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A B S T R A C T

In our daily lives, we consume foods that have been transported, stored, prepared, cooked, or otherwise processed by
ourselves or others. Food storage and preparation have drastic effects on the chemical composition of foods. Untargeted
mass spectrometry analysis of food samples has the potential to increase our chemical understanding of these processes
by detecting a broad spectrum of chemicals. We performed a time-based analysis of the chemical changes in foods
during common preparations, such as fermentation, brewing, and ripening, using untargeted mass spectrometry and
molecular networking. The data analysis workflow presented implements an approach to study changes in food
chemistry that can reveal global alterations in chemical profiles, identify changes in abundance, as well as identify
specific chemicals and their transformation products. The data generated in this study are publicly available, enabling
the replication and re-analysis of these data in isolation, and serve as a baseline dataset for future investigations.
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1. Introduction

We consume a variety of foods and beverages during any given day,
such as fruits, vegetables, dairy products and meats. The chemical
composition of these foods is influenced by factors such as the source,
processing method, storage or other handling before consumption,
which has been a central focus of the food science field. However, new
measurements and data analysis methods can help expand and clarify
our understanding of the molecular composition of foods. Within the
food science field, there is significant interest and awareness of dietary
habits of human populations (Lewis et al., 2009; Schulze et al.,
2015–2020 Dietary Guidelines for Americans) and the nutritional
composition of food (Thirumdas et al., 2018). Resultant findings can
generate policies and nutritional recommendations with the end goal of
improving public health (Berger, Roos, Greffeuille, Dijkhuizen, &
Wieringa, 2019).

Mass spectrometry (MS) is an analytical tool that detects ionized
molecules and can be used for identification and quantification. The
majority of food MS studies employ targeted analysis of a set of pre-
defined compounds via gas and liquid chromatography-mass spectro-
metry (GC–MS and LC-MS). Many food MS studies monitor chemicals
that are harmful when consumed, but the chemical composition of food
and its impact on health is not limited to these chemicals (Giorio et al.,
2017, Scalbert et al., 2014). Furthermore, the utilization of MS is sig-
nificant and expected to grow (Yoshimura, Goto-Inoue, Moriyama, &
Zaima, 2016) in areas such as food monitoring during processing
(Marshall et al., 2018), due in part to the cost per data volume of MS
having decreased by two orders of magnitude over the past 15 years,
and the prediction that it is expected to continue to decrease, presenting
MS as a feasible method for large datasets (Aksenov, da Silva, Knight,
Lopes, & Dorrestein, 2017). We present an untargeted approach using
liquid chromatography-tandem mass spectrometry (LC-MS/MS) to il-
lustrate the effects of storage and processing on different food types
and, for the first time, pair this methodology with emerging MS-based
computational analysis approaches, such as mass spectral molecular
networking to assess changes based on processing.

Mass spectral molecular networking enables a broad overview of
molecular information that can be inferred from MS/MS data (Watrous
et al., 2012). In molecular networking, all identical MS/MS spectra are
merged giving a list of unique MS/MS spectra (Watrous et al., 2012).
These are then subjected to spectral alignment allowing for spectral
matching with offsets based on the precursor mass differences. Mole-
cules generating similar MS/MS spectra are clustered due to similarities
in their fragmentation patterns and are referred to as molecular fa-
milies. A molecular family is a set of MS/MS spectra that are structu-
rally related (Nguyen et al., 2013). In addition, the MS/MS spectra are
putatively annotated against reference spectra within the Global Nat-
ural Products Social Molecular Networking (GNPS) platform (Yang
et al., 2013, Wang et al., 2016). Matches against the reference libraries
constitute level 2 or 3 annotations according to the 2007 metabolomics
standards initiative (Sumner et al., 2007). The reference libraries that
can be searched, as their spectra are publicly available or available for
purchase, include: NIST17, Massbank Europe and North America, Re-
Spect, CASMI, EMBL metabolomics library, HMDB, and GNPS con-
tributed MS/MS spectra (Wang et al., 2016, Aksenov et al., 2017,
Blaženović, Kind, Ji, & Fiehn, 2018). The resulting molecular networks
visualize chemical relationships of compounds and provide a powerful
tool for in-depth interpretation of chemical transformations. One ex-
ample of this is the use of molecular networking to help characterize a
large number of triterpene saponins in Siberian ginseng (Ge, Zhu,
Yoshimatsu, & Komatsu, 2017)

We hypothesize that the untargeted metabolomics approach pre-
sented provides information within a gap between targeted molecular
analysis and elemental and macronutrient analysis used in food
chemistry. We demonstrate the utility of molecular networking and
other analysis tools, such as multivariate statistics, in analyzing un-
targeted metabolomics data collected to assess the chemical impact of
food handling techniques. The potential for untargeted mass spectro-
metry to augment the knowledge of chemical processes was assessed
using the following well studied processes: 1) the impact of starter
cultures on the fermentation of yogurts, 2) the effects of brewing time
on tea, 3) the effect of roasting coffee on molecular composition, 4) how

Fig. 1. Representative images of foods sampled and timeline of sampling. From top to bottom: Yogurt preparation from milk, brewed and loose leaf tea, different
coffees, representing diverse roasts, brands and origins as ground coffee and brewed, ground beef and ground turkey left out to spoil, image from 3 days of storage
depicted on the far right, and tomato types and ripening timeline. RT denotes room temperature and // denotes a time break. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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improper meat storage affects changes in chemistry, and 5) how the
molecular composition of tomato changes, depending on whether it was
ripened on or off the vine or the cultivar selected. All of these scenarios
represent typical processing situations that might occur in commonly
consumed foods.

