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EBCE, July 2nd 2009, Hamburg Germany

Workshop of the EU FP6 

Integrated Project BIOSYNERGY

WP1 Advanced physical/chemical fractionation
Status & Progress of activities
WP Coordinator: Robert Bakker

Overview

• Fractionation of lignocellulosic biomass

• Fractionation in BioSynergy
� Goal

� Processes, partners

• Focus on two routes
� Modified Organosolv (ECN)

� Mechanical/Alkaline Fractionation (A&F)

• Conclusions; Ongoing work
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Fractionation of lignocellulosic biomass
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Goals Fractionation:
• Fractionation of lignocellulosic biomass into its composing fractions with sufficient quality 

for production of (bio)chemicals (including lignin). 

• Enhancement (enzymatic) degradability of cellulose to fermentable sugars.

Objectives of Fractionation in Biosynergy

• To obtain a detailed overview of both available 

physical and chemical fractionation processes and of 

those currently being developed that are applicable in 

integrated thermochemical/ biochemical biorefinery

processes. 

• To design optimal enzyme systems for an efficient 

conversion of polymers from pre-treated raw materials 

into monomers. 

• To develop methods for fractionation for 

lignocellulosic biomass into its composing 

components based on recently developed techniques.
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Advanced physical/chemical fractionation (WP1)

• Model feedstocks: straw, woods

Processes studied 

• Mechanical/Alkaline fractionation (A&F)

• Ethanol/water Organosolv (ECN)

• Organic acid organosolv (Avidell process; ARD)

• Acid hydrolysis (Biorefinery.de)

• Reference technology: steam explosion (ABNT)

• Enzymatic hydrolysis

Ethanol/H2O Organosolv, ECN   Mech./alk pretreatment A&     Acid organosolv Pilot plant ARD

Partners: A&F, ABNT, ARD, Bioref, ECN, TUD

Benchmarks for evaluating Fractionation

• Delignification

• Lignin purity, quality

• Hemicellulose hydrolysis

• Enzymatic degradability of cellulose

• (Minimum) Formation of fermentation inhibitors

• Other factors e.g. operating and capital costs, 

chemical use, energy use, etc.
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Organosolv process (ECN)
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History organosolv:

• Original idea: 1931 (Kleinert and von Tayenthal).

• Main developments 1970-90’s as alternative pulping process, e.g.:

• Alcell, ethanol-water, pilot plant 1988, currently Lignol (Canada).

• Acetosolv etc, acetic and formic acid based, currently CIMV (France, Avidel process).

• R&D challenge: Applicability for biorefinery purposes?

ECN: 160-200 °C, 15-60 min, 5-30 bar.

Organic solvent: ethanol.

Biomass pre-treatment methods

Advantages organosolv:

• Separation lignin before enzymatic hydrolysis & fermentation:

• High-quality lignin (lignin other pretreatments generally only suitable for CHP).

• Potentially lower enzyme consumption.

• Avoidance waste generation (due to neutralization).

• Minimization formation of fermentation inhibitors (e.g., furfural).

Disadvantages organosolv:

• Potentially higher costs and energy consumption due to use organic solvent 

(separation and recycling) and pressurized equipment.
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Reaction temperature

• Cellulose hydrolysis during pre-treatment negligible.

• Large enhancement of enzymatic hydrolysis cellulose (max ±75%).

• Substantial delignification of willow wood achieved (max ±70%).

• Degradation of sugars and lignin substantial at ≥200°C.

Glucose (incl oligomers)

0

20

40

60

80

100

Fresh willow 160 190 200

Temperature [°C]

H
y
d

ro
ly

s
is

 [
%

]

Enzymatic

Pre-treatment

Willow

EtOH:H2O 60:40 wt%

60 min
No catalyst

0

20

40

60

80

100

Fresh

willow

160 190 200

D
is

tr
ib

u
ti

o
n

 [
%

] Lignin degradation /

mass losses

Lignin extracted

(freeze dried)

Lignin in solid

Types of biomass

92578051Barley straw

ND33NA73Spruce

71645066Willow

39ND2871Poplar

60554562Wheat straw

Enzymatic degradability 

(% cellulose feedstock)

Delignification 

(%)

Xylan hydrolysis 

(%)

Pulp yield 

(dw%)

Biomass 200°C
60 min

EtOH-H2O 60:40 (w/w)

• Effectiveness organosolv strongly dependent 
on type of biomass.

• Organosolv less effective for softwoods and 
(more dense) hardwoods.

• Good pre-treatment of some hardwoods and 
straws (focus ECN).
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Lignin characterisation

Lignin: light brown to black (compacted) powder.

Colour and structure dependent on process conditions 

organosolv, biomass type and contaminants.

Lignin relatively pure (88-97 wt% without washing).

Main contaminant xylan (hemicellulose).

Purity even higher after washing (Alcell lignin >99%).

Lignin sulphur- and ash-free (max 0.1 wt% S).

Solubility: H2O (none), ethanol & acetone (good).

160, 180, 200, 220 °C

Organosolv lignin
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Conclusions Organosolv

• Ethanol-based organosolv able to fractionate lignocellulosic biomass.

• Enzymatic hydrolysis cellulose improved substantially.

• Efficient separation of high-quality lignin.

• Characterization lignin: promising properties for conversion to chemicals.

• Recycling organic solvent and heat integration crucial process elements.
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Alkaline Fractionation (A&F)

• Common alkaline pretreatment routes
� Base as catalyst (NaOH, Ca(OH)2, ammonia); T<120 °C

� Carried out under (close to) atmospheric conditions

� Long reaction times (hours)

� Need for chemical recycling

• Goal: Improving alkaline pretreatment
� Apply milder process conditions

─ Less formation of degradation products (e.g. inhibitors)

─ Lower operational costs

� Improve accessibility of sugars to enzymes

� Obtain lignin of high purity

Combined mechanical/alkaline pretreatment

• Improve alkaline pretreatment by combination with 
mechanical action

• Focus: From wheat straw conversion to fermentable 
sugars, and lignin

Extrusion
Refining
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From wheat straw to fermentable sugars, lignin
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• Fractionation efficiency
� Properties of solid fraction (cellulose-rich)

─ Biochemical composition 

� Properties of liquid fraction

─ Sugars, organic acids and lignins in 
solution

─ Recovery of lignin

• Enzymatic hydrolysis
� Conversion of solid fraction

─ Glucan to glucose

─ Xylan to xylose

� Standard procedure

─ 50 °C, 120h

─ Excess of enzyme 
(GC220)

Enzymatic hydrolysis                            Solid fraction

• Enhanced enzymatic degradability due to pretreatment
� Structural changes of wheat straw (e.g. delignification)

� Minimal formation of degradation products due to mild conditions
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Base case

� Chopped wheat straw (1-2 cm)

� 9 wt% NaOH based on dry straw

� 4h at 90 °C

Extrusion

1st Delignification

Whole wheat straw

6 wt% NaOH, 2h, 90°C

2nd Delignification

6 wt% NaOH, 2h, 90 °C

� Transport of biomass to RSE (reversed screw element) 

� Accumulation and compression of material

� High compression and shear forces

� Material is dry and absorbs added chemicals very well (e.g. NaOH)

� Shortening of fibres and fibrillation

Steam

RSE

Chemicals

Filter
Steam

RSE

Chemicals

Filter
SteamSteam

RSERSE

Chemicals

Filter
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Refining

1st Delignification

Chopped wheat straw

6 wt% NaOH, 2h, 90 °C

2nd Delignification
6 wt% NaOH, 2h, 90°C

� Shear and compression forces

� Increase of surface area

� Shortening of fibres and fibrillation

� Homogeneous, clean fibres

Scanning Electron Microscopy

Refining

100 µm

Extrusion

100 µm
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100 µm

Wheat straw

100 µm
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Fractionation efficiency Solid fraction
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• Extrusion and refining comparable results

• Higher degree of delignification accompanied by loss of 
sugars by hydrolysis
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Lignin Quality Liquid fraction
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Conclusions Alkaline Fractionation

• Alkaline fractionation excellent for

� Delignification (40-50%)

� Improvement of enzymatic degradability of cellulose and hemicellulose

(from 20 to 70-80%)

• Added value of extrusion or refining:

� More delignification (70-80%)

� Further improvement of enzymatic degradability (from 20 to 100%)

• Economic feasibility of combined mechanical/alkaline 
pretreatment depends on value of lignin produced
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Enzymatic Hydrolysis (WP1)

• Tests with commercially available enzymes on
BIOSYNERGY cellulose fractions by A&F, Bioref, 
ARD

• Target ABNT: Developing tailor-made enzyme 
mixture able to hydrolyse substrates at costs < 0,02 
€/l ethanol
� High productivity strains (>100 g protein per liter broth)

� Increased effective activity (dosages< 5mg protein/g glucan
entering hydrolysis)

� Developing a host able to produce the required enzyme mixture 
for the ethanol production process at industrial scale 

� Developing the enzyme mixture processing and manufacturing 
technology using the selected host 

Enzymatic Hydrolysis (WP1)

Progress ABNT to date

• Selection of base enzyme cocktail 
for setting up process conditions.

• Expression and purification of 
selected enzymes from the 
cocktail. 

• Enzyme supplementation studies. 

• Cost reduction fermentation media. 

• Conceptual design on-site enzyme 
production plant.
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Preliminary conclusions Fractionation

• All fractionation routes lead to considerable fractionation of lignocellulose into 
separate C5, C6 and lignin components. No clear “winner”.

• For cellulose degradability and hemicellulose hydrolysis there is variation in 
the effect of fractionation on biomass

• Fractionation techniques can and should be optimised towards the 

desired application of the fractionised products
� Hemicellulose hydrolysis for further processing of C5

� High enzymatic degradability of the cellulose fraction

� Recovery of a high quality lignin stream

Digestibility of cellulose by enzymatic hydrolysis
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Lignin products from Modified Organosolv
Fractionation (ECN)

Ongoing work

• Assessment of operating + capital costs for 

fractionation routes on a similar basis
� Comparison with base case (steam explosion)

• Integrating fractionation into Biorefinery concepts

• Application tests with fractionised products

• Upscaling selected Technologies
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