
Symmetry Breaking by Local Search⋆

S. D. Prestwich1, B. Hnich2, H. Simonis1, R. Rossi3, and S. A. Tarim4

1Cork Constraint Computation Centre, University College Cork, Ireland
2Faculty of Computer Science, Izmir University of Economics, Turkey

3Logistics, Decision and Information Sciences Group, Wageningen UR, The Netherlands
4Department of Management, Hacettepe University, Turkey

s.prestwich@cs.ucc.ie,brahim.hnich@ieu.edu.tr,
h.simonis@4c.ucc.ie,roberto.rossi@wur.nl,

armagan.tarim@hacettepe.edu.tr

Abstract. The presence of symmetry in constraint satisfaction problems can
cause a great deal of wasted search effort, and several methods for breaking sym-
metries have been reported. We describe a new approach to partial symmetry
breaking: using local search in the symmetry group to detectviolated lex-leader
constraints. The local search is interleaved with the backtrack search performed
by the constraint solver, and violations are used to backjump in the search tree.
The method works with any form of symmetry and any constraintsolver, and
can handle very large symmetry groups. In combination with double-lex sym-
metry breaking it gives good results on balanced incompleteblock designs. This
opens up a fruitful new connection between the fields of symmetry breaking and
metaheuristics.

1 Introduction

Many constraint satisfaction problems (CSPs) contain symmetries. For example the N-
queens problem has 8 (each solution may be rotated through 90, 180 or 270 degrees,
and independently reflected) while other problems may have exponentially many sym-
metries. The presence of symmetry implies that search effort is being wasted by explor-
ing symmetrically equivalent regions of the search space. By eliminating the symmetry
(symmetry breaking) we may speed up the search significantly. Several distinct methods
have been reported for symmetry breaking in CSPs.

Reformulatinga problem to eliminate its symmetries is an excellent approach where
possible, but in many problems it is difficult or impossible to eliminate all symmetries.
Probably the most common approach is to break symmetries byadding constraintsto
the model. It has been shown that all symmetries can in principle be broken by this
method [20], which was developed into thelex-leadermethod for Boolean variables
and variable symmetries by [5], extended to non-Boolean variables and independent

⋆ S. A. Tarim and B. Hnich are supported by the Scientific and Technological Research Council
of Turkey (TUBITAK) under Grant No. SOBAG-108K027. R. Rossiis supported by Science
Foundation Ireland under Grant No. 03/CE3/I405 as part of the Centre for Telecommunications
Value-Chain-Driven Research (CTVR). R. Rossi and H. Simonis are supported by Grant No.
05/IN/I886.

variable and value symmetries by [17, 23], and to arbitrary symmetries by [25]. In prac-
tice too many constraints might be needed if there are exponentially many symmetries.
Instead of explicitly adding lex-leader constraints to a model, a computational group
theory system such as GAP [10] can be used during search to findrelevant (unposted)
constraints, as in the GAPLex method [16]. Good results havebeen obtained by adding
subsets of the constraints to obtainpartial symmetry breaking. For example in ma-
trix models it is common to have permutation symmetry on bothrows and columns,
but breaking all such symmetries is NP-hard [5] and requiresan exponential number
of symmetry breaking constraints. Breaking row and column symmetries separately
(double-lexor lex2) [7] does not break all combined symmetries but is tractableand
quite powerful.

Symmetry Breaking During Search(SBDS) was invented by [2] and further eluci-
dated by [12]. In SBDS constraints are added during search sothat, after backtracking
from a decision, future symmetrically equivalent decisions are disallowed. SBDS has
been implemented by combining a constraint solver with the GAP system, giving GAP-
SBDS [11], which allows symmetries to be specified more compactly via group gener-
ators. SBDS can still suffer from the problem that too many constraints might need to
be added: it can handle billions of symmetries but some problems require many more.
A related method to SBDS calledSymmetry Breaking Using Stabilizers(STAB) [21]
only adds constraints that do not affect the current partialvariable assignment, and has
other optimisations to reduce the arity and number of constraints. It does not break all
symmetries but has given very good results on problems with up to1091 symmetries.

Symmetry Breaking by Dominance Detection(SBDD) was independently invented
by [6, 9] (a similar algorithm was also described by [3]) and combined with GAP to
give GAP-SBDD [11]. SBDD breaks all symmetries but does not add constraints be-
fore or during search, so it does not suffer from the space problem of some methods.
Instead it detects when the current search state is symmetrical to a previously-explored
“dominating” state. It was shown by [22] that the dominance tests can be combined into
a single auxiliary CSP then solved by standard constraint programming methods.

In this paper we describe and test a new approach to partial symmetry breaking,
which uses local search to detect unposted, violated, generalised lex-leader constraints.
Section 2 describes the new method, Section 3 presents a casestudy, Section 4 reports
experimental results, Section 5 discusses related work, and Section 6 concludes the
paper. We assume a basic knowledge of group theory (see [13] or any standard textbook
on the subject) and its application to symmetry breaking in constraint programming (see
the works cited above). This paper is an extension of previous work [18, 19].

2 Detecting violated lex-leader constraints

Suppose that we wish to solve a CSP using a standard constraint solver with depth-first
search (DFS) and constraint processing. Suppose also that the problem has symmetry
defined by a groupG. [25] shows that any form of symmetry can be broken by adding
generalised lex-leader constraintsX �lex Xg for all g∈G, whereX is a total assign-
ment on a fixed ordering of the problem variables,Xg is the image ofX underg, Xg

is admissible(it is also a total assignment), and�lex is the standard lexicographical

ordering relation. These constraints prune all solutions except thecanonical(lex-least)
ones. But in general an exponential number of the constraints are needed, making the
method impractical for problems with large symmetry groups.

2.1 The detection problem

We propose a new way of using generalised lex-leader constraints. To show that it is
valid for all forms of symmetry and all constraint solvers, we use the results of [25].
At a search tree node with partial assignmentA, if we can find a group elementg ∈G
such thatAg is admissible (it is also a partial assignment) andAg ≺lex A, then we can
backtrack becauseA violates a lex-leader constraint. Lex-ordering is easily extended
to partial assignments: if totally-assigned prefixes ofAg andA have the property that
Ag≺lexA then the constraint is violated.

As an example, consider the 4-queens problem with the usual 8symmetries includ-
ing reflection about the vertical axis: the group element denoted byx. Suppose that we
solve this problem using a matrix model in which each square on the board corresponds
to a binary variable, 1 denotes a queen and 0 no queen at that position. Suppose also that
we apply DFS and assign variables in a static row-by-row thencolumn-by-column or-
der. Consider the partial assignmentA = (1, 0, 0, 0, ?, . . .) corresponding to the board
configuration in Figure 1(i), where a space denotes no queen,“•” denotes a queen,
and “?” denotes no decision. NowAx is the partial assignment(0, 0, 0, 1, ?, . . .) corre-
sponding to the board configuration in Figure 1(ii). ButAx≺lex A whatever values are
chosen for the unassigned variables, soA is symmetric to the lex-smaller nodeAx and
can be backtracked from. Note that it is also possible to reason on unassigned variables
— for example(1, 0, x, 0, 0)≺lex (1, 0, 1, y, 1) whatever the values of the unassigned
variablesx andy — but in experiments we found this to be unnecessary.

A Ax B

•

? ? ? ?
? ? ? ?
? ? ? ?

•

? ? ? ?
? ? ? ?
? ? ? ?

•

•

• ? ?
? ? ? ?

(i) (ii) (iii)

Fig. 1. Search states in 4-queens

We shall apply local search to the auxiliary problem of finding ag that causes gen-
eralised lex-leader violation. The method is justified by the following proposition:

Proposition 1. Suppose that we have a full set of unposted generalised lex-leader con-
straints, under some fixed variable ordering. At a search tree node with partial assign-
mentA, if we can find ag ∈ G such thatAg is admissible andAg ≺lex A under the
same variable ordering, thenA violates a lex-leader constraint.