2. Materials and methods

We provide a general overview of the materials used and metho-
dology for the five food types. Details are provided where these are
shared between most sample types - experimental details for each food
type as well as brand information can be found in the Supplementary
Information S1.1–S2.2 and Table S1. 702 samples were considered in
the final analysis.

2.1. Sample collection

Milk, yogurt, tea leaves, brewed tea, coffee beans, brewed coffee,
turkey, beef, and tomato were all sampled in duplicate; one replicate
was extracted for analysis (see Supplemental Material Table S1) and the
other was archived for future uses. Unique barcode numbers were as-
signed to each sample. Liquid samples (defined here as milk, brewed
tea, and brewed coffee) were collected into two identical empty 2mL
round bottom tubes (Qiagen, Hilden, Germany). All other sample types
were collected in 2mL round bottom tubes pre-filled with 1.0 mL room
temperature ethanol–water (95:5 v/v), (ethyl alcohol, pure, 200 proof
(Sigma-Aldrich, Saint Louis, MO, USA)) and deionized Water (In-
vitrogen UltraPure™, Grand Island, NY, USA)). Duplicate samples were
collected in empty 2mL round bottom tubes and archived. Sample
tubes were weighed before and after sample collection, unless other-
wise noted in the metadata. All samples were stored at −80 °C until
downstream sample preparation for MS-based metabolomics. Fig. 1
highlights representative examples of images associated with the five
food types that were sampled.

Pasteurized whole milk (Horizon Organic Vitamin D Milk;
Broomfield, CO, USA) and three yogurts (Oikos Plain Greek Nonfat
Yogurt (Dannon, Horsham, PA, USA), Voskos Plain Greek Yogurt (Sun
Valley Dairy, Sun Valley, CA, USA) and Kroger Plain Nonfat Greek
Yogurt (Kroger, Cincinnati, OH, USA)) were sampled in biological tri-
plicates and used to culture three separate batches of home-fermented
yogurt, which were sampled over 6 days for a total of 126 samples (see
Section S1.1 for culturing and sampling description). The yogurts from
Oikos and Voskos contained the same live active cultures (S. thermo-
philus; L. bulgaricus; L. acidophilus; Bifidus; L. casei), whereas Kroger
contained L. acidophilus, B. bifidum, and L. casei.

Twelve teas representing six varieties of tea leaves (Oolong, white,
black, green, pu’er and matcha green) were purchased (see supple-
mental for detailed brand information) and sampled in biological tri-
plicate before brewing, 10 water blanks, and at 0.5 min, 1min, 4min
and 240min after addition of hot water, giving a total of 185 brewed
tea samples.

38 unique types of coffee were purchased, representing different
roasts, brands, and origins. Coffee beans and brewed coffee were
sampled in biological duplicates. There was a total of 152 samples.

There was a total of 119 meat samples; two types of turkey (certified
organic and conventional) as well as two types of beef (certified organic
and conventional) were sampled in biological triplicates over a 5-day
time course to investigate meat spoilage. Each meat product was sam-
pled into two petri dishes: one sample was spiked with tetracycline
(final concentration of 300 ppb residual tetracycline) while the other
was treated with the vehicle (i.e. 70% EtOH). Although tetracycline is
used commonly as a growth promoter for livestock in some countries,
here, it was added to see the effects of this antibiotic on a 5-day food
spoilage test (Granados-Chinchilla & Rodríguez, 2017).

120 tomato samples were sampled from 8 different types of toma-
toes (3 brands of conventional cherry tomato, 1 organic cherry tomato,

1 home-grown cherry tomato, 1 roma tomato from a San Diego [CA,
USA] farmers’ market, purchased canned tomatoes and sundried to-
matoes) as well as a 5-day ripening time course of organic cherry to-
matoes (see Supplemental for detailed brand information). The private
garden-grown tomatoes were naturally grown, ripened on the vine and
were not treated with any pesticides/herbicides. The farmers’ market
tomatoes were also indicated as not treated with pesticides/herbicides.
We investigated the effect of origin and storage time (at room tem-
perature) on the molecular composition.

Samples were collected according to detailed procedures outlined in
the Supplementary Information (S1.1 and Table S1) and depicted in
Fig. 1.

2.2. Metadata

Metadata were entered manually for all samples. Images were used
to capture key sample information including unique barcode IDs,
packaging information and time of sample collection. Metadata con-
sisted of 142 different descriptive categories including but not limited
to: ingredients, packaging type, location of food production, location of
sample collection, store and brand names, UPC codes, NDB numbers
and descriptions, cheese and dairy types, fermented and non-fermented
food, botanical definitions and genus names of plant samples, conven-
tional vs organically produced, type of animal meat, and presence of
common allergens and additives. Sample information entries were
standardized using a metadata dictionary that explained the types of
information needed for each category as well as the correct formatting.
The metadata spreadsheet and dictionary are publicly available (see
Data and Code Availability in Appendix).

