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Abstract  19 

Kinetic models are nowadays a basic tool to ensure food safety. Most models used in 20 

predictive microbiology have model parameters, whose precision is crucial to provide 21 

meaningful predictions. Kinetic parameters are usually estimated based on experimental data, 22 

where the experimental design can have a great impact on the precision of the estimates. In 23 

this sense, Optimal Experiment Design (OED) applies tools from optimization and 24 

information theory to identify the most informative experiment under a set of constrains (e.g. 25 

mathematical model, number of samples,etc). In this work, we develop a methodology for the 26 

design of optimal isothermal inactivation experiments. We consider the two dimensions of the 27 

design space (time and temperature), as well as a temperature-dependent maximum duration 28 

of the experiment. Functions for its application have been included in the bioOED R package. 29 

We identify design patterns that remain optimum regardless of the number of sampling 30 

points for three inactivation models (Bigelow, Mafart and Peleg) and three model 31 

microorganisms (Escherichia coli, Salmonella Senftemberg and Bacillus coagulans). Samples 32 

at extreme temperatures and close to the maximum duration of the experiment are the most 33 

informative. Moreover, the Mafart and Peleg models require some samples at intermediate 34 

time points due to the non-linearity of the survivor curve. The impact of the reference 35 

temperature on the precision of the parameter estimates is also analysed. Based on numerical 36 

simulations we recommend fixing it to the mean of the maximum and minimum temperatures 37 

used for the experiments. The article ends with a discussion presenting guidelines for the 38 

design of isothermal inactivation experiments. They combine these optimum results based on 39 

information theory with several practical limitations related to isothermal inactivation 40 

experiments. The application of these guidelines would reduce the experimental burden 41 

required to characterize thermal inactivation. 42 
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1 Introduction 46 

Predictive microbiology has become a basic tool for modern food science (McMeekin, 47 

Mellefont, & Ross, 2007). It develops mathematical models that can be applied to predict the 48 

microbial response (e.g. microbial growth or inactivation) for each step of the farm-to-fork 49 

chain that can be applied, for instance, in Quantitative Microbial Risk Assessment (Haas, Rose, 50 

& Gerba, 2014; Possas, Valdramidis, García-Gimeno, & Pérez-Rodríguez, 2019) or shelf-life 51 

estimation (García et al., 2015; González-Tejedor et al., 2017). Moreover, most model 52 

parameters have a biological meaning, which enables statistical inference to compare microbial 53 

responses. This allows, for instance, the identification of the most relevant sources of 54 

uncertainty and variability (den Besten, Wells-Bennik, &Zwietering, 2018) or the comparison 55 

between different treatments (Ros-Chumillas, Garre, Maté, Palop, &Periago, 2017). 56 

Most mathematical models used in the context of predictive microbiology contain model 57 

parameters whose values are usually unknown and must be estimated based on experimental 58 

data. Due to experimental error (understood as the uncertainty and variability associated to 59 

data), exact values cannot be calculated for the model parameters (Box, Hunter, & Hunter, 60 

2005). Instead, a measure of uncertainty must be reported associated to each model parameter 61 

(e.g. standard deviation). Reviews dealing with the parameter estimation problem (also called 62 

“inverse problem”) in the context of food science can be found in the recent literature(Dolan & 63 

Mishra, 2013; Vilas, Arias-Mendez, Garcia, Alonso, & Balsa-Canto, 2018). 64 

The uncertainty in parameter values is propagated when calculating predictions using 65 

mathematical models based on experimental data(Vilas et al., 2018).This uncertainty in the 66 

parameter estimates has a direct impact on risk management(Havelaar et al., 2010; Thompson, 67 

2002; Garre, Boué, Fernández, Membré & Egea, 2019). A reduction in parameter uncertainty 68 

would also reduce the uncertainty of the predictions, providing decision makers with more 69 

accurate information relevant for risk assessment. The usual approach to reduce the uncertainty 70 
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of parameter estimates is an increase in the number of sampling points. However, this can be 71 

costly in the context of food science, due to the need of expensive equipment and highly trained 72 

personnel, among other factors. Optimal Experimental Design (OED) has the goal of 73 

identifying the most informative experimental designs given some constraints (e.g. 74 

mathematical model, number of sampling points, temperature range...). OED has been applied 75 

in a broad range of fields, enabling to estimate model parameters with higher accuracy than 76 

with “classical” (factorial/uniform) designs when the same number of data points is taken 77 

(Balsa-Canto, Alonso, &Banga, 2008; Balsa-Canto, Rodriguez-Fernandez, &Banga, 2007; 78 

Schenkendorf, Xie, Rehbein, Scholl, &Krewer, 2018). 79 

In the context of microbial growth and inactivation, OED has been successfully applied 80 

in several cases, increasing the precision of parameter estimates with respect to uniform 81 

designs(Cunha, Oliveira, Brandão, & Oliveira, 1997; Frías, Oliveira, Cunha, & Oliveira, 1998; 82 

Garre, González-Tejedor, Peñalver-Soto, Fernández, &Egea, 2018; D.A. Longhi et al., 2017; 83 

Daniel Angelo Longhi et al., 2018; Paquet-Durand, Zettel, &Hitzmann, 2015; Stamati, 84 

Akkermans, Logist, Noriega, & Van Impe, 2016; van Derlinden, Balsa-Canto, & Van Impe, 85 

2010). However, these studies were restricted to finding the most informative sampling times 86 

in one (dynamic or static) experiment. Currently, the most popular approach for this 87 

characterization is the application of several isothermal inactivation treatments at different 88 

temperatures. These data is, then, fitted using preferably a one-step algorithm (den Besten, 89 

Berendsen, Wells-Bennik, Straatsma, & Zwietering, 2017; Fernández, Ocio, Fernández, 90 

Rodrigo, & Martinez, 1999). Therefore, the design space is two-dimensional, with the sampling 91 

time and the treatment temperature as the design variables. To the knowledge of the authors, 92 

no methodology for OED has been developed in this context. This can be attributed to the fact 93 

that isothermal experiments, despite being simpler from an experimental point of view, are 94 

more complex from the point of view of experimental design. The design space in a set of 95 



6 

 

isothermal designs is two-dimensional design space, whereas the one in dynamic experiments 96 

is one-dimensional, increasing the complexity of the optimization problem required for OED. 97 

Furthermore, the maximum duration of an inactivation experiment is defined by the detection 98 

limit. In dynamic experiments, this restriction can easily be implemented, whereas in isothermal 99 

experiments the time required for the microbial count to reach the detection limit is a function 100 

of temperature. This defines a constraint that increases the complexity of the optimization 101 

problem. 102 

In this work, a methodology based on the optimization of the Fisher Information Matrix 103 

(FIM) is developed for the OED of isothermal inactivation experiments. The methodology is 104 

able to handle the complexities inherent to isothermal experiments; i.e. the two-dimensional 105 

sample space and the temperature-dependent detection limit. It is applied for three different 106 

inactivation models commonly used in food science (Bigelow, Mafart and Peleg) and three 107 

different model microorganisms (Escherichia coli, Salmonella Senftemberg and Bacillus 108 

coagulans). Functions for applying this methodology have been included in the bioOED R 109 

package (Garre, Penalver, Fernandez, & Egea, 2017), making them available for the scientific 110 

community. This package is available on CRAN (https://CRAN.R-111 

project.org/package=bioOED). 112 

2. Materials and methods 113 

2.1. Mathematical modelling of microbial inactivation 114 

The OED has been calculated for three inactivation models commonly used in predictive 115 

microbiology: Bigelow(Bigelow, 1921), Mafart(Mafart, Couvert, Gaillard, &Leguerinel, 2002) 116 

and Peleg(Peleg& Cole, 1998). Note that, in order to ease the calculations for the OED, the 117 

initial microbial count is not considered as a parameter to estimate. Therefore, the decimal 118 

https://cran.r-project.org/package=bioOED
https://cran.r-project.org/package=bioOED
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logarithm of the fraction of survivors is the dependent variable, instead of the (log-)microbial 119 

count.  120 

The Bigelow model considers a log-linear relationship between the fraction of survivors 121 

(𝑆) and the elapsed time (𝑡), as shown in Equation (1).   122 

log10 𝑆 = −
1

𝐷(𝑇)
𝑡  

(1) 

 

  

The D-value at temperature𝑇, 𝐷(𝑇), represents the time required to reduce the microbial 123 

population by 90% with a thermal treatment at temperature, T. This model also assumes a log-124 

linear relationship between the D-value and temperature, as shown in Equation (2). This 125 

equation introduces the z-value (𝑧) that quantifies the sensitivity of the D-value to temperature 126 

changes, indicating the temperature increase required for a ten-fold reduction of the D-value. 127 

The reference temperature, 𝑇𝑟𝑒𝑓, has no biological meaning but can improve parameter 128 

identifiability(Poschet, Geeraerd, Van Loey, Hendrickx, & Van Impe, 2005).  129 

𝑙𝑜𝑔10 𝐷(𝑇) =  𝑙𝑜𝑔10𝐷𝑟𝑒𝑓 −
𝑇 − 𝑇𝑟𝑒𝑓

𝑧
 

(2) 

 

  

Both the Mafart and Peleg models belong to the family of weibullian models, which 130 

introduce a non-linearity in the isothermal survivor curve based on the hypothesis that the 131 

resistance of individual cells to the thermal stress follows a Weibull distribution. The Mafart 132 

model is expressed as shown in Equation (3), where 𝛿(𝑇), usually called the 𝛿-value at 133 

temperature T, can be interpreted as the time required for the first log-reduction of the microbial 134 

density for a treatment at temperature T. The 𝑝 value is the shape factor of the underlying 135 

Weibull distribution, which describes the concavity direction of the isothermal inactivation 136 

survivor curve. When the shape factor is larger than one, the curve has downwards concavity, 137 

whereas when it is lower than one there is a tail. If 𝑝 = 1, the shape of the isothermal survivor 138 

curve is log-linear and the results are equivalent to those obtained using the Bigelow model for 139 

𝐷(𝑇) = 𝛿(𝑇).  140 
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𝑙𝑜𝑔10 𝑆 =  − (
𝑡

𝛿(𝑇)
)

𝑝

 
(3) 

 

  

The Mafart model, similarly to the Bigelow model, hypothesizes that the inactivation 141 

rate follows an exponential relationship with temperature, using the secondary model shown in 142 

Equation (4). In this model, the z-value, 𝑧, and the reference temperature, 𝑇𝑟𝑒𝑓, have the same 143 

interpretation as in the Bigelow model. The parameter 𝛿𝑟𝑒𝑓 represents the value of 𝛿(𝑇) 144 

estimated at the reference temperature.  145 

𝑙𝑜𝑔10 𝛿(𝑇) =  𝑙𝑜𝑔10𝛿𝑟𝑒𝑓 −
𝑇 − 𝑇𝑟𝑒𝑓

𝑧
 

 

(4) 

 

The Peleg model uses a different parameterization of the primary model than the one 146 

used by Mafart, using𝑏(𝑇)instead of𝛿(𝑇), as shown in Equation (5). Both parameters are 147 

related via the identity 𝑏(𝑇) = (1/𝛿(𝑇))
𝑝
. In addition, the shape factor is represented by 𝑛 148 

instead of p. 149 

𝑙𝑜𝑔10 𝑆 =  −𝑏(𝑇) ∙ 𝑡𝑛 (5) 

  

The Peleg model proposes a different secondary model than Bigelow or Mafart. It 150 

hypothesizes a log-logistic relationship between 𝑏(𝑇) and temperature, as shown in Equation 151 

(6). For temperatures much lower than the critical temperature (𝑇𝑐), b (T) equals zero and no 152 

inactivation takes place. For values of temperature much higher than 𝑇𝑐, 𝑏(𝑇) has a linear 153 

relation with temperature with slope 𝑘. This model suggests a super-linear transition between 154 

both regimes. 155 

𝑏(𝑇) = ln(1 + 𝑒𝑘(𝑇−𝑇𝑐)) 

 

(6) 

In this study, we aim to define design patterns that are applicable to a broad range of 156 

microbial responses. Consequently, the microbial responses of three microorganisms with 157 

different inactivation kinetics have been extracted from the scientific literature: Escherichia 158 

coli in peptone water (Garre, Clemente-Carazo, Fernández, Lindqvist, &Egea, 2018), 159 

Salmonella enteric subsp. enterica serovar Senftenberg in peptone water (Huertas, Ros-160 
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Chumillas, Esteban, Esnoz, &Palop, 2015) and Bacillus coagulans in nutrient broth 161 

supplemented with oregano oil (Haberbeck, Dannenhauer, Salomão, & De Aragão, 162 

2013).These microorganisms present survivor curves with different shapes, that include upward 163 

and downward concavity, as well as linear responses. Furthermore, their D (and 𝛿) 164 

valuesvariesby at least one order of magnitude. Table 1 summarizes the model parameters 165 

extracted and used as nominal parameters for the OED. This table also includes the parameters 166 

𝑇𝑚𝑎𝑥and𝑇𝑚𝑖𝑛, defining a theoretical, feasible temperature range for the isothermal inactivation 167 

experiments. The calculations have been repeated for different values of 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛, without 168 

any major impact on the conclusions of the study. Although the Bigelow model is not adequate 169 

to describe the microbial response of S. Senftemberg and B. Coagulans due to the non-linearity 170 

of the survivor curve, it has been included in the analysis to analyse how variations in the 171 

magnitude of the D and z-values affect the OED for this model. 172 

2.2. A methodology for OED of isothermal inactivation experiments 173 

We have applied for the OED of isothermal inactivation experiments an approach based 174 

on the optimization of the FIM. A complete description of the problem from a mathematical 175 

stand point can be found in the article by Asprey & Macchietto (2002). Isothermal inactivation 176 

experiments can be fitted using a “two-step” (model parameters are estimated sequentially) or 177 

a “one-step” (every model parameter is fitted in one step) approach. We have developed our 178 

methodology for the “one-step” fitting algorithm, which has proved more accurate than the 179 

“two-step” approach (den Besten et al., 2017; Fernández et al., 1999). Under the hypothesis of 180 

normality and homoscedasticity of the residuals, the FIM for an isothermal inactivation 181 

experiment with n sampling points can be calculated as shown in Equation (7).  182 

𝐹𝐼𝑀 =  ∑ (
𝜕𝑦

𝜕𝜃
(𝑡𝑖, 𝑇𝑖))

𝑇

∙ 𝑄 ∙

𝑛

𝑖=1

(
𝜕𝑦

𝜕𝜃
(𝑡𝑖, 𝑇𝑖)) 

 

(7) 
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The term𝜕𝑦/𝜕𝜃𝑗(𝑡𝑖, 𝑇𝑖)representsthe local sensitivity functions, defined as the partial 183 

derivative of the response variable (the log-fraction of survivors in this study) with respect to 184 

the vector of model parameters,𝜃, evaluated at the sampling point defined by the vector 185 

(𝑡𝑖, 𝑇𝑖).Q is a weight matrix, that will be considered as the identity matrix in this study. Because 186 

the local sensitivity functions are evaluated in the sampling points, the elements of the FIM 187 

depend on the experimental design; i.e. different combinations of time-temperature will result 188 

in different values of the FIM for the same model. This result is usually referred to as practical 189 

identifiability of the experimental design (Villaverde, 2019; Villaverde, Evans, Chappell, & 190 

Banga, 2019), which describes the ability to estimate the model parameters conditional to the 191 

design. It is, therefore, different to structural identifiability, which only depends on the 192 

mathematical model (Villaverde, Barreiro, & Papachristodoulou, 2016). 193 

According to the Cramer-Rao inequality, the inverse of the FIM is a lower bound of the 194 

covariance matrix of the model parameters (C), which is closely related to the precision of the 195 

parameter estimates (i.e., smaller C implies less uncertainty). Therefore, experimental designs 196 

that maximize the FIM are likely to result in parameter estimates with lower uncertainty (Nishii, 197 

1993). Because the FIM is a matrix, the optimization must be performed based on a metric. 198 

Several criteria are available in the literature, each one with a different interpretation (Balsa-199 

Canto, Alonso, & Banga, 2008b). In this study, we have applied the D-criterion, that has already 200 

been successfully applied in similar problems (Garre, González-Tejedor, et al., 2018). This 201 

criterion consists on the maximization of the determinant of the FIM. Because of the Cramer-202 

Rao inequality, the FIM can be used as an estimator of the variance-covariance matrix of the 203 

model parameters (de Aguiar, B. Bourguignon, Khots, Massart, &Phan-Than-Luu, 1995). 204 

Hence, an experimental design that maximizes the determinant of the FIM also minimizes the 205 

volume of the confidence ellipsoids of the model parameters. Therefore, it also minimizes the 206 

uncertainty associated to each model parameter (i.e. the size of the confidence intervals). 207 
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Therefore, the optimization problem required to calculate the optimal experiments can be 208 

written as shown in Equation (8), where𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥 define the suitable temperature range 209 

for the experiment and𝑡𝑚𝑎𝑥 is the maximum treatment time. Note that 𝑡𝑚𝑎𝑥 is constant and does 210 

not consider the relationship between the time to reach the detectionlimit and the treatment 211 

temperature. In Section 2.2.2., a modification is included in the optimization problem to account 212 

for this relationship. 213 

max
(𝑡𝑖,𝑇𝑖)

det
[∑ (

𝜕𝑦

𝜕𝜃
(𝑡𝑖, 𝑇𝑖))

𝑇

∙ 𝑄 ∙

𝑛

𝑖=1

(
𝜕𝑦

𝜕𝜃
(𝑡𝑖, 𝑇𝑖))]

𝑇𝑚𝑖𝑛 ≤ 𝑇𝑖 ≤ 𝑇𝑚𝑎𝑥

0 ≤ 𝑡𝑖 ≤  𝑡𝑚𝑎𝑥

 

 

(8) 

2.2.1. Local sensitivity functions for isothermal inactivation 214 

Local sensitivity functions are central for the OED methodology based on the 215 

optimization of the FIM. For isothermal conditions, the local sensitivity functions for the 216 

inactivation models considered in this study (Bigelow, Mafart and Peleg) have an analytical 217 

solution.  218 

The Bigelow model has two model parameters (𝐷𝑟𝑒𝑓 and z).The local sensitivity 219 

functions corresponding to them are shown, respectively, in Equations (9) and (10). Note that 220 

the reference temperature is not estimated using experimental data, so it is not considered a 221 

model parameter to fit. 222 

𝜕

𝜕 𝐷𝑟𝑒𝑓

(log 𝑆) =  
𝑡 ∙ 10

𝑇−𝑇𝑟𝑒𝑓

𝑧

𝐷𝑟𝑒𝑓
2  

 

(9) 

𝜕

𝜕 𝑧
(log 𝑆)  =  

𝑡 ∙ ln 10 (𝑇 − 𝑇𝑟𝑒𝑓) ∙ 10−
𝑇−𝑇𝑟𝑒𝑓

𝑧

𝐷𝑟𝑒𝑓
2  

 

(10) 

The Mafart model has three model parameters (𝛿𝑟𝑒𝑓, z and p). Their local sensitivity 223 

functions are reported in Equations (11), (12) and (13). As well as for the Bigelow model, the 224 
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local sensitivity functions of the reference temperature have not been calculated because it is 225 

not a parameter to fit. 226 

𝜕

𝜕 𝛿𝑟𝑒𝑓

(log 𝑆) =  

𝑝 ∙ 𝑡 ∙ 10
𝑇−𝑇𝑟𝑒𝑓

𝑧 ∙ (
𝑡∙10

𝑇−𝑇𝑟𝑒𝑓
𝑧

𝛿𝑟𝑒𝑓
)

𝑝−1

𝛿𝑟𝑒𝑓
2  

 

(11) 

𝜕

𝜕 𝑧
(log 𝑆) =  

𝑝 ∙ 𝑡 ∙ ln 10 (𝑇 − 𝑇𝑟𝑒𝑓) ∙ 10
𝑇−𝑇𝑟𝑒𝑓

𝑧 ∙ (
𝑡∙10

𝑇−𝑇𝑟𝑒𝑓
𝑧

𝛿𝑟𝑒𝑓
)

𝑝−1

𝛿𝑟𝑒𝑓 ∙ 𝑧2
 

 

(12) 

𝜕

𝜕 𝑝
(log 𝑆) =  − (

𝑡 ∙ 10
𝑇−𝑇𝑟𝑒𝑓

𝑧

𝛿𝑟𝑒𝑓
)

𝑝

log (
𝑡 ∙ 10

𝑇−𝑇𝑟𝑒𝑓

𝑧

𝛿𝑟𝑒𝑓
) 

 

(13) 

 227 

The Peleg model has three model parameters (k, n and 𝑇𝑐). The corresponding local 228 

sensitivity functions are written in Equations (14), (15) and (16). 229 

𝜕

𝜕 𝑘
(log 𝑆) =

(𝑇𝑐 − 𝑇) ∙ 𝑡𝑛 ∙ 𝑒𝑇∙𝑘

𝑒𝑇𝑐∙𝑘 + 𝑒𝑇∙𝑘
 

 

(14) 

𝜕

𝜕 𝑇𝑐

(log 𝑆) =
𝑘 ∙ 𝑒𝑇∙𝑘 ∙ 𝑡𝑛

𝑒𝑇∙𝑘 + 𝑒𝑇𝑐∙𝑘
 

 

(15) 

𝜕

𝜕 𝑛
(log 𝑆) = −𝑡𝑛 ∙ ln(𝑡) ∙ ln(ek(T−Tc) + 1) 

 

(16) 

2.2.2. Consideration of a temperature-dependent detection limit in the OED 230 

Inactivation experiments (in the absence of tail effects) reduce the microbial count until 231 

it is below the detection limit. Therefore, for time points after a maximum time, the microbial 232 

density is too low to provide any information. We refer to that maximum time in this article as 233 

maximum treatment time (𝑡𝑚𝑎𝑥). Because the rate of inactivation grows with the treatment 234 

temperature, 𝑡𝑚𝑎𝑥is temperature-dependent. This introduces a constraint that must be included 235 

in the optimization problem (Equation 8), to avoid designs that cannot be carried out in the 236 

laboratory because they require a treatment duration larger than 𝑡𝑚𝑎𝑥. 237 
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Under the hypothesis that the inactivation model is correct, the treatment time (𝑡𝑅) 238 

required to reach an arbitrary number of log-reductions (R) can be calculated from the primary 239 

and secondary models, as shown in equations (17), (18) and (19) for the Bigelow, Mafart and 240 

Peleg models, respectively. These formulas can predict the treatment time required to reach the 241 

detection limit at temperature T, i.e. 𝑡𝑚𝑎𝑥(𝑇).We have calculated the experimental designs for 242 

different values of the detection limit, without a major impact on the design patterns. Therefore, 243 

only the results calculated for an experiment duration corresponding to 6 log-reductions 244 

(equivalent to, e.g., an initial concentration of 7 log CFU/ml and a detection limit of 1 log 245 

CFU/ml) are reported in this article. Note that this number of log-reductions has not been 246 

selected based on any microbiological criteria, just as an illustration of the results. Nonetheless, 247 

the number of log-reductions does not affect optimal design patterns, so the results reported 248 

here are applicable for other conditions. 249 

𝑡𝑅 =  −𝑅 ∙ 𝐷𝑟𝑒𝑓 ∙ 10−
𝑇−𝑇𝑟𝑒𝑓

𝑧  

 

(17) 

𝑡𝑅 =  −𝑅1/𝑝 ∙ 𝛿𝑟𝑒𝑓 ∙ 10−
𝑇−𝑇𝑟𝑒𝑓

𝑧  

 

(18) 

𝑡𝑅 =  (−
𝑅

ln(1 + 𝑒𝑘(𝑇−𝑇𝑐))
)

1/𝑛

 

 

(19) 

Equations (17), (18) or (19) have been added as a constraint to the optimization problem 250 

defined in Equation (8). Then, the optimal solution has been found applying the Enhanced 251 

Scatter Search algorithm (Egea, Martí, &Banga, 2010), using the implementation in the 252 

MEIGO R package (Egea et al., 2014). This algorithm is a heuristic optimization method based 253 

on evolutionary strategies. The constraint has been implemented through a mapping of the 254 

design space. If a point(𝑡𝑖, 𝑇𝑖) is not feasible (i.e., 𝑡𝑖 > 𝑡𝑚𝑎𝑥(𝑇𝑖)) it is moved to (𝑡𝑚𝑎𝑥(𝑇𝑖), 𝑇𝑖) 255 

to make it feasible. Therefore, the objective function outside the feasible area is “flat” in the 256 

time-coordinate. 257 
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2.3. Comparison of the accuracy of experimental designs using numerical simulations 258 

The improved accuracy of the proposed designs with respect to “classical” uniform 259 

designs has been evaluated using in-silico experiments, according to the two methodologies 260 

proposed by Garre et al. (2019).The first one is based on the properties of the FIM. According 261 

to the Cramer-Rao inequality, the inverse of its determinant can be used as estimator of the 262 

volume of the confidence ellipsoids. The values of the determinant of the FIM can be plotted 263 

for different experimental designs to compare the amount of information that each one provides.  264 

This approach, although computationally inexpensive, is only valid under several 265 

statistical hypotheses (e.g. linearity of the response, uncorrelated parameters) that are usually 266 

not fulfilled in microbial inactivation. Moreover, it is hard to estimate from the determinant of 267 

the FIM the precision (i.e. the standard error) of each model parameter. For that reason, Garre 268 

et al. (2019) also suggest a second approach that has less restrictive hypotheses than the FIM 269 

and provides more detailed information on the precision of parameter estimates, at the expense 270 

of computational cost. This second approach is based on Monte Carlo simulations of the 271 

observations that could be observed in a laboratory. The experimental error is modelled as a 272 

perturbation of the ideal response of the microorganism to the stress (the one obtained using the 273 

parameters in Table 1). In this work, a normal distribution with mean zero and 𝜎 = 0.5 has 274 

been used. This is repeated to simulate a large number of experiments (1000) and, then, the 275 

distributions of some index of the parameters. In this study, we have focused in their estimated 276 

values to analyse the bias and their standard errors for parameter precision. The simulations 277 

have been repeated for different values of 𝜎, without observing any impact on the optimal 278 

design patterns. All the simulations and the model fits have been carried out using the functions 279 

included in the bioinactivation R package (Garre, Clemente-Carazo, et al., 2018; Garre, 280 

Fernández, Lindqvist, & Egea, 2017). 281 
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These numerical methods have been used to how the precision in parameter estimates 282 

varies as the number of sampling points is increased. Furthermore, they have been applied to 283 

compare between optimal and uniform experimental designs of different configurations. For 284 

isothermal inactivation experiments, due to the fact that the design space is two-dimensional, 285 

different uniform experiments can be calculated for the same number of data points. For each 286 

microorganism, uniform experiment designs with two (maximum and minimum), three 287 

(maximum, minimum and intermediate) and four (maximum, minimum and two intermediate) 288 

temperatures have been defined. For each temperature, the elapsed time has been divided 289 

uniformly in three to six sampling points. Figure 1 illustrates the three different types of uniform 290 

designs analysed. 291 

3. Results 292 

3.1. Local sensitivity functions for isothermal inactivation 293 

Local sensitivities are a central part for the calculation of OEDs based on the FIM. 294 

Furthermore, they provide qualitative and quantitative information about the model analysed. 295 

Therefore, a sensitivity analysis has been carried out before calculating the OED. Figure 296 

2illustrates the local sensitivity functions for the Bigelow, Mafart and Peleg models for each 297 

microorganism. The effect of the reference temperature on the sensitivity functions is illustrated 298 

in Supp. Figure 1. Because the design space is two-dimensional (time and temperature), each 299 

local sensitivity functions is a three-dimensional surface. Solid lines in Figure 2 and Supp. 300 

Figure 1 indicate combinations of treatment time and temperature with the same local 301 

sensitivity, whereas the background colour indicates the magnitude of the sensitivity function 302 

(i.e. the “height” of the surface). 303 

The shape of the local sensitivities with respect to the three parameters of the Mafart 304 

model(Figure 2B, 2E and 2H) is affected by the characteristics of the microorganism and, 305 
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specially, by the reference temperature (supp. Figure 1). The slope of the surface calculated for 306 

S. Senftemberg is higher than for B. coagulans. The one for E. coli is in between both values. 307 

However, the topological shape of the surface is barely affected by the kinetic parameters of 308 

the microorganism. Modifications on the reference temperature, on the other hand, have a very 309 

relevant effect on the local sensitivities with respect to the z-value. Due to the secondary model 310 

used for the Mafart model (Equation 4), the local sensitivity with respect to this parameter for 311 

a temperature𝑇 = 𝑇𝑟𝑒𝑓 equals zero. Therefore, fixing 𝑇𝑟𝑒𝑓 to different values shifts the location 312 

of this line with zero sensitivity. Furthermore, the shape of the local sensitivity function with 313 

respect to the z-value is not symmetrical with respect to the reference temperature. This can be 314 

visualized by comparing, for instance, Figure S1D and Figure S1F. Because of the crucial role 315 

of local sensitivities on the FIM, it is expected that changes in  𝑇𝑟𝑒𝑓 should modify the precision 316 

of the parameter estimates. This question is further analysed in section 3.2 of this article. Note 317 

that the local sensitivity functions for the Bigelow model are equivalent to those calculated for 318 

the Mafart model when 𝑝 = 1 (𝐷𝑟𝑒𝑓 equivalent to 𝛿𝑟𝑒𝑓). Hence, the observations made for the 319 

Mafart model can be extrapolated for the Bigelow model. 320 

The local sensitivity of parameter n in the Peleg model is similar to the one of parameter 321 

p in the Mafart model. This was expected, because both parameters represent the shape factor 322 

of the underlying Weibull distribution used as hypothesis for the primary model. Local 323 

sensitivities with respect to 𝑘𝑏 are similar in shape to those calculated for the z-value in the 324 

Mafart model. Both parameters are introduced in the secondary model to describe the 325 

relationship between the inactivation rate and changes in temperature (𝛿−1 is log-linear with 326 

slope 𝑧−1 in Mafart; b is linear with slope 𝑘𝑏in Peleg). Furthermore, the local sensitivity with 327 

respect to 𝑘𝑏equals zero when 𝑇 = 𝑇𝑐𝑟𝑖𝑡, similar to the relationship between z and 𝑇𝑟𝑒𝑓. These 328 

similarities in the interpretation of both parameters result in similar sensitivity functions. 329 

Finally, the local sensitivities with respect to 𝑇𝑐𝑟𝑖𝑡 are similar to those with respect to 𝛿𝑟𝑒𝑓. 330 
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Because of these similarities, it is expected that both the Peleg and Mafart models, despite their 331 

different secondary models, have similar performance when describing isothermal microbial 332 

inactivation. 333 

The methodology for OED based on the FIM tends to locate sampling points in areas of 334 

the design space (treatment time/temperature combinations) with high local 335 

sensitivity(Schenkendorf et al., 2018). According to Figure 2, the areas with the highest local 336 

sensitivity are located in the upper right corner of the design space, corresponding to high 337 

treatment times and temperatures. However, for microbial inactivation, the maximum treatment 338 

time is constrained by the time required to reach the detection limit, which is temperature 339 

dependent (dashed green line in these plots). Therefore, without a constraint to relate to the 340 

detection limit, we expect the OED to calculate designs that cannot be realized in the laboratory. 341 

This question is further analysed in section 3.3. 342 

3.2. Impact of the reference temperature in the uncertainty of the parameter estimates 343 

The reference temperature is a parameter without a biological interpretation that is 344 

included in the Bigelow and Mafart models to improve parameter identifiability (Dolan, 345 

Valdramidis, & Mishra, 2013a). As already discussed in the previous section, changes in the 346 

reference temperature affects the local sensitivity functions of the z-value. As described in the 347 

materials and methods section, we have simulated uniform designs with four temperatures and 348 

four samples per temperature tested for all microorganisms to analyse the impact of different 349 

values of the reference temperature in the precision of the parameter estimates. The precision 350 

in the z-value (in both models) and the p-value (in the Mafart one) was not affected by variations 351 

in the reference temperature. On the other hand, changes in the reference temperature affected 352 

the uncertainty associated to the D-value (Bigelow model) and  𝛿-value (Mafart model). Figure 353 

3 illustrates using boxplots the distribution of the relative standard deviation (estimated 354 

standard error divided by estimated value) of these parameters in 1000 simulated experiments 355 
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when the reference temperature is fixed to five different values (90ºC [𝑇𝑚𝑖𝑛], 92.5ºC, 95ºC, 356 

97.5ºC and 100ºC [𝑇𝑚𝑎𝑥]).The reference temperature has a strong influence in the precision of 357 

the D-value of the Bigelow model (Figure 3A). Fixing it to an extreme value (𝑇𝑚𝑎𝑥 or 𝑇𝑚𝑖𝑛) 358 

results in the lowest precision, whereas setting it to the mean of the temperature range of the 359 

experiment(95ºC = (90 + 100)/2; in this case) results in a significant reduction in the expected 360 

relative standard deviation of this parameter. The expected relative standard deviation is 361 

reduced from 0.009 to 0.005. Figure 3A also shows that the effect of the reference temperature 362 

on the precision of the parameter estimates is symmetrical. The distribution of the relative 363 

standard deviation when the reference temperature equals the maximum temperature (100ºC) 364 

is indistinguishable from the one obtained for the minimum temperature (90ºC). This is also 365 

observed for other intermediate values, symmetrical with respect to the mean value (92.5 and 366 

97.5ºC). This results are in-line with those obtained by Poschet et al. (2005). 367 

The results obtained for the Mafart model (Figure 3B) are similar to those obtained for 368 

the Bigelow model. Again, the lowest uncertainty is obtained when the reference temperature 369 

is fixed to the mean of the maximum and minimum temperature. As well as for the Bigelow 370 

model, the effect of the reference temperature in the precision of the parameter estimates of the 371 

Mafart model is symmetrical; the same precision was obtained at 100 and 90ºC, and at 97.5 and 372 

92.5ºC.However, the impact is much lower for the Mafart model than for the Bigelow model. 373 

The expected relative standard deviation is reduced from0.0253 to 0.0249 when the reference 374 

temperature is changed from 90º to 95ºC. This could be attributed to the correlation between 375 

the 𝛿-value and parameter p of the Mafart model. However, an in-deep analysis of the structural 376 

and practical identifiability of the Mafart model would be required to confirm this hypothesis. 377 

That study has a high mathematical complexity (Villaverde, 2019; Villaverde et al., 2016) and 378 

is out of the scope of this article. The computational studied has also been carried out for other 379 
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designs (uniform and optimal), as well as for the other two microorganisms, obtaining 380 

qualitatively the same results (not reported). 381 

Consequently, the selection of the reference temperature influences the uncertainty of 382 

the model parameters in the Bigelow and, to a lesser extent, the Mafart model. This implies 383 

thatthe uncertainty associated to the model parameters can be reduced by an adequate selection 384 

of the reference temperature, without the need of any additional experimental effort. According 385 

to the numerical results of this investigation, it is recommended to fix the reference temperature 386 

to the mean of the maximum and minimum temperatures used for the analysis. On a previous 387 

study Poschet et al. (2005) reached the same conclusion for isothermal inactivation when the 388 

two-step model fitting algorithm was used. Dolan, Valdramidis & Mishra (2013b), also 389 

applying Monte Carlo simulations, identified a reference temperature that minimized the 390 

correlation between the model parameters for several inactivation models. In the case of a 391 

model similar to the Bigelow model, they identified an optimum reference temperature close to 392 

the mean of the temperature range, as well as in our study. On the other hand, Datta(1993) 393 

proposes a formula to calculate a reference temperature that minimizes the error of the 394 

secondary model with respect to the Arrhenius equation. This procedure results in a reference 395 

temperature that is very close to the maximum temperature used in the experiments. The reason 396 

for this discrepancy is that the goal of the study by Datta was the minimization of the error in 397 

the model with respect to the Arrhenius model, not the optimization of the precision in the 398 

parameter estimates. The different target of his investigation is responsible for the differences 399 

in the result. 400 

3.3. OED for isothermal inactivation 401 

As a first step, OEDs have been calculated without considering the constraint regarding 402 

the detection limit (i.e. optimizing Equation 8). The optimal experiments calculated had most 403 

sampling points at the upper limits of the treatment time and temperature range (results not 404 



20 

 

shown). As already discussed, the OED based on the FIM tends to locate sampling points in 405 

areas with high local sensitivity. In the cases studied, the areas with the highest local sensitivity 406 

are located on the upper-right corner of the design space, as shown in Figure 2. Therefore, in 407 

the absence of a constraint, the optimal solution consists of sampling points in that area. 408 

However, these points are not feasible under actual laboratory conditions because the microbial 409 

count is well below the detection limit. These designs, despite optimal from the point of view 410 

of information theory, are not practical in actual laboratory conditions. Therefore, there is a 411 

need to include a constraint related to the detection limit.  412 

OEDs have been calculated for every case studied (three models and three 413 

microorganisms) for a different number of sampling points (four to eighteen). The reference 414 

temperature has been set to the mean of the temperature range, according to the conclusions of 415 

section 3.2. Our results show that the optimal design pattern depends on the inactivation model 416 

selected, is slightly affected by the characteristics of the microorganism, and is not affected by 417 

the number of sampling points. The value of the reference temperature does not affect the 418 

optimal design patter (result not shown). As an illustration, the OEDs calculated for 10 sampling 419 

points are illustrated in Figure 2. For the Bigelow model, sampling points are located in two 420 

areas: at the values of 𝑡𝑚𝑎𝑥(𝑇) corresponding to 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥. That configuration would be 421 

unable to identify the value of p and n in the Mafart and Peleg models, respectively. 422 

Consequently, the OEDs calculated for both models include additional sampling points at 423 

intermediate treatment times. Nevertheless, the number of sampling points at intermediate 424 

treatment times is lower than those located for treatment times close to 𝑡𝑚𝑎𝑥(𝑇). For the Mafart 425 

model, sampling points are located in two additional locations with respect to the Bigelow 426 

model. These areas are also at the maximum and minimum temperature, but at an intermediate 427 

time instead of𝑡𝑚𝑎𝑥(𝑇). The exact sampling time of these points depends on the value of the 428 

parameter p. For 𝑝 > 1 (B. coagulans), the optimum configuration has points closer to 𝑡𝑚𝑎𝑥than 429 
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for 𝑝 < 1 (S. Senftemberg), when the intermediate points are closer to the beginning of the 430 

treatment. Finally, for the Peleg model, one additional area is identified with respect to the 431 

Bigelow model. In this case, the additional sampling points are also located at an intermediate 432 

treatment time. Whereas in the Mafart model the additional points were located at 𝑇𝑚𝑖𝑛 and 433 

𝑇𝑚𝑎𝑥, the optimal design pattern in the Peleg model uses experiments at an intermediate 434 

temperature. The value of the couplet time-temperature of the additional sampling points 435 

depends on the characteristics of the microorganism. For 𝑛 > 1 (B. coagulans), the optimum 436 

configuration is above the intermediate temperature and closer to the detection limit than when 437 

𝑛 < 1 (S. Senftemberg). In the latter case, the intermediate points are further from the detection 438 

limit and it has a temperature below the intermediate one. These optimum patterns were stable 439 

when the total number of sampling points was changed. 440 

3.4. Comparison between optimal and uniform designs  441 

In this section we compare the precision in parameter estimates that is attained with the 442 

proposed OEDs (considering the temperature-dependent restriction in the treatment time) with 443 

respect to uniform designs. Because the sampling space is two-dimensional (time and 444 

temperature), for a given number of sampling points, several uniform designs are possible. We 445 

have considered uniform designs with two different treatment temperatures (“Uni 2”), three 446 

temperatures (“Uni 3”) and four temperatures (“Uni4”). In every design, the same number of 447 

samples has been used for each temperature. For instance, a “Uni 3” design with 12 sampling 448 

points has four samples at𝑇𝑚𝑎𝑥, four at 𝑇𝑚𝑖𝑛 and four at 𝑇 = (𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛)/2. Figure 1 shows 449 

an illustrative comparison of these designs. 450 

Figure 4 plots the inverse of the determinant of the FIM calculated for experimental 451 

designs (uniform and optimal) for four to twenty sampling points. Note that, as justified in the 452 

materials and methods section, the inverse of the determinant of the FIM is an estimate of the 453 

volume of the confidence ellipsoids of the model parameters. In every case, an increase in the 454 
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number of sampling points reduces the uncertainty of the model parameters. The relationship 455 

between the inverse of the determinant of the FIM and the number of sampling points is close 456 

to log-linear. This implies that, when the number of samples is low, an increase in the number 457 

of sampling points has a strong, positive influence in uncertainty. This impact, however, is 458 

reduced as the number of samples is increased. This result is in agreement with those reported 459 

by Garre et al. 2019 for dynamic inactivation experiments. 460 

In every case studied, the OED provides parameter values with lower uncertainty than 461 

uniform designs with a similar number of sampling points. Regarding the uniform designs, the 462 

number of temperatures considered has a significant influence on the results. Designs with two 463 

temperatures (“Uni 2”) are more informative than those with three (“Uni 3”), which are more 464 

informative than those with four temperatures (“Uni 4”). This can be explained based on the 465 

patterns identified for optimal experiments in this context. For the Bigelow and the Mafart 466 

model, the OED identifies sampling points at the maximum and minimum temperatures as the 467 

most informative ones. A uniform experiment design with more than two different temperatures 468 

places sampling points at intermediate temperatures, less informative than the extreme ones. 469 

Consequently, because they are closer to the pattern defined by the optimal one, uniform 470 

experiments with two temperatures are more informative than those with more temperatures for 471 

the same number of sampling points. 472 

Monte Carlo simulations have been used to further compare the precision and accuracy 473 

of different experimental designs, extending the conclusions drawn from the observation of the 474 

values of the FIM. An OED with12 sampling points has been compared against a uniform 475 

designs with the same number of sampling points. Namely, we have considered uniform designs 476 

with two different temperatures and six sampling points per temperature (“Uni_2_6”), three 477 

different temperatures and four samples per temperature (“Uni_3_4”), and four different 478 

temperatures and three samples per temperature (“Uni_4_3”). The comparison has been made 479 
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for the three microorganisms and three inactivation models studied in this investigation. For 480 

every experimental design and case studied, the mean of the parameter estimates matched the 481 

value used for the simulations, indicating a lack of bias. However, the precision varied between 482 

experimental designs. Figure5shows density plots of the relative standard deviations estimated 483 

in 1000 Monte Carlo simulations. For most cases, the OED systematically estimates parameters 484 

with a lower standard deviation than the uniform designs; i.e. with less uncertainty. This result 485 

is in line with the predictions made based on the values of the determinant of the FIM. The 486 

improvement is dependent on the mathematical model and the microorganism studied. For the 487 

Bigelow model, a 52% reduction in uncertainty for every microorganism and inactivation 488 

model is attained (for example with B. coagulans and Bigelow (Figure 5A) the expected relative 489 

standard deviation for 𝐷𝑟𝑒𝑓 is reduced from 0.011 to 0.007 and z is reduced from 0.015to 0.007). 490 

For the Mafart model, the improvement for the parameters 𝛿𝑟𝑒𝑓 and p is only noticeable for the 491 

simulations on S. Senftemberg. This can be due to the high correlation between these two model 492 

parameters. Nevertheless, the OED significantly reduces the uncertainty of the estimate for the 493 

z-value in every case studied. For the Peleg model, the OED again results in a noticeable 494 

reduction in the uncertainty of every parameter estimate. The magnitude of this improvement, 495 

however, depends on the microorganism, being the improvement the biggest for the simulations 496 

in S. Senftemberg. 497 

There are also differences between the precision attained for different uniform 498 

experimental designs. Uniform designs with two temperatures result in parameter estimates 499 

with lower standard deviations than designs with treatments at three or four different 500 

temperatures for every case studied. These results are in-line with the predictions made based 501 

on the determinant of the FIM. Again, they can be justified based on the fact that uniform 502 

designs with only two temperatures are more similar to the optimal design patterns. 503 
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4. Discussion 504 

The importance of kinetic parameters for food science is hinted by the large number of 505 

scientific articles published during the last years dedicated to review them (Doyle & Mazzotta, 506 

2000; Doyle, Mazzotta, Wang, Wiseman, & Scott, 2001). Although some studies have tried to 507 

provide tools to extrapolate the kinetic parameters already available in the literature (den Besten 508 

et al., 2018; van Asselt & Zwietering, 2006), in most cases, experimental data is required to 509 

estimate their values. Considering that inactivation experiments require specific equipment and 510 

media, as well as highly trained personnel, describing the microbial inactivation kinetics is a 511 

costly process. OED has the potential to reduce the experimental work (and the associated 512 

economic cost) required for this task. However, its application to food science remains mostly 513 

theoretical. Most applied studies use uniform designs or “optimal” designs based on heuristics 514 

and personal experience, rather than on a proper mathematical analysis. This can be attributed 515 

to the complexities associated to the calculation of an optimal design, which requires advanced 516 

concepts of statistics, numerical optimization and information theory. Moreover, experimental 517 

designs that may be optimal from the point of view of information theory may not be feasible 518 

from an experimental point of view, despite including some constraints in the optimization (e.g. 519 

the detection limit).  520 

The results of this investigation enable the definition of several guidelines that would 521 

result in isothermal inactivation experiments that are optimal (or near optimal). Designs 522 

adhering to these guidelines are likely to results in more precise parameter estimates than 523 

uniform designs and designs based on experience. These guidelines combine the results 524 

obtained in this investigation based on information theory with several practical limitations 525 

related to experimental settings for inactivation experiments: 526 

1. The use of an appropriate reference temperature can reduce the uncertainty 527 

associated to the parameter estimates. This is especially interesting, because it does 528 
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not require any modification in already existing laboratory protocols. According to 529 

the results of this investigation, it is recommended to set the reference temperature 530 

to the mean of the temperature range used for the experiments.  531 

2. Data points taken at the minimum and maximum treatment temperatures are the 532 

most informative ones. Therefore, experimental efforts shall concentrate at these 533 

temperature treatments. Nonetheless, this result is valid as long as the mathematical 534 

models are valid. It is encouraged the performance of, at least, one repetition at an 535 

intermediate temperature to validate the assumptions of the secondary model (e.g. 536 

the log-linearity between the D-value and temperature). 537 

3. For every model tested, the most informative points correspond to treatments time 538 

close to the one where the detection limit is reached. Taking samples close to the 539 

detection limit can be challenging in laboratory conditions, because the actual 540 

microbial kinetics are unknown. We recommend researchers to design experiments 541 

focusing experimental efforts at treatment times close to the maximum treatment 542 

time based, for instance, on kinetic data already available in the literature. Then, the 543 

experimental design can be updated after the first repetitions of the experiment. Note 544 

that sample times taken at sub-optimal treatment times, although less informative, 545 

will certainly reduce parameter uncertainty and will contribute to the validation of 546 

the hypotheses of the primary model. Therefore, the initial, suboptimal repetitions 547 

of the experiments are not a waste of resources. 548 

4. The selection of the mathematical model more suitable to describe microbial 549 

inactivation remains an open research question in predictive microbiology. Based 550 

on the results of this investigation, we discourage to design experiments starting 551 

with the hypothesis that inactivation is log-linear. The OED for this mathematical 552 

model does not include samples at intermediate treatment times, so deviations from 553 



26 

 

log-linearity would pass unnoticed. Consequently, the Peleg or Mafart model should 554 

be used as starting hypothesis. Both models include a parameter to describe the 555 

curvature of the survivor curve, so a statistical test can be performed after model 556 

fitting to assess the significance of the non-linearities of the survivor curve. 557 

5. The OEDs calculated in this study have identified few areas where data points 558 

should be collected (two for Bigelow, four for Mafart and three for Peleg). However, 559 

this does not imply that one sample taken in each one of those areas should suffice 560 

for model fitting. The characterization of the microbial response is subject to 561 

experimental error, so the parameter estimates are always affected by 562 

uncertainty(Chik, Schmidt, & Emelko, 2018; EFSA Scientific Committee et al., 563 

2018; Garcés-Vega & Marks, 2014; Garre, Egea, Esnoz, Palop, & Fernandez, 2019; 564 

Jarvis, 2008). As a lower threshold, experiments shall be designed with a sufficient 565 

number of data points to consider the uncertainty in the parameter estimates and the 566 

predictions (e.g. an estimate of the standard deviation). 567 

5. Conclusions 568 

A methodology for the calculation of optimal experiments for isothermal inactivation 569 

has been developed. This methodology, based on the optimization of the FIM, is able to 570 

consider a two-dimensional design space (time and temperature), as well as a temperature-571 

dependent detection limit. It has been applied to identify design patterns that are optimal from 572 

the point of view of information theory. These patterns are stable with respect to the number of 573 

sampling points. Furthermore, the effect of the reference temperature has been studied, 574 

concluding that the average of the temperature range tested is optimum from the point of view 575 

of the precision of parameter estimates. Numerical simulations have demonstrated that the 576 

proposed experimental designs are significantly more informative than uniform designs with 577 

the same number of sampling points. Based on these results, we define guidelines for the design 578 
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of isothermal inactivation experiments that combine these optimal results with several known 579 

experimental limitations. Their application would enable a reduction of the experimental work 580 

required to characterize the microbial response to static stresses. 581 
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 589 

Tables 590 

Table 1. Model parameters used as reference for the calculations 591 

 𝛿𝑟𝑒𝑓(min) 𝑇𝑟𝑒𝑓(º𝐶) 𝑘(º𝐶−1) 𝑇𝑐(º𝐶) 𝑝/𝑛(−) 𝑧(º𝐶) 𝑇𝑚𝑖𝑛(º𝐶)a 𝑇𝑚𝑎𝑥(º𝐶)b 

Escherichia 

coli 

11.96 52.5 0.58 56.95 1 5.18 52.5 60 

Bacillus 

coagulans 

7.3 90 0.4 99.97 2.04 12.01 90 100 

Salmonella 

Senftemberg 

3.17 55 0.3 56.19 0.38 5.84 55 62.5 

aMinimum treatment temperature. 592 
bMaximum treatment temperature. 593 
 594 

Figures 595 

Figure 1.Illustration of the uniform experimental designs considered (A) “Uni 2”, (B) “Uni 3” 596 

and (C) “Uni 4”. 597 
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 598 

Figure 2.Local sensitivity functions and OEDs calculated (solid points) for (A) B. coagulans 599 

and Bigelow model, (B) B. coagulans and Mafart model, (C) B. coagulans and Peleg model, 600 

(D) E. coli and Bigelow model, (E)E. coli and Mafart model, (F)E. coli and Peleg model, (G) 601 

S. Senftemberg and Bigelow model, (H) S. Senftemberg and Mafart model, (I) S. Senftemberg 602 

and Peleg model. 603 

 604 

Figure 3. Boxplots of the relative standard deviation of parameters model in 1000 simulated 605 

experiments for the D-value in the Bigelow model (A) and the 𝛿-value in theMafart model (B) 606 

when the 𝑇𝑟𝑒𝑓 is fixed to different values (see legend). 607 
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 608 

Figure 4.Inverse of the determinant of the FIM with respect to the number sampling points for 609 

different experimental designs. (A) B. coagulans and Bigelow model, (B) B. coagulans and 610 

Mafart model, (C) B. coagulans and Peleg model, (D) E. Coli and Bigelow model, (E) E. coli 611 

and Mafart model, (F) E. coli and Peleg model, (G) S. Senftemberg and Bigelow model, (H) S. 612 

Senftemberg and Mafart model, (I) S. Senftemberg and Peleg model and fixing the reference 613 

temperature as the intermediate. 614 
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 615 

Figure 5. Boxplots of the relative standard deviations estimated in 100 simulated experiments 616 

with different experimental designs (OED and uniform). (A) B. Coagulans and Bigelow model, 617 

(B) B. Coagulans and Mafart model, (C) B. Coagulans and Peleg model, (D) E. coli and 618 

Bigelow model, (E) E. coli and Mafart model, (F) E. coli and Peleg model, (G) S. Senftemberg 619 

and Bigelow model, (H) S. Senftemberg and Mafart model, (I) S. Senftemberg and Peleg model 620 

and fixing the reference temperature as the intermediate. 621 
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 622 
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Supplementary Figure 1.Local sensitivity functions for the Mafart model with respect to 623 

parameters 𝐷𝑟𝑒𝑓, z and p.(A)B. coagulans, 𝑇𝑟𝑒𝑓 = 𝑇𝑚𝑖𝑛, (B) B. coagulans, 𝑇𝑟𝑒𝑓 = (𝑇𝑚𝑖𝑛 +624 

𝑇𝑚𝑎𝑥)/2, (C) B. coagulans, 𝑇𝑟𝑒𝑓 = 𝑇𝑚𝑎𝑥, (D) E. coli, 𝑇𝑟𝑒𝑓 = 𝑇𝑚𝑖𝑛, (E) E. coli, 𝑇𝑟𝑒𝑓 = (𝑇𝑚𝑖𝑛 +625 

𝑇𝑚𝑎𝑥)/2, (F) E. coli, 𝑇𝑟𝑒𝑓 = 𝑇𝑚𝑎𝑥, (G) S. Senftemberg, 𝑇𝑟𝑒𝑓 = 𝑇𝑚𝑖𝑛, (H) S. Senftemberg, 626 

𝑇𝑟𝑒𝑓 = (𝑇𝑚𝑖𝑛 + 𝑇𝑚𝑎𝑥)/2, (I) S. Senftemberg, 𝑇𝑟𝑒𝑓 = 𝑇𝑚𝑎𝑥. 627 
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