Proof. If Ag is admissible andAg ≺lex A thenθ(Ag) ≺lex θ(A) for any assignment
θ of the unassigned variables inA leading to an admissible total assignment (at least
one suchθ always exists). Therefore for each suchθ the lex-leaderθ(A)�lex θ(Ag) is
violated byA.

Conversely, all symmetries can in principle be detected by search on the symmetry
group:

Proposition 2. If A violates a generalised lex-leader constraint then there existsg ∈ G
such thatAg is admissible andAg≺lexA.

Proof. Suppose thatA violates a lex-leader constraintX �lex Xg for someg ∈ G.
ThereforeXg≺lexX atA, so it must also be true thatAg≺lex A.

These results do not depend on the details of the constraint solver (for example its
value and variable ordering heuristics, or its propagationalgorithms) and apply to all
forms of symmetry. However, lex-leader violation will be detected most often if the
constraint solver uses the same fixed variable ordering thatwas used to define the lex-
leader constraints. The value ordering used by the constraint solver also has an effect:
pruning by lex-leader violation does not necessarily respect the constraint solver search
heuristics, and might therefore search more of the tree to find a first solution. It is pos-
sible to make the search heuristics respect lex-leader violation by using lexicographical
value orderings, but in this paper we are interested only in all-solution search (modulo
symmetry) so the issue does not arise.

2.2 Detection as nonstationary optimisation

We can model the detection problem as an optimisation problem with G as the search
space, so that eachg∈G is a search state. The objective function ofg to be minimised
is the lex ranking ofAg. On finding a stateg with sufficiently small objective value
(less than the lex ranking ofA) we have solved the detection problem. This opens up
the field of symmetry breaking to a wide range of metaheuristic algorithms.

A practical question here is: how much effort should we devote to detection at each
DFS node? If an incomplete search algorithm fails to find a dominating state, this might
be because there is no such state — but it could also be becausethe algorithm has not
searched hard enough. Too little search might miss important symmetries, while too
much will slow down DFS. We expend limited effort at each search node to ensure rea-
sonable computational overhead. For example if we apply local search then we might
apply one or a few local moves per search tree node, or only at some nodes. The opti-
misation problem now has an objective function that changesin time: as DFS changes
variable assignmentsA, the objective value of any giveng changes because it depends
on Ag. This is callednonstationary optimisationin the optimisation literature, so the
framework is calledSymmetry Breaking by Nonstationary Optimisation(SBNO).

Note that even if detection fails at a node, it might succeed afew nodes later. DFS
can then backtrack, possibly jumping many levels in the search tree. For example con-
sider the 4-queens problem again. Suppose we did not manage to find group elementx

at search stateA, but instead continued with DFS and only discoveredx on reaching
search stateB shown in Figure 1(iii). NowBx ≺lex B so we can backtrack fromB.
On successful detection we backtrack until it is no longer the case thatAg ≺lex A for
the current partial assignmentA. Apart from some wasted DFS effort (during which
we might find additional non-canonical solutions) the effect is the same as if we had
detected the symmetry immediately. Thus SBNO effectively continues to try to break
symmetry at a node until DFS backtracks past that node. This gives it an interesting
property: a symmetry that would only save a small amount of DFS effort is unlikely
to be detected, because DFS might backtrack pastA before an appropriateg is dis-
covered; in contrast, one that would save a great deal of DFS effort has a long time in
which to be detected by local search. So SBNO should detect and break theimportant
symmetries, which we define to be those that make a significantdifference to the total
execution time. This adaptive behaviour distinguishes it from other partial symmetry
breaking methods such as lex2 and STAB.

2.3 Detection by local search

To make SBNO more concrete we now show how to use local search for detection,
though in principle any metaheuristic algorithm can be used. We have already defined
the search space (G) and objective function (the lex ranking ofAg). Local search also
requires a neighbourhood structure defining the possible local moves from each search
state. To impose a neighbourhood structure onG we choose some subsetH⊂G: from
any search stateg the possible local moves are the elements ofH leading to neighbour-
ing statesg ◦ H . Thus allG elements are local search states, and some of them (H)
are also local moves. To apply hill climbing, from each stateg we try to find a local
moveh such that the objective function is reduced (Ag◦h≺lex Ag). If a series of moves
(h1, h2, . . .) reduces the lex ranking sufficiently then we will findAg◦h1◦h2◦...≺lex A
and can backtrack fromA. This method has a very low memory requirement, as it main-
tains just one dynamically changing group element representing the current local search
state.