2.3. Sample processing

All samples were extracted in ethanol, centrifuged, dried by cen-
trifugal evaporation and resuspended in 50% MeOH/50% Water
(Optima LC-MS grade; Fisher Scientific, Fair Lawn, NJ, USA) containing
2 μM sulfadimethoxine (Analytical Standard, Sigma-Aldrich), as an in-
jection control. Detailed sample processing information can be found in
the Supplemental Section S1.2. 5 µL of resuspended extract was injected
for LC-MS/MS analysis. Untargeted metabolomics was carried out using
an ultra-high-performance liquid chromatography system (UltiMate
3000, Thermo Scientific, Waltham, MA) coupled to a Maxis Q-TOF
(Bruker Daltonics, Bremen, Germany) mass spectrometer with a Kinetex
C18 column (Phenomenex Torrance, CA, USA). Data were collected
using a data dependent acquisition method outlined in the
Supplementary Information (Section S2.1). Electrospray ionization in
positive mode was used. Data were assessed for quality as described in
Section S2.2 prior to data analysis.

2.4. Data analyses

2.4.1. Molecular networking and small molecule annotations
GNPS molecular networking parameters were set to a minimum

requirement of 4 ions to match and a cosine score of> 0.7 (https://
gnps.ucsd.edu). Precursor mass tolerance was 0.1 Da and MS/MS was
set to 0.1 Da (these parameters were used as many reference type
spectra are low resolution). The library search was performed with min
match peaks of 4 and a cosine> 0.7. Due to the different small mole-
cule compositions for each food, the annotations of all individual food
analyses were impacted differently, as recently shown with Passatutto,
a false discovery rate (FDR) estimator (Scheubert et al., 2017). Passa-
tutto was used to estimate FDR for the annotations with our settings for
each of the five sub-analyses. Passatutto uses a decoy database created
using fragmentation trees and rebranching of fragments to estimate the
FDR. With these analysis parameters, the estimated FDR of annotations,
based on spectral matching, at level 3 for the milk to yogurt was 0.5%,
0.2% for tea, 0.09% for coffee, 1.5% for meat, and 4.8% for tomato.
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For the milk to yogurt analysis, 126 samples resulted in 78,203 MS/
MS spectra, of which 63,241 passed the minimal requirement of four
ions and minimum of two identical spectra (Supplementary Fig. 6).
After clustering identical spectra 4142 nodes remained. 147 of the
nodes had spectral matches against the libraries searched (3.5% an-
notation rate). 185 tea samples resulted in 50,547 MS/MS spectra,
44,505 of which passed filtering (Supplementary Figs. 10–11). After
merging identical spectra, 1834 unique MS/MS spectra comprised a
molecular network with 207 annotations (11.2% annotation rate). 146
coffee samples resulted in a total of 50,929 MS/MS spectra. After fil-
tering, 42,752 MS/MS spectra remained, which condensed to 1460
unique spectra in Supplementary Fig. 7. Of the 1460 unique spectra, 72
had spectral matches to the reference libraries within a cosine of 0.7
(4.9% annotation rate). The meat analysis included 119 samples, re-
sulting in 72,083 MS/MS spectra, 54,663 of which passed the filtering
step (Supplementary Figs. 8–9). Merging all identical spectra resulted in
5035 unique spectra of which 313 were annotated (6.2% annotation
rate). MS of the 120 tomato samples resulted in 71,430 MS/MS spectra,
62,263 passed the filtering for a minimum of 4 ions and a minimum of
two identical MS/MS spectra in the dataset, which condensed to 2611
unique spectra that are presented as nodes (Supplementary Fig. 5). 212
of the nodes were putatively annotated using the GNPS libraries (8.1%
annotation rate). All annotations are level 2 or 3 according to the 2007
metabolomics standards initiative (Sumner et al., 2007).

2.4.2. Feature finding using mzMINE
MS1 feature detection was performed using mzMINE2 (http://

mzmine.github.io/) (Pluskal, Castillo, Villar-Briones, & Oresic, 2010).
Outputs of the feature matrix report area-under-the-curve. Parameters
used for feature finding can be found in Supplemental Materials
(Section S2.3). Samples that did not contain the internal standard,
sulfadimethoxine, were re-injected. MS/MS belonging to the internal
standard sulfadimethoxine were observed in all data included in the
analysis; this feature was removed from the MS1 feature table prior to
normalization by sample for downstream statistical analyses.

2.4.3. Multivariate statistical analysis and visualization
We used principal coordinates analysis (PCoA) to observe broad

molecular patterns and trends within the data. PCoA takes a dissim-
ilarity matrix as input and aims to produce a low-dimensional graphical
representation of data, such that samples closer together have smaller
dissimilarity values than those further apart. PCoA plots are a beta di-
versity metric (diversity between samples) and consist of orthogonal
axes where each axis (PC1, PC2, PC3) captures a percentage of the total
variance. For PCoA, signal intensities of the MS1 features were nor-
malized with Probabilistic Quotient Normalization (PQN) (Ejigu et al.,
2013). PCoAs were calculated with the Canberra dissimilarity metric
using QIIME (Caporaso et al., 2010) and visualized in EMPeror
(Vázquez-Baeza, Pirrung, Gonzalez, & Knight, 2013).

