hormone levels (pg mg-1 dw) in root divided 

by hormone levels in leaves. 

 Ler Cvi RILs 
iPRMP 26.3 15.3 12.7 
iP 0.4 0.3 0.2 
tZRMP 102.1 55.5 58.5 
tZR 9.8 4.1 5.7 
tZ 0.7 1.6 0.5 
tZOG 4.1 8.9 4.1 
tZ7G 0.6 0.4 0.5 
tZ9G 3.0 1.2 1.8 
cZR 14.2 11.0 7.1 
cZ 1.6 1.3 1.1 
IAA 7.8 20.0 18.5 
ABA 0.3 0.3 0.4 
JA 21.4 26.9 11.7 
SA 134.2 168.0 294.3 
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Table S4. tZ7G/tZ9G ratios observed in roots and leaves. 

Organs Ler Cvi RILs Col-0 
roots 0.91 1.13 0.97 1.95 
leaves 4.83 3.32 3.57 3.50 
 

 

Table S5. Significant QTLs for IAA and ABA metabolites in Arabidopsis leaves. ¶The superscripts indicate 

flowering-specific QTLs that were detected from only the flowered sub-population. §The superscripts indicate 

vegetative-specific QTLs that were detected from only the vegetative sub-population. 

Trait Chromo-
some 

cM 
interval 

LOD  
(MQM) 

Locus 
region 

Nearest 
marker 

Explained 
Variance (%) 

Additive 
effect 

IAA  

1 25.3~36.7 7.4 GD.86L~AD.106L-Col CC.98L-Col/101C 16 – 

2 

36.4~47.6 ¶  2.5 BF.221L~Erecta/GPA FD.150C 12.5 + 

49.2~62.3 ¶  2.7 Erecta/GPA~DF.140C GD.298C 14.1 + 

65.3~70.8 5.4 DF.140C~EC.235L-Col/247C  EC.235L-Col/247C  11.3 + 

3 0~3.8 ¶ 2.5 DF.77C~EG.75L DF.77C 13.2 + 

ABAGE 1 
13.1~22.5 § 2.7 HH.335C-Col/PhyA~EC.66C  EC.480C  14.9 – 

85.4~104.1 ¶ 4.0 EC.88C~GH.157L-Col CH.215L 21.3 + 

ABA  

1 13.1~39.7  4.0  HH.335C-Col/PhyA~AD.106L-Col  GD.86L  7.5 –  

3 
0~17.1  5.9  DF.77C~BF.270L-Col/271C  GB.120C-Col/GAPC   11.5  +  

72.9~85.8  2.7  AD.182C~HH.90L-Col  HH.90L-Col  4.9  +  

5 
32.1~52.6  3.2  DF.184L-Col~BH.96L-Col  GH.121L-Col  6.0  –  

94.9~117  3.2  GB.102L-Col/105C~HH.122C/120L  DF.119L  5.9  +  

PA  3 0~15.1  4.6  DF.77C~BF.270L-Col/271C  DF.77C   12.5 +  

DPA  

2 67.3~70.8  11.1  DF.140C~EC.235L-Col/247C  EC.235L-Col/247C  16.9 –  

3 

0~8.8 ¶ 3.3 DF.77C~EG.75L  DF.77C  3.3 + 

31.4~45.5  3.4  EC.83C/84L~BH.225C-Col  GB.210L  4.5  +  

75.9~85.8 § 2.5 AD.182C~HH.90L-Col HH.90L-Col 6.2 + 

4 59~68  13.9 CH.70L/71C-Col ~BH.342C  HH.159C-Col  21.8  –  
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Table S6. Significant QTLs of CKs in rosette leaves. ¶ The superscripts indicate flowering-specific QTLs that 

were detected from only the flowered sub-population. § The superscripts indicate vegetative-specific QTLs that 

were detected from only the vegetative sub-population. 

Trait Chromo-
some 

cM 
interval 

LOD  
(MQM) 

Locus 
region 

Nearest 
marker 

Explained 
Variance (%) 

Additive 
effect 

iPR 3 81.4~85.8  2.9  HH.171C-Col/173L~HH.90L-Col  HH.90L-Col  8.2  +  

iP 

1 0~13.1  3.6  PVV4~HH,335C-Col/PhyA  PVV4  7.3  – 
2 0~16.9  3.6  AD.156C~FD.81L  GH.580L  7.1  –  

3 
0~2  3.7  DF.77C~GB.120C-Col/GAPC  DF.77C  7.5  –  

82.4~85.8  6.5  HH.171C-Col/173L~HH.90L-Col  HH.90L-Col  13.6  +  

iP9G  
3 

0~2  15.7  DF.77C~GB.120C-Col/GAPC  DF.77C  30  –  
79.4~85.8  8.7  HH.171C-Col/173L~HH.90L-Col  HH.90L-Col  14.7  +  

