Symmetry Breaking by L ocal Search*

S. D. Prestwich, B. Hnick?, H. Simonig, R. Rossi, and S. A. Tarirt

LCork Constraint Computation Centre, University CollegekCtreland
2Faculty of Computer Science, Izmir University of Economitsrkey
3Logistics, Decision and Information Sciences Group, Waggen UR, The Netherlands
“Department of Management, Hacettepe University, Turkey
s. prestw ch@s. ucc. i e,brahi mhnich@eu. edu.tr,
h. si noni s@c. ucc.ie,roberto.rossi @ur.nl,
armagan. tari m@hacettepe. edu. tr

Abstract. The presence of symmetry in constraint satisfaction problean
cause a great deal of wasted search effort, and several dsdibrdoreaking sym-
metries have been reported. We describe a new approach ttal ggmmetry
breaking: using local search in the symmetry group to defietated lex-leader
constraints. The local search is interleaved with the acktsearch performed
by the constraint solver, and violations are used to bagjimthe search tree.
The method works with any form of symmetry and any constragtter, and
can handle very large symmetry groups. In combination wihhie-lex sym-
metry breaking it gives good results on balanced incompiketek designs. This
opens up a fruitful new connection between the fields of symnieeaking and
metaheuristics.

1 Introduction

Many constraint satisfaction problems (CSPs) contain sgtrigs. For example the N-
queens problem has 8 (each solution may be rotated througt890or 270 degrees,
and independently reflected) while other problems may hapereentially many sym-
metries. The presence of symmetry implies that searchtédfbeing wasted by explor-
ing symmetrically equivalent regions of the search spagelBninating the symmetry
(symmetry breakingve may speed up the search significantly. Several distiethous
have been reported for symmetry breaking in CSPs.

Reformulatinga problem to eliminate its symmetries is an excellent apgredere
possible, but in many problems it is difficult or impossilidealiminate all symmetries.
Probably the most common approach is to break symmetriesitijng constraintso
the model. It has been shown that all symmetries can in miadie broken by this
method [20], which was developed into thex-leadermethod for Boolean variables
and variable symmetries by [5], extended to hon-Boolearakbbes and independent

* S. A. Tarim and B. Hnich are supported by the Scientific andhiietogical Research Council
of Turkey (TUBITAK) under Grant No. SOBAG-108K027. R. Rossisupported by Science
Foundation Ireland under Grant No. 03/CE3/1405 as partetténtre for Telecommunications
Value-Chain-Driven Research (CTVR). R. Rossi and H. Simamné supported by Grant No.
05/IN/1886.

variable and value symmetries by [17, 23], and to arbitrgmgraetries by [25]. In prac-
tice too many constraints might be needed if there are exgimtly many symmetries.
Instead of explicitly adding lex-leader constraints to adelpa computational group
theory system such as GAP [10] can be used during search teefinhnt (unposted)
constraints, as in the GAPLex method [16]. Good results baem obtained by adding
subsets of the constraints to obtgiartial symmetry breaking. For example in ma-
trix models it is common to have permutation symmetry on botlis and columns,
but breaking all such symmetries is NP-hard [5] and requaregxponential number
of symmetry breaking constraints. Breaking row and colulymreetries separately
(double-lexor lex?) [7] does not break all combined symmetries but is tractalpie
quite powerful.

Symmetry Breaking During Sear¢(BBDS) was invented by [2] and further eluci-
dated by [12]. In SBDS constraints are added during searthaspafter backtracking
from a decision, future symmetrically equivalent decisi@me disallowed. SBDS has
been implemented by combining a constraint solver with tA®Gystem, giving GAP-
SBDS [11], which allows symmetries to be specified more cartipaia group gener-
ators. SBDS can still suffer from the problem that too manystints might need to
be added: it can handle billions of symmetries but some problrequire many more.
A related method to SBDS calléslymmetry Breaking Using StabilizlSTAB) [21]
only adds constraints that do not affect the current paréiehble assignment, and has
other optimisations to reduce the arity and number of caigs. It does not break all
symmetries but has given very good results on problems vaitto w0 symmetries.