Heatmaps were created from the filtered and preprocessed MS1

feature tables, comprising both overall features as well as only features
with a GNPS library hit. The Jupyter notebooks (R and python) used to
create the heatmaps and perform the statistical analyses are publicly
available at https://github.com/DorresteinLaboratory/supplementary-
MolecularChangesInFood.

3. Results & discussion

Untargeted MS revealed molecular differences between food types
as well as within a food category due to variations in source and the
time-based processing methods of fermentation, brewing, roasting,
spoilage, and ripening. A combination of molecular networking, based
on MS/MS spectra, multivariate and univariate statistical analysis of
MS1 features, and data visualization with principal coordinate analysis
plots and heatmaps augmented current chemical knowledge of these
processes, and exemplified molecular differences on a global scale and
individually for each food type.

3.1. A beta diversity analysis of food types and their processing

Visualization of the complex beta diversity matrix of our MS1 data,
visualized using PCoA plots, showed clear separation by sample type,
which was expected (Fig. 2 and Movie S1). Yogurt and milk samples
formed distinct groups (blue). Tomato and meat samples formed tight
groups, orange and red, respectively, while the tea had two groups
representing the solid (tea leaves) and brewed samples (green). Coffee
had three groups corresponding to extracts of whole or ground beans,
depending on the variety, and brewed coffee. Sample groups that had
tighter clustering were more chemically similar, regardless of sample
collection and processing. Because dissimilarities within samples were
smaller than the dissimilarities between food types, each sample type
was processed separately to maximize separations in PCoA space within
a single food type.

PCoA analysis of the yogurt and milk samples showed separation
based on brand, despite the fact that they contained similar live active
cultures and ingredients (Fig. 3a). The home fermentation time courses
of milk inoculated with different yogurts, as starter culture, are dis-
played in Fig. 3b and Fig. S1a–b. The fermentation process and asso-
ciated molecular changes were visualized by all three home ferments
becoming more yogurt-like, as illustrated by increases in distance be-
tween the Kroger yogurt and the starting milk in PCoA space, corre-
sponding to transition of the home ferment (milk+ starter yogurt)
through time, becoming more similar to the original starter culture
(Fig. 3b). Voskos contained Grade A pasteurized milk and cream, in
addition to nonfat milk found in the Oikos, possibly contributing to
differences between these yogurts and the corresponding home fer-
ments, despite containing the same live active cultures (Fig. 3a, Fig.
S1a–b).

PCoA analysis of tea samples, Fig. 3c, revealed unambiguous dif-
ferentiation of tea leaves and brewed tea, as well as differences between
tea types. Note, blank water samples were most differentiated from the
solid extract samples along PC1 (Fig. 3c). Twelve different teas were

Fig. 2. Global PCoA analysis to understand the molecular relationships among
all samples analyzed. PC1 (10.43%); PC2 (5.96%); PC3 (5.86%). As a 2D image,
the PCoA plot does not reveal the relationships clearly, a movie rotating this
image is provided as supporting information [uploaded on massive.ucsd.edu
MSV000083014]. MS1 features are TIC normalized per sample and the PCoA
analysis was performed using Qiime1 and the Canberra distance metric. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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sampled at 0.5min, 1min, and 4min to explore the brewing process
with respect to time and emulate tea that has been left steeping for
longer periods of time (240min). The tea samples, regardless of type,
appeared most similar (in PCoA space and hence chemistry) to the
water blanks at the earliest time points and became more similar to
solid samples over time (along the PC1 axis which explained 25.9% of
total variance), reflecting the typical brewing process while measuring
empirically the release of compounds from the leaves (Fig. 3c, Fig. 3d.
Fig. S1c). The kinetics of tea extraction in the PCoA plot shared similar
trends for all teas. We observed minor chemical differences between
240min and 4min for all tea types, which supports a steeping time
rationale that appears to be effective for extraction of phytochemicals
from tea. Differences, based on tea type, were also observed: white,
green, matcha green, and black tea liquid samples were more similar to
each other than to oolong and pu’er, which were differentiated along
PC3 (6.81% of total variance) (Fig. 3c); Fig. 3d and Fig. S1c illustrate
clear differences in beta diversity across different American and British
teas and Chinese teas (oolong and pu’er), respectively. It is noteworthy
that, although PCoA enabled observation of overall trends, it did not
display changes in individual molecule concentrations. Individual
chemical changes are visualized in Section 3.2 (Heatmaps) and dis-
cussed in Section 3.3 (Molecular Networking and Annotations).

PCoA analysis of coffee revealed a clear trend among the sample
types: brewed coffee (left hand side of PCoA) vs ground coffee (right
hand side of PCoA) (Fig. S1d). Besides samples clustering by sample
type, different roast types could not be identified using PCoA but, as
noted, changes in individual molecules are not captured using this
approach. It is possible that molecular changes induced by roasting
might be observed predominantly as volatile molecules, which were not
assessed in this study. Indeed, changes in aroma, between the different
roasting types, could be readily perceived.