5 
0~11.6  5.5  FD.207L~EC.198L-Col  CH.690C  8.7  +  

107.5~115 ¶ 4.1 BF.168L-Col~HH.122C/120L  DF.119L  11.6 – 
tZRMP  4 50.1~73 2.6  CD.329C-Col~BH.342C/DHS1 CH.70L/71C-Col  6.8  –  

tZR 

1 77.4~100.3 ¶ 2.5 CH.200C~BF.116C GD.160C 9.7 – 

4 
0~18.3 § 2.8 ANL2~CH.169C GH.250C/GA1 16.4 – 

51.1~60 ¶ 2.7 CD.329C-Col~HH.159C-Col  CH.70L/71C-Col  10.7 – 
5 9.6~34.1 ¶ 4.0 BH.144L~GH.117C BH.107L-Col 16.8 – 

tZ  

1 0~20.3  4.8  PVV4~EC.66C  HH.335C-Col/PhyA  9.8  +  
2 40.4~50.2  8.6  FD.85C~GD.298C  FD.150C  18.8  +  
3 21.1~30.4  6.8  BF.270L-Col/271C~AD.92L  GH.390L  14.3  –  

4 
0~18.3 § 2.6 ANL2~CH.169C  GH.250C/GA1 7.5 – 

20.2~37.1 §  2.6 CH.169C~CD.84C-Col  BH.92L-Col  7.6 – 

5 
91.7~102.7 § 2.5 HH.445L-Col~HH.143C  GB.102L-Col 7.2 + 
104.5~117 § 3.0 BF.168L-Col~HH.122C/120L  DF.119L 8.6 + 

tZOG  
1 4~20.3 6.1  PVV4~EC.66C  EC.480C  12.3  +  
2 43.4~51.2  12.7 FD.85C~GD.298C  Erecta/GPA1  29.5 +  
3 0~26.1  3.0  DF.77C~EC.83C/84L  DF.77C  5.5  –  

tZ7G  

2 39.4~63.3  5.7 FD.85C~DF.140C  GD.298C 11.4 +  
3 28.4~72.3  2.8 EC.83C/84L~AD.182C HH.440L  5.4 +  
4 55.6~74  6.3 FD.167L-Col~BH.342C/DHS1  HH.159C-Col  12.6 –  

5 
19.5~54.6 2.7 BH.107L-Col~BH.96L-Col GH.117C  5.2 –  

79.5~105.5  4.0 DFR~BF.168L-Col HH.445L-Col  7.6 –  

tZ9G  

2 36.4~60.2 4.9 BF.221L~BH.120L-Col  FD.150C  10.9 +  
3 80.4~85.8  4.3 HH.171C-Col/173L~HH.90L-Col   HH.90L-Col  8.4 –  
4 54.6~71 5.3  FD.167L-Col~BH.342C/DHS1  HH.159C-Col  11.7 –  

5 
21.5~54.6  2.7  BH.107L-Col~BH.96L-Col  GH.117C  7.3 – 
92~108.5 2.8 CC.262C~DF.119L  HH.143C   7.3 –  

DZ7G  

1 90.7~108 ¶ 3.5  GD.160C~CC.318C BF.116C  9.6 +  
2 38.4~47.6  8.5 BF.221L~Erecta/GPA1  FD.85C  16.8 +  
4 52.6~78  6.0 FD.167L-Col~BH.342C/DHS1  HH.159C-Col  11.3 –  
5 103.5~117 ¶ 3.7 BF.168L-Col~HH.122C/120L  DF.119L  9.9 –  

DZ9G  

2 
29.1~45.6  2.5  FD.222L-Col~Erecta/GPA1  FD.85C  4.1  +  
49.2~56.6  6.8  Erecta/GPA1~BH.120L-Col  GD.298C  6.8 + 

3 80.4~85.8  12.5 HH.171C-Col/173L~HH.90L-Col  HH.90L-Col  23.8 –  
4 54.6~69  7.4  FD.167L-Col~BH.342C/DHS1  HH.159C-Col  12.8 –  
5 25.3~40.8 ¶ 3.0 AD.114C-Col~GH.121L-Col  DF.184L-Col  6.9 – 

cZR  
3 0~8.8  4.7  DF.77C~FD.111L-Col/136C  DF.77C  11.3  –  
5 64.5~90.7  3.8 CD.179L~CC.262C  AD.75C-Col  9.9 +  

cZ 4 4~23.2 2.9 ANL2~EC.306L GH.250C/GA1 8.4 + 
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Table S7. Significant QTLs of hormone ratios between two organs, rosette leaves and roots. 