Symmetry Breaking by Dominance Detectf@BDD) was independently invented
by [6, 9] (a similar algorithm was also described by [3]) amnbined with GAP to
give GAP-SBDD [11]. SBDD breaks all symmetries but does miut eonstraints be-
fore or during search, so it does not suffer from the spacbleno of some methods.
Instead it detects when the current search state is synualevia previously-explored
“dominating” state. It was shown by [22] that the dominarestg can be combined into
a single auxiliary CSP then solved by standard constraognamming methods.

In this paper we describe and test a new approach to partiaingyry breaking,
which uses local search to detect unposted, violated, ghsexl lex-leader constraints.
Section 2 describes the new method, Section 3 presents atoalge Section 4 reports
experimental results, Section 5 discusses related woik,S&ttion 6 concludes the
paper. We assume a basic knowledge of group theory (seelf2Bjstandard textbook
on the subject) and its application to symmetry breakingimstraint programming (see
the works cited above). This paper is an extension of preweark [18, 19].

2 Detecting violated lex-leader constraints

Suppose that we wish to solve a CSP using a standard consiar with depth-first
search (DFS) and constraint processing. Suppose alschtharoblem has symmetry
defined by a groug-. [25] shows that any form of symmetry can be broken by adding
generalised lex-leader constrainis <., X9 for all g € G, whereX is a total assign-
ment on a fixed ordering of the problem variabl&9, is the image ofX underg, X9

is admissible(it is also a total assignment), ant¢l., is the standard lexicographical

ordering relation. These constraints prune all solutiowept thecanonical(lex-least)
ones. But in general an exponential number of the constrairet needed, making the
method impractical for problems with large symmetry groups

2.1 Thedetection problem

We propose a new way of using generalised lex-leader camstrdo show that it is
valid for all forms of symmetry and all constraint solverg wse the results of [25].
At a search tree node with partial assignménif we can find a group elemepte G
such that4¢ is admissible (it is also a partial assignment) atfd<,., A, then we can
backtrack becausd violates a lex-leader constraint. Lex-ordering is easiierded
to partial assignments: if totally-assigned prefixesiéfand A have the property that
A9 <.« A then the constraint is violated.

As an example, consider the 4-queens problem with the ussiah&etries includ-
ing reflection about the vertical axis: the group elemenbtiethbyz. Suppose that we
solve this problem using a matrix model in which each square board corresponds
to a binary variable, 1 denotes a queen and 0 no queen at #iibpoSuppose also that
we apply DFS and assign variables in a static row-by-row tteamn-by-column or-
der. Consider the partial assignmeht= (1,0,0,0,?,...) corresponding to the board
configuration in Figure 1(i), where a space denotes no quaérgenotes a queen,
and “?” denotes no decision. Na#” is the partial assignmeii®, 0,0, 1,7, ...) corre-
sponding to the board configuration in Figure 1(ii). Bift <. A whatever values are
chosen for the unassigned variablesAsis symmetric to the lex-smaller nod& and
can be backtracked from. Note that it is also possible tcoreas unassigned variables
— for example(1,0, z,0,0) <ix (1,0,1, y, 1) whatever the values of the unassigned
variablesr andy — but in experiments we found this to be unnecessary.

A A B
[] [] []
21?227 |27 .
2?22?71 |??1?7? °??
2?22?20 |277? |?]???

0] (if) (iii)
Fig. 1. Search states in 4-queens

We shall apply local search to the auxiliary problem of firgdéry that causes gen-
eralised lex-leader violation. The method is justified by fibllowing proposition:

Proposition 1. Suppose that we have a full set of unposted generaliseéésbet con-

straints, under some fixed variable ordering. At a search trede with partial assign-
mentA, if we can find ag € G such thatA9 is admissible and4? <.« A under the

same variable ordering, theA violates a lex-leader constraint.

