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Abstract
Ultraviolet (UV) radiation has emerged as an environmental cue with potential uses to enhance plant protection against 
arthropod pests in agriculture. UV can augment constitutive and inducible plant defenses against herbivorous arthropods. 
Here we investigated whether application of supplemental UV to chrysanthemum (Chrysanthemum × morifolium Ramat) 
cuttings during their rooting phase enhanced plant resistance to an important insect pest, Western flower thrips (Frankliniella 
occidentalis). For this, we analyzed how several daily UV exposure times affected plant damage by thrips on three different 
chrysanthemum cultivars. The most effective UV dose and responsive cultivar were further used to determine the UV effects 
on host plant preference by thrips, leaf metabolome and the induction of jasmonic acid (JA)-associated defenses. Our results 
showed that while short UV daily exposure times increased chrysanthemum resistance to thrips, longer exposure times had 
the opposite effect. Furthermore, we showed that UV-mediated induction of chrysanthemum resistance to thrips was geno-
type dependent and can persist after the end of the of the UV treatment. Yet, this induction was not transferred to the next 
generation from mother plants to cuttings. Nontargeted metabolomic, enzymatic and hormone analyses further revealed that 
UV slightly affected the leaf metabolome of chrysanthemum plants, and it enhanced the induction of JA-associated signal-
ing after thrips infestation. Taken together, our results suggest that supplemental UV might modulate both constitutive and 
inducible chrysanthemum defenses against thrips.
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Key message

• Despite the large number of studies describing the ben-
eficial effects of ultraviolet radiation (UV) on plant resil-
ience to herbivory, no previous work on ornamental spe-
cies has been reported.

• Here we investigated whether application of supplemen-
tal UV radiation increases chrysanthemum resistance to 
a major insect pest, the Western flower thrips.

• Our data showed that UV can enhance constitutive and 
inducible chemical defenses against thrips in chrysanthe-
mum, therefore reducing plant damage, but this induction 
is UV dosage and plant genotype dependent.
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Introduction

Plants possess an extraordinary capacity to respond and 
adapt to their changing environment. One of the most 
important environmental factors affecting plant mor-
phogenesis and chemistry is light. Fluctuations in light 
influence plant physiology, and plant adaptive responses 
to biotic stresses, modulating the plant interactions with 
herbivorous enemies. Both light quantity and quality 
have been shown to alter plant constitutive and inducible 
defenses against arthropod herbivores (Escobar-Bravo 
et al. 2018, 2019a). In particular, variation in ultraviolet 
radiation (λ 290–400 nm) levels, a relatively small com-
ponent of the solar light spectrum reaching the terrestrial 
ecosystems, has been reported to affect plant protection 
against herbivory (Ballaré 2014). UV radiation is divided 
into three classes: UV-C, UV-B and UV-A. UV-C radia-
tion is highly energetic (λ ≤ 280 nm), and it is strongly 
absorbed by oxygen and ozone in the stratosphere, being 
absent in the terrestrial sunlight. UV-B is also absorbed 
(λ 290–315 nm) in the stratosphere, but a small percent-
age of the sunlight still contains this radiation. UV-A (λ 
315–400 nm) is not attenuated by atmospheric ozone and, 
together with UV-B, represents an important environ-
mental light signal regulating many photomorphogenic 
responses in plants (Bjorn 1994; Robson et al. 2019).

Early research on the biological activity of UV-B radi-
ation suggested detrimental effects on plants. However, 
recent evidences have demonstrated that ecologically 
relevant levels are not deleterious (Hectors et al. 2007; 
Robson et al. 2015). UV-B radiation has emerged as a 
light cue with potential uses to optimize crop yield and 
enhance plant protection against insect pests without 
the use of pesticides (Mazza et al. 2013; Escobar-Bravo 
et al.2019a). This has led to the conception of UV-B as an 
‘eustress,’ a positive form of stress with beneficial effects 
on plant health and adaptation to more severe stress condi-
tions (Wargent and Jordan 2013). Indeed, UV-B exposure 
has been shown to confer cross-tolerance to light stress, 
drought and high temperatures (Wargent et al. 2011, 2015; 
Robson et al. 2015; Escobar-Bravo et al. 2017a) and to 
promote plant resistance to aboveground arthropod herbi-
vores (Foggo et al. 2007; Demkura et al. 2010; Kuhlmann 
and Müller 2010; Đinh et al. 2013; Zavala et al. 2015; Dil-
lon et al. 2018a, b; Escobar-Bravo et al. 2019a). In addi-
tion to UV-B, UV-A has beneficial effects on plants by 
stimulating seed germination, photosynthesis and growth 
(Li and Kubota 2009; Mariz-Ponte et al. 2018), although 
these effects are environment and genotype dependent 
(Verdaguer et al. 2017).

Among the reported effects of UV-B on plants, this radi-
ation can induce the accumulation of phenolic compounds, 

which reduces oxidative damage and UV-B penetration to 
the inner photosynthetic layers (Coffey et al. 2017; Agati 
and Tattini 2010). These chemical readjustments can affect 
plant palatability for herbivorous arthropods (reviewed by 
Escobar-Bravo et al. 2017b). In addition, UV-B can mod-
ulate plant inducible defenses. Perception of herbivore-
associated damage triggers plant defense responses, which 
are mainly regulated by the phytohormones jasmonic acid 
(JA), salicylic acid (SA) and ethylene (ET) (Erb et al. 
2012). Exposure to UV-B can augment the activation of 
these defense-related hormone signaling pathways upon 
herbivory leading to a higher production of secondary 
metabolites and defensive proteins deterring herbivore 
feeding (Đinh et al. 2013; Dillon et al. 2018a, b).