Trait 
Chromo-

some 
cM 

interval 
LOD 

(MQM) 
Locus 
region 

Nearest 
marker 

Explained 
Variance (%) 

Additive 
effect 

tZRMP 
1 72~94.4 4.1 BF.206L-Col~HH.375L EC.88C 12 – 

5 0~16.8 3.2 FD.207L~BH.107-Col CH.690C 9.3 + 

tZOG 

1 0~19.3 4.0 PVV4~EC.66C HH.335-Col/PhyA 9.7 + 

3 72.3~85.8 2.9 AD.182C~HH.90L-Col HH.90L-Col 7 + 

4 57~80.2 2.8 CH.70L/71C-Col BH.342C/DHS1 6.5 + 

tZ7G 5 0~28.3 3.2 FD.207L~AD.114C-Col BH.144L 9.4 – 

tZ9G 
2 35.4~54.6 3.2 BF.221L~GD.298C FD.150C 8.9 + 

5 2~16.8 4.8 FD.207L~BH.107L-Col BH.144L 13.6 – 

SA 4 59~80.2 3.1 HH.159C-Col~ BH.342C/DHS1 BH.342C/DHS1 9.1 – 

 

 

Table S8. Significant QTLs for precursor-product ratios in ABA catabolites. 

Trait 
Chromo-

some 
cM 

interval 
LOD 

(MQM) 
Locus 
region Nearest marker Explained 

Variance (%) 
Additive 

effect 

ABAGE/ABA  5 107.5~117  5.0  BF.168L-Col~HH.122C/120L  DF.119L  12  – 

ABA/PA  
1 13.1~30.9  5.0  HH.335C-Col/PhyA~CH.160L-Col  EC.480C  9.3  –  

4 58~71  6.5  CH.70L/71C-Col~BH.342C/DHS1 HH.159C-Col  12.4  –  

PA/DPA  
2 65.3~70.8  4.4  DF.140C~EC.235L-Col/247C  EC.235L-Col/247C  7.7  +  

4 58~68  15.9  CH.70L/71C-Col~BH.342C/DHS1  HH.159C-Col  33.8  +  

ABA/DPA  

2 65.3~70.8  8.4  DF.140C~EC.235L-Col/247C  EC.235L-Col/247C  15.0  +  

3 25.1~43.1  4.5  GH.390L~BH.225C-Col  GB.210L  7.6  –  

4 58~69 12.5  CH.70L/71C-Col~BH.342C/DHS1  HH.159C-Col  23.9  +  

ABAGE/PA  3 0~6.8 6.9  DF.77C~EG.75L  DF.77C  17.2  –  

ABAGE/DPA  

2 65.3~70.8 6.8  DF.140C~ EC.235L-Col/247C EC.235L-Col/247C  12.2  + 

3 31.4~41.1 6.3  EC.83C/84L~BH.225C-Col  GB.210L  11.2  –  

4 59~69 10.9  CH.70L/71C-Col~BH.342C/DHS1  HH.159C-Col  21.1 +  
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Table S9. Significant QTLs for substrate-product ratios in CKs. 

Trait 
Chromo- 

some 
cM 

interval 
LOD  

(MQM) 
Locus 
region 

Nearest 
marker 

Explained 
Variance (%) 