Proof. If A9 is admissible and19 <).x A thenf(A?) <. 0(A) for any assignment

0 of the unassigned variables i leading to an admissible total assignment (at least
one suchd always exists). Therefore for each sutthe lex-leadef(A) <jox 0(A9) is
violated byA.

Conversely, all symmetries can in principle be detecteddaych on the symmetry
group:

Proposition 2. If A violates a generalised lex-leader constraint then theistey € G
such thatA4¢ is admissible andi¥ <, A.

Proof. Suppose thatl violates a lex-leader constraitd <., X9 for someg € G.
ThereforeX 9 <.« X at A, so it must also be true that? <., A.

These results do not depend on the details of the consti@dirdrqfor example its
value and variable ordering heuristics, or its propagagigiorithms) and apply to all
forms of symmetry. However, lex-leader violation will beteleted most often if the
constraint solver uses the same fixed variable orderingthatused to define the lex-
leader constraints. The value ordering used by the conssalver also has an effect:
pruning by lex-leader violation does not necessarily resihe constraint solver search
heuristics, and might therefore search more of the tree dodfifirst solution. It is pos-
sible to make the search heuristics respect lex-leadeatiool by using lexicographical
value orderings, but in this paper we are interested onlyliscdution search (modulo
symmetry) so the issue does not arise.

2.2 Detection asnonstationary optimisation

We can model the detection problem as an optimisation pnobléh G as the search
space, so that eaghe G is a search state. The objective functionydd be minimised

is the lex ranking ofd9. On finding a statey with sufficiently small objective value
(less than the lex ranking of) we have solved the detection problem. This opens up
the field of symmetry breaking to a wide range of metahegratorithms.

A practical question here is: how much effort should we devotdetection at each
DFS node? If an incomplete search algorithm fails to find aidating state, this might
be because there is no such state — but it could also be beiteuakyorithm has not
searched hard enough. Too little search might miss imposiagmmetries, while too
much will slow down DFS. We expend limited effort at each skharode to ensure rea-
sonable computational overhead. For example if we applgl lsearch then we might
apply one or a few local moves per search tree node, or onlyraé s10des. The opti-
misation problem now has an objective function that chamgéme: as DFS changes
variable assignments, the objective value of any givenchanges because it depends
on AY. This is callednonstationary optimisatiom the optimisation literature, so the
framework is calledsymmetry Breaking by Nonstationary Optimisat{S88NO).

Note that even if detection fails at a node, it might succetahanodes later. DFS
can then backtrack, possibly jumping many levels in thectetatee. For example con-
sider the 4-queens problem again. Suppose we did not mandige group element

at search statd, but instead continued with DFS and only discovereoh reaching
search statd3 shown in Figure 1(iii). NowB* <., B so we can backtrack froms.
On successful detection we backtrack until it is no longerdase thatl? <., A for
the current partial assignment Apart from some wasted DFS effort (during which
we might find additional non-canonical solutions) the dffeche same as if we had
detected the symmetry immediately. Thus SBNO effectivelytiues to try to break
symmetry at a node until DFS backtracks past that node. s gt an interesting
property: a symmetry that would only save a small amount o$[@Fort is unlikely
to be detected, because DFS might backtrack dabefore an appropriate is dis-
covered; in contrast, one that would save a great deal of D68 bas a long time in
which to be detected by local search. So SBNO should deteldbaaak thamportant
symmetries, which we define to be those that make a signifdifiatence to the total
execution time. This adaptive behaviour distinguishesaitf other partial symmetry
breaking methods such as fexnd STAB.

