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A B S T R A C T

A reoccurring question in cognitive science concerns the way the world is represented. Cognitive scientists
quantify the contribution of a physical attribute to a sensation and try to characterize the underlying mechanism.
In numerical cognition, the contribution of physical properties to quantity perception in comparison tasks was
widely demonstrated albeit leaving the underlying mechanism unclear. Furthermore, it is unclear whether this
contribution is related solely to comparison tasks or to a core, general ability. Here we demonstrate that the
shape of the convex hull, the smallest convex polygon containing all objects in an array, plays a role in the
transfer function between quantity and its mental representation. We used geometric probability to demonstrate
that the shape of the convex hull is correlated with quantity in a way that resembles the behavioral enumeration
curve of subitizing and estimation. Then, in two behavioral experiments we manipulated the shape of the convex
hull and demonstrated its effect on enumeration. Accordingly, we suggest that humans learn the correlation
between convex hull shape and numerosity and use it to enumerate.

1. Introduction

Our cognitive system is limited in its inputs, its processing resolu-
tion and its processing capacity. These limitations create an under-
representation of the physical world. In order to deal with these lim-
itations on the one hand, and world complexities on the other, the
cognitive system has adopted strategies to reduce dimensionality and
create cognitive shortcuts while remaining fairly accurate. This is ap-
parent in many optical illusions and other heuristic strategies. These
biases allow us to understand how the physical world is represented,
revealing, at least in part, a transfer function between the physical
world and its representation. This transfer function represents the
cognitive mechanism transforming real world property to its re-
presentation.

Quantity perception is an interesting example. Quantity is physi-
cally represented in the world, as any numerical array is characterized
by its area, density, etc. (i.e., physical properties). These properties
often modulate and bias quantity perception (Clayton, Gilmore, &
Inglis, 2015; Gebuis & Reynvoet, 2012b; Katzin, Salti, & Henik, 2018;
Smets, Sasanguie, Szücs, & Reynvoet, 2015). However, most of the ef-
forts were dedicated to quantifying the effects of physical properties on
quantity perception, and not to understanding the underlying

mechanism. Moreover, the effect of physical properties was demon-
strated only in non-symbolic comparison tasks. Hence, it is unclear if
the effect of physical properties is task dependent, or if they play a role
in numerical perception in general. Here, we show the effect of one
physical property in the emergence of quantity perception, unveiling
part of the quantity transfer function.

Recently, Salti, Katzin, Katzin, Leibovich, and Henik (2017) pre-
sented a taxonomy of the physical properties commonly used in nu-
merical cognition studies, in an effort to better understand their inter-
correlations. This taxonomy divides the physical properties to intrinsic
and extrinsic properties. Intrinsic properties are properties that describe
the size of a single object and can be summed or averaged to describe
the entire array (e.g., average diameter, total circumference and total
surface area). Extrinsic properties describe an array of dots as they
consider both the size and the location of the dots (e.g., density and
convex hull area). Accordingly, extrinsic properties entail more in-
formation about the array as a whole. Importantly, the convex hull
(CH), the smallest convex polygon containing all objects and all straight
lines between any two objects in an array (see Fig. 1A), appears to have
an advantage over the other properties. CH is a lower resolution version
of any array of objects, as it uses the minimal number of objects that
contain the array—only the items on the circumference. Thus, making it
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the most economic property, that imports minimal input and exports
maximum output.

Indeed, several studies found that CH area is an important property
in dot-comparison tasks. Bertamini, Zito, Scott-Samuel, and Hulleman
(2016), examined how different visual features of dot arrays affect
perception of numerosity, density and clustering. They found that CH
area affected perceived numerosity, so that arrays with larger CH were
perceived as more numerous. Gebuis and Reynvoet (2012a) examined
the congruency effect (in accuracy) in a non-symbolic comparison task.
They found a congruency effect when only the congruency of the CH
area was manipulated, however, when the congruency of other physical
properties was manipulated there was a reverse congruency effect or no
effect at all. In another study, when the CH area ratio was equated to
the numerical ratio, it was more salient than numerosity and other
physical properties (Katzin et al., 2018). Gilmore et al. (2016) com-
pared the role of total surface area and convex hull area in the devel-
opment of numerical perception. They found that the total surface area
ratio predicted accuracy only in children, while the CH area ratio
predicted accuracy in children and adults, and its predictive power was
positively correlated with age. However, it seems unlikely that the area
of CH per se underlies this behavior, as conceptually it is not different
from the total surface area. Instead, manipulating the CH area might
affect the saliency of another characteristic of CH, namely its shape,
which in turn could drive this behavior.

Shape was shown to influence enumeration. Mandler and Shebo
(1982) proposed that small quantities, even when randomly placed, are
associated with specific shapes. They suggested that small quantities up
to four create canonical patterns (i.e., 2 dots create a line, 3 dots create
a triangle etc.). However, the association between quantity and shape
was intuitive and therefore was limited to quantities up to four.
Moreover, studies providing evidence in favor of the pattern recogni-
tion theory usually used symmetrical canonical arrangements (e.g., like
on a die, see Fig. 1B) (Ashkenazi, Mark-Zigdon, & Henik, 2013; Mandler
& Shebo, 1982a; Mandler & Shebo, 1982b; Piazza, Mechelli,
Butterworth, & Price, 2002). These symmetrical arrangements en-
compass only a small portion of the phenomenon. The vast number of
possible arrangements make it unlikely and uneconomical to learn them
all. Relying on spatial arrangement would be more plausible if it could
exploit a single property that can downsize the number of possible ar-
rangements while enabling distinction between numerosities. The
shape of the CH could be a candidate if it predicts numerosity.

Consequently, we aimed to examine the extent to which the shape of
the CH predicts numerosity of a given set. The shape of the CH can be
measured by the number of vertices on the polygon as 3 vertices create
a triangle, 4 create a quadrilateral, etc. Accordingly, we ask, if an un-
known number of dots (S) is randomly scattered over a region, how will
knowing the shape of the CH (CH(S)) help in estimating the total
number of dots (n) =P n CH S k[ |( ( ) )]. We were interested in the way
the information CH holds about numerosity changes with quantity.

In the field of geometric probability, the opposite probability
question was raised: if n points are chosen independently with uniform
probability on a given region, what is the probability that the CH of
these points is a polygon with exactly k vertices =P CH S k n[( ( ) )| ]?

(Croft, Falconer, & Guy, 1991). The answer to this question depends on
the shape of the given region. For the case of a rectangular region, it
was solved (Buchta, 2009; Trott, 2006; Valtr, 1995). Importantly, we
wanted to know how predictive the shape of the CH is of quantity, (i.e.,

=P n CH S k[ |( ( ) )]). That is, given that exactly k points are on the CH,
we ask what the probability is that the number of total points is exactly
n. The answer to this question depends on how the number of points is
chosen. This can be seen by the use of Bayes’ theorem:

= =
=

=
P n CH S k P CH S k n P n

P CH S k
[ |( ( ) )] [( ( ) ) ]* ( )

( ( ) ) (1)

Here, the number k is fixed, so =P CH S k( ( ) ) may be viewed as a
normalizing constant, that is, a scaling factor ensuring that the prob-
abilities =P n CH S k[ |( ( ) )]) are between 0 and 1. However, the choice
of P n( ) strongly influences the values =P n CH S k[ |( ( ) )]). For instance,
choosing P n( ) as a uniform distribution (i.e., assuming all numerosities

≥ =n CH S k( ( ) ) are equally probable) gives for every fixed =CH S k( ) ,
=P n CH S k[ |( ( ) )] ∝ =P CH S k n[( ( ) ) ](i.e., =P n CH S k[ ( ( ) )]is directly

proportional to =P CH S k n[( ( ) ) ]). Unfortunately, it is impossible to
assume that all numerosities greater than k are equally probable, since a
discrete uniform probability on an infinite number of points does not
exist. It follows that if a uniform probability is assumed, we must also
assume an upper bound on the number of points. While we cannot
calculate =P n CH S k[ ( ( ) )] exactly, the relation =P n CH S k[ |( ( ) )] ∝

=P CH S k n[( ( ) ) ]allows us to know, given k, which n’s are more
probable, and their relative likelihood.

Table 1 depicts the calculated probabilities of CH shapes
=P CH S k n[( ( ) )| ] for numerosities 3 to 20. The probability that a

quantity creates its unique shape (i.e., all dots are vertices of the CH,
= =P CH S k P n( ( )) ( )) drops drastically at five (a drop from 0.6944 at

four to 0.3403 at five). In fact, starting at n= 5, the case of k=n is no
longer the most probable. To calculate the relative likelihood of each k,
we divided the probability of the most probable numerosity by the
second most probable numerosity. For k= 3 and k = 4, the most
probable numerosity is n=k. For these cases, the ratio between the
most probable and second most probable n is 3.27 and 1.25, respec-
tively (i.e., 1

0.3056
and 0.6944

0.5556
). For k = 5, not only is it less likely that n=k,

but the ratio between the most and second most probable n is only
1.006 (i.e. , 0.4764

0.4735 , see Table 1). As k increases, this ratio approaches 1.
Hence, for n≤4, the shape of the CH highly predicts a specific nu-
merosity; otherwise, CH predicts an expanding range of numerosities.

The correlation between the CH shape and numerosity corresponds
to seminal behavioral findings of enumeration. Up to the quantity four,
where the CH shape is highly predictive, enumeration is fast and ac-
curate (i.e., subitizing). Above four, where the CH shape predicts an
expanding range of numerosities, enumeration is slower and less ac-
curate. If indeed the shape of the CH contributes to the transfer function
from the physical stimulus to its representation, then the shape of the
CH should affect enumeration. Namely, when the number of vertices on
the CH is the most likely amount, that is, the most probable shape,
estimations should be the most accurate. A higher or lower number of
vertices on the CH should yield overestimations or underestimations,
respectively. For example, for numerosity 12, we would expect the most

Fig. 1. (A) A set of points and its CH. CH vertices are black, interior dots are grey. (B) CH of five and six dots, as presented on a die, have the same CH shape.
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accurate enumerations with 6 vertices on the CH, underestimations
when there are less than 6 vertices, and overestimations for more than 6
vertices. Importantly, when we refer to number of vertices, we use it as
an operational definition of shape, we do not suggest that the observers
count the vertices in order to represent this shape. To investigate this
prediction, we conducted two behavioral experiments in which the
number of vertices on the CH was manipulated.

2. Experiment 1

2.1. Method

2.1.1. Participants
Sixteen participants (4 males, average age: 23.6 years old, SD: 1.31)

took part in Experiment 1. All participants had normal or corrected-to-
normal vision and received course credit for participation. The ex-
periments were approved by the university ethics committee.

2.1.2. Stimuli
The stimuli were arrays of black dots on a white background. All

dots were the same size (diameter of 30 pixels). Dots were randomly
placed under two limitations: the number of dots on the CH was re-
stricted (according to the condition) and dots could not overlap. We
used four numerosities (i.e., n’s): 7, 8, 9, and 10; and five different k’s:
3, 4, 5, 6, and 7. In total, we had 20 conditions created by the combi-
nation of all chosen n’s and k’s. For each condition we presented 20
stimuli, resulting in 400 trials in total.

2.1.3. Procedure
Participants were asked to estimate the number of dots presented on

the screen. They were told the dots would appear for a very short
duration so they could not count them, but would need to estimate.
Each trial began with a black fixation point presented on a white screen
for 1000 ms. This was followed by a blank white screen for another
1000 ms and then the stimulus was presented for 16 ms. After the sti-
mulus was presented, the participants had 4800 ms to respond vocally.
After the participants responded, an experimenter coded the response.
The experiment began with five practice trials. After the practice block,
400 trials were split into 4 blocks of 100 trials each. Participants’ es-
timation and response times (RT) were recorded. Duration of

presentation was short for two reasons. First, we wanted to prevent a
counting strategy. Second, we hypothesized that the shape of the CH is
extracted relatively early in the perceptual process.

2.2. Results

2.2.1. Pre-processing
We removed trials in which participants gave estimations in the

subitizing range (lower than 5). In addition, we removed trials in which
participants gave estimations higher than 15 and trials in which they
did not give a response, resulting in a total of 108 trials (0.02%) that
were removed.

2.2.2. Analysis
We conducted a two-way repeated measures analysis of variance

with total numerosity (7–10) and CH configuration (3–7) as in-
dependent within subject variables, and participant estimation as the
dependent variable. Assumption of sphericity was violated, however,
results remained the same after correction.

We found a significant main effect for total numerosity, F (3, 45)
= 160.48, p< .001, ηp

2 = .91, so that estimations were higher as nu-
merosity was higher (see Fig. 2). In addition, a main effect for number
of vertices on the CH was found, F (4, 60) = 5.9, p< .001, ηp

2 = .28.
Namely, estimations were higher as the number of vertices on the CH
grew (see Fig. 3). The 2-way interaction between total numerosity and
number of vertices on the CH was significant as well, F (12, 180)
= 1.98, p< .05, ηp

2 = .12. The interaction did not reveal a clear pat-
tern, and is not relevant to our hypothesis, and as such, will not be
discussed further.

2.2.3. Post-hoc analysis
To rule out the possibility that participants counted the dots, we

conducted a similar analysis with RT as the dependent variable.
Counting is a serial strategy that is manifested in an increase of RT as
numerosity increases (Kaufman, Lord, Reese, & Volkmann, 1949; Piazza
et al., 2002). Accordingly, if participants were counting the array or the
number of vertices of the CH, we would expect to see an effect in RT.
None of the effects were significant: total numerosity, F (3, 45) = 1.71,
p> .1; number of vertices on the CH, F (4, 60) = 1.07, p> .1; and
interaction effect, F (12, 180) = 1.66 p> .05.

Table 1
Probabilities of CH shapes for numerosities 3–20 (P(CHS = k)|n) calculated according to Buchta (2009).

k

n 3 4 5 6 7 8 9 10 11 12

3 1
4 .3056 .6944
5 .1042 .5556 .3403
6 .0381 .3631 .4764 .1225
7 .0146 .2256 .4735 .2528 .0336
8 .0058 .1391 .4129 .3419 .0930 .0072
9 .0024 .0868 .3388 .3851 .1604 .0254 .0013
10 .0010 .0552 .2699 .3930 .2220 .0534 .0053 .0002
11 .0004 .0360 .2123 .3783 .2709 .0878 .0133 .0009 0
12 .0002 .0241 .1665 .3511 .3052 .1248 .0254 .0026 .0001 0
13 .0001 .0166 .1308 .3185 .3258 .1610 .0413 .0056 .0004 0
14 0 .0117 .1034 .2847 .3348 .1940 .0600 .0103 .0010 .0001
15 0 .0085 .0823 .2523 .3349 .2226 .0806 .0167 .0020 .0001
16 0 .0063 .0661 .2224 .3284 .2461 .1021 .0247 .0036 .0003
17 0 .0048 .0535 .1956 .3174 .2645 .1235 .0342 .0058 .0006
18 0 .0037 .0438 .1720 .3035 .2779 .1443 .0450 .0087 .0011
19 0 .0029 .0361 .1513 .2879 .2870 .1638 .0567 .0124 .0018
20 0 .0023 .0300 .1333 .2715 .2923 .1817 .0692 .0168 .00351

Note. Probabilities rounded up to 4 significant digits. Bold probabilities mark the most probable pattern of each quantity.
1This value was calculated with a Monte-Carlo simulation, because computation with the formula was complicated and took too long (more than a week's work on 4
processing cores). In the simulation n points were chosen randomly with a uniform distribution on the square [0,1]X[0,1]. The number of vertices on the CH was then
recorded, and the process was iterated 1000,000 times.
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In order to support the null hypothesis, we computed Bayes factors
for all possible models based on all combinations of factors (with the
caveat that interaction terms were only included together with their
main effects). Bayes factors were computed in JASP, using default JZS
priors (Rouder & Morey, 2012; Rouder, Morey, Speckman, & Province,
2012). We then computed Inclusion Bayes factors for each factor by
comparing the average change in posterior between models that include
and models that exclude said factor (Clyde, Ghosh, & Littman, 2011).
We found the following Bayes factors: for the effect of total numerosity,
BFInclusion = 1.01; for the effect of number of vertices on the CH,
BFInclusion = .03; and for the interaction effect, BFInclusion = .01. These
results reflect, in general, medium to strong evidence in favor of the
null hypotheses.

2.3. Discussion

The results support our hypothesis; shape of CH is positively cor-
related with participants’ enumeration. However, overall, participants

tended to overestimate in this experiment and so, the most accurate
results were actually when the number of vertices on the CH was low. In
order to rule out the possibility that participants were counting the
dots, we examined their RT. A counting strategy would have been re-
flected in longer RT as numerosity and/or the number of vertices on the
CH increased. We did not find any effects of RT, suggesting that the
shape of the CH was perceived as a whole, and the vertices were not
counted.

In the second experiment we had several goals. First, we wanted to
replicate the results of the first experiment and expand the results to
larger numerosities. Second, we wanted to make the arrays more eco-
logical, so we varied the size of the dots. Third, in the first experiment
we created a factorial design by keeping the number of vertices on the
CH similar for all numerosities. This design had two limitations. First, it
constrained the number of numerosities. Second, it did not control for
the probability of appearance of each condition. For example, for nu-
merosity 7, the probability for the most probable configuration is
0.4735 (5 vertices on the CH), and the least probable is 0.0146 (3

Fig. 2. Accuracy of participants’ enumeration in Experiment 1. The black horizontal lines represent the group median (i.e., 50th percentile), and the bottom and top of
the box represent the 25th and 75th percentile (i.e., the lower and upper quartile), respectively. The asterisk represents the mean, which is also written in the boxplot.

Fig. 3. Main effect of the number of vertices on the CH in Experiment 1. A) Y-axis is participants’ numerical estimations. B) Y-axis is the delta between perceived
numerosity and actual numerosity. Accordingly, positive values represent overestimation.
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vertices on the CH). For numerosity 10, the values are 0.3930 (6 ver-
tices on the CH) and 0.0002 (10 vertices on the CH), respectively.

Accordingly, in the second experiment we used numerosities 7–20.
For each numerosity, we chose three different patterns that varied in
the number of vertices on the CH. The ‘standard’ pattern was the most
probable pattern. The ‘low’ and ‘high’ patterns were patterns that were
at least 30% less likely to appear compared to the standard, with a
lower or higher number of vertices on the CH, respectively. For ex-
ample, for numerosity 14, the ‘low’ pattern has 4 vertices on the CH and
its probability is 0.117, the ‘standard’ pattern has 7 vertices on the CH
and its probability is 0.3348, and the ‘high’ pattern has 9 vertices on the
CH and its probability is 0.06.

We did not measure RT in this experiment for two reasons. First, we
did not find an effect of RT in the first experiment. Second, in this ex-
periment the CH conditions were determined based on probability (e.g.,
low, standard and high), accordingly, the number of vertices on the CH
varied between numerosities. To illustrate, the ‘low’ condition of
quantity 15 and the ‘standard’ condition of quantity 8 both have 5
vertices on the CH. This in turn, does not allow us to replicate the RT
analysis.

3. Experiment 2

3.1. Method

3.1.1. Participants
A power analysis using G*Power 3.1 (Faul, Erdfelder, Lang, &

Buchner, 2007) indicated that the needed sample size for examining the
effect of the shape of the CH at a power> 90% to test effect-size similar
to Experiment 1 (0.28) with a Type 1 error (α < 0.05), is 35 partici-
pants. Thirty-six (13 males, average age: 22.92 years old, SD: 1.63)
participants took part in Experiment 2. All participants had normal or
corrected-to-normal vision and received course credit for participation.
The experiments were approved by the university ethics committee.

3.1.2. Stimuli
The stimuli were arrays of black dots on a white background. Dot

diameter varied between 10–69 pixels. We used fourteen numerosities
(i.e., n’s): 7–20 and three k’s for each numerosity (see Table 2), that is,
the k representing the most probable number of vertices and k’s re-
presenting at least 30% more and 30% less than the most probable
number of vertices on the CH (see Table 1). In total, we had 42 con-
ditions created by the combination of all chosen n’s and k’s. For each
condition we presented 10 stimuli, resulting in 420 trials in total.

3.1.3. Procedure
The procedure was similar to that of Experiment 1 except that 420

trials were split into 4 blocks of 105 trials each. Participants’ estimation
and RT were recorded.

3.2. Results

3.2.1. Pre-processing
We removed trials in which participants gave estimations in the

subitizing range (lower than 5). We also removed trials in which par-
ticipants gave estimations of 40 and higher and trials in which they did
not give a response, resulting in a total of 273 trials (0.02%) that were
removed.

3.2.2. Analysis
We conducted a two-way repeated measures analysis of variance

with total numerosity (7–20) and CH configuration (low/standard/
high) as independent within subject variables, and participant estima-
tion as the dependent variable. Assumption of sphericity was violated,
however, results remained the same after correction.

The results of Experiment 2 replicated the results of Experiment 1.
We found a significant main effect for total numerosity, F (13, 455)
= 245.6, p< .001, ηp

2 = .87, so that estimations were higher as nu-
merosity was higher (see Fig. 4). A main effect for number of vertices on
the CH was significant as well, F (2, 70) = 10.84, p< .001, ηp

2 = .24.
Namely, estimations were higher as the number of vertices on the CH
grew (see Fig. 5A). In addition, the interaction was significant, F (26,
910) = 2.81, p< .001, ηp

2 = .07. The interaction did not reveal a clear
pattern, and is not relevant to our hypothesis, and as such, will not be
discussed further (see Fig. 5B).

3.2.3. Post hoc analysis
We conducted a hierarchical stepwise regression to examine the

contribution of various physical properties (average diameter, total
circumference, total surface area, density, CH area, CH shape) and total
numerosity, with participants’ estimation as the dependent measure.
The final model included only 2 predictors: total numerosity and shape
of convex hull Adjusted R2 = 0.923, F(1,417) = 12.78, p< .001.

3.3. Discussion

The results of Experiment 2 replicate the results of Experiment 1,
indicating that the shape of the CH modulates perceived numerosity.
Contrary to Experiment 1, here we found that participants’ overall
tendency was to underestimate the number of dots. This might have
occurred due to the fact that numerosities in this experiment were
higher than those in the first experiment and the range was wider.
Indeed, examining the numerosities of experiment 1 (7–10), within
experiment 2, reveals a replication. That is, in both experiments nu-
merosities 7–10 are overestimated (see Fig. 4). In fact, underestimation
is first apparent at numerosity 13. A similar pattern is evident in pre-
vious studies. Kaufman et al. (1949) examined enumeration in quan-
tities between 1–210, and report underestimation beginning at 20∼.
Mandler and Shebo (1982) used numerosities 1–20, and see under-
estimation starting at 5–9 depending on duration of presentation.
Jevons (1871), presented numerosities 3–15 and found exact enu-
meration for quantities 3–5, overestimation for quantities 5–8, and
underestimation for quantities 9 and above. Accordingly, under and
overestimation of quantities in different ranges is a documented but
overlooked phenomenon. Importantly, the effect of CH shape occurs
both in under and overestimation ranges.

In the first experiment we ruled out the possibility that participants
are counting the number of vertices on the CH. In this experiment we
added a regression analysis showing that other physical properties did
not predict participants’ enumeration, including another aspect of the
CH, its area. This finding further supports our hypothesis that CH shape
is perceived holistically and is used for enumeration.

Table 2
Number of vertices on the convex hull for each numerosity and type for the
stimuli of Experiment 2.

Numerosity Low Standard High

7 3 5 7
8 3 5 7
9 4 6 8
10 4 6 8
11 4 6 8
12 4 6 9
13 4 6 9
14 4 7 9
15 5 7 9
16 5 7 10
17 5 7 10
18 5 7 10
19 5 7 10
20 5 8 10
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4. General discussion

In the literature dealing with quantity perception, physical attri-
butes are treated as a covariate whose influence is measured and
quantified. In this paper we attempted to go beyond this quantification
by characterizing a plausible mechanism through which a specific
physical attribute, namely the CH, influences quantity perception.
Inspired by the psychophysical tradition that aimed at quantifying the
sensation of a stimulus and characterizing the change in subjective
experience as a function of objective change in intensity, we examined
the natural correlation between shape and quantity, and whether this
correlation is mirrored in behavior.

Using Buchta’s formulas (Buchta, 2009), we showed that in the
physical world, CH shape predicts quantity. Interestingly, the predictive
power of CH changes. Small numerosities, up to 4, usually appear in
their unique shape (i.e., 3 dots create a triangle, 4 create a quad-
rilateral). As quantity increases, there are more possible CH shapes per
quantity that are likely to appear. These results are similar to beha-
vioral enumeration findings of subitizing and estimation and shed light
on a theoretical controversy in numerical cognition: are subitizing and
estimation two distinct mechanisms or a product of a single mechanism

that operates with varying efficiency? (Piazza et al., 2002). Our results
show that a single mechanism is plausible. As such, we propose that the
CH shape is utilized as a heuristic for enumeration in all ranges.
Namely, subitizing and estimation both reflect the correlation between
shape and quantity.

We hypothesized that observers would rely on the natural prob-
abilities of CH’s number vertices and that deviation up or down would
cause over and underestimation, respectively. However, there are other
mechanisms influencing enumeration, such as the ones that underlie
the tendency to over or underestimate that we did not take into con-
sideration in our hypothesis. Importantly, we see that probability of CH
shape modulates enumeration in a linear fashion, as we hypothesized.
Moreover, we relate to CH shape as a “quick and dirty” mechanism for
enumeration that enables crude estimations that later on are refined.
We test our hypothesis, however, in a very stringent manner as we try
to predict exact numerosity.

The behavioral experiments showed that the CH shape modulates
enumeration. In line with our hypothesis, participants’ enumerations
increased as the number of vertices on the CH increased. One possibility
is that the number of vertices on the CH was counted. We did not find
any support for this possibility as RT did not increase with the number

Fig. 4. Accuracy of participants’ enumeration
in Experiment 2. The bold black horizontal
lines represent the group median (i.e., 50th

percentile), and the bottom and top of the box
represent the 25th and 75th percentile, respec-
tively (i.e., the lower and upper quartile). The
asterisk represents the mean. The diagonal re-
presents the 100% correct.

Fig. 5. A) Main effect of the number of vertices on the CH in Experiment 2. Y-axis is participants’ numerical estimations. B) Main effect of the number of vertices on
the CH in Experiment 2. Y-axis is the delta between perceived numerosity and actual numerosity. Accordingly, negative values represent underestimation. C)
Interaction effect of total numerosity and number of vertices on the CH. Y-axis is participants’ numerical estimations.
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of vertices on the CH. Moreover, Bayesian analysis supported the notion
that shape was perceived holistically. We suggest that the shape is
perceived automatically, similar to Gestalt ideas, and is used to infer
numerosity. Visual objects are recognized easily from their outlines
(Wagemans et al., 2008). Moreover, convexities are important for shape
recognition. In one study, participants were presented with segmented
shapes of either the convexities, concavities or the lines in between of
shapes of varying complexity and were asked to match the segmented
shape to one of two whole-contour shapes. Results showed that shape
recognition was significantly more accurate for segmented shapes of
convexities than for concavities or intermediate lines, corroborating the
importance of convexities in shape recognition (Schmidtmann,
Jennings, & Kingdom, 2015).

The current study focused on the physical world in order to un-
derstand its psychophysical representation. The underlying rational was
finding a correlation between the physical properties of numerical ar-
rays and their representation. This notion corresponds to the idea that
through the process of statistical learning, humans learn the correlation
between CH shape and numerosity and use it to enumerate. However,
the present study does not exclude other possibilities such as the cor-
relation between CH shape and numerosity is hardwired. Future studies
should examine these possibilities.

Theorizing CH shape as a transfer function between the physical
world and its representation allows a unique glimpse to a plausible
mechanism of abstraction. Numerosity is an abstract concept re-
presenting a specific quantity. There is a hierarchy of abstraction within
quantities; small quantities are more concrete than large quantities. To
illustrate, it is easier to imagine exactly 3 apples than imagining exactly
30 apples. As reflected in the computed probabilities, the less in-
formative the CH becomes, the more abstract the numerosity. Perhaps,
a concept is abstract because its physical properties are less in-
formative.

To conclude, we chose an approach that focused on the transfer
function between the physical world and its representation, looking for
the natural distribution of CH vertices and its correlation with numer-
osity. This proved beneficial as it complied with behavioral hallmarks,
allowing us not only to suggest a mechanism through which this phy-
sical property affects quantity perception but also to expand the effect
of physical properties from comparison tasks to a general numerical
domain.

Code and data availability

Data files are available here: https://osf.io/pe6qm/.
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