Additive 
effect 

iPR/iP  3 19.1~38.7 2.8 BF.270L-Col/271C~GB.210L  AD.92L  7.8  – 

iP/iP9G  3 
0~8.8  5.3 DF.77C~EG.75L DF.77C  13.1  + 

61.2~85.8  2.7 GD.296C-Col~HH.90L-Col  HH.171C-Col/173L  6.4  –  

iPRMP/iP  3 19.1~38.7  2.8 BF.270L-Col/271C~GB.210L  AD.92L  7.8  –  

iPRMP/tZRMP  
2 33.4~55.6  2.5 CH.65C~GD.298C  FD.85C  6.4  –  

3 0~13.1 2.9 DF.77C~FD.111L-Col/136C  DF.77C  7.5  –  

iPR/tZR  5 20.5~57.5  2.6 BH.107L-Col~BH.96L-Col  AD.129L-Col  6.0 +  

iP/tZ  

1 0~14.1  5.9 PVV4~EC.480C  PVV4  12.6  –  

2 
0~17.9 3.5 AD.156C~FD.81L  GH.580L  7.7  –  

32.4~52.2 4.6 CH.65C~GD.298C  FD.85C  10.1 –  

3 
20.1~36.7  3.2 BF.270L-Col~GB.210L  GH.390L  6.6  +  

80.4~85.8 3.1 HH.171C-Col~HH.90L-Col  HH.90L-Col 6.5  +  

tZRMP/tZ  3 7.8~38.7  3.6 EG.75L~GB.210L  EC.83C/84L  10.4 +  

tZ/tZOG  2 42.4~58.2  5.4 FD.85C~BH.120L-Col  Erecta/GPA1  14.7 –  

tZ/tZ7G  

1 0~37.7 2.9 PVV4~AD.106L-Col  PVV4  5.3  +  

3 22.1~31.4 9.7 BF.270L-Col/271C~AD.92L GH.390L  19.7  –  

4 58~80.2 3.3 CH.70L/71C-Col~BH.342C/DHS1 BH.342C/DHS1  6.0  +  

tZ/tZ9G  
1 1~20.3  4.1 PPV4~EC.66C  PVV4  8.6 +  

3 20.1~30.4  8.7 BF.270L/271C~AD.92L  EC.83C/84L  19.6 –  

tZ7G/tZ9G  3 85~85.8 25.8 BH.109L-Col~HH.90L-Col  HH.90L-Col  54.9 + 

DZ7G/DZ9G  3 82.4~85.8 14.7 HH.171C-Col/173L~HH.90L-Col HH.90L-Col 36.5 + 

cZRMP/cZR  1 98.3~127.5 3.0 CH.215L~HH.360L-Col  CD.173L/175C-Col  8.0 +  

cZR/cZ  5 77.5~94  3.1 DFR~GB.102L-Col/105C  AD.75C-Col  7.6 +  
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Table S10. Significant QTLs for metabolite-ratios between different groups of hormones. §The superscripts 

indicate QTL regions newly detected from hormone-hormone ratios, at which any locus for single hormones in 

pair is not observed. 

Trait 
Chromo-

some 
cM 

interval 
LOD  

(MQM) 
Locus 
region 

Nearest 
marker 

Explained 
Variance (%) 

Additive 
effect 

IAA/iP  

1 27.3~37.3 5.3 GD.86L~AD.106L-Col CC.98L-Col/101C 12.6 – 

2 65.3~70.8 3.1 DF.140C~EC.235L-Col/247C EC.235L-Col/247C 6.9 + 

3 0~5.8 2.7 DF.77C~EG.75L DF.77C 6.2 + 

IAA/tZ  1 
0~13.1 5.2 PVV4~EC.480C PVV4 10 – 

26.3~34.7 4.7 GD.86L~AD.106L-Col CC.98L-Col/101C 4.7 – 

IAA/cZ  1 22.3~37.7 4.2 EC.480C~AD.106L-Col CC.98L-Col/101C 11.7 – 

IAA/ABAGE  2 66.3~70.8 6.0 DF.140C~EC.235L-Col/247C EC.235L-Col/247C 15.2 + 

IAA/ABA  
2 66.3~70.8 4.1 DF.140C~EC.235L-Col/247C EC.235L-Col/247C 10.2 + 

3 4.8~22.1  3.3 GB.120C-Col/GAPC~GH.390L FD.111L-Col/136C 7.9 – 

IAA/PA 

2 66.3~70.8 3.7 DF.140C~EC.235L-Col/247C EC.235L-Col/247C 8.6 + 

3 8.8~23.1 5.6 EG.75L~GH.390L FD.111L-Col/136C 13 – 

4 49.1~73§ 2.8 CD.329C-Col/CH42~BH.342C/DHS1 HH.159C-Col 6.3 – 

IAA/DPA 

2 68.3~70.8 11.0 DF.140C~EC.235L-Col/247C EC.235L-Col/247C 20.9 + 

3 
13.1~22.1§ 3.9 FD.111L-Col/136C~GH.390L BF.270L-Col/271C 7.3 – 

27.1~42.1 3.6 EC.83C/84L~BH.225C-Col GB.210L 6 – 

4 58~71 6.7 CH.70L/71C-Col~BH.342C/DHS1 HH.159C-Col 11.8 + 

IAA/SA 
1 23.5~36.7 6.6 EC.66C~AD.106L-Col CC.98L-Col/101C 15.1 – 

2 66.3~70.8 5.8 DF.140C~EC.235L-Col/247C EC.235L-Col/247C 13.2 + 

JA/PA 3 0~17.1 3.0 DF.77C~BF.270L-Col/271C GB.120C-Col/GAPC 8.7 – 

JA/DPA 
2 60.2~70.8 3.4 BH.120L-Col~ EC.235L-Col/247C EC.235L-Col/247C 8.5 + 

4 49.1~76 5.1 CD.329C-Col/CH42~BH.342C/DHS1 HH.159C-Col 13.2 + 

SA/PA 
3 0~16.1 4.0 DF.77C~BF.270L-Col/271C DF.77C 10.4 – 

4 36.1~75§ 2.8 CD.84C-Col/85L~BH.342C/DHS1 HH.159C-Col 7 – 

SA/DPA 

2 66.3~70.8 5.8 DF.140C~ EC.235L-Col/247C EC.235L-Col/247C 11.7 + 

3 23.1~44.1 3.6 GH.390L~BH.225C-Col GB.210L 6.9 – 

4 59~72 9.7 CH.70L/71C-Col~BH.342C/DHS1 HH.159C-Col 20.5 + 
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Plants as sedentary organisms have the ability to readily react to changes of the environment during 

growth and developmental processes. Roots and shoots communicate to optimize growth in response 

to internal and external stimuli. This communication goes beyond the supply of photosynthates from 

shoots to roots, and that of water and nutrients in the other direction. Sensing and communication 

among cells, tissues and organs often depend on chemical messengers, the plant hormones, moving 

from one part to another. Some of the plant hormones are synthesized in one tissue and act on target 

sites via transport mechanisms, but most plant hormones also act on neighbouring cells in the vicinity 

of the site of biosynthesis. 

Hormone metabolism in plants shows complexities of metabolic redundancy and plasticity to 

maintain hormone levels in response to environmental changes and developmental conditions, 

referred to as hormone homeostasis. The process of hormone metabolism is at least partly dependent 

on the genetic make-up of the plants. 

The variation of quantitative traits in populations is largely contributed by genetic variation of 

DNA sequences. In the post-genome era accumulated resources of molecular markers and DNA 

polymorphisms have been developed in Arabidopsis thaliana and several other plant species. Linkage 

mapping based on bi-parental populations has been used as a genetic tool for detecting alleles that 

have a large effect on the phenotypic traits of interest (Sergeeva et al., 2006). More recently, genome-

wide-association (GWA) mapping, a powerful approach to provide high mapping resolution, has been 

extensively applied to many plant species (Bergelson and Roux, 2010). These two main techniques of 

quantitative genetics have been used to elucidate biochemical pathways underlying primary and 

secondary metabolites in several plants (Fernie and Tohge, 2017). However, to date as far as I know, 

no study has been done in quantitative genetics of hormone levels as phenotypic traits in Arabidopsis 

or other plant species.  

In this General Discussion, I will first discuss the importance of using proper methods in the 

quantitative analysis of hormones, which is crucial for the reliability of data throughout all chapters. 

Subsequently I will discuss how to assess results of QTL analysis and how to continue with this type 

of research. 

Accuracy of hormone measurements 

Chapter two describes a validation study for simultaneous analysis of a range of different plant 

hormones using UPLC-ESI-MS/MS. Accurate quantitative data of actual levels of metabolites are a 

prerequisite for success in natural variation studies and further analysis of the genetic and biochemical 

bases of variation. In addition, I wanted to reduce sample size as much as possible to reduce sample 

preparation costs.  As I also wanted to improve our understanding of hormone-hormone interactions, 
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it was important for me to target multiple groups of plant hormones. This approach would create the 

possibility that I could find overlapping QTLs for different hormones, pointing at joint regulation. 

I anticipated that it would be challenging to analyse different groups of hormones using a single 

SPE cartridge, and at the same time attain a nearly zero level of matrix interference. In the present 

study, the hydrophilic-lipophilic balance (HLB) sorbent that has a balanced ratio of two monomers, 

divinylbenzene and N-vinylpyrrolidine, was finally selected for the rest of the experiment using the 

full set of lines of the RIL population. A drawback of this material is the limited capacity of capturing 

and retaining ionic analytes. Two major concerns, impurities and recovery rates, seemed to influence 

each other, but understanding their relations is complicated. As discussed in Chapter 2, values of 

recovery rates of the analytes in the semi-purified samples did not represent their real recovery rates. 

For example, in Fig. 2 in Chapter 2, none of the SPE sorbents was really better than the others, 

because recovery rates themselves do not provide information on matrix interference caused by 

impurities. When ion suppression and enhancement are sufficiently controlled, we can assure that true 

recovery rates of analytes are obtained, and consequently, that quantitative data are reliable. 

It is remarkable that some articles for plant hormone analysis using LC-MS seem to consider 

matrix effects of impurities negligible in quantitative determination (Cai et al., 2016; Durgbanshi et 

al., 2005; Pan et al., 2010; Segarra et al., 2006). Those authors determined quantities of plant 

hormones in crude extracts without suitable purification such as solid phase extraction. When levels 

of hormones are determined by UV-Visible spectrophotometry, matrix effects are irrelevant. But it is 

different when an LC-MS system is applied for the analysis. Comparatively, although LC-ESI-

MS/MS provides high sensitivity and selectivity through the use of mass/charge (m/z) of fragment 

ions of the analytes, signal intensities presented in chromatograms are likely to be influenced 

dramatically by impurities, especially polar compounds (Bonfiglio et al., 1999). Therefore, the 

concern of matrix effects in LC-MS should be properly evaluated in the process of method 

development, in order to attain a close-to-zero-level of ion suppression/enhancement for the analytes.  

Natural variation of a quantitative trait is the sum of genetic and non-genetic factors. If 

inaccuracy of the method of hormone quantification increases, the non-genetic factors (e.g., 

environmental perturbation and experimental errors) will have a great influence on the quality of data, 

eventually decreasing the chance of finding genetic elements. In Chapter 3, I illustrated that natural 

variation for the levels of endogenous hormones is low, so that the use of a suitable purification 

protocol is critical and a prerequisite for QTL analysis. The accuracy of the quantitative data I 

generated is indirectly supported by the detection of significant QTLs for several hormones and 

confirmations of these QTLs using NILs in Chapter 4. 
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Choice of populations 

Chapter 3 describes natural variation in hormone levels in the roots of 13 Arabidopsis accessions and 

interprets the roles of these hormone levels in the process of shaping root phenotypes. I found that 

variation in the biologically active trans-zeatin and IAA were very limited, within the tested set of 

accessions. However, inactive intermediates e.g., tZGs in CK, showed relatively large variations (Fig. 

5 in Chapter 3). Regarding these results, I already discussed a limitation of quantitative analysis based 

on a whole-root extract that may obscure a possible differential distribution of hormones on the 

cellular or tissue level. Additionally, it is likely that genetic alleles for biologically active forms of 

hormone are highly conserved. This assumption was a reason that I preferred conventional linkage 

mapping as the start of quantitative genetic analysis rather than association mapping. It is also 

relevant that association mapping, in general, is less efficient than linkage mapping when the genetic 

diversity in a species is low, as seems to be the case for hormones. On the other hand, association 

mapping based on natural populations reflecting the long history of recombination events provide 

high resolution, down to the gene level and works well when more allelic variation is expected for the 

trait of interest (Fernie and Tohge, 2017).  

Both approaches (association- and linkage mapping) are often complementary. A bi-parental 

population seemed to be less risky for my study than natural collections because of several reasons, as 

reviewed in Myles et al. (2009). First of all, bi-parental populations consist of a relatively small 

number of lines, as compared to association populations. This makes the experiment easier to handle. 

Indeed a collection of 360 Arabidopsis accessions was established and used for many association 

studies, considerably more than the 152 lines of the Ler×Cvi RIL population used in my study. 

Secondly, Ler and Cvi seemed to be divergent accessions for variations in hormone levels (Chapter 3), 

suggesting that they may contain rarely occurring alleles that have a large effect on my traits of 

interest. In addition there was also a criterion that association mapping has a reduced power to detect 

a QTL when rare alleles or weak-effect alleles are involved. 

Duration of physiological antagonism between IAA and CK for root growth 

Principal component analysis (PCA) is often used to interpret possible interactions between variables 

(traits) in different groups of phenotypic characteristics. In Figure 6 of Chapter 3, I suggested 

physiological interactions between hormones and root phenotypic traits by comparing accumulated 

knowledge of hormone functions for root system architecture. A limitation of Figure 6 in Chapter 3 is 

that the analysis has been carried out in a specific time point (23-day-old roots) rather than on several 

different growth stages during the whole plant life. In order to assess the effect of developmental stage, 

I compared the results of Chapter 3 with data from the older plants, obtained with the Ler×Cvi RIL 

population, harvested at 35 days. In the 35d old plants, root fresh weight (RFW), IAA and tZ showed 
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antagonistic relationships (Fig. 1), similar as in 23-day-old roots of 13 natural accessions. This 

antagonistic relationship was also observed in two different sub-populations, vegetative lines and 

flowering lines of the RILs (data not shown). However, there were slight changes in the topology 

between IAA and tZ for RFW in quadrants of Cartesian coordinate system (X and Y). Approximately, 

40% of the variation was explained by the first two principal components, which was lower than 58% 

of the variation in 23-day-old roots of 13 natural accessions. This suggests that hormonal interactions 

for root growth gradually change with plant development. 

 

Figure 1. PCA of hormones and phenotypic traits in a Ler×Cvi RIL population. Abbreviations of 

observable phenotypic traits follow as: R/S, root-shoot weight ratio; RL, root length; RFW, root fresh weight; 

BR, bolting rate; SFW, shoot fresh weight; SN, shoot branch number; SL, shoot length. 

 

Numbers of significant QTLs found between different organs 

In Chapter 4, I pointed out that the average number of significant QTLs per hormonal compound in 

roots was relatively small. However, in Chapter 5 the analysis of rosette leaves showed the existence 

of more QTLs for individual hormones. What caused this difference, despite that the harvest time was 

the same? Does it mean that more genes are expressed for hormone metabolism in the leaf? In the root 

system the missing heritability for levels of biologically active hormones suggests that the variation in 

a single gene cannot account for much of the variation of the phenotypic trait and rare but large-effect 

alleles do not exist in the parental lines (Manolio et al., 2009). In other words, it is hard to detect a 

responsible QTL when the rare and large-effect allele driven by a parental line exists but is poorly 

expressed at the time point of sampling. The QTL analysis using two sub-populations (vegetative and 

flowering lines) revealed that in many cases QTLs were composed of more than one locus, functional 

for either vegetative or flowering stage. Taken together, it is recommended that QTL analysis for 

hormone levels should be conducted at both the early stage of development, when all lines of the RIL 
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are vegetative, and the later stage when all lines are flowering. I envisage that these 4 sets of QTL 

analysis according to distinct time points of development and different organs would provide a better 

systematic understanding of the genetic regulation of hormone metabolism.  

It has been suggested that the majority of metabolite traits display additive and dominant modes 

of inheritance, wherein primary metabolite abundance is dominantly and secondary metabolite 

abundance recessively inherited (Fernie and Tohge, 2017). Alseekh et al. (2015) demonstrated that in 

tomato the variance for secondary metabolites is greater but the number of loci responsible for a given 

metabolite is far fewer than for primary metabolites. I found that the variation in hormone quantities 

was small and in general the number of QTLs responsible for these levels was low. In hormone 

metabolism, it is interesting that variation in hormone levels was limited like the case of primary 

metabolites, although most of them are generated in biosynthetic pathways separately from primary 

metabolism. 

QTL of interest in ABA catabolism 

For the levels of DPA as an ABA catabolite, I paid attention to two large-effect QTLs that were found 

on the bottom of chromosome 2 and on the lower arm of chromosome 4 (Fig. 4 and Table S5 in 

Chapter 5). These QTLs are interesting target for a following-up study because they are present in 

both the vegetative and flowering stage. In ABA catabolism, there are two main pathways for ABA 

inactivation (Fig. 2): one is hydroxylation by a cytochrome P450 and the other is the conversion to a 

glucose ester by an ABA glucosyltransferase. Except for CYP707A, to date none of the genes 

encoding for the biosynthetic pathway beyond 8´-hydroxy-ABA has been elucidated (Endo et al., 

2014). It is possible that this would include a so far unidentified reductase for the production of DPA 

from its precursor(s). The QTLs for the levels of the ABA catabolites, DPA, found in this study may 

provide opportunities to identify the missing gene(s) involved in this catabolism. Confirmation of the 

QTLs detected using NILs will be necessary and should be followed by fine mapping using a 

population derived from a cross between Ler and a selected NIL covering the whole significant QTL 

region. 
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Figure 2. ABA catabolic pathway in higher plants. The drawing was adopted from (Endo et al., 2014). 

 

Perspective remarks 

Metabolite profiling has extensively been used to study the regulation of the accumulation of primary 

and secondary metabolites. I would like to exemplify the study of Keurentjes et al. (2006) as an 

outstanding study of metabolic QTL analysis for a huge number of analytes in the same RIL 

population. By virtue of such efforts through traditional linkage mapping analysis, considerable 

understanding in metabolic regulation has been achieved. Association mapping analysis has also been 

enthusiastically used in the study of plant metabolic regulation (Fang et al., 2019). The major 

advantage of association mapping exists in its high resolution power of QTL in the broad genomic 

region because genotypic data of genome-wide-association mapping obtained from hundreds of 

natural lines provides a better picture of species-wide allelic diversity, frequency, and combination 

than linkage mapping does. Actually only a very small portion of QTL has been cloned even after 

countless loci were found in plants. 

In order to detect more distinct QTLs responsible for hormone metabolism, quantitative analysis 

as a further study can be done based on different tissues. For example, sampling the region of root tip 

only, may increase the chance of finding hormonal QTLs that were not found in samples of entire root 

systems.   

My study showed that hormonal QTLs could be mapped to known responsible loci/genes, (e.g., 

cytokinin N-glucosyltransferase), and also revealed new loci, in Arabidopsis. Hormone QTL mapping 
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is likely also applicable to populations of other plant species (Cardoso et al., 2014). A possible 

suggestion is that natural variation studies using more extended Arabidopsis ecotypes can be designed 

to uncover lines with extreme hormone metabolism phenotypes, subsequently followed by linkage 

mapping analysis with a suitable segregating population. On the other hand, association panels and 

RIL populations should be regarded as complements to each other. For quantitative genetics of 

hormone metabolism, acquisition of more diverse chemical standards is also important to refine 

quantitative data covering each metabolite in complex biosynthetic pathways. 
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Summary 

Plants synthesize a myriad of metabolites, far more than those produced by most other organisms. 

Plant hormones are a unique set of compounds, with distinctive metabolism and properties that affect 

physiological processes during development and growth. Their underlying genetic variation will have 

attracted much research attention by virtue of junctions of NGS technologies and metabolomics.  