2.3 Detection by local search

To make SBNO more concrete we now show how to use local searadffetection,
though in principle any metaheuristic algorithm can be u¥éel have already defined
the search spacé:j and objective function (the lex ranking @f). Local search also
requires a neighbourhood structure defining the possibkd lnoves from each search
state. To impose a neighbourhood structur&owe choose some subsgtc G: from
any search statgthe possible local moves are the element&déading to neighbour-
ing statesy o H. Thus allG elements are local search states, and some of thBm (
are also local moves. To apply hill climbing, from each statee try to find a local
moveh such that the objective function is reducet¥{" <. A9). If a series of moves
(hi, he, ...) reduces the lex ranking sufficiently then we will fin°?1°m20- <, A
and can backtrack from. This method has a very low memory requirement, as it main-
tains just one dynamically changing group element reptesgtihe current local search
state.

There is a relationship between local search and generatgeneratorfor a group
is a subsefi of the groupG that can be used to generate all element& ¢fienoted
(H)=G). Alocal search space &dnnectedf there exists a series of local moves from
any state to any other state. Connectedness is an importgrenty for local search,
because a disconnected space may prevent it from findingtanadjgolution. It is easy
to show that the search space inducedbis connected if and only iff is a generator
set forG.

Proposition 3. H is a generator set fof if and only if the search space induced By
is connected.

Proof. Suppose thaf! is a generator fotz. We can move from any to any g’ via
elementy~!og’ becausgo (g 'og’) = (gog~!)og’ = ¢’. H is a generator so we can
always find a series of elemerits, ho, . .. such thath; ohoo... = g~ 'og’. Therefore
gohiohoo... = ¢’ and the space is connected. Conversely, supposéethatmot a
generator forG. Then there exists a* € G such that no series of elements satisfies

hi, ha,... = g*. Butfor anyg it holds thatg* = g—'og’ for some unique’. Therefore
there exists an unreachable stgtérom any statey.

Thus if a non-generatoll is used then the local search can become trapped in
local minima, so random moves fro6\ H must be used to counteract this. Random
restarts are a well-known technique for both Icoal and backtsearch, but here they
are necessary not only for heuristic reasons but becausp#uoe is disconnected. In
our experiments we first used a generatbr This is a natural approach which can
yield neighbourhoods of manageable size, because any gitwas a generator of size
log,(|G|) or smaller [13]. However, we found better results using a-generatot!
and restoring connectedness by allowing occasional ramdoves.

We use the following simple local search algorithm. Iniialg to be any group
element (we use the identity element). At each search trde Accall the following
procedure:

procedure SBNO

if A9 <o A

backtrack to the first nodB such that
BY <1.x B cannot be proved

else if Alis a local minimum
g — RANDOMISE(yg)

else
g «— IMPROVE(g)
SBNO

This procedure performs hill-climbing until either (i) fiimgy a solution that enables
backjumping, or (ii) reaching a local minimum, in which cétsgpplies random moves.
The IMPROVE function applies an improving local movegtothat is a move: such
that A9°" <), A9. The neighbourhood is explored in random order to find themees
If no such move exists then the state is a local minimum andxiteaéier calling the
RANDOMISE function, which (wholly or partially) randomise.

3 Application to BIBDs

We test SBNO on a problem with very large symmetry groupscivhias been used to
test several symmetry breaking methods. Balanced IncaeBleck Design (BIBD)
generation is a standard combinatorial problem, origynaded in the statistical design
of experiments but finding other applications such as ciyyatehy. A BIBD is defined
as an arrangement af distinct objects intdb blocks such that each block contains
exactly k distinct objects, each object occurs in exaatlglifferent blocks, and every
two distinct objects occur together in exacklplocks. Another way of defining a BIBD
is in terms of itsincidence matrixwhich is a binary matrix withy rows, b columns,r
ones per rowk ones per column, and scalar produdtetween any pair of distinct rows.
A BIBD is therefore specified by its parametétsb, r, k, \). An example is shown in
Figure 2.

For a BIBD to exist its parameters must satisfy the conditian= bk, A\(v — 1) =
r(k — 1) andb > v, but these are not sufficient conditions. Constructive wdstican

be used to design BIBDs of special forms, but the general isagery challenging
and there are surprisingly small open problems, the smaléssg (22,33,12,8,4). One
source of intractability is the very large number of symnestr given any solution,
any two rows or columns may be exchanged to obtain anotheti@al The symmetry
group is the direct produd§, x S, so there are!b! symmetries. A survey of known
results is given in [4] and some references and instancegane in CSPLiB (problem
28).