Besides the potential benefits of UV radiation on plant 
growth and defenses, many crop species are cultivated in 
protected environments, i.e., nurseries, glasshouse and 
greenhouses, built with materials that attenuate or block UV 
(Jensen and Malter 1995; Vänninen et al. 2010). In these sce-
narios, artificial manipulation of UV radiation levels could 
be used to enhance crop protection against pests and diseases 
at early developmental plant stages (Escobar-Bravo et al. 
2019a, b). For instance, application of supplemental UV at 
an early-stage growth phase is reported to increase plant 
adaptive responses to higher UV and light intensity levels 
when plants are transferred to open-field conditions at a later 
stage (Wargent et al. 2011). This suggests the existence of 
UV-associated long-term effects on plant performance per-
sisting after the initial light treatment. Yet, whether these 
effects also translate into a long-lasting enhanced protection 
against herbivory has not been investigated.

In the present study, we determined the effects of sup-
plemental UV (A + B) on chrysanthemum [Chrysanthe-
mum × morifolium (Asteraceae)] resistance to herbivory. 
Chrysanthemum is one of the economically most important 
ornamental crops after the rose (da Silva 2004). Its produc-
tion, however, is threatened by the attack of many insect 
pests, including the Western flower thrips Frankliniella 
occidentalis, one of the most serious pests of agricultural 
and horticultural crops worldwide (Mouden et al. 2017). 
Chrysanthemum plants are usually propagated by cut-
tings. Cuttings are planted and rooted in soil for a period 
of 2 weeks by plant breeding companies before delivered to 
plant growers for production of flowers. In the Netherlands, 
one of the main chrysanthemum producers worldwide, this 
process takes place in greenhouses, where high-pressure 
sodium (HPS) lamps are the most common supplemental 
lighting source from fall to spring emitting very low UV 
levels (λ < 400 nm) (Vänninen et al. 2010). Here we tested 
whether application of supplemental UV (A + B) to chry-
santhemum cuttings during their rooting phase can enhance 
plant resistance to thrips at early development stages. We 
determined whether this effect was genotype and UV dosage 
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dependent, persisted after the application of the light treat-
ment, and whether it could be transferred to the next genera-
tion of cuttings. In addition, we investigated whether UV 
affected constitutive and JA-associated inducible defenses 
against thrips, the latter being increasingly important for 
plant protection against this insect (reviewed by Steenbergen 
et al. 2018). To do so, we analyzed UV effects on the leaf 
metabolome before thrips infestation and the induction of a 
JA-associated defensive protein marker and jasmonate levels 
before and upon thrips infestation.

Materials and methods

Plant material and experimental design

Chrysanthemum [Chrysanthemum × morifolium Ramat. 
(Asteraceae)] cuttings (cv. ‘Baltica,’ ‘Pimento’ and ‘Ama-
dea’) were provided by Deliflor Chrysanten (Maasdijk, The 
Netherlands). In all the experiments, chrysanthemum cut-
tings were individually planted in plastic pots filled with 
potting soil (Horticoop, Lentse Potgrond, The Netherlands) 
containing vermiculite. Thereafter, cuttings were randomly 
transferred to two climate cabinets (Snyders Scientific B.V.) 
provided with ~ 110 ± 10 µmol m−2 s−1 of PAR, a photo-
period of 16/8 h, 20 °C and 70% RH. In one of the cabi-
nets, UV radiation was supplied by two fluorescent lamps 
(Philips broadband TL 40/12RS) suspended at 65 cm above 
the plants, as previously described in Escobar-Bravo et al. 
(2019a). The lamps were wrapped with white cellulose paper 
filters (40 g m−2; Rachow Kunststoff-Folien, Hamburg, Ger-
many) that attenuated the UV intensity and excluded dam-
aging UV-C radiation (λ < 280 nm) (see UV lamp spectra 
in Escobar-Bravo et al. 2019a). The UV spectral irradiance 
[λ 280–400 nm; UV-B: A ratio (~ 1:1.2)] was measured 
and integrated using a spectroradiometer (Flame-S, Ocean 
Optics).

UV daily dose experiment

Cuttings of each of the chrysanthemum varieties (n = 4–6 per 
genotype and treatment) were subjected to the following UV 
regimes for a period of 14 days: (1) 0 kJ m−2 day−1 (control), 
(2) 0.30 kJ m−2 day−1, (3) 0.60 kJ m−2  day−1, (4) 1.19 kJ m−2 
 day−1 or (5) 1.79 kJ m−2  day−1. This was achieved by expo-
sure to 0, 0.5, 1, 2 or 3 h  day−1 of UV, respectively. Applica-
tion of UV started midway through the 16-h light period. 
At day 15, control and UV-treated plants were transferred 
to a climate room provided with ~ 110 ± 10 µmol m−2 s−1 of 
PAR, a photoperiod of 16/8 h, 20 °C and 70% RH and sub-
jected to non-choice whole-plant thrips bioassays. Note that 
all the insect bioassays described in this study were carried 
out after the UV treatment terminated, and therefore, thrips 

performance was not influenced directly by UV but by UV-
mediated changes in plant physiology.

UV effects on host preference and plant chemical 
defenses

In a series of two independent experiments, we selected the 
most responsive cultivar to UV, ‘Pimento,’ and the UV daily 
dose showing the strongest positive effect on plant resistance 
to thrips (i.e., 1 h  day−1 corresponding to 0.60 kJ m−2  day−1) 
to determine the effects of UV on: (1) host plant prefer-
ence by thrips, (2) leaf metabolome and (2) the induction of 
jasmonic acid-associated defenses after thrips infestation. 
In all experiments, chrysanthemum cuttings were subjected 
to control or UV treatments as described above. In the first 
experiment, plants were sampled for dual-choice leaf disk 
thrips bioassays (n = 10) and metabolomic analysis (n = 5) 
at day 15 after the start of the light treatment. In the second 
experiment, control and UV-treated plants were subjected to 
non-choice whole-plant thrips bioassays at day 15 after the 
start of the light treatments. At 0 h (before thrips release), 
6 h, 24 h, 3 days and 7 days after thrips infestation, plants 
(n = 5) were sampled for determination of polyphenol oxi-
dase (PPO) activity, a well-known marker of the activation 
of JA signaling (Constabel et al. 1995), and the hormones 
12-oxo-phytodienoic acid (OPDA), JA and jasmonic acid-
isoleucine (JA-Ile) levels.

Persistence effects of UV on plant resistance 
to thrips

We conducted two separate experiments to test whether UV 
effect on chrysanthemum resistance to thrips: (1) persists 
after the end of the UV treatment and (2) can be transferred 
to the next generation from mother plants to cuttings.

In the first experiment, control and UV chrysanthemum 
cuttings (cv. ‘Pimento’) were planted in soil and subjected 
to control or UV treatments for 2 weeks as described above. 
Thereafter, plants (n = 10) were used for non-choice whole-
plant thrips bioassays at days 15 and 21 after the start of the 
UV treatments, hereafter referred as days 0 and 7 after the 
UV treatments were finalized.

In the second experiment, chrysanthemum cuttings (cv. 
‘Pimento’) were planted in soil and subsequently subjected 
to the following UV treatments (see Supplementary Fig. S1 
for detailed scheme of the experiment): (1) no UV exposure 
(control), (2) 2 weeks of UV exposure (0.60 kJ m−2  day−1, 
1 h  day−1) or (3) 6 weeks of UV exposure (0.60 kJ m−2 
 day−1, 1 h  day−1). The position of the plants was adjusted 
every 2 weeks so the distance from the top of the plants 
to the UV lamps did not vary along the experiment. Cut-
tings subjected to 2 weeks of UV treatment were trans-
ferred to a climate cabinet (without UV), together with 
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their corresponding controls (no UV), for four additional 
weeks. In these climate cabinets, plants were provided with 
~ 110 ± 10 µmol m−2  s−1 of PAR, a photoperiod of 16/8 h, 
20 °C and 70% RH. We used six plastic pots (pot diameter, 
23 cm) per treatment, each pot containing three cuttings. 
Three weeks after the start of the experiment, the top of the 
plants was excised (~ 5 cm from the top) to stimulate the 
production of secondary branches. Six weeks after the start 
of the UV treatments, we obtained one cutting per plant (i.e., 
3 cuttings per pot), yielding a total of 18 cuttings per light 
treatment. Cuttings were planted in individual pots filled 
with soil and allowed to root for 2 weeks under the same 
conditions described above for their mother plants but with-
out UV. At day 15 from planting, plants were subjected to 
non-choice whole-plant thrips bioassays.

Insect rearing

Western flower thrips (Frankliniella occidentalis) [Per-
gande] were maintained on chrysanthemum flowers (culti-
var ‘Euro Sunny’) in a climate room at 23 °C, 60% RH and 
L12:D12 photoperiod.

Non‑choice whole‑plant thrips bioassay

Plants were individually placed into thrips-proof cages 
as described by Leiss et  al. (2009a, b). All cages were 
randomly placed in a climate room provided with 
~ 110 ± 10 µmol m−2 s−1 of PAR, a photoperiod of 16/8 h, 
25 °C and 70% RH. Each plant was infested with 10 adult 
thrips (9 females and 1 male). After 7 days, thrips feeding 
damage (hereafter referred as ‘silver damage’) was evaluated 
in all the leaves of the plant and expressed as  mm2 of silver 
damage per plant.

Dual‑choice leaf disk thrips bioassay

A dual-choice assay (Leiss et al. 2009a, b) was used to test 
thrips preference for chrysanthemum leaves taken from con-
trol and UV-treated plants. Leaf disks, each corresponding 
to an individual plant, with a diameter of 1 cm were placed 
on a thin layer of 1% water agar in a 90-mm-diameter Petri 
dish. For each pairwise, 10 replicates, i.e., petri dishes, 
were evaluated. Ten starved female F. occidentalis adults 
were shortly anesthetized with  CO2 and placed on a small 
filter paper positioned between the disks. The Petri dishes 
were sealed with parafilm and placed in a climate room at 
25 °C and 16L:8D light regime. The number of thrips on 
each leaf disk was recorded at 0.5, 1, 2, 3, 4 and 24 h after 
thrips release. At 48 h after thrips release, silver damage was 
scored in each leaf disk.

Leaf metabolome analysis

Nuclear magnetic resonance spectroscopy (NMR) analysis 
was performed on the third/fourth youngest leaf from the 
apex in control and UV-treated plants at 14 days after the 
initial light treatment (n = 5). For this, twenty milligrams 
of freeze-dried plant material was extracted with 1 mL of 
 KH2PO4 buffer in  D2O (pH 6) containing 0.05% trimethyl-
silane propionic acid sodium salt and  CH3OH-d4 (1:1). 
Extracts were vortexed, sonicated for 20 min and centri-
fuged at 13,000 rpm for 10 min at room temperature. Three 
hundred microliters of the supernatant was transferred to 
NMR tubes for the spectral analysis. 1H NMR spectra were 
recorded at 25 °C on a 600-MHz Bruker AV 600 spectrom-
eter equipped with cryoprobe operating at a proton NMR 
frequency of 600 MHz and analyzed as described in López-
Gresa et al. (2012).

Determination of PPO activity

Polyphenol oxidase (PPO) activity was measured in the 
third leaf from the apex following the protocol described by 
Thaler et al. (1999). In short, approx. 150 mg leaf sample 
was frozen and ground. Enzymes were extracted by homog-
enizing the plant material in a 2-mL tube with 1.25 mL ice-
cold 0.1 M K phosphate buffer (pH = 8) containing 7% (w:v) 
polyvinylpolypyrrolidine and 400 μL of 10% Triton-X-100. 
The mixture was vortexed and centrifuged at 11.000 rpm 
at 4 °C for 10 min. Of the resulting supernatant, 5 μL was 
added to 1 mL of a chlorogenic acid solution (2.92 mM in 
K phosphate buffer, pH = 8). The increase in optical den-
sity (OD) at 470 nm was measured by means of a UV-1800 
spectrophotometer (Shimadzu Inc., Tokyo, Japan). The 
change in absorbance was recorded every second for 1 min. 
The enzyme activity was recorded as ΔOD/min/g fresh leaf 
tissue.

Hormone analysis

The concentrations of OPDA, JA and JA-Ile were deter-
mined in the third leaf from the apex following the method-
ology described in Glauser et al. (2014). For this, the phy-
tohormones were extracted with ethyl acetate spiked with 
isotopically labeled standards (1 ng for  d5-JA and 13C6-JA-
Ile) and analyzed by ultra-high-performance liquid chroma-
tography tandem mass spectrometry as described in Glauser 
et al. (2014).

Statistical analysis

Data were analyzed using the SPSS software package (ver-
sion 21; SPSS Inc., Chicago, IL, 571 USA). The effects of 
plant genotype, UV treatment and their interaction on silver 
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damage symptoms were analyzed by generalized linear mod-
els (GLM) using linear distribution and identity link func-
tion, followed by Fisher´s least significant difference (LSD) 
post hoc test. Thrips preference between control and UV-
treated plants tested in dual-choice leaf disk thrips bioassays 
was analyzed by paired t tests. UV treatment, time and their 
interaction on PPO activity and hormone levels were tested 
by two-way ANOVA. Data on JA-Ile were Log transformed 
prior to analysis. Differences in PPO activities and hormone 
levels between control and UV-treated plants after thrips 
infestation were analyzed by t tests at each time point. The 
effect of the UV treatment, the day of thrips infestation after 
the end of the light treatment and their interaction on sil-
ver damage symptoms were analyzed by GLM using linear 
distribution and identity link function. Differences between 
control and UV-treated plants at each time point were tested 
by t-tests. The effect of UV treatment, the duration of the 
light treatment (i.e., 2 or 6 weeks) and their interaction on 
silver damage symptoms were tested by GLM using linear 
distribution and identity link function. Patterns of chemi-
cal signals detected by NMR in leaf extracts of control and 
UV-treated plants were first subjected to principal compo-
nent analysis (PCA). Additionally, supervised partial least 
squares discriminant analysis (PLS-DA) was used to deter-
mine the variation in X variables (i.e., chemical shifts) mod-
eled by the Y explanatory variable corresponding to the light 
treatment. For this, we used the unit variance (UV) scaling 
method. The cumulative variations in X and Y explained by 
the model were reported as R2X and R2Y, respectively. The 
resulting model was fitted to the minimum number of latent 
variables showing the highest value of predicted variation 
(Q2). The validation of the model was tested by ANOVA 
of the cross-validated residuals (CVANOVA). The impor-
tant predictors of the model (i.e., X variables) were selected 
based on a variable importance in projection (VIP) score > 1 
(Chong and Jun 2005). Student t tests were used to deter-
mine significant variations in the signal intensities of these 
selected X variables between control and UV-treated plants. 
Multivariate analyses were performed by using SIMCA-P 13 
software (Umetrics, Sweden).

Results

Effect of different UV daily exposure 
times on chrysanthemum resistance against thrips

Variations in the daily UV exposure time significantly 
affected chrysanthemum resistance to thrips (Fig. 1). UV 
treatments did not cause any evident sign of damage to 
plants (Supplementary Fig. S2). The effect of UV on thrips 
resistance was dependent on the chrysanthemum cultivar 

and the daily UV exposure time. A significant reduction 
in silver damage symptoms was observed in ‘Pimento’ 
plants subjected to 1 h  day−1 of supplemental UV. Con-
versely, UV exposure times of 2 and 3 h  day−1 increased 
the susceptibility to thrips in ‘Pimento’ plants, these dis-
playing higher silver damage symptoms than the controls. 
Although the cultivars ‘Baltica’ and ‘Amadea’ also showed 
a trend of decreasing silver damage symptoms at 1 h  day−1 
of supplemental UV, these differences were not significant.

Effect of UV on host plant preference

We selected the cultivar ‘Pimento’ and 1 h  day−1 of sup-
plemental UV as the daily dose that showed the strong-
est positive effect on plant resistance to thrips to test UV 
effects on host plant preference by thrips using dual-choice 
leaf disk bioassays. The number of thrips settled on leaf 
disks taken from control plants was significantly higher 
than in leaf disks taken from UV-treated plants at 0.5, 1, 
2, 3 and 24 h after thrips release (paired t test, P ≤ 0.05) 
(Fig. 2a). Furthermore, silver damage symptoms were sig-
nificantly higher in leaf disks taken from control plants at 
48 h after thrips release (paired t test, P ≤ 0.05) (Fig. 2b).

Fig. 1  Effects of several daily UV exposure times on chrysanthe-
mum resistance to thrips. Data represent silver damage symptoms 
(mean ± SEM, n = 4–5) evaluated at 7  days after thrips infestation. 
Chrysanthemum cuttings of the varieties ‘Pimento,’ ‘Amadea’ and 
‘Baltica’ were planted in soil and exposed to control (0 kJ m−2 day−1), 
0.5 h  day−1 (0.30 kJ m−2  day−1), 1 h  day−1 (0.60 kJ m−2  day−1), 2 h −1 
(1.19 kJ m−2  day−1) or 3 h  day−1 (1.79 kJ m−2  day−1) of supplemental 
UV for 14 consecutive days. At day 15, plants were subjected to non-
choice whole-plant thrips bioassays. Plants were individually infested 
with 10 adult thrips. Different letters indicate significant differences 
among groups as determined by GLM followed by Fisher’s LSD test 
(P ≤ 0.05). The overall effects of genotype (G), UV and their interac-
tion are indicated
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Effect of UV on chrysanthemum leaf metabolome

A total of 241 signals were detected in the leaf extracts 
of control and UV-treated plants by 1H NMR. PCA of all 
the detected signals resulted in a model with three prin-
cipal components explaining 85% of the variance (model 
statistics: R2X = 0.842 and Q2 = 0.493) and revealing no 
significant separation between the metabolomic profiles 
of plants subjected to control and supplemental UV condi-
tions (Supplementary Fig. S3A, B). To further determine 
whether UV induced subtle changes in the leaf chemistry, we 
conducted a supervised multivariate analysis by PLS-DA, 
which can provide information about the chemical signals 
whose variation contributes to the separation among classes. 
This analysis resulted in a model with three latent variables 
(LVs) explaining 62% of the total metabolomic variation 
and 96.5% of the light treatment response, with a 72.2% 

total model predictability [model statistics: R2X = 0.63, 
R2Y = 0.965 and Q2 = 0.722). As previously anticipated by 
the PCA, the resulting PLS-DA model was not statistically 
significant (CVANOVA, P = 0.46) (Fig. 3a, b). However, 
among the 69 detected signals with a VIP score > 1, sig-
nificant differences in the relative peak intensities between 
control and UV-treated plants were observed in 10 of them 
(t test, P ≤ 0.05; Fig. 4). Of these, six signals were identified 
as alanine (δ 1.48), malic acid (δ 2.56, 2.84), aspartic acid 
(δ 2.80) and 3,5-dicaffeoylquinic acid (δ 6.48, δ 7.08). UV 
significantly increased the levels of the amino acid alanine 
and the phenyl propanoid 3,5-dicaffeoylquinic acid, while it 
decreased malic and aspartic acid levels in chrysanthemum 
leaves (Fig. 4).

Fig. 2  Effect of supplemental UV on host plant preference by thrips. 
Chrysanthemum cuttings (cv. ‘Pimento’) were subjected to control 
(no UV) or supplemental UV (1  h  day−1) for 14 consecutive days 
after planting. At day 15, thrips preference was tested by two-choice 
leaf disk bioassays. a Mean number of thrips (± SEM, n = 10) settled 
on leaf disks taken from control or UV-treated plants at different time 
points after thrips release. b Silver damage symptoms (mean ± SEM, 
n = 10) determined at 48 h after thrips release in leaf disks of control 
and UV-treated Pimento plants. Data were analyzed by paired two-
tailed t-test. Asterisks denote significant differences at P ≤0.05

Fig. 3  Metabolomic responses of chrysanthemum (cv. ‘Pimento’) 
leaves to control (no UV) or supplemental UV conditions. Supervised 
partial least square discriminant analysis (PLS-DA) is performed 
on the obtained 1H NMR spectra of control and UV-treated plants 
(n = 5) at 15  days after the initial light treatment. PLS-DA resulted 
in a model with three latent variables (LVs) explaining 62% of the 
total metabolomic variation and 96.5% of the UV treatment response 
with a 72.2% total model predictability [model statistics: R2X = 0.63, 
R2Y = 0.965 and Q2 = 0.722). Score plot a and loading plot b of the 
first two LV with the explained variance in brackets. In (b), X depicts 
the variables (i.e., chemical shifts) modeled by the Y explanatory var-
iable corresponding to the UV treatment. The ellipse in (a) defines 
the Hotelling’s T2 confidence region (95%)
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Effect of UV on the induction of jasmonic 
acid‑associated defenses after thrips infestation

Activation of JA signaling is important for plant resistance 
to thrips (Li et al. 2002; Escobar-Bravo et al. 2017b). There-
fore, we further tested whether UV modulates JA-associated 
defense responses to thrips infestation in chrysanthemum. 
For this, we first determined the induction of a JA-responsive 
marker, PPO activity, in control and UV-treated ‘Pimento’ 
plants before and after thrips infestation. PPO activity levels 
did not differ between control and UV-treated plants before 
thrips infestation (i.e., 0 h) (Fig. 5a). However, PPO activity 
levels were significantly higher in UV-treated plants than in 
their controls at 6 h after thrips infestation (t test, P < 0.05). 
No significant differences were observed at later time points.

To further investigate the effect of UV on JA signal-
ing, levels of the JA precursor OPDA, JA and JA-Ile were 
determined in the same time course experiment (Fig. 5). 
OPDA levels were significantly reduced after thrips infesta-
tion in both control and UV-treated plants (Fig. 5b). This 
response was stronger in UV-treated plants at 24 h. JA levels 
also declined in control and UV-treated plants after thrips 

infestation, being significantly lower in UV-treated plants 
when compared with their controls at 24 h (Fig. 5c). Con-
versely, JA-Ile levels were significantly induced in control 
and UV-treated plants at 6, 24, 72 and 168 h after thrips 
infestation (Fig.  5d). At 7  days after thrips infestation 
(168 h), however, JA-Ile levels were significantly higher in 
UV-treated than in control plants.

Persistence of the UV effect on chrysanthemum 
resistance to thrips

The effects of UV on chrysanthemum resistance persisted 
after the end of the UV treatment, but it was not trans-
ferred to the next generation from mother plants to cuttings 
(Fig. 6a, b). Silver damage symptoms were significantly 
lower in UV-treated plants compared to their controls when 
plants were infested at 0 or 7 days after the end of the light 
treatments (Fig. 6a). However, cuttings obtained from chry-
santhemum mother plants subjected to two or six consecu-
tive weeks of UV treatment (i.e., 1 h  day−1) did not displayed 
enhanced resistance to thrips when compared to the controls 
(Fig. 6b).

Fig. 4  Effect of supplemen-
tal UV on leaf metabolome. 
Relative peak intensity levels 
(mean ± SEM, n = 5) of the 
detected signals with vari-
able importance in projection 
(VIP) scores > 1 and displaying 
significant differences between 
control and UV-treated plants 
determined by student t tests. 
Asterisks denote significant 
differences at P ≤ 0.05. The VIP 
list was obtained by performing 
partial least square discriminant 
analysis. Chemical shifts (δ) are 
depicted above each graph
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Discussion

In the present study, we demonstrated that application of 
supplemental UV radiation enhances chrysanthemum resist-
ance to thrips. We showed that this effect was genotype and 

Fig. 5  Effect of supplemental UV on thrips-mediated induction 
of jasmonic acid-mediated signaling. a Polyphenol oxidase (PPO) 
activity (mean ± SEM, n = 5), b 12-oxo-phytodienoic acid (OPDA), 
c jasmonic acid (JA) and d jasmonic acid-isoleucine (JA-Ile) levels 
(mean ± SEM, n = 3–5) determined in control and UV-treated chry-
santhemum cuttings (cv. ‘Pimento’) at 0, 6, 24, 72 and 168  h after 
thrips infestation. Cuttings were subjected to control (no UV) or sup-
plemental UV (1 h  day−1) for 14 consecutive days after planting. At 
day 15, plants were individually infested with 10 thrips in non-choice 
whole-plant bioassays and sampled for PPO and hormonal analysis. 
The overall effects of time of sampling, UV and their interaction 
tested by two-way ANOVA are indicated. Asterisks denote significant 
differences at P ≤0.05 tested by unpaired t test

Fig. 6  Persistency of UV effects on chrysanthemum resistance to 
thrips. a Silver damage symptoms (mean ± SEM, n = 10) determined 
in control and UV-treated chrysanthemum plants (cv. ‘Pimento’) at 
7 days after thrips infestation. Cuttings were subjected to control (no 
UV) or supplemental UV (1  h  day−1) for 14 consecutive days after 
planting. At days 15 and 21 (referred as days 0 and 7) after the initial 
treatment plants were individually infested with thrips (10 adults per 
plant). The overall effects of time of infestation, UV treatment and 
their interaction tested by generalized linear models (GLM) are indi-
cated in the graph. Asterisks denote significant differences at P ≤0.05 
tested by unpaired t test. b Silver damage symptoms (mean ± SEM, 
n = 18) determined in plants propagated from mother plants subjected 
to control or supplemental UV radiation (cv. ‘Pimento’). Mother 
plants were grown from cuttings (cv. ‘Pimento’) and subjected to 
control or supplemental UV (1  h  day−1) for a period of two or six 
consecutive weeks. Thereafter, cuttings obtained from these mother 
plants were planted and grown in soil for 2  weeks without UV. At 
day 15, plants were individually infested with 10 adult thrips, and sil-
ver damage symptoms evaluated at 7 days after infestation. The over-
all effects of the UV treatment, duration of the light treatment (i.e., 
2 or 6 weeks) and their interaction were tested by generalized linear 
models (GLM). Results of the statistical analysis are indicated in the 
graph
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UV dosage dependent and persisted after the light treatment 
finalized. Furthermore, our analyses revealed that supple-
mental UV induced subtle changes on the chemical profile 
of chrysanthemum leaves, and it might prime JA-associated 
defenses against thrips.

First, our results showed that application of supplemen-
tal UV increased thrips resistance in the cultivar ‘Pimento,’ 
with similar but not significant trends in the other cultivars 
‘Amadea’ and ‘Baltica’ (Fig. 1). In addition, it enhanced the 
antixenotic properties of ‘Pimento’ plants as shown in the 
preference bioassay (Fig. 2a, b). F. occidentalis adults can 
live up to 30 days and lay 2–10 eggs per day that hatch after 
2–4 days (Rotenberg et al. 2015). We measured silver dam-
age at 7 days after thrips infestation. At this time point, plant 
damage might result from adult WFT feeding, but also from 
their developing larvae. Thus, reduction in damage levels 
might be explained by a reduction in the survival of adults 
and larvae, but also by a reduced oviposition rate. Notably, 
the preference bioassays showed that adult thrips settled and 
fed less in leaf disks taken from UV-treated plants, which 
might have negatively influenced the oviposition rate. This 
is an aspect that needs further research.

Photomorphogenic and stress-associated responses to UV 
can vary among plant genotypes (Hidema et al. 1997; Cor-
reia et al. 1999; Cooley et al. 2001; Kalbina and Strid 2006; 
Mariz-Ponte et al. 2018), and this variation most probably 
explains the different responses observed in our study. For 
instance, UV-B elicited changes in foliar chemistry that were 
markedly different in two populations of white clover (Trifo-
lium repens L.), which also coincided with variations in sus-
ceptibility to a generalist herbivore (Lindroth et al. 2000). In 
another example, Zavala et al. (2015) reported differences in 
the UV-mediated induction of isoflavonoids in soybean pods 
among four cultivars. Furthermore, these differences were 
associated with plant susceptibility to stink bug herbivory. 
Interestingly, our data also showed that while low UV doses 
enhanced thrips resistance in the cultivar ‘Pimento,’ high 
UV doses had the opposite effect (Fig. 1). The fact that this 
UV dose-dependent effect was only evident in this genotype 
might be explained by a higher sensitivity to UV in com-
parison with the other chrysanthemum cultivars. UV sensi-
tivity can be correlated with differences in anatomical and 
biochemical leaf traits, including thickness, trichomes and 
composition and concentration of UV-absorbing compounds 
(Murali et al. 1988; Yan et al. 2012; Escobar-Bravo et al. 
2019a). Further analysis to determine whether these param-
eters can determine differences in chrysanthemum responses 
to UV are thus needed. In addition, we hypothesize that 
the enhanced thrips susceptibility triggered by longer UV 
exposure times (i.e., 2 and 3 h  day−1) can be explained by 
an increase in the oxidative stress and the subsequent acti-
vation of SA signaling in the plant. Upon irradiation with 
high doses of UV, accumulation of SA and/or expression of 

pathogenesis-related genes has been previously described in 
the literature (Surplus et al. 1998; Mackerness et al. 1999; 
Fujibe et al. 2000; Bandurska and Cieślak 2013; Kovács 
et al. 2014). In this sense, activation of SA signaling has 
been reported to increase plant susceptibility to thrips, prob-
ably due to its antagonistic effect on JA-induced defenses 
(León-Reyes et al. 2009; Abe et al. 2012). Yet, whether the 
activation of SA defenses under long UV exposure times is 
responsible for the increased chrysanthemum susceptibil-
ity to thrips described here is an aspect that needs further 
analysis.

To determine how UV enhances chrysanthemum defenses 
against thrips, we analyzed the metabolomic profiles of UV-
treated ‘Pimento’ leaves. Our data showed that application 
of low UV levels (i.e., 1 h  day−1) barely affected the leaf 
chemical profiles of chrysanthemum plants at 15 days after 
the start of the UV treatment (Supplementary Fig. S3A, B). 
Still, we detected significant variations in the relative peak 
intensities of several signals of the NMR spectra (Fig. 4). 
Interestingly, a significant induction of the phenyl propanoid 
3,5-dicaffeoylquinic acid levels was observed in UV-treated 
plants. UV-B can induce the production of phenolic com-
pounds in many plant species (Wargent et al. 2015; Hectors 
et al. 2014; Barnes et al. 2016). In chrysanthemum, Yang 
et al. (2018) reported significant changes in the leaf content 
of total and individual flavonoids and phenylpropanoids in 
plants exposed to 12 h of UV-B, but not after 3 or 6 h of 
exposure. This suggests a UV dose-dependent effect on leaf 
production of phenolics. Indeed, we have recently reported 
that exposure to low levels of supplemental UV (A + B) 
(i.e., 30 min  day−1, 0.34 kJ m−2 day−1) did not significantly 
alter the production of the main phenolic components of 
tomato leaves, i.e., rutin and chlorogenic acid (Escobar-
Bravo et al. 2019a). Experimental conditions such as pho-
tosynthetically active radiation (PAR) levels and temperature 
might modulate UV-associated plant responses (Cen and 
Bornman 1990; Gӧtz et al. 2010). For instance, in temper-
ate regions characterized by low daily light integrals and 
moderate temperatures, Coffey et al. (2017) did not detect 
a significant effect of UV-B on the production of phenolics 
in Arabidopsis plants growing outdoors. It is therefore fea-
sible that under our experimental conditions, UV radiation 
also failed to induce a strong metabolic response in chrysan-
themum. Notably, enhanced levels of the phenylpropanoids 
chlorogenic and feruloyl quinic acids have been previously 
associated with thrips resistance in chrysanthemum (Leiss 
et al. 2019). Their induction might therefore explain the 
differences in thrips damage, but also in the thrips pref-
erence observed in our study. Indeed, Leiss et al. (2019) 
showed that in choice assays thrips significantly preferred 
artificial diet without chlorogenic acid over that containing 
this phenolic acid even at low concentrations. It would be 
interesting to determine whether other phenylpropanoids, 
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such as 3,5-dicaffeoylquinic acid, also affect herbivore resist-
ance. How variations in alanine, aspartic acid and malic acid 
might have contributed to plant defenses against thrips is not 
clear. Yet, changes in amino acid levels in response to biotic 
stresses have been amply reported in the literature (Less and 
Galili 2008). This has been explained by their important 
role as precursors for the biosynthesis of defensive metabo-
lites against herbivorous enemies (Zhou et al. 2015). In this 
sense, it should be noticed that reduction in aspartic acid 
levels might be associated with an increased biosynthesis of 
other amino acids and proteins (Azevedo et al. 2006). Nota-
bly, thrips infestation has been reported to induce the expres-
sion of defense-associated proteinase inhibitor proteins in 
tomato (Escobar-Bravo et al. 2017a) and soybean (Dillon 
et al. 2018a, b). Taken together, these results suggest that 
UV-mediated induction of chrysanthemum defenses against 
thrips might be only partially explained by small changes in 
the leaf secondary and primary metabolites.

Our results further showed that UV-treated chrysan-
themum plants experienced a stronger induction of the 
JA signaling after thrips infestation. Thrips infestation 
induced the accumulation of the bioactive form of JA and 
JA-Ile, in control and UV-treated plants (Fig. 5d), which 
agrees with previous results reported in Arabidopsis (Abe 
et al. 2008) and sweet pepper (Sarde et al. 2018). This 
induction was accompanied by a general decrease in 
OPDA and JA levels after thrips infestation, which might 
be explained by their conversion into JA-Ile (Wasternack 
and Song 2016). Interestingly, UV-treated plants displayed 
significantly higher JA-Ile levels at 7 days after thrips 
infestation when compared to the controls (Fig. 5d). Fur-
thermore, thrips infestation enhanced PPO activity levels 
in UV-treated plants but not in the controls. PPO is a well-
known marker of the activation of JA-associated defenses 
(Thaler et al. 1999). Its induction, however, can depend 
on the amount of herbivore-associated damage (Stout 
et al. 1994). We thus hypothesize that the silver damage 
levels caused by thrips were insufficient to activate these 
chemical defenses, but they might have been augmented in 
UV-treated plants. UV-B radiation is reported to increase 
the accumulation of bioactive jasmonates (JAs) and the 
plant sensitivity to JAs (Ballaré et al. 2011). Either solar 
or supplemental UV-B has been described to enhance the 
expression of JA-associated defense responses upon her-
bivory or wounding (e.g., Demkura et al. 2010; Ðinh et al. 
2013; Qi et al. 2018). This resulted in a stronger induction 
of defense-related proteins and secondary metabolites and, 
consequently, plant resistance to herbivory. For instance, 
(Ðinh et al. 2013) and Demkura et el. (2010) showed that 
UV-B exposure increased the expression levels of the 
defense-associated gene NaTPI in Nicotiana attenuata 
plants at 12 and 24 h after simulated herbivory. Thrips 

are susceptible to the activation of JA defenses (Li et al. 
2002; Abe et al. 2012; Escobar-Bravo et al. 2017a). A 
stronger induction of this signaling pathway might there-
fore explain the reduction in silver damage symptoms 
observed in UV-treated chrysanthemum plants. Hence, 
our results further support UV as a ‘priming’ agent for a 
more robust induction of anti-herbivore defenses. How-
ever, more analyses are needed to determine which com-
ponents of the JA-dependent metabolism are responsible 
for the enhanced chrysanthemum defenses against thrips.

Additional bioassays revealed that the positive effects of 
UV on chrysanthemum resistance to thrips are still evident 
at 7 days from the end of the UV treatment, suggesting a 
potential long-lasting protection (Fig. 6a). To the best of 
our knowledge, no other study has specifically tested the 
duration of the UV effects on plant resistance to herbivory. 
Probably, changes in plant chemistry and/or the ‘priming’ 
state, both induced by UV radiation, persisted after ceasing 
the light signal. In the latter case, defense priming can be 
induced by chemical cues such as phytohormones or vola-
tile organic compounds, pathogens, arthropod herbivores, 
beneficial microorganisms or abiotic stresses (Conrath 
et al. 2015; Martinez-Medina et al. 2016; Mauch-Mani 
et al. 2017). The time between the initial ‘priming’ stimuli 
and the challenge that triggers plant defense responses can 
range from hours to days (Pieterse et al. 1996; Walters 
et al. 2008), which supports the hypothesis of a long-last-
ing effect of UV on chrysanthemum defenses. However, 
our data also showed that UV effects on chrysanthemum 
resistance to thrips were not transferred to the next genera-
tion from mother plants to cuttings (Fig. 6b). This implies 
that the effects of UV on chrysanthemum physiology were 
not fixed and they dilute with time.

In recent years, several studies have reported the use of 
supplemental UV to alter the chemistry of medicinal chry-
santhemum (Chrysanthemum morifolium Ramat) flowers, 
for which the main active components are flavonoids and 
chlorogenic acid (Yao et al. 2014; Ma et al. 2016). Here 
we showed that supplemental UV radiation can be used 
to enhance chrysanthemum defenses against an impor-
tant insect pest during the vegetative stage as well. Future 
experiments should further address whether application of 
UV can also alter the chemical defenses of flowers, which 
are heavily attacked by thrips and enhance their protection 
against this herbivorous pest. Our results have important 
implications for floriculture, as it might restrict thrips 
infestations of chrysanthemum plants at early development 
stages. Moreover, our study demonstrates the existence 
of phenotypic variation in UV-mediated induced defenses 
against herbivory among chrysanthemum cultivars, which 
could be potentially exploited in breeding programs for 
enhanced pest control.
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