There is a relationship between local search and generators. A generatorfor a group
is a subsetH of the groupG that can be used to generate all elements ofG (denoted
〈H〉=G). A local search space isconnectedif there exists a series of local moves from
any state to any other state. Connectedness is an important property for local search,
because a disconnected space may prevent it from finding an optimal solution. It is easy
to show that the search space induced byH is connected if and only ifH is a generator
set forG.

Proposition 3. H is a generator set forG if and only if the search space induced byH
is connected.

Proof. Suppose thatH is a generator forG. We can move from anyg to anyg′ via
elementg−1◦g′ becauseg◦(g−1◦g′) = (g◦g−1)◦g′ = g′. H is a generator so we can
always find a series of elementsh1, h2, . . . such thath1◦h2◦. . . = g−1◦g′. Therefore
g◦h1◦h2 ◦ . . . = g′ and the space is connected. Conversely, suppose thatH is not a
generator forG. Then there exists ag∗ ∈ G such that no series of elements satisfies

h1, h2, . . . = g∗. But for anyg it holds thatg∗ = g−1◦g′ for some uniqueg′. Therefore
there exists an unreachable stateg′ from any stateg.

Thus if a non-generatorH is used then the local search can become trapped in
local minima, so random moves fromG \H must be used to counteract this. Random
restarts are a well-known technique for both lcoal and backtrack search, but here they
are necessary not only for heuristic reasons but because thespace is disconnected. In
our experiments we first used a generatorH . This is a natural approach which can
yield neighbourhoods of manageable size, because any groupG has a generator of size
log

2
(|G|) or smaller [13]. However, we found better results using a non-generatorH

and restoring connectedness by allowing occasional randommoves.
We use the following simple local search algorithm. Initialise g to be any group

element (we use the identity element). At each search tree nodeA call the following
procedure:

procedure SBNO
if Ag≺lexA

backtrack to the first nodeB such that
Bg≺lexB cannot be proved

else if A is a local minimum
g ← RANDOMISE(g)

else
g ← IMPROVE(g)
SBNO

This procedure performs hill-climbing until either (i) finding a solution that enables
backjumping, or (ii) reaching a local minimum, in which caseit applies random moves.
The IMPROVE function applies an improving local move tog, that is a moveh such
thatAg◦h≺lexAg. The neighbourhood is explored in random order to find these moves.
If no such move exists then the state is a local minimum and we exit after calling the
RANDOMISE function, which (wholly or partially) randomisesg.

3 Application to BIBDs

We test SBNO on a problem with very large symmetry groups, which has been used to
test several symmetry breaking methods. Balanced Incomplete Block Design (BIBD)
generation is a standard combinatorial problem, originally used in the statistical design
of experiments but finding other applications such as cryptography. A BIBD is defined
as an arrangement ofv distinct objects intob blocks such that each block contains
exactlyk distinct objects, each object occurs in exactlyr different blocks, and every
two distinct objects occur together in exactlyλ blocks. Another way of defining a BIBD
is in terms of itsincidence matrix, which is a binary matrix withv rows,b columns,r
ones per row,k ones per column, and scalar productλ between any pair of distinct rows.
A BIBD is therefore specified by its parameters(v, b, r, k, λ). An example is shown in
Figure 2.

For a BIBD to exist its parameters must satisfy the conditionsrv = bk, λ(v − 1) =
r(k − 1) andb ≥ v, but these are not sufficient conditions. Constructive methods can

be used to design BIBDs of special forms, but the general caseis very challenging
and there are surprisingly small open problems, the smallest being (22,33,12,8,4). One
source of intractability is the very large number of symmetries: given any solution,
any two rows or columns may be exchanged to obtain another solution. The symmetry
group is the direct productSv × Sb so there arev! b! symmetries. A survey of known
results is given in [4] and some references and instances aregiven in CSPLib1 (problem
28).















1 0 1 1 1 0 0 0 0 1
0 0 1 1 0 1 1 0 1 0
1 1 0 1 0 0 0 1 1 0
0 0 0 0 1 0 1 1 1 1
0 1 1 0 0 1 0 1 0 1
1 1 0 0 1 1 1 0 0 0















Fig. 2. A solution to BIBD instance(6, 10, 5, 3, 2)

We use the most direct CSP model for BIBD generation, which represents each
matrix element by a binary variable. There are three types ofconstraint: (i)v b-ary
constraints for ther ones per row, (ii)b v-ary constraints for thek ones per column, and
(iii) v(v − 1)/2 2b-ary constraints for theλ matching ones in each pair of rows.

BIBDs have matrix symmetry, so the rows and/or columns of anysolution can be
permuted arbitrarily to find another solution. For matrix symmetry the SBNO local
move neighbourhood we use is the set of row or column swaps involving the matrix
entry corresponding to the binary variablevf at which the last≺lex test failed. This
heuristic is inspired by conflict-directed heuristics usedin many local search algorithms
— it focuses search effort on the source of failure. A drawback is that by using a non-
generator ofG we might fail to find an improving local move (recall Proposition 3).
But using random moves at local minima compensates for this.

The RANDOMISE function of SBNO exchanges randomly chosen pairs of rows
and columns. We found best results with a variable numberi + 1 of row and column
exchanges, choosing each valuei = 0, 1, 2, . . . with probabilitypi(1 − p) wherep =
0.1. Choosing a random moveg might not be practicable for all problems, as it is not
always possible to efficiently generate a random group element [13]. But in the case of
matrix symmetry it is easy: we simply exchange randomly selected rows or columns.
Because we use an unbounded number of random moves at each local minimum, the
local search algorithm isprobabilistically approximately complete[14]: it is guaranteed
to find a solution given sufficient time. This property might seem unnecessary for a
nonstationary problem because changes to the objective function can cause escape from
local minima, but because of the exponential nature of backtrack search the required
changes might not occur for a long time.

1 http://www.csplib.org

4 Experiments

We implemented SBNO in the Eclipse constraint logic programming system [1]. SBNO
alone is a rather weak method so we do not present pure SBNO results; instead we aim
to show that SBNO+lex2 is a better symmetry breaking method than lex2 alone, and
competitive with other methods. When combining symmetry breaking methods care
must be taken that not all solutions are excluded, but this combination is correct because
lex2 constraints can be derived from the lexicographically-smallest property of SBNO
solutions.

Different researchers use different BIBD instances to testtheir algorithms. We use
those of [21] which are the hardest instances used for all-solution search in the liter-
ature, and contain most other problem sets. Table 1 compareslex2 alone with STAB
and lex2+SBNO in terms of the number of solutions found (the column “asym” shows
the number of non-symmetrical solutions). All our results use a single run despite the
nondeterminism of SBNO, because in experiments we found that the variation in results
decreased with problem hardness. Best results are shown inbold and unknown results
are denoted “?”.

The leadingpartial symmetry breaking method for BIBDs is currently STAB [21],
which breaks more symmetries and solves larger instances than other methods. The
results show that lex2+SBNO breaks more symmetries than STAB in almost all cases.
The two methods are implemented on different systems — ILOG Solver and Eclipse
— so a direct comparison of runtimes is not possible until we reimplement SBNO in
Solver, but we expect SBNO overheads to be low.

The leadingcompletesymmetry breaking method for BIBDs is currently SBDD+STAB
[22]. But complete methods pay a price in computation effortand the lex2 results in the
same paper are often faster. As shown in Figure 3, as problem hardness increases the
advantage of lex2+SBNO over lex2 increases. The difference is up to a factor of 26,
making it considerably faster than current complete methods. The plot shows two ver-
sions of SBNO: the version described above (“SBNO1”), and a version that only calls
SBNO at only half the DFS nodes, and performs at most one localmove at each call
(“SBNO2”). This reduces the runtime overhead so that addingSBNO to lex2 can speed
it up by a factor of up to 40, and improves the average runtime.This version breaks
fewer symmetries than STAB in most cases (not shown) but still far more than lex2.
Which version of SBNO is recommended depends on whether we are interested in min-
imising the number of solutions or the runtime, though a moreefficient implementation
might make the question of overhead irrelevant.

In conclusion, lex2+SBNO is certainly one of the most scalable symmetry breaking
methods for BIBDs, and (subject to verification with a Solverimplementation) might
be the most scalable.

5 Related work

There is often a trade-off in tree search between (i) performing expensive reasoning at
each node to potentially eliminate large subtrees, and (ii)processing nodes cheaply to
reduce overheads. Partial reasoning can be applied in the hope of finding something

lex2+
v b r k λ asym lex2 STAB SBNO
6 10 5 3 2 1 1 1 1
7 7 3 3 1 1 1 1 1
6 20 10 3 4 4 21 4 4
9 12 4 3 1 1 2 1 1
7 14 6 3 2 4 12 7 5
8 14 7 4 3 4 92 6 5
6 30 15 3 6 6 134 7 6

11 11 5 5 2 1 2 1 1
10 15 6 4 2 3 38 4 3
7 21 9 3 3 10 220 24 14

13 13 4 4 1 1 2 1 1
6 40 20 3 8 13 494 15 15
9 18 8 4 3 11 2,600 41 34

16 20 5 4 1 1 12 1 1
7 28 12 3 4 35 3,209 116 68
6 50 25 3 10 19 1,366 26 23
9 24 8 3 2 36 5,987 344 311

16 16 6 6 2 3 46 3 7
15 21 7 5 2 0 0 0 0
13 26 6 3 1 2 12,800 21 101
7 35 15 3 5 109 33,304 542 282

15 15 7 7 3 5 118 19 19
21 21 5 5 1 1 12 1 1
25 30 6 5 1 1 864 1 5
10 18 9 5 4 21 8,031 302 139
7 42 18 3 6 418 250,878 2,3341,247

22 22 7 7 2 0 0 0 0
7 49 21 3 7 1,508 1,460,332 8,8214,353
8 28 14 4 6 2,310 2,058,523 17,89011,424

19 19 9 9 4 6 6,520 71 17
10 30 9 3 2 960 724,662 24,56315,169
31 31 6 6 1 1 864 1 2
7 56 24 3 8 5,413 6,941,124 32,03814,428
9 36 12 3 3 22,521 14,843,772 315,53185,605
7 63 27 3 9 ? 28,079,394 105,95543,259

15 35 7 3 1 80 32,127,296 6,782 35,183
21 28 8 6 2 0 0 0 0
13 26 8 4 2 2461 3,664,243 83,33731,323
11 22 10 5 4 4393 6,143,408 106,52232,908
12 22 11 6 5 ? ? 228,14676,572
25 25 9 9 3 ? ? 17,0161,355
16 24 9 6 3 ? ? 769,48276,860

Table 1. Number of solutions found by different methods

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.001 0.01 0.1 1 10 100 1000 10000 100000 1e+06

le
x2

+
S

B
N

O

lex2

SBNO1
SBNO2

Fig. 3. Runtime scatter plots: lex2 vs lex2+SBNO

useful in a short time: for example [24] use local search within backtrack search to gen-
erate tight redundant constraints, an approach they callheuristic propagation. SBNO is
another example of this type of integration, but its novel architecture allows it to con-
tinue reasoning about a search tree node long after leaving it behind. With respect to
the general area of hybrid search algorithms, SBNO is a new integration of local and
tree search. [8] survey such hybrids, but we believe that thenonstationary optimisation
aspect of SBNO is unique. SBNO can also be seen as a form oflifting: representing a
large set by an abstraction, and searching the abstraction instead of the set. [15] apply
symmetry breaking to lifted SAT-encoded CSPs but are more concerned with detecting
symmetry, and in SBNO only the lex-leader constraints are lifted.

Among symmetry breaking methods, SBNO is most closely related to GAPLex
[16]. Both methods backtrack away from non-canonical solutions by detecting un-
posted lex-leader constraints that are currently violated. But whereas GAPLex uses
computational group theory software to guarantee detection, SBNO uses incomplete
local search. GAPLex turns out to be unsuited for breaking symmetry in BIBDs, and is
able to solve only the first two instances of Table 1 in a reasonable time. This shows the
advantage of using incomplete optimisation algorithms forpartial symmetry breaking.
GAPLex has also been defined only for variable symmetries, though it can be extended
to arbitrary symmetries using generalised lex-leader constraints.

In our previous work SBNO was used with simple backtrack search without con-
straint propagation, breaking symmetry by TABU search [19]and a memetic algorithm
[18]. It did quite well, but the experiments in this paper confirm our earlier specula-
tion that lack of propagation was the factor that prevented it from solving the hardest
BIBD instances. In previous versions it was also found necessary to modify the search
algorithms to make them more likely to detect pure row and column symmetries; in
this paper lex2 is used to break the pure symmetries, freeing SBNO to detect the more
general combined symmetries. Finally, in previous work SBNO was not characterised
as a lex-leader-based method, but as a variant of SBDD. The new characterisation is

more correct and shows that SBNO can be used with any symmetryand any constraint
solver.

6 Conclusion

This paper presented a new characterisation and more powerful implementation of
SBNO, a recently developed framework for applying metaheuristic search to symmetry
breaking during backtrack search. Previous methods have used constraint programming
or computational group theory algorithms to solve auxiliary problems arising in sym-
metry breaking, but as far as we know SBNO is the first use of metaheuristics for this
purpose. This new connection between symmetry breaking andmetaheuristics is likely
to be very fruitful for constraint programming. The small memory requirement and
modest computational overhead of SBNO make it suitable for handling very large sym-
metry groups. In experiments on balanced incomplete block designs, SBNO with lex2

broke more symmetries than two other partial symmetry breaking methods (lex2 and
STAB) and was faster than complete symmetry breaking methods.

In future work we will experiment with other metaheuristicsand applications, in
particular to problems with value symmetry and conditionalsymmetry. We also hope to
combine SBNO with partial symmetry breaking methods other than lex2, in particular
STAB. Combining two good techniques does not always yield further improvement but
STAB and SBNO are to some extent orthogonal: STAB breaks symmetry among the
unlabelled variables to increase constraint propagation,while SBNO breaks symmetry
among the labelled variables and is closer to an intelligentbacktracking technique. In
fact SBNO can potentially boost the performance ofany partial symmetry breaking
method, as it may discover any violated generalised lex-leader constraint (see Propo-
sition 2 above). SBNO could also be extended to conditional symmetry breaking by
exploiting the results of [25].

Acknowledgement Thanks to Raphael Finkel for helpful comments.

References

1. K. R. Apt and M. G. Wallace.Constraint Logic Programming Using Eclipse. Cambridge
University Press, 2007.

2. R. Backofen and S. Will. Excluding symmetries in constraint-based search. In5th Interna-
tional Conference on Principles and Practice of ConstraintProgramming, volume 1713 of
Lecture Notes in Computer Science, pages 73–87. Springer, 1999.

3. C. A. Brown, Finkelstein, and P. W. Purdom. Backtrack searching in the presence of sym-
metry. InApplied Algebra, Algebraic Algorithms and Error-Correcting Codes, volume 357
of Lecture Notes in Computer Science, pages 99–110. Springer, 1988.

4. C. J. Colbourn and J. H. Dinitz, editors.The CRC Handbook of Combinatorial Designs.
CRC Press, 1996.

5. J. Crawford, M. L. Ginsberg, E. Luks, and A. Roy. Symmetry-breaking predicates for search
problems. InPrinciples of Knowledge Representation and Reasoning, pages 148–159. Mor-
gan Kaufmann, 1996.

6. T. Fahle, S. Schamberger, and M. Sellmann. Symmetry breaking. In 7th International Con-
ference on Principles and Practice of Constraint Programming, volume 2239 ofLecture
Notes in Computer Science, pages 93–107. Springer, 2001.

