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A B S T R A C T

Payments for ecosystem services (PES) have been developed as a policy instrument to help safeguard the con-
tributions of ecosystems to human well-being. A critical measure of a programme’s effectiveness is whether it is
generating an additional supply of ecosystem services (ES). So far, there has been limited analysis of PES pro-
grammes based on the actual supply of ES. In line with ecosystem accounting principles, we spatially quantified
three ES recognised by Costa Rica’s Pago de Servicios Ambientales (PSA) programme: carbon storage, soil
erosion control and habitat suitability for biodiversity as a cultural ES. We used the machine learning algorithm
random forest to model carbon storage, the Revised Universal Soil Loss Equation (RUSLE) to model soil erosion
control and Maxent to model habitat suitability. The additional effect of the PSA programme on carbon storage
was examined using linear regression. Forested land was found to store 235.3 Mt of carbon, control for
148 Mt yr−1 of soil erosion and contain 762,891 ha of suitable habitat for three iconic but threatened species.
PSA areas enrolled in the programme in both 2011 and 2013 were found to store an additional 9 tonC ha−1 on
average. As well as enabling a direct quantification of additionality, spatial distribution analysis can help ad-
ministrators target high-value areas, confirm the conditional supply of ES and support the monetary valuation of
ES. Ultimately, this can help improve the social efficiency of payments by enabling a comparison of societal costs
and benefits.

1. Introduction

Human activities are driving a worldwide loss of biodiversity and
ecosystems, thereby altering the planet’s biogeochemical cycles (Steffen
et al., 2015). A lack of compensation of land owners for the biodiversity
and ecosystem services (ES) generated on their land is often cited as one
of the causes for these losses (Rands et al., 2010; Bullock et al., 2011;
Guerry et al., 2015). To counter this, payments for ecosystem (or
sometimes, environmental) services (PES) have been developed (Engel
et al., 2008; Wunder, 2008; Muradian et al., 2010). One of the world’s
most established PES schemes is Costa Rica’s ‘Pago de Servicios Am-
bientales’ (PSA) programme which compensates private land owners
for four services produced on their forested land: the mitigation of
greenhouse gases, the protection of hydrological sources, biodiversity
and scenic beauty (Pagiola, 2008).

A challenge facing the Costa Rican payment system is that there is a
lack of information on the societal benefits obtained by the system

(Pagiola, 2008; Porras et al., 2013). There is also no direct quantifica-
tion of ES in selecting participating areas or examining the effectiveness
of the programme. Areas are targeted for specific services but there is
generally a lack of data on services and the extent to which the pro-
gramme is influencing their supply. Studies quantifying ES to examine
the effect of the PSA programme are rare (Daniels et al., 2010). Studies
that have investigated the impact of the programme have used
matching methodologies based on deforestation as a proxy (Daniels
et al., 2010; Robalino and Pfaff, 2013). These measurement challenges
are common for PES schemes even though measuring the additional
amount of ES generated compared to a baseline with no payments is a
key measure of a programme’s effectiveness (Tacconi, 2012; Börner
et al., 2017).

In this context, the System of Environmental Economic Accounting –
Ecosystem Accounting (SEEA-EA) provides a consistent system to ana-
lyse, store and provide easy access to information on ecosystem changes
and human implications (UN et al., 2014; Hein et al., 2015). The SEEA
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EA framework is part of the United Nations SEEA framework, which is a
satellite to the System of National Accounts (SNA), used by almost all
countries to produce economic statistics. The SEEA EA considers the
exchange value of ES, values that would have been obtained if a market
existed for those services, so as to be consistent with the SNA. Monetary
evaluation therefore only includes the producer surplus generated in a
market and excludes the consumer surplus captured by welfare eco-
nomics approaches. Elsewhere, outside of ES research, researchers have
used innovative machine learning techniques to spatially model en-
vironmental variables. For example, the use of the ensemble learning
algorithm random forests to model forest biomass (Baccini et al., 2004;
Houghton et al., 2007). Similarly, Maxent, a species distribution model
based on the principle of maximum entropy, has proven to be a useful
approach in the context of ES (Sumarga and Hein, 2014). These tech-
niques, applied using the SEEA EA, promise to provide the spatial detail
required at the national level for more effective PES schemes.

The objective of this study is to examine how the spatial quantifica-
tion of ES can assist PES practitioners determine the effectiveness of a
programme, and specifically the Costa Rican PSA programme. Selected ES
recognised by the programme are spatially modelled in line with eco-
system accounting principles. These are carbon storage for the mitigation
of greenhouse gases, soil erosion control for the protection of hydrological
sources, and habitat suitability for biodiversity. We use random forests to
model carbon storage, the Revised Universal Soil Loss Equation (RUSLE)
for soil erosion control and Maxent to model habitat suitability. We ex-
amine the effect of the PSA on carbon storage based on a comparison of
sites in a single year (2013) and analyse changes in carbon in areas

enrolled between 2011 and 2013. The relevancy of the spatial ES quan-
tities for such an analysis are examined in the discussion. Key innovations
in the paper relate to: (i) a combination of ecosystem accounting and PES,
including the nation-wide quantification of ES; (ii) the use of machine
learning to model ecosystem services; and (iii) a regression analysis of
forest conservation policies on ES supply in Costa Rica.

2. Methods

2.1. Study area

Costa Rica is a country in Central America of 51,100 square kilo-
metres with a rich topography and a tropical to sub-tropical climate.
The continental divide has produced two coastal planes divided by a set
of large mountain ranges in its middle, reaching a height of 3819 m
(Herrera, 2016). Approximately 52 percent of its area is covered by
forest and the country is estimated to have 5 percent of the world’s
biodiversity (Kappelle, 2016). Costa Rica has a large network of na-
tional parks and wildlife reserves, see Fig. 1. The national parks of Costa
Rica contain some of the largest continuous stretches of pristine tropical
forest in Costa Rica (Boza, 1993).

2.2. Biophysical spatial ES models

Three of the ES recognised by the PSA programme in Costa Rica
were modelled for the entire forested area of Costa Rica: the mitigation
of greenhouse gas emissions, the protection of hydrological sources and
biodiversity. ES are defined as the contributions of ecosystems to ben-
efits used in economic and other human activity (UN et al., 2014).
Scenic beauty was not modelled due to the challenges in modelling such
a service and with the view that biodiversity and scenic beauty are
closely aligned (Locatelli et al., 2013). Forested area is defined as pri-
mary forest, secondary forest, tree plantations, palm swamp forests and
mangrove forests. The PSA programme does not target palm swamp and
mangrove forests. However, to gain a more comprehensive overview of
ES supply and to allow comparison with other studies, the ES were
modelled for all forest types.

The indicators chosen to represent the ES are carbon storage, soil
erosion control and habitat suitability for a set of iconic but threatened
species. All ES were modelled using data for 2013 unless stated other-
wise. The ES were modelled and presented using R 3.4.2, GRASS 7.4.
and ArcGIS 10.5. Spatial data in R was handled using the raster and sp
packages. The data sources are listed in Table 1.

2.2.1. Carbon storage
Carbon storage represents an important indicator to measure the

mitigation of greenhouse gases as an ES as the majority of Costa Rica’s
emission reductions are generated through avoided deforestation

Fig. 1. Map of Costa Rica with its main cities and national park system.

Table 1
Modelled ES and source data.

ES Dataset Dataset type Source

Carbon storage Forest inventory plot data Forestry statistics Programa REDD/CCAD-GIZ-SINAC (2015)
MODIS Nadir BRDF-Adjusted Reflectance Daily Raster (500 m resolution) Schaaf and Wang (2015)
WorldClim 2 climate surfaces Raster (1 km resolution) Fick and Hijmans (2017)
Digital elevation model Raster (15 m resolution) USGS (2006)

Soil erosion control TRMM 3B42 3-hourly precipitation records Raster (0.25 degree resolution) TRMM (2015)
HWSD soil type and properties Raster (1 km resolution) and mdb database file FAO (2012)
Land cover map Raster (30 m resolution) ADUU (2015)
Digital elevation model Raster (15 m resolution) USGS (2006)

Habitat suitability GBIF species presence data R dataframe with coordinates GBIF (2017)
WorldClim 2 climate surfaces Raster (1 km resolution) Fick and Hijmans (2017)
MODIS Vegetation Continuous Fields Yearly Raster (250 m resolution) Dimiceli et al. (2015)
Land cover map Raster (30 m resolution) ADUU (2015)
Digital elevation model Raster (15 m resolution) USGS (2006)
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(Pagiola, 2008). Carbon storage was modelled using the machine
learning algorithm random forests developed by Breiman (2001).
Random forests is an ensemble learning method for regression which
uses decision trees and bootstrap sampling techniques to generate a
mean prediction for a response variable using a set of predictor vari-
ables. Tree-based models have been applied in a number of studies to
map aboveground biomass and carbon storage using remote sensing
and forest inventory data (Baccini et al., 2004, 2008; Houghton et al.,
2007; Saatchi et al., 2007; Yin et al., 2015).

The ranger package in R was used to build the random forests model
(Wright and Ziegler, 2017). This was implemented within the wrapper
package caret (Kuhn, 2008). caret was set to automatically select the
best maximum number of predictor variables available at each split
within each tree, termed ‘mtry’, and whether to randomly choose pre-
dictors at each tree node, referred to as “extratrees”, or the locally
optimal number of predictor variables based on the variance of the
responses, termed ‘variance’. The number of trees permitted to grow in
each of the models was set to 100.

The model was trained on forest inventory data from 2014 using a
variety of remote-sensing, climatic and topographical predictor vari-
ables. 155 plot measurements in the forest inventory were used after
removing plots with issues related to location or observed vegetation
(see Appendix A). The total estimated carbon per hectare for each plot
was taken and geo-located using the plot coordinates.

The predictor variables were selected using a pre-screening ap-
proach that utilised the Boruta package in R (Appendix A). Table 2 lists
the variables. The first dataset used was the Moderate-resolution Ima-
ging Spectroradiometer (MODIS) Nadir BRDF-Adjusted Reflectance
Daily product (MOD34A4.V6) at 500 m resolution (Schaaf and Wang,
2015). This product provides a repeated 16-day composite of observa-
tions that have been cloud-screened and corrected for atmospheric haze
and aerosols (Schaaf et al., 2002). The Normalised Difference Moisture
Index (NDMI) using the MODIS reflectance bands was also used. NDMI
is sensitive to the moisture content of vegetation and has been used to
detect different stand ages of vegetation (Jin and Sader, 2005). NDMI is
calculated as:

=
+

NDMI NIR SWIR
NIR SWIR

( 1)
( 1) (3.1)

where NIR refers to the near infrared band of the satellite at
0.841–0.876 μm and SWIR1 to the shortwave infrared band at
1.628–1.654 μm.

Landsat reflectance bands were also tested as predictor variables. At
30 m resolution, the imagery improved the spatial variation of the
model outputs. However, cloud cover presents a serious challenge in
Costa Rica; no fully cloud-free pixels were available for many areas
during the entire year. The reflectance bands also did not improve the
predictive power of the model over that of the bioclimatic variables.

Elevation and bioclimatic variables from the WorldClim 2 climate
surfaces were also identified as strong predictors. The WorldClim 2

climate surfaces have been calculated by spatially interpolating satellite
and weather station data (Fick and Hijmans, 2017). Within this set, the
temperature annual range (°C), annual precipitation (mm) and pre-
cipitation of the driest quarter (mm) were used.

To assess the overall predictive strength of the model, a repeated
cross-validation approach was taken. The data was randomly split into 50
groups with one group held out repeatedly as the validation dataset and
the others used to train the model. This procedure was repeated 50 times
and the results averaged. R2 and Root Mean Squared Error (RMSE) was
used as metrics to measure model performance. R2 reflects the variance in
the response variable explained by the model across the validation da-
tasets while RMSE is a measure of error between observed and predicted
values (Kuhn and Johnson, 2013). Predictor variable importance was
measured using the node impurity statistic. In the case of regression, this
shows the decrease in variance in the estimated response of the dependent
variable (carbon storage) as a result of a decision node splitting on a
predictor variable. The node impurities per predictor variable were
summed across all trees and scaled to have a maximum value of 100.

2.2.2. Soil erosion control
The PSA programme recognises the hydrological services forests

provide for the protection of drinking water and production of hydro-
electric energy (Porras et al., 2013). Water quality is a primary concern
in Costa Rica (Pagiola, 2008). Vegetation plays a key role in reducing
soil erosion and sediment run-off into water bodies. High sediment
loads affect drinking water quality, water for irrigation and hydro-
electric power generation (Locatelli et al., 2013). For these reasons, soil
erosion control provides a good indicator to measure this service. The
difference between soil loss on each land cover unit and on bare soil can
be used to represent the additional soil erosion control provided by the
vegetation cover of each unit.

The Revised Universal Soil Loss Equation (RUSLE) was used to
model soil erosion control. RUSLE was developed in the United States
by Renard et al., (1997) and has been used to measure soil loss at the
national and watershed scale in a number of different tropical countries
including Costa Rica (Angima et al., 2003; Batista et al., 2017; Hoyos,
2005; Locatelli et al., 2013; Rubin and Hyman, 2000). It offers a
straightforward approach to calculating soil erosion rates, requiring a
relatively small amount of input data and good compatibility with
Geographic Information Systems (GIS) (Millward and Mersey, 1999).

To calculate soil erosion control, soil loss was first calculated for all
eligible forested land excluding palm swamp and mangrove forests as
soil erosion is not relevant to these types of ecosystems. This meant the
calculations were restricted to primary forest, secondary forest and tree
plantations. Soil loss was then calculated for these same areas as bare
soil and the difference taken to represent the soil erosion control de-
livered by the vegetation. Soil loss was calculated as follows:

=A R K LS C P· · · · (3.2)

with A expressed in ton ha−1 yr−1 representing the annual soil loss

Table 2
Carbon storage predictor variables.

Dataset Predictor variable

MODIS Nadir BRDF-Adjusted Reflectance Daily Band 1 – blue (0.459–0.479 μm)
Band 3 – red (0.620–0.670 μm)
Band 4 – near-infrared (0.841–0.876 μm)
Band 5 – short-wave infrared (1.230–1.250 μm)
Band 6 – short-wave infrared (1.628–1.654 μm)
Band 7 – short-wave infrared (2.105–2.155 μm)
NDMI – normalised difference moisture index

WorldClim 2 climate surfaces Bio7 – Temperature annual range (°C)
Bio12 – Annual precipitation (mm)
Bio17 – Precipitation of the driest quarter (mm)

Digital elevation model Elevation (m)
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rate, R the rainfall erosivity factor (MJ mm ha−1 h−1 yr−1), K the soil
erodibility factor (ton ha h ha−1 MJ−1 mm−1), LS the slope length and
steepness factor (dimensionless), C the land cover management factor
(dimensionless) and P the support practice factor (dimensionless). The
support practice function describes any implemented measures that
reduce the potential of run-off. For the purposes of this study, P was set
to 1 due to its relevance only to managed crops and the absence of
calculated factors for tree plantations. Please refer to Appendix B for
detailed calculations concerning each factor.

2.2.3. Habitat suitability
Costa Rica has one of the greatest concentrations of biodiversity in

the world and ecotourism is one of the cornerstones of its economy
because of the unique biodiversity the country offers (Hearne and
Salinas, 2002). A key funding target for the PSA programme has been
the tourism industry because of the benefits it gains from the biodi-
versity in the country (Pagiola, 2008). When considering the value of
wildlife-related activities such as ecotourism, measures of biodiversity
are indicators of cultural ES (UN, 2017). Mapping the suitable habitat
for a set of unique but threatened “flagship” species can therefore re-
present an indicative ES flow generated by the biodiversity of most
cultural interest to the country. These species can act as rallying points
for the conservation of biodiversity and their suitable habitat include
habitat for a wider range of biodiversity (Caro et al., 2004).

Three species from different taxonomical groups were chosen to
model habitat suitability. These species have strict requirements on
habitat quality including absence of disturbance, and protecting these
species will therefore also contribute to conserving other species in
Costa Rica. However, we acknowledge that three species are not re-
presentative of Costa Rica’s complex biodiversity and emphasise that
we measure this service as a cultural ES. We return to this in the dis-
cussion. The three species are the Resplendent Quetzal (Pharomachrus
mocinno), found only between southern Mexico and western Panama
(Wheelwright, 2016) and dubbed “the most spectacular bird in the New
World” (Peterson and Chalif, 1973), the Costa Rica Brook Frog (Duell-
manohyla uranochroa), only recently re-discovered and a focus for am-
phibian conservation in the country (Garcia-Rodriguez et al., 2012),
and finally Geoffroy’s Spider Monkey (Ateles geoffroyi) which holds an
iconic status within Costa Rica’s ecotourism industry (Graham et al.,
2013). All these species are listed as either Endangered or Near
Threatened on the IUCN Red List (IUCN, 2015).

To model habitat suitability, the Maxent species distribution model-
ling tool was chosen which is based on the principle of maximum entropy.
It uses occurrence data of a selected species and a set of environmental
predictors to model its probable distribution within a study area, subject

to the constraints of the predicator variables (Phillips et al., 2006). A
location with a probability of 0.632 can be considered typical for the
species (Phillips et al., 2017). Occurrence data was sourced from the
Global Biodiversity Information Facility (GBIF) and downloaded using the
rgbif R package (Chamberlain, 2017), filtered to exclude records with any
geospatial issues or points that were outside the country’s administrative
area. In total, 6537 occurrences records were sourced for the Resplendent
Quetzal, 84 for the Costa Rican Brook Frog and 28 for Geoffroy’s Spider
Monkey. A list of the species, the GBIF dataset source and the number of
occurrences used from each dataset is given in Appendix C.

The environmental predictors used to model the three species were
elevation, percentage tree cover, accessible forest area and a reduced
selection of the WorldClim climate surfaces: annual mean temperature,
temperature annual range and precipitation of the driest quarter (Fick
and Hijmans, 2017). These climate surfaces were selected after a check
for multicollinearity. Percentage tree cover was sourced from the
MODIS Vegetation Continuous Fields Yearly product (MOD44B.V6) at a
250 m resolution (Dimiceli et al., 2015). Accessible forest area was
calculated for the Brook Frog because amphibian species are particu-
larly sensitive to forest fragmentation, preferring continuous forest (Bell
and Donnelly, 2006). It gives the area of primary forest accessible
within a 300 m distance of each grid cell; a range based on a more
common amphibian species, the Red-Eyed Tree Frog (Agalychnis calli-
dryas) (Bell and Donnelly, 2006).

Two sub-sampling methods were employed in order to try to remove
spatial bias and improve model performance. The first method was to
grid sample the species presence points where the number of occur-
rences allowed it. This reduces the spatial aggregation of presences by
sampling only one point within a specific distance (Fourcade et al.,
2014). For the Resplendent Quetzal, a sampling grid of 1 km was ap-
plied, reducing the number of presences to 343. Fig. 2 shows the species
occurrences used for modelling. The second method was to use target-
group background point sampling which uses occurrence data of a
species’ taxonomical group to help the model differentiate between
suitable areas (Phillips et al., 2009). This resulted in 4078 background
points for the Resplendent Quetzal, 2367 for the Costa Rica Brook Frog
and 2147 for Geoffroy’s Spider Monkey.

Model accuracy was reviewed using the area under the curve (AUC)
statistic. The AUC is generated by a receiver operating characteristic
(ROC) curve which in the case of Maxent reflects the ability of the
model to predict presence from random using a set of presence and
background points (Phillips et al., 2006). The total forested area with
distribution values equal to or higher than 0.632 were then taken as the
area of suitable habitat for each of the species.

2.3. Exploring the effect of the PSA programme on the supply of carbon
storage

2.3.1. Single-year analysis
To gauge the effect of the PSA programme on ES supply in a single

year, a linear regression was performed on the supply of carbon storage
in 2013, correcting for several other anthropogenic factors. Carbon
storage was chosen as an ES due to its importance to the policy-ob-
jectives of the programme (Porras et al., 2013). The R packages stats
and emmeans were used to perform the regression. Spatial analysis was
conducted using the raster and rgeos packages.

To produce observations for the model, 400 points were randomly
generated inside PSA areas, eligible areas not enrolled in the pro-
gramme (primary forest, secondary forest and tree plantations) and
national parks. In total, this produced 1200 points. Eq. (3.3) gives the
regression model equation. Let yij be the amount of carbon stored
(ton ha−1) for policy i at point j.

= + + + + +y µ P S R Poij policy i slope ij road ij pop ij ij (3.3)

The equation shows the line intercept µ and the residual error term

Fig. 2. Modelled species occurrence records.
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Ñ(0, )ij
2 which was assumed to be normally distributed with mean 0

and variance 2. The PSA programme was incorporated into a categorical
predictor variable (Pi) indicating whether an area was under contract, in
an eligible area or national park. This allowed comparison with areas
outside the programme as well as the national park system of Costa Rica
as an alternative conservation policy. A map of PSA areas was provided
by the Fondo Nacional de Financiamiento Forestal (FONAFIFO, 2018)
and the national park system in 2014 from the Instituto de Investigación y
Servicios Forestales, Universidad Nacional, Heredia.

Slope (Sij), distance to the nearest road (Rij) and distance to the
nearest population area (Poij) were added to the model as covariates to
correct for other key anthropogenic influences on ES supply. Slope was
chosen to reflect the strong influence it has on the agricultural potential of
land (Ferraro et al., 2011). It was calculated using the available 15 m
digital elevation model. Distance to the nearest road and population area
were chosen as covariates to reflect population pressure. Spatial files were
available through the Instituto de Investigación y Servicios Forestales.
Human populations in the tropics commonly lead to deforestation and
loss of habitat in surrounding areas (Defries et al., 2010). The resulting
road networks lead to habitat fragmentation and further deforestation by
increasing the accessibility of the area (Laurance et al., 2009).

For comparison purposes, each covariate was scaled by subtracting
values with the mean and dividing by the standard deviation. To de-
termine whether the difference in carbon stored between policy types
was significant, pairwise comparison was performed between the ad-
justed means of the categorical variable policy (Pi) using a Tukey Test.

2.3.2. Short-term trend analysis
A short-term trend analysis between 2011 and 2013 was also con-

ducted to explore the effect of the programme over time. This time-
frame was chosen based on the data available to us. We return to this in
the discussion. First, carbon storage was modelled for 2011 using the
random forests model created in Section 2.2.1 and MOD34A4.V6

reflectance bands sourced for 2011. The single-year regression analysis
was then repeated, incorporating the year as an additional predictor
variable. In this case, only PSA areas existing in both 2011 and 2013
were sampled to be able to gauge the effect of the programme over
time. The model is shown in Eq. (3.4) with year as the additional
predictor which is denoted by Yk , the effect of the year k. The error
term, Ñ(0, )ijk

2 followed the same assumptions as model Eq. (3.3).

= + + + + + +y µ P S R Po Yijk policy i slope ij road ij pop ij year k ijk

(3.4)

Observations for the model were generated by randomly generating
400 points in 2011–2013 PSA areas, eligible areas existing outside the
PSA programme in 2011 and within national parks. These 1200 points
were then used to sample carbon and the predictor values in 2011 and
2013. All predictors were scaled and the PSA effect examined using the
adjusted means. Once again, pairwise comparisons among policy means
were carried out using a Tukey Test.

In addition to this analysis, a third model (Eq. (3.5)) with an added
interaction term between year and policy was considered to assess
whether the policy effect changed between years. To determine the
significance of the interaction term, a F-test was carried out using
model Eq. (3.4) as the null model.

= + + + + + + +y µ P S R Po Y P Yijk policy i slope ij road ij pop ij year k policy year i k ijk

(3.5)

3. Results

3.1. Biophysical spatial ES

3.1.1. Carbon storage
The most accurate random forest model chosen by the caret package

employed ‘variance’ as a split rule with a maximum of 11 predictor

Fig. 3. Estimated carbon storage for all forested land in Costa Rica (ton ha−1).
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variables available per split (mtry). The chosen model had a R2 of 0.63
and a RMSE of 46.9 ton ha−1. In general, the model overestimated carbon
at the forest inventory plots although it underestimated carbon at the
forest inventory plots with very large recorded concentrations. This un-
derestimation is a common limitation to modelling biomass from satellite
observations (Gibbs et al., 2007). The predictor variable of most im-
portance was MODIS band 3 with a scaled reduction in variance of 100.
This was followed by MODIS band 4 with a score of 49. Band 4 was
followed by band 1 at 36, band 6 at 35 and band 7 at 23. MODIS-NDMI
achieved a score of 22. All other predictors scored below 10.

Fig. 3 shows the distribution of carbon across Costa Rica. A large
concentration of carbon lies in the south of the country along the
central mountain ranges. This falls within the protected areas of Chir-
ripo National Park and La Amistad International Park. Here, carbon
stored in the aboveground vegetation regularly reaches 150 ton ha−1.
Moving towards the Caribbean coast, there is also a large amount of
carbon stored in the forests of the lowland areas, reaching over
200 ton ha−1 in some places. The Osa Pensinsula in the southwest of the
country on the Pacific also shows large concentrations of carbon, gen-
erally between 100 and 150 tonC ha−1.

Table 3 gives the carbon storage per forest type. In total, 235.3 Mt of
carbon were estimated for all forested land in Costa Rica. Primary forest
was estimated to store a total of 189.3 megatons (Mt) of carbon with an
average 87.4 tonC ha−1 and median of 78.9 tonC ha−1, the largest out of
all three forest types. Secondary forests were estimated to store 28.8 Mt
with an average of 49.0 tonC ha−1 and median of 42.2 tonC ha−1. Tree
plantations stored on average 38.5 tonC ha−1, with a median of
36.4 tonC ha−1 and 6.4 Mt in total. Palm swamp forest was found to store
8.0 Mt carbon, an average of 59.2 tonC ha−1 and median of
55.6 tonC ha−1, while mangroves, which cover a much smaller area,
stored 2.8 Mt in total, 57.5 tonC ha−1 on average and had a median value
of 55.3 tonC ha−1. Analysing the minimum and maximum figures for
each forest type, the amount of carbon storage is fairly similar, excluding
palm swamp and mangrove forest which store a smaller range.

3.1.2. Soil erosion control
Calculating soil erosion control using the RUSLE model produced a

mostly uniform distribution of soil erosion across the country although
sharp increases occur in the more mountainous areas (Fig. 4). This
uniformity is reflected in the median values for primary and secondary

Table 3
Carbon storage.

Land cover Min (ton ha−1) Median (ton ha−1) Mean (ton ha−1) Max (ton ha−1) Total area (m ha) Total carbon (Mt)

Primary forest 6.0 78.9 87.4 262.3 2.2 189.3
Secondary forest 6.1 42.2 49.0 253.6 0.6 28.8
Tree plantations 5.6 36.4 38.5 238.9 0.2 6.4
Palm swamp forest 6.4 55.6 59.2 188.2 0.1 8.0
Mangrove forest 9.0 55.3 57.5 201.3 0.05 2.8

Overall 5.6 57.0 75.8 262.3 3.1 235.3

Fig. 4. Soil erosion control (ton ha−1 yr−1).
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forest (Table 4). The areas with lowest soil erosion control are in the
northern lowlands and in the north-western province of Guanacaste
with control levels between 0 and 16 ton ha−1 yr−1 compared to bare
soil. The areas which contributed the most were in the central mountain
ranges where the steep slopes would mean the absence of vegetation
cover would greatly increase soil erosion rates. Here, rates range from
the very low, between 0 and 77, to high control rates of up to
381 ton ha−1 yr−1, and in some rare cases over 2000 ton ha−1 yr−1.

Overall, primary forest contributed the most with an average soil
erosion control rate of 60 ton ha−1, a maximum control rate of
4241 ton ha−1 yr−1, and in total controlled for almost 130 Mt yr−1 of
soil erosion. This was followed by secondary forest which had an
average soil erosion control rate of 28 ton−1 ha−1 yr−1, a maximum
control rate of 4072 ton−1 ha−1 yr−1, and in total controlled for
16 Mt yr−1 of soil erosion. Tree plantations contributed the least out of
the three forest types, having an average control rate of

10 ton−1 ha−1 yr−1, a maximum control rate of 1428 ton−1 ha−1 yr−1,
and controlled for 2 Mt yr−1 of soil. Nonetheless, the median control
rate was much higher than the other forest types, reflecting a more
consistent provision of ES supply across the area covered. Overall, the
minimum amount of soil erosion control within each forest type was
very similar.

3.1.3. Habitat suitability
The models generated for each of the three species all showed a

good predictive ability. The model accuracy for the Brook Frog was the
highest out of all the species with an AUC of 0.95. This was followed by
the Resplendent Quetzal model with 0.90 and the model for Geoffroy’s
Spider Monkey at 0.86. More information on the models including
predictor variable importance can be found in Appendix C.

The distribution of suitable habitats is shown in Fig. 5. In total,
762,891 ha of suitable habitat was predicted for all forested area in

Table 4
Soil erosion control.

Land cover Min (ton ha−1 yr−1) Median (ton ha−1 yr−1) Mean (ton ha−1 yr−1) Max (ton ha−1 yr−1) Total area (m ha) Total (Mt yr−1)

Primary forest 0.27 1.2 60 4241 2.2 130
Secondary forest 0.27 1.1 28 4072 0.6 16
Tree plantations 0.24 9.1 10 1428 0.2 2

Overall 0.24 1.3 51 4241 2.9 148

Fig. 5. Overall habitat suitability for the Resplendent Quetzal, Costa Rica Brook Frog and Geoffroy’s Spider Monkey.
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Costa Rica (Table 5). The Resplendent Quetzal enjoys the largest area of
suitable habitat with 490,019 ha. The model predicts a long track along
the central mountain ranges, spilling down the Atlantic coast towards
the Caribbean through the densely forested regions in the middle of the
country. For the Brook Frog, the model predicts a habitat distribution
which is small, fragmented and limited to the lower to middle elevation
slopes of the central cordillera (Fig. 5). The 49,699 ha of predicted
suitable habitat is the smallest of the three species. For Geoffroy’s
Spider Monkey, 189,730 ha are mainly distributed in the lower eleva-
tion areas on the Pacific-side of the country. This is with the exception
of a small area of low, humid forests in the north-eastern tip of the
country and a long thin stretch along the Caribbean coast.

There were some areas of overlap between the suitable habitats of
each of the species, the most prominent being areas suitable for both
the Resplendent Quetzal and the Costa Rica Brook Frog on the medium
elevation slopes in the centre of the country. However, there is a clear
divide between the habitat suitability in the lower plains for Geoffroy’s
Spider Monkey and the suitability in the higher elevations for the
Resplendent Quetzal and the Costa Rica Brook Frog; there was no
overlap between the three. Nevertheless, there were some small patches
on the Osa Peninsula suitable for both the Brook Frog and Geoffroy’s
Spider Monkey.

3.2. Effectiveness of the PSA programme in storing carbon

3.2.1. Single-year analysis
In 2013 alone, areas within the PSA programme were found to store

more carbon than in eligible areas outside of the programme. On
average, PSA areas stored 80 tonC ha−1 and eligible areas outside the
programme stored 74 tonC ha−1. However in our regression analysis
the difference was not significant (Fig. 6 and Table 6).

In contrast, areas within national parks stored a significantly larger
amount of carbon on average than the two other policy scenarios, storing an
additional 17 ton ha−1 of carbon compared to PSA areas and 23 ton ha−1

more than in eligible forest outside of PSA and national park areas.

3.2.2. Short-term trend analysis
A comparison of models Eqs. (3.4) and (3.5) showed the interaction

term not to be significant (F-test p-value = 0.42). As a result, the effect
of policy was assumed to be independent of the effect of year and model
Eq. (3.4) was used to calculate adjusted means. Only PSA areas existing
in both 2011 and 2013 were sampled for this model to enable an
analysis over time. These areas were found to store a significantly larger
amount of carbon in both years as compared with eligible areas outside
the programme (Fig. 7 and Table 7). PSA areas on average stored an
additional 9 tonC ha−1 in both 2011 and 2013.

National parks stored a significantly larger 13 tonC ha−1 in both
years as compared to PSA areas and 22 tonC ha−1 of additional carbon
as compared to eligible areas.

4. Discussion

4.1. ES model uncertainties

PES practitioners require accurate spatial data to administer pay-
ments and assess the effectiveness of PES programmes (Börner et al.,
2017). Ecosystem accounting aims to model ES with accurate outputs at
high resolution and for large areas (UN et al., 2014). Both physical
modelling and machine learning techniques can help achieve this
(Willcock et al., 2018). Nevertheless, spatial models of ES come with
uncertainties and require validation (Remme et al., 2014). Probabilistic

Table 5
Total areas of suitable habitat.

Area of suitability Total area (ha)

Resplendent Quetzal (Pharomachrus mocinno) 490,019
Costa Rica Brook Frog (Duellmanohyla uranochroa) 49,699
Geoffroy’s Spider Monkey (Ateles geoffroyi) 189,730
Area suitable for two species 33,443

Total area of suitable habitat 762,891

Fig. 6. Adjusted means for carbon storage (ton ha−1) per policy type. The
points represent the mean carbon stored (ton ha−1), adjusted for the covariates
road, slope and population, while the bars represent the 95% confidence in-
tervals for each of the means. The model had an R2 of 0.42.

Table 6
Single-year model: Contrasts and associated p-values from Tukey Test.

Contrast Estimate SE p-value

PSA – Eligible 5.56 2.83 0.121
PSA – Park −17.02 3.51 < 0.00001
Eligible – Park −22.58 3.63 < 0.00001

Fig. 7. Adjusted means for carbon storage (ton ha−1) in 2011 and 2013 per
policy type. The points represent the mean carbon stored (ton ha−1), adjusted
for the covariates road, slope and population, while the bars represent the 95%
confidence intervals for each of the means. The model had an R2 of 0.41.

Table 7
Time-series model: Contrasts and associated p-values from Tukey Test.

Contrast Estimate SE p-value

PSA – Eligible 8.76 1.91 < 0.0001
PSA – Park −13.23 2.23 < 0.00001
Eligible – Park −21.99 2.35 < 0.00001
2013–2011 7.06 1.54 < 0.00001
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ES measures under different scenarios have been proposed to quantify
some of this uncertainty (Grêt-Regamey et al., 2013). Due to data
constraints, we were unable to establish probabilistic ES measures and
the accuracy of the spatial data is an unknown source of uncertainty in
all three models. For example, land cover classification systems from
remote sensing observations suffer from issues related to cloud cover,
the imaging device on the satellite and are influenced by the specifics of
the computer algorithms used to classify observations (Xie et al., 2008).

Considering carbon storage specifically, the restricted ability of re-
mote sensing observations to estimate biomass, especially in tropical
contexts, is well established (Gibbs et al., 2007) and was also apparent
in this study. Spectral indices saturate at relatively low leaf densities in
tropical countries whereas forests are structurally complex and have
dense, closed canopies. This would explain the moderate 0.63 R2 sta-
tistic produced by the random forest model for carbon storage. How-
ever, it is noteworthy that the carbon accounts produced by the Banco
Central de Costa Rica for 2013 estimated – using the same data – 243 Mt
of carbon for forested land in comparison to the 235 Mt estimated in
this study (BCCR, 2016).

A key limitation of using the RUSLE model to quantify soil erosion
control in Costa Rica is that it was developed from plot data on agri-
cultural lands in a more temperate climate in the U.S (Labrière et al.,
2015). Cohen et al. (2005) report mixed results in cases where the es-
timated soil erosion has been assessed for accuracy using plot level data
in tropical watersheds. The results in this study have been particularly
affected by the steep gradients found in the country. The soil erosion
control rates are fairly indistinguishable in the flat, low-land terrain but
rise sharply in the more mountainous areas, leading to a highly skewed
dataset. Still, Labrière et al. (2015) found that the RUSLE led to a si-
milar gradient of soil erosion rates across different land uses in tem-
perate and tropical areas, with almost identical erosion rates in forests.
This suggests there is still a good applicability of the model to tropical
forest. However, we did not have data to verify our model results, and
we acknowledge that there remains uncertainty in our estimate, and
that we cannot quantify the uncertainty in the model of this service.

Sampling bias is a prevalent issue in species distribution modelling
(Beck et al., 2014). This effect was most evident in modelling the sui-
table habitat of Geoffroy’s Spider Monkey. The small sample of 28 oc-
currences were heavily biased towards the more accessible areas on the
coast. Maxent works well with small samples of data (Fourcade et al.,
2014). However, in this case, the biases in the small number of oc-
currences has affected the validity of the results; the long thin stretch of
habitat suitability along the Caribbean coast is almost certainly an ar-
tefact produced by this bias. Nevertheless, the distributions still shows a
good consistency with large populations such as in Santa Rosa National
Park in the northwest province of Guanacaste (Asensio et al., 2012).
The modelled distributions of the two other species are also consistent
with the reported distributions in the literature. The presence of the
Resplendent Quetzal is captured accurately in migratory areas between
1000 and 1400 m (Powell and Bjork, 1994). The Brook Frog’s habitat is
consistent with large amphibian populations at intermediate peaks
(Whitfield et al., 2016).

This consistency of the modelled distributions with species popu-
lations reported in the literature suggests the results can be used by
administrators to target the suitable habitat of these iconic but threa-
tened species. However, the extent to which the predicted habitats also
include a wider pool of biodiversity is limited by the heterogeneity of
the individual distributions which are quite specific to the species. For
example, the model for the Costa Rica Brook Frog predicted a sparsely
distributed suitable habitat that may be quite different to other am-
phibian species. The predicted suitable habitat for the Resplendent
Quetzal is much larger but not all bird species, such as those native to
the coasts, would share the same habitat. Nevertheless, the overlap of
the modelled distributions with national parks and surrounding areas
highlights the importance of targeting these surrounding areas for PSA
contracts. In addition, as a cultural ES flow, the modelled distributions

serve well as species-specific predictions that can assist administrators
conserve the value of these species to tourism in the country.

4.2. Regression analysis

The single-year regression model (Eq. (3.3)) did not find that PSA
areas stored a significantly larger amount of carbon. Our analysis also
did not reveal any significant change in the effect of policy over time
(0.42 p-value for the interaction in model Eq. (3.5)). However, the
short-term trend analysis did show the PSA programme to have a sig-
nificant effect on carbon storage in PSA areas enrolled in both 2011 and
2013. This suggests that areas which are committed long-term to the
programme store a significantly larger amount of carbon as compared
to unenrolled areas. This reflects similar findings in the literature.
Sierra and Russman (2006) found that agricultural land use declined
the longer payments were in effect, disappearing almost entirely by the
fifth year. In a review of several sub-national studies of the PSA pro-
gramme, Daniels et al. (2010) highlights this study among others as
evidence for a long-term effect on forest expansion relative to a busi-
ness-as-usual scenario. However, the limited temporal range in our
study is a key limitation and limits any generalisation across the entire
existence of the programme. In addition, both models displayed low
predictive abilities with 0.42 and 0.41 R2 statistics. The linear re-
lationship assumed by the model between carbon storage and the pre-
dictor variables may not adequately reflect the true underlying phe-
nomenon. Nonetheless, with some key anthropogenic influences
accounted for, the significant difference in the amount of carbon stored
in PSA versus unenrolled areas is a good indication that the PSA pro-
gramme is responsible for a larger supply of carbon storage over time.

The discrepancy between the results of the single-year and short-
term trend analyses will have been in part because the long-term effect
of the programme on forest regeneration is less present in the single-
year analysis. Newly enrolled areas containing recently abandoned land
will have reduced the potential carbon storage in the sampling area.
The sampling design may also have affected the results of both the
single-year and the time-series analyses. PSA contract areas also contain
agro-forestry, usually for coffee cultivation (Porras et al., 2013). This
means the sampled area within PSA areas have a lower carbon storage
potential as compared to the unenrolled, eligible areas consisting of
primary forest, secondary forest and tree plantations. It was not pos-
sible to include eligible land under cultivation because there was no
data available on the potential for agro-forestry. This means the addi-
tional carbon stored could be larger as compared to eligible areas.

Data constraints such as these contribute to the inherent difficulties
in carrying out national-wide analyses of payment effectiveness. Other
national studies of the PSA programme have tended to find little impact
of the programme on deforestation rates as a proxy for ES supply.
However, the study sampling designs were not found to consider factors
such as pre-PES policy incentives or to distinguish between tree plan-
tation harvests and the clearing of natural forest, possibly because of
data limitations (Daniels et al., 2010). In more detailed, sub-national
studies, where study design becomes more specific to local factors, a
clearer effect of the PSA programme emerges. Specifically, the long-
term effect on forest restoration (Daniels et al., 2010). The short-term
trend analysis we conducted is consistent with these findings. Further
research should focus on extending the temporal range of the analysis
and validating whether the contract areas in 2011 and 2013 were also
enrolled in the programme in other years.

4.3. Relevancy of the results to PES administrators

Spatial quantification of ES allows PES practitioners to directly
monitor the efficiency of a programme (Börner et al., 2017). The ad-
ditionality of a programme is a core measure of PES effectiveness. This
is the additional amount of ES supplied as compared to a baseline with
no payments (Wunder, 2008). In this case, the spatial distributions of
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carbon storage enabled an analysis of the effect of the programme on
carbon storage using linear regression. This showed that the pro-
gramme was responsible for an additional 9 tonC ha−1 in PSA areas
enrolled in both 2011 and 2013 versus unenrolled areas, supporting a
direct quantification of additionality. However, the moderate R2 sta-
tistics of the models means there remains a degree of uncertainty
around these figures and they should not be solely relied upon as a
measure of effectiveness. It is also important to consider a longer time
horizon in the analysis, preferably stretching back to the programme’s
inception. Nevertheless, the ES-based measures of additionality pre-
sented in this study show that a measure more relevant to the concept is
possible where before studies have mostly relied on deforestation as a
proxy (Börner et al., 2017).

In Costa Rica, however, additionality is not a requirement of the
PSA programme (Sierra and Russman, 2006). On the other hand, the
programme does seek to target areas with the highest provision of
ecosystem services, prioritising private land inside biological corridors,
protected areas and important watersheds (Barton et al., 2009). This is
also true of many other PES programmes; practitioners need to target
areas with the highest service provision and those most under threat
(Wunder et al., 2008). Although administrators must still consider the
uncertainties in the underlying models, the modelling approach applied
in our paper enables practitioners to identify high-value areas with a
greater degree of accuracy and to spatially examine ES flows in relation
to threats such as roads and population centres. This also improves the
information currently available to administrators and, in the long-run,
should help to boost the additionality of a programme (Börner et al.,
2017).

Monitoring the spatial distributions of ES over time can also assist
practitioners to assess compliance and administrate payments. The
conditionality of ES supply is a defining feature of PES (Wunder, 2015).
Nonetheless, there remain significant uncertainties in the modelling
techniques used to map ES. This could affect the accuracy of these as-
sessments. Moreover, if payments were administered based on supply,
inaccuracies in the assessment could lead to unfair compensation and
reduce the appeal of the programme. ES value can also vary depending
on the scale of measurement (Hein et al., 2006). For example, the
benefits of soil erosion control in one watershed may be greater than
another if measured at the local scale. In addition, land managers may
face different ecosystem management and/or opportunity costs, which
may also be relevant in determining the monetary compensation in a
PES programme (Börner et al., 2017). Nonetheless, the ES maps have
the potential to reduce the administrative burden in highlighting areas
with significant changes in ES supply, allowing administrators to
prioritise areas for further investigation.

Ultimately, PES practitioners want to conserve the maximum
amount of ecosystem value. To do this, ES need to be valued to un-
derstand the benefits to society versus the costs of securing ES supply
(Tacconi, 2012). The spatial quantification of ES can enable this com-
parison through ES valuation. A specific consequence of the SEEA EA
approach is a greater opportunity for practitioners to understand the
market efficiency of a programme, although in many cases it is difficult
to establish an exchange value for ES, particularly biodiversity and
cultural services (UN et al., 2014). In these cases, alternative methods
of valuation may be more appropriate such as those that capture the
consumer surplus: a welfare economics approach. Muradian et al.
(2010) have called for an even broader conceptualisation of PES value
that also captures local cultural settings. As an alternative valuation
approach, the Inter-governmental Panel on Biodiversity and Ecosystem
Services (IPBES) has developed an ecosystem assessment framework to
capture both welfare and non-monetary values (Díaz et al., 2018).
Nonetheless, the spatial approach taken by the SEEA EA is still very
relevant to measuring ES value using these alternative methods in
generating the biophysical quantities. Moreover, in the cases where
exchange values for ES can be established, these can be used to make
payments more market-efficient. This can help create a more cost-

effective programme, allow more landowners to participate and result
in a greater supply of ES.

5. Conclusion

This study has shown that spatially quantifying ES for the purposes
of examining PES effectiveness is feasible. We modelled three ES re-
levant to the PSA programme in Costa Rica: carbon storage, soil erosion
control and the habitat suitability of three culturally iconic but threa-
tened species. We found the modelled distributions to be consistent
with other findings in the literature. These spatial ES quantities can
allow administrators to examine in greater detail whether the PSA
programme is targeting the most high-value areas and prioritise con-
tract areas that may not be compliant. It also enabled an analysis of the
additionality of the PSA programme for carbon storage which revealed
PSA contract areas enrolled in both 2011 and 2013 to store a sig-
nificantly larger amount of carbon as compared to unenrolled but eli-
gible areas. An analysis of all PSA contract areas in 2013 alone did not
reveal a significant difference. This suggests the programme has a larger
effect on areas enrolled over time. Still, uncertainties remain in the
spatial models and the underlying data used to quantify ES as well as
the regression models used to quantify the additionality of the pro-
gramme. Nevertheless, overall, spatial quantification enables more
detailed and relevant measures of PES effectiveness which, in turn, can
assist practitioners to further boost the social-efficiency of a payment
scheme.
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