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Propositions 

 

1. Developmental stage-related metabolic adaptations induce drought tolerance in rice. 
(this thesis) 

 
2. Missing heritability is hidden under environmentally induced metabolic changes. 

(this thesis) 
 

3. Although re-engineering of photorespiration increased tobacco growth under well-
watered conditions (South et al., 2019. Science, 363(6422)) it may result in suboptimal 
metabolism-related growth reduction under abiotic stresses. 

 
4. The increasing global vapor pressure deficit (Yuan et al., 2019. Science Advances, 5(8)) 

negates any positive effects of increased CO2 levels and will require to re-design the 
future of agricultural crop productivity. 

 
5. Although they seem highly ethical, vegans are quite unethical as they consider plants as 

inferior living organisms. 
 

6. We are currently witnessing the shift from technological alienation to technological 
identification. 
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Rice and water  

As a staple food for more than half of the world’s population, Asian rice (Oryza sativa) is 

considered the most important cereal crop worldwide and it is by far the most consumed food 

crop by people living in low- and low to middle-income countries (www.ricepedia.org, CGIAR). 

Molecular and archeological evidence dates the first domestication of Asian rice from its wild 

ancestor Oryza rufipogon to ~9,000-10,000 years ago, in the lower Yangtze river region of 

China (Fuller et al., 2010; Molina et al., 2011; Wing et al., 2018). Today, rice is cultivated on 

more than 140 million hectares globally, with more than 90% produced in Asia. Approximately 

60% is grown in irrigated lowland, 34% in rainfed lowland, and 6% in rainfed upland 

agroecosystems (FAO, 2014). The predominance of irrigated lowland systems is due to the 

higher grain yields that can be achieved when it is possible to control access to water. The 

grain yield penalty that occurs when rice is grown in rainfed cultivation systems is related to 

the variability and uncertainty of rainfall patterns, and to the crop’s sensitivity to drought, 

disease and micronutrient disorders when water is limited, particularly during the 

reproductive stage (Venuprasad et al., 2007). The Green Revolution (1965-1990) promoted 

the widespread use of irrigation infrastructure and rice varieties adapted to irrigated 

conditions as part of a strategy to enhance yield and productivity of rice worldwide. Indirectly, 

this led to an overall increase in the sensitivity of high-yielding varieties (HYV) of rice to water 

limitation. While striving to improve yield and food security, new rice varieties were selected 

in irrigated ecosystems without considering water as a limiting factor (Pingali, 2012; Kumar et 

al., 2014). As a consequence, the widely adopted HYVs associated with the Green Revolution 

show large yield losses when exposed to drought stress (Lafitte et al., 2006; Vikram et al., 

2015). In more recent years, there has been increasing awareness that, in the coming decades, 

water scarcity will represent a major constraint for agriculture, necessitating a focus on 

increasing water-use-efficiency (WUE) in agricultural systems (Rijsberman, 2006). Several 

management practices, such as alternate wetting and drying and saturated soil culture, have 

been developed through the years to enhance WUE in rice cultivation (Borrell et al., 1997; 

Tabbal et al., 2002). Despite these developments, there is an unavoidable trade-off when 

water-saving practices are applied to high-yielding rice production systems in irrigated lowland 

environments, leading to a severe reduction in grain yield (Bouman and Tuong, 2001; Peng et 

al., 2006). It is therefore necessary to develop new rice varieties better adapted to water-

limited production systems. Prior to the Green Revolution, traditional rice varieties were 
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cultivated for centuries in rainfed lowland and upland regions of Asia. Their selection in water-

limited rainfed ecosystems resulted in adaptive drought-resistant characteristics, 

accompanied by a genetic differentiation between lowland and upland rice varieties (Xia et 

al., 2014). This genetic diversity represents a valuable reservoir of potentially useful genes and 

genetic mechanisms associated with field-level drought resistance of use to rice breeders. The 

possibility to move favorable alleles from drought-tolerant donors to high-yielding but 

drought-susceptible rice varieties could help to improve the yield stability of HYVs under 

water-limited conditions (Luo, 2010). 

 

Linking drought tolerance traits to rice productivity 

Before describing the meaning of ‘tolerance’ or ‘resistance’ to drought considered in my 

thesis, it is necessary to provide a definition of ‘drought’ from the perspective of crop 

physiologists and breeders. Among the many possible definitions presented in the literature, 

I prefer the one used by Jones (2013) that links water supply to plant productivity. In this 

context drought refers to “any combination of restricted water supply (e.g. as a result of low 

rainfall or poor soil water storage) and/or enhanced rate of water loss (resulting from high 

evaporative demand) that tends to reduce plant productivity”. 

Given this definition, the productivity of plants under drought is affected by two main factors: 

1- the length and intensity of the drought period; 2- the plant phenological stage (Blum, 2005). 

The presence of extended and severe drought periods is typical of arid and semiarid 

environments to which plants have adapted by developing ‘drought survival’ mechanisms (e.g. 

desiccation tolerance in resurrection plants) which are not compatible with acceptable yields 

in modern agricultural systems and, thus with the production of grain crops (Sinclair, 2011). 

This is particularly true for a semi-aquatic crop like rice that, among the cereals, shows greatest 

sensitivity to water limitation (Venuprasad et al., 2007). The two production ecosystems 

where a rice crop typically experiences periods of drought stress are rainfed uplands and 

rainfed lowlands. In rainfed upland fields where standing water is usually rarely present, 

conditions of mild drought stress affect the crop during its entire life cycle and severe drought 

can be commonly experienced between major rainfall events (Kamoshita et al., 2008). Under 

these conditions, genotypes characterized by ‘drought avoidance’ mechanisms are associated 

with better yields. The avoidance strategy aims to maintain a high plant water status under 

10 
 

drought, which can be achieved by reducing water use and/or enhancing water uptake and, 

therefore, retaining high cellular hydration (Blum, 2005). Typical traits contributing to drought 

avoidance are early flowering (also known as ‘drought escape’), reduced leaf growth, limited 

tillering, reduced stomatal conductance and deep rooting (Bernier et al., 2008). All these 

drought avoidance-related traits, which are beneficial for improved yield performance in 

rainfed upland fields, may have an opposite effect in production ecosystems characterized by 

higher water availability (Tardieu, 2012). Rainfed lowland rice fields commonly have standing 

water in the paddies and drought stress may develop only with the occurrence of rainless 

periods. The timing of these periods generates three possible drought patterns: terminal 

drought (during the reproductive stage and grain filling), early drought (during the vegetative 

stage before maximum tillering) and intermittent drought (Kamoshita et al., 2008). Under 

these conditions, drought avoidance mechanisms, by promoting a constitutive moderation of 

water use throughout the crop life cycle, would hamper maximized plant productivity during 

the extended periods of water availability, thus reducing the potentially high crop yield (Blum, 

2005). Also a trait like deep rooting that, by increasing water uptake, helps to stabilize yield 

during periods of drought in upland soils (Kamoshita et al., 2008), is not necessarily a favorable 

trait in rainfed lowland ecosystems. Indeed, a deep root system in rice is almost always 

associated with a reduced number of tillers (typical of upland drought-resistant varieties) and, 

therefore, contrasts with one of the most important traits favoring high yield potential (Blum, 

2005). Nevertheless, Uga et al. (2013) discovered that a single quantitative trait locus (DRO1), 

by altering the root growth angle, promotes deeper rooting in rice without changing shoot and 

root biomass. The introduction of DRO1 into the genetic background of IR64, a widely grown 

lowland HYV, increased grain yield under moderate and severe drought stress without a yield 

penalty under irrigated conditions (Uga et al., 2013; Arai-Sanoh et al., 2014). The DRO1 case is 

a perfect example of how ‘drought tolerance’ in high-yielding varieties can be improved by 

identifying useful traits that have no detrimental effects on yield potential, and by 

manipulating the corresponding genes (e.g. by marker assisted selection and/or gene 

transformation/editing) (Cattivelli et al., 2008).  A trait with a similar positive potential effect 

on yield is osmotic adjustment that, through the stress-induced accumulation of specific 

metabolites, enables plants to maintain water absorption and cell turgor pressure under 

drought stress (low water potential), thus maintaining active photosynthesis and expansion of 

growth (Cattivelli et al., 2008; Blum, 2017). Other similar stress tolerance mechanisms/traits 
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aimed at protecting against drought-induced cellular damage, and corresponding negative 

effects on yield, are the detoxification of reactive oxygen species (ROS) and the accumulation 

of proteins (e.g. LEAs and dehydrins) and metabolites (e.g. proline, sugars and glycine betaine) 

with a protective function (Claeys and Inze, 2013). All these drought tolerance mechanisms 

are controlled by stress-induced gene regulatory networks (Nakashima et al., 2009) and, 

therefore, by being activated only under water-limited conditions, they do not result in yield 

penalty under good water supply. Inducible traits can be particularly important in rainfed 

lowland ecosystems because they are activated only when the paddy dries out as rains stop, 

and can be de-activated when water again becomes available. A better understanding of the 

effect of these mechanisms in rice and the manipulation of their underlying genetic control 

could help to reduce drought-induced yield loss in rainfed lowland ecosystems as well as in 

wetting-and-drying management systems in irrigated paddies.  

 

The effect of drought on plant primary metabolism 

Drought stress impacts the physiology of plants and alters many cellular functions causing a 

disruption of metabolic homeostasis that requires reprogramming to adapt to the stress. This 

metabolic reprogramming is determined by the necessity of maintaining essential metabolism 

while adapting to the new stressful conditions and, simultaneously, by the need to produce 

anti-stress agents to mitigate or tolerate the possible damages caused by low water potential 

(Claeys and Inze, 2013). In the last 10-15 years, studies based on targeted and un-targeted 

metabolic profiling of plant tissues have generated data on the metabolic changes induced by 

abiotic stresses, including drought, and have been the focus of many reviews (Shulaev et al., 

2008; Obata and Fernie, 2012; Krasensky and Jonak, 2012; Nakabayashi and Saito, 2015). 

Recently, and more relevant for the scope of this thesis, a comparison of the metabolic 

responses to drought between Arabidopsis (based on five independent studies) and rice 

(based on a single study) was reviewed by Fàbregas and Fernie (2019). 

Overall, the most salient pattern observed across all these studies is a drought-induced 

accumulation of many primary metabolites. Among them, increased levels of raffinose family 

oligosaccharides (RFOs), such as raffinose and galactinol, are described as an early drought 

response in many plant species (Obata and Fernie, 2012), including rice (Todaka et al., 2017). 

The early accumulation of RFOs under stress has been attributed to the osmoprotective 
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function of these compounds and to their activity as scavengers of hydroxyl radicals 

(Nishizawa et al., 2008; Ende, 2013). Other sugars that also show an early response to drought 

are glucose, fructose, sucrose and erythritol (Fàbregas and Fernie, 2019). Except for sucrose 

in rice, which shows a decrease (Todaka et al., 2017), these sugars display an accumulation in 

Arabidopsis and rice plants exposed to early, moderate drought stress. Under drought, the 

accumulation of sugars has been associated with the carbon surplus caused by stress-induced 

growth reduction, the earliest response to the stress, without a decrease in photosynthetic 

rate (Hummel et al., 2010; Muller et al., 2011). Sugars accumulating in response to drought 

stress can serve as osmolytes to maintain cell turgor and protect cell membranes and proteins 

(Krasensky and Jonak, 2012). Prolonged and severe drought induces the closure of stomata to 

reduce water loss, but this, in turn, limits photosynthesis and alters all the associated 

metabolic pathways, including the metabolism of carbohydrates (Pinheiro and Chaves, 2011). 

Under these conditions, high levels of sugar likely originate from stress-induced starch 

degradation (Sulpice et al., 2009; Pinheiro and Chaves, 2011). 

A very common metabolic response, shared by many plant species under severe drought 

stress, is the accumulation of free amino acids (Obata and Fernie, 2012; Fàbregas and Fernie, 

2019). The occurrence of high levels of free amino acids only under severe stress, when a 

limited photosynthetic rate reduces biosynthesis and the stress favors leaf senescence, 

suggests that their origin is mainly from protein catabolism (Krasensky and Jonak, 2012). This 

abundant amino acid pool feeds into alternative metabolic pathways which can serve to 

withstand the stress. Branched-chain amino acids (BCAAs), for example, such as isoleucine, 

leucine, valine, lysine and beta-alanine, are utilized as alternative substrates for mitochondrial 

respiration under stressful conditions (Araujo et al., 2012; Pires et al., 2016). Aromatic amino 

acids (AAAs), such as tryptophan, tyrosine and phenylalanine, are precursors of many 

biosynthetic pathways of secondary metabolites (Vogt, 2010; Galili et al., 2015) important for 

adaptation to diverse forms of abiotic stress, including drought (Nakabayashi and Saito, 2015). 

Different from the BCAAs and AAAs , the high levels of two specific amino acids, proline and 

GABA, which are involved in ROS scavenging, osmoregulation and coordination of carbon-

nitrogen balance (Szabados and Savouré, 2010; Verslues and Juenger, 2011; Michaeli and 

Fromm, 2015), could originate from active production under severe drought stress and not 

merely from the catabolism of protein. Similar to amino acids, the levels of many organic acids 
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Fromm, 2015), could originate from active production under severe drought stress and not 
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of the tricarboxylic acid (TCA) cycle markedly change under moderate-to-severe drought 

stress, with an increase shown in Arabidopsis but a decrease in rice (Fàbregas and Fernie, 

2019). This difference underlines an opposite response of the TCA cycle and, therefore, of 

mitochondrial respiratory metabolism, between these two species in response to drought 

stress. Even though the above-mentioned studies on changes in single metabolic pathways 

have greatly improved our understanding of the adaptations of plant primary metabolism to 

drought, future studies will have to integrate these independent pathways into more 

comprehensive modeling approaches (Sulpice and McKeown, 2015). Apart from the plant 

species, these models will also have to consider variables with a strong influence on plant 

metabolism, such as the specific plant tissue (seed, leaf, root), the developmental stage 

(young/mature leaf, vegetative/reproductive stage) and, primarily in the case of crop species, 

the difference in the metabolic response to drought between controlled and field 

environments (Obata and Fernie, 2012; Fàbregas and Fernie, 2019). 

 

Drought-induced oxidative stress and damage 

In plant cells under optimal conditions, ROS production is a physiological consequence of 

metabolic reactions during photosynthesis and respiration, and is mainly located in cell 

organelles such as chloroplasts, peroxisomes and mitochondria (Apel and Hirt, 2004). ROS are 

known as toxic compounds responsible for oxidative stress as well as important signalling 

molecules involved in many developmental, metabolic and defensive pathways (Mittler et al., 

2011; Mittler, 2017). In photosynthetic cells exposed to light, chloroplasts and peroxisomes 

are the main sources of ROS with an estimated production of hydrogen peroxide (H2O2) of 

4,000 and 10,000 nmol m-2 s-1, respectively (Foyer and Noctor, 2003). Mitochondria are also 

known to be responsible for ROS generation under non-stressed light conditions, but to a 

lower extent than chloroplasts and peroxisomes. In mitochondria, H2O2 formation was 

estimated to be 30 to 100 times lower than in the other two organelles with a production of 

less than 200 nmol m-2 s-1 (Foyer and Noctor, 2003). 

In chloroplasts, the reaction centres photosystem I (PSI) and photosystem II (PSII) generate 

ROS through a mechanism called photoproduction. The overloading of the electron transport 

chain in PSI is responsible for the diversion of part of the electron flow from ferredoxin to O2 

with the generation of its reduced product, superoxide anion (O2-), via the Mehler reaction. 
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O2- is then converted to H2O2 by the enzyme superoxide dismutase and then eventually 

reduced to water by the enzyme ascorbate peroxidase (APX) (Asada, 2006; Das and 

Roychoudhury, 2014). The H2O2-scavenging activity of APX is exerted by oxidizing ascorbate 

(AsA) to monodehydroascorbate (MDHA) that can be directly regenerated to AsA by the 

enzyme monodehydroascorbate reductase (MDHAR). MDHA is a short-lived compound that 

spontaneously and rapidly converts to dehydroascorbate (DHA) which, in turn, can be reduced 

back to AsA by the action of the enzyme dehydroascorbate reductase (DHAR). In the 

regeneration of AsA, DHAR utilizes reduced glutathione as electron donor and it participates, 

together with the enzyme glutathione reductase, in the ascorbate-glutathione cycle, the main 

redox hub in plants (Foyer and Noctor, 2011). In PSII of chloroplasts, a lack of energy 

dissipation during photosynthesis promotes the formation of triplet state chlorophyll that can 

react with triplet state oxygen (3O2) generating the extremely reactive singlet oxygen (1O2). 
1O2 can be scavenged by α-tocopherol (vitamin E), a very effective lipid soluble antioxidant 

present in the thylakoid membranes of chloroplasts (Gill and Tuteja, 2010). 

The effectiveness of the above-mentioned ROS scavenging mechanisms is drastically reduced 

by conditions that favour ROS overproduction (Asada, 2006). Under drought, plants have to 

balance the need for CO2 for photosynthesis with reduced water loss, which is mainly achieved 

by closing the stomata. Stomata closure reduces the CO2 supply for photosynthesis and hence 

indirectly generates a relative excess of photon intensity that causes enhanced ROS 

photoproduction (Noctor et al., 2014; Das and Roychoudhury, 2014; You and Chan, 2015). 

Under severe and prolonged drought stress, chloroplast antioxidant defences are no longer 

able to guarantee the scavenging of ROS overproduction that is likely to be the prime cause 

for the inhibition of the repair of the photodamaged PSII. This damage, known as 

photoinhibition, decreases photosynthetic activity and therefore growth and productivity 

(Takahashi and Murata, 2008; Takahashi and Badger, 2011). 

Besides chloroplasts, peroxisomes are the major source of ROS in plant cells. Under drought, 

ROS generation in the peroxisomes is tightly associated with reduction in photosynthetic 

activity at the level of the Calvin cycle. Under these conditions, the Rubisco enzyme, which has 

a dual activity as carboxylase and oxygenase, fixes more O2 (oxygenase activity) because of 

the limitation in the CO2 supply resulting from drought-induced stomata closure (Noctor, 

2002). The oxygenase activity of Rubisco generates phosphoglycolate (2PGA), a toxic 
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compound, that is recycled to 3-phosphoglycerate (3PGA). This recycling pathway is known as 

photorespiration and allows the Calvin cycle to proceed into its following steps towards central 

metabolic pathways and, simultaneously, to regenerate the Rubisco substrate ribulose 1,5-

bisphosphate (Peterhansel and Maurino, 2011). The photorespiration pathway is 

characterized by a high metabolic cost in terms of carbon and energy losses. In addition, in 

this pathway, 2PGA is initially converted to glycolate that is then transported from the 

chloroplasts to the peroxisomes where it is converted to glyoxylate by the enzyme glycolate 

oxidase (Peterhansel and Maurino, 2011). This conversion generates high amounts of H2O2 

which can be directly converted to water and O2 by the enzyme catalase (Das and 

Roychoudhury, 2014). Noctor (2002) estimated that photorespiration is the source of over 

70% of the H2O2 generated in plants under drought. 

As previously mentioned, drought, like other abiotic stresses, induces ROS accumulation by 

altering the balance between ROS production and the cellular scavenging capacity with a 

resulting state of “oxidative stress” that, in turn, can lead to “oxidative damage” (Halliwell, 

2006). When ROS accumulation is particularly severe, and reaches phytotoxic levels, the 

resulting oxidative damage to proteins, lipids and DNA can lead to cell death (Van Breusegem 

and Dat, 2006). Polyunsaturated fatty acids (PUFAs) and, particularly, linoleic (18:2) and 

linolenic (18:3) acids, are the major fatty acids in the membranes of thylakoids and other cell 

membranes. These two fatty acids are the favourite targets of ROS-mediated peroxidation 

which generates lipid hydroperoxides that, in turn, can oxidize other neighbouring PUFAs. The 

establishment of this reaction chain results in decreased membrane fluidity, increased 

leakiness and causes secondary damage to membrane proteins (Møller et al., 2007). In 

addition to this highly deleterious effect, aldehydic products of PUFA peroxidation can 

generate secondary damage to other molecules. This is the case for malondialdehyde, a 

product of the peroxidation of linolenic acid, that can form a conjugate with guanine and 

indirectly modify DNA (Møller et al., 2007). Cell death is the extreme consequence of ROS-

mediated oxidative stress generated by the metabolic imbalance due to stressful conditions. 

Indeed, the enhanced production of ROS in plant organelles and the consequent generation 

of many oxidized metabolites and carbonylated and/or dithiol-disulfide exchanged proteins 

can trigger signalling pathways (retrograde signalling to the nucleus) aimed to activate 

regulatory responsive genes. These genes are then able to buffer ROS accumulation by 
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increasing the above-mentioned ROS-scavenging enzymes and antioxidant molecules to 

acclimate plant tissues to the stressful conditions (Gill and Tuteja, 2010; Suzuki et al., 2012).  

 

Breeding for drought tolerance by selecting biochemical and physiological traits 

Direct selection for high grain yield under drought is difficult because the trait is defined by 

low heritability, complex polygenic control and strong genotype-by-environment interactions 

(Cattivelli et al., 2008). For these reasons, targeting biochemical and physiological traits that 

underlie the complex yield trait, represents an alternative breeding strategy for increasing 

yield under drought (Hu and Xiong, 2014; Pandey and Shukla, 2015; Reynolds and Langridge, 

2016). In previous paragraphs, I discussed several of these traits and, among them, mentioned 

the stress-induced production of compatible solutes and antioxidants that can stabilize 

proteins, maintain cell turgor and remove the excess levels of ROS (Krasensky and Jonak, 

2012). All these metabolites/antioxidants could be directly targeted by breeding programs, as 

biomarkers, once their positive association with yield performance under drought has been 

demonstrated (Fernandez et al., 2016). Additionally, considering that these 

metabolite/antioxidant traits are characterized by less complex genetic control than yield 

(Reynolds and Langridge, 2016), they might be converted into genetic markers, more suitable 

for breeding purposes. Confirming this possibility, many metabolic and enzymatic quantitative 

trait loci (QTLs) were identified in experiments involving large-scale metabolite and enzyme 

profiling of bi-parental and mapping populations of different plant species (Keurentjes et al., 

2008; Zhang et al., 2010; Carreno-Quintero et al., 2013; Luo, 2015; Fernie and Tohge, 2017), 

including rice (Gong et al., 2013; Chen et al., 2014; Dong et al., 2015; Matsuda et al., 2015). 

However, all these genomic regions were identified under non-stress conditions and, 

therefore, there is a need for new studies to search for stress-induced metabolic and 

enzymatic QTLs associated with grain yield stability under favorable and drought stress 

conditions. A similar approach as for biochemical markers, could be adopted for the selection 

of physiological traits important for drought tolerance, such as regulation of photosynthesis, 

total transpiration, stomatal conductance, water use efficiency (WUE) and late senescence 

(Pandey and Shukla, 2015). Despite the fact that these physiological traits are characterized 

by higher genetic complexity than metabolites and enzymes,  they are considered important 

phenotypes in breeding for drought tolerance (Reynolds and Langridge, 2016), and their 

translation into genetic markers is of great interest. Interestingly, QTLs associated with 
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differences in canopy temperature, a good proxy for stomatal conductance (Leinonen et al., 

2006; Munns et al., 2010), have been detected in wheat and linked to drought and heat stress 

tolerance (Rebetzke et al., 2012; Rutkoski et al., 2016). Considering that genotypic variation in 

stomatal conductance has been described in rice (Ohsumi et al., 2006; Ouyang et al., 2017), 

the identification of the genetic control of this variation offers a potential target for improving 

drought tolerance in this important crop species.  

 

Thesis outline 

The aim of my thesis research is to investigate how drought-induced changes in rice 

physiology, central metabolism, and oxidative stress status impact crop growth and yield. My 

work should result in the identification of physiological traits and metabolic- and oxidative 

stress-related biomarkers that can potentially be used in breeding programs to stabilize rice 

grain yield under drought stress. I also used the genetic diversity of a rice genome wide 

association mapping panel, consisting of almost 300 indica rice accessions, to map genes and 

genomic regions associated with quantitative variation for these traits and biomarkers in an 

effort to identify useful genetic markers and to unravel underlying mechanisms. 

This dissertation consists of six chapters including the present one that serves as a General 

introduction on the research topic (Chapter 1).  

In Chapter 2, I describe the physiological and leaf biochemical responses of three indica rice 

varieties selected for their contrasting responses to increasing drought severity and recovery 

following re-watering at the vegetative stage in a controlled environment and at the 

reproductive stage in the field. The results of these experiments provided the basis for a 

comparison of the response of these three rice varieties at two different developmental stages 

and in two different environments. 

In Chapter 3, I analyse the stress-induced changes in flag leaf central metabolism and oxidative 

stress status in ~300 indica rice accessions exposed to drought in the field at the reproductive 

stage. The levels of metabolites and oxidative stress markers/enzymes are then used to 

generate a multivariate model for the prediction of grain yield loss across the accessions of 

the panel and to identify robust biomarkers for response to drought. 
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In Chapter 4, I describe canopy temperature differences in ~300 indica rice accessions 

detected under well-watered and reproductive stage drought stress conditions in the field, 

and correlate canopy temperature with a set of agronomic traits, including grain yield. Canopy 

temperature variation is then used as a quantitative trait for association mapping to identify 

QTLs/genes controlling trait variation, and candidate genes for control of stomatal 

conductance are discussed. 

In Chapter 5, I use the multivariate modeling approach of Chapter 3 to compare the predictive 

power of the metabolic/oxidative stress dataset and of genetic markers for the prediction of 

grain yield under well-watered and drought-stress conditions and for grain yield-loss. The best 

metabolic/oxidative stress predictors from these models are used for association mapping to 

identify QTLs/genes controlling these predictors, and candidate genes are discussed. 

Finally, in Chapter 6 I discuss the main highlights of this thesis and connect the results of the 

different experimental chapters. I describe the prospects for using the main outcomes of my 

work in agriculture and breeding, and discuss further research that is needed to fully exploit 

my findings. 
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ABSTRACT 

A clear understanding of physiological and biochemical adaptations to drought can help to 

identify the mechanisms underlying tolerance to this stress. In this study, three rice (Oryza 

sativa) varieties, characterized by contrasting levels of drought tolerance, were exposed to 

drought stress at the vegetative and reproductive stage. Under controlled conditions, changes 

in biomass, leaf metabolites, oxidative stress markers and enzyme activities were analysed in 

each genotype under increasing drought stress and after re-watering during vegetative 

development. The two drought tolerant genotypes, Apo and UPL Ri-7, displayed a conservative 

water use in contrast to the susceptible genotype IR64 that displayed high water consumption 

and consequent leaf dehydration. A sugar-mediated osmotic acclimation in UPL Ri-7 (upland 

rice) and a strong antioxidative response in Apo (aerobic rice) limited the drought-induced 

biomass loss in these two genotypes, while biomass loss was high in IR64 (lowland rice), also 

after recovery. In the reproductive stage in the field, sugar export from the flag leaves to the 

developing panicles excluded osmotic adjustment as a mechanism to withstand drought 

conferring a competitive advantage to Apo, which, also in this stage, showed the highest 

antioxidant power and was able to maintain a stable grain yield under stress. 

 

KEY WORDS: Oryza sativa, drought, leaf primary metabolism, leaf oxidative stress status, 

vegetative stage, reproductive stage. 
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INTRODUCTION 

Drought impacts on the morphology and physiology of plants and induces metabolic 

reprogramming to adapt to the stress. The extent of this reprogramming is key in the trade-

off between growth and survival. Essential metabolism under stressful conditions needs to be 

maintained, while anti-stress agents such as compatible solutes, antioxidants, stress-

responsive proteins and enzymes need to be produced (Obata and Fernie, 2012; Claeys and 

Inze, 2013). Growth reduction is an early response to water limitation and frequently occurs 

without any alteration in photosynthetic rate (Skirycz and Inzé, 2010; Fàbregas and Fernie, 

2019). Prolonged drought induces stomatal closure to reduce water loss, but this also limits 

photosynthetic CO2 assimilation, resulting in metabolic alterations and constraints (Chaves et 

al., 2009; Pinheiro and Chaves, 2011). As a consequence, adjusting carbohydrate biosynthesis 

and translocation, for example for osmoregulation, plays a central role in the response to 

drought (Luquet et al., 2008; Hummel et al., 2010; Muller et al., 2011). Previous research on 

drought stress, has shown that accumulation of particular metabolites in leaves (e.g. raffinose, 

trehalose, proline, and glycine betaine) can have a protective function whereas the 

accumulation of other metabolites may simply be a consequence of drought stress (for 

example the increase of free amino acids from protein breakdown)  (Verslues and Juenger, 

2011; Obata and Fernie, 2012; Krasensky and Jonak, 2012; Fàbregas and Fernie, 2019). 

Another effect of drought-induced stomatal closure and lower carbon availability, is an 

enhanced generation of reactive oxygen species (ROS) (Suzuki et al., 2012; Noctor et al., 2014) 

responsible for oxidative damage that drives the cell into senescence (Halliwell, 2006) and, in 

extreme cases, to death (Van Breusegem and Dat 2006). A complex enzymatic and non-

enzymatic antioxidative system protects plants against this oxidative damage, and is essential 

for conferring drought tolerance (Mittler et al., 2011; Baxter et al., 2014; You and Chan, 2015). 

An additional layer of complexity in plant stress responses to drought relates to the fact that 

the stress has a different impact on plant performance at different developmental stages. For 

this reason, the reproductive stage is often targeted in drought experiments involving cereals, 

as the occurrence of the stress at this stage results in the most severe grain yield reduction  

(Passioura, 2012; Biswal and Kohli, 2013; Reynolds et al., 2016). This is particularly true for 

rice, in which even moderate stress during flowering can result in a strongly reduced grain 

yield (Liu et al., 2006; Venuprasad et al., 2007; Sandhu et al., 2014). Nevertheless, in the 
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ABSTRACT 

A clear understanding of physiological and biochemical adaptations to drought can help to 

identify the mechanisms underlying tolerance to this stress. In this study, three rice (Oryza 

sativa) varieties, characterized by contrasting levels of drought tolerance, were exposed to 

drought stress at the vegetative and reproductive stage. Under controlled conditions, changes 

in biomass, leaf metabolites, oxidative stress markers and enzyme activities were analysed in 

each genotype under increasing drought stress and after re-watering during vegetative 

development. The two drought tolerant genotypes, Apo and UPL Ri-7, displayed a conservative 

water use in contrast to the susceptible genotype IR64 that displayed high water consumption 

and consequent leaf dehydration. A sugar-mediated osmotic acclimation in UPL Ri-7 (upland 

rice) and a strong antioxidative response in Apo (aerobic rice) limited the drought-induced 

biomass loss in these two genotypes, while biomass loss was high in IR64 (lowland rice), also 

after recovery. In the reproductive stage in the field, sugar export from the flag leaves to the 

developing panicles excluded osmotic adjustment as a mechanism to withstand drought 

conferring a competitive advantage to Apo, which, also in this stage, showed the highest 

antioxidant power and was able to maintain a stable grain yield under stress. 

 

KEY WORDS: Oryza sativa, drought, leaf primary metabolism, leaf oxidative stress status, 

vegetative stage, reproductive stage. 
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INTRODUCTION 

Drought impacts on the morphology and physiology of plants and induces metabolic 
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the stress has a different impact on plant performance at different developmental stages. For 

this reason, the reproductive stage is often targeted in drought experiments involving cereals, 

as the occurrence of the stress at this stage results in the most severe grain yield reduction  

(Passioura, 2012; Biswal and Kohli, 2013; Reynolds et al., 2016). This is particularly true for 

rice, in which even moderate stress during flowering can result in a strongly reduced grain 

yield (Liu et al., 2006; Venuprasad et al., 2007; Sandhu et al., 2014). Nevertheless, in the 
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coming years, cultivation of rice under non-flooded conditions, in non-puddled and non-

water-saturated soil (‘aerobic rice’) during the entire crop cycle is expected to expand 

(Venuprasad et al., 2012). Such rice cultivation is particularly important, considering the 

expected water limitations resulting from an increased variability and unpredictability of 

precipitation due to global warming (Ray et al., 2015). A better understanding of drought 

tolerance mechanisms in rice at the vegetative and reproductive stage will contribute to the 

selection of genotypes with better adaptation to water-limited production systems and can 

help to achieve a better use of water resources. 

In this study, we investigated, under controlled conditions, how changes in leaf metabolism 

and oxidative stress status during vegetative development are associated with morphological 

and physiological changes (water consumption over time, biomass accumulation and leaf 

water status) during progressive drought and after re-watering. The study was done with three 

rice varieties with contrasting levels of drought tolerance, 1) IR64, a high-yielding genotype 

that is commonly grown under flooded conditions and is highly susceptible to drought as 

indicated by its considerable reduction of grain yield when grown under aerobic conditions 

(Mackill and Khush, 2018); 2) Apo, a drought tolerant aerobic-adapted variety with good yield 

potential (Venuprasad et al., 2012); and 3) UPL Ri-7, an upland-adapted variety with improved 

yield potential (Atlin et al., 2006). We compared the leaf metabolic and oxidative stress 

profiles during vegetative development with the profiles of the same varieties when exposed 

to drought in the reproductive stage, under field conditions, to get insight into the similarity 

of the drought stress coping strategies in the two different phenological stages and under 

controlled and field conditions.  

 

MATERIALS AND METHODS 

Pant material, stress treatment and sampling 

Seeds of the three indica rice (O. sativa) genotypes were obtained from the International Rice 

Research Institute (IRRI) gene bank: (1) IR64 (IRGC 117268); (2) Apo (IRGC 115128); (3) UPL Ri-

7 (IRTP 9897) (hereafter called Ri-7). Seeds were directly sown into 1.75 litre pots (14 cm ø, 18 

cm height) filled with the same amount of dry field soil. Plants (one per pot) were grown in a 

controlled climate chamber (12h photoperiod, 28/23°C (d/n); 75/70% relative humidity (d/n); 

600 µmol m-2 s-1 PAR) and watered every second day with ½ strength Hoagland’s solution until 

25 
 

day 24 after sowing. On day 25 after sowing, all pots were watered to 140% field capacity 

(flooded). Stressed plants were not watered for 10 consecutive days before being re-watered 

to flooded conditions. Pots of stressed plants were covered with a reflecting disc to reduce 

water evaporation from the soil (Supplementary Fig. S1). Control plants were kept flooded 

during the entire experiment duration. The experimental design was a completely randomized 

single-block (trolleys) design, each comprising 24 pots with plants of the same genotype and 

the same treatment. The position of each trolley was rotated daily. Trolleys’ height was 

adjusted to expose all plants to the same light intensity. Every day, twelve stressed plants per 

genotype were weighed (middle of the day, 6 hours of light) to determine water loss from the 

pots. Based on the progression of the drought treatment, four time points were selected for 

biomass measurements and leaf sampling: TP1, 4 days of stress; TP2, at around 40% field 

capacity; TP3, 10 days of stress; TP4, 2 days after re-watering (recovery). At each time point, 

for every genotype, 3 control and 3 stressed plants were randomly selected to determine the 

dry weight of leaves, tillers and roots, the number of tillers and the RWC of the last fully 

developed leaf of the main tiller. RWC was expressed as (Fresh-Dry weight)/(Saturated-Dry 

weight)*100%.Towards the end of the day (10 hours of light) of each time point, 12 plants of 

the same genotype and treatment were sampled for metabolite analyses. From 3 different 

plants, 2 fully developed leaves on the primary tiller were collected, pooled and immediately 

frozen in liquid nitrogen to generate a biological replicate. At TP4, necrotic leaf parts of 

drought-stressed plants were not considered for metabolite and redox state analysis nor for 

biomass determination. In total at each time point, 4 biological replicates were collected per 

genotype and per treatment. 

The same three rice genotypes were grown in a large field trial (~300 accessions) conducted 

at the International Rice Research Institute (IRRI), Philippines, during the 2013 dry season 

(Kadam et al., 2018), under control and drought stress (2 weeks of water withholding at the 

reproductive stage). 

 

Analysis of primary metabolites  

Sugars (sucrose, fructose, glucose, trehalose and xylose) levels were measured using a Dionex 

HPLC system according to Bentsink et al. (2000), with minor modifications. The levels of 

nutrient anions (phosphate, nitrate and sulfate) and organic acids (citrate, isocitrate and α-
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ketoglutarate) were determined by a Dionex HPLC system as described by He et al. (2014), 

with minor modifications. Sugars, nutrient anions and organic acids were expressed in mg·L-

1·g-1 of dry weight (DW). Amino acid (Ala, Ser, Pro, Val, Thr, Ile, Leu, Asp, Glu, Met, His, Phe, 

Arg, Tyr, Lys, Gly, GABA, Asn, Gln, Trp and Orn) detection and quantification using UPLC-

MS/MS was performed according to Carreno-Quintero et al. (2014) with modifications. Amino 

acids were expressed in pmol·µL-1·g-1 of DW. Detailed protocols can be found in the 

Supplementary Methods. 

Flag leaf samples of the three genotypes were collected in the field trial during the last day of 

stress and metabolites were quantified by GC-MS and main sugars by a colorimetric assay as 

described in Melandri et al. (2019). 

 

Quantification of oxidative stress markers and antioxidant enzyme activities 

The lipid peroxidation product malondialdehyde (MDA) was assayed according to Hodges et 

al. (1999) and expressed in nmol(MDA)·g-1 of DW. Total antioxidant capacity (TAC) was assayed 

by FRAP reagent (Benzie and Strain, 1999) and expressed in µmol(trolox)·g-1 of DW. The 

amount of soluble protein in each sample was quantified by the Lowry method (Lowry et al., 

1951). Protein carbonylation (ProtOx) was assayed according to Levine et al. (1994) and 

expressed as mg(carbonyl)· mg-1 of protein. Ascorbate peroxidase (APX), dehydroascorbate 

reductase (DHAR), superoxide dismutase (SOD), Catalase (CAT) activities were measured using 

a micro-plate reader (Dhindsa et al., 1982; Aebi, 1984; Murshed et al., 2008). Activities were 

expressed as µmol(AsA)·mg(protein)-1·min-1 for APX and DHAR, µmol(H2O2)·mg(protein)-1·min-

1 for CAT and µmol(SOD)·mg(protein)-1·min-1 for SOD. The described procedures were applied 

to both the samples from the controlled experiment and for the field trial. Detailed protocols 

can be found in the Supplementary Methods. 

 

Statistical analysis 

Statistical analyses were performed using R statistical software (version 3.1.2; The R 

Foundation for Statistical Computing). Analysis of variance (One-way ANOVA) and Tukey 

Honest Significant Differences (TukeyHSD) test were used to compare soil moisture content of 

each genotype at each time point, setting the threshold for statistical significance at P < 0.05. 

Imputation of missing metabolic and oxidative stress values, prior to any other statistical test, 
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was performed by the knnImputation function in the DMwR package. Student’s t-test was 

performed to evaluate the significant differences between metabolites, oxidative stress 

markers and enzyme activities, and growth-related traits under the two different treatments 

for each genotype at each time point. Fold-change analysis, prior to PCA, was performed by 

dividing each individual metabolic and oxidative stress marker/enzyme value under drought 

by the mean value of the same metabolite and redox state marker/enzyme under control 

conditions for each genotype at each time point. PCA was performed using the prcomp 

function in the stats package. Each metabolite value was log10 transformed to improve 

normality, centered (mean subtraction) and scaled (standard deviation division) before PCA. 

 

RESULTS 

Plant transpiration and leaf water status 

During the experiment under controlled conditions, the daily variation in pot water content - 

expressed as percentage of Field Capacity (FC) - was used as proxy for plant transpiration. At 

time point (TP) 1 (4 days after water withholding), pot water content was significantly different 

(P < 0.001) between the genotypes, with IR64 showing the highest water consumption, 

followed by Ri-7 and Apo (Fig. 1 and Supplementary Fig. S2). TP2 was selected at a specific soil 

moisture content (~40% FC) between the genotypes to compare their physiological and 

biochemical responses at similar drought intensity (Supplementary Fig. S2). For IR64, 40% FC 

was reached one day earlier (6 days after water withholding) than for Apo and Ri-7 (7 days), 

suggesting a higher water consumption under drought for the first genotype (Fig. 1). At TP3 

(10 days after water withholding), pot water contents were extremely low (~20% FC) for all 

genotypes (Fig. 1) with, however, Apo displaying a significantly (P < 0.001) higher value than 

the other two genotypes (Supplementary Fig. S2). 

To get insight into the progression of plant dehydration, we determined the relative water 

content (RWC) of the youngest fully developed leaf on the primary tiller (Fig. 2A-C and 

Supplementary Table S1). Control plants of all genotypes displayed a stable leaf RWC, higher 

than 90%, during all four TPs. Drought stressed plants only showed a significant difference in 

RWC from their controls at the end of the stress (TP3), with IR64 displaying a much lower value 

(24%) than the other two (~70%). 
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Collectively, these results suggest that drought sensitivity of IR64 is associated with high water 

consumption that resulted in strong leaf dehydration at the end of the stress period. In 

contrast, the drought tolerant genotypes Apo and Ri-7 had a more conservative water 

consumption (particularly Apo) and suffered less dehydration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 1. Evolution of the soil water content in the drought treatment for three rice genotypes. 
Each data point represents the mean field capacity value (%) of 12 different plants (±SE) per genotype. 
The first time point (TP1) for sampling was selected 4 days after water withholding for all the 
genotypes. The second time point (TP2) for sampling was selected 6 days after water withholding for 
IR64 and 7 days for Apo and Ri-7. The third time point (TP3) for sampling was selected 10 days after 
water withholding for all the genotypes. 
 

Growth responses to increasing drought stress 

At the end of the stress, drought resulted in visible growth reduction in the stressed plants, 

with clear differences between the genotypes (Fig. 3). Overall, under control conditions, IR64 

accumulated a higher leaf biomass than the other two genotypes, at all TPs (Fig. 2D-F). Under 

drought stress, IR64 displayed a significant reduction in leaf biomass compared with the 

control, already at TP1 (Fig. 2G). This reduction remained significant and stable at TP2, and 

sharply increased at TP3 and TP4, when IR64 reached the largest reduction in leaf biomass (-
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77.6 %) among the three genotypes. Leaf biomass of Apo was significantly reduced from TP2 

onwards (Fig. 2E), and the difference with the control increased more gradually than in IR64 

at TP3 and TP4 (Fig. 2H). Ri-7 did not show a significant response of leaf biomass in the first 

two TPs with even an increase (not significant) displayed at TP1 under drought. In Ri-7, the 

decrease in leaf biomass started at TP3 (Fig. 2F) and this continued at TP4 (Fig. 2I). Under 

severe drought (TP3), strong leaf rolling was observed in all plants of all genotypes. Rolling 

fully recovered after re-watering (TP4), but with leaf tips showing necrotic areas (Fig. 3) that 

were discarded and not considered for leaf biomass determination at TP4. The lowest 

reduction in leaf biomass between TP3 and TP4 was displayed by Apo (-12.7 %), followed by 

Ri-7 (-23.9 %) and IR64 (-32.7 %). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Evolution of leaf water content and biomass in response to drought for three rice genotypes. 
Percentage of leaf relative water content (RWC) (A, B, C) of the top fully developed leaf in control and 
drought plants at each time point. Leaf biomass (dry weight) (D, E, F) at the four sampling time points 
(TP1, TP2, TP3, TP4). Leaf biomass difference (%) (G, H, I) between control and drought plants at each 
time point. Black and white columns represent the mean ± standard error (SE) of three biological 
replicates of control and drought stressed plants, respectively. Symbols represent the mean ± standard 
error (SE) of three biological replicates. ***, **, * represent t-test’s P-values of significance between 
control and drought replicates with P < 0.001, 0.001 < P < 0.01, 0.01 < P < 0.05, respectively. 
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time point. Black and white columns represent the mean ± standard error (SE) of three biological 
replicates of control and drought stressed plants, respectively. Symbols represent the mean ± standard 
error (SE) of three biological replicates. ***, **, * represent t-test’s P-values of significance between 
control and drought replicates with P < 0.001, 0.001 < P < 0.01, 0.01 < P < 0.05, respectively. 
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All genotypes showed a similar trend of biomass reduction for stem dry weight (DW), but with 

a delay of one time point and, in general, with less significant differences than for leaf weight 

(Supplementary Table S1). Stressed plants of all genotypes also had a significantly lower root 

DW compared with control plants, but only at TP4. Interestingly, in IR64 drought caused a 

significant reduction in tiller number under drought, between TP2 and TP4 (Supplementary 

Table S1). 

Taken together, these results highlight contrasting constitutive growth rates between the 

three genotypes under control conditions and different growth responses to increasing 

drought as well as upon recovery. 

 

 
Fig. 3. Effect of drought treatment on the shoot phenotype of three rice genotypes after re-watering. 
Pictures of IR64 (left), Apo (middle) and Ri-7 (right) at the recovery time point (TP4 - 2 days after re-
watering) of sampling. In each picture, the stressed plant is on the left with its respective control on 
the right. 
 

Overall effect of drought and re-watering on metabolism and oxidative stress status 

To get insight into the drought-induced changes in leaf metabolism and oxidative stress status, 

we analysed the levels of primary metabolites (29), nutrient anions (3) and oxidative stress 

markers/enzymes (7), at all time points. The levels (mean±st.dev) of the 39 variables under 

control and drought stress treatments are shown in Supplementary Table S2 and S3, 

respectively. First the effect of genotype and plant development on the metabolic, nutrient 

and oxidative stress variables under optimal conditions was analysed using principal 

component analysis (PCA) (Supplementary Fig. 3). The first two principal components (PCs) 

explained more than 50% of the total variation, but the samples are not clearly separated by 

developmental stage (TPs) and genotype (Supplementary Fig. S3A). Only TP1 and TP4 samples, 

with maximum plant age difference (8 days), separate along PC1. Nevertheless, the genotypes 

show a consistent ordering (Apo  IR64  Ri-7, from left to right) at each TP. The loading plot 
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of the first two PCs (Supplementary Fig. S3B) shows which variables discriminate younger (e.g. 

high values of Thr, Glu, Ser, Ala, Asn, Asp) and older plants (e.g. high values of phosphate, 

sulphate, Ile, Leu, sucrose, trehalose, glucose). To normalize the effect, although limited, of 

plant age and genotype on the variables’ levels of the samples and, therefore, truly assess 

drought-induced changes, we decided to use fold-change values (drought over control) of the 

variables in all further statistical analyses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Principle component analysis of the effect of transient drought on metabolites, nutrient ions 
and oxidative stress markers/enzymes of three rice genotypes. 
Principal component analysis score plot (A) based on the fold change values (drought over control) of 
metabolites, nutrients and oxidative stress markers/enzymes of the biological replicates of IR64 
(square), Apo (circle) and Ri-7 (triangle) at the four time points (TP1, TP2, TP3, TP4). Biological replicates 
are colored according to the time point of sampling (TP1: dark green; TP2: light green; TP3: yellow; TP4: 
light blue). Principal component 1 (PC1) explains 49.0% of the samples’ variance, while principal 
component 2 (PC2) explains 20.0% of the samples’ variance. Loading plot (B) of the 39 variables colored 
based on their class (amino acid: red; organic acid: light blue; sugar: green; nutrient ion: orange; 
oxidative stress marker/enzyme: black). 
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Fig. 4. Principle component analysis of the effect of transient drought on metabolites, nutrient ions 
and oxidative stress markers/enzymes of three rice genotypes. 
Principal component analysis score plot (A) based on the fold change values (drought over control) of 
metabolites, nutrients and oxidative stress markers/enzymes of the biological replicates of IR64 
(square), Apo (circle) and Ri-7 (triangle) at the four time points (TP1, TP2, TP3, TP4). Biological replicates 
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PCA based on these fold-change values showed that the first two PCs explained 69% of the 

total variation, with PC1 alone explaining 49% (Fig. 4A). Along PC1 the samples are distributed 

from left to right in accordance with the increasing severity of drought from TP1 to TP3. On 

this PC, TP1 (mild stress) samples of the three genotypes did not completely separate from 

the ones of TP2 (mild-severe stress). Samples of TP3 (severe stress) clearly separated from the 

others and displayed a wide distribution with Ri-7 replicates being closest to TP1 and TP2 

samples (suggesting they are least stressed), followed by Apo and IR64 replicates (most 

stressed), respectively. Samples of TP4 (stress recovery) are positioned in between TP2 and 

TP3 along PC1. All this suggest that PC1 represents the metabolic and oxidative stress 

signature of drought stress. 

Loadings of the variables on PC1 (Fig. 4B) showed that less severe drought stress (TP1 and TP2) 

is associated with elevated tricarboxylic acid (TCA) cycle intermediates (citrate, isocitrate and 

α-ketoglutarate) and sucrose. In contrast, severe drought stress (TP3) is associated with 

elevated levels of almost all amino acids (particularly Pro, Met, Lys, Trp, His, Tyr, Val, Asn, Thr 

and GABA) and oxidative stress markers/enzymes, as well as glucose, fructose and trehalose. 

Interestingly, along PC2 (Fig. 4A), explaining 20.0% of the total variation, there is a clear 

separation between drought stressed (TP1, TP2 and TP3) and re-watered samples (TP4), 

suggesting that PC2 represents metabolic and oxidative stress differences between drought 

stress and recovery. Loadings of the variables on PC2 (Fig. 4B) showed that increased levels of 

specific amino acids (mainly Orn, Asp, Gly and Ser), citrate, nitrate and phosphate are 

associated with stress recovery (TP4).  

 

Stress-induced genotypic responses in metabolites, nutrient ions and oxidative stress status 

To identify the drought-induced genotypic changes in primary metabolism and oxidative stress 

status during stress imposition and after re-watering, we analysed if the response to drought 

relative to the control was significant (P < 0.05) for every variable, genotype and TP (Table 1). 

Among the significant changes, we focused on the variables showing high deviations from 

control (fold-change decrease < 0.75 or increase > 1.5). Overall, the number of variables 

showing a significant deviation from control gradually increased between TP1 (18) and TP2 

(32) before dramatically increasing at TP3 (80) and decreasing (59) again after re-watering 

(TP4). 

33 
 

At mild (TP1) and mild-severe (TP2) stress intensities, just few amino acids showed a significant 

response to drought and almost only a decrease relative to the control. A marked decrease 

(~0.5-fold or lower) in amino acids associated with photorespiration (Gly and Ser) and nitrogen 

remobilisation (Gln and Asn) was observed at TP2, especially in Apo and, to a lesser extent, in 

Ri-7. Different from the two earlier TPs, almost all the amino acids strongly increased at severe 

drought (TP3) with the highest fold-change values detected in IR64, followed by Apo and Ri-7. 

In particular, the stress-responsive amino acid Pro increased massively (almost 100-fold) in 

IR64, but less in Apo (55-fold) and Ri-7 (15-fold). In IR64, GABA showed the highest increase 

among all metabolites (115-fold) whereas it increased 10-fold less in Apo and Ri-7. After re-

watering (TP4), the majority of the amino acids still showed increased values from control, but 

to a lower extent and with less distinct genotypic differences than at TP3. Nevertheless, it is 

interesting to note that, at TP4, the stress-responsive amino acid Pro was still significantly 

higher in the stressed IR64 plants, but not in the other two genotypes. Surprisingly, Orn, that 

did not change from control values under drought (TP1-TP3), markedly increased only after 

re-watering (TP4), showing the highest fold-change in Ri-7, followed by Apo and IR64. 

The drought response of the organic acids followed the opposite trend of the amino acids. 

Except for a moderate (~2- to ~3-fold) increase of α-ketoglutarate at TP1 (in Apo) and TP2 (in 

IR64), no significant changes in organic acids were observed until severe stress (TP3) when the 

levels of TCA cycle intermediates, citrate and isocitrate, strongly decreased (fold < 0.5) in all 

genotypes. A similar strong decrease for isocitrate was observed also after re-watering (TP4) 

in all three genotypes. 

Differently for the previous two classes of metabolites, sugars displayed a constant increase 

from mild (TP1) to severe (TP3) stress. At TP1, this increase was already quite marked (~4-fold) 

in Ri-7 for fructose and glucose with the latter showing an increase in IR64 too, albeit less 

strong (~2-fold). At TP2, the three genotypes displayed a high and quite similar increase in 

glucose (7- to 11-fold) and fructose (6- to 12-fold) compared with the control. These values 

increased even more at TP3 before decreasing after re-watering (TP4) when the two sugars 

still showed a higher value in the stressed (and re-watered) IR64 and Apo plants, but not in Ri-

7. Sucrose did not show any important change from control at the four TPs whereas the 

hemicellulose-derived sugar xylose displayed a similar increase (7- to 10-fold) as the other 

sugars in all genotypes at severe drought (TP3) which decreased again at TP4 (2- to 4-fold).
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(~0.5-fold or lower) in amino acids associated with photorespiration (Gly and Ser) and nitrogen 
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Among the nutrient ions, phosphate decreased almost equally in the three genotypes from 

TP1 to TP3 whereas, at TP4, it was no longer affected in the re-watered plants except for Ri-7. 

Only after re-watering, there was a change in nitrate, which was increased in stressed and re-

watered IR64 and Ri-7. 

Considering the oxidative stress markers and enzymes, few changes were observed in the first 

two TPs with a decrease of catalase (CAT) in IR64 at mild stress (TP1) and an increase in Ri-7 

at mild-severe stress (TP2). IR64 also showed an increase in malondialdehyde (MDA) at TP2. 

At severe drought (TP3), oxidative stress markers and enzymes showed the strongest 

upregulation by drought. Protein oxidation (ProtOx) increased in IR64 and total antioxidant 

capacity (TAC) increased in Apo. Among the antioxidant enzymes, dehydroascorbate 

reductase (DHAR) showed a higher activity in Apo and Ri-7 but not in IR64. Apo also displayed 

an increase in the activity of superoxide dismutase (SOD) while CAT activity increased in IR64. 

After re-watering (TP4), oxidative stress markers and enzymes were not different from the 

control, except for a slightly lower activity of DHAR in Ri-7. 

Overall, these results indicate that the different classes of primary metabolites (amino acids, 

sugars, organic acids) and the oxidative stress markers/enzymes showed a similar kind of 

response to increasing drought and re-watering in the three genotypes. However, the intensity 

of this response was different between the genotypes and, considering each TP separately, 

we identified genotype-specific responses of single metabolites and oxidative stress 

markers/enzymes. 

 

Metabolic signatures of leaf senescence 

Gln and Asn are two amino acids involved in nitrogen recycling and export from senescent 

leaves (Chrobok et al., 2016). To evaluate the level of leaf senescence among the genotypes, 

we calculated the ratio of glutamine to glutamate (Gln/Glu) and asparagine to aspartate 

(Asn/Asp) (Watanabe et al., 2013) for each genotype at the four TPs (Fig. 5). Under control 

conditions, the Gln/Glu and Asn/Asp ratios were consistently low (ratio < 0.3) for all genotypes 

at all TPs. Both ratios did not respond to the drought treatment at mild (TP1) and mild-severe 

(TP2) stress intensity. At severe stress (TP3), however, the Gln/Glu ratio strongly increased in 

IR64 and to a lesser extent in Apo and Ri-7 whereas the Asn/Asp ratio showed a similar marked 

increase in all genotypes. After re-watering (TP4), both ratios decreased again with stressed 
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Among the nutrient ions, phosphate decreased almost equally in the three genotypes from 

TP1 to TP3 whereas, at TP4, it was no longer affected in the re-watered plants except for Ri-7. 

Only after re-watering, there was a change in nitrate, which was increased in stressed and re-

watered IR64 and Ri-7. 

Considering the oxidative stress markers and enzymes, few changes were observed in the first 

two TPs with a decrease of catalase (CAT) in IR64 at mild stress (TP1) and an increase in Ri-7 

at mild-severe stress (TP2). IR64 also showed an increase in malondialdehyde (MDA) at TP2. 

At severe drought (TP3), oxidative stress markers and enzymes showed the strongest 

upregulation by drought. Protein oxidation (ProtOx) increased in IR64 and total antioxidant 

capacity (TAC) increased in Apo. Among the antioxidant enzymes, dehydroascorbate 

reductase (DHAR) showed a higher activity in Apo and Ri-7 but not in IR64. Apo also displayed 

an increase in the activity of superoxide dismutase (SOD) while CAT activity increased in IR64. 

After re-watering (TP4), oxidative stress markers and enzymes were not different from the 

control, except for a slightly lower activity of DHAR in Ri-7. 

Overall, these results indicate that the different classes of primary metabolites (amino acids, 

sugars, organic acids) and the oxidative stress markers/enzymes showed a similar kind of 

response to increasing drought and re-watering in the three genotypes. However, the intensity 

of this response was different between the genotypes and, considering each TP separately, 

we identified genotype-specific responses of single metabolites and oxidative stress 

markers/enzymes. 

 

Metabolic signatures of leaf senescence 

Gln and Asn are two amino acids involved in nitrogen recycling and export from senescent 

leaves (Chrobok et al., 2016). To evaluate the level of leaf senescence among the genotypes, 

we calculated the ratio of glutamine to glutamate (Gln/Glu) and asparagine to aspartate 

(Asn/Asp) (Watanabe et al., 2013) for each genotype at the four TPs (Fig. 5). Under control 

conditions, the Gln/Glu and Asn/Asp ratios were consistently low (ratio < 0.3) for all genotypes 

at all TPs. Both ratios did not respond to the drought treatment at mild (TP1) and mild-severe 

(TP2) stress intensity. At severe stress (TP3), however, the Gln/Glu ratio strongly increased in 

IR64 and to a lesser extent in Apo and Ri-7 whereas the Asn/Asp ratio showed a similar marked 

increase in all genotypes. After re-watering (TP4), both ratios decreased again with stressed 
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and re-watered Ri-7 showing the lowest values (almost the same as for control plants), 

followed by stressed and re-watered Apo and IR64 that still had a higher Asn/Asp ratio than 

the control plants. 

The Gln/Glu and Asn/Asp values suggest that premature drought-induced leaf senescence only 

occurred in all genotypes under severe drought stress and decreased again upon re-watering. 

The values of these ratios at TP3 and TP4 suggest a higher degree of leaf senescence in IR64, 

and much lower in Apo and Ri-7. 

 
Fig. 5. Drought-induced variation of the leaf senescence markers Gln/Glu and Asn/Asp ratios in three 
genotypes. 
Mean values of the glutamine to glutamate (Gln/Glu) and asparagine to aspartate (Asn/Asp) ratios at 
the four time points (TP1, TP2, TP3, TP4) under control (con) and drought (dro) conditions in IR64 (A, 
D), Apo (B, E) and Ri-7 (C, F). 

 

Comparison of the vegetative and reproductive stage 

The same three genotypes were also included in a large field trial conducted at the 

International Rice Research Institute (IRRI), Philippines, during the 2013 dry season (Kadam et 

al., 2018). In the trial, 300 indica rice genotypes were grown in two separate fields, one served 

as control (flooded) and in the other drought stress (14 days of water withholding) was applied 

at the reproductive stage (50% flowering) before re-watering all the accessions to let them 

reach maturity for harvest. Melandri et al. (2019) describe how the flag leaf metabolic and 
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oxidative stress profiles of the drought stressed accessions were used to efficiently predict 

grain yield loss – due to drought - at harvest. In the field trial, drought exposure in the 

reproductive stage induced a decrease in grain yield of -27.1% in IR64 and -20.3% in Ri-7 

whereas Apo did not show grain yield reduction but a slight increase of +5.8%. It is noteworthy 

that drought-induced grain yield loss in Ri-7 in the reproductive stage was similar to that of 

IR64, whereas the latter showed a more tolerant biomass response (more similar to Apo) 

when drought stress was imposed during vegetative development (Fig. 2G-I). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Principle component analysis of the effect of drought at the vegetative and reproductive stage 
on metabolites and oxidative stress markers/enzymes of three rice genotypes. 
Principal component analysis score plot (A) based on the fold change values (drought over control) of 
metabolites and oxidative stress markers/enzymes of the biological replicates of IR64 (square), Apo 
(circle) and Ri-7 (triangle). Samples at the vegetative stage were collected at the four time points (TP1, 
TP2, TP3, TP4) and samples at the reproductive stage in one time point (Field). Samples are colored as 
follows, TP1: dark green; TP2: light green; TP3: yellow; TP4: light blue; Field: orange. Principal 
component 1 (PC1) explains 47.8% of the samples’ variance, while principal component 2 (PC2) 
explains 19.0% of the samples’ variance. Loading plot (B) of the 36 variables colored based on their 
class (amino acid: red; organic acid: light blue; sugar: green; oxidative stress marker/enzyme: black). 
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and re-watered Ri-7 showing the lowest values (almost the same as for control plants), 

followed by stressed and re-watered Apo and IR64 that still had a higher Asn/Asp ratio than 

the control plants. 

The Gln/Glu and Asn/Asp values suggest that premature drought-induced leaf senescence only 

occurred in all genotypes under severe drought stress and decreased again upon re-watering. 

The values of these ratios at TP3 and TP4 suggest a higher degree of leaf senescence in IR64, 

and much lower in Apo and Ri-7. 

 
Fig. 5. Drought-induced variation of the leaf senescence markers Gln/Glu and Asn/Asp ratios in three 
genotypes. 
Mean values of the glutamine to glutamate (Gln/Glu) and asparagine to aspartate (Asn/Asp) ratios at 
the four time points (TP1, TP2, TP3, TP4) under control (con) and drought (dro) conditions in IR64 (A, 
D), Apo (B, E) and Ri-7 (C, F). 
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reach maturity for harvest. Melandri et al. (2019) describe how the flag leaf metabolic and 
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that drought-induced grain yield loss in Ri-7 in the reproductive stage was similar to that of 

IR64, whereas the latter showed a more tolerant biomass response (more similar to Apo) 

when drought stress was imposed during vegetative development (Fig. 2G-I). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Principle component analysis of the effect of drought at the vegetative and reproductive stage 
on metabolites and oxidative stress markers/enzymes of three rice genotypes. 
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Using PCA, we compared the drought-induced differences in leaf metabolic and oxidative 

stress profiles of the three genotypes in the field, during the reproductive stage, and in the 

climate room, during the vegetative stage. Since we only had average values for the field 

experiment (Melandri et al., 2019), in the PCA we used the mean fold-change values also for 

the data from the climate room. Similar as in Fig. 4, the first two PCs explained a high 

percentage of the total variation, with PC1 alone explaining 47.8% (Fig. 6A). The first two PCs 

determined a distribution of the vegetative stage samples almost identical to the one in Fig. 

4A, which was further supported by the very similar variables’ loadings (Fig. 4B and Fig. 6B). 

As discussed above for Fig. 4, also in Fig. 6 PC1 represents the metabolic and oxidative stress 

signature of drought stress (from left to right). The position of the field samples along PC1 is 

between the ones of TP2 and TP3, but closer to TP2, with Apo more on the left (lower stress) 

and, IR64 and Ri-7 more shifted to the right (more stress) (Fig. 6A). These results suggest that 

the drought stress intensity in the field in the reproductive stage was in between the mild-

severe (TP2) and severe (TP3) drought stress observed for the same genotypes at the 

vegetative stage under climate room conditions. Furthermore, our results agree with the 

observation that drought stress intensity in the field trial was moderately severe (-46 kPa, from 

tensiometers reads) (Kadam et al., 2018). 

Table 2 shows the drought-induced fold-changes of the 36 primary metabolites and oxidative 

stress markers/enzymes detected in the three genotypes at the reproductive stage. 

Confirming the PCA (Fig. 6A), the amino acids showed an overall increase stronger than at TP2 

during the vegetative development, but lower than at TP3 (Table 1 and 2). Interestingly, IR64 

and Ri-7 displayed a similar number of amino acids with an increased value (9 and 8, 

respectively) whereas in Apo only few amino acids increased (2). Considering the organic acids, 

in the reproductive stage the three genotypes showed a reduction similar but less intense than 

observed under severe drought (TP3) in the vegetative stage with the exception of Ri-7 that 

showed similar values. Surprisingly, sugars did not show any important deviation from control 

in the reproductive stage (Table 2). This is in contrast with what we observed in all genotypes 

at mild-severe (TP2) and severe (TP3) drought stress during vegetative development (Table 1). 

Interestingly, oxidative stress markers and enzymes (with the exception of TAC) showed an 

overall strong upregulation in all genotypes in the reproductive stage, even stronger than 

observed under severe drought (TP3) in the vegetative stage (Table 1 and 2). MDA increased 
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in IR64 and Ri-7, and ProtOx in Ri-7 and Apo. Apo displayed a very strong increase in all the 

antioxidant enzymes, and it was the only one showing an increase in DHAR and ascorbate 

peroxidase (APX). CAT and SOD increased strongly in all three genotypes with Apo displaying 

the highest values for the first enzyme and Ri-7 for the second. 

Table 2. The effect of drought on the levels of primary metabolites and oxidative stress 
markers/enzymes in the leaves of the three genotypes at the reproductive stage. 
Fold change (drought over control) of the mean values (Fold) of the 36 variables for the three 
genotypes. Fold changes are highlighted in different colors (see color scale in Table 1).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In conclusion, the metabolic and oxidative stress profiles of the genotypes in the reproductive 

stage showed a similar response to drought in amino acids (increase) and organic acids 

(decrease) as when exposed to mild-severe to severe drought stress during vegetative 

development, but a different response in the sugars (no change) and in the activity of 

antioxidant enzymes (strong increase). 

   FIELD – Flowering 

Metabolic or 
oxidative stress 
class 

 
IR64 Apo Ri-7 

Fold Fold Fold 

        BCAAs Leu 2.52 1.19 1.46 
  Ile 1.62 0.81 1.26 
  Val 0.94 0.72 0.97 
              AAAs Phe 2.69 1.30 1.55 
  Trp 2.53 1.02 1.16 
  Tyr 1.78 1.14 1.73 
              Stress responsive Orn 1.96 1.79 4.84 
AAs Pro 2.59 1.32 1.27 
              Photorespiratory Gly 0.97 1.49 1.95 
AAs Ser 0.89 1.20 1.18 
              N remobilisation Gln 1.23 1.20 2.30 
AAs Glu 1.21 1.09 0.97 
  Asn 0.97 0.93 0.83 
  Asp 1.40 1.04 1.02 
              Other AAs Ala 1.41 1.64 1.72 
  Thr 1.20 0.99 0.90 
  Met 1.46 0.78 1.64 
  Arg 0.55 1.12 1.52 
  Lys 1.61 0.80 0.90 
              Sugars Sucrose 0.92 1.40 0.80 
  Glucose 1.19 1.23 1.54 
  Fructose 1.12 1.29 1.27 
  Trehalose 1.53 1.03 0.98 
              Organic acids Citrate 1.25 0.79 0.48 
  Isocitrate 0.58 0.60 0.36 
  α-ketoglutarate 1.21 0.88 0.87 
              Oxidative stress  TAC 1.42 0.63 0.58 
marker ProtOx 1.42 2.29 1.65 
  MDA 2.29 0.93 2.33 
              Oxidative stress  DHAR 1.48 2.56 1.10 
enzyme APX 1.09 6.72 1.15 
  CAT 4.16 6.92 3.91 
  SOD 3.26 5.89 9.66 
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DISCUSSION 

Drought stress in the vegetative stage has a stronger impact on the ‘water-spender’ IR64 

than on the ‘water-savers’ Apo and Ri-7 

The transpiration differences between the three genotypes suggest that the high and 

sustained water consumption of IR64 under water-limiting conditions exposed the genotype 

to a more prolonged and severe drought stress than the other two genotypes, which displayed 

a more conservative water use (Fig. 1). These results are in agreement with a recent study by 

Ouyang et al. (2017) who showed that IR64 displays a higher stomatal conductance and a 

lower transpiration efficiency than Apo and Ri-7, both under well-watered and mild drought 

stress conditions. Our findings also point towards the constitutive higher leaf biomass in IR64 

than in Apo and Ri-7 under optimal growth conditions (Fig. 2D-F and Supplementary Table S1) 

as an additional cause for its higher water loss through transpiration, especially during the first 

days of water withholding (until TP1) (Fig. 1).  

The higher water consumption of IR64 compared to Apo and Ri-7, which is also maintained 

after the initiation of the water withholding, is therefore likely the cause of the extremely 

strong dehydration (to about 25% RWC) suffered by the lowland genotype after 10 days (TP3) 

of stress (Fig. 2A). Maintenance of a high cellular hydration under drought is crucial to maintain 

essential metabolic functions under stressful conditions (Obidiegwu, 2015). The lower RWC in 

IR64 than in Apo and Ri-7 (~70% RWC) at TP3 (Fig. 2B-C) might have increased the incidence 

of leaf cell death (leaf necrotic lesions were visible in all genotypes at this TP) more in the first 

genotype than in the other two. This hypothesis is supported by the stronger leaf biomass loss 

observed in IR64 than in Apo and Ri-7 after re-watering (TP4) (Fig. 2D-I and Fig. 3). Our leaf 

biomass reduction results indirectly confirm the different levels of drought tolerance (lower 

for lowland and higher for aerobic and upland rice) reported in the literature for these three 

genotypes (Atlin et al., 2006; Venuprasad et al., 2012; Mackill and Khush, 2018). 

 

Relationships between growth dynamics, primary metabolism and oxidative stress status  

Leaf growth reduction in response to drought is one of the mechanisms used by plants to limit 

the expansion of their evaporation surface and it generally occurs before reduction of 

photosynthesis (Hummel et al., 2010; Claeys and Inze, 2013). Different rates of leaf expansion 

under drought were observed before in rice genotypes with contrasting drought tolerance 
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(Cabuslay et al., 2002; Parent et al., 2010) and confirmed by our leaf growth results (Fig. 2G-

I). In our study, the absence of increased values for photorespiratory amino acids (Gly and Ser) 

and oxidative stress markers/enzymes in all genotypes at both TP1 and TP2 (Table 1) support 

the presence of an active photosynthetic metabolism until severe stress (TP3). Indeed, a 

drought-induced reduction of photosynthesis should have increased the activity of the 

photorespiratory pathway, resulting in higher production of Gly and Ser (Maurino and 

Peterhansel, 2010; Bauwe et al., 2010; Hodges et al., 2016), and/or should have enhanced ROS 

generation and oxidative stress in leaf cells (Suzuki et al., 2012; Noctor et al., 2014). The 

consequence of maintaining photosynthetic active metabolism coupled with reduced growth 

often results in an increase in the concentration of carbohydrates in the leaves (Muller et al., 

2011; Blum, 2017). At mild (TP1) and mild-severe (TP2) drought stress, the analysis of sugars 

and leaf growth dynamics in the context of an active photosynthetic metabolism revealed a 

different response to drought between the three genotypes. 

Reduced leaf growth occurred in IR64 at the earliest stage of stress (TP1) and only at more 

severe drought intensities in Apo and Ri-7 (Fig. 2G-I). Surprisingly, the early reduction of leaf 

biomass in IR64 was not associated with an increase in the concentration of the main sugars 

(Table 1). A possible explanation for this might be that, at early-mild drought (TP1), the 

sampled mature leaves of IR64 were still exporting carbon to the growing sink organs. 

Similarly, Apo did not display any increase in sugars at early-mild drought (Table 1), but this 

might simply be determined by the low level of stress experienced by this water saving 

genotype (Fig. 1). Indeed, at TP1 Apo displayed no leaf biomass reduction (Fig. 2E and 2H). 

Similar to Apo, Ri-7 did not show a reduction in leaf biomass at early-mild drought (Fig. 2F and 

2I) but its fructose and glucose levels markedly increased (Table1). Sugar-mediated osmotic 

adjustment in response to drought helps to sustain cell turgor, stomatal opening and 

photosynthesis, but at the expense of growth (Blum, 2017). In Ri-7, the increased 

accumulation of fructose and glucose at early-mild drought (TP1) might represent a strategy 

of acclimation to drought that does not affect growth and is possibly responsible for the 

tolerance of this genotype. 

Progression of drought severity from mild (TP1) to mild-severe (TP2) resulted in a sudden and 

strong increase of fructose and glucose (~10-fold) in Apo and IR64 and less marked (~6-fold) 

in Ri-7 (Table 1). Despite the similar strong increase of sugars among the genotypes, they 
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displayed a very different leaf growth response to drought at TP2. Fructose and glucose 

accumulation in Apo was associated with its first marked reduction in leaf growth (Fig. 2H) 

and, therefore, it might represent an osmotic adjustment originated from the carbon surplus 

deriving from the maintained activity of photosynthesis (Muller et al., 2011; Blum, 2017). 

Surprisingly, at TP2 IR64 did not display a further increase of leaf biomass loss from TP1 (Fig. 

2G), even though the higher severity of the stress induced a strong accumulation of 

carbohydrates in this genotype (Table1). A possible explanation for this may reside in the 

reduction of stem weight that started at TP2 in IR64 only, and at later stages of stress in Apo 

and Ri-7 (at TP3 and TP4, respectively) (Supplementary Table S1).  In rice, the excess of photo-

assimilates produced in leaves is stored in the stem as carbohydrate reserves that can be used 

to buffer leaf performance under stress at the reproductive stage (Yang et al., 2001; Morita 

and Nakano, 2011; Wang et al., 2017). Our results suggest that, in IR64, non-structural 

carbohydrates stored in the stems were remobilised (starting from TP2) to stabilise leaf 

growth and provide osmotic protection under drought already at the vegetative stage. 

Nevertheless, the earlier use of these stem reserves, compared with the other two genotypes, 

might have undermined stem vigour of IR64 and contributed to the early reduction in tiller 

number, observed only in this genotype (Supplementary Table S1). Different from IR64 and 

Apo, the increase of fructose and glucose in Ri-7 at TP2 was not coupled with any reduction in 

the biomass of leaves, stems or roots (Fig. 2I and Supplementary Table S1). In Ri-7, the absence 

of leaf growth reduction and the simultaneous presence of active carbon assimilation at this 

TP further supports the hypothesis of a sugar-mediated osmotic adjustment to drought as the 

origin for the high levels of the two sugars (already observed at TP1) in the leaves of this 

genotype. 

Prolonged and severe drought (10 days, TP3) caused a marked reduction in growth in all 

genotypes (Fig. 2G-I). This reduction was reflected in a state of strong metabolic alteration and 

associated with reduced photosynthesis, as displayed by the increased levels of Ser, Gly and 

oxidative stress markers/enzymes (Table 1). At this TP, the extremely high levels of almost all 

amino acids displayed by the three genotypes have been described before to occur in leaves 

of many crop species exposed to drought (Obata and Fernie, 2012; Krasensky and Jonak, 2012; 

Fàbregas and Fernie, 2019). This strong amino acid increase is associated with protein 

catabolism occurring during premature stress-induced leaf senescence (Araújo et al., 2011; 
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Watanabe et al., 2013; Hildebrandt et al., 2015). The hypothesis of a strong catabolic activity 

at severe drought (TP3) is supported by the increased asparagine to aspartate (Asn/Asp) and 

glutamine to glutamate (Gln/Glu) ratios observed in the three genotypes at this sampling point 

(Fig. 5). In senescent leaves, protein degradation-derived aspartate and glutamate are 

converted to asparagine and glutamine to act as transport molecules for long-distance 

nitrogen remobilisation through the phloem (Watanabe et al., 2013; Avila-Ospina et al., 2014). 

A further confirmation of a high catabolic activity at severe drought (TP3) in the three 

genotypes is represented by the shared decrease in the level of two TCA cycle intermediates, 

isocitric and citric acid (Table 1). These two organic acids are involved in mitochondrial 

respiration (Shi et al., 2016). Under severe drought, the decrease in leaf growth might have 

caused a reduction in mitochondrial respiration, resulting in lower production of isocitric and 

citric acid, because of an overall reduced energy availability for biosynthesis (Atkin and 

Macherel, 2008). Similar to TP2, under severe drought (TP3), the three genotypes displayed a 

comparable and very high accumulation of fructose and glucose (Table 1), but, differently from 

the previous TP, this sugar increase is likely the result of the initiation of starch degradation 

induced by reduced photosynthetic carbon assimilation (Wingler et al., 2006; Pinheiro and 

Chaves, 2011; Stitt and Zeeman, 2012). Despite the similar and shared state of metabolic 

alteration observed among the three genotypes at TP3, the extent of this alteration was more 

severe in IR64, followed by Apo and Ri-7 as overall indicated by PCA (samples of TP3 in Fig. 4A) 

and, more specifically, by the marker of leaf senescence Gln/Glu (TP3 in Fig. 5A-C). In addition, 

the different levels of certain metabolites between the genotypes under severe drought (TP3) 

are indicative of their stress status. Among these metabolites, the highest increase of Pro was 

in the leaves of IR64 (~100-fold), and less in Apo (~55-fold) and even less in Ri-7 (~15-fold) 

(Table 1). Accumulation of Pro under drought stress has often been reported in the literature 

(Fàbregas and Fernie, 2019) and also in rice (Todaka et al., 2017). Pro is thought to play a role 

in counteracting the enhanced generation of ROS to protect cellular functions against the 

damage caused by dehydration (Verslues and Juenger, 2011; Krasensky and Jonak, 2012; 

Nakabayashi and Saito, 2015). A similar, even more marked trend was displayed by GABA, an 

amino acid that strongly accumulates, like Pro, during many abiotic stresses (Obata and Fernie, 

2012; Fàbregas and Fernie, 2019). Even if its role under stress remains unclear, this amino acid 

has been proposed as a regulator of osmolarity and coordinator of the carbon-nitrogen 
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displayed a very different leaf growth response to drought at TP2. Fructose and glucose 
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in counteracting the enhanced generation of ROS to protect cellular functions against the 

damage caused by dehydration (Verslues and Juenger, 2011; Krasensky and Jonak, 2012; 

Nakabayashi and Saito, 2015). A similar, even more marked trend was displayed by GABA, an 
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balance under carbon limitation (Michaeli and Fromm, 2015; Hildebrandt et al., 2015; 

Fàbregas and Fernie, 2019). 

A different level of oxidation and antioxidant activity was specifically observed between the 

three genotypes only under severe drought (Table 1). It has been shown that under persistent 

water-limitation, drought-induced stomatal closure increases ROS production as a result of 

excess of light and reduced CO2 assimilation (Asada, 2006; Miller et al., 2010). Among the three 

genotypes, Apo displayed simultaneously high levels of DHAR, SOD and TAC suggesting a 

stronger antioxidant capacity under drought than in the other two genotypes that showed 

only a higher activity of DHAR (Ri-7) and CAT (IR64). DHAR regenerates oxidized ascorbate with 

reduced glutathione as electron donor (Das and Roychoudhury, 2014) through the ascorbate-

glutathione pathway (Foyer and Noctor, 2011). Increased activity of DHAR and SOD under 

drought stress was described before in rice seedlings of different cultivars (Selote and Khanna-

Chopra, 2004; Sharma and Dubey, 2005). In plants, SOD converts highly oxidative superoxide 

(O2-) to less harmful H2O2 (Halliwell, 2006). Increased activity of SOD, present only in Apo, 

could represent a safeguarding mechanism to generate H2O2 that, in turn, triggers more 

effective antioxidant defences. This would explain the finding of increased TAC levels, once 

more, only in Apo. TAC represents a proxy for non-enzymatic metabolites of the antioxidant 

defence system, like ascorbate, glutathione, carotenoids, flavonoids and tocopherols (Sharma 

et al., 2012). 

After re-watering, the differences in the leaf metabolic and oxidative stress profiles of re-

watered plants are more similar to the control than under severe drought (TP3) and with less 

marked differences between the genotypes (Fig. 4A; Table 1). This shows that a similar 

recovery from stress occurred in all genotypes and suggests that their leaf biomass reduction 

(-77.6% in IR64, -58.4% in Ri-7 and -50.2% in Apo) after re-watering is entirely due to the 

differences in the metabolic and antioxidative responses during drought. 

 

Different drought-induced metabolic and antioxidative responses between vegetative and 

reproductive stage in the three genotypes 

Comparative analysis of metabolic and oxidative stress profiles of the genotypes in the two 

different phenological stages (PCA in Fig. 6) revealed that samples of the field trial 

(reproductive stage) experienced a stress intensity higher than mild-severe (TP2) stress at the 
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vegetative stage but lower than severe (TP3). The flag leaf metabolic profiles of the three 

genotypes in the reproductive stage (Table 2) had a similar signature of drought-induced leaf 

senescence (increased amino acids, but less than at TP3) and of lower biosynthetic activity 

(decreased organic acids like at TP2) as during the vegetative stage. This signature was 

particularly marked in IR64 and Ri-7 but much less extreme in Apo. Different from TP2 and TP3 

in the vegetative stage, the levels of sugars did not increase compared with the control in the 

reproductive stage (Table 1 and 2). These finding highlight the importance, for these three 

yield improved genotypes, of maintaining a stable sugar export under drought in the 

reproductive stage when the flag leaf is the most important source of assimilates for the 

developing panicles and thus for yield stability (Yoshida, 1972; Biswal and Kohli, 2013). 

Therefore, by behaving as a carbon exporter in a context of drought-induced stomatal closure 

and lower carbon availability, the flag leaves of the three genotypes were likely exposed to 

oxidative stress by the enhanced generation of ROS (Suzuki et al., 2012; Noctor et al., 2014). 

This hypothesis is confirmed by the high levels of the lipid peroxidation product MDA in IR64 

and Ri-7, and by high ProtOx in Apo and Ri-7 (Table 2).  All the three genotypes counteracted 

the oxidative stress by markedly increasing the activity of antioxidant enzymes, which 

displayed much higher values than at severe drought (TP3) during the vegetative stage (Table 

1 and 2). Among the three genotypes, Apo, similar to the vegetative stage results, displayed 

the strongest antioxidant response under drought also in the reproductive stage.  This 

response helped Apo to minimize grain yield loss, unlike IR64 and Ri-7 in which less antioxidant 

enzymes increased in activity. Surprisingly, grain yield loss in this stage was about the same 

for IR64 and Ri-7 while, in the vegetative stage, Ri-7 suffered much less growth reduction 

under drought than IR64 (Fig. 2G-I).  This is likely due to the inability of Ri-7 to activate a 

protective leaf osmotic acclimation response to drought (in contrast to during vegetative 

development) while actively exporting sugars to the developing panicles. This finding confirms 

the prevalent role of leaf antioxidant enzyme activities for grain yield stability of rice under 

drought stress at the reproductive stage (Melandri et al., 2019). 

 

CONCLUSIONS  

The aim of the present research was to determine how drought-induced leaf metabolic and 

oxidative stress responses in drought tolerant rice genotypes differed from a susceptible one 

to better understand the mechanisms of adaptation to drought during the vegetative and 
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(decreased organic acids like at TP2) as during the vegetative stage. This signature was 
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reproductive stage. In the vegetative stage, a conservative water use coupled with sugar-

mediated osmotic acclimation in Ri-7 (upland rice) or strong antioxidative response in Apo 

(aerobic rice) helped these two tolerant genotypes to limit drought-induced biomass loss 

compared with the susceptible genotype IR64 (lowland rice). In the reproductive stage, 

limitations in sugar-mediated osmotic adjustments (sugar were exported to panicles) under 

drought stress conferred a competitive advantage to the genotype showing the highest 

antioxidant power, Apo, that was the only one able to maintain a stable grain yield. 

By enhancing our understanding of physiological, metabolic and antioxidant strategies 

associated with drought tolerance in rice, this study provides a framework for the exploration 

of the genetic control of these mechanisms and their exploitation in breeding for new varieties 

adapted to water-limited environments. 
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Supplementary data are available at: 

https://drive.google.com/open?id=1rFJkrHHCb38Yd9nqsAemOZ82SH6sD28R 

Fig. S1. The experimental setup. 

Fig. S2. Effect of the treatment on soil water content. 

Fig. S3. Global effects of plant age and genotype on values of leaf metabolites, nutrient ions 
and oxidative stress markers/enzymes in the control samples. 

Table S1. Dry weight (DW) of leaves, stems, roots, and total biomass, leaf relative water 
content (RWC) and the number of tillers of the three genotypes under control and drought 
conditions at the four time points of sampling. 

Table S2. Levels of the 39 metabolites, nutrient ions and oxidative stress markers/enzymes 
measured in leaf of control samples of the three genotypes at each time point. 

Table S3. Levels of the 39 metabolites, nutrient ions and oxidative stress markers/enzymes 
measured in leaf of drought stressed samples of the three genotypes at each time point. 
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ABSTRACT 

Crop yield stability requires an attenuation of the reduction of yield losses caused by 

environmental stresses such as drought. Using a combination of metabolomics and high-

throughput colorimetric assays, we analysed central metabolism and oxidative stress status in 

the flag leaf of 292 indica rice (Oryza sativa) accessions. Plants were grown in the field and 

were, at the reproductive stage, exposed to either well-watered or drought conditions to 

identify the metabolic processes associated with drought-induced grain yield loss. 

Photorespiration, protein degradation and nitrogen recycling were the main processes 

involved in the drought-induced leaf metabolic reprogramming. Molecular markers of drought 

tolerance and sensitivity in terms of grain yield were identified using a multivariate model 

based on the values of the metabolites and enzyme activities across the population. The model 

highlights the central role of the ascorbate-glutathione cycle, particularly dehydroascorbate 

reductase, in minimizing drought-induced grain yield loss. In contrast, malondialdehyde was 

an accurate biomarker for grain yield loss, suggesting that drought-induced lipid peroxidation 

is the major constraint under these conditions. These findings highlight new breeding targets 

for improved rice grain yield stability under drought. 

 

KEY WORDS: Oryza sativa, drought, leaf primary metabolism, leaf oxidative stress status, 

reproductive stage, PLSR. 
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INTRODUCTION 

Drought-induced closure of stomata not only reduces water loss, but also limits CO2 diffusion 

into the leaf intercellular spaces and thus decreases photosynthetic carbon assimilation. This 

alteration results in the disruption of cellular homeostasis and leads to an enhanced 

generation of reactive oxygen species (ROS), mainly in the peroxisomes and chloroplasts 

(Suzuki et al., 2012; Noctor et al., 2014). In leaf tissues of C3 plants exposed to light and under 

drought stress, peroxisomes are considered the major production site of hydrogen peroxide 

(H2O2), primarily because of the enhanced activity of the photorespiratory pathway (Noctor 

2002). In chloroplasts, ROS production arises when excitation energy exceeds the level 

required for CO2 assimilation (Asada 2006), a condition that is favoured by drought-induced 

stomatal closure (Miller et al., 2010). Under persistent water-limited conditions, the cellular 

ROS scavenging capacity is exceeded by ROS production that, in turn, leads to oxidative 

damage that drives the cell into senescence (Halliwell, 2006) and, in extreme cases, cell death 

(Van Breusegem and Dat, 2006). To reduce oxidative damage, plants employ a complex 

enzymatic and non-enzymatic antioxidative system, which is triggered by ROS (Mittler et al., 

2011; Baxter et al., 2014; You and Chan, 2015). 

The decreased photosynthetic carbon assimilation, caused by stomatal closure, results in a 

reprogramming of plant central metabolism and growth to try to maintain the activity of 

essential metabolic pathways while simultaneously adapting to the stressful conditions (Obata 

and Fernie, 2012; Claeys and Inze, 2013). Under drought stress, accumulation of leaf 

metabolites thought to have protective functions (e.g. fructose, glucose, raffinose, proline, 

and glycine betaine) or to accumulate as a consequence of the stress (e.g. protein breakdown 

causing the overall increase in free amino acids) have been reported for a number of plant 

species (Verslues and Juenger, 2011; Obata and Fernie, 2012; Krasensky and Jonak, 2012; 

Fàbregas and Fernie, 2019). This metabolic response to drought varies during different 

developmental stages (Hummel et al., 2010; Skirycz et al., 2010) . Among them, the 

reproductive stage is considered the most drought sensitive in plants (Passioura, 2012) and 

particularly in rice, which, among the cereal crops, shows greatest sensitivity to water 

limitation (Venuprasad et al., 2007). The top leaves of rice, and primarily the flag leaf, are the 

most important source of assimilates for the developing panicles (Yoshida, 1972). Drought-

induced alteration of metabolism and redox state in these leaves during the reproductive 
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ABSTRACT 
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stage was shown to be linked with a reduction in grain yield (Biswal and Kohli, 2013; Sandhu 

et al., 2014). 

In the last decade, an increasing number of studies used metabolomics as a large-scale 

screening tool to identify markers for plant trait improvement (Fernandez et al., 2016; Kumar 

et al., 2017). This interest mainly relies on the fact that metabolic markers showed equal or 

even higher predictive power for plant traits than traditional genetic markers (Fernandez et 

al., 2016). Metabolomics-based prediction of biomass was used in Arabidopsis recombinant 

inbred lines and accessions grown under optimal (Meyer et al., 2007; Steinfath et al., 2010; 

Sulpice et al., 2009) and sub-optimal (Sulpice et al., 2013) conditions. These studies were 

performed under controlled conditions, thus reducing environmental effects and increasing 

the likelihood of finding strong relationships between metabolite levels and the trait of 

interest (Fernandez et al., 2016). In crop species, trait prediction based on metabolic profiling 

of large field grown populations of genetically diverse accessions remains rare and even more 

rare in experiments simultaneously conducted under optimal and non-optimal conditions 

(Riedelsheimer et al. 2012, 2013; Xu et al. 2016). 

Here we present a large field study aimed at improving our understanding of the drought-

induced reprogramming of metabolism and oxidative stress status in rice and its effect on 

grain yield. The flag leaf central metabolome together with a range of oxidative stress markers 

and redox state-related enzymes were analysed in a collection of 292 phenotypically and 

genetically diverse rice lines that were exposed to well-watered and drought conditions during 

the reproductive stage. The dataset was used to analyse the relationship between oxidative 

stress and central metabolism under the two different treatments, to generate multivariate 

models that predict grain yield loss under drought stress and to identify metabolic and 

oxidative stress markers of tolerance and sensitivity to drought. The combination of oxidative 

stress markers and enzyme activities with the metabolomics dataset for the prediction, and 

the large number of field-grown accessions, make this study an extensive and valuable source 

of information to identify biomarkers for improved grain yield stability of rice under drought. 
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MATERIALS AND METHODS 

Genetic resources and plant growth 

Two-hundred ninety-two accessions of Oryza sativa subsp. indica were used in a field 

experiment at the International Rice Research Institute (IRRI), Los Baños, Philippines during 

the 2013 dry season. The accessions are largely as those in the PRAY-indica panel 

(http://ricephenonetwork.irri.org) including traditional and improved indica lines, from 

tropical and sub-tropical regions. The experiment comprised a control field and drought stress 

field, each with three replicates of the population arranged in a serpentine design 

(Supplementary Fig. S1). To synchronize flowering, the accessions were divided into six groups 

according to days required to flower (previously collected data), and progressively sown and 

transplanted with intervals of 10 days between each group. Drought stress consisted of 14 

consecutive days of water withholding applied only to the stress field at the reproductive stage 

(targeting 50% flowering). At the end of stress, the field was re-watered until all the accessions 

reached maturity for harvest (further details in Kadam et al., 2018). 

 

Phenotyping 

Percentage of grain yield loss (GY loss) of each accession was calculated (GYcontrol-

GYdrought)/(GYcontrol*100), as the mean values of the GY loss of all replicates (3 for drought and 

2 for control). A variable, Sam-Flow, was calculated as the date of leaf sampling (Sam), minus 

the date of 50% flowering (Flow) for every genotype, under control and drought treatment, 

separately. The genotypes together with their GY loss, Flow and Sam-Flow values are shown 

in Supplementary Table S1. 

 

Leaf sampling  

Eight flag/top leaves from the main tiller of 8 plants per plot (that were not used for yield 

determination) were sampled and immediately frozen in liquid nitrogen. Three drought field 

replicates of all accessions were collected (9:30- 11:00 am), on day 14 of the stress treatment. 

Two control field replicates of the entire population were collected, two days later, during the 

same time window. Samples were ground in liquid nitrogen, shipped to the Netherlands on 

dry ice and stored at -80°C until further analysis in Germany and Belgium, where samples were 

also shipped to on dry ice.  
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stage was shown to be linked with a reduction in grain yield (Biswal and Kohli, 2013; Sandhu 

et al., 2014). 
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genetically diverse rice lines that were exposed to well-watered and drought conditions during 

the reproductive stage. The dataset was used to analyse the relationship between oxidative 

stress and central metabolism under the two different treatments, to generate multivariate 

models that predict grain yield loss under drought stress and to identify metabolic and 

oxidative stress markers of tolerance and sensitivity to drought. The combination of oxidative 

stress markers and enzyme activities with the metabolomics dataset for the prediction, and 

the large number of field-grown accessions, make this study an extensive and valuable source 

of information to identify biomarkers for improved grain yield stability of rice under drought. 
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(Supplementary Fig. S1). To synchronize flowering, the accessions were divided into six groups 

according to days required to flower (previously collected data), and progressively sown and 

transplanted with intervals of 10 days between each group. Drought stress consisted of 14 

consecutive days of water withholding applied only to the stress field at the reproductive stage 

(targeting 50% flowering). At the end of stress, the field was re-watered until all the accessions 

reached maturity for harvest (further details in Kadam et al., 2018). 

 

Phenotyping 

Percentage of grain yield loss (GY loss) of each accession was calculated (GYcontrol-

GYdrought)/(GYcontrol*100), as the mean values of the GY loss of all replicates (3 for drought and 

2 for control). A variable, Sam-Flow, was calculated as the date of leaf sampling (Sam), minus 

the date of 50% flowering (Flow) for every genotype, under control and drought treatment, 

separately. The genotypes together with their GY loss, Flow and Sam-Flow values are shown 

in Supplementary Table S1. 

 

Leaf sampling  

Eight flag/top leaves from the main tiller of 8 plants per plot (that were not used for yield 

determination) were sampled and immediately frozen in liquid nitrogen. Three drought field 

replicates of all accessions were collected (9:30- 11:00 am), on day 14 of the stress treatment. 

Two control field replicates of the entire population were collected, two days later, during the 

same time window. Samples were ground in liquid nitrogen, shipped to the Netherlands on 

dry ice and stored at -80°C until further analysis in Germany and Belgium, where samples were 

also shipped to on dry ice.  
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Metabolite profiling 

Metabolite profiling was performed as described by Riewe et al. (2012) and Riewe et al. (2016). 

For each accession and treatment, equal amounts of replicates (3 for drought, 2 for control) 

were pooled, resulting in 584 samples (292 each for drought and control). Samples were 

extracted in MeOH/H2O (15.0±1.0 mg fresh weight), dried and in-line derivatized (MPS2 

autosampler, GERSTEL) prior to GC-MS analysis (AGILENT/LECO). Metabolites were identified 

using ChromaTOF software (LECO) and the library provided by the Golm Metabolome 

Database (GMD, http://gmd.mpimp-golm.mpg.de/download/). Peak intensities were 

determined using the R package TargetSearch (Cuadros-Inostroza et al., 2009) and normalised 

against an internal standard (D8-Valine), fresh weight and detector response variation. 

 

Glucose, fructose and sucrose detection 

Glucose, fructose and sucrose were quantified spectrophotometrically (Riewe et al., 2008). In 

brief, NADPH production at 340 nm was converted to saccharide content after the sequential 

addition of hexokinase (glucose), phosphoglucoisomerase (fructose) and invertase (sucrose) 

into a reaction mix, containing extract, glucose-6-phosphate dehydrogenase, ATP and NADP+. 

 

Oxidative stress markers  

Malondialdehyde (MDA) is a by-product of lipid peroxidation. Its content was assayed 

according to Hodges et al. (1999). Leaf material (50 mg FW) was homogenized (80% v/v 

ethanol), using a MagNA Lyser (Roche, Vilvoorde, Belgium). After centrifugation, the 

supernatant was allowed to react with thiobarbituric acid to produce the chromogen, 

thiobarbituric acid-malondialdehyde (TBA-MDA). Absorbance of TBA-MDA was measured at 

440, 532, and 600 nm, using a micro-plate reader (Synergy Mx, Biotek Instruments Inc., 

Vermont, VT, USA). Protein oxidation (ProtOx) was estimated through measuring the protein 

carbonyl content, utilizing dinitrophenylhydrazine (DNPH) derivatization (Levine et al., 1994). 

 

Molecular antioxidants  

Total non-enzymatic antioxidant capacity (TAC) was assayed after homogenizing and 

extracting leaf tissue (50 mg FW), in 80% ethanol (v/v). The extract was centrifuged, and the 

tripyridyltriazine (TPTZ) assay-reagent was mixed with the extract (Benzie and Strain, 1999). 
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Absorbance change at 600 nm was measured using a microplate reader. Trolox (0 to 650 µM) 

was used as standard. Total polyphenol content (Poly) was assayed after the same 

homogenizing, extracting ad centrifugation steps, using a Folin–Ciocalteu reagent for phenol 

detection (Zhang et al., 2006), with gallic acid as standard. 

 

Antioxidant enzymes 

Soluble proteins were extracted according to Murshed et al. (2008) and quantified by the 

Lowry method (Lowry et al., 1951). Enzyme activities were determined in a semi-high-

throughput set-up (Zinta et al., 2014; AbdElgawad et al., 2016). Ascorbate peroxidase (APX), 

dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR) and 

glutathione reductase (GR) activities were measured in extracts obtained from 100 mg of 

frozen tissue, in 1 mL of extraction buffer: 50 mM MES/KOH (pH 6.0) containing 0.04 M KCl, 

2 mM CaCl2, and 1 mM ASC, homogenized by MagNALyser (Roche, Vilvoorde, Belgium). APX, 

MDHAR, DHAR and GR activities were determined in microplates according to the method of 

Murshed et al. (2008). Their activities were assayed in 50 mM K-phosphate, 50 mM HEPES pH 

7.6, 50 mM HEPES pH 7 and 50 mM HEPES pH 8, respectively. APX, MDHAR, and GR activities 

were measured by monitoring the decrease in ASC (ɛ290 = 2.8 mM-1cm-1), NADH (ɛ340 = 6.22 

mM-1cm-1) and NADPH (ɛ340 = 6.22 mM-1cm-1). Peroxidase (POX) activity was determined by 

the oxidation of pyrogallol in 100 mM phosphate buffer (ɛ430 = 2.46 mM-1cm-1) (Kumar and 

Khan, 1983). Superoxide dismutase (SOD) activity was analysed by measuring the inhibition of 

nitro-blue tetrazolium (NBT) reduction (ɛ550= 12.8 mM-1cm-1) (Dhindsa et al., 1982). 

Glutathione peroxidase (GPX) activity was measured as described by Drotar et al. (1985), in a 

coupled enzyme assay with glutathione reductase, measuring the decrease in 

NADPH absorption. Catalase (CAT) activity was assayed by monitoring the 

H2O2 decomposition at 240 nm (ɛ240 = 39.4 M−1cm−1) (Aebi, 1984). Ascorbate oxidase (AO) 

activity was measured as the rate of decrease of ascorbate (absorbance at 290 nm, Yoshimura 

et al., 1998). Glutathione S-transferase (GST) activity was determined by measuring 

conjugation of GSH to 1-chloro-2,4-dinitrobenzene (CDNB) at 340 nm (Habig et al., 1974). 

Peroxiredoxin (PRX) activity was determined according to Horling et al. (2003), by measuring 

the decrease in H2O2 concentration in the reaction mixture. Glutaredoxin (Grx) activity was 

determined by measuring the reduction of 2-hydroxy-ethyl-disulfide by GSH in the presence 

of NADPH and yeast glutathione reductase (Lundberg et al., 2001). Thioredoxin (Trx) activity 
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against an internal standard (D8-Valine), fresh weight and detector response variation. 

 

Glucose, fructose and sucrose detection 
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brief, NADPH production at 340 nm was converted to saccharide content after the sequential 

addition of hexokinase (glucose), phosphoglucoisomerase (fructose) and invertase (sucrose) 

into a reaction mix, containing extract, glucose-6-phosphate dehydrogenase, ATP and NADP+. 

 

Oxidative stress markers  

Malondialdehyde (MDA) is a by-product of lipid peroxidation. Its content was assayed 

according to Hodges et al. (1999). Leaf material (50 mg FW) was homogenized (80% v/v 

ethanol), using a MagNA Lyser (Roche, Vilvoorde, Belgium). After centrifugation, the 

supernatant was allowed to react with thiobarbituric acid to produce the chromogen, 

thiobarbituric acid-malondialdehyde (TBA-MDA). Absorbance of TBA-MDA was measured at 

440, 532, and 600 nm, using a micro-plate reader (Synergy Mx, Biotek Instruments Inc., 

Vermont, VT, USA). Protein oxidation (ProtOx) was estimated through measuring the protein 

carbonyl content, utilizing dinitrophenylhydrazine (DNPH) derivatization (Levine et al., 1994). 

 

Molecular antioxidants  

Total non-enzymatic antioxidant capacity (TAC) was assayed after homogenizing and 

extracting leaf tissue (50 mg FW), in 80% ethanol (v/v). The extract was centrifuged, and the 

tripyridyltriazine (TPTZ) assay-reagent was mixed with the extract (Benzie and Strain, 1999). 
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Absorbance change at 600 nm was measured using a microplate reader. Trolox (0 to 650 µM) 

was used as standard. Total polyphenol content (Poly) was assayed after the same 

homogenizing, extracting ad centrifugation steps, using a Folin–Ciocalteu reagent for phenol 

detection (Zhang et al., 2006), with gallic acid as standard. 

 

Antioxidant enzymes 

Soluble proteins were extracted according to Murshed et al. (2008) and quantified by the 

Lowry method (Lowry et al., 1951). Enzyme activities were determined in a semi-high-

throughput set-up (Zinta et al., 2014; AbdElgawad et al., 2016). Ascorbate peroxidase (APX), 

dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR) and 

glutathione reductase (GR) activities were measured in extracts obtained from 100 mg of 

frozen tissue, in 1 mL of extraction buffer: 50 mM MES/KOH (pH 6.0) containing 0.04 M KCl, 

2 mM CaCl2, and 1 mM ASC, homogenized by MagNALyser (Roche, Vilvoorde, Belgium). APX, 

MDHAR, DHAR and GR activities were determined in microplates according to the method of 

Murshed et al. (2008). Their activities were assayed in 50 mM K-phosphate, 50 mM HEPES pH 

7.6, 50 mM HEPES pH 7 and 50 mM HEPES pH 8, respectively. APX, MDHAR, and GR activities 

were measured by monitoring the decrease in ASC (ɛ290 = 2.8 mM-1cm-1), NADH (ɛ340 = 6.22 

mM-1cm-1) and NADPH (ɛ340 = 6.22 mM-1cm-1). Peroxidase (POX) activity was determined by 

the oxidation of pyrogallol in 100 mM phosphate buffer (ɛ430 = 2.46 mM-1cm-1) (Kumar and 

Khan, 1983). Superoxide dismutase (SOD) activity was analysed by measuring the inhibition of 

nitro-blue tetrazolium (NBT) reduction (ɛ550= 12.8 mM-1cm-1) (Dhindsa et al., 1982). 

Glutathione peroxidase (GPX) activity was measured as described by Drotar et al. (1985), in a 

coupled enzyme assay with glutathione reductase, measuring the decrease in 

NADPH absorption. Catalase (CAT) activity was assayed by monitoring the 

H2O2 decomposition at 240 nm (ɛ240 = 39.4 M−1cm−1) (Aebi, 1984). Ascorbate oxidase (AO) 

activity was measured as the rate of decrease of ascorbate (absorbance at 290 nm, Yoshimura 

et al., 1998). Glutathione S-transferase (GST) activity was determined by measuring 

conjugation of GSH to 1-chloro-2,4-dinitrobenzene (CDNB) at 340 nm (Habig et al., 1974). 

Peroxiredoxin (PRX) activity was determined according to Horling et al. (2003), by measuring 

the decrease in H2O2 concentration in the reaction mixture. Glutaredoxin (Grx) activity was 

determined by measuring the reduction of 2-hydroxy-ethyl-disulfide by GSH in the presence 

of NADPH and yeast glutathione reductase (Lundberg et al., 2001). Thioredoxin (Trx) activity 

Biomarkers for grain yield stability in rice under drought stress

3

|   55   



56 
 

was determined by measuring NADPH oxidation (Wolosiuk et al., 1979) at 340 nm. Ferredoxin-

NADP(H) reductases (Frxs) activity was determined as the reduction of potassium ferricyanide 

at 420 nm (Rodriguez et al., 2006).  

 
Photorespiration enzymes 

Glycolate oxidase (GOX) activity was determined by the formation of a glyoxylate complex 

with phenylhydrazine (ε324 = 17 mM-1 cm-1, Feierabend and Beevers, 1972). 

Hydroxypyruvate reductase  (HPR) activity was determined according to Schwitzguebel and 

Siegenthaler (1984), as the oxidation of NADH that was followed at 340 nm upon 

hydroxypyruvate addition. 

 

Data analysis 

Results of all metabolites and oxidative stress markers/enzymes were log10 transformed to 

improve normality. Metabolites showing more than 5% missing values among the samples 

were excluded from the analysis. A list of the results of metabolites and oxidative stress 

markers/enzymes used for statistical analyses is included in Supplementary Table S2. 

Statistical analyses and graphical representations were performed using R (version 3.4.3; The 

R Foundation for Statistical Computing). Fold-change was calculated (on non log10-

transformed data) dividing drought values by control values. Hierarchical clustering analysis 

was conducted using the hclust function (stats package) and based on complete linkage 

analysis of pairwise dissimilarity, calculated as 1-rs (rs, Spearman rank correlation coefficient). 

Dendrograms were created by using the dendextend package, and heat maps of correlations 

were created using the heatmap.2 function (gplot package). Imputation of missing values, 

prior to PCA and PLSR analyses, was performed by the knnImputation function in the DMwR 

package. PCA was performed using the prcomp function (stats package) and the value of each 

variable was centred (mean subtraction) and scaled (standard deviation division) before 

analysis. 

To identify the variables predictive for grain yield loss, a cross-validated partial least squares 

regression (PLSR, pls package) was used (Mevik and Wehrens, 2007; Mumm et al., 2016). 

Observations were auto-scaled in the PLSR procedure. The number of latent variables to 

include in the model was selected by testing the predictability value (Q2) using an increasing 

57 
 

number of latent variables from 1 to 10. The relative importance of the metabolites in the 

models was summarized using rank-products. 

 

RESULTS 

Relationship between differences in flowering time and grain yield loss 

The rice population was grown in a field trial as part of a study aimed to collect information 

on phenotypic trait performance under well-watered and drought stress conditions (Kadam et 

al., 2018). To evaluate the impact of drought stress on grain yield stability, the percentage of 

grain yield loss (GY loss), under drought versus control conditions, was calculated across the 

292 genotypes as indicator of stress tolerance/susceptibility (Supplementary Table S1). 

Even though the accessions were sown and transplanted on different dates to minimise 

flowering time differences, flowering synchronisation was not perfect, and could represent a 

confounding effect on yield results under drought (Kadam et al., 2018). Correlation analysis 

was performed to evaluate the influence of flowering time differences (Supplementary Table 

S1) on the drought-induced GY loss performance of the 292 accessions (Supplementary Fig. 

S2). Flowering (Flow) under drought significantly and negatively correlated (p-value < 0.001) 

with GY loss (rs = -0.35) but only 12% (R2 = 0.12) of the variation was explained by the 

corresponding linear model. In general, the correlation trend shows that accessions that 

already flowered before stress imposition (less than the 10% of the total) displayed a relatively 

higher severity of GY loss than the ones that nearly or already flowered (booting stage for 60% 

and heading stage for 30% of the total) during stress imposition. Interestingly, a significant (p-

value < 0.001) and almost identical negative correlation was observed between Flow under 

control (rs = -0.37; R2 = 0.13) and GY loss. This similarity is determined by the almost perfect 

correlation (rs = 0.96; R2 = 0.94; p-value < 0.001) observed between Flow under control and 

drought (Supplementary Fig. S2). Nevertheless, drought stress significantly affected (Paired t-

test’s p-value < 0.001) the date of 50% flowering with a delay of around three days (mean±sd: 

83.9±10.6) compared to control (mean±sd: 81.0±10.3). The almost perfect correlation 

between Flow under the two treatments indicates that the flowering delay under drought is 

virtually identical in the 292 accessions. 
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were created using the heatmap.2 function (gplot package). Imputation of missing values, 

prior to PCA and PLSR analyses, was performed by the knnImputation function in the DMwR 

package. PCA was performed using the prcomp function (stats package) and the value of each 

variable was centred (mean subtraction) and scaled (standard deviation division) before 

analysis. 

To identify the variables predictive for grain yield loss, a cross-validated partial least squares 

regression (PLSR, pls package) was used (Mevik and Wehrens, 2007; Mumm et al., 2016). 

Observations were auto-scaled in the PLSR procedure. The number of latent variables to 

include in the model was selected by testing the predictability value (Q2) using an increasing 
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number of latent variables from 1 to 10. The relative importance of the metabolites in the 

models was summarized using rank-products. 

 

RESULTS 

Relationship between differences in flowering time and grain yield loss 

The rice population was grown in a field trial as part of a study aimed to collect information 

on phenotypic trait performance under well-watered and drought stress conditions (Kadam et 

al., 2018). To evaluate the impact of drought stress on grain yield stability, the percentage of 

grain yield loss (GY loss), under drought versus control conditions, was calculated across the 

292 genotypes as indicator of stress tolerance/susceptibility (Supplementary Table S1). 

Even though the accessions were sown and transplanted on different dates to minimise 

flowering time differences, flowering synchronisation was not perfect, and could represent a 

confounding effect on yield results under drought (Kadam et al., 2018). Correlation analysis 

was performed to evaluate the influence of flowering time differences (Supplementary Table 

S1) on the drought-induced GY loss performance of the 292 accessions (Supplementary Fig. 

S2). Flowering (Flow) under drought significantly and negatively correlated (p-value < 0.001) 

with GY loss (rs = -0.35) but only 12% (R2 = 0.12) of the variation was explained by the 

corresponding linear model. In general, the correlation trend shows that accessions that 

already flowered before stress imposition (less than the 10% of the total) displayed a relatively 

higher severity of GY loss than the ones that nearly or already flowered (booting stage for 60% 

and heading stage for 30% of the total) during stress imposition. Interestingly, a significant (p-

value < 0.001) and almost identical negative correlation was observed between Flow under 

control (rs = -0.37; R2 = 0.13) and GY loss. This similarity is determined by the almost perfect 

correlation (rs = 0.96; R2 = 0.94; p-value < 0.001) observed between Flow under control and 

drought (Supplementary Fig. S2). Nevertheless, drought stress significantly affected (Paired t-

test’s p-value < 0.001) the date of 50% flowering with a delay of around three days (mean±sd: 

83.9±10.6) compared to control (mean±sd: 81.0±10.3). The almost perfect correlation 

between Flow under the two treatments indicates that the flowering delay under drought is 

virtually identical in the 292 accessions. 
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Drought induces accumulation of amino acids and affects the level of antioxidant enzymes 

and organic acids 

Leaf samples of the 292 accessions were analysed by untargeted GC-MS-based metabolite 

profiling to assess the variation in polar metabolites under well-watered and drought 

conditions. A total of 88 metabolites were identified, predominantly primary metabolites 

(amino acids, sugars and organic acids). The amount of the three most abundant sugars 

(sucrose, fructose and glucose) was determined spectrophotometrically (glucose also by mass 

spectrometry). The same leaf materials were analysed for the oxidative stress status of the 

different accessions under the two treatments. For this, the level of molecular antioxidants 

(2), oxidative stress markers (2) and the activity of enzymes (16) involved in ROS scavenging 

mechanisms and photorespiration were quantified. The 111 variables, metabolites and 

oxidative stress markers/enzymes considered in this study (Supplementary Table S3) are 

hereafter referred to as MetabOxi. 

Principal component analysis (PCA) was used to gain insight in the overall effect of drought on 

the MetabOxi profiles of the accessions. Among the first three principal components (PCs), 

PC1 explained 29.5% of the total variation, and almost completely separated the control and 

drought stressed samples (Supplementary Fig. S3), suggesting a strong influence of drought 

on the MetabOxi profiles of the accessions. To evaluate the treatment effect on the level of 

the individual MetabOxi variables, one-way ANOVA was conducted. This showed that drought 

significantly influenced (Bonferroni-corrected p-value < 0.05) most (91 out of 111) of the 

MetabOxi variables across the 292 genotypes (Supplementary Table S4). To quantify the 

magnitude of these alterations, we conducted a fold-change (f.c.) analysis (stress over control 

values) for the 91 MetabOxi variables that changed significantly between treatments (Table 

1). The majority (75 out of 91) displayed a fold-change increase (f.c. > 1) with allantoin and 2-

aminoadipic acid showing the largest increase (f.c. > 10). Interestingly, the level of all amino 

acids significantly increased under drought with the highest f.c. values for Pro, Asn-H2O and 

Orn. Organic acids, sugars, oxidative stress markers and enzymes displayed a more diverse 

response. Particularly, most of the organic acids showed a decrease (f.c. < 1) with two 

tricarboxylic acid cycle (TCA) intermediates, isocitric and citric acid, and two glycolysis 

intermediates, glyceric acid-3-phosphate and phosphoenolpyruvic acid, displaying the largest 

decrease (f.c. < 0.6). Of the sugars, galactinol and raffinose displayed a strong increase (f.c. > 
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4), just as the ROS scavenging enzymes superoxide dismutase (SOD), ascorbate peroxidase 

(APX) and catalase (CAT) (3 > f.c. > 4).  Collectively, these results highlight the strong influence 

of drought stress on the metabolome and oxidative stress status of the population, mainly 

characterized by an increase in the level of amino acids and activity of specific antioxidant 

enzymes and by a decrease in the level of organic acids. 

 

Table 1. The effect of drought on the MetabOxi variables showing a significant response to stress. 
Fold change mean values (drought/control) of the 91 variables showing a significant effect of treatment 
(Bonferroni-corrected p-value < 0.05) by one-way ANOVA. The fold change values are colored according 
to their fold change increase or decrease class (≤ 0.5 dark blue, 0.5~1.0 light blue, 1.0~2.0 light red, 
2.0~4.0 red, ≥ 4.0 purple). st.dev.: standard deviation.  

 

Variable 
class Name fold 

change 
st. 

dev   Variable 
class Name fold 

change 
st. 

dev 
                  Amino Alanine 1.78 0.87   Organic 2-Piperidinecarboxylic acid 1.99 1.35 
acid Alanine, beta- 3.10 2.44   acid Adipic acid, 2-amino- 10.46 13.79 
  Arginine 2.64 3.35     Butanoic acid, 4-amino- 2.62 2.22 
  Asparagine -H2O 6.16 12.32     Butanoic acid, 4-hydroxy- 1.98 0.88 
  Aspartic acid 1.78 0.92     Citric acid 0.58 0.34 
  Cysteine 1.67 0.87     Erythronic acid 1.38 0.38 
  Glutamic acid 1.34 0.33     Fumaric acid 1.16 0.39 
  Glutamine 3.57 3.82     Galactonic acid-1,4-lactone 1.52 0.75 
  Glycine 2.59 2.25     Gluconic acid-1,5-lactone 1.18 0.36 
  Isoleucine 3.03 3.43     Glutaric acid, 2-hydroxy- 1.48 0.61 
  Leucine 3.09 2.98     Glyceric acid 0.77 0.21 
  Lysine 2.56 3.46     Glyceric acid-3-phosphate 0.51 0.32 
  Methionine 2.42 3.11     Isocitric acid 0.39 0.22 
  Ornithine 5.81 9.51     Maleic acid 1.30 0.53 
  Phenylalanine 3.44 3.86     Malic acid, 2-methyl- 0.67 0.27 
  Proline 7.29 7.94     Malonic acid 3.33 2.34 
  Pyroglutamic acid 1.65 0.79     Phosphoenolpyruvic acid 0.56 0.33 
  Serine 1.83 0.90     Phosphoric acid 0.77 0.21 
  Serine, O-acetyl- 1.00 0.59     Prephenic acid 0.93 0.35 
  Threonine 2.54 2.19     Quinic acid 1.75 0.94 
  Tryptophan 2.86 2.22     Quinoline-2-carboxylic acid,… 1.25 0.83 
  Tyrosine 1.77 1.40     Salicylic acid 1.55 1.21 
  Valine 2.03 1.98     Shikimic acid 1.52 0.73 
Sugars Erythritol 2.00 1.14     Shikimic acid, 3-dehydro- 1.72 0.97 
  Fructose (abs) 1.48 0.50     Succinic acid 1.23 0.44 
  Fructose-6-phosphate 0.95 0.37     Threonic acid 1.46 0.55 
  Fucose 1.55 0.62   Oxidative GOX 1.94 0.95 
  Galactinol 5.16 2.89   stress HPR 2.73 2.24 
  Galactosamine, N-acetyl- 1.61 0.84   enzyme POX 1.35 0.78 
  Glucosamine, N-acetyl- 1.48 0.58     APX 3.10 7.78 
  Glucose (abs) 1.69 0.73     CAT 3.08 6.37 
  Glucose 2.34 1.72     GST 0.94 0.31 
  Glucose-6-phosphate 0.94 0.41     SOD 4.08 2.64 
  Glycerol-3-phosphate 1.69 1.30     DHAR 1.05 0.88 
  Inositol, myo- 1.52 0.34     MDHAR 0.76 0.59 
  Isomaltose 3.90 1.88     AO 1.82 4.26 
  Maltose 1.60 1.05     GR 0.91 0.78 
  Mannosamine, N-acetyl- 1.59 0.82     Trxs 1.45 0.75 
  Raffinose 4.40 2.00     Prxs 1.42 0.74 
  Ribitol 1.46 0.63     Frxs 1.43 0.56 
  Ribose-5-phosphate… 0.97 0.41   Oxidative MDA 2.18 0.96 
  Trehalose 1.36 1.28   stress TAC 0.78 0.47 
Other Allantoin 11.18 15.19   marker Poly 0.91 0.76 
known Guanosine 2.70 3.42     ProtOx 1.46 0.39 
  Secologanin 2.00 0.91           
  Urea 2.04 1.11           
  Uridine 0.94 0.26           
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Drought induces accumulation of amino acids and affects the level of antioxidant enzymes 

and organic acids 

Leaf samples of the 292 accessions were analysed by untargeted GC-MS-based metabolite 

profiling to assess the variation in polar metabolites under well-watered and drought 

conditions. A total of 88 metabolites were identified, predominantly primary metabolites 

(amino acids, sugars and organic acids). The amount of the three most abundant sugars 

(sucrose, fructose and glucose) was determined spectrophotometrically (glucose also by mass 

spectrometry). The same leaf materials were analysed for the oxidative stress status of the 

different accessions under the two treatments. For this, the level of molecular antioxidants 

(2), oxidative stress markers (2) and the activity of enzymes (16) involved in ROS scavenging 

mechanisms and photorespiration were quantified. The 111 variables, metabolites and 

oxidative stress markers/enzymes considered in this study (Supplementary Table S3) are 

hereafter referred to as MetabOxi. 

Principal component analysis (PCA) was used to gain insight in the overall effect of drought on 

the MetabOxi profiles of the accessions. Among the first three principal components (PCs), 

PC1 explained 29.5% of the total variation, and almost completely separated the control and 

drought stressed samples (Supplementary Fig. S3), suggesting a strong influence of drought 

on the MetabOxi profiles of the accessions. To evaluate the treatment effect on the level of 

the individual MetabOxi variables, one-way ANOVA was conducted. This showed that drought 

significantly influenced (Bonferroni-corrected p-value < 0.05) most (91 out of 111) of the 

MetabOxi variables across the 292 genotypes (Supplementary Table S4). To quantify the 

magnitude of these alterations, we conducted a fold-change (f.c.) analysis (stress over control 

values) for the 91 MetabOxi variables that changed significantly between treatments (Table 

1). The majority (75 out of 91) displayed a fold-change increase (f.c. > 1) with allantoin and 2-

aminoadipic acid showing the largest increase (f.c. > 10). Interestingly, the level of all amino 

acids significantly increased under drought with the highest f.c. values for Pro, Asn-H2O and 

Orn. Organic acids, sugars, oxidative stress markers and enzymes displayed a more diverse 

response. Particularly, most of the organic acids showed a decrease (f.c. < 1) with two 

tricarboxylic acid cycle (TCA) intermediates, isocitric and citric acid, and two glycolysis 

intermediates, glyceric acid-3-phosphate and phosphoenolpyruvic acid, displaying the largest 

decrease (f.c. < 0.6). Of the sugars, galactinol and raffinose displayed a strong increase (f.c. > 
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(APX) and catalase (CAT) (3 > f.c. > 4).  Collectively, these results highlight the strong influence 

of drought stress on the metabolome and oxidative stress status of the population, mainly 

characterized by an increase in the level of amino acids and activity of specific antioxidant 

enzymes and by a decrease in the level of organic acids. 
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Drought stress increases the correlations within and between metabolite classes 

Correlation analysis was performed to assess the nature and strength of the associations 

between flag leaf metabolites under control and drought conