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Abstract

Amuzu-Aweh, E.N. (2020). Genomics of heterosis and egg production in White
Leghorns. Joint PhD thesis, between Swedish University of Agricultural Sciences,
Sweden and Wageningen University, the Netherlands

Crossbreeding is practiced extensively in commercial breeding programs of many
plant and animal species, in order to exploit heterosis, breed complementarity, and
to protect pure line genetic material. The success of commercial crossbreeding
schemes depends on identifying and using the right combination of breeds, lines or
varieties that produce the desired crossbred offspring. Currently, the selection of
pure lines is based on the results of “field tests”, during which the performance of
their crossbreds is assessed under typical commercial settings. Field tests are time-
consuming, and also constitute a large percent of the costs of commercial
crossbreeding programs. The research in this thesis therefore set out mainly to
develop models for the accurate prediction of heterosis in White Leghorn
crossbreds, using genomic information from their parental pure lines. Predicted
heterosis could be used as pre-selection criteria, thus substantially reducing the
number of crosses that need to be field-tested. In Chapter 1, | give an overview of
the history of selective breeding in laying hens, and introduce heterosis and its
genetic basis. In Chapter 2, based on a dominance model, we showed that a genome-
wide squared difference in allele frequency between parental pure lines (SDAF)
predicts heterosis in egg number (EN) and egg weight (EW) at the line level with an
accuracy of ~0.5. With this accuracy, one can reduce the number of field tests by
50%, with only ~4 loss in realised heterosis. In laying hens, selection pressure is
highest on the sires. We therefore went further to develop a model to predict
heterosis at the individual sire level, in order to exploit the variation between sires
from the same line. We found that the within-line variation between sires in our data
was very small (0.7% of the variation in predicted heterosis), and most of the
variation was explained by across-line differences (90%) (Chapter 3). Quantitative
genetic theory shows that heterosis is proportional to SDAF and the dominance
effect at a locus. In Chapter 4, we estimated variance components and dominance
effects of single nucleotide polymorphisms (SNPs) on EN and EW in White Leghorn
pure lines. We found that dominance variance accounted for up to 37% of the
genetic variance in EN, and up to 4% of that in EW. We then used the estimated
dominance effects to calculate dominance-weighted SDAFs for EN and EW between
parental pure lines, and showed that prediction of heterosis based on a weighted
SDAF would yield considerably different ranking of crosses for each trait, compared
with a prediction based on the raw SDAF. This implies that different crosses would



be selected depending on the criterion used to predict heterosis. To gain an insight
into the genetic architecture of EN and EW, in Chapter 5 we performed genome-
wide association studies using data on 16 commercial crossbred populations. We did
not identify any significant SNPs for EN, indicating that EN is a highly polygenic trait
with no large quantitative trait loci segregating in the populations studied. For EW,
however, we identified several significant SNPs. One explanation for these results is
that EN has been under intense directional selection for several decades, whereas
EW has been under less-intense, stabilising selection. Finally, in the general
discussion of this thesis (Chapter 6), | discuss the genomic prediction of heterosis,
focusing on possible reasons for the lack of a consensus on the approach to predict
heterosis, even after decades of research. | also discuss new opportunities for the
genomic prediction of heterosis, considering the advancements in genotyping and
computation methods. Lastly, | give an example of the application of results from
this thesis in crossbreeding programs.
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General Introduction






1. General Introduction

1.1 Introduction

Chickens provide 92% of all eggs consumed globally, and most of this comes from
commercial breeding flocks (FAO, 2018). Over the years, selective breeding for
improved genetic value of chickens, and the use of crossbreeding schemes, have
made it possible for laying-hen industries to meet the ever-rising demand for good
quality eggs. In recent times, animal breeders are interested in developing methods
to further utilise genomic information of selection candidates in order to increase
the efficiency of breeding programs.

This thesis is about the use of genomic information to optimise commercial
crossbreeding schemes in laying hens. As an introduction to the topic, first | will give
an overview of selective breeding in laying hens — its history, the use of
crossbreeding, and the evolution of breeding goals. Next | will describe heterosis,
which is one of the main benefits of crossbreeding, and is the focal point of my thesis
research. | will then end with a section on the motivation, objectives and outline of
this thesis.

1.2 Selective breeding in laying hens
1.2.1 History

Present-day domestic fowls, Gallus gallus domesticus, are descendants of the red
jungle fowl, Gallus gallus (Crawford, 1990), and are also believed to have some
genetic contribution from the grey jungle fowl, Gallus sonneratii (Eriksson et al.,
2008). The exact time and place of the domestication of chickens remains unclear,
but it was probably in South East Asia at about 6000 BC. One thing is for certain
though — chickens were ‘domesticated’ and spread to Europe and America for their
participation in cock fighting — not for food (Crawford, 1990; Thomson, 1964;
Yamada, 1988). It was the Romans who first began to view chickens as a source of
food, and started developing their potential for agriculture (Thomson, 1964).

Most of the commercialisation of layer breeding in Europe and North America began
in the early 20" century. Around that same time, production moved from the
backyard system to an intensive production system (Elson, 2011). Next began the
development of specialised production units, and with it, the need for advanced
genetic programs. Therefore, from the 1950’s up until the year 2000, pedigree
information, selection indices and best linear unbiased prediction (BLUP) breeding
values were used as selection criteria (Arthur and Albers, 2003); prior to this,
breeders had been practicing selection on own phenotype for females and progeny
testing for males. In addition to the other advancements in genetic programs,
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1. General Introduction

chicken breeders started to develop specialised ‘pure’ lines, and began using
crossbreeding schemes to produce the commercial flocks.

Crossbred layers were highly productive, and therefore the success of crossbreeding
resulted in the merger of smaller breeding firms to form fewer but larger breeding
companies that had the resources to carry out the intensive selection programs
required to develop specialised pure lines, and could produce large numbers of
commercial crossbred day-old chicks for sale. Important factors that made large-
scale production of day-old chicks possible were: 1) the use of artificial insemination,
which allowed flexibility in mating ratios and efficient propagation of superior
genetics; 2) the development of large-scale artificial incubators which made it
possible to hatch hundreds of thousands of chicks simultaneously; and 3) the use of
artificial lighting systems which influenced laying behaviour, thereby enabling year-
round lay. All these advancements in the industry came hand-in-hand with
improvements in sanitation, disease control and vaccination.

In 2001, genomic selection (GS), where animals are selected based on genomic
breeding values estimated from genome-wide marker effects, was introduced
(Meuwissen et al., 2001). A few years later, GS started being applied in experimental
flocks, and by 2013, it had been applied to a commercial flock (Wolc et al., 2016).
Genomic selection currently forms part of the routine evaluation in commercial
laying-hen breeding programs, and has resulted in substantial increases in the
accuracy of selection and genetic gain.

1.2.2 Crossbreeding

Crossbreeding is the mating of individuals from different breeds (or lines/varieties/
strains) with the aim of producing offspring that have a combination of the desired
characteristics of both parental breeds and perform better than their parents.
Deliberate and organised crossbreeding is believed to have begun in maize
(Bennetzen and Hake, 2009), and following that, breeding programs for several
plants, e.g. wheat, rice, tomato, sorghum and some oilseeds, developed inbred lines
and produced crossbreds (hybrids) as well. Learning from this, crossbreeding also
started extensively in laying hens, to produce egg-layers that are either three- or
four-way crossbreds. Crossbreeding is also practiced in the commercial breeding
programs of other animal species, e.g. pigs, beef cattle, sheep and goats.

Laying-hen breeding companies usually maintain multiple ‘pure’ lines and therefore
one company may produce several types of commercial crossbreds. The best
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1. General Introduction

combination of pure lines to be used in each cross was, and still is, partly determined
by performing field-tests during which many pure line combinations are made, and
the performance of their crossbred offspring is evaluated for several traits.
Crossbred performance is then used to make informed decisions on which pure lines
to cross to produce the best commercial crossbred flocks.

A widely used breeding structure for laying hens is in the form of a pyramid (Figure
1.1). At the top of the pyramid are nucleus flocks made up of pure lines. The nucleus
is where intense selection pressure is applied, and thus where genetic progress is
made. Breeders usually focus on improving specific traits in each pure line, or
developing pure lines that are suited for specific production systems and
environments. In addition, most pure lines are specialised as either sire or dam lines.
The next level of the pyramid is the multiplying unit, with the function of increasing
the number of purebred individuals. It is also referred to as the great-grand-parent
level. After this comes the level with the grand-parents of the commercial flock,
followed by a level where the parents (sires and dams) of the commercial flock are.
The parent level is the first level that has crossbreds: either both the sires and dams
are products of a two-way cross, i.e. they are products of a pure line x pure line
mating, or only the dams are two-way crossbreds and the sires are purebreds. The
next and final level of the pyramid is made up of the commercial flock. Depending
on which parents were used, the birds here are either three-way or four-way
crossbreds.

Pure - - k ?éa:: * 1;\5’
lines | \ / \ /
"

/ multipliers \ = #'
- N

8 /

Parents

Commercial laying hens & y

(A) (8)

Figure 1.1 Breeding structure used for commercial laying hens. (A) Pyramid breeding
structure (B) Four-way terminal crossbreeding scheme.
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1. General Introduction

Crossbreeding has been successful in laying hens for a number of reasons: 1) the
exploitation of heterosis in crossbred individuals; 2) it allows breeding companies to
protect their genetic material, since it is not beneficial for farmers to use the
commercial crossbreds for breeding purposes; 3) it makes sexing of day-old chicks
quite straightforward - e.g. using the sex-linked gene (K = slow feathering; dominant
and k = fast feathering; recessive). If k is fixed in the sire lines (Z*/Z¥) and K in the dam
lines (ZX/W), then crossing these lines will produce males that are all slow feathering
(z¥/7), and females that are all fast-feathering (Z/W); 4) the benefit of breed
complementarity, i.e. sire and dam lines can be selected for different traits, such that
they complement each other. For example, in the sire lines, more emphasis is placed
on traits like feathering, behaviour, feed efficiency, egg size and liveability while in
the dam lines great focus is placed on egg production, egg quality and liveability. This
results in a commercial crossbred that has an ideal combination of all these traits.

1.2.3 Breeding goals

From the onset of commercial breeding up until the year 2013, selection pressure
was mainly on productivity (Neeteson-van Nieuwenhoven et al., 2013). One can
conclude that in that respect, breeders have been successful — both for the breeder
hens, where from the 1980’s to 2010, there has been an increase of 15 - 20 in the
number of day-old chicks produced by one breeding hen per year (Van Sambeek,
2011), and for the commercial layers, where the average number of eggs laid
/hen/year increased from 190 in 1950 to 309 in 1998 (Albers, 1998). In 2011, Van
Sambeek reported that the genetic progress in commercial hens was equivalent to
2.5 additional eggs/hen/year (Van Sambeek, 2011).

Breeding goals change over time, however, in response to new knowledge on the
biological background of traits, consumer preferences, the production environment,
awareness of the importance of the health and welfare of animals, food quality and
safety, and the impact of animal production on the environment. For example, the
ban on using conventional battery cages in the European Union (Council Directive
1999/74/EC) and on beak trimming in several countries, made traits like feather
pecking, cannibalistic behaviour, the ability to produce in free-range or floor
systems, and good nesting behaviour more important (Muir et al., 2014). Welfare
issues related to induced moulting of commercial laying hens have also led to
breeding goals geared towards increasing persistency of lay —to produce a hen that
lays 500 eggs in an extended laying cycle of 100 weeks, without moulting (Van
Sambeek, 2011). As a result of all these changes, current breeding objectives are
made up of a selection index that includes several traits. Productivity is still an

18



1. General Introduction

important trait, but more the efficiency of production rather than the level of
production.

In summary, the main milestones that led to the development of modern-day
selective breeding in commercial laying hens are (not necessarily in this order):
e formation of specialised sire and dam lines

the effective use of crossbreeding schemes to exploit heterosis and protect
genetic material

advances in reproductive technologies: artificial insemination, incubation and
hatching, lighting programs/technologies to influence laying behaviour

e improvement in criteria for selecting animals, through the application of

guantitative genetics theory, statistics, and BLUP breeding values

availability of genomic markers and genomic selection methodology to
increase the accuracy of selection and genetic gain

With the current level of experience, increasing knowledge of genetics, genomic
selection, improved housing, management and disease control, there is still a lot of
potential to develop the laying-hen industry even further.

1.3 Heterosis

Heterosis or hybrid vigour is the superiority of a crossbred individual compared with
the average of its purebred parents (Dobzhansky, 1950; Shull, 1952, 1914), and is the
main benefit of crossbreeding (Fairfull, 1990). In plants, where fully inbred lines are
used to produce the crossbreds, heterosis is generally higher than in animals, where
the ‘pure’ lines that produce the crossbreds are not deliberately inbred.

Yield advantage of crossbred over purebred maize ranges from about 10% to as
much as 72% (summarised in Hallauer and Miranda, 1988). In animals, a wide range
of heterosis percentages are found in literature: -3 to 40% in laying hens (Fairfull,
1990), -4 to 38% in beef cattle (Gosey, 2005; Kress and Nelsen, 1988) and 2 to 18%
in sheep (Nitter, 1978). The general trend in animals is that heterosis is more
pronounced in traits that have a low heritability, e.g. fertility, disease resistance and
longevity —than in traits with relatively high heritability like growth and egg number.

1.3.1 Genetic basis of heterosis
No consensus has been reached on the genetic basis of heterosis; what can be
agreed upon is that it is complex, trait-specific and approximately proportional to
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1. General Introduction

the difference in allele frequency between the parental populations (Falconer and
Mackay, 1996). Three hypotheses are generally proposed as possible explanations
for the genetic mechanisms underlying heterosis: 1) the dominance hypothesis is
based on the observation that most deleterious alleles are recessive, and thus
attributes heterosis to the masking of these deleterious recessive alleles from one
parental line by dominant alleles in the other parental line; 2) the overdominance
hypothesis attributes heterosis to advantageous combinations of alleles at
heterozygous loci, thereby making the heterozygote superior to either homozygote;
and 3) the epistasis hypothesis assumes that interactions among loci lead to
heterosis(Crow, 1999; Goodnight, 1999; Lamkey and Edwards, 1999; Lynch and
Walsh, 1998). Related to both the dominance and overdominance hypotheses,
guantitative genetic theory predicts the presence of heterosis when there is
directional dominance. If some loci have positive dominance and others have
negative dominance, their effects can cancel out. Directional dominance occurs
when d # 0. With directional dominance, heterosis is proportional to the squared
difference in allele frequency between parental pure line populations:

Heterosis = (p; — p;)*d Eq. 1.0
where p;and p; are the allele frequencies at a particular locus in parental populations
i and j respectively, and d is the dominance deviation at that same locus (Falconer
and Mackay, 1996). This means that if the two populations do not differ in allele
frequency, and/or there is no directional dominance, heterosis will not be observed.
Equation 1.0 is the basis of my thesis research.

1.4 This thesis

1.4.1 Motivation

The success of commercial crossbreeding schemes depends on identifying and using
the right combination of breeds, lines or varieties that will produce offspring that fit
customers’ requirements. The focus of my PhD thesis is on situations where multiple
pure lines are available to produce multiple crossbred products, as is typical in
commercial laying-hen breeding companies. As mentioned earlier, crossbreeding
schemes for laying hens — as well as other plant and animal species — use results from
field tests in order to identify the best combinations of pure lines to use to produce
the commercial crossbreds. These field tests are time-consuming, labour-intensive
and expensive, and as the number of parental pure lines increases, it becomes less
feasible to field-test all possible combinations of pure lines. Crossbreeding schemes
would therefore be more efficient if crossbred performance could be predicted
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1. General Introduction

based on purebred information, because one would know beforehand which
combinations of pure lines would give the best crossbred offspring.

The mean phenotypic value of a cross can be partitioned into pure line averages and
heterosis. The pure line average can be inferred from the phenotype of the purebred
individuals, however, the heterosis component cannot. For this reason, the
prediction of heterosis has been of interest to scientists for decades. Quantitative
genetic theory shows that when heterosis is due to directional dominance, heterosis
is proportional to the squared difference in allele frequency between parental pure
lines (Falconer and Mackay, 1996). Stemming from this, several past studies used
genetic markers to calculate numeric measures of the divergence between
populations, e.g. modified Rogers’ distance (Wright, 1984) and Nei’s genetic distance
(Nei, 1972), and estimated correlations between these variables and crossbred
performance or heterosis. Results were inconclusive — both in plants and animals —
and the general agreement was that a higher number of molecular markers with
genome-wide coverage would be needed for further studies (Atzmon et al., 2002;
Balestre et al., 2009; Gavora et al., 1996; Haberfeld et al., 1996; Minvielle et al., 2000;
Reif et al., 2003 and reviews by Dias et al., 2004; Krishnan et al., 2013).

The current availability of genomic data gives the opportunity to revisit the
prediction of heterosis by providing a large number of genome-wide markers and
also the opportunity to explore the estimation of non-additive effects. It is therefore
of interest to investigate the possibilities to predict heterosis using a large number
of genomic markers, and this thesis research is the first to do so for laying hens.

1.4.2 Objective and thesis outline

The main objective of this thesis was to optimise the use of genomic information in
commercial crossbreeding schemes of laying hens by developing methods for the
prediction of heterosis. We also expected to gain insight on the genetic mechanisms
behind heterosis, and to identify genomic regions associated with traits of economic
importance. In Chapter 2, we investigated whether differences in frequencies of
single nucleotide polymorphism (SNP) alleles between parental pure lines was
predictive of heterosis at the population level. In Chapter 3, we investigated whether
individual sire genotypes could be used to predict heterosis at the individual level, in
order to exploit the variation between sires from the same pure line, and further
increase realised heterosis in crossbred offspring. Since directional dominance is
necessary for heterosis to be expressed, in Chapter 4, first we estimated dominance
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variance and SNP effects for egg number and egg weight, and then discussed the
possibility of predicting heterosis by weighting SNPs by their estimated dominance
effects. In Chapter 5, we explored the genetic architecture of egg number and egg
weight in crossbred laying hens by performing a genome-wide association study.
Finally, in Chapter 6, the General Discussion, | summarise the findings from my
research, then discuss the genomic prediction of heterosis, focusing on possible
reasons for the lack of a consensus on an approach to accurately predict heterosis. |
also discuss opportunities for the genomic prediction of heterosis, considering the
advancements in genotyping and computation methods. Next, | give an example of
the application of results from this thesis in crossbreeding programs.
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Abstract

Prediction of heterosis has a long history with mixed success, partly due to low
numbers of genetic markers and/or small datasets. We investigated the prediction
of heterosis for egg number, egg weight and survival days in domestic White
Leghorns, using ~400 000 individuals from 47 crosses and allele frequencies on ~53
000 genome-wide single nucleotide polymorphisms (SNPs). When heterosis is due
to dominance, and dominance effects are independent of allele frequencies,
heterosis is proportional to the squared difference in allele frequency (SDAF)
between parental pure lines (not necessarily homozygous). Under these
assumptions, a linear model including regression on SDAF partitions crossbred
phenotypes into pure-line values and heterosis, even without pure-line
phenotypes. We therefore used models where phenotypes of crossbreds were
regressed on the SDAF between parental lines. Accuracy of prediction was
determined using leave-one-out cross-validation. SDAF predicted heterosis for egg
number and weight with an accuracy of ~0.5, but did not predict heterosis for
survival days. Heterosis predictions allowed pre-selection of pure lines before to
field-testing, saving ~50% of field-testing cost with only 4% loss in heterosis.
Accuracies from cross-validation were lower than from the model-fit, suggesting
that accuracies previously reported are overestimated. Cross-validation also
indicated dominance cannot fully explain heterosis. Nevertheless, the dominance
model had considerable accuracy, clearly greater than that of a general/specific
combining ability model. This work also showed that heterosis can be modelled
even when pure-line phenotypes are unavailable. We concluded that SDAF is a
useful predictor of heterosis in commercial layer-breeding.

Keywords: heterosis prediction, dominance, hybrid vigour, allele frequency
difference, egg production, White Leghorn
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2.1 Introduction

Heterosis or hybrid vigour is the observed increase in growth, productivity, fertility
and vigour of a hybrid organism over that of its parents (Dobzhansky, 1950; Shull,
1914). This genetic phenomenon is an essential element of commercial poultry, pig,
sheep and plant breeding schemes. In poultry breeding, heterosis was exploited
even as early as 1893 (Warren, 1942). Over the years, poultry breeders have
established pure lines (not necessarily homozygous) that when crossed, produce F1
hybrids with superior performance in traits of economic importance like growth,
egg production and survival. In plant breeding, hybrid cultivars are produced by
crossing inbreds from opposite and complementary heterotic groups (Bernardo,
1994). The wide application of such breeding designs demonstrates that the
benefits of heterosis are widely exploited by breeders.

In practice, selecting lines to be used as parents in crossbreeding programmes is a
challenge because testing all possible line combinations is expensive and time
consuming. Also, predicting the F1 performance from per se phenotypic records of
pure lines has failed (Duvick, 1999; Hallauer et al., 2010), and prediction methods
based on microsatellite markers have not been very conclusive (Atzmon et al.,
2002; Di et al., 2012; Gavora et al., 1996; Jagosz, 2011; Minvielle et al., 2000).
Therefore, there is the need to find reliable methods for predicting heterosis
because it has the potential to substantially increase the efficiency of crossbreeding
schemes, by identifying optimal parental combinations and reducing costs of field-
testing.

Some hypotheses have been put forward as possible explanations for the genetic
mechanisms underlying heterosis: the dominance hypothesis attributes heterosis
to the masking of deleterious recessive alleles from one parental line by dominant
alleles in the other parental line; the overdominance hypothesis attributes
heterosis to advantageous combinations of alleles at heterozygous loci, and the
epistasis hypothesis assumes that interactions among loci lead to heterosis (Crow,
1999; Goodnight, 1999; Lamkey and Edwards, 1999; Lynch and Walsh, 1998).

In a single locus model, heterosis is solely due to dominance and is proportional to
the squared difference in allele frequency (SDAF) between the parental lines
(Falconer and Mackay, 1996). This finding has triggered research into predicting F1
heterosis and overall performance based on microsatellite marker information
from parental pure lines. In poultry, evidence to support the theory that heterosis
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is higher in offspring from more genetically distant parents has been found
(Atzmon et al., 2002; Gavora et al.,, 1996; Haberfeld et al., 1996). Also, many
prediction studies have been carried out on commercial crops such as maize,
rapeseed, sunflower, chick pea and carrot. Some of these studies reported
correlations between genetic distances (GD) and heterosis (Balestre et al., 2009;
Reif et al., 2003), but others concluded that GD is not a reliable predictor of
heterosis (Dias et al., 2004; Krishnan et al., 2013).

Because of inconsistencies in the results from previous studies, one cannot
conclude whether the prediction of heterosis based on molecular marker
information has been a success or not, as pointed out in reviews by Dias et al.
(2004) and Krishnan et al. (2013). The former authors reviewed several studies in
plants and suggested that the number of molecular markers (averages of 160
RAPD, 281 RFLP, and 25 SSR) should be increased for accurate predictions. Gavora
et al. (1996) and Minvielle et al. (2000) reported studies on poultry using ~85 DNA
fingerprint bands. Nowadays genotyping technologies have advanced, producing
large amounts of genome-wide marker information and creating opportunities to
reinvestigate the genetic basis of heterosis, and methods for its prediction.

A further difficulty in the study of heterosis, particularly in livestock populations, is
that phenotypic values on pure-bred individuals are often recorded only in specific
environments that differ systematically from the environments in which crossbred
phenotypes are recorded. In those cases, heterosis cannot be observed because it
is fully confounded with the environment. Although an analysis of crossbred data
using a specific vs general combining ability model is feasible in such cases, this
provides estimates of combining ability rather than heterosis. In contrast to
heterosis, general and specific combining ability (GCA/SCA) depend on the set of
crosses included if the crossing scheme is incomplete, and this is generally the case
in animal populations. Dependency of results on the set of crosses included
hampers the comparison of results with the literature, and the prediction of future
crosses. Hence, animal breeders are interested primarily in heterosis and hybrid
performance, rather than combining ability, but are faced with the problem that
pure-bred phenotypes are unavailable.

The aim of this study was to determine whether genome-wide difference in allele
frequencies between pure lines can be used to predict heterosis for egg number,
egg weight and survival days in White Leghorn crosses. For this purpose we used
allele frequencies on 60K single nucleotide polymorphism (SNP) loci from 11 pure
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lines of White Leghorns, and phenotypic data on 47 crosses between those lines,
representing ~400 000 individuals. No phenotypic data were available on the pure
lines. In animals, this is the largest dataset ever used for the prediction of heterosis,
and the first to utilise genome-wide SNP-marker data. We performed a cross-
validation to test how accurately we could predict heterosis in crosses for which
phenotypic records were unavailable. Moreover, we investigated the estimation of
heterosis in the absence of phenotypic data on pure lines, and compared the
predictive ability of heterosis vs combining ability modelling.

2.2 Materials and Methods

2.2.1 Population Structure

Phenotypic records of crossbred hens originating from 11 pure-bred White Leghorn
layer lines (5 sire- and 6 dam-lines) were obtained from the Institut de Sélection
Animale B.V. (ISA). Phenotypic records were available on crossbreds only;
phenotypic records on pure lines reared under similar conditions were not
available. Coding of the pure-lines was as follows: S1, S2, S3, S4, S5 represented
sire-lines and D1, D2, D3, D4, D5, D6 represented dam-lines. A cross produced by
an S1 sire and a D1 dam is referred to as S1xD1 and its reciprocal as D1xS1. Within
each line there were multiple sires and dams, resulting in full- and half-sibs within a
cross. The mating scheme shown in Table 2.1 produced a total of 47 crosses, some
being reciprocal crosses. Phenotypic records were from routine performance tests
carried out on test farms in the Netherlands, Canada and France from 2004
through 2010. On the test farms, each henhouse had several rows of cages, and
each row had 3 tiers: bottom, middle and top. Crossbreds were kept in group cages
of a mix of full- and paternal half-sibs which were assigned randomly to a row and
tier within the henhouse, but ensuring that the different crosses and families were
randomized across all rows and tiers. On average, there were ~5 hens per cage. All
hens had been beak-trimmed.
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2.2.2 Phenotypic data
Traits studied were egg number, egg weight and survival days.

2.2.2.1 Egg number

Hens were kept in cages and all records were taken at the cage level (rather than at
the level of the individual hens). Hen-day records of eggs produced from 100
through 510 days of age were used. Hen-day egg number was calculated as the
total number of eggs laid in the cage divided by the total number of days that a hen
was present (days are summed for all hens that were placed in the cage), and then
multiplied by the maximum number of days the production period lasted. As an
example, consider a production period lasting 410 days. If total number of eggs laid
is 1650 in a cage that started with 5 hens, and all hens survived until the end of the
production period, then summed hen days are 5 x 410 days = 2050 days. Hen-day
egg number is (1650/2050) x 410 = 330 eggs. In a case where the same egg
numbers were reached, but one hen died 50 days before the end of the period, the
summed hen days would be 2000 days. This would give a hen-day egg number of
(1650/2000) x 410 = 338.25 eggs. This cage-based value represents one record and
in this paper we will simply refer to this trait as ‘egg number’. After descriptive
statistics of the data on egg number, we discovered that three consecutive
performance tests conducted by the same farmer had ~9% of the records above
the biological limit of one egg per hen per day. We studied hen-day egg number, so
those unusually high records could be because of mistakes in recording the
duration of the production period or mortality records. We therefore decided to
eliminate all of that farmer’s tests from further analyses. For other performance
tests with only a few (<3%) of the records above the biological limit, we only
excluded those particular records but kept the other records from that
performance test in the analyses. No two tests in this category were from the same
farmer. Also, total egg number records that were less than 150 eggs were
considered to be errors (personal communication Jeroen Visscher, ISA poultry
breeders) and therefore excluded. Excluded records represented 7.6% of the total
record count. The final dataset used had 76 640 records.

2.2.2.2 Egg weight

Approximately five times throughout the production period (at around 25, 35, 45,
60 and 75 weeks of age), for each cage, the average weight of all eggs laid on a
particular day was recorded. At the end of the production period, these 5 averages
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were again averaged to give one value for egg weight per cage for the entire
production period. The dataset used was the same as that for egg number but
there were some missing records for egg weight, leaving 57 759 records.

2.2.2.3 Survival days

The trait survival days is the average number of days that the hens within each
cage survived. For example, if a cage started with five hens, three of which survived
for 410 days, 1 for 405 days and the other for 400 days, the record for that cage
would be ((3 x 410) + 405 + 400) / 5 = 407 days. Fractions were truncated. There
were 76 640 records on survival days.

2.2.3 Allele frequency data

For each pure line, blood from 75 randomly chosen males was pooled, and DNA
was extracted for genotyping. The lllumina chicken 60K SNP BeadChip was used
(Groenen et al., 2011). The same array was used for all genotyping. Quality control
criteria were call rate and visual inspection of the clustering of the three genotypes
at each SNP. The total number of SNPs used in this study was 53 582, after
excluding the sex chromosomes. The sex chromosomes were excluded because
females are the heterogametic sex in chickens (ZW), thus the sex chromosomes do
not contribute to heterosis by dominance in females. Estimated allele frequencies
were corrected for unequal amplification by ‘k-correction’, using the relative allele
signal of heterozygous individuals (Hoogendoorn et al., 2000), and then normalized
with respect to the two homozygotes (Craig et al., 2005). Correction factors were
obtained from 288 individually genotyped animals across all lines. On average,
estimation of allele frequencies from the DNA pooling technique has an accuracy of
0.993, with a range of 0.986 to 1 (Hoogendoorn et al., 2000).
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2. Prediction of heterosis using genome-wide SNP data

2.2.4 Statistical analyses

2.2.4.1 Allele frequencies

Our statistical analysis rests on two assumptions.

The first assumption is that heterosis is due to dominance. Under this assumption,
the heterosis due to a single locus, say /, is proportional to the squared difference
in allele frequency between the parental lines at that locus,

Heterosisj, = di(piy — pj)*

where d; is the dominance deviation at locus /, p;; is the allele frequency at locus /
in parental line i, and p; ; is the allele frequency at locus / in parental line j (Falconer
and Mackay, 1996). Under the assumption that heterosis is due to dominance, total
heterosis is simply the sum of heterosis at each locus,

Heterosis;; = ¥, d;(pi; — pjp)?

The second assumption is that the dominance deviation at a locus is independent
of the SDAF between parental lines at that locus, so that

Eldi(pi; — p;)?] = E[di] E[(pix — p0)?]-

Under this assumption, expected heterosis:

E[Heterosis;;] = nyoc; E(dy) E[(0ig — pj2)?]

, Where n;,; is the total number of loci. Thus, under this assumption, heterosis is
linear in the SDAF between parental lines, averaged over all loci, with a coefficient
of proportionality of ny,. E(d;), which will be higher with directional than
ambidirectional dominance.

We therefore used the genome-wide average of SDAF as a predictor of heterosis.
For any two parental lines, say i and j, SDAF;; was calculated as

N C—. )2
SDAFU — Zn:l(pzl-,\; Pin) (1)
where p; — p;_ is the difference in allele frequency between pure lines j andj at

SNP n, and N is the total number of SNPs.

We also calculated Nei’s standard GD (Nei, 1972) from the allele frequencies using
the PHYLIP software (Department of Genetics, University of Washington, Seattle,
WA, USA) (Felsenstein, 1993). Nei’s standard GD is given by:

= » Za —
Nei’s standard GD = —In 12aPlig™ P2iq

1]~
2

1
CiZapi,)? x CiZap3,)
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Where p, is the allele frequency of the a-th allele at the /-th locus in line 1, and
D2, is the allele frequency of the a-th allele at the /-th locus in line 2. To visualise

the genetic differences between the pure lines, we constructed a phylogenetic tree
using MEGA (Tamura et al., 2011).

2.2.4.2 Prediction of heterosis

To test the significance of SDAF for predicting heterosis, we fitted a linear mixed

model where we regressed the phenotypes of crossbreds on the SDAF between

both pure lines producing the cross:

Yijkim = M+ sireline ; + damline ; + f - SDAF;; + test, + hendensity, +
HRT,, + €;jkim (Model 1)

,where y;;m was a phenotypic record, sireline; and damline; were the fixed effects
of the i-th sire-line and j-th dam-line of each cross (i,j = 1 - 10), 8 was the regression
coefficient of y on SDAF, test, was the fixed effect of each performance test (k=1 -
50); test is a factor that represents the year in which the test was carried out, and
on which farm. Hen density; was a fixed effect accounting for the initial number of
hens within a cage. It had 205 levels, and was nested within test because the
physical size of cages differed across some performance tests. The combined effect
of the hen-house, row and tier of the cage was accounted for by including the term
‘HRT,’ as a random effect (m = 1 - 1088) and ejum was the random residual error
term. Data were analysed using the MIXED procedure in SAS version 9.2. This
model was used for all three traits. Under the assumptions given above, Model 1 is
a heterosis model, where the estimates of sire-line and dam-line are estimates of
the pure-line performance, while the estimate of fx SDAF; is an estimate of
heterosis. (See Discussion and Supplementary Information).

Predicted heterosis was calculated by multiplying the estimated regression
coefficient of the phenotypes on SDAF (obtained from Model 1), by the SDAF
between the lines in each cross,

Predicted heterosis;,q;1,;; = Berair X SDAF;; (2)

For example, predicted heterosis for egg number in a S1xD1 cross was BEN X

SDAFg;p1. Note that since SDAF;; is the same as SDAFj; , the predicted heterosis
for reciprocal crosses is the same, although their trait values may differ.
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Egg number had a markedly skewed distribution; a characteristic that causes model
assumptions of normally distributed residuals to fail. Also, P-values obtained from
the statistical analyses may not be valid. To correct for this, a Box-Cox
transformation (Box and Cox, 1964) is commonly applied before the analysis
(Besbes et al., 1993; Ibe and Hill, 1988). We therefore applied this transformation

to the egg number records. The general form of the Box-Cox transformation
equations is: z(t) = tyGtT__ll,
where y is the original variable, z(t) is the standardized variable, G, is the geometric
mean of the data, and t is the parameter by which data are normalized. We used an
empirically selected ‘optimum’ t = 4, based on the minimal residual variance of the
model used to describe the transformed records. We also considered the minimum
test statistic for the Kolmogorov-Smirnov normality test.

We fitted our models on both the transformed and original scale, however, to
facilitate interpretation, the estimated effects are given only on the original scale in

the Results.

2.2.4.3 Accuracy of predicted heterosis

To evaluate the accuracy of predicted heterosis, we used two approaches. First, we
calculated Pearson’s correlation coefficient between predicted and observed
heterosis; secondly, we used cross-validation to assess the accuracy of predicted
heterosis for crosses not included in the estimation of f5.

2.2.4.4 Correlations between observed and predicted heterosis

We calculated Pearson’s correlation between observed and predicted heterosis. As
we did not have phenotypic records of the pure lines, we did not have true
observed heterosis. We therefore used the following strategy to obtain values of
‘observed heterosis’:

Observed heterosis, y#, was obtained by correcting all records for effects of sire-
line, dam-line, test, hen density and HRT (henhouse-row-tier) using estimates from
Model 1,

yfjklm = Yijkim — A — sireline ; — darfl\llnej — tést), — hendensity,, — HRT,,,
; _ o#
and Observed heterosisy qir, ij = Vi (3)

There are two issues in relation to y”. First, the correction factors in the expression
for yi#jklm were estimated from Model 1, which includes the SDAF term. Under a

dominance hypothesis, therefore, y* is an estimate of heterosis, rather than of SCA
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(see Discussion and Supplementary Information for more details). Second, to
obtain independent estimates for correction, Model 1 was fitted separately for
each of the crosses, and each time, the cross for which observed heterosis was to
be calculated was omitted from the dataset. Thus, correction factors for each cross
were obtained without using data on that cross, so as to avoid that correction
factors would be biased towards the data to be validated. As we had 47 crosses, we
obtained 47 different sets of factors for correction, each based on data of 46
crosses.

Finally, accuracy was taken as Pearson’s correlation between observed and
predicted heterosis.

2.2.4.5 Cross validation

The measure of accuracy presented above describes the fit for the current dataset,
but may not reflect the accuracy of predicted heterosis in an independent dataset.
To investigate the accuracy with which a cross that was not in the dataset could be
predicted, we performed a ‘leave-one-cross-out’ cross-validation, in which one
cross at a time was left out of the estimation of 8. As we had 47 crosses in our
dataset, this resulted in 47 different estimates of the regression coefficient, ﬁ_i]-, for
each trait. We then predicted heterosis for each i x j cross that had been left out as:
Predicted heterosis;,q;1,;; = ﬁtmit‘ _ij X SDAF; (4)
where B_ij, is the estimated regression coefficient when the i x j cross is omitted
from the training dataset. Accuracy was taken as Pearson’s correlation between
observed (y¥) and predicted heterosis. To quantify the bias of SDAF as a predictor of
heterosis, we also calculated the regression coefficient of observed heterosis on
both the ‘regular’ (equation 2) and cross-validated predictions (equation 4).

2.2.4.6 Selection of crosses based on predicted heterosis

To quantify the benefits of selecting crosses based on genomically-predicted
heterosis, we considered a two-step selection process. In the first step, heterosis
was predicted for all crosses, and a subset of crosses was selected based on the
prediction. In the second step, only crosses selected in the first step were field-
tested and a final selection was made based on observed (i.e., true) heterosis and
hybrid performance. Compared to a selection based entirely on observed/true
heterosis, this two-step selection will yield lower heterosis after the final selection,
because the truly best cross may have been discarded based on predicted heterosis
in the first step.
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The methodological problem is to predict true heterosis after the two-step
selection, as a function of the selected proportion in the first step. To enable
prediction, we assumed that the predicted and observed heterosis approximately
follow a bivariate normal distribution. Then the standardized response in true
heterosis after the two-step selection can be obtained from the moment
generating function of the truncated bivariate normal distribution (Tallis, 1961),
and is given by:

P129(t1)P(T12) + p(t2)P(T21)

P
where t; is the standardized truncation point applied in the first step selection, t; is

R2—step =

the standardized truncation point used in the second step (relative to the original
distribution), p = pip; is the overall selected proportion (10% in Figure 2.4), p12 is
the correlation between both normal variates (i.e., the accuracy of predicted
heterosis), ¢(t;) is the standard univariate normal density function evaluated at t;,
@(T12) is the (cumulative) univariate normal distribution function evaluated at Ty,

and
(t2 — p12t1)
Ty, = >
1- p5,
(t1 — p12tz)
Ty, =

The standardized maximum response in heterosis, i.e., heterosis obtained when
the selection is based entirely on true heterosis, so that p; = 1 and p, = p, is given
by:

@(tz)

p
where t; is the standardized truncation point belonging to a selected proportion in

Rmax -

a univariate normal distribution. Finally, the proportion of maximum heterosis
obtained in a two-stage selection is given by:

%oRpmax = 22 x 100% (5)

max

Application of the expressions for Ry—step and Rmax requires values for the truncation
points t; and t; corresponding to the selected proportions p; and of a bivariate
standard normal distribution with correlation p;;. Those can be obtained using
algorithms for the integration of multivariate normal distributions, such as Dutt’s
algorithm (Ducrocq and Colleau, 1986; Dutt, 1973). From the %Rm.x We calculated
the amount of heterosis lost due to pre-selecting animals based on genomically-
predicted heterosis as %loss = 100% - %Rmax.
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2.3 Results

2.3.1 Descriptive statistics
Table 2.1 shows the means and number of records per cross for egg number, egg

weight and survival days.

Egg number: Egg numbers ranged from 150.9 to 375.3 eggs, with a mean of 334.7
eggs (sd = 18.2), which translates to an average of 0.83 eggs per hen per day over
the entire laying period. The S5xD3 cross had the highest mean of 343.6 eggs,
whereas the D5xD6 cross had the lowest of 294.7 eggs. Egg number had a
markedly skewed distribution (not shown).

Egg weight: Records ranged from 48.6 to 76.7 grams, with a mean of 61.4g (sd =
2.7). The D5xS5 cross had the highest mean egg weight of 64.1g whereas the
S4xD6 cross had the lowest of 60g. Egg weight records were normally distributed
(not shown).

Survival days: Records ranged from 240 to 620 days, with a mean of 548.4 days (sd
= 34.5). Mortality was relatively low, with 89.6% of the hens (cage averages)
surviving till the end of the production period used in this study (from 100 - 504
days). The D4xS2 hens had the highest record of 583.2 days, whereas the lowest
survival record was 503.6 days for D5xD6 hens. Survival days had a negatively
skewed distribution (not shown).

Difference in allele frequency between parental lines: Table 2.2 shows the SDAFs
for all crosses. Of the 47 crosses for which we had phenotypic records, the lowest
SDAF was 0.05 for D5xD6, and the highest was 0.113 for S4xD1. SDAFs between
lines that were both dam-lines were slightly lower (mean = 0.075) than for those
between sire-line x dam-line (mean = 0.084) and sire-line x sire-line (mean =
0.088).
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2. Prediction of heterosis using genome-wide SNP data

Figure 2.1 shows a phylogenetic tree of the 11 White Leghorn pure lines used in
this study. The first branch clearly shows the separation of the sire-lines (solid lines)
from the dam-lines (dashed lines), which is expected because sire- and dam-lines
are selected and bred for different traits. The only sire-line that was grouped
together with the dam-lines was the S5 line, however, it branched off from the
dam-lines relatively early, still making this sire-line distinct from the dam-lines. The
most closely related sire-lines were S1 and S2, they share the most recent common
ancestor than any other two lines. The most closely related dam-lines were D2 and
DA4. This pattern of relatedness corresponds with the SDAF values in Table 2.2.

————————— D3
S5
——————————— D6
. [ e D1
b D5
— S1
Ls2
S3
S4
0.01

Figure 2.1 Phylogenetic tree for the 11 White Leghorn pure lines in our study,
based on Nei’s standard genetic distance calculated from allele frequencies of
53,582 SNPs. Dashed lines represent dam-lines and solid lines represent sire-lines.

2.3.2 Predicted heterosis

Table 2.3 shows the estimated regression coefficients for SDAF from the full data,
their standard errors (s.e.) and P-values for egg number, egg weight and survival
days. All fixed effects in the models were significant (P << 0.05, results not shown).

The estimated regression coefficient of egg number on SDAF was fzy = 103.5,
showing a positive and highly significant association between SDAF and egg
number. Thus, parental lines with larger SDAFs produce offspring with higher levels
of heterosis for egg number. Of the 47 crosses in our study, the lowest predicted
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2. Prediction of heterosis using genome-wide SNP data

heterosis was 5.2 eggs for D5xD6 and the highest was 11.7 eggs for S4xD1. When
we include SDAFs of potential crosses but of which no data were available (see
Table 2.2), the range of predicted heterosis is much wider (0.4 to 11.7 eggs),
showing that some of the crosses with lower predicted heterosis were not part of
our dataset.

The estimated regression coefficient of egg weight on SDAF was ﬁ’EW = 22.3,
showing a positive and highly significant association between SDAF and egg weight.
From the 47 crosses in our dataset, lowest predicted heterosis was 1.1g for D5xD6
and the highest was 2.5g for S4xD1.

The estimated regression coefficient of survival days on SDAF was negative, but not
significantly different from zero (P= 0.104). Results for survival days will therefore
not be presented further.

Table 2.3 Estimated regression coefficients [? of egg number, egg weight and
survival days on SDAF, s.e.’s and P-values

~

Trait B s.e.(B) P-value
Egg number® 103.5 16.8 7.07 E-10
Egg weight 22.3 2.2 2.35E-19
Survival days -42.06 25.9 1.04 E-01

"Estimates for egg number are on the original (untransformed) scale. The P-value
on the transformed scale = 6.76 E-11

2.3.3 Accuracy of predicted heterosis

2.3.3.1 Correlation between observed and predicted heterosis
Figure 2.2 shows correlations between observed and predicted heterosis for egg
number (2.2a) and egg weight (2.2b). The correlation between observed and
predicted heterosis was 0.60 for egg number and 0.43 for egg weight.

2.3.3.2 Cross-validation

For egg number, the estimates of f in the leave-one-cross-out cross-validation
ranged from 73.1 when the S5xD5 cross was omitted to 135.3 when the S3xD1
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cross was omitted. Despite the large number of crosses included, the large
fluctuations in the estimated regression coefficients imply high dependence on
which crosses are present in the training dataset. Figure 2.3a shows plots of
observed vs. cross-validated predicted heterosis for egg number. The correlation
was 0.56, which is slightly lower than the correlation for the ‘regular’ predictions
(Figure 2.2a).

For egg weight, the estimates of f in the leave-one-cross-out cross-validation
ranged from 11.5 when the S5xD5 cross was omitted to 33.9 when the S5xD1 cross
was omitted. As with egg number, there were large fluctuations in the estimated
regression coefficients. Figure 2.3b shows plots of observed vs. cross-validated
predicted heterosis for egg weight. The correlation was 0.47, which is slightly
higher than that for the ‘regular’ predictions (Figure 2.2b). For both traits, the
lowest regression coefficient was obtained when the S5xD5 cross was omitted.

2.3.3.3 Bias in predicting heterosis

The regression coefficient of observed on ‘regular’ predicted heterosis was 1.69 for
egg number and 0.98 for egg weight. That for the cross-validated predicted
heterosis was 1.26 for egg number and 0.82 for egg weight. This indicates that the
differences in heterosis between crosses were under-predicted for egg number and
over-predicted for egg weight.

46



2. Prediction of heterosis using genome-wide SNP data

a Egg number b Egg weight
20 |
E 15 - E
8 L)
8 8
o 10- @
@ @
£ £
T 54 o
@ @
c '3
o @
o 0 0
o o
o (o]
-»5 - |
Ll T 1 1 1 | T
-5 -2 - 0 1 2 3 4
Predicted heterosis Predicted heterosis

Figure 2.2 Observed (y*) vs predicted heterosis for egg humber (a) and egg weight
(b). r = Pearson’s correlation between observed (y*) and predicted heterosis; b =
regression coefficient of observed (y*) on predicted heterosis. The line represents
the regression of observed on predicted heterosis.
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Figure 2.3 Observed (y") vs cross-validated predicted heterosis for egg number (a)
and egg weight (b). r = Pearson’s correlation between observed (y*) and cross-
validated predicted heterosis; b = regression coefficient of observed (y¥) on cross-
validated predicted heterosis. The line represents the regression of observed on
cross-validated predicted heterosis.
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2.3.4 Selection of crosses based on predicted heterosis

Figure 2.4 shows a plot of the per cent of maximum heterosis (%Rmax, €quation 5)
as a function of the proportion of animals selected in the first step of the two-step
selection. Results show that considerable pre-selection can be applied with little
loss of heterosis in the final selection. For example, when the top 50% crosses with
the highest genomically-predicted heterosis are selected in the first step, the
resulting heterosis equals 96% of the heterosis that could have been obtained by
field-testing all potential crosses. Hence, a 50% cost saving (on field-testing) can be
achieved with only 4% loss in heterosis.

100

80

60 —

Percent of maximum heterosis
£
o
|

0 20 40 60 80 100

Proportion of animals selected in step 1 of selection(%)

Figure 2.4 Percent of maximum heterosis exploited in a two-step selection program
as a function of the proportion of animals selected in step one. In step one animals
are selected based solely on predicted heterosis (accuracy of prediction = 0.5). In
step two the pre-selected animals are field-tested and a final selection is made
based on true/observed heterosis. The overall proportion of selected animals is
10% (see Materials and Methods).
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2.4 Discussion

We investigated whether the SDAF between parental lines predicts heterosis in egg
number, egg weight and survival days in domestic White Leghorn crosses, using
data on ~400 000 individuals from 47 crosses and allele frequencies on ~53 000
SNP loci spread across the genome. Moreover, we quantified the accuracy of this
prediction using cross-validation methods. Results show that SDAF predicted
heterosis for egg number and egg weight with an accuracy of ~0.5, whereas SDAF
did not predict heterosis for survival days in our data.

2.4.1 Magnitude of heterosis

Predicted heterosis for egg number ranged from 5.2 to 11.7 eggs for the 47 crosses
in our study. Though the difference of 6.5 eggs between highest and lowest
predicted heterosis may seem small, it equals two to three generations of response
to selection, corresponding to ~4 - 6 years in a practical layer breeding program
(personal communication Jeroen Visscher, ISA poultry breeders). Moreover, when
considering all possible combinations of sire-lines and dam-lines, predicted
heterosis ranged from 0.4 to 11.7 eggs. For egg weight, predictions ranged from 1.1
to 2.5g for the 47 crosses in our study, and from 0.09 to 2.5g when all possible
crosses were considered. Our results agree with the findings of Gavora et al. (1996)
and Haberfeld et al. (1996), who found that heterosis for egg production traits and
body weight in White Leghorns increases with genetic distance (GD) estimated
from DNA fingerprints. They did not, however, state the range of predicted
heterosis, which could have served as a basis of comparison for our estimates.

We did not find a significant effect of SDAF on survival days (P = 0.104). Two factors
may account for this result. First, the limited variation in survival days: as most
hens survived until the end of the testing period, there were many right-censored
records. The censoring was not accounted for in the linear model we used (Model
1). A survival analysis model could have accounted for this, but would have
required individual survival records which were not available (cage-means were
used). Second, when fitting a sire-linexdam-line interaction in the model, this effect
turned out to be very small, suggesting that heterosis for survival days under the
current housing conditions and recording period is small, and thus difficult to
estimate.
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2.4.2 Accuracy of predicted heterosis

In general, the accuracy of heterosis prediction obtained in this study was
moderate for both traits (~0.5). We cannot clearly compare these accuracies with
those reported in previous research in this area, because they reported accuracies
as correlations between observed heterosis and GD obtained from the fit of the
model, and one study (Gavora et al.,, 1996) also reported R? values of their
prediction models. To our knowledge, none of the studies that predicted heterosis
based on the molecular marker divergence of parental lines have reported
correlations between observed and predicted heterosis, or performed cross-
validation.

Judging the prediction of heterosis based on the fit of the model, that is, by using
correlations between observed values and values predicted from the same rather
than independent data, may overestimate the accuracy of prediction. To
investigate this issue, we calculated the correlation between predicted heterosis
and observed heterosis when both were estimated from a single analysis on the full
data. This resulted in an accuracy of predicted heterosis of 0.72 for egg number and
0.61 for egg weight. These values are clearly higher than accuracies obtained when
either y* (Figure 2.2) or both y* and B (Figure 2.3) were estimated from
independent data. Hence, the accuracy of predicted heterosis based on the fit of
the model over-estimates the accuracy with which future crosses can be predicted.

In the present study we have used the SDAF averaged over all SNPs. To increase the
accuracy of predicted heterosis, it has been suggested to preselect ‘significant’
markers instead of using all markers for prediction (Gavora et al., 1996; Shen et al.,
2006) Results from studies on genomic selection and genome-wide association
studies, however, point towards a highly polygenic nature of many traits in
livestock. If those results extend to dominance effects, it will be difficult to identify
the relevant loci and estimate their contribution to heterosis. Nevertheless, the use
of genome-wide marker information together with methods for genome-wide
evaluation (also known as ‘genomic selection’; Meuwissen et al., 2001) may enable
more accurate prediction of heterosis in the future.

2.4.3 Selection of crosses based on predicted heterosis

An interesting question for practical applications of the prediction of heterosis in
breeding programmes would be how well one can predict future crosses. To
address this question, we performed a cross-validation using Model 1, where
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heterosis for each cross was predicted using a regression coefficient estimated
from data that excluded that cross. Note that observed heterosis (y*) for each cross
was also obtained by correcting observations for the model effects, where model
effects were estimated by leaving out the cross of interest. Hence, both predicted
heterosis and y” for each cross were obtained without making use of the data on
that cross. Finally, the accuracy of prediction was calculated as the correlation
between predicted heterosis and y”, resulting in a value of ~0.5 for both egg
number and egg weight (Figure 2.3). With this accuracy, considerable pre-selection
can be performed based on predicted heterosis with limited loss of total heterosis.
Figure 2.4 shows that by reducing the amount of field-testing by about 50%, the
loss in total heterosis would only be 4%. This would significantly reduce the cost of
field-testing in crossbreeding programs.

2.4.4 Heterosis vs combining ability modelling

The true heterosis for a particular cross is defined as the mean phenotype of the
cross expressed as a deviation from the mean of both parental lines; it does not
depend on other crosses that may or may not be included in the analysis. In
contrast, the true general combining ability (GCA) of a line and the true SCA of a
particular cross do depend on which lines are included in the analysis (Hallauer et
al., 2010). This occurs because SCA is defined as a statistical interaction term, which
is zero on average by virtue of the model. Consequently, in a GCA/SCA model, the
average heterosis in the data is included in the main effects of the model, which
are the GCA-estimates. Thus the estimates of GCA and SCA will change when
crosses are added or removed from the analysis, even when the model fits the data
perfectly.

The dependency of GCA/SCA-estimates on the set of crosses included causes
fluctuation of estimates when breeding companies evaluate additional crosses.
Moreover, the genetic basis of combining ability is complex, even under a simple
dominance hypothesis. Although the true values of GCA and SCA can be derived for
a single locus model, the result is a complex function of additive and dominance
effects and the allele frequencies of the lines included in the analysis. Heterosis, in
contrast, has a simple genetic basis under a dominance hypothesis, in which case it
is proportional to SDAF. We therefore opted for a heterosis model in this study.

To calculate the accuracy of predicted heterosis, we required a measure of
observed heterosis. However, we were faced with the problem that data on the
pure lines were available only on individuals kept in high quality breeding
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environments, and no crossbred records were available from those environments.
Thus, pure-bred performance was fully confounded with environment, so that we
could not calculate classical observed heterosis. This is a common problem in
heterosis studies in livestock: large datasets are available only within breeding
companies, in which purebred and crossbred individuals are usually kept in
environments that are systematically different.

In the current study, we addressed this issue by hypothesizing that heterosis is
solely due to dominance and that the dominance effect at a locus is independent of
the SDAF at that locus. Under those two assumptions, heterosis is proportional to
the SDAF between both parental lines, averaged over loci. (See Falconer and
Mackay (1996), and the derivation in Material and Methods). Under these
assumptions, therefore, the estimate of the X SDAF term in Model 1 is an
estimate of heterosis, and ﬁ is an estimate of nyE(d). Consequently, because the
B X SDAF term is included in Model 1, the estimates of the sire-line and dam-line
effects from Model 1 are estimates of the pure-line values, rather than of GCA. We
confirmed this finding by analysing simulated data in which heterosis was due to
dominance. Thus, under the hypothesis that heterosis is solely due to dominance, a
model y =...+ sireline + damline + § X SDAF + e yields estimates of pure-
line averages and heterosis, whereas a model y =...+ sireline + damline +
sireline X damline + e yields estimates of GCA and SCA. Hence, with Model 1,
we could model heterosis even though we did not have phenotypes of the pure
lines. To further clarify that Model 1 yields estimates of pure-line values and
heterosis, rather than of combining abilities, we constructed a three-locus model in
an Excel file which is available as Supplementary Information with this manuscript.
This file also illustrates the difference between a heterosis model and a GCA-SCA-
model, particularly when a diallel-cross is incomplete.

At first glance, one might expect that estimating sire and dam effects from a model
y =...+sireline + damline + e, and subsequently defining observed heterosis
asy* = y— sireline — damline would give similar results as using y* as observed
heterosis. We, however, observed that y* shows much lower correlation with
predicted heterosis than y”. Correlations of predicted heterosis with y* were only
0.32 for egg number and 0.02 for egg weight, whereas correlations with y* were
0.56 and 0.47 respectively (using values from the cross-validation). Note that the
higher accuracies for y* are not an artefact of model fitting, as we used
independent data for estimating both y* and B in the cross-validation. The
difference in accuracy occurs because correction factors used for y* come from a

52



2. Prediction of heterosis using genome-wide SNP data

combining ability model, so that y* is an estimate of SCA rather than heterosis. The
higher accuracies found for y# than for y* illustrate the benefit of using a statistical
model that has a solid genetic basis.

We based our modelling approach on the hypothesis that heterosis is due to
dominance. If that assumption is true, one would not expect ﬁ to fluctuate
significantly when leaving out one cross at a time in the cross-validation. However,
[? for egg number ranged from 73.1 to 135.3, and ,@ for egg weight ranged from
11.5 to 33.9 in the cross-validation. For comparison, the 95% confidence interval
for the estimated regression coefficient from the full data was 70.6 < § <136.0 for
egg number and 18.0 < ,@ < 26.6 for egg weight. The fluctuation in ,@ suggests that
dominance does not fully explain heterosis in our data, particularly for egg weight.
Gavora et al. (1996) also found that heterosis predicted with a dominance model
was more accurate for egg number than for egg weight. Fairfull et al. (1987), in
contrast, reported that heterosis in egg weight “closely approximated that
expected due to dominance alone”.

Although dominance may not have fully explained heterosis in our data, the
dominance hypothesis allowed us to estimate observed heterosis and to achieve a
considerably higher accuracy of predicted heterosis than with a combining ability
model (see results for y* vs y* in the previous paragraph).

The complexity of modelling heterosis shows that further research is needed
before scientists can reach a consensus on the genetic bases of heterosis. A review
on the study of heterosis by Chen (2010), gave the following reasons for the
difficulty of modelling heterosis: (1) epistatic effects are difficult to explain with
statistical models; (2) heterosis is affected by genetic backgrounds; (3) the role of
paternal and maternal effects of genetic loci; and (4) the fact that heterosis is
affected by many genetic loci, each with differing contributions. In support of the
need for further research, Kaeppler (2012) states that “the final answer to the basis
of heterosis will be the accumulation of results of many and diverse studies and not
a singular, unifying, novel discovery”.
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2.4.5 GD and SDAF

The prediction of heterosis based on the molecular marker information from pure
lines has been studied extensively in both plants and animals. Approaches reported
in the literature are (1) the regression of either hybrid performance or heterosis on
molecular GD, and/or the estimation of correlations between those variables
(Balestre et al., 2009; Cheres et al., 2000; Dias et al., 2004; Géartner et al., 2009;
Gavora et al., 1996; Haberfeld et al., 1996; Jordan et al., 2003; Minvielle et al.,
2000) or (2) the estimation of marker effects or associations of markers with hybrid
performance, heterosis or SCA (Gartner et al., 2009; Vuylsteke et al., 2000).
Although some of these studies mentioned the theory that heterosis is
proportional to SDAF between the parental populations (Falconer and Mackay,
1996), they rather used various measures of GD as predictors of heterosis, without
theoretical justification. Only Reif et al. (2003), who used the square of modified
Roger’s distance, stated that it is linearly related to SDAF, and thus yields
equivalent predictions of heterosis.

We therefore investigated the similarity between SDAF and GD by calculating
Pearson’s correlations between SDAF and the commonly used measures of GD:
Nei’s, Rogers’, modified Rogers’ and Cavalli-Sforza (Cavalli-Sforza and Edwards,
1967; Nei, 1972; Wright, 1984). Correlations between the GDs as well as with SDAF
were > 0.98, indicating that the ranking of pure-line combinations is very similar for
all measures. Furthermore, we investigated the accuracy of predicted heterosis
using the GD showing the lowest correlation with SDAF (Roger’s and modified
Roger’s distance; both had correlation = 0.98), and found almost identical results as
with SDAF. Hence, whether heterosis is predicted using GD or SDAF does not
appear to be crucial. Nevertheless, for reasons of scientific consistency, the use of
SDAF is to be preferred because the relationship between heterosis and SDAF has a
sound theoretical basis.

2.5 Data Archiving

Data are available upon request. Contact Jeroen Visscher by email:
Jeroen.Visscher@hendrix-genetics.com
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2.8 Supplementary information

An interactive Excel sheet “ Heterosis vs Combining Ability Modelling.xls” that
demonstrates the difference between heterosis and combining ability models is
available at Heredity’s website.
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Abstract

Background

The development of a reliable method to predict heterosis would greatly improve
the efficiency of commercial crossbreeding schemes. Extending heterosis prediction
from the line level to the individual sire level would take advantage of variation
between sires from the same pure line, and further increase the use of heterosis in
crossbreeding schemes. We aimed at deriving the theoretical expectation for
heterosis due to dominance in the crossbred offspring of individual sires, and
investigating how much extra variance in heterosis can be explained by predicting
heterosis at the individual sire level rather than at the line level. We used 53 421 SNP
(single nucleotide polymorphism) genotypes of 3427 White Leghorn sires, allele
frequencies of six White Leghorn dam-lines and cage-based records on egg number
and egg weight of ~210 000 crossbred hens.

Results

We derived the expected heterosis for the offspring of individual sires as the
between- and within-line genome-wide heterozygosity excess in the offspring of a
sire relative to the mean heterozygosity of the pure lines. Next, we predicted
heterosis by regressing offspring performance on the heterozygosity excess.
Predicted heterosis ranged from 7.6 to 16.7 for egg number, and from 1.1 to 2.3
grams for egg weight. Between-line differences accounted for 99.0% of the total
variance in predicted heterosis, while within-line differences among sires accounted
for 0.7%.

Conclusions

We show that it is possible to predict heterosis at the sire level, thus to distinguish
between sires within the same pure line with offspring that show different levels of
heterosis. However, based on our data, variation in genome-wide predicted
heterosis between sires from the same pure line was small; most differences were
observed between lines. We hypothesise that this method may work better if
predictions are based on SNPs with identified dominance effects.

Keywords: heterosis prediction, hybrid vigour, White Leghorn, egg production,
squared difference in allele frequency
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3.1 Background

Commercial breeding programs for laying hens use crossbreeding schemes to exploit
heterosis. The development of a reliable method to predict heterosis would greatly
improve the efficiency of these breeding schemes by reducing their dependency on
time-consuming and expensive field-tests of multiple pure-line combinations. Using
egg production records from White Leghorn crosses, Amuzu-Aweh et al. (2013)
showed that heterosis can be predicted using the genome-wide average squared
difference in allele frequency (SDAF) between the two parental lines, with an
accuracy of ~0.5. With this method, one can predict which sire- and dam-line
combinations have the highest potential for heterosis, and thus pre-select which
crosses should be field-tested. However, the sires and dams within a pure line can
be genetically different, and thus may vary in the heterosis that their offspring will
express. In this study, genetic variation within the pure lines is quantified by the
within-line heritabilities of target traits, which are in the same range as those
reported in the literature (Anang et al., 2000; Nurgiartiningsih et al., 2004), and by
the expected heterozygosity within the lines.

Exploring this individual variation is of interest to understand the genetic basis of
heterosis, and also to increase the performance of commercial crossbred animals. In
commercial animal breeding, selection intensity is highest for males, thus there may
be possibilities to further exploit heterosis by selecting certain sires that are better
suited for mating to a particular dam-line than others.

To this end, the aims of our study were to derive the theoretical expectation for
heterosis due to dominance in the crossbred offspring of individual sires, and to
investigate how much extra variance in heterosis can be explained by predicting
heterosis at the individual sire level, rather than at the line level. We used genotypic
data from 53 421 SNPs on 3427 individual White Leghorn sires, allele frequencies of
six White Leghorn dam-lines, and phenotypic records on egg number and egg weight
from 16 crosses between those lines, representing ~210 000 individual crossbred
hens.
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3.2 Materials and Methods

3.2.1 Population structure

Phenotypic records of ~210 000 crossbred hens that originated from nine purebred
White Leghorn layer lines (three sire-lines and six dam-lines) were obtained from the
Institut de Sélection Animale (ISA) B.V. These data are a subset of the population of
chickens described in Amuzu-Aweh et. al.,(2013), since only records of crossbred
hens for which sires had been genotyped were retained here. Following Amuzu-
Aweh et. al.,(2013), sire-lines were coded as S1, S4 and S5, and dam-lines were D1,
D2, D3, D4, D5 and D6. A cross produced by an S1 sire and a D1 dam is referred to as
S1xD1 and its reciprocal as D1xS1. The D1 line was the only dam-line that was also
used as a sire of crossbreds. The mating design produced 16 crosses (Table 3.1). Each
of the 3427 sires was mated to one dam-line only, but to several hens of that
particular line. Mate allocation was random, i.e. hens were artificially inseminated
following the cage rows (personal communication, Jeroen Visscher, ISA, Hendrix).
Pedigree on the dam side was not recorded.

3.2.2 Phenotypic data

The traits studied were egg number and egg weight. Phenotypic data were from
routine performance tests for a commercial crossbreeding program, and were
collected on test farms in the Netherlands, Canada and France from 2005 through
2010. Crossbred hens were beak-trimmed and housed in group-cages, and
phenotypes were recorded per cage. A cage-based record is the mean record of all
individuals within a cage. The number of cage-based records on egg number and egg
weight per sire ranged from 1 to 23, with an average of ~11 cage-based records per
sire, and about six hens per cage. Phenotypic data on pure lines was not used.

Egg number

Egg number is a cage-based record of eggs produced from 100 through 504 days of
age calculated on a hen-day basis. Hen-day egg number was calculated as the total
number of eggs laid in the cage divided by the total number of days that a hen was
present in the cage (days are summed for all hens that were placed in the cage), and
then multiplied by the maximum number of days the production period lasted. A full
description of this trait and data editing criteria are in Amuzu-Aweh et. al., (2013).
There were 34 799 cage-based records of egg number (Table 3.1).
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Egg weight

Egg weight was measured five times throughout the production period: at around
25, 35, 45, 60 and 75 weeks of age. For each cage, the average weight of all eggs laid
on a particular day was recorded. At the end of the production period, these five
average weights were again averaged to give one value for egg weight per cage for
the entire production period. There were 26 034 records of egg weight (Table 3.1).

Table 3.1 Number of sires and records and mean egg number and weight for each

cross
Number of
Number of Average Average
crossbred
Cross genotyped egg egg
. progeny .
sires 1 number weight (g)
records
D1xD4 301 2972 341.9 62.1
D1xS1 471 4808 342.6 60.7
S1xD1 259 3020 338.2 62.1
S1xD2 318 3768 339.0 60.2
S1xD3 243 3013 340.6 59.9
S1xD4 267 2921 334.1 60.9
S4xD1 48 340 331.3 62.5
S4xD2 43 318 336.2 61.1
S4xD3 16 201 336.9 60.4
S4xD5 366 3442 324.5 61.1
S4xD6 367 3588 326.1 60.0
S5xD1 33 285 345.1 62.4
S5xD2 40 353 343.1 60.9
S5xD3 42 354 345.2 60.8
S5xD5 308 2742 334.5 62.9
S5xD6 305 2674 332.9 61.1

1Each record is a cage-based average. There were ~six hens per cage.
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3.2.3 Genotypic data

Two types of genotypic information were used: individual 60K SNP genotypes of
3427 sires (1087 S1, 840 S4, 728 S5 and 772 D1), and allele frequencies of all nine
pure lines in our data. The allele frequencies of the lines used only as dams (D2, D3,
D4, D5 and D6) were obtained from pooled blood samples of 75 randomly selected
males. For the lines used as sires (S1, S4, S5 and D1), we calculated the line allele
frequencies from the individual sire genotypes. The same SNP array, the Illumina
chicken 60K SNP BeadChip (Groenen et al., 2011), was used for all genotyping. SNPs
from the sex (Z) chromosome were excluded because females are the heterogametic
sex in chickens (ZW), thus the sex chromosomes do not contribute to heterosis by
dominance in females. We also excluded SNPs with a call rate less than 95% (161
SNPs). This brought the total number of SNPs used in this study to 53 421. Further
details of the quality control criteria are in Amuzu-Aweh et. al., (2013).

3.2.4 Statistical analyses

3.2.4.1 Theory

At the line level, heterosis due to dominance is proportional to the squared
difference in allele frequency between the two parental lines that produce a
crossbred:

Heterosis;; = d,(pi; — pj,)°

where d; is the deviation of the genotypic value of the heterozygote from the
average of both homozygotes at locus /, p;; is the frequency of a particular allele at
the bi-allelic locus /in parental line i, and pj,; is the frequency of the same allele at
locus /'in parental line j (Falconer and Mackay, 1996).

Under the assumptions that (i) heterosis is due to dominance and (ii) the dominance
deviation (d;) at a locus is independent of the squared difference in allele frequency
between parental lines at that locus, when the phenotype of crossbred individuals is
regressed on the mean squared difference in allele frequency between the two
parental lines:

, , , 1
Yijk = sire_line ; + dam_lme]- + B mzl(p“ - pj,,)z + ey,

then the estimated partial regression coefficient is an estimator of the sum of
dominance deviations over all loci, [Af = Est.(3;d) (Amuzu-Aweh et al., 2013;

Falconer and Mackay, 1996) (note that the dominance deviations at all loci do not
have to be equal for this statement to be true). This result holds even when
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phenotypic data on the pure lines is not available, as shown in detail in Amuzu-Aweh
et. al.,(2013).

Thus, at the line level, heterosis due to dominance can be estimated using regression
on the mean squared difference in allele frequency between parental lines.
However, our aim was to predict heterosis at the sire level. For each sire, we
calculated the allele frequency at each SNP locus. For example, for a SNP with alleles
a and A, a sire can either be aa, aA or AA. If the population allele frequencies are
expressed as freq(A), then a sire’s allele frequency is simply the number of A alleles
for that sire (0, 1 or 2) divided by the total number of alleles for a sire (which is 2).
Thus, the allele frequencies for sires, corresponding to the three genotypes, are 0,
0.5 and 1. At first glance, to estimate Y;; d , one might expect that regression can be
done on the squared difference in the sire allele frequency and the allele frequency

of the dam-line, using %Z,(psi‘, — pj,,)z , where pg, is the allele frequency of the
loci

st sire from line i, and pj is the allele frequency in the dam-line. This is, however,
incorrect. Instead, we need to derive a term that is proportional to the expected
heterosis due to dominance for crossbred offspring of a particular sire, say s;, from
sire-line j that is mated to randomly chosen dams from dam-line j. In other words,
we need to identify a term x;, ; , such that fitting a regression B - x;, ; yields a B that
is an estimator of ); d.

In the following model:
Ys,j = sire_line ; + dam_line ; + B-x,,;+ e
(1)

¥s;j is the phenotypic record of an offspring of sire s; from pure-line i mated to

sij’

randomly chosen dams from pure-line j, B is a regression coefficient and x;, ; is
derived such that B becomes an estimate of };; d.

The mean heterozygosity of pure-lines i and j is:

—_ 2p;(1-p)+ 2p;(1-p;)
ijj — 2

= Pi—Pi + PP}

Heterozygosity in an ixj cross is Hy; = p,-(l - p]-) +(1- pi)p]-, and heterozygosity
in an sixj cross is H; = ps,(1 —p;) + (1 — ps,)p; -
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Thus, the heterozygosity excess of a cross relative to the mean of the pure lines is:
Hy — Hyj; = (pi — p))>

This result shows that, as expected (Falconer and Mackay, 1996), heterosis at the
line level is proportional to the squared difference in allele frequency (SDAF)
between the parental lines. It represents the between-line component of heterosis.
The heterozygosity excess of the offspring of s;; relative to the ixj cross is:

Hg;—Hy; = (ps, — Pi)(l - ij)

This represents the within-line component of heterosis, and measures how much the
expected performance of the offspring of this sire deviates from the mean of the
cross, due to dominance. It is a combination of the deviation of the sire’s allele
frequency from its line allele frequency, (ps, —p;), and the dam-line allele

frequency, (1 — ij) .

Therefore, if we want to predict heterosis due to dominance for the offspring of an
individual sire, then we need to sum the heterozygosity excess of the ixj cross
relative to the mean of the two pure lines and the heterozygosity excess of the
offspring of s; ; relative to the ixj cross. Thus, the xg, ; term in Equation 1 should be:

sif
Xs,; = @i — Pj)z + (ps; — Pi)(l - ij)
In the following text, we refer to x;, ; as the “heterozygosity excess”.

We calculated the heterozygosity excess for the s =1 to 3427 sires in our dataset and
all dam-lines that they had been mated to. This was calculated for each SNP and then
averaged across all SNPs. We used the sire allele frequencies, (pg,), and missing SNPs
were replaced by the sire’s line allele frequency at that SNP. Thus, the genome-wide
average heterozygosity excess for offspring of sire s; mated to dam line j was:

~ _ Inal@iep) + @smpo(1-2p))]

SiJ N ’
where N was the total number of SNPs.

3.2.4.2 Prediction of heterosis at the sire level

Following from the derivation above, we predicted the heterosis per sire by fitting a
linear mixed model, where we regressed phenotypes of crossbreds on the genome-
wide average heterozygosity excess, X, ;
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Ysjkim = M+ sire_line; + dam line; + B X, ;+ test; +
hendensity,, + HRT,, + €;jxim
(Model 1),
where Y jkim is @ phenotypic record, sire_line; and dam_line; are the fixed effects of
the i sire-line and j* dam-line of each cross (i =1to 4, j = 1 to 7), B is the partial
regression coefficient of y on X, ; ,

(k =1 to 33 year-farm classes), hen density; is a fixed effect accounting for the initial

testy is the fixed effect of each performance test

number of hens within a cage (/ = 1 to 128); it was nested within test because the
physical size of cages differed across some performance tests. The combined effect
of the Hen-house, Row and Tier of the cage was accounted for by including the term
“HRT»” as a random effect (m = 1 to 767). ejum is the random residual error term.
Data were analysed using the MIXED procedure in SAS version 9.2. This model was
used for both traits.

For the crossbred offspring of each sire, predicted heterosis was calculated by
multiplying the estimated regression coefficient of the phenotypes on Xy, j, (fi’tmit),
by the X, ; value between sire s;and dam-line ji:

Predicted heterosisi qit, s,j = PBirait* Xs;j - (2)

To determine the relative importance of using individual sire genotypes to predict
heterosis at the sire level versus predicting heterosis only at the line level, we
partitioned the heterozygosity excess into its between-line, (p; — p]-)z, and within-
line, (ps;, — p,-)(l - ij) , components and calculated the variance explained by
each. We also estimated regression coefficients of the phenotypes on the two
components of heterozygosity excess, using the following model:

, , . 2
Ys,jlkim = M+ sire_line ; + dam_line ; + B - (p,- - pj) + B2 ((ps; —
p)(1 —2pj)) + test, + hendensity,, + HRT,, + ejjjum
(Model 2)

All model terms except 81 and 8, are the same as in Model 1 above. Also note that

2
(pi — pl-) is the same as the squared difference in allele frequency (SDAF).
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3.3 Results and discussion

3.3.1 Descriptive statistics

Table 3.1 shows the number of sires, records and mean values for egg number and
weight for the 16 crosses in our study. Cage-based egg numbers ranged from 163.9
to 375.3. The S5xD3 cross had the highest mean egg number, i.e. 345.2, whereas the
S4xD6 had the lowest mean egg number, i.e. 326.1. Cage-based egg weight ranged
from 51.0 to 76.7 g. The mean egg weight was highest for the S5xD5 cross, i.e. 62.9
g and lowest for S1xD3, i.e. 59.9 g. Values of the genome-wide average
heterozygosity excess, X;, j, ranged from 0.08 to 0.18, with an average of 0.12 and a
standard deviation of 0.018.

3.3.2 Pure lines

The proportion of polymorphic SNPs was 0.37 for D1, 0.50 for S1, 0.42 for S4, 0.52
for S5, and 0.74 across all lines. From these polymorphic SNPs, expected
heterozygosity was 0.314 for D1, 0.318 for S1, 0.288 for S4 and 0.296 for S5. The
following heritabilities are averages of estimates for lines D1, S1, S4 and S5:
heritability for egg production from 100 to 168 days of age was ~0.46 and that for
egg production from 169 to 560 days of age was ~0.26. The heritability for egg weight
over the entire production period was ~0.6.

3.3.3 Predicted heterosis per sire

Using the hypothesis that heterosis is due to dominance, Amuzu-Aweh et al. (2013)
showed that by using the squared difference in allele frequency (SDAF) between
parental pure lines, crossbred phenotypes can be partitioned into pure-line means
and heterosis, even when pure-line phenotypes are unavailable. Here, we extended
this concept by deriving the theoretical expectation for heterosis due to dominance
expressed by the offspring of specific sires. We showed that the expected heterosis
expressed by the offspring of a sire s; from pure-line i mated to randomly chosen
dams from pure-linejis a linear function of the heterozygosity excess in the offspring
relative to mean heterozygosity of the pure lines.

Table 3.2 shows the estimated regression coefficients of egg number and egg weight

on X, ;, along with their standard errors (se) and p-values. All fixed effects in the

models were significant (p < 0.0001). The estimated regression coefficient of egg
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number on X, ; was By = 93.5 eggs and that of egg weight was Sy, = 12.9 g. The
results in Table 3.2 show that there is a positive and highly significant association
between X, ; and crossbred performance for these traits, which indicates that the
greater the heterozygosity excess is in the offspring of a particular sire, the higher
the performance of its crossbred offspring is.

Table 3.2 Estimated regression coefficients of egg number and weight on
heterozygosity excess', their standard errors (se) and p-values

Egg number Egg weight (g)
Estimate se p-value Estimate se p-value
Model 1
B 93.45 18.3 3.4E-7 12.92 2.7 1.1E-6
Model 2
By 92.5 19.3 2.2E-6 12.94 2.8 4.7 E-7
B, 102.9 61.7 9.5E-2 12.74 8.7 1.5E-1

B is the partial regression coefficient of trait values on the full heterozygosity
excess, (p; — p;)? + (ps, — p)(1 — 2p;). B was estimated from Model 1;
[B1is the partial regression coefficient of trait values on the between-line component,

(pi —pj)z, and B, is the partial regression coefficient of trait values on the within-line
component, ((ps, — p;)(1 — 2p;)), of the heterozygosity excess. f; and 3, were estimated
simultaneously from Model 2.

Haberfeld et al.,(1996), who estimated correlations between heterosis and genetic
distance between mating-pairs, concluded that offspring were superior when they
were from mating-pairs with a relatively distant genetic relationship, but they
compared sires from different lines. Our study shows that if heterosis is due to
dominance, then also within a line, sires that are expected to produce offspring with
higher heterosis when mated to the dam-line of interest can be identified and used
for breeding.

Figure 3.1 shows the predicted heterosis for egg number and egg weight for the 3427
sires in our study. We predicted heterosis for both traits as the product of By and
the heterozygosity excess between the sire and the dam-line (Equation 2). The
heterozygosity excess for each sirexdam-line combination was the same for each
trait. Thus, the predicted heterosis follows the same pattern for both traits, but is

scaled by the value of Byait-
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Predicted heterosis ranged from 7.6 to 16.7 for egg number, and from 1.1t0 2.3 g
for egg weight. Predicted heterosis was lowest for an S5 sire mated to the D6 dam-
line and highest for an S4 sire mated to the D1 dam-line. For both traits, the range
of predicted heterosis was higher when prediction was done at the sire level than
when it was done at the line level (line-level predictions not shown).

Predicted heterosis for Egg number and Egg weight

18 1 r 249
§5'D2
' S5'D6
16 F 22 S5°D3
S$1'D3
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$5D5
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Sires
Figure 3.1 Predicted heterosis in egg number and egg weight for the 3427 sires
studied.
On the x axis, the sires are numbered from 1 to 3427 and the y axis shows predicted heterosis
(left: egg number; right: egg weight (g)). Each point on the graph represents the average
heterosis in the offspring of a particular sire; each sire was mated to one dam-line, but to
several hens from that line. Colours represent the 16 crosses in this study
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3.3.4 Proportion of heterosis explained by the within-line sire

variation

Next, we quantified the added value of using individual sire genotypes, rather than
line allele frequencies, for the prediction of heterosis by comparing the variances of
the within and between-line components of the heterozygosity excess. The total
variance of X, ; was 3.11E-4. The variance of the between-line component was
3.08E-4, and that of the within-line component was 0.0223E-4. Thus, the proportion
of variance in Xs, j explained by the between-line component was 99.00%, and the
proportion explained by the within-line component was 0.72% (the remaining 0.28%
is due to a small positive covariance between the components). The extra genomic
information from individual sires, therefore, explained only a small proportion of the
total variance in heterozygosity excess, and thus a small proportion of the variance
in predicted heterosis. This implies that most of the variation between sires is
accounted for by line differences. Between lines, there was a difference of 9.1 in egg
number and 1.3 g in egg weight for predicted heterosis for the offspring of the best
and worst sire. Within lines, variation was greatest among the 318 S1 sires that were
mated to the D2 dam-line: there was a difference of 1.0 in egg number and 0.14 g in
egg weight between the offspring of the best and worst sires in this cross.

To further investigate the importance of the within-line component of the
heterozygosity excess for prediction of heterosis, we fitted a model with a separate
regression coefficient for each component of X;, ; , for both egg number and egg
weight (Model 2 in Methods section). For both traits, the estimates of the two
regression coefficients were very similar, but the regression coefficients on the
within-line component of Xs,j were not statistically significantly different from zero
(Table 3.2). The results suggest that the lack of statistical significance of B\z,trait
occurs because there was too little variation in the within-line component of X, ; ,
and thus too little power to accurately estimate f3, ¢,-4;¢. The main reason for the low
within-line variation in the heterozygosity excess is that we used an average over the
entire genome, which reduces the within-line variance compared to that at the single
SNP level.

Given that Ez,trait was not significantly different from zero, it is surprising that both
regression coefficients were so similar, but this was probably due to chance. Hence,
whether the within-line component of X, ; would have good predictive ability for

heterosis if there was enough within-line variation in Xs;j among sires cannot be
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evaluated based on this statistical analysis. However, it is important to note that
when heterosis is entirely due dominance, ; and 5, must have the same value.

In an analysis using only the between-line component of the heterozygosity excess,
the standard errors of the estimated regression coefficients were slightly larger than
when regressing on the full heterozygosity excess, X, ;. This shows that Brrait- Was
estimated more accurately when both the between- and within-line components of
were used. This also means that heterosis can be predicted more accurately when
individual sire genotypes are used. Nonetheless, the 16 crosses in our study still
ranked the same when either the full heterozygosity excess or only the between-line
component was used as a predictor for heterosis, which indicates that both give
corresponding predictions.

Therefore, in a breeding program, the use of individual sire genotypes to predict
heterosis may only be worthwhile if individual sire genotypes are already available
as a result of routine genotyping.

3.3.5 Model considerations

Another factor of interest is the level of linkage disequilibrium (LD) between the SNPs
used and the loci that are relevant for heterosis/dominance. The essential
assumption that underlies our approach is that genome-wide heterozygosity based
on ~60K SNPs is a predictor of heterozygosity at the loci that affect the trait.
Considering the proportion of polymorphic SNPs in each of the lines used in this
study, we expect to have SNPs in LD with most, if not all, loci that are relevant to our
target traits.

In general, commercial White Leghorn laying hens have been found to have relatively
high levels of LD (Megens et al., 2009; Qanbari et al., 2010), and SNP densities of 8
to 19K are considered to be sufficient for association mapping and implementation
of genomic selection, provided that the SNPs are equally distributed across the
genome in proportion to their recombination rates (Qanbari et al., 2010). The SNPs
used in this study meet these criteria (Groenen et al., 2011).

Also, in our statistical model, we assumed that the dominance deviation at a locus is
independent of the squared difference in allele frequencies between the parental
lines at that locus. Note that this assumption does not require that SNPs are
unlinked, or that SNPs are unlinked to QTL. It is unknown whether dominance effects
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at loci are correlated to allele frequency differences between lines. Selection for
crossbred performance, however, could introduce such a correlation, since it may
drive allele frequencies at loci with dominance in opposite directions in the two
parental lines (Kinghorn et al., 2010; Zeng et al., 2013). This would create a positive
correlation between d and (p; — p;)*.

Moreover, our data do not represent a complete diallel cross, but a selected set of
crosses, which are probably the crosses with above-average heterosis (most of these
crosses had higher predicted heterosis than other potential crosses in the diallel set
that were not made in practice (Amuzu-Aweh et al., 2013)). Therefore, most crosses
in this study are between lines that may have an above-average (p; — p;)?. for loci
showing dominance. This would also lead to a positive correlation between d and
(p: — p)?. Such a positive correlation could result in biased estimation of . With the
present limited knowledge of the genome, however, we cannot quantify the effect
of this bias on our estimates of £5.

Furthermore, in our analyses, we used the average heterozygosity excess across the
entire genome, which means that all SNPs were assumed to contribute equally to
heterosis. An alternative would be to weight the SNPs based on their estimated
contribution to heterosis, i.e. by their estimated dominance effect, d;. Dominance
effects of SNPs can be estimated with, for example, single SNP regression models or
with models that fit all SNPs simultaneously, such as those used for genomic
selection (e.g. BayesD (Wellman and Bennewitz, 2012)).

The relatively high accuracy with which between-line heterosis for egg number and
egg weight can be predicted by averaging across the genome (See also (Amuzu-Aweh
et al., 2013)) suggests that heterosis is due to many loci with dominance effects,
spread across the genome. This agrees with increasing evidence from genomic
selection and genome-wide association studies that many traits in livestock are
highly polygenic. The prediction of heterosis by weighting SNPs by their estimated
dominance effects will be investigated in a future study.
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3.4 Conclusions

We derived an expression for the expected heterosis in the offspring of specific sires
as the within- and between-line heterozygosity excess in the offspring of a sire and
the dam-line that it is mated to, and used it to predict heterosis at the sire level.

We conclude that based on a dominance model, it is possible to predict heterosis for
individual sires, and thus to identify sires with offspring that are expected to have
relatively higher levels of heterosis than others. In our data, however, variation in
predicted heterosis between sires within a line was small, and most differences in
heterosis were observed between lines. We hypothesise that this method may work
better if predictions are based on SNPs with identified dominance effects.
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Abstract

With the availability of dense genome-wide single nucleotide polymorphism (SNP)
markers , one can now compute genomic relationship matrices that make it possible
to disentangle additive and dominance effects. We investigated the magnitude of
dominance variance and estimated dominance SNP effects for two traits of
substantial importance, egg number (EN) and egg weight (EW), in four pure lines of
commercial White Leghorns. In addition, we calculated a dominance-weighted
squared difference in allele frequency (WSDAF) between the four pure lines, as a
predictor of the heterosis in a cross of the pure lines. The weighting factors represent
the estimated dominance at a single locus as a proportion of the average dominance.
Finally, we investigated the potential added value of using this WSDAF rather than a
raw SDAF for the prediction of heterosis.

We found that dominance variance made up between 0 to 37% of the genetic
variance in EN, and between 0 to 4% of the genetic variance in EW. Narrow-sense
heritability for EN was about 10%, while that for EW was about 70%. Results also
showed that for both EN and EW, negative and positive estimated dominance effects
are spread rather evenly across the genome. The relative values of the dominance
effects were much larger at some SNPs than at others, suggesting that some loci
contribute much more to heterosis than others.

The correlation between the raw SDAF and WSDAF for egg number was -0.04, and
that between raw SDAF and WSDAF for egg weight was 0.59. These correlations
show that prediction of heterosis based on a weighted SDAF would vyield a
considerably different ranking of crosses for each trait, compared with a prediction
based on the raw SDAF. This implies that different lines would be selected for
crossbreeding depending on the criterion used to predict heterosis.

Keywords: White Leghorn, Egg number, Egg weight, Dominance, Squared difference
in allele frequency, Heterosis



4. Variance components and dominance effects for egg number and egg weight

4.1 Introduction

Estimating both additive and dominance effects based on pedigree relationships
puts high demands on the family structure, e.g. it requires many large full-sib
families. Even in the case where large full-sib families are available, dominance
variance is confounded with maternal and/or common litter environmental effects.
Despite these challenges, some studies estimated dominance effects in chickens
(Besbes and Gibson, 1999; Wei and van der Werf, 1993), and their results indicated
that dominance variance can make up about 20% of the phenotypic variance in egg
production traits.

With the availability of dense genome-wide single nucleotide polymorphism markers
(SNPs), one can now compute genomic relationship matrices that make it possible
to disentangle additive and dominance effects. This has led to the identification of
dominance effects on traits in pigs, dairy cattle, sheep, fish and trees (Gallardo et al.,
2010; Joshi et al., 2018; Lopes et al., 2014; Moghaddar and van der Werf, 2017;
Mufioz et al., 2014; Pante et al., 2002; Wang et al., 2006), as well as the estimation
of dominance variance in populations of several species (Ertl et al., 2014; Lopes et
al., 2015; Mufioz et al., 2014; Vitezica et al., 2018; Wittenburg et al., 2015), with
dominance variance sometimes contributing over 60% of the phenotypic variance.
These results show that dominance can contribute a large proportion of genetic
variance, although theoretical studies suggest that most of the genetic variance is
additive (Hill et al., 2008).

In laying hens, however, the literature on genome-based estimation of dominance
effects is limited: only Heidaritabar et al. (2016) reported estimates of dominance
variance in egg production traits, and only for one purebred line of brown layers. It
is therefore worthwhile to investigate the magnitude of dominance variance for egg
number (EN) and egg weight (EW) in commercial White Leghorns, since these are
two traits of substantial commercial importance.

In addition, dominance effects are relevant in crossbreeding schemes, because
dominance contributes to heterosis in several species and traits of economic
importance (Amuzu-Aweh et al., 2013; Fairfull et al., 1987; Li et al., 2008; Shull, 1952,
1908; Xiao et al., 1995). In commercial laying-hen breeding companies, purebreds
are housed individually in bio-secure nucleus herds, whilst the crossbreds are housed
in group cages under typical commercial settings. Because of this difference in
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environment, it is impossible to observe ‘true’ heterosis, as it is fully confounded
with the environment. Methods to predict heterosis of crosses would therefore be
helpful to identify suitable pure lines for crossbreeding.

According to quantitative genetic theory (Falconer and Mackay, 1996), heterosis due
to directional dominance in crossbreds is proportional to the squared difference in
allele frequency (SDAF) between the parental lines: Heterosis;j = Z% d,(pi; —
p]-,l)z, where d| is the dominance deviation at locus /, and p;; and p;; are the allele
frequencies at locus / in parental lines i, and j respectively. This implies that if
heterosis is mainly due to dominance, then loci showing directional dominance and
at which the parental lines differ in allele frequency would be contributors to
heterosis. Indeed, Amuzu-Aweh et al., (2015) found that a simple genome-wide
average SDAF predicts heterosis for EN and EW in White Leghorns with an accuracy
of ~0.5. It is therefore interesting to estimate dominance effects, and explore the
possibility of including them in the estimation of a weighted SDAF for the prediction
of heterosis. Such weighting would put more emphasis on SNPs that express
directional dominance, and could increase the accuracy of predicted heterosis.

Our first aim was therefore to estimate additive and dominance variance for EN and
EW in four White Leghorn pure lines. Our second aim was to estimate dominance
effects of individual SNPs, and to calculate a dominance-weighted SDAF (WSDAF)
between the four White Leghorn pure lines. Finally we compare weighted and
unweighted SDAF, and discuss the implications of using WSDAF to predict heterosis
in White Leghorn crossbreds.

4.2 Materials and Methods

4.2.1 Genotypic data

Genotypes of purebred hens from four White Leghorn layer lines were obtained
from the Institut de Sélection Animale B.V. (ISA). Following (Amuzu-Aweh et al.,
2013), the lines were coded as S1, S4, S5 (specialised as sire-lines) and D1 (specialised
as a dam-line). A total of 11,457 purebred hens were individually genotyped by ISA
with a 60K (62,732 SNPs) chicken lllumina Infinium iSelect BeadChip (lllumina Inc.,
San Diego, CA, USA). SNP positions were according to the Gallus gallus genome build
5. We removed all SNPs on the sex chromosomes, because female chickens are
heterogametic (ZW), and therefore the sex chromosomes cannot contribute to
heterosis by dominance. For quality control, we retained individuals with a
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genotyping call rate > 0.95, SNPs with an across-line call rate > 0.95 and a MAF >
0.002. Next, we ran within-line tests for Hardy-Weinberg equilibrium (HWE) with a
cut-off of p < 1E-6. For line S5, we noticed that we lost a very large number of SNPs
(7923) when using this cut-off value. Because we needed a single set of SNPs across
all lines (in order to calculate SDAF in a later step), those SNPs would have to be
removed from all lines, implying a major loss in marker density. Therefore, as a
means to strike a balance between data quality and quantity, we tested different
HWE thresholds for line S5, and decided on a threshold of p < 1 E-10 for that line
only. With this threshold, we removed 3628 SNPs from all lines based on the HWE
testing in line S5. In total, we removed 8417 SNPs based on HWE. After applying
these quality control cut-offs, 2567 S1, 2350 S4, 2352 S5 and 3930 D1 hens (a total
of 11,199 hens) and 45,595 SNPs remained.

4.2.2 Phenotypic data

Phenotypic records of all the purebred hens for which we had corresponding
genotypes were obtained from ISA. Records were from the year 2010 through 2018.
All hens were part of the routine breeding program of ISA in the Netherlands, and
were kept in individual cages under the strict hygienic conditions of a nucleus herd.
The traits studied here are egg number (EN) and egg weight (EW). For EN, we studied
the total number of eggs laid by a hen from 100 through 504 days of age. Only
records from hens that were still alive at the end of 504 days were used (mortality
was about 5%). EW was the average of the weight of eggs laid by a hen at 25, 35, 45,
60 and 75 weeks of age. No pedigree data were available.

4.2.3 Estimation of genetic parameters

We estimated additive and dominance genetic parameters, breeding values and
dominance deviations for EN and EW for all genotyped animals, using the following
model, fitted separately for each of the four pure lines:

y=u+Xb+ Zia+ Z,6+Z3r+ e Model 1,
where y is vector of phenotypic records; u was the overall mean; b was a vector of
fixed effects of the test (it had from 11 to 18 levels depending on the pure line); a
was a vector of random breeding values; § was a vector of random dominance
deviations; r was a vector of the combined random effect of the hatch week of the
hen and the row in which its cage was located in the henhouse (it had from 85 to 189
levels depending on the pure line); e was a vector of random residual errors, and X,
21, Z, and Z3 were corresponding design matrices for the fixed and random effects.
Because no pedigree data were available, we could not include a dam effect to
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account for potential common environment between full sibs or maternal effects.
The additive genomic relationship matrix, G, was computed according to VanRaden
MM’
2%p1 (1-pp)
equal to the number of individuals by the number of loci, with elements equal to (2
—2pi), (1-2p)), and —2p, for genotypes coded as 2, 1, 0, and p; is the allele frequency

at locus /. The dominance genomic relationship matrix, D, was computed as
described by Vitezica et. al, (2013), D = LZ, where the matrix W has
Xi(2py (1-pp)

dimensions equal to the number of individuals by the number of loci, with elements

method 1 (VanRaden, 2008), G = , Wwhere the matrix M has dimensions

equal to -2(1- p))?, 2p; (1- p;) and -2p/ for genotypes coded as 2, 1, 0. Random effects
were assumed to follow a normal distribution; a~ N(0, G2 ), § ~ N(0, Da2), r~ N(0,
Io?) and e ~ N(0, l62). Both G and D were computed with the Calc_GRM program
(Calus and Vandenplas, 2013, updated in 2019), using all SNPs that passed quality
control. Models were implemented in the MTG2 program (Lee and van der Werf,
2016).

4.2.4 Estimation of SNP effects
To estimate additive and dominance SNP effects for EN and EW, we back-solved the
estimated breeding values and dominance deviations that we obtained as described

above. We used @ = M'G™1 —~
2311 (1-pp)

1
Yi(2p; (1-p)?
effects, where @ and d are the estimated additive and dominance SNP effects, a are

(a— a), to back-solve for the additive

effects, and d = W'D™! 6 - 6:) to back-solve for the dominance

the breeding values, and & are the dominance deviations for the individuals. All other
terms are as in Model 1. Back-solving was implemented with the Calc_GRM program
(Calus and Vandenplas, 2013, updated in 2019).

4.2.5 Calculation of the squared difference in allele frequency (SDAF)
For each cross, we calculated the SDAF between the parental lines in two ways. The
first was a raw genome-wide average SDAF as in (Amuzu-Aweh et al., 2013), denoted
as SDAF, and the second was a dominance-weighted genome-wide average SDAF,
denoted as WSDAF. For any two parental lines, say i and j, SDAF; was calculated as:

SDAF;; = Elay—py)”

between pure lines i and j at SNP locus / and L is the total number of loci. WSDAF was

, where p; — p;, is the difference in allele frequency

Yieq wij, (i~ pj; )
L -
an i x j cross. The weight was calculated as w;;, = ((d;, + d;,)/2)/d, where d;, and

calculated as: WSDAF;; = , Where w;;, is the weight at locus / for
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ajz are the estimated dominance effects of SNP locus / in lines i and j respectively,

and d is the overall average of the estimated dominance effects across all loci and
all lines.

Because SNP quality control was performed across all lines, there were instances
where SNPs were not segregating within one line, but were segregating across lines,
and therefore passed the MAF cut-off. Such SNPs would not get an estimated
dominance effect for the pure line in which it does not segregate. Nevertheless, we
wanted to include SNPs that do not segregate within-line, because they may still
contribute to heterosis in the crossbred offspring. We handled such cases as follows:
for an i x j cross, if say (iil was inestimable, then we used w;;, = djl/(i. If both d,-l
and afz were inestimable, then the average (2_1 for that SNP (from the other pure
lines) was used, thus, Wi, = czl/cf. If a SNP segregated only between lines, then d
was inestimable in all the lines, and we therefore used the overall average weight
for this SNP, resulting in wij, = 1.

The numerator of WSDAF;; for locus / represents the expected contribution of this
locus to heterosis (see the equation in the Introduction). The division by d in the
denominator of the weight w;; serves to express the WSDAF on the same scale as
the SDAF, so that values can be compared more easily. Note that this approach
results in a single value of SDAF;; for each combination of lines j and j, but in two
values for WSDAF; — one for EN and another for EW — because the estimated
dominance SNP effects for EN and EW are different.
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4.3 Results

4.3.1 Descriptive statistics

Table 4.1 shows the arithmetic mean, standard deviation, and number of records per
line for EN and EW. Note that purebred phenotypes are individual records taken
from a bio-secure nucleus herd. EN ranged from 150 to 381 eggs, and EW ranged
from 45g to 74g.

Table 4.1. Mean (sd) and number of records for egg number and egg weight per line

) Egg number Egg weight (g)
Pure lines
Mean (sd) N Mean (sd) N
s1 341.5 (22.0) 2,547 56.7 (3.1) 2,547
sS4 342.5 (22.0) 2,350 54.4 (2.7) 2,350
S5 340.8 (22.9) 2,352 57.3(3.1) 2,352
D1 351.6 (18.4) 3,930 55.9 (3.0) 3,930

sd: standard deviation.

4.3.2 Genetic parameters

Table 4.2 shows the estimates of additive and dominance genetic variance,
heritabilities, and ratios of dominance variance to phenotypic variance for EN and
EW for the four pure lines. Heritability for EN was about 10%, while heritability for
EW was about 70%. Dominance variance was around 4% of phenotypic variance for
EN and around 2% of phenotypic variance for EW. Hence, dominance contributed a
considerable proportion of the total genetic variance for EN (~33%), but only a very
small proportion of the total genetic variance for EW (~4%). Narrow-sense
heritability ranged from 0.08 to 0.16 for EN, and from 0.63 to 0.78 for EW, while
broad-sense heritability ranged from 0.12 to 0.16 for EN, and from 0.65 to 0.78 for
EW.
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Table 4.2. Variance components, heritabilities and ratio of dominance variance to
phenotypic variance for EN and EW per line

Pure Egg number (EN)
line
o2 oF h? d? H?'
S1 43.15(11.0) 25.7 (11.4) 0.09 (0.02) 0.06 (0.02) 0.15
S4 84.44 (15.8) 0(8.9) 0.16 (0.03) 0(0.02) 0.16
S5 40.78 (12.3) 22.65(13.4) 0.08 (0.02) 0.05 (0.03) 0.13
D1 27.18 (5.9) 9.42 (4.3) 0.09 (0.02) 0.03 (0.01) 0.12
Egg weight (EW)
S1 6.72 (0.50) 0.28 (0.13) 0.67 (0.02) 0.03 (0.01) 0.70
sS4 4.34 (0.35) 0.18(0.09) 0.64 (0.03) 0.03 (0.01) 0.67
S5 7.65 (0.54) 0(0.12) 0.78 (0.02) 0(0.01) 0.78
D1 4.61(0.30) 0.12(0.06) 0.63 (0.02) 0.02 (0.008) 0.65

Standard errors are given in brackets; ¢2: additive genetic variance, 05 dominance genetic
variance, h? narrow-sense heritability, d?: ratio of dominance variance to phenotypic
variance, H% broad-sense heritability. 'H? values were calculated by hand and therefore
standard errors are not available.

4.3.3 Dominance effects and weighting factors

Table 4.3 shows the mean, standard deviation and range of the estimated
dominance effects of SNPs per line. Note that estimated dominance effects of SNP
for ENin line S4 and EW in line S5 were zero, because these lines had zero dominance
variance. For all other cases, the d was greater than zero, indicating positive
directional dominance on average. The maximum absolute estimated dominance
effect was about 0.06s egg and 0.009 grams.
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Table 4.3. Mean, standard deviation and range of estimated dominance SNP effects
per line

Pure Egg Number Egg Weight

line Mean sd Min Max  Mean sd Min Max
S 1.27E-04 0.010 -0.060 0.064 6.34E-07 0.0011 -0.0092 0.0089
sS4t 0 0 0 0 3.02E-06 0.0009 -0.0050 0.0052
S5t 1.03E-05 0.007 -0.050 0.053 0 0 0 0

D1 6.94E-05 0.009 -0.060 0.061 1.12E-05 0.0011 -0.0086 0.0093

sd: standard deviation. Min: minimum value; Max: maximum value.  Estimated dominance
variance for EN was negative, therefore we set dominance SNP effects to zero; * Estimated
dominance variance for EW was negative, therefore we set dominance SNP effects to zero.

Figure 4.1 shows plots of the average effects and dominance SNP effects across the
genome for all pure lines and traits. Our main focus was on the estimated dominance
effects and their possible use as weighting factors for predicting heterosis, but we
include a plot of absolute values of the average effects as a comparison (Note that
the sign of the average effect is meaningless because it depends on the choice of the
reference allele. This is the reason we present absolute values of the average effects
in Figure 4.1). Our results show that negative and positive estimated dominance
effects are spread rather evenly across the genome. Regions that appear to have
relatively small effects are actually regions where very few SNPs segregate in that

line, e.g. in line D1, there is one region on chromosome 1 and another on
chromosome 2.
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Figure 4.1a. Average effects’ and dominance SNP effects on egg number across the

genome

"We present absolute values of the average effects, because the sign of the average effect is
meaningless: it simply depends on the choice of the reference allele. Alternating colours along
the x-axis represent consecutive chromosomes from 1-28, 30 & 33 according to Gallus gallus

genome build 5.
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Figure 4.1b. Average effects’ and dominance SNP effects on egg weight across the
genome

"We present absolute values of the average effects, because the sign of the average effect is
meaningless: it simply depends on the choice of the reference allele. Alternating colours along
the x-axis represent consecutive chromosomes from 1-28, 30 & 33 according to Gallus gallus
genome build 5.

Figure 4.2 shows histograms of the dominance-derived weighting factors, w;;, =
((&il + &jl)/Z)/cf, for all pairwise combinations of the four pure lines and for the
two traits, EN and EW. The weighting factors represent the estimated dominance
effect at locus / for cross ixj, as a proportion of the average dominance effect. The
wide range of the values shows that the relative values of the dominance effects
were much larger at some SNPs than at others. This suggests that some loci
contribute much more to heterosis than others. Thus, a prediction of heterosis based
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on a weighted SDAF may differ considerably from a prediction based on a simple

average SDAF.

The weights for EW had a wider range than those for EN. The widest range for EN
was -1144.1 to 1132.5, for the pure line combination S5_D1. The widest range for
EW was -2274.09 to 2456.21, also for the pure line combination S5_D1. Note that
this range of values reflects only the relative variation in dominance effects between

loci, not the absolute dominance effects, because dominance effects were scaled by

d in the calculation of the weights.
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Figure 4.2a. Egg number. Histogram of dominance-based weighting factors for

pairwise combinations of pure lines
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Figure 4.2b. Egg weight. Histogram of dominance-based weighting factors for
pairwise combinations of pure lines

4.3.4 Squared difference in allele frequency (SDAF) between lines

Table 4.4 gives values of weighted and unweighted SDAF for all combinations of the
four pure lines studied, as well as their means and standard deviations. Reciprocal
crosses are not listed in the table because their (W)SDAF values are identical. Mean
values of SDAF, WSDAFgy and WSDAFew were relatively similar (~0.2), indicating that
cfij,l and SDAF;;,; are more or less independent. SDAF values ranged from 0.18 to 0.23,
while WSDAFgy ranged from -0.03 to 0.44, and WSDAFgw ranged from -0.13 to 0.63.
Hence, the WSDAF values had much more variation than the raw SDAF. This suggests

that the weighting of allele frequency differences at SNPs by the estimated
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dominance effect of the SNP may better discriminate between heterosis in
alternative crosses than the use of a simple raw SDAF.

The ranking of crosses also differed between SDAF and WSDAF. The correlation
between SDAF and WSDAFgy was near zero (-0.04), while the correlation between
SDAF and WSDAFgw was moderate (0.59) (also see Figure 4.3). Hence, particularly for
EN, prediction of heterosis based on a weighted SDAF would yield a considerably
different ranking of crosses than a prediction based on the raw SDAF.

Table 4.4 (W)SDAF values for all pairwise combinations of White Leghorn pure lines,
their means and standard deviations.

CROSS SDAF WSDAFe\' WSDAFew'
S1xS4 0.20 0.44 -0.08
S1xS5 0.18 0.06 -0.13
S1xD1 0.20 0.36 0.63
S4xS5 0.18 0.13 0.18
S4xD1 0.23 -0.03 0.52
S5xD1 0.22 0.30 0.33
Mean 0.20 0.21 0.24

sd 0.02 0.17 0.28

(W)SDAF: (weighted) squared difference in allele frequency. fIndicates the trait which the
dominance effects used as weights were estimated for. EN is egg number and EW is egg
weight. sd: standard deviation. Correlations between values were -0.04 for SDAF and
WSDAFey, 0.59 for SDAF and WSDAFgw, and -0.05 for WSDAFgy and WSDAFgw.
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Figure 4.3. Scatter plot of SDAF versus WSDAFgy" and WSDAFew*

(W)SDAF: (weighted) squared difference in allele frequency. fIndicates the trait which the
dominance effects used as weights were estimated for. EN is egg number and EW is egg
weight. sd: standard deviation. Correlations between values were -0.04 for SDAF and
WSDAFgy, 0.59 for SDAF and WSDAFgy, and -0.05 for WSDAFgy and WSDAFgw.
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4.4 Discussion

The aim of our research was to estimate additive and dominance variance for egg
number (EN) and egg weight (EW) in four White Leghorn pure lines, estimate
dominance effects of SNP, and to investigate the potential added value of using a
dominance- weighted squared difference in allele frequency (WSDAF) rather than a
raw SDAF for the prediction of heterosis. We found that dominance variance
accounts for up to 6% of the phenotypic variance in EN, and up to 3% of the
phenotypic variance in EW, and that dominance variance accounted for a relatively
large proportion of the genetic variance in EN (~33%), but not in EW (~4%).

We also found that the SDAF weighted by dominance effects showed substantially
greater variation than the raw SDAF, and that prediction of heterosis based on a
weighted SDAF would yield a considerably different ranking of crosses for each trait,
compared with a prediction based on the raw SDAF. This suggests that a weighed
SDAF may have the potential to predict trait-specific heterosis.

4.4.1 Genetic parameters

4.4.1.1 Genomic estimation of additive and dominance variance

We estimated dominance variance for EN and EW in White Leghorns using SNP
data.Our results show that genome-based models fitted to relatively large samples
of chickens can be used to obtain accurate estimates of the dominance variance, as
judged by the reported SE of d2, which were all < 0.02 except for EN in line S5 (Table
4.2).

Two effects that could easily be confounded with dominance variance are the full-
sib common environment (¢?) and maternal effects. We expect ¢? to be negligible
because full-sibs were randomly distributed across the cages and rows of the hen
house, eggs are hatched in an incubator so that full sibs are not reared by their
mother, and also because EN and EW are traits that are only expressed and
measured after about 15 and 25 weeks of age respectively. This same observation
was made by Besbes and Gibson (1999), who estimated additive, dominance and
common environment variances in laying hens and found that the common
environment effects were statistically non-significant for all egg production traits in
the two pure lines studied. Based on results of earlier studies, we also expect that
maternal genetic effects are negligible for egg production traits (Bernon and
Chambers, 1985; Besbes and Gibson, 1999; Fairful, 1990; Fairfull and Gowe, 1986).
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We therefore expect that the dominance variance estimated in the present study
does not show a meaningful upward bias due to full-sib common environment or
maternal effects.

When dominance variance was present, even in small proportions, the narrow-sense
heritabilities always decreased when dominance effects were included in the model
(Supplementary Table 41). This implies that the narrow-sense heritabilities were
likely overestimated when dominance effects were not accounted for.

Studies in pigs (Lopes et al., 2015) and pine trees (Mufioz et al., 2014), where
significant dominance effects were present, also reported reductions in the narrow-
sense heritabilities when dominance effects were included in the model. Note that
those studies accounted for common environmental effects, so that confounding
with common environmental effects is not a likely explanation for the observed
decrease in the estimated narrow-sense heritability.

Thus, the results from the current study as well as the other studies mentioned show
that if dominance variance is present, but not accounted for, then narrow-sense
heritability will likely be overestimated.

4.4.1.2 Dominance variance forms a larger proportion of the genetic
variance for EN than EW

Dominance variance made up 26% (S1), 0% (S4), 36% (S5) and 37% (D1) of the genetic
variance in EN, whereas the corresponding percentages for EW were 4% (S1 and S4),
0% (S5) and 2.6% (D1). This is in agreement with (Besbes and Gibson, 1999; Wei and
van der Werf, 1993) who used pedigree data, and also found that dominance
variance made up a larger proportion of the genetic variance in EN than in EW. For
this reason, we found substantially greater values for broad-sense heritability
compared with narrow-sense heritability for EN, but not as much for EW.

These results show that dominance is an important component of the genetic
variance in EN, which, according to Wei et. al., (1991), gives the expectation that the
correlation between purebred and crossbred performance (r,c) will be lower for EN
than for EW. This was later indeed observed by Wei and Werf (1995), who estimated
roc for EN and EW and found lower r, for EN than for EW. They however cautioned
that their estimate of r,c may be biased because of confounding with genotype-by-
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environment effects. We did not find any other estimates of r,. for EN and EW in the
literature.

In addition, EN is known to be a trait with substantial heterosis, in contrast to EW,
which is known to have little heterosis (Fairful, 1990). These results point towards a
possible link between the level of dominance variation for traits in pure lines, and
the amount of heterosis expressed in their crossbred offspring. This is an interesting
question for further research, as it could have implications on the selection of pure
line combinations to be used for the production of desired crossbreds.

4.4.2 Dominance effects and weighting factors

We back-solved animal dominance deviations to obtain dominance effects of SNPs.
We found that even though there was quite a lot of variation between the SNP
effects, no single SNP had a very large estimated dominance effect. This was as
expected, because when using a dominance relationship matrix to estimate animal
dominance deviations, all SNPs are considered simultaneously in the model with an
equal weight, so that the effect of a QTL is likely distributed across all SNPs that are
in linkage disequilibrium with the QTL. The back-solved SNP dominance effects will
also reflect this. The wide range of the estimated weights (Figure 4.2), however,
shows that we were still able to identify SNPs that had comparatively bigger
dominance effects, and would therefore contribute more to heterosis. Further
discrimination between dominance effects of loci might be obtained with Bayesian
variable selection methods (Wellman and Bennewitz, 2012).

Xiang et al., (2016) and Varona et al., (2018) recommend including a covariate for
the average individual homozygosity in statistical models (such as Model 1), in order
to account for directional dominance. Though we did not fit a covariate for mean
individual homozygosity, we can get an impression of directional dominance by
calculating the impact of dominance on the trait mean. For a single locus, the trait
mean equals u = (p — q)a + 2pqd (Falconer and Mackay, 1996). Hence, we
calculated the total contribution of dominance to the trait mean as Y. 2p,q,d,, and
expressed the result as a fraction of the trait means, where p;, and g, are the major
and minor allele frequencies at SNP /, d, is the estimated dominance effect at SNP /,

L
and L is the total number of loci. For EN, lequd was 0.005 for S1, 0.002 for S5 and

0.001 for D1. These results suggest that directional dominance contributes less than

L
one percent to the trait mean of EN. For EW, @ was 2.3E-4 for S1, 3.0E-4 for S4
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and 0.002 for D1, which is even smaller. This suggests that directional dominance
contributes only little to the trait means.

However, these results may have been affected by the model assumption that d is
zero, and by the fact that estimates of d undergo shrinkage, leading to an
underestimation of the mean impact of directional dominance. Extension of the
model with a covariate for average individual heterozygosity, so that the mean d in
the dominance genetic component of the model becomes zero by construction,
could therefore be useful.

4.4.3 Possible applications of weighted SDAF

Amuzu-Aweh et al., (2013) showed that a raw genome-wide average SDAF predicts
heterosis in White Leghorn crosses with an accuracy of ~0.5. That study, however,
did not explore the possibility of using a dominance-weighted SDAF to predict
heterosis. Using a dominance-weighted SDAF would result in trait-specific heterosis
predictions, and could increase the accuracy of prediction. Several studies (Amuzu-
Aweh et al., 2013; Flint-Garcia et al., 2009; Kaeppler, 2012; Kaeppler and others,
2011) show that heterosis is highly trait-specific — i.e. the relative magnitude of
heterosis differs a lot between traits — intuitively raising the expectation that for a
predictor of heterosis to be accurate, it should also be trait-specific.

In addition, if heterosis is mainly due to dominance (Falconer and Mackay, 1996),
then giving more weight to SNPs with identified dominance effects should increase
the accuracy of heterosis prediction. Other studies also point towards possible
benefits of using evidence-based pre-selected subsets of SNPs for genomic
predictions of heterosis (Cho et al., 2004; Gavora et al., 1996; Shen et al., 2006), and
for genomic prediction in general (Raymond et al., 2018). The prospects of a
dominance-weighted predictor of heterosis should therefore be investigated
further. We propose that a linear mixed model where phenotypes of crossbreds are
regressed on the WSDAF between the two parental pure lines that produced the
cross can be used to estimate and then predict heterosis for future crosses, similar
to Amuzu-Aweh et al., (2013). Unfortunately, we did not have the data required for
such a study.
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4.4.4 Implications of a trait-specific predictor of heterosis

From our results, the ranking of crosses was different for SDAF, WSDAFey and
WSDAFew (see Table 4.3), indicating that different crosses would be selected for field
testing depending on the criterion used. As long as pure lines are genotyped and
phenotyped for a trait, then trait-specific heterosis predictions can be made, based
on estimated dominance effects. This would mean that depending on which traits
are more important, breeders would be able to decide which crosses to field-test.
Since field tests make up a large proportion of the cost of a crossbreeding program,
an accurate pre-selection of crosses would have a positive impact on crossbreeding
programs, by strategically reducing the number of crosses that need to be field-
tested.

4.5 Conclusions

Using SNP data, we estimated the additive and dominance genetic variance for EN
and EW in four White Leghorn pure lines. Dominance variance accounted for up to
37% of the genetic variance in EN, and up to 4% of that in EW.

We also found that SDAFs weighted by dominance effects were substantially
different and showed greater variation than the raw SDAF, suggesting that weighed
SDAF may have the potential to predict trait-specific heterosis. In addition, the
correlations between raw SDAF and the weighted SDAFs for EN and EW showed that
prediction of heterosis based on a weighted SDAF would yield considerable different
ranking of crosses for each trait, compared with a prediction based on the raw SDAF,
implying that different crosses would be selected depending on the criterion used to
predict heterosis.
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Abstract

Background

Egg number (EN) and egg weight (EW) are important traits in commercial laying hens.
For several decades, White Leghorns have been under intense selection pressure for
increased EN, and stabilising selection for an optimum and uniform EW. Selection is
carried out in purebreds, but the genetic gain needs to be expressed in the
commercial crossbreds. It is therefore of interest to study the genetic architecture
of these traits in a commercial crossbred population. We carried out a GWAS on EN
and EW in a large population of White leghorn crosses, using a dataset of 60K SNP
genotypes of 3427 sires from four purebred lines, and caged-based phenotypes of
over 182 000 of their commercial crossbred daughters. The GWAS were done for the
entire dataset, and then for subsets per sire-line and per cross. Our aim was to gain
knowledge on the genetic architecture of EN and EW in commercial crossbreds, and
possibly identify genomic regions that are associated with these traits both across
lines and then specific to each sire-line.

Results

We did not find any SNPs significantly associated with EN in any of the analyses. For
EW, we identified 42 SNPs from 11 genomic regions on chromosomes 2, 5, 6, 8, 9,
27, Z and one unassigned. For the across-line GWAS, nine lead SNPs together
explained 3.3% of the genetic variance in EW. Genomic regions that were identified
using the entire dataset overlapped almost completely with those found when
analysing a subset of one sire-line. The lack of significantly associated SNP for EN,
despite the considerable statistical power of our study, suggests that EN is
determined by at least ~1000 loci.

Conclusion

Our results show that EN is highly polygenic. For EW, we identified 11 significant
genomic regions on chromosomes spread across the genome, several of which have
not been reported previously.

Keywords White Leghorn; Laying hen; egg number; egg weight; Crossbred
performance; Genome-wide association study; genetic architecture



5. GWAS for egg number and egg weight in White Leghorns

5.1 Background

Egg number (EN) and egg weight (EW) are important traits in commercial laying hens.
Over the years, intensive selection programs, focused mainly on egg production, led
to anincrease in EN from 130 eggs/annum in the 1940s, to over 300 eggs/annum by
the year 2000. Selection for EW started later on, in the 1980s, and the main focus
was to keep it at an optimum mean value (Rossi et al., 2013). There has also been
interest to increase uniformity in EW, both in the parental pure lines, where it is
related to hatchability, and in the commercial crossbreds, because consumers prefer
uniform sizes, and uniformity also makes automation of the packaging process easier
(Abiola et al., 2008; Wolc et al., 2012).

As expected for traits of such importance, several studies have been carried out to
explore their genetic background, and genomic regions associated with EN and EW
have been reported (Chicken QTL database: https://www.animalgenome.org/cgi-
bin/QTLdb/GG/index). However, many of these studies were based on linkage
analysis with an F2 design or experimental test populations of relatively small size.
The more recent studies made use of genome-wide single nucleotide polymorphisms
(SNPs), but these were mostly done with genotype and phenotype data from birds
coming from a single pure line, and did not make use of data from the commercial
crossbred populations. The focus on pure line data and the use of experimental
crosses limits the direct application of the QTL results in selection. Thus, it could be
beneficial to identify QTL that have an effect on crossbred performance in EN and
EW, and explore the genetic background of EN and EW in a commercial laying-hen
population, especially after all these years of selective breeding. Genome-wide
association studies (GWAS) are a powerful way to do this.

We therefore carried out a GWAS on EN and EW in a large population of White
Leghorns, using a genotypes of sires from four purebred lines, and phenotypes of
their commercial crossbred daughters (from 16 types of crosses). Our aim was to
gain knowledge of the genetic architecture of EN and EW in commercial crossbreds,
and possibly identify genomic regions that are associated with these traits.

First we performed an across-line GWAS using genomic data from all four sire-lines,
and then a within-line GWAS using subsets per sire-line. As far as we know, this is
the largest dataset — both in terms of the number of lines/crosses, and the number
of records — for a GWAS on EN and EW. With a large number of records, the power
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to detect significant associations is high, and because we are using genomic data
from purebred sires and phenotypic records of their crossbred daughters, we could
identify quantitative trait loci (QTL) that segregrate within pure lines but have effects
on crossbred performance.

Furthermore, with the within-line GWAS, it may be possible to identify significant
genomic regions that are unique to certain pure lines. Results from this study will
give insight on the genetic architecture of EN and EW in commercial White Leghorn
crosses.

5.2 Materials and Methods

5.2.1 Population structure

Phenotypic data of 16 types of crosses that originated from nine purebred White
Leghorn layer lines were provided by Hendrix Genetics. Following Amuzu-Aweh et.
al., (2013), sire-lines were coded as S1, S4 and S5, and dam-lines were coded D1
through D6. A cross produced by an S1 sire and a D1 dam is referred to as S1xD1,
and its reciprocal as D1xS1. The D1 line was the only dam-line that was also used as
a sire of crossbreds. Each sire was mated to one dam-line only, but to several hens
of that dam-line. Mate allocation was random, i.e. hens were artificially inseminated
following the cage rows (personal communication, Jeroen Visscher, ISA, Hendrix).
Table 1 shows the 16 types of crosses used in this study. Pedigree on the dam side
was not available.

5.2.2 Phenotypic data

Phenotypic data were from routine performance tests for a commercial
crossbreeding program, and were collected on test farms in the Netherlands, Canada
and France from 2005 through 2010. Crossbred hens were beak-trimmed and
housed in group-cages, with an average of 6 hens per cage, and with all cage mates
being paternal full- or half-sibs. Hens were assigned randomly to a row and tier
within the henhouse, but ensuring that the different crosses and families were
randomized across all rows and tiers.

Traits studied were egg number and egg weight. Phenotypes for these traits were
recorded per cage: a cage-based record is the mean record of all individuals within a
cage. The number of cage-based records on EN ranged from 1 to 23 per sire, with an
average of ~10 (standard deviation = 4). The number of cage-based records on EW
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ranged from 1 to 21 per sire, with an average of ~7 (standard deviation = 3). No
phenotypic data on pure lines was used.

Egg Number (EN)

EN was a cage-based record of eggs produced from 100 through 504 days of age,
calculated on a hen-day basis. Hen-day EN was calculated as the total number of eggs
laid in the cage divided by the total number of days that a hen was present in the
cage (days are summed for all hens that were in the cage), and then multiplied by
the maximum number of days the production period lasted (404 days). A full
description of this trait and data editing criteria are in Amuzu-Aweh et. al., (2013).
There were 34,799 cage-based records of EN (Table 5.1), representing data from
235,944 crossbred hens.

Egg weight (EW)

EW was measured five times throughout the production period: at around 25, 35,
45, 60 and 75 weeks of age. For each cage, the average weight of all eggs laid on a
particular day was recorded. At the end of the production period, these five average
weights were again averaged to give a single value for EW per cage for the entire
production period. There were 26,034 cage-based records of EW (Table 5.1),
representing data from 182,670 crossbred hens.

5.2.3 Genotypic data

Atotal of 3427 purebred sires from 4 lines (1087 S1, 840 S4, 728 S5 and 772 D1) were
individually genotyped by ISA with the 60K chicken Illumina Infinium iSelect Beadchip
(Hlumina Inc., San Diego, CA, USA), which contains 57 636 SNPs across chromosomes
1 through 28, 33, Z, W, linkage group LGE64 and some unassigned SNPs (Groenen et
al., 2011). Positions of the SNPs were based on the Gallus gallus genome build 5.

Quality control (QC) was done in two ways: (1) simultaneously for the full dataset of
all 4 sire-lines, and (2) per sire-line. During the QC, SNPs with a call rate below 95%,
and SNPs that had < 10 (full dataset QC) and < 5 (per sire-line QC) individuals in a
particular genotype class were removed. The call rate per sire was also checked, and
all sires passed the 95% cut-off criterion. A summary of the number of SNPs that
passed QC and were used in the GWAS is included in Table 5.1. No crossbred chickens
were genotyped.

111




5. GWAS for egg number and egg weight in White Leghorns

5.2.4 Genome-Wide Association Study (GWAS)

Single-SNP GWAS were run in three ways: (1) “all-sire-lines” GWAS with genotypes
of all the sires and phenotypic data on all 16 crosses, (2) GWAS per sire-line: for
example, only genotyped sires from sire-line S1 and phenotypes of all their crossbred
offspring, and (3) GWAS per cross for the sire-lines from (2) where we had found
statistically significant SNPs. For example if we find significant associations for sire-
line S1, we would go further and look at a subset of only S1xD1 crossbreds. We used
the following models:

Model 1. “All-sire-lines” GWAS

Yijkimn = W+ cross; + test; + hen density,.; + B - SNP, + sire,, + HRT, +

€ijkimn (1),

where yjimn Was a phenotypic record of crossbred offspring, cross; was the fixed
effect of cross, test; was the fixed effect of each test and hen density; was a fixed
effect accounting for the initial number of hens within a cage. It was nested within
test because the physical size of cages differed across some tests. SNP; was the SNP
genotype (0, 1 or 2) of the sire, and S was the SNP effect fitted as a fixed covariate.
sire,, was the random polygenic effect of the sire, which was assumed to be
distributed as ~ N (0, GoZ ), and accounted for the (co)variances between animals
due to genomic relationships. G is a genomic relationship matrix computed as
described by VanRaden method 1 (VanRaden, 2008), calculated using the Calc_GRM
software (Calus and Vandenplas, 2013). We assumed that all sires from one pure line
were unrelated to sires from the other pure lines The combined effect of the hen-
house (H), row (R) and tier (T) of the cage was accounted for by including the term
“HRT,” as a random effect, which was assumed to be distributed as as ~ N (0, I3z
), and ejjumn Was the random residual error term which was assumed to be distributed
as ~ N (0, 162 ). l is the identity matrix.

To investigate whether a significant region harbours multiple QTL, and/or whether
the significant SNPs are all linked to a single QTL, we fitted models where we included
the most significant SNP (lead SNP) on the chromosome as a fixed covariate and
tested all other significant and suggestive SNPs on that chromosome. We also fitted
models where we included the lead SNP in each genomic region as a fixed covariate
and then tested the other significant and suggestive SNPs within that same genomic
region, to see whether they would still be significant. SNPs were considered to be
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within the same “genomic region” when they were within the flanking 1Mb regions
of the lead SNP. These models were the same as Model 1, but with the corresponding
lead SNP added as a fixed covariate.

Model 2. GWAS per sire-line
Yijkimn = W+ cross; + test; + hendensityy ;) + B - SNP, + sire,, + HRT, +

eijklmn (2):

where all model terms are as described for Model 1.

Model 3. GWAS per cross
Yijlum = W+ test; + hendensityy ;) + B SNP, + sire; + HRT,,, + €jjum (3),

where all model terms are as described for Model 1.

In each of the GWAS models above, the variance of the sire and HRT effects were
estimated beforehand, using the corresponding model but without the SNP effect.
These variances were then fixed at their estimated values when running the single-
SNP association analyses. Sire variances for all models are given in Table 5.2. The
analyses were performed using ASReml v4.0 (Gilmour et al., 2015).

To test for statistical significance while accounting for multiple testing, the genome-
wide False Discovery Rate (FDR) was calculated, using the R package gvalue. An FDR
<0.10 was used to indicate significant association, and 0.10< FDR <0.20 to indicate
suggestive association. Manhattan and Q-Q plots were made using the R package
ggman. Inflation of P-values was assessed by calculating genomic inflation factors
(GIF), using the R package GenABEL. For any GWAS that resulted in a GIF >1.05,
genomic control was applied by dividing the F-values of all the association tests by
the GIF, and using the corrected F-values to calculate P-values (Price et al., 2010).

The percent of total genetic variance explained by a SNP was calculated for all

significant and suggestive associations, as:

% total genetic variance expained by SNP; = 2’2—‘;}&? * 100,

where p; and q; are the major and minor allele frequency, @, is the estimated allele
substitution effect of SNP i, G2 is the sire variance obtained from the corresponding
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GWAS model (Models 1 or 2) without the SNP fitted, and 462 is the total genetic
variance.

5.3 Results

5.3.1 Basic statistics and variance components

Table 5.1 shows the average EN and EW from the raw data, and the number of
records, genotyped sires, and SNPs used in the GWAS. For EN, the average per cross
ranged from 324 to 345 and cage-based records ranged from 163.9 to 375.3. For EW,
the average per cross ranged from 59.9g to 62.9g, and cage-based records ranged
from 51g to 76.7g.

After quality control on the full dataset (all 3427 sires from 4 lines), 36, 950 SNPs
remained. For the subsets per sire-line, the number of SNPs was lower, mainly
because there were several regions in the genome where certain SNPs did not
segregate within line. These regions are evident in the per-sire-line GWAS
Manhattan plots (Figs. 5.2, 5.4, 5.6).
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5. GWAS for egg number and egg weight in White Leghorns

Table 5.2 shows variance components and heritabilities for EN and EW. Heritability
for crossbred EN was ~0.8 and that for crossbred EW was ~0.65.

Table 5.2. Variance components obtained from Models 1-3 without any SNPs
included

Egg number® Egg weight
Dataset
o2 sz’ind“ h? o2 Ggindﬂ K2

All-sire-lines 28.7 1478.9 0.08 25 15.7 0.64
D1 32.6 1344.2 0.10 2.5 14.5 0.69
S1 29.9 1414.1 0.08 3.0 15.6 0.77
S4 29.9 1784.3 0.07 2.1 16.5 0.51
S5 21.0 1377.0 0.06 2.0 17.0 0.47
S1*D1 2.8 14.2 0.79
S1*D2 2.5 13.9 0.72
S1*D3 1.9 14.5 0.52
S1*D4 2.7 15.3 0.71

In Models 1 — 3, the y variables were caged-based records, with an average of ~6 hens per
cage.To estimate heritabilities, we scaled the phenotypic and residual variances from cage-
based to the individual level as follows: 07 = 02 + 0Z = a2 + /6, where y is a caged-
based record, aez is the estimated residual variance of the analysis of cage-based records, JEzis
the (unknown) residual variance of an individual record, and the constant 6 was used because
there were an average of 6 hens per cage. Therefore, o7 = 6(633 - 052) =602 , and the
phenotypic variance of an individual record becomes a5, | = 02 + 0f = 0 + 60 ,and the
heritability of an individual record becomes h? = 402/d3, .

"Because no significant SNPs were identified in the across-line GWAS, we did not perform
within-cross analyses for Egg number. The last four rows for Egg number are therefore blank.

5.3.2 Egg number (EN) GWAS

GIFs for the EN GWAS were all ~1. This indicates no inflation of P-values, which
suggests that our models accounted for population stratification in the data. Both
the all-sire-lines and per-sire-line GWAS analyses for EN did not reveal any SNPs
associated with crossbred EN at an FDR < 20%. The quantile-quantile plots (Q-Q
plots) are given in Figure 5.1, and Manhattan plots are given in Figure 5.2.
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Figure 5.1. Quantile-quantile (Q-Q) plots for GWAS on Egg number

Q-Q plot of the P-values from a genome-wide association study on EN of crossbred hens and
genotypes of their purebred sires; first, using the full dataset of phenotypic data on 16 crosses
and genotypes of their 3,427 sires (sires were from lines D1, S1, S4 and S5), and then per sire-
line. The black points show the Q-Q plot of the raw P-values, and the blue points, where
necessary, show the Q-Q plot of P-values after applying genomic correction. G.I.F. is the
genomic inflation factor. SE: standard error of the G.I.F.
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Figure 5.2. Manhattan plot for GWAS on Egg number

Manhattan plot for a genome-wide association study on EN of crossbred hens and genotypes
of their purebred sires; first, using the full dataset of phenotype data on 16 crosses and
genotypes of their 3,427 sires (sires were from lines D1, S1, S4 and S5), and then per sire-line.
FDR thresholds were set at 10% and 20%, but are not shown in the plots because thresholds
cannot be calculated when there are no significant results. Alternating colours indicate
successive chromosomes from 1-28, Z, linkage group LGE64 (LG), 33 and unassigned (0). SNP
positions are based on the Gallus gallus 5.0 assembly.
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5.3.4 Egg weight (EW) GWAS

GIFs for the EW GWAS were all ~1, except for the all-sire-lines GWAS, which had a
GIF of 1.13, and for the sire-line S1 GWAS, which had a GIF of 1.10. Both values
indicate that the P-values may have been slightly inflated; we therefore applied a
genomic correction for these two GWAS. Figure 5.3 shows Q-Q plots for the EW
GWAS on the full data and per sire-line, both before and after genomic correction.

5.3.4.1 Egg weight GWAS using all genotyped sires

Figure 5.4 shows the Manhattan plot for the GWAS on EW, with the most significant
SNP (lead SNP) in each genomic region indicated by a large blue triangular symbol.
Table 5.3 gives a list of all significant and suggestive SNPs, along with their genomic
positions and percent of genetic variance explained by each. In total, we identified
20 SNPs from 5 chromosomes with a significant association, and 7 SNPs from 4
chromosomes with a suggestive association with EW.

For all chromosomes that had multiple significant genomic regions, we fitted the
overall lead SNP per chromosome as a fixed covariate and tested the other
significant SNPs on that chromosome. We found that peaks in other genomic regions
on the chromosome were still significant after adjusting, except for Chromosome Z,
where other genomic regions were no longer significant (Supplementary Figure 5.1).

We further tested all lead SNPs per genomic region, to see whether other SNPs
within that particular genomic region would still be significant. Supplementary Figure
5.1a shows Manhattan plots indicating the lead SNPs (red squares) and Figure 5.1b
shows the resulting Manhattan plots after the lead SNPs were included as fixed
covariates in the GWAS model. Except for the first genomic region on chromosome
2, where the other SNPs rather became more significant, none of the other SNPs
within their respective genomic regions remained significant - implying that all SNPs
within a particular genomic region are linked to the same functional mutation(s), or
that the LD between the SNPs within a genomic region is quite high, and therefore
the lead SNP explains all the variation for its 2 Mb genomic region.

In summary, except for the first region on chromosome 2, all the lead SNPs explained
the full association for their genomic region. Lead SNPs were however not able to
explain the full association for their entire chromosome, except for the lead SNP on
Chromosome Z.

On chromosome 2, we identified three significant genomic regions, located around
22,48 and 59Mb. The most significant of the 13 SNPs identified on this chromosome
explained 2% of the total genetic variance, which is the largest value found in this
study. On chromosome 6, we identified two significant genomic regions, located
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around 10 and 13Mb. The most significant of the 7 SNPs found on this chromosome
explained 0.6% of the total genetic variance. On chromosome 8, we identified one
suggestive SNP that explained 0.2% of the total genetic variance. On chromosome 9,
we identified one significant SNP that explained 0.2% of the total genetic variance.
On chromosome 27, we identified one significant SNP that explained 0.9% of the
total genetic variance. On chromosome Z, we identified three significant genomic
regions, located around 20, 23, and 56Mb. The most significant of the four SNPs
identified on this chromosome explained 0.3% of the total genetic variance. Full
details of all the significant/suggestive SNPs are given in Table 5.3.
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Figure 5.3. Quantile-quantile (Q-Q) plots for GWAS on Egg weight

Quantile-quantile plot of the P-values from a genome-wide association study on EW of
crossbred hens and genotypes of their purebred sires; first, using the full dataset of
phenotype data on 16 crosses and genotypes of their 3,427 sires (sires were from lines D1, S1,
S4 and S5,), and then per sire-line. The black points show the Q-Q plot of the raw P-values,
and the blue points, where necessary, show the Q-Q plot of P-values after applying genomic
correction. G.1.F. is the genomic inflation factor. SE: standard error of the G.I.F.
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Figure 5.4. Manhattan plot for GWAS on Egg Weight

Manhattan plot for a genome-wide association study on EW of crossbred hens and genotypes
of their purebred sires; first, using the full dataset of phenotype data on 16 crosses and
genotypes of their 3,427 sires (sires were from lines D1, S1, S4 and S5), and then per sire-line.
FDR thresholds were set at 10% (red solid line) and 20% (black dashed line). Large triangular
symbols indicate the most significant SNP in each peak (‘lead’ SNPs). Plots for ‘All sire-lines’
and ‘S1’ are results after applying genomic correction. Plots in which thresholds are not shown
is because thresholds cannot be calculated when there are no significant results. Alternating
colours indicate successive chromosomes from 1-28, Z, linkage group LGE64 (LG), 33 and
unassigned (0). SNP positions are based on the Gallus gallus 5.0 assembly.
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5. GWAS for egg number and egg weight in White Leghorns

5.3.4.2 Egg weight GWAS per sire-line

We identified significantly associated SNPs for the S1 sire-line only. To find out the
reason for this result, we checked the allele frequencies of all 42 significant and
suggestive SNPs identified in this study. Out of the 42 SNPs, 40 were segregating in
the S1 sire-line, but only 11, 16 and 28 were segregating in the D1, S4 and S5 sire-
lines respectively. Moreover, all nine lead SNPs from the all-sire-lines GWAS were
segregating in the S1 sire-line, but only two were segregating in D1 and S4 sire-lines,
and only one was segregating in the S5 sire-line. Figures 5.3 and 5.4 show Manhattan
plots for these GWAS, and Table 5.3 shows all significant and suggestive SNPs found
for the S1 sire-line, along with their genomic positions and % of genetic variance
explained by each.

In brief, on chromosome 2, we identified two significant genomic regions, and the
lead SNP explained 0.6% of the total genetic variance in the S1 line (TGVs;). On
chromosome 6, we identified two significant genomic regions, and the lead SNP
explained 0.8% of the TGVsi. On chromosome 9, we identified one significant SNP
that explained 0.4% of the TGVs;. On chromosome 27, we identified one significant
genomic region, and the lead SNP explained 0.5% of the TGVs;. On chromosome Z,
we identified one suggestive genomic region, and the lead SNP explained 0.3% of
TGVs;.There was one unassigned SNP (coded as Chr 0 in Table 5.3) with a significant
association. It had an effect of 0.61g and explained 0.4% of TGVs;.

All the genomic regions we identified in the sire-line S1 analysis overlapped with
those identified in the all-sire-lines analysis, except for the unassigned SNP
mentioned above, and the sign (+/-) of the estimated effect was always the same.
Yet still, there were some SNPs significant in S1 but not in the all-sire-lines data, and
vice versa (Table 5.3).
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5.3.4.3 Egg weight GWAS per cross

Since we found significantly associated SNPs in the S1 sire-line, we went further to
run separate GWAS for each of the S1 crosses (S1xD1, S1xD2, S1xD3 and S1xD4).
Within cross, we found suggestive associations only, and only for the crosses S1xD2
and S1xD4. Figures 5.5 and 5.6 show the corresponding Q-Q and Manhattan plots.
For the S1xD2 cross, we identified one suggestive SNP on chromosome 5 that
explained 1.6% TGVs1+p>. We also identified one suggestive SNP on chromosome 6
that explained 1.6% TGVs;+p;.

For the S1*D4 cross, we identified two suggestive SNPs on chromosome 6 that
explained 2.1% and 2.3% of TGVs;+p4 respectively (Table 5.3)
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Figure 5.5. Quantile-quantile (Q-Q) plots for GWAS on Egg weight (EW) per cross
Quantile-quantile plot of the P-values from a genome-wide association study on EW of
crossbred hens and genotypes of their purebred sires, using data on one S1 cross at a time
(per cross). The black points show the Q-Q plot of the raw P-values, and the blue points, where
necessary, show the Q-Q plot of P-values after applying genomic correction. G.L.F. is the
genomic inflation factor. SE: standard error of the G.I.F.
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S$1*D1 cross
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Figure 5.6. Manhattan plot for GWAS on Egg weight (EW) per cross

Manhattan plot for a genome-wide association study on EW of crossbred hens and genotypes
of their purebred sires, using data on one S1 cross at a time (per-cross GWAS). FDR thresholds
were set at 10% (red solid line) and 20% (black dashed line). Plots in which thresholds are not
shown is because thresholds cannot be calculated when there are no significant results.
Alternating colours indicate successive chromosomes from 1-28, Z, linkage group LGE64 (LG),
33 and unassigned (0). SNP positions are based on the Gallus gallus 5.0 assembly.
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5.4 Discussion

We investigated the genetic background of EN and EW in crossbred laying hens, two traits that
are important in commercial layer chickens. We did this using caged-based phenotypes of over
182 000 hens from 16 types of White Leghorn crosses, and genotypes of their sires from four
purebred lines. We performed GWAS for the entire dataset, and also for subsets per sire-line
and for some of the crosses, to see if the subsets would allow us to identify genomic regions
specific for certain sire-lines or crosses.

For EN, we did not identify any significant SNPs. For EW, we identified several SNPs for the fulll
dataset, the S1 sire-line and two of its crosses, and there was considerable overlap between
them. The signs of the estimated SNP effects (+/-) were also the same as in the full data. A large
proportion of the significant SNPs that were identified were not segregating in the other three
sire-lines.

5.4 1 GWAS for Egg number (EN)

We did not find any SNPs significantly associated with EN in any of the analyses.
Given our large dataset, this implies that the genetic architecture of EN is highly
polygenic, with many segregating genes of small effect, and no genes of large effect
at a meaningful frequency. This suggests that genes with large effects are no longer
segregating in the highly productive commercial pure lines, because they have been
under intense directional selection for increased EN for decades.

Furthermore, we studied accumulated EN over the period of 100 to 504 days of age.
(~14 to 72 weeks). This is a complex trait which incorporates several other traits like
age at first egg, egg laying rate, and persistency of lay. Its complex nature, and the
negative genetic correlation between age at first egg and persistency of lay, make
the presence of large quantitative trait loci less likely. This is also suggested by the
results of Yuan et al. (2015), who performed a GWAS on crossbred laying hens and
found significant SNPs for shorter periods of lay, but not for overall egg production
(21 to 72 weeks). They observed that the longer the laying period, the fewer
significant associations they found. Also, Romé et al. (2015) performed a GWAS using
genotypes of purebred sires and phenotypes of their crossbred offspring. They found
7 QTL for egg production from 18 to 75 weeks of age, but stated that they had
detected more QTL for shorter intervals of lay.

We should however mention that we used caged-based phenotypes in this study;
extension of the GWAS models to weight residuals by the number of hens that
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contributed to a given cage average may increase the power to detect significant
SNPs.

5.4.2 GWAS for Egg weight (EW)

On chromosome 2, the first region we identified at ~22Mb is close to a region
affecting mean EW reported by Wolc et al. (2012), and also to a region affecting EW
in the late laying period reported by Honkatukia et al. (2005). The second region
(~48Mb) has not been reported previously. The third region, around 58 - 60Mb,
contains the prolactin gene PRL, which has been linked to egg production and egg
quality by several authors (Bhattacharya et al., 2011a, 2011b; Cui et al., 2006; Li et
al., 2013).

On chromosome 6, the two regions we identified at ~10Mb and ~13Mb in the all-
sire-lines GWAS have not been reported before for EW, however, they both overlap
with a region suggestively associated with body weight - found by Sewalem et al.
(2002) and Siwek et al. (2004). Since body weight is strongly correlated with EW
(Festing and Nordskog, 1967; Wolc et al., 2012), it will be interesting to study this
association further.

On chromosome 9, we identified one SNP, which was close to a region reported by
Goraga et al.,(2012) for EW from 18 — 60 weeks of age. On chromosome 27, the
genomic region we identified was about 1Mb away from a region reported by Abasht
et al. (2009) with an effect on early EW. On chromosome Z, the region we identified
has not been reported before, but is close to an association reported by Tuiskula-
Haavisto et al. (2002), using microsatellite data.

Wolc et al. (2012) reported associations at ~78Mb on chromosome 4, for both the
mean and the standard deviation of EW. Several other authors also reported
associations on chromosome 4 (Goraga et al., 2012; Sasaki et al., 2004; Schreiweis et
al., 2006; Tuiskula-Haavisto et al., 2002). We, however, did not find any significant
associations on chromosome 4, perhaps because those studies used different,
independent populations, different SNPs and/or QTL in this region may not be
segregating in our population. It could also be because we are looking at the EW of
crossbred daughters of purebred sires, whereas the other studies mentioned above
either studied purebred daughters of purebred sires, or crossbred individuals that
had both genotypes and phenotypes — and these could be seen as different traits
(Besbes and Gibson, 1999).
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5.4.2.1 Unique genomic regions per sire-line

We were also interested in genomic regions that were unique to particular lines or
crosses. When analysing the entire dataset, we found 10 out of the total of 11
regions identified in this study; the only missing ‘region’ was a single unassigned SNP.

On the other hand, when analysing sire-line S1, we found only 7 out of the 11
genomic regions. Within these 7 regions, however, we identified additional
significant SNPs associated only within S1. The SNPs in the 4 regions that did not
show up for the S1 analysis were actually segregating in this line; however, because
the S1 data set was smaller, we think we did not have sufficient statistical power to
identify these SNPs. On chromosome 8, one SNP, which was close to a region
reported by Liu et al., (2011), was only significant when the all-sire-lines dataset was
analysed, and explained 0.4% of the genetic variance.

A number of SNPs were unique to the S1 sire-line, but they were all within regions
that were also identified in the all-sire-lines analysis; we therefore attributed the
identification of these unique SNPs to stronger linkage disequilibrium between the
SNPs in that region within the S1 sire-line as compared to the full population. On
chromosome 5, a single SNP at 37.7Mb was only significant in the S1xD2 cross.
Previously reported associations closest to this SNP are those found by Goraga et al.
(2012), who reported suggestive associations with EW from 18 — 60 weeks at
~19.8Mb, and EW from 41 — 60 weeks at ~17.4Mb on chromosome 5.

5.4.3 Genetic architecture of Egg number and Egg weight

5.4.3.1 Egg number

The absence of any significant SNP for EN, despite our large data set, indicates that
EN is highly polygenic. Based on the power of our study, we can get an impression of
the approximate minimum number of loci underlying EN. We will illustrate this for
sire-line S1. Power depends on the standard error (SE) of estimated SNP effects. In a
simple model with only an intercept and a fixed SNP effect, SE =
Ja2/(2p(1 — p)N), where N is the total number of records (N = 12,722 for sire-line
S1), p is the SNP allele frequency and o2 is the residual variance. We cannot simply

substitute the estimated o2 in this expression, because we also had to estimate
other fixed and random effects in the mixed model. However, we can calculate an
effective 62 based on the reported standard errors of the estimated SNP effects.
Hence, the effective residual variance is 62 = SE? 2p(1 — p)N, which was on
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average ~750 for our sire-line S1 data (values of 62 depend a bit on which locus is
used, because some loci are more co-linear with other model terms than others).

Now we can find the power as:
a

1-f=1-0(t-=)=1-a(t - VN a,/0,),
where [ is the probability of a false negative, @ is the standard normal distribution

function, t is the standardized significance threshold, «a is the true absolute SNP-

effect, and g; = /2p(1 — p)a? is the additive genetic standard deviation due to the
locus (power depends on the sample size and the variance explained by the SNP).

To find the approximate significance threshold t, accounting for multiple testing, we
calculated the number of independent tests as the effective number of independent
genome segments, M. (Goddard, 2009). M.= 1/Var(G;;), where G is the genomic
relationship matrix. Resulting values ranged from 122 (sire-line D1) to 260 (sire-line
S5). To be more conservative, we assume an effective number of 260 independent
chromosome segments. Thus, a 5% genome-wide Bonferroni threshold corresponds
to a nominal P-value of 0.05/260 = 1.9 x 10, and a corresponding significance
threshold of t= ®~1(1 — 1.9 x 10™%) = 3.55.

Now suppose EN is determined by 1000 equivalent loci, so that the variance

2
explained by each locus is 6 = % = ~(4%29.9)/1000 = 0.12. (29.9 is the sire

variance for sire-line S1, taken from Table 5.2). Substituting this value into the above
expression, and using t = 3.55, N = 12,722 and g2 = 750, yields a power of about
1.7% for a single locus. Since we did not find any significant association, we have to
find the probability that none of the SNPs would be significant, which is
approximately (1 — power)Me = (1 — 0.016)%%0 = 1.2%.

In other words, if EN would be determined by 1000 loci, each explaining an equal
amount of genetic variance, then we would have had a probability of only ~1.2% to
find no significant SNP at all. Corresponding values for 750 and 1500 loci are 0.05%
and 11%, showing that as the number of loci increases, the probability of not finding
any significant SNP increases.

Thus, if the number of QTL underlying EN is smaller than a thousand, it is very unlikely
to find no significant SNP with a dataset as large as ours. Hence, since we did not find
any significant SNP for EN in sire-line S1, our findings suggest that EN in sire-line S1
is determined by at least about a thousand loci. Even in the analysis using data of all
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lines (N = 34,799), we did not find a single significant SNP, suggesting that the
number of loci underlying EN may even be considerably larger than a thousand.

5.4.3.2 Egg weight

For EW, we identified a few genomic regions with significant effects. The reason such
SNPs are still segregating may be because EW—being an optimum trait —has not
been under intense directional selection (Rossi et al.,, 2013). Since increased
uniformity in EW is desirable, SNPs with large effects on EW could be used to reduce
the variability in EW, for example by avoiding the use of heterozygous sires, or by
fixing the allele in the pure lines. Wolc et. al., (2012) identified a 1Mb window of 20
SNPs, that explained ~30% of the genetic variance in EW. They stated that the
phenotypic standard deviation of eggs produced by their flock could be reduced by
up to 6.6% if all commercial hens had the same genotype in that region. Here,
however, the largest amount of genetic variance explained by a single SNP was 2%,
and the corresponding SNP effect was 0.75g (Table 5.3). As an example, fixing this
SNP in the S1 sire-line would reduce additive genetic variance in this line to 98% of
its original value, and only half of this reduction would be transferred to the
commercial crossbred offspring. When measured as a percentage reduction of the
phenotypic standard deviation in eggs produced by the commercial crossbreds, the
reduction would be even smaller.

Similarly, the exclusion of heterozygous sires as parents of crossbred offspring has
limited benefit. The phenotypic range of offspring would be p + 2sd for a

homozygous sire, and p+ (2sd + a/2) for a heterozygous sire, where = aﬁmd — o2

) agind is the phenotypic variance scaled to the individual level (see Table 5.2 for
explanation of a,%ind ), and a is the SNP effect. Using values for sire-line S1 (from
Table 5.2), the phenotypic range of EWs for offspring of a homozygous sire would be
53.8 to 67.8g and that for offspring of a heterozygous sire would be 53.4 to 68.2,
which are barely different from each other. Even when considering the lead SNPs
from all regions, the total percentage of genetic variance explained was 3.3%. Totally
removing the variation due to these lead SNPs would reduce the phenotypic
standard  deviation of EW to 989% of its original value
(VI = 202 gasnp)? + (1 — h2)] = {/[(1 — 0.033)0.64 + 0.36] = 0.989), which
is only a small reduction.
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Thus, the potential for increasing uniformity in EW by excluding sires which are
heterozygous for the SNP effects found here is very limited.

5.4.4 Purebreds for crossbred performance

A lot of research has gone into the optimisation of breeding programs of purebreds
for crossbred performance, with varying recommendations on how to use
information from both the purebreds and crossbreds in selection decisions. Some
authors have suggested combining these sources of information by treating
purebred and crossbred performance as two different, but correlated traits, and
forming a selection index based on this; so-called combined purebred and crossbred
selection (Wei and Werf, 1994). Others have suggested incorporating crossbred
information in genomic selection by fitting breed-specific SNP effects and estimating
breeding values based on that (Ibanez-Escriche et al., 2009), or by fitting dominance
rather than additive models (Zeng et al., 2013).

In this current study, we estimated allele substitution effects based on crossbred
phenotypes. These allele substitution effects could be weighted with allele
substitution effects estimated based on purebred phenotypes, to obtain a combined
allele substitution effect. One would however need to establish what the optimal
weights should be, probably in relation to the genetic correlation between purebred
and crossbred performance for the trait of interest.

5.5 Conclusions

The lack of significantly associated SNP for EN, despite the considerable statistical
power of our study, suggests that EN is determined by at least ~1000 loci.

For EW, we identified 11 significant genomic regions from chromosomes 2, 6, 8, 9,
27 and Z, several of which have not been reported previously. The largest marker-
effect explained 2% of the genetic variance in EW. Despite the presence of significant
SNPs for EW, the prospects to use them to increase the uniformity of EW is very
limited.
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5.8 Additional information
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Additional Figure 5.1. GWAS for EW: lead SNP" analyses

Manhattan plot of a genome-wide association study on EW of crossbred hens and genotypes
of their purebred sires, using data on all sire-lines. FDR thresholds were set at 10% (red solid
line) and 20% (black dashed line). Alternating colours indicate successive chromosomes from
1-28, Z, linkage group LGE64 (LG), 33 and unassigned (0). SNP positions are based on the Gallus
gallus 5.0 assembly. "Lead SNPs, shown as red squares, are the most significant SNP either on
the entire chromosome (5.1a) or within a specific ~2Mb genomic region (5.1c). Lead SNPs are
only shown for chromosomes/regions that were made up of more than one significant SNP.
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GWAS using the “all sire-lines” dataset. Red squares indicate the lead SNPs for each
chromosome. Lead SNP were fitted as fixed covariates to test whether the other
significant SNPs on that chromosome would remain significant or not.

GWAS using the “all sire-lines” dataset, showing the result after fitting the lead SNPs
(shown as red squares in 1a) as fixed covariates.

GWAS using the “all sire-lines” dataset. Red squares indicate the lead SNPs within a ~2Mb
genomic region. Lead SNPs were fitted as fixed covariates to test whether the other
significant SNPs within the same genomic region would remain significant or not.

GWAS using the “all sire-lines” dataset, showing the result after fitting the lead SNPs
(shown as red squares in 1c) as fixed covariates.
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6. General Discussion

6.1 Introduction

Crossbreeding is practiced extensively in commercial breeding programs of many
plant and animal species, in order to exploit heterosis, breed complementarity, and
to protect pure line genetic material. Because we still lack the knowledge to predict
the performance of a cross, the decision on which combination of parental lines to
use to make a cross is currently based on field testing of many potential crosses.
However, as the number of pure lines increases, it becomes less feasible to test all
possible crosses of the pure lines. The ability to accurately predict heterosis using
information from the parental pure lines could therefore improve the efficiency of
crossbreeding schemes by providing a basis on which to pre-select a subset of pure
line combinations that can then be evaluated through field tests. Moreover,
investigation of the genetic background of heterosis is also a relevant scientific
question in its own right.

To this end, the research in this thesis focused mainly on the development of models
to predict heterosis in White Leghorn crossbreds using genomic information from
their parental pure lines. Based on a dominance model, we hypothesized that the
genome-wide average of the squared difference in allele frequency (SDAF) at the
SNP loci of the two parental lines might be a promising predictor of heterosis in the
cross of these lines. Our results showed that the SDAF between parental pure lines
is indeed a suitable predictor of heterosis in egg number and egg weight, with an
accuracy of ~0.5 for our set of White Leghorn chicken lines (Chapter 2). We also
showed that heterosis can be predicted at the individual sire level, using
“heterozygosity excess” in the offspring of a sire, calculated from individual sire
genotypes. In this way one can in principle further exploit the variation between sires
from the same pure line, thereby maximizing the amount of heterosis expressed by
the crossbreds. However, for the populations examined here, benefits were
relatively limited (Chapter 3).

Because dominance effects may differ between loci, not all loci may contribute
equally to heterosis. Therefore, in Chapter 4, we estimated variance components
and additive and dominance effects of single nucleotide polymorphism (SNP)
markers on egg number and egg weight in four White Leghorn pure lines, and
discussed the possibility of using SDAF weighted by the estimated dominance effects
of SNPs for the prediction of heterosis in their crosses. We found that dominance
variance accounted for a relatively large proportion of the genetic variance in EN
(~33%), but not in EW (~4%). In addition, the relative values of dominance effects
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were much larger at some SNPs than at others, suggesting that some loci contribute
much more to heterosis than others. Correlations between the raw SDAF and
weighted SDAFs showed that prediction of heterosis based on a weighted SDAF
would yield a considerably different ranking of crosses for each trait, compared with
a prediction based on the raw SDAF. This implies that different lines would be
selected for crossbreeding depending on the criterion used to predict heterosis.

In Chapter 5, we performed an exploratory genome-wide association study in order
to gain insight into the genetic architecture of crossbred egg number and egg weight.
We showed that egg number is a very polygenic trait controlled by at least ~1000
loci, and we identified several quantitative trait loci for egg weight.

In this General Discussion, | discuss the genomic prediction of heterosis, focusing on
possible reasons for the lack of a consensus on the approach to predict heterosis,
even after decades of research. | also suggest improvements for genomic prediction
of heterosis, considering the advancements in genotyping and computation
methods. Next, | give an example of the application of results from this thesis in
crossbreeding programs.

6.2 Genomic prediction of heterosis

Several studies related to the prediction of heterosis have been done in the past on
both plants and animals, however, there is no consensus on how to best predict
heterosis (Atzmon et al.,, 2002; Balestre et al., 2009, 2008; Gavora et al., 1996;
Haberfeld et al., 1996; Reif et al., 2003; Vuylsteke et al., 2000). In this section, |
discuss possible reasons for the inability to reach a consensus on how best to predict
heterosis, by reflecting on how heterosis was predicted in the past. | will address two
main topics: 1) differences in methodology; 2) differences in the scientific merit of
studies.

6.2.1 Differences in methodology

6.2.1.1 Predictor variables: squared difference in allele frequency (SDAF)
versus genetic distance (GD)

Although the quantitative genetic theory linking heterosis to SDAF was published by
Falconer as far back as 1960, prior to this thesis no studies directly testing this theory
have been published. The theory shows that when heterosis is due to dominance,
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the amount of heterosis due to a single bi-allelic locus is proportional to the SDAF
between the two parental lines of the cross:

Heterosis;; = (p; — p;)*d Eq. 6.1,
where p;and p;are the allele frequencies at a particular locus in parental populations
i and j, respectively, and d is the dominance deviation at that locus. A majority of the
past studies on genomic prediction of heterosis mentioned this theory, but
remarkably, none of them directly tested it. Instead, past studies used “genetic
distance” (GD) as the predictor of heterosis. GD is a numeric measure of the extent
of allele frequency difference or genetic divergence between species, populations or
individuals, inferred from genetic markers (Nei, 1987, 1972). Examples of GD that are
used frequently are Rogers’ distance (Rogers, 1972), modified Rogers’ distance
(Wright, 1984), Cavalli-Sforza chord distance (Cavalli-Sforza and Edwards, 1967) and
Nei’s GD (Nei, 1972). Genetic markers commonly used in these studies on heterosis
prediction are restriction fragment length polymorphisms (RFLPs), amplified
fragment length polymorphisms (AFLPs) and microsatellites. These markers, which
are multi-allelic, were used to compute GD and subsequently, the GD was used to
predict heterosis.

How similar are genetic distances to SDAF? Do they have the same power to predict
heterosis? To compare GD with SDAF, we computed pairwise correlations between
SDAF and several measures of genetic distance based on 60K SNP allele frequencies,
and found correlations between 0.98 — 1 (Chapter 2). We also compared the
predictive ability of SDAF and the genetic distance with the lowest correlation to
SDAF (Rogers’ and modified Rogers’ distance), and found almost identical results.
This indicates that with a relatively large number of markers, SDAF and genetic
distances calculated from bi-allelic markers have the same predictive ability for
heterosis.

However, past studies used GD calculated from a limited number of multi-allelic
genetic markers, and both the number and the type of marker may have had an
effect on the similarity between GD and SDAF, and thus on predictive power. The
effect of the number of markers on the prediction of heterosis is discussed in a later
section.

In conclusion, if both the GD and SDAF are calculated from bi-allelic marker data,
then the correlation between them is ~1, and thus | assume that they both have the
same predictive power for heterosis. However, GD from multi-allelic markers may be
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less correlated with SDAF, and therefore its power to predict heterosis could also be
lower. It would be interesting to investigate this, because it might explain why past
studies which used GD inferred from multi-allelic markers did not get high accuracies
for the prediction of heterosis. One thing to mention however, is that these past
studies may have opted for GD over SDAF because with multi-allelic markers, the
definition of SDAF is not straightforward.

6.2.1.2 Target of predictions

In crossbreeding, the most important outcome is a crossbred production animal that
meets the breeders’ expectations — in other words, crossbred performance is what
is important. For this reason, researchers would ultimately want to be able to predict
crossbred performance.

There are two main models to partition crossbred performance. The first is a
heterosis model:

Uij = MTW + heterosis;; Eq. 6.2,
where y;; is the average phenotype of an ixj crossbred, u; and p; are the average
phenotypes of pure lines i and jrespectively, and heterosis;; is the average heterosis
expressed by an ixj crossbred. As can be seen from Eq. 6.2, heterosis is the deviation
of the crossbred from the average of its two parental pure lines (Shull, 1952).
Following from Eqgs. 6.1 and 6.2, we have the following prediction for the mean
phenotypic value of the crossbred:

The second way to partition a crossbred phenotype is with a combining ability model:

Uij = pspr + GCA; + GCA; + SCA;; Eq. 6.4,
where (;; is the average phenotype of an ixj crossbred, iggr is an overall mean, the
value of which depends on the set of crosses included in the analysis,
GCA; and GCA;j are the general combining abilities of pure lines i and j, respectively,
and SCA;; is the specific combining ability of an ixj cross. The GCA is the average
performance of a line in all its hybrid combinations (as a deviation from the overall
mean, User), and SCA is the deviation of a particular hybrid combination from what
would be expected on the basis of the average phenotype of all the hybrids
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descending from its parental pure lines (Sprague and Tatum, 1942). Note that the
GCA is not the same as the pure line mean.

One can see the similarity in the definitions of heterosis and SCA; however, their
statistical and theoretical bases are very different. Statistically, GCAs are fitted as
main effects, so that the average heterosis in all the hybrids descending from a pure
line gets included in the GCA estimate of that line. The SCA is defined as a statistical
interaction term, and the model constrains the SCA estimates to sum to zero. This
automatically means that both GCAs and SCAs depend on the other crosses that are
in the dataset.

On the other hand, heterosis does not depend on the other crosses in the dataset.
In Chapter 2, we addressed this topic with a supplementary Excel sheet where we
demonstrated that if heterosis is due to dominance, then an SDAF model (Eq. 6.3)
partitions crossbred phenotypes into pure line averages and heterosis, whereas a
GCA/SCA model does not. We also showed that predicted heterosis does not depend
on which crosses are present in the dataset, whereas GCA and SCA estimates change
depending on which other crosses are added/removed from the dataset being
analysed. The dependency of GCA and SCA on the set of crosses included in the
analysis hampers the comparison of experiments that partly include the same set of
lines and/or crosses.

A heterosis model is therefore better suited to situations where new lines need to
be evaluated continually. In addition, theory shows that heterosis is proportional to
SDAF in the presence of directional dominance. SCA on the other hand is a complex
function of additive and dominance effects and allele frequencies of the parental
pure lines. This begs the question whether there is any theoretical justification for
expecting genetic distance to be predictive of SCA, as several past studies have
assumed? In Chapter 2, we showed that for egg number, the correlation between
SDAF and SCA is considerably lower (0.3) than between SDAF and heterosis (0.6).
This may be one of the reasons for the inconclusive results from past studies on the
prediction of ‘heterosis’, because many of the studies were actually looking at SCA —
not heterosis —and those two are not the same.

6.2.1.3 Measuring the accuracy of predicted heterosis

Another possible reason for the inconclusive results of studies on the prediction of
heterosis is that different measures are used to assess the accuracy of predicted
heterosis, and therefore one cannot clearly compare the outcomes of the various
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studies in order to draw a conclusion. In my opinion, prediction accuracy should be
assessed by the ability to predict crosses that were not part of the training dataset.
For this reason, we performed a leave-one-out cross-validation in Chapter 2, where
we removed all records of a particular cross from the data, and then predicted
heterosis for the cross that had been left, out using the remaining data. We then
took the correlation between observed and predicted heterosis as the measure of
accuracy, and obtained a value of 0.6 for egg number, and 0.4 for egg weight. If we
had instead taken the correlation between predicted heterosis based on the full data
and observed heterosis as the measure of accuracy, we would have obtained an
‘accuracy’ of 0.7 for egg number and 0.6 for egg weight. Several of the past studies
used correlations between the predictor based on the full data and observed
heterosis or SCA as their measure of accuracy. This shows that the outcomes of
different studies may not be directly comparable, making it difficult to draw
conclusions based on reviewing past literature.

6.2.2 Differences in the scientific merit of studies

The scientific merit of a study depends on the type and amount of data, and how
appropriate the methodology is for answering the scientific question at hand. For
example, a study based on a large number of markers will probably give a more
reliable estimate of SDAF or genetic distance than studies based on few markers. In
this section, | will look at the effect of the number and informativeness of genetic
markers on the accuracy of heterosis prediction.

6.2.2.1 Effect of the number of markers

In general, the accuracy of a marker-based predictor is affected by the level of
linkage disequilibrium (LD) between the markers and underlying causative loci. For
this reason, unless the causative loci themselves, or markers in high LD with them
are known, one alternative would be to use a large number of markers spread
densely across the entire genome, with the assumption that with such an extensive
coverage of the genome, one would be able to capture the effect of the unknown
underlying loci. Another perspective with more bearing on the prediction of
heterosis is that with a larger number of markers, one gets a more accurate estimate
of the true SDAF or genetic distance between parental pure lines, and that this
genome-wide value also reflects the SDAF at the causative loci affecting the trait(s)
of interest. These two lines of reasoning must be behind the conclusion by several
authors (Dias et al., 2004; Krishnan et al., 2013; Rajendrakumar et al., 2015) that one
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reason past studies on marker-based prediction of heterosis were inconclusive is
that the number of markers used was too small.

Therefore, to test the effect of the number of markers on the accuracy of predicting
heterosis, | investigated how the number of markers affects the estimate of the
predictor variable, SDAF. For any two parental lines, say i and j, SDAF is calculated as
follows:

N C —m. \2
SDAF,; = Z=2PinPin). Eq. 6.5,
where p;_; is the allele frequency of SNP nin lines i and j respectively, and N is the

total number of SNPs.

My “true” SDAF was the genome-wide average SDAF calculated from the full 60K
SNP data, denoted as SDAFguk. Since there were 45 different ixj combinations in my
dataset, | had 45 SDAFsok values. Next, | created subsets of N = 200, 400, 800, 2000,
10K and 30K SNPs, selected randomly, but such that all chromosomes were equally
represented, as far as possible (for example, chromosome 30 does not have many
SNPs, so in some instances, even if all its SNPs were included, they were still fewer
than the SNPs from chromosome 1). For each N, | repeated the SNP selection and
estimation of SDAFy 100 times. For example, for the scenario with 200 SNPs, |
obtained 100 different subsets each with 200 SNPs, and thus 100 estimates of
SDAF,q for each ixj combination.

Figure 6.1 shows a plot of the SDAFgo estimates against SDAFy. It is clear that as the
number of SNPs increases, the estimated SDAF gets closer to SDAFso. This shows
that in general, as the number of SNPs increases, one is better able to estimate the
true genome-wide level of divergence between populations. One can see that the
estimates from 10K SNPs are almost as precise as those from 30K SNPs, which
indicates that 10K genome-wide SNPs are probably sufficient to determine the
divergence between the White Leghorn pure lines used in this analysis. Using less
than 10K SNPs would result in a loss of accuracy. In addition, when the number of
SNP dropped below ~1000, we found regression coefficients of observed (SDAFso)
on predicted (SDAFy) SDAF smaller than 1. This indicates a bias in predicted SDAF,
where predictions overestimate the true differences between crosses in SDAFgox.
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Figure 6.1 Plot showing estimates of the squared difference in allele frequency
(SDAF) for 100 subsets and 45 different pure line combinations. In all graphs, the
black points show SDAF based on 60K SNPs (SDAFso). The blue points show SDAF
estimates from 100 subsets each of size N (SDAFy). N is indicated in the titles of the
sub-plots. The red line is the regression of SDAFg on SDAFy, and “Regr” coefficient

is the resulting regression coefficient.
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Figure 6.2 gives the standard deviation of SDAFs obtained from the 100 subsets for
each N. This shows the amount of variation between the subsets; the larger the
variation, the less reliable the estimated SDAFy is.
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| | | |
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Figure 6.2 Plot of the standard deviation (SD) of the SDAF estimates obtained from
using different numbers of SNPs.

The most important outcome of a heterosis prediction is the resulting rank of the
crosses, because that is the basis of selection decisions. Therefore, to get a measure
of how consistent the ranking of crosses was between the different subsets, |
calculated Spearman’s rank correlation coefficient between all the SDAFy and
SDAFgok. This would show whether crosses were consistently ranked in the same
order irrespective of the number of SNPs used to calculate SDAF. Table 6.1 gives the
results. Again, one can conclude that for this data, about 10K SNPs are enough to
give the same ranking of crosses as the 60K SNPs.
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Table 6.1 Spearman’s rank correlation coefficients between SDAFgo and SDAFy

Number of SNPs' T spaFgok,spaFy (SD)

200 0.88 (0.05)
400 0.93 (0.03)
800 0.96 (0.02)
2000 0.98 (0.01)
5000 0.99 (0.004)

10 000 0.99 (0.002)

20 000 0.99 (0.001)

30000 1.00 (<0.001)

*Number of SNPs in the subset used to estimate the squared difference in allele frequency
(SDAF). SDAFy denotes and SDAF calculated from N number of SNPs
r = Spearman’s rank correlation coefficient; SD = standard deviation

These results show that the number of markers indeed has a bearing on the
estimation of SDAF (and/or genetic distances) and therefore, would affect the power
to predict heterosis accurately. Deciding on the ideal number of SNPs to be used for
future studies would depend upon the genome size — which is species-specific — as
well as the diversity of the pure lines being evaluated. Based on the analyses above,
| would recommend that future studies on laying hens should use at least 10K SNPs,
or if using multi-allelic markers, then numbers that would give the same level of
information as 10K SNPs should be used. For example, according to Schopen et al.,
(2008), for each microsatellite marker, about three 3 SNPs are needed to obtain the
same amount of information. This implies that about 3350 microsatellite markers
would be needed for estimating SDAF in the example described here.

To my knowledge, the number of markers used in past studies on heterosis
prediction was always below 700, which suggests that the estimated genetic
distances were not sufficiently accurate for the prediction of heterosis.

6.2.2.2 Effect of the informativeness of markers

The accuracy of the prediction of heterosis may increase if a subset of markers that
have been identified to have an effect on the trait of interest are used, instead of
using all available markers. In principle, if all quantitative trait loci (QTL) affecting a
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trait are known, then using information from a large number of markers that do not
have an effect on the trait, or which are not in high LD with the QTL, may dilute the
information from the QTL. On the other hand, if no prior information on QTL is
known, perhaps using a relatively large number of SNPs could still be advantageous.

To investigate this issue, | extended the example given in section 6.2.2.1:

| randomly selected and omitted 2000 SNPs from the marker data and assumed that
they were true QTL affecting the trait. | assumed that the SNPs on my chip are
representative of the QTL. | then estimated SDAF based on only the QTL, SDAFqr,
and calculated correlations between SDAFqr. and SDAFy from several subsets of
different sizes (Table 6.2).

Results show that as the number of SNPs in the subset increased, the correlation
between SDAFqr and SDAFy also increased, implying that in situations where no
prior information on QTL is known, using a relatively large number of SNPs to
calculate SDAF is expected to give a more accurate estimate of the SDAFqr. than
using a small number of SNPs. Take note however, that even though the correlation
kept increasing as the number of SNPs increased, it never reached a value of 1. In
addition, note that even with 30K SNPs, the correlation between SDAFqr. and SDAFy
was only 0.98, whereas in the previous section (where no QTL were omitted from
the data), | achieved a correlation of 0.98 with only 2K SNPs, and a correlation of 1
with 30K SNPs.

These results indicate that if QTL truly exist, then the advantage of adding extra SNPs
which are not the QTL (or not in high LD with the QTL) is limited.
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Table 6.2 Spearman’s rank correlation coefficients between SDAFqr. and SDAFy

Number of SNPs* T spAFgr,,spAFy (SD)
200 0.88 (0.04)
400 0.92 (0.03)
800 0.95 (0.02)
2000 0.97 (0.009)
5000 0.98 (0.005)
10 000 0.98 (0.003)
20000 0.98 (0.002)
30000 0.98 (0.002)

"Number of SNPs in the subset used to estimate the squared difference in allele frequency (SDAF). SDAFy
denotes an SDAF calculated from N number of SNPs. SDAFqr. is SDAF calculated from 2000 SNPs assumed
to be true QTL.

r = Spearman’s rank correlation coefficient; SD = standard deviation

Other authors have also written in support of using pre-selected subsets of SNPs for
genomic predictions (Macciotta et al., 2009; Ober et al., 2015; Raymond et al., 2018),
and more specifically for the genomic prediction of heterosis (Cho et al., 2004).
However, research is still needed to determine the best criteria for selecting the
appropriate subset of SNPs to be used. For example, whether to pre-select SNPs that
have significant additive and/or dominance effects on the traits of interest — and if
so, should these effects be estimated for single traits, composite traits or using a
selection index?

Moreover, preselection of SNPs may be based on SNP effects that were estimated
from either purebred or crossbred data. In general, one can say that if dominance
variance is an important component of the phenotypic variance of the trait of
interest, then is it is beneficial to use crossbred phenotypes in evaluations.
Therefore, the decision on whether to use purebred or crossbred phenotypes (or
both) for the estimation of SNP effects (which can then be used to weight SNPs for
calculating SDAF) should not be taken lightly.

For heterosis due to directional dominance, it may be more important to identify

SNPs that have positive estimated dominance effects, rather than additive effects.
Even if so, one is still faced with the question of deciding how to use the dominance
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effects that were estimated from the two pure lines that produced the cross. For
example, in Chapter 4, for each locus, we used the average of the estimated
dominance SNP effects from the two pure lines producing the cross to calculate the
weighting factors for SDAF.

Therefore, as seen from this and the previous section, because in most situations all
the true QTL are not known, one needs to reach a reasonable compromise between
removing what are perceived to be ‘uninformative’ markers while still keeping a
large enough number of markers to be representative of the genetic make-up of the
individuals or population being evaluated.

6.2.3 Future prospects for the prediction of heterosis

With the current availability of dense genome-wide markers, and improvements in
statistical modelling and computational ability, it is interesting to explore possibilities
for improving the prediction of heterosis. According to theory, dominance is one of
the main contributors to heterosis (Falconer and Mackay, 1996), therefore, once
dominance effects can be estimated accurately, the next step is the development of
heterosis prediction models that incorporate them appropriately.

Using SNP data and genomic selection methodology, it is now possible to create
kinship matrices that can be used to disentangle additive and dominance effects, as
well as epistatic effects (Vitezica et al.,, 2013). Dominance SNP effects can be
estimated using a two-step approach. In the first step, genomic breeding values and
animal dominance deviations are obtained from individuals that have been typed for
SNPs and also recorded for the phenotype of interest. In the second step, the animal
dominance deviations are back-solved to obtain estimated dominance effects of
SNPs. We did this in Chapter 4, then used the estimated dominance effects to
calculate weights for pairwise combinations of four White Leghorn pure lines. We
found that there was a wide variation in the magnitude of weights assigned to the
SNPs. These weights were further used to calculate a weighted genome-wide
squared difference in allele frequency (WSDAF) between pure lines. Using WSDAF as
a predictor would mean that certain SNPs contribute to the prediction of heterosis
much more than others. Also, judging from the correlation between SDAF and
WSDAF for egg number (-0.04) and egg weight (0.59) we concluded that predictions
based on either SDAF or WSDAF would lead to very different selection decisions. We
propose that a WSDAF model should be validated with real data
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One benefit of being able to estimate dominance (and other non-additive effects) is
that because the estimated effects will be trait-specific, the resulting heterosis
predictions will also be trait-specific. This will be an improvement upon the current
models that predict the same relative magnitude of heterosis irrespective of the trait
(e.g Amuzu-Aweh et al., 2013), because phenotypic data clearly shows that heterosis
is trait-specific: for example larger for egg number than for egg weight.

Another potential way to improve heterosis predictions is to find a way to
differentiate between reciprocal crosses. Reciprocal crosses differ in their
phenotypes ( e.g. Peeters et al., 2012, this Thesis); however, SDAF (and the proposed
dominance-weighted SDAF) has the limitation that it predicts the same expected
heterosis for reciprocal crosses, i.e an AxB cross will get the same prediction as a BxA
cross. In chickens, females are the heterogametic sex, therefore a female’s Z
chromosome is always inherited from its sire. The Z chromosome has been reported
to have a parent-of-origin effect on survival (Peeters et al., 2012), and it may also
have an effect on egg production traits. It would therefore be interesting to look into
ways to incorporate information from the Z chromosome into heterosis predictions.

6.3 Including genomic prediction of heterosis in crossbreeding

programs

New (pure) lines are introduced into breeding programs in several ways, for example
breeders may develop new lines that are better adapted to new production
conditions, or that meet new consumer demands. New lines will also be introduced
after breeding companies merge, as has been the case in the history of Hendrix
Genetics. Hendrix Genetics started off as a small farm in 1923, and over decades,
several mergers and acquisitions of smaller breeding companies (see Figure 6.3)
have led to the creation of a large company which currently controls about 40% of
the global laying-hen breeding industry (excluding China).
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Figure 6.3 Mergers and acquisitions that led to the formation of the laying-hen
division of Hendrix Genetics (used with permission of Hendrix Genetics).

Any time new lines are introduced into a breeding company, it is necessary to field-
test them with the current lines and see if any desirable crossbred products could be
made. If the possible crossbred products are many, then a pre-selection based on
predicted heterosis could be used to reduce the number of crosses to be field-tested.

The fact that when using a heterosis model, new lines can be evaluated based solely
on the genotypic information of the parental pure lines is a clear advantage over the
general/specific combining ability model (G/SCA), because the G/SCA of a pure line
can only be calculated after a field test has already been performed.

In Chapter 2, we showed that pre-selection based on predicted heterosis in egg
number or egg weight could cut the number of crosses to be field-tested by up to
50%, with only ~ 4% loss in realised heterosis. These predictions were based on a raw
genome-wide squared difference in allele frequency (SDAF), which had an accuracy
of ~0.5. If the accuracy of prediction is increased, say, by improving the models with
estimated non-additive effects, then the advantage could be even greater. In
addition, the genomic prediction of heterosis could be relevant for plant breeding,
where in principle, one can make an infinite number of pure lines by selfing — and
thereby many potential hybrids could be made —way more than it is feasible to field-
test. Predicted heterosis would therefore enable breeders to make an informed pre-
selection of potential crosses to be field-tested.
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Another instance where the genomic prediction of heterosis can be applied is at the
onset of a breeding company or a national breeding scheme. Most developing
countries have many diverse local breeds that are well-adapted to their environment
and to the low-input extensive production system that is characteristic of the rural
poultry sector. These local breeds are usually not well characterised, and neither is
there any formal breeding scheme for them. There is a huge potential for improving
the productivity of these local breeds, and judging from the advantages and success
of crossbreeding in other parts of the world, perhaps developing countries could
benefit greatly from starting an organized crossbreeding scheme. Crosses could be
made between the local breeds or even by introducing high-producing foreign
breed(s) in order to produce crossbreds that are still well-adapted to their
environment, but have improved productivity.

A crossbreeding scheme however comes with increased complexity and may be
more expensive than pure breeding, because all the breeds/lines involved in the
crossbreeding scheme will each need to have their own breeding schemes. It is
therefore important to perform a cost-benefit analysis to decide whether
crossbreeding is the best option in the first place. In addition, the introduction of
foreign breeds, if deemed necessary, must be done in an organized manner. If
crossbreeding is decided upon, then obtaining SNP genotypes and calculating SDAFs
between the selected breeds/lines could be one of the first steps in order to assess
the genetic divergence among the breeds/lines and then pre-select potential crosses
for field-testing.

6.4 Conclusions

The prediction of heterosis is a topic that has intrigued researchers for several
decades. The findings herein have contributed to our knowledge on its prediction in
White Leghorn crosses, and also added evidence that dominance is an important
contributor to heterosis.

In addition, we estimated additive and dominance effects on egg number and egg
weight in four White Leghorn pure lines, and proposed a method to incorporate the
estimated dominance effects for the prediction of heterosis. We also reported
genome-wide association results for crossbred egg number and egg weight, giving
insight into the genetic architecture of these traits.
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It would be interesting if the methods used in this thesis can be validated by studies
in other populations of layers and other species where crossbreeding is practiced. |
suggest that future studies should also focus on appropriate methods to include non-
additive effects beyond dominance in the prediction of heterosis, and on how to

predict reciprocal crosses.
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Heterosis is one of the most important benefits of crossbreeding. In situations where
there are many different pure lines, breeders are faced with the challenge of
identifying the best combinations of pure lines to produce crossbred products that
express the best overall performance, which requires knowledge of heterosis.
Currently, selection of parental pure lines is based on the results of field tests, during
which the performance of their crossbred offspring is assessed under typical

commercial settings.

Field tests are time-consuming, and also represent a large percent of the costs of
commercial crossbreeding programs. This thesis therefore set out mainly to explore
the possibilities and develop models for the accurate prediction of heterosis in White
Leghorn crossbreds, using genomic information from their parental pure lines.
Predicted heterosis could then be used to pre-select a subset of crosses to be
assessed through field trials, thereby substantially reducing the costs of
crossbreeding programs. We also hoped to gain insight into the genetic basis of
heterosis. In addition, we explored the genetic architecture of egg number and egg

weight in White Leghorns, both at the pure line and crossbred levels.

In Chapter 2, we studied egg number (EN), egg weight (EW) and survival days in 47
different White Leghorn crosses produced from 11 pure lines. Based on the theory
that heterosis in a crossbred is proportional to the squared difference in allele
frequency (SDAF) between its parental pure lines, we calculated a genome-wide
squared difference in allele frequency (SDAF) between parental pure lines using 60K
SNP genotypes. Results show that SDAF predicts heterosis in EN and EW at the line
level with an accuracy of ~0.5, and that with this accuracy, one can reduce the
number of field tests by 50%. We also showed that an SDAF model predicts heterosis
whereas a combining ability model does not, which indicates that dominance is one
of the important contributors to the genetic basis of heterosis. SDAF did not predict

heterosis in survival days.
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Moving beyond the line level, we aimed to predict heterosis at the individual sire
level, in order to identify sires within the same (pure) line whose offspring would be
superior in heterosis. Individual predictions would allow breeders to utilise the
within-line genetic variation between sires, and potentially maximise heterosis in the
offsping generation. Therefore, in Chapter 3, we derived the theoretical expectation
of the amount of heterosis expressed by the offspring of an individual sire. Further,
using 60K SNP genotypes of 3427 purebred sires and 16 types of crosses, we showed
that individual sire genotypes can indeed be used to predict heterosis in their
offspring. In our data however, the proportion of variation in genome-wide
predicted heterosis due to sires from the same pure line was small (0.7%); most
differences were observed between lines (99.0%). This led us to conclude that
considering the genotyping costs involved, prediction of heterosis for individual sires

would only be beneficial if sire genotypes are already available.

Quantitative genetic theory shows a clear proportionality between the dominance
effect at a locus, SDAF and heterosis. This theory made us curious to explore the
possibility of using dominance effects to improve the prediction of heterosis. Thus,
in Chapter 4, we used 60K SNP genotypes and phenotypes of 11,119 females from
four White Leghorn pure lines to estimate variance components, breeding values
and dominance deviations for EN and EW. We then back-solved the dominance
deviations to obtain estimated dominance effects of the SNPs. Next, we calculated a
dominance-weighted SDAF for each trait. Our expectation was that a dominance-
weighted SDAF will give trait-specific — and possibly more accurate — heterosis

predictions than a raw genome-wide average SDAF.

We found that dominance variance accounted for up to 37% of the genetic variance
in EN, and up to 4% of that in EW. Results showed that for both EN and EW, negative
and positive estimated dominance effects are spread rather evenly across the

genome. The relative values of the dominance effects were much larger at some
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SNPs than at others, suggesting that some loci contribute much more to heterosis
than others. We also found that the weighted SDAF for EN and EW were substantially
different and showed greater variation than the raw SDAF, suggesting that a
dominance-weighed SDAF may indeed have the potential to predict trait-specific
heterosis. In addition, the correlations between the raw SDAF and the weighted
SDAFs showed that prediction of heterosis based on a weighted SDAF would yield
considerably different ranking of crosses for each trait, compared with a prediction
based on the raw SDAF. This implies that different crosses would be selected
depending on the criterion used to predict heterosis. These results justify further

investigation into the application of a dominance-weighted predictor of heterosis.

In order to gain insight on the genetic architecture of crossbred EN and EW, in
Chapter 5, we performed genome-wide association studies on EN and EW in a total
of 16 commercial crossbreds, first using data from all crosses, and then for selected
subsets. We found that EN is a highly polygenic trait controlled by at least a thousand
loci, and that no large quantitative trait loci are segregating in the commercial White
Leghorn crosses that we studied. For EW, we found that a few relatively large QTL
are segregating in the population. This may be because EN has been under intense
directional selection for several decades, whereas EW has been under less-intense,

stabilising selection.

Finally, in the general discussion of this thesis (Chapter 6), | discuss the genomic
prediction of heterosis, focusing on possible reasons for the lack of a consensus on
the approach to predict heterosis, even after decades of research. | also discuss new
opportunities for the genomic prediction of heterosis, considering the
advancements in genotyping and computation methods. Lastly, | give an example of

the application of results from this thesis in crossbreeding programs.
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The findings in this thesis have contributed to our knowledge on the prediction of
heterosis in White Leghorn crosses, and also added evidence that dominance is an
important contributor to heterosis. In addition, our results give insight into the
genetic architecture of egg number and egg weight in several pure line and crossbred

populations.
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Swedish Summary

Korsningseffekten, som dven kallas for heterosis, ar en av dem viktigaste effekterna
av korsavel. Heterosis uppnas genom att korsa tva rena raser och innebar att
avkomman i genomsnitt har battre egenskaper an féraldrarna. Metoden anvands for
avel av flera olika djurslag, bland annat varphons, som i den har avhandlingen.

Nar uppfodare har tillgang till flera renrasiga linjer ar det en utmaning att identifiera
den basta kombination av raser som leder till en korsningseffekt som i sin tur
resulterar i optimala egenskaper. Den har processen kraver kunskap om heterosis.
For narvarande baseras urvalet av raserna for korsavel pa faltexperiment dar man

bedémer prestationen av korsningarna under typiska kommersiella forutsattningar.

Faltforsok ar tidskrdvande och innebdr dven en stor kostnad for kommersiella
program inom korsavel. Det Overgripande syftet av den har avhandlingen ar darfor
att bade undersoka korsningsavelns mojligheter samt att utveckla modeller fér att
kunna forutsdga korsningseffekten hos kycklingrasen Vit Leghorn med hjalp av
genomisk information frdn den renrasiga foraldragenerationen. Den férutsagda
korsningseffekten kan sedan anvandas for att gora ett forsta urval bland méjliga
korsningar som kommer att beddémas i faltforsok. Darmed skulle man kunna
reducera kostnaden av korsavelsprogram. Vi hoppas dven att fa mer insikt i de
genetiska forutsattningarna av korsningseffekten. Dessutom har vi undersékt den
genetiska arkitekturen bakom antalet och vikten av dgg hos Vit Leghorn, bade vad

det galler renrasiga och korsade linjer.

| kapitel 2 har vi undersokt antalet dgg (egg number/EN), dggens vikt (egg
weight/EW) och antal 6verlevnadsdagar i 47 olika korsningar fran 11 renrasiga linjer
av Vit Leghorn. Vi utgar ifran teorin att mangden av heterosis i en korsning ar
proportionellt till den kvadratiska skillnaden i allel frekvenser mellan foraldrar linjer
(s.k. SDAF). Vi skattade SDAF mellan alla 11 renrasiga linjer pa hela genomet med
hjalp av 60,000 SNP genotyper. SNP star for single nucleotide polymorphism —

"enbas-polymorfi” och anvands som en genetisk markor for variation mellan
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individer. Resultaten visar att vardet for SDAF forutsager korsningseffekten for
antalet dgg (EN) och dggens vikt (EW) med en statistisk sakerhet av ~0.5. Med hjalp
av dessa resultat kan faltforsoken sedan halveras. Vi visar ocksa att en modell som
anvander SDAF-vardet kan forutsdga korsningseffekten medan en alternativ
korsning modell som kallas fér “combining ability” (kombinations potential) inte kan
gbra detta. Detta tyder pa att dominans ar en viktig faktor for genetiken bakom
korsningseffekten. SDAF kunde inte forutsdga nagon korsningseffekt pa antal

overlevnadsdagar.

For att kunna forutsdga korsningseffekten i mer detalj ville vi i nasta steg identifiera
renrasiga fader som skulle ge upphov till en utmarkt korsningseffekt hos avkomman.
Individuella forutsagelser skulle kunna gora det majligt for uppfodare att anvanda
den genetiska variationen som finns bland fader inom samma ras, och darmed
maximera korsningseffekten i nasta generation. Darfor harleder vi i kapitel 3 den
teoretiska forvantade korsningseffekten i avkomman av en individuell fader. Genom
att anvanda 60K SNP genotyper av 3427 renrasiga fader och 16 typer av korsningar
visar vi att genotypen av individuella fider kan anvdndas for att forutsaga
korsningseffekten i avkomman. Andelen av variation i f6rutsdgelsen av
korsningseffekten som beror pa fader fran samma linje dr dock liten (0,7%); de flesta
skillnader kunde observeras mellan olika linjer (99,0%). Med tanke pa kostnaden fér
individuell genotypning ar var slutsats darfor att forutsagelse av korsningseffekten
pa grund av individuella fader ar enbart av fordel om genotypen av fadern ar redan

tillganglig.

Kvantitativ genetisk teori visar en tydlig proportionalitet mellan dominanseffekten
vid ett genetisk lokus, SDAF och korsningseffekten. Vi ville garna utforska
mojligheten att anvanda dominanseffekter for att forbattra forutsiagelsen av
korsningseffekten. | kapitel 4 har vi anvant 60K SNP genotyper och fenotyper fran

11119 honor ifran Vit Leghorn renrasiga linjer for att uppskatta varianskomponenter
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, avelsvarden och avvikelse pga dominans (dominance deviations) for antalet och
vikten av dggen (EN och EW). Vi harledde sedan avvikelse pga dominans for att fa
uppskattningar av dominanseffekten av SNPar. Darefter raknade vi ut dominans-
viktade SDAF for varje egenskap. Vi férvantade oss att en dominans-viktad SDAF
borde ge en mer egenskapsspecifik - och darmed mere exakt - forutsdgelse for

korsningseffekten dn ett genomsnittlig SDAF som baseras pa hela genomet.

Vi upptéackte att varians pga dominans ar ansvarig for upp till 37% for den genetiska
variationen i antal dgg (EN) och 4% foér den genetiska variation bakom &dggens vikt
(EW). Resultaten visar att negativa och positiva dominanseffekter ar fordelade jamt
Over genomet, bade vad det géller dggens antal (EN) och vikt (EW). De relativa varden
av dominanseffekten var mycket storre vid vissa SNPar an andra, vilket tyder pa att
vissa loci (omraden i arvsmassan) bidrar mer till korsningseffekten an andra. Vi
upptackte ocksa att att de viktade SDAF for antalet och vikten av dggen (EN och EW)
var vasentligt olika och visade en storre variation an den vanliga SDAF, vilket tyder
pa att en dominans-viktad SDAF kan faktiskt ha potential att forutse
egenskapsspecifika korsningseffekter. Dessutom visar korrelationerna mellan
vanliga och viktade SDAF att forutsdgelser baserade pa den viktade SDAF skulle
kunna ge en betydlig annorlunda rankning av korsningar for varje egenskap, jamfort
med en forutsdgelse som baseras pa vanlig SDAF. Detta betyder att de olika
korsningar skulle selekteras beroende pa kriteriet som anvands for att forutse
korsningseffekten. Resultaten rattfardigar ytterligare undersdkning av tillampningen

av dominans-viktad forutsagelse av korsningseffekten.

For att fa insikt i den genetiska arkitekturen bakom EN och EW i korsavlade varphons,
genomforde vi i kapitel 5 helgenom-associations studier pa EN och EW i totalt 16
kommersiellt korsavlade raser. Vi anvdnde forst data fran alla korsningar och
darefter utvalda delar. Vi upptackte att EN ar till en hég grad en polygenetisk

egenskap (en egenskap som beror pa flera genetiska faktorer) som kontrolleras av
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minst tusen gener, och att inga sa kallade stora QTL (quantitative trait loci — regioner
av DNA som har siknifikant effekt pa kvantitative egenskaper) segregerar i
korsningarna av Vit Leghorn som vi har studerat. For EW upptackte vi att relativt fa
stora QTL segregerar i populationen. Detta kan bero pa den intensiva selektionen for

aggens antal (EN) under flera decennier, medan mindre selektion har gjorts for EW.

Kapitel 6 innehaller den 6vergripande diskussionen av den har avhandlingen och jag
diskuterar den genetiska forutsagelsen av korsningseffekten, med fokus pa majliga
anledningar fér bristen av konsensus pa tillvdgagangssatt for att forutse
korsningseffekten dven efter flera decennier av forskning. Jag tar ocksa upp nya
mojligheter for genetisk forutsdgelse av korsningseffekten, sarskild med tanke pa
framstegen inom genotypning och berdkningsmetoder. Till sist ger jag ett exempel

av tilldmpningen av resultaten i den har avhandlingen inom korsavel.

De vetenskapliga fynden i den har avhandlingen har bidragit till kunskap om
forutsagelsen av korsningseffekten i korsningar av kycklingrasen Vit Leghorn, och har
bidragit med vyterligare evidens att dominans ar en viktig faktor for
korsningseffekten. Dessutom ger vara resultat insikt i den genetiska arkitekturen

bakom dggens antal och vikt i flera renrasiga linjer och korsade populationer.
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