Fig. S1e–f shows the effects spoilage had on ground beef and turkey,
in the presence and absence of tetracycline, visualized along PC1,
20.88%. A key driver of chemical differences in PCoA was the type of
meat (turkey or beef) (Fig. S1e; PC2 8.4%). As tetracycline is used in the
cattle industry, in some countries/regions, we sought to identify if it
also resulted in differences in chemical composition over time, possibly
due to changes in microbial colonization and degradation during
spoilage. To control for factors such as source and treatment of the
meat, we added exogenous tetracycline as a treatment and the vehicle
to controls. Samples with and without tetracycline changed similarly
over time indicating that, based on the untargeted LC-MS/MS analysis,
addition of tetracycline did not greatly impact chemical changes during
aging processes (Fig. S1f).

Fig. 3. PCoA plots for the individual food types, color coded by metadata categories to visualize key drivers in molecular patterns. The three store bought yogurts
containing live active cultures, the milk and the home ferments using the different yogurts as starter culture show distinct groupings. The spheres are colored based
on milk and yogurt type (a) or fermentation time from 0 to 58 h (b). Tea samples differentiated based on tea type and brewed tea vs. tea leaves. Voskos and Oikos
fermentation data points are not displayed to aid in visualization, but are present in Fig. S1. (c). The time course of tea extraction is displayed for American and
British teas: black, green, matcha green, and white teas (d). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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PCoA analysis of the tomato samples revealed that both source (Fig.
S1g) and storage time (Fig. S1h) affected the molecular composition of
tomatoes. As expected, processed tomato samples (canned and sun-
dried) occupied very different PCoA spaces than fresh tomatoes (Fig.
S1g). Chemical differences between the processed and fresh tomato
could be attributed to the contribution of processing (e.g. heating or
addition of sugar and oil) as well as packaging materials and not just
the chemical compositions of tomatoes. It was also notable that dif-
ferences existed for fresh tomatoes, with those from the farmers’ market
most closely resembling home-grown tomatoes, and all store-bought
tomatoes resembling one another, whether organic or not. It is likely
that the close similarity of garden and farmers’ market roma tomatoes
resulted from similar treatment, where the fruits are ripened on the vine
and collected and sold without processing, including storage in dif-
ferent types of packing or washing (this is known for the garden to-
matoes and presumed for the farmers’ market). Conversely, store-
bought tomatoes are collected at an early stage, often not fully ripened
for ease of transportation, transported over long distances, packaged,
and treated with exogenous ethylene (depending on the supplier). This
appears to have a more significant effect on the chemical compositions
of tomatoes than the “organic” designation. When organic cherry to-
matoes were left at room temperature to ripen, their molecular com-
position changed over time (Fig. S1h), although the tomatoes did not

notably change in either appearance or smell.

3.2. Heatmaps for identification of chemical changes by food group

We created heatmaps to visualize molecular changes between
samples for time course experiments, specifically brewing tea, yogurt
fermentation, tomato ripening, and improper meat storage, and to gain
insight into features that behave similarly over time or originate from
different sample types.

Complementary to a PCoA, heatmaps provide a visual overview of
data to give more detailed information about molecular changes driving
differences within and between sample types. Fig. 4 shows tea and milk-
to-yogurt time courses, which had the largest changes in abundance;
heatmaps for other sample types are included in the Supplementary
Information (Figs. S2–S5). Consistent with the PCoA analysis, we ob-
served different metabolite profiles between tea leaves and brewed tea
(Fig. 4a). Furthermore, we observed an increase in relative intensities of
molecular features due to longer brewing times, independent of the tea
type. We assessed the correlation of relative intensity per feature and
tea type with extraction time, which resulted in a total of 2045 sig-
nificantly correlated features (spearman correlation, p-value < 0.05).
For example, we observed that the relative intensities of procyanidin B
and theaflavin increased over time (Kruskal–Wallis, N = 6, p-value

Fig. 4. Metabolites changing over tea extraction time and during the fermentation process from milk to yogurt. a) Heatmap showing tea metabolites changing over
extraction time across different tea types. b) Specific metabolites increase significantly in their relative intensity during tea extraction time. c) Heatmap showing
metabolites changing during the fermentation process from milk to yogurt across different yogurt brands used as inocula, as well as the milk as control. d) Metabolites
increasing or decreasing significantly during the fermentation process across different home ferments. Metabolite annotation was performed through mass spectral
molecular networking and spectral matching to reference spectra. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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ranging from 0.01 to 0.02, between brewing times 0.5 and 240) (Fig. 4b
and Fig. S6a). We also assessed the correlation of relative intensity per
feature and home ferment with different yogurt inoculums over time.
For the Kroger yogurt, this resulted in a total of 1587 significantly
correlated features (spearman correlation, p-value < 0.05) (Fig. 4c).
Fig. 4d and Fig. S6b highlight selected molecular features for which we
obtained putative structure annotations through GNPS library
matching. For example, we observed that the relative intensity of 4-O-
beta-galactopyranosyl-D-mannopyranose decreased over time for each
yogurt type individually as well as overall (Kruskal–Wallis, N = 9, p-
value = 0.0023, between 0 and 58 h) (Fig. 4d).

Molecular changes during meat (beef and turkey) storage over five
days were also visualized using a heat map (Fig. S3a). When comparing
antibiotic- vs non-antibiotic-treated meat (beef and turkey), overall
molecular differences, as seen in PCoA space, did not vary. However,
there were some specific low intensity molecules that changed, al-
though differences were minimal due to the addition of tetracycline,
which was consistent with observations from the PCoA. We observed
differences between organic and non-organic beef. For example, in non-
organic beef, oleoyl-taurine increased during the 5 days but did not
appear in organic samples, while concentrations acetyl-carnitine de-
creased in non-organic beef but were consistent across all time points
for organic beef. In turkey, the rates of appearance of oleoyl-taurine and
disappearance of acetyl-carnitine were only slightly different (Fig. S3b).
The spectral match to the fungal molecule, termitomycamide E (Choi
et al., 2010), with precursor mass difference 0.000 Da, ppm error of 2
and cosine match of 0.84, increased over time. The presence of three
analogues, with mass differences pointing to different acyl chain
lengths, and suppression with the addition of tetracycline, would be
consistent with increased microbial (fungal) loads (Fig. S5).

Molecular differences between tomato samples were most striking

when comparing sun dried, canned, and fresh tomatoes. In the
heatmap, no clear-cut large-scale patterns were observed when visua-
lizing molecular changes during ripening of fresh tomatoes (Fig. S2).
During the ripening process, some individual molecular features were
found to decrease in relative abundance. For example, 5′-methylthioa-
denosine, a key ripening hormone for plants and precursor of plant-
produced ethylene (North, Miller, Wildenthal, Young, & Tabita, 2017),
was found to have decreased significantly in relative abundance over
the 5-day time course. Also, plant flavonoids (including a level-3 an-
notation for naringenin) and tomatidine, a tomato-specific alkaloid
(Brink & Folkers, 1951; Friedman, 2013), were found to have decreased
significantly in relative intensity over time. This is informative as many
of the health properties associated with consumption of polyphenol-
containing foods are attributed to molecules like naringenin and our
results, therefore, indicated tentatively that the nutritional value of
tomatoes might change over the time period tomatoes are stored in the
home environment.

3.3. Molecular networking and identification of known and related
compounds

Mass spectral molecular networking provided additional informa-
tion about molecular relationships that complemented global differ-
ences captured by PCoA and further explored the molecules and mo-
lecular changes within each food type. In milk and yogurt, matches
with six carbon sugars, disaccharides and oligosaccharides, vitamins,
and acylated carnitines were observed (Fig. 5b). In addition, large lipid
molecular families, such as sphingolipids, and glycerol conjugated with
fatty acids, such as monoolein and linoleoylglycerol, were identified.
Delvocid, also known as the clinical antifungal ‘natamycin’, which is an
additive used to preserve dairy products, was detected (Branen,

Fig. 5. Molecular network clusters of the a) tomato color coded by processing method, b) milk to yogurt, c) coffee data. The clusters are enlarged regions of specific
molecular families observed within the full molecular network. The color coding for different samples groups are explained in the figure legend. Node sizes indicated
relative precursor abundance and selected library identifications are annotated in the figure and shown through squared node shape. The full size images of the entire
network where one can zoom in to the molecular networks can be found as supporting information (Figs. S7–S9) and the GNPS links to the analysis jobs are provided
in the data availability section. All annotations shown are level 2 or 3 according to the 2007 metabolomics standards guidelines (Sumner et al., 2007). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Davidson, Salminen, & Thorngate, 2001) and did not change in relative
abundance over time. These annotations are all consistent with the
animal origins of the samples (milk, yogurt). However, we also ob-
tained unexpected annotations. A molecular family of bile acids, con-
taining annotated glycocholic and cholic acids, was identified. This

molecular family was not expected to be present in these samples, as
they are primarily associated with the gut. Putative assignments were
inspected and confirmed using manual inspection of raw data, accurate
mass, fragmentation pattern, and retention time analysis, which further
supported the presence of this molecular family.

Fig. 6. Molecular networks of the data. a) reflect the meat samples color coded by turkey or beef. b) same network as a) but color coded by aging time. c) molecular
networks color coded by tea. The clusters are enlarged regions of specific molecular families observed within the full molecular network. The full size images of the
entire molecular networks where one can zoom in molecular networks can be found as supporting information (Figs. S10–S12) and the GNPS links to the analysis jobs
are provided in the data availability section. All annotations shown are level 2 or 3 according to the 2007 metabolomics standards guidelines (Sumner et al., 2007).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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A large range of phytochemicals were annotated in tea samples
(Fig. 6c and Supplementary Fig. 12), including large molecular families
associated with flavonoids, with spectral matches to puerins, catechins,
and apigenin (assignments are putative as isomers are difficult to dif-
ferentiate in accordance with level 3 metabolite identification
(Cuyckens & Claeys, 2004, Sumner et al., 2007, Borges et al., 2018). MS
work on tea has been done primarily in negative ionization mode. Here,
using the positive ionization mode, we corroborated earlier work
finding molecular families containing flavonoid aglycones with MS/MS
matches to quercetin, kaempferol, myricetin, and (epi)catechin – gly-
cosides of which are abundant in tea (van der Hooft, Akermi et al.,
2012) – and a large molecular family consisting of glycoside derivatives
that had spectral matches with quercetin and kaempferol that were
bundled together with chlorogenic acids. Note, the majority of nodes
for this family were annotated with GNPS community contributed li-
brary hits, indicating a greater library coverage for some compound
classes, likely due to community contributed spectra. As expected,
caffeine was also annotated in tea samples. Theaflavin, a polyphenol
formed during fungal oxidation and its analogues, often associated with
black tea (Zhang et al., 2018), were detected in white, green, black and
oolong tea samples. Theaflavin increased in relative concentration over
time, as shown in Fig. 4 and Fig. S13. These annotations were consistent
with known processes that use polyphenol building blocks to create
larger scaffolds like theaflavin and give black tea its typical color.
Furthermore, fuzhuanins, polyphenol-derived molecules (Luo et al.,
2013), which are beta-ring fission lactones of flavan-3-ols like epica-
techin, were found at high abundance in tea samples.

In coffee (Fig. 5c), we also observed caffeine as well as methyl-
caffeine (1,3,7,8-Tetramethylxanthine) and another related compound
with a delta mass of m/z 14.01 (CH2), corresponding to theobromine.
Furthermore, we detected several flavonoids and a large number of
hydroxycinnamic acids and chlorogenic acids, which are commonly
observed in plants (Islam et al., 2018; Clifford, Jaganath, Ludwig, &
Crozier, 2017; Pastoriza, Mesías, Cabrera, & Rufián-Henares, 2017;
Tajik, Tajik, Mack, & Enck, 2017; Naveed et al., 2018). In addition,
library matching revealed the presence of mascarosides, molecules
commonly observed upon roasting of coffee (Shu et al., 2014). The
mascarosides were identified in the molecular network by m/z 162.053,
15.996 and 18.011 gains and losses, corresponding to mass shifts as-
sociated with six carbon sugars, oxygen, and water, respectively – all
pointing consistently to the presence of glycosylated mascarosides.

In the meat samples (Fig. 6a), as expected, we observed MS/MS
matches to tetracycline displayed as a single node (no related spectra
were detected), which were more abundant in turkey samples. Al-
though tetracycline is used commonly as a growth promoter, here it was
added to see the effects of this antibiotic on a 5-day food spoilage test
(Granados-Chinchilla & Rodríguez, 2017). We also observed spectral
matches with carnosine as well as a large cluster of acyl carnitines with
five spectral matches to different acylations. The acyl carnitines were
observed predominantly in beef. However, we also found a molecular
family of N-acyltaurines (NATs), a recently discovered class of lipids
(Turman, Kingsley, Rouzer, Cravatt, & Marnett, 2008). Fig. S3 shows
how NAT concentrations increased, after two days of storage at room
temperature, whereas levels of acylcarnitines (markers for beta-oxida-
tion) dropped, suggesting these chemical changes were associated with
decomposition over time. Ceramides, component lipids in eukaryotic
cell membranes, were detected in both beef and turkey, but they only
fell below the level of detection after 5 days in beef. Their presence
suggested disintegration of cells within the tissue and the lability of
ceramides would explain their disappearance over time. Oxidation in
the presence of haem-iron may have contributed to increased de-
gradation in red meat compared with turkey. In contrast, a molecular
family containing carnosol, a metabolite from rosemary (Loussouarn
et al., 2017), was observed in turkey, but not in beef. Only the packa-
ging of turkey grown without antibiotics and growth hormones stated
that rosemary was used (see study Metadata), yet it was observed in

both conventionally grown as well as antibiotic-free meat. Both di-
peptides and N-methyl histidine were detected during the 5-day aging
process of the meat. Thus, the molecular families described here are
consistent with these sample types. Additionally, the changes observed
in chemical composition, emerging after 2 days of storage for a rela-
tively small number of molecular features, suggested these might be
used as signature compounds for decomposition in meat samples
(Supplementary Fig. 2).

Many known chemicals in tomatoes were detected, including
chlorogenic acid derivatives and flavonoids (Fig. 5a), both compound
groups are found commonly in tomato cultivars (van der Hooft,
Vervoort et al., 2012; Floros et al., 2017). A molecular family of to-
matidine-related molecules was observed in all tomato samples. To-
matidine, a tomato-specific alkaloid, as the name suggests, and struc-
tural component of related glycoalkaloids, is abundant in tomato plant
leaves and stems but is less concentrated in the fruits. Similarly, phe-
nylethyl pyranosides were observed in all tomatoes. Only in sundried
tomatoes did we observe a spectral match with glucose, perhaps added
as a sweetener. In both sundried and fresh tomatoes, we detected
azoxystrobin, a fungicide used in agriculture. Many molecules, in-
cluding added oils, sugars, and preservatives, might explain the dif-
ferences observed between processed and raw tomatoes in the PCoA
(Fig. S1g, Fig. 5a). 5′-methylthioadenosine, one source of ethylene, a
ripening hormone in plants, was detected in all tomatoes, except sun-
dried tomatoes (North et al., 2017). The relative concentrations of 5′-
methylthioadenosine were observed to decrease over time/ripening
(Fig. S2).

3.4. Molecular transformations

Heatmaps as well as molecular networks, while very different but
complementary visualization techniques, confirmed and complemented
one another and provide additional perspectives to augment current
food analysis. For example, theaflavin increased significantly in relative
abundance over time, which was visualized in the heatmap (Fig. 4a, b)
as well as the molecular network displaying brewing time (Fig. S13). In
Fig. 6c, theaflavin is associated with two unannotated compounds,
which allowed the presence of two analogues with mass shifts of 16 and
30 Da to be confirmed and are consistent with a hydroxylated as well as
a double de-hydroxylated analogues, and other further reduced analo-
gues. These kinds of relationships facilitate interpretation and under-
standing of chemical processes without requiring the identity of mole-
cules detected to be known. The molecular composition of tea samples
changed over time, with changes observed in the abundance consistent
with continued extraction of molecules as opposed to chemical mod-
ifications. While a range of compounds increased in many of the vari-
eties, there were molecular features specific to tea type, such as in-
creased relative abundance of coniferyl aldehyde in only oolong tea
(Fig. S6a panel 2 and Fig. 6c cluster 8). The molecular composition and
extraction kinetics of oolong tea might differ from other varieties as a
result of extensive drying, physical changes in the leaves (e.g. twisting/
curling), and oxidation during production.

The changes observed in tea samples were in contrast to the yogurt
samples, where chemical alterations over time varied significantly,
likely due to microbial metabolism. We detected significant changes in
PCoA, molecular networks, and heatmaps. In the PCoA, the home fer-
ment inoculated with Kroger yogurt resembled the original starting
culture, at a molecular level, and differed from other home ferments,
possibly because it contained different yogurt cultures. Interestingly,
when we focused our analysis on annotated compounds only, sig-
nificant changes over time were not observed in the heatmap (Fig. 4
and Fig. S4), indicating that many of the molecular transformations
during fermentation have not been characterized yet or the reference
spectra are not available in MS library databases. Consistent with the
lack of reference spectra in public databases, the yogurt and milk
samples also had the lowest annotation rate at 3.5%. Among the
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annotated features, we found a broad range of compounds (Fig. S8),
including food additives and sugars, which were also detected in other
milk types within publicly available datasets on GNPS, such as breast
milk. The unexpected occurrence of bile acids in the milk and yogurt
samples might originate from secretion from the cows’ mammary
glands into the milk, as bile acids have been detected previously in
human breast milk (Forsyth, Ross, & Bouchier, 1983).

4. Conclusion

Our study presents the first large-scale food composition analysis
using mass spectral molecular networking. The untargeted MS ap-
proach coupled with molecular networking allowed us to assess large-
scale differences between sample types, find molecule–molecule links
within and between sample types, and identify different compound
classes found within a sample type - all useful in biochemical inter-
pretations and understanding. We determined that foods undergo mo-
lecular changes caused by a variety of biological and chemical pro-
cesses over different time periods, as exemplified by meat, tea and
yogurt. Brewing time for tea altered its composition, increasing the
diversity of molecules, whereas fermentation of yogurt from milk,
spoilage of meat, and ripening of tomatoes were all dominated by
biological transformations, altering the molecular composition over a
longer period. Mass spectral molecular networking and spectral library
search successfully identified key molecular features, which differed
based on processing type, such as fermentation time in the yogurt
samples and brewing time for tea. Our study provides a reference da-
taset freely accessible for feature mining in future food-related or other
studies. One advantage of the GNPS molecular networking workflow is
the search parameter 'Find Related Datasets'. As shown in this study,
even the most traditional food types contain large numbers of un-
annotated molecules and, therefore, we expect that increasing deposi-
tions of MS datasets in the public domain would allow comparisons
with other complex mixtures and narrow down the origins of molecular
features. This is the first large-scale food chemistry study, free and
publicly accessible through the KnowledgeBase GNPS (Wang et al.,
2016). Anyone who wishes to continue exploring these data can sub-
scribe to the project, as it will be subject to living data analysis. Living
data is a strategy introduced to metabolomics in Wang et al. (2016),
where data are continuously re-analyzed, and updates are provided
automatically to all subscribers. This allows future studies to exploit the
mass spectral molecular networking data with the annotated food
molecules, with the ability to propagate annotations across a new
network to better understand the chemical space that foods occupy and
how food handling and processing affect it. Given that 88–97% of all
the MS/MS spectra are currently unannotated, as a community, we will
need to increase our knowledge about the molecular compositions and
molecular changes in our food. We have shown that, with our con-
tribution to the food chemistry field, GNPS molecular networking
promises to become a key repository and knowledgebase for untargeted
MS-based food composition studies, and demonstrated the utility of
combining molecular networking approaches with statistical measures
to discern meaningful chemical transformations.
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