7. P. Flener, A. M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and T. Walsh. Breaking
row and column symmetries in matrix models. In8th International Conference on Princi-
ples and Practice of Constraint Programming, volume 2470 ofLecture Notes in Computer
Science, pages 462–476. Springer, 2002.

8. F. Focacci, F. Laburthe, and A. Lodi.Handbook of Metaheuristics, chapter Local Search and
Constraint Programming, pages 369–403. Kluwer Academic Publishers, 2003.

9. F. Focacci and M. Milano. Global cut framework for removing symmetries. In7th Interna-
tional Conference on Principles and Practice of ConstraintProgramming, volume 2239 of
Lecture Notes in Computer Science, pages 77–92. Springer, 2001.

10. The GAP Group.GAP – Groups, Algorithms, and Programming, Version 4.4.12, 2008.
11. I. P. Gent, W. Harvey, and T. Kelsey. Groups and constraints: Symmetry breaking during

search. In8th International Conference on Principles and Practice ofConstraint Program-
ming, volume 2470 ofLecture Notes in Computer Science, pages 415–430. Springer, 2002.

12. I. P. Gent and B. M. Smith. Symmetry breaking in constraint programming. In14th European
Conference on Artificial Intelligence, pages 599–603, 2000.

13. D. F. Holt, B. Eick, and E. A. O’Brien.Handbook of Computational Group Theory. Chapman
& Hall/CRC, 2005.

14. H.H. Hoos and T. Stützle.Stochastic Local Search: Foundations and Applications. Morgan
Kaufmann, 2004.

15. D. Joslin and A. Roy. Exploiting symmetry in lifted csps.In Fourteenth National Confer-
ence on Artificial Intelligence and Ninth Innovative Applications of Artificial Intelligence
Conference, pages 197–202. AAAI Press / The MIT Press, 1997. Providence, Rhode Island,
USA.

16. T. Kelsey, C. Jefferson, K. Petrie, and S. Linton. Gaplex: Generalised static symmetry break-
ing. In Sixth International Workshop on Symmetry Breaking, pages 17–23, 2006. Nantes,
France.

17. K. E. Petrie and B. M. Smith. Symmetry breaking in graceful graphs. Technical Report
APES-56a-2003, APES Research Group, 2003.

18. S. D. Prestwich, B. Hnich, R. Rossi, and S. A. Tarim. Symmetry breaking by metaheuristic
search. In8th International Workshop on Symmetry and Constraint Satisfaction Problems,
2008.

19. S. D. Prestwich, B. Hnich, R. Rossi, and S. A. Tarim. Symmetry breaking by nonstationary
optimisation. In19th Irish Conference on Artificial Intelligence and Cognitive Science, 2008.

20. J.-F. Puget. On the satisfiability of symmetrical constraint satisfaction problems. InMethod-
ologies for Intelligent Systems, volume 689 ofLecture Notes in Artificial Intelligence, pages
350–361. Springer, 1993.

21. J.-F. Puget. Symmetry breaking using stabilizers. In9th International Conference on Prin-
ciples and Practice of Constraint Programming, volume 2833 ofLecture Notes in Computer
Science, pages 585–599. Springer, 2003.

22. J.-F. Puget. Symmetry breaking revisited.Constraints, 10(1):23–46, 2005.
23. J.-F. Puget. An efficient way of breaking value symmetries. InTwenty-First National Confer-

ence on Artificial Intelligence, pages 117–122. AAAI Press / The MIT Press, 2006. Stanford,
California, USA.

24. M. Sellmann and W. Harvey. Heuristic constraint propagation. In 4th International Work-
shop on Integration of AI and OR techniques in Constraint Programming for Combinatorial
Optimization Problems, pages 191–204, 2002. Le Croisic, France.

25. T. Walsh. General symmetry breaking constraints. In12th International Conference on Prin-
ciples and Practice of Constraint Programming, volume 4204 ofLecture Notes in Computer
Science, pages 650–664. Springer, 2006.