The aim of this thesis was to study natural variation of plant hormones in Arabidopsis. To obtain 

reliable quantitative data of levels of hormone using LC-ESI-MS, I first developed a set of 

methodological processes related to extraction and purification. A set of Arabidopsis ecotypes was 

chosen, and studied to earn various aspects of natural variation with traits of mature roots. Based on 

results of these works, my study has moved to classical linkage mapping analysis to find genetic loci 

responsible for levels of a few sets of hormone in roots and leaves of Arabidopsis.    

Chapter 2 describes the problem of matrix effects caused by impurities in semi-purified extracts, 

on the accuracy of data derived from LC-ESI-mass spectrometry. Matrix effects may result in both 

ion suppression and enhancement, and severely affects quantitative data of hormone levels. Without 

proper ways to minimize matrix effects, hormone data would be unreliable, and would not allow 

accurate QTL mapping. I validated a few key-points that are critical for determining the levels of a 

wide range of plant hormones in Arabidopsis extracts based on a one-step solid phase extraction 

(SPE) method. For the simplified purification of Arabidopsis extracts, a commercially available HLB 

sorbent was chosen to recover a wide range of chemically diverse series of hormone analytes. 

Dilution using a much smaller starting sample (e.g., 2.5 mg) reduced the matrix effects considerably 

but additional measures were required for most of the analytes. Flushing the HLB-SPE column with 

acidic methanol was more effective to reduce matrix effect than acetonitrile based eluent. At the end, I 

proposed a series of steps and procedures to optimize the protocol for hormone analysis in LC-ESI-

MS. 

Chapter 3 describes natural variation of hormone levels found in 13 Arabidopsis ecotypes. 

Variations of hormone level among the accessions were remarkably small, viz., less than three-fold 

difference between extremes. For CKs, relatively larger variations were found for ribosides and 

glucosides, as compared to the free bases. Root phenotypic traits of these accessions were also 

measured, using a new parameter (mature root unit) for complex root systems, and correlation 

analyses were done between hormone data and mature root traits. For root phenotyping, length-related 

traits—lateral root length and total root length—showed larger variations than lateral root number-

related ones. Antagonistic interactions between hormones (IAA and trans-zeatin) were detected for 

root weight. These findings provide enough basis to warrant a quantitative genetic analysis in plant 

hormone metabolism and crucial information for the choice of a proper segregating population.  



Summary

139

 

 

 

Chapter 4 reports diverse QTLs that are responsible for hormone levels of CKs, SA and JA in 

roots of Arabidopsis Ler×Cvi RIL population. QTL analysis of two sub-populations, viz., vegetative 

and flowering plants revealed that many of the QTLs were development-specific, suggesting that the 

transition to flowering has a profound effect on hormone metabolism. Using near-isogenic lines, 

several significant QTLs were confirmed; three co-localized QTL regions were responsible for 

determining several CK metabolites. Using a knock-out plant, a functional role of zeatin N-

glucosyltransferase gene (UGT76C2) underlying a large-effect QTL for levels of tZ N-glucosides and 

tZRMP was evaluated in CK metabolism. Pleotropic effects of this gene were found for levels of CK 

in both roots and leaves, but significant changes of morphological traits were observed only in roots. 

This suggests that CK N-glucosides play an important role in root development. I also advocated the 

possibility of genetic regulation of concentration ratio between tZ7G and tZ9G based on a newly 

observed QTL of the trait. 

As a further step of QTL analysis after Chapter 4, the study was extended to leaves. Chapter 5 

describes the analysis of 5 groups of hormones in rosette leaves of the same RIL population. QTL 

analysis showed a multitude of significant loci for levels of IAA, ABAs and CKs. Also for leaves, 

development-specific QTLs were detected in two sub-populations, vegetative and flowering lines. 

QTLs for ratios between hormone metabolites belonging to the same group but also to different 

groups were found and some of them partly co-localized with those of single compounds, implying 

that QTLs for single hormones may also affect the balance between hormones. The detection of QTLs 

for ratios between structurally unrelated hormones (e.g. auxin : ABA) and further fine mapping may 

help unravelling genetic elements underlying hormone interactions in the regulation of plant 

development and stress responses. 

Finally, in Chapter 6, several issues arising from the separate experiments are taken into 

consideration. The main significance of this PhD thesis is the experimental confirmation that finding 

QTLs for hormone metabolism is feasible and worth being extended to other populations of 

Arabidopsis and to crop plants. I anticipate that in the near future metabolomics study towards natural 

variation of plant hormones will be part of interesting theme in quantitative genetics. It will provide us 

to gain a better understanding of the complexity of molecular mechanism underlying hormone 

metabolism in plants. 
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