101110000
001101101
110100011
000010111
011001010
110011100

Fig.2. A solution to BIBD instanc€6, 10, 5, 3, 2)

We use the most direct CSP model for BIBD generation, whigtegents each
matrix element by a binary variable. There are three typesooktraint: (i)v b-ary
constraints for the ones per row, (iip v-ary constraints for thé ones per column, and
(iii) v(v — 1)/2 2b-ary constraints for th& matching ones in each pair of rows.

BIBDs have matrix symmetry, so the rows and/or columns of solytion can be
permuted arbitrarily to find another solution. For matrixosyetry the SBNO local
move neighbourhood we use is the set of row or column swapsviimg the matrix
entry corresponding to the binary variahblg at which the last<., test failed. This
heuristic is inspired by conflict-directed heuristics useshany local search algorithms
— it focuses search effort on the source of failure. A drawdia¢hat by using a non-
generator ofG we might fail to find an improving local move (recall Propasit 3).
But using random moves at local minima compensates for this.

The RANDOMISE function of SBNO exchanges randomly chosarspat rows
and columns. We found best results with a variable nuniben of row and column
exchanges, choosing each vaiue 0,1, 2, ... with probability p’(1 — p) wherep =
0.1. Choosing a random movemight not be practicable for all problems, as it is not
always possible to efficiently generate a random group ai¢fi8]. But in the case of
matrix symmetry it is easy: we simply exchange randomlycebtbrows or columns.
Because we use an unbounded number of random moves at eatimiognum, the
local search algorithm igrobabilistically approximately complefg4]: it is guaranteed
to find a solution given sufficient time. This property migleesm unnecessary for a
nonstationary problem because changes to the objectietidarcan cause escape from
local minima, but because of the exponential nature of wacktsearch the required
changes might not occur for a long time.

! http://www.csplib.org

4 Experiments

We implemented SBNO in the Eclipse constraint logic prograng system [1]. SBNO
alone is a rather weak method so we do not present pure SBN{sréastead we aim
to show that SBNO+lekis a better symmetry breaking method thar?lefone, and
competitive with other methods. When combining symmetryaking methods care
must be taken that not all solutions are excluded, but thighéoation is correct because
lex? constraints can be derived from the lexicographically{sstproperty of SBNO
solutions.

Different researchers use different BIBD instances tottest algorithms. We use
those of [21] which are the hardest instances used for allisa search in the liter-
ature, and contain most other problem sets. Table 1 comjefeslone with STAB
and leX+SBNO in terms of the number of solutions found (the columsyta” shows
the number of non-symmetrical solutions). All our resulée @& single run despite the
nondeterminism of SBNO, because in experiments we founidhtbaariation in results
decreased with problem hardness. Best results are shomotdrand unknown results
are denoted “?".

The leadingpartial symmetry breaking method for BIBDs is currently STAB [21],
which breaks more symmetries and solves larger instanegsdther methods. The
results show that |E€xSBNO breaks more symmetries than STAB in almost all cases.
The two methods are implemented on different systems — ILOBeS and Eclipse
— so a direct comparison of runtimes is not possible until aiemplement SBNO in
Solver, but we expect SBNO overheads to be low.

The leadingcompletesymmetry breaking method for BIBDs is currently SBDD+STAB
[22]. But complete methods pay a price in computation etiort the leX results in the
same paper are often faster. As shown in Figure 3, as probdednéss increases the
advantage of 163SBNO over lex increases. The difference is up to a factor of 26,
making it considerably faster than current complete methdtle plot shows two ver-
sions of SBNO: the version described above (“SBNO1"), andraien that only calls
SBNO at only half the DFS nodes, and performs at most one foocak at each call
(“SBNO2"). This reduces the runtime overhead so that ad8RNO to leX can speed
it up by a factor of up to 40, and improves the average runtifinés version breaks
fewer symmetries than STAB in most cases (not shown) buitfatilmore than lex.
Which version of SBNO is recommended depends on whetheravet@rested in min-
imising the number of solutions or the runtime, though a naffieient implementation
might make the question of overhead irrelevant.

In conclusion, lex+SBNO is certainly one of the most scalable symmetry bregkin
methods for BIBDs, and (subject to verification with a Solireplementation) might
be the most scalable.

5 Redated work

There is often a trade-off in tree search between (i) periftgraxpensive reasoning at
each node to potentially eliminate large subtrees, ang(@tessing nodes cheaply to
reduce overheads. Partial reasoning can be applied in the diofinding something

lex*+

v b rk XA asym leX STAB SBNO
610 53 2 1 1 1 1
77 331 1 1 1 1
620103 4 4 21 4 4
912 43 1 1 2 1 1
714 63 2 4 12 7 5
814 74 3 4 92 6 5
630153 6 6 134 7 6
1111 55 2 1 2 1 1
1015 64 2 3 38 4 3
721 93 3 10 220 24 14
1313 44 1 1 2 1 1
640203 8 13 494 15 15
918 84 3 11 2,600 41 34
1620 54 1 1 12 1 1
728123 4 35 3,209 116 68
65025310 19 1,366 26 23
924 83 2 36 5,987 344 311
1616 66 2 3 46 3 7
1521 75 2 0 0 0 0
1326 63 1 2 12,800 21 101
735153 5 109 33,304 542 282
1515 77 3 5 118 19 19
2121 55 1 1 12 1 1
2530 65 1 1 864 1 5
1018 95 4 21 8,031 302 139
742183 6 418 250,878 2,334,247
2222 77 2 0 0 0 0
749213 7 1,508 1,460,332 8,824,353
828144 6 2,310 2,058,523 17,89D424
1919 99 4 6 6,520 71 17
1030 93 2 960 724,662 24,588,169
3131 66 1 1 864 1 2

756243 8 5,413 6,941,124 32,088428
936123 322,521 14,843,772 315,585,605
763273 9 ? 28,079,394 105,983,259

1535 73 1 80 32,127,296 6,782 35,183

2128 86 2 0 0 0 0

1326 84 2 2461 3,664,243 83,33L,323

1122105 4 4393 6,143,408 106,522908

1222116 5 ? ? 228,148,572

2525 99 3 ? ? 17,0161,355
3

1624 96 ? ? 769,485,860

Table 1. Number of solutions found by different methods

100000

SBNOL | + "
10000 [PBNOZ X - —
X
b X
1000 | T X p
<X S
° 100 | x X 3
z .
% 10 b + >§§<; a
+ + X
N o i
E 1k + X n
+
+
X
01F k4 z]
001 F]
0.001 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0001 001 0.1 1 10 100 1000 10000 100000 1e+06

lex2

Fig. 3. Runtime scatter plots: I1éxs lex’+SBNO

useful in a short time: for example [24] use local search witlacktrack search to gen-
erate tight redundant constraints, an approach theyeallistic propagationSBNO is
another example of this type of integration, but its noveh#ecture allows it to con-
tinue reasoning about a search tree node long after leawvlehind. With respect to
the general area of hybrid search algorithms, SBNO is a n&giation of local and
tree search. [8] survey such hybrids, but we believe thahtimstationary optimisation
aspect of SBNO is unique. SBNO can also be seen as a fotiftireg: representing a
large set by an abstraction, and searching the abstracstesid of the set. [15] apply
symmetry breaking to lifted SAT-encoded CSPs but are moneemed with detecting
symmetry, and in SBNO only the lex-leader constraints dtedi

Among symmetry breaking methods, SBNO is most closely edlad GAPLex
[16]. Both methods backtrack away from non-canonical sohgt by detecting un-
posted lex-leader constraints that are currently violaBatt whereas GAPLex uses
computational group theory software to guarantee detec8BNO uses incomplete
local search. GAPLex turns out to be unsuited for breakimgragtry in BIBDs, and is
able to solve only the first two instances of Table 1 in a reabtatime. This shows the
advantage of using incomplete optimisation algorithmspfantial symmetry breaking.
GAPLex has also been defined only for variable symmetriesigh it can be extended
to arbitrary symmetries using generalised lex-leadertcaimgs.

In our previous work SBNO was used with simple backtrackdearthout con-
straint propagation, breaking symmetry by TABU search Hr8] a memetic algorithm
[18]. It did quite well, but the experiments in this paper fion our earlier specula-
tion that lack of propagation was the factor that preventdém solving the hardest
BIBD instances. In previous versions it was also found nemgsto modify the search
algorithms to make them more likely to detect pure row andimol symmetries; in
this paper lex is used to break the pure symmetries, freeing SBNO to ddteanbre
general combined symmetries. Finally, in previous work $BMas not characterised
as a lex-leader-based method, but as a variant of SBDD. Tiecharacterisation is

more correct and shows that SBNO can be used with any symmauedrgny constraint
solver.

6 Conclusion

This paper presented a new characterisation and more pdwenlementation of
SBNO, a recently developed framework for applying metaiséiaisearch to symmetry
breaking during backtrack search. Previous methods hadeasnstraint programming
or computational group theory algorithms to solve auxjliproblems arising in sym-
metry breaking, but as far as we know SBNO is the first use ohhmatristics for this
purpose. This new connection between symmetry breakingreatdheuristics is likely
to be very fruitful for constraint programming. The small mary requirement and
modest computational overhead of SBNO make it suitabledodling very large sym-
metry groups. In experiments on balanced incomplete bleskgms, SBNO with lek
broke more symmetries than two other partial symmetry bngainethods (lex and
STAB) and was faster than complete symmetry breaking mesthod

In future work we will experiment with other metaheuristaxsd applications, in
particular to problems with value symmetry and conditi®@yathmetry. We also hope to
combine SBNO with partial symmetry breaking methods othantleX, in particular
STAB. Combining two good techniques does not always yietth&r improvement but
STAB and SBNO are to some extent orthogonal: STAB breaks sstmynamong the
unlabelled variables to increase constraint propagatvbile SBNO breaks symmetry
among the labelled variables and is closer to an intellipacktracking technique. In
fact SBNO can potentially boost the performanceaaf partial symmetry breaking
method, as it may discover any violated generalised leddeaonstraint (see Propo-
sition 2 above). SBNO could also be extended to conditiopadnsetry breaking by
exploiting the results of [25].

Acknowledgement Thanks to Raphael Finkel for helpful comments.

References

1. K. R. Apt and M. G. WallaceConstraint Logic Programming Using Eclips&€ambridge
University Press, 2007.

2. R. Backofen and S. Will. Excluding symmetries in constirdiased search. Bth Interna-
tional Conference on Principles and Practice of Constranbgramming volume 1713 of
Lecture Notes in Computer Scienpages 73—-87. Springer, 1999.

3. C. A. Brown, Finkelstein, and P. W. Purdom. Backtrack sleiag in the presence of sym-
metry. InApplied Algebra, Algebraic Algorithms and Error-Corraugi Codesvolume 357
of Lecture Notes in Computer Scienpages 99-110. Springer, 1988.

4. C. J. Colbourn and J. H. Dinitz, editor§.he CRC Handbook of Combinatorial Designs
CRC Press, 1996.

5. J. Crawford, M. L. Ginsberg, E. Luks, and A. Roy. Symmeirgaking predicates for search
problems. InPrinciples of Knowledge Representation and Reasqmages 148-159. Mor-
gan Kaufmann, 1996.

6.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

T. Fahle, S. Schamberger, and M. Sellmann. Symmetry ingakn 7th International Con-
ference on Principles and Practice of Constraint Programgnivolume 2239 ofLecture
Notes in Computer Scienggages 93—-107. Springer, 2001.

. P. Flener, A. M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, Bearson, and T. Walsh. Breaking

row and column symmetries in matrix models. 8t International Conference on Princi-
ples and Practice of Constraint Programminglume 2470 ofLecture Notes in Computer
Sciencepages 462-476. Springer, 2002.

. F. Focacci, F. Laburthe, and A. Lodiandbook of Metaheuristicshapter Local Search and

Constraint Programming, pages 369-403. Kluwer Academiidishers, 2003.

. F. Focacci and M. Milano. Global cut framework for remaysymmetries. IiYth Interna-

tional Conference on Principles and Practice of Constra&nbgramming volume 2239 of
Lecture Notes in Computer Scienpages 77-92. Springer, 2001.

The GAP GroupGAP — Groups, Algorithms, and Programming, Version 4.42008.

I. P. Gent, W. Harvey, and T. Kelsey. Groups and condtafiymmetry breaking during
search. Ir8th International Conference on Principles and PracticeCainstraint Program-
ming volume 2470 ot ecture Notes in Computer Scienpages 415-430. Springer, 2002.
I. P. Gent and B. M. Smith. Symmetry breaking in constigaiogramming. Irl4th European
Conference on Atrtificial Intelligencpages 599-603, 2000.

D. F. Holt, B. Eick, and E. A. O'BrierHandbook of Computational Group Theofyhapman
& Hall/CRC, 2005.

H.H. Hoos and T. StitzleStochastic Local Search: Foundations and Applicatidv®rgan
Kaufmann, 2004.

D. Joslin and A. Roy. Exploiting symmetry in lifted csgs. Fourteenth National Confer-
ence on Artificial Intelligence and Ninth Innovative Applions of Artificial Intelligence
Conferencepages 197-202. AAAI Press / The MIT Press, 1997. ProvideRisede Island,
USA.

T. Kelsey, C. Jefferson, K. Petrie, and S. Linton. GapBeneralised static symmetry break-
ing. In Sixth International Workshop on Symmetry Breakipgges 17-23, 2006. Nantes,
France.

K. E. Petrie and B. M. Smith. Symmetry breaking in gratghaphs. Technical Report
APES-56a-2003, APES Research Group, 2003.

S. D. Prestwich, B. Hnich, R. Rossi, and S. A. Tarim. Symnyniereaking by metaheuristic
search. Ir8th International Workshop on Symmetry and Constraints&attion Problems
2008.

S. D. Prestwich, B. Hnich, R. Rossi, and S. A. Tarim. Sytnyriereaking by nonstationary
optimisation. Inl9th Irish Conference on Atrtificial Intelligence and CogrétScience2008.
J.-F. Puget. On the satisfiability of symmetrical caxistrsatisfaction problems. Method-
ologies for Intelligent Systemgolume 689 of_ecture Notes in Artificial Intelligencgages
350-361. Springer, 1993.

J.-F. Puget. Symmetry breaking using stabilizer9tlninternational Conference on Prin-
ciples and Practice of Constraint Programminglume 2833 of.ecture Notes in Computer
Sciencepages 585-599. Springer, 2003.

J.-F. Puget. Symmetry breaking revisit€hnstraints 10(1):23-46, 2005.

J.-F. Puget. An efficient way of breaking value symmestrie Twenty-First National Confer-
ence on Artificial Intelligencepages 117-122. AAAI Press / The MIT Press, 2006. Stanford,
California, USA.

M. Sellmann and W. Harvey. Heuristic constraint propiaga In 4th International Work-
shop on Integration of Al and OR techniques in ConstraintgPanming for Combinatorial
Optimization Problemgages 191-204, 2002. Le Croisic, France.

25. T. Walsh. General symmetry breaking constraintd 2t International Conference on Prin-
ciples and Practice of Constraint Programminglume 4204 ot ecture Notes in Computer
Sciencepages 650-664. Springer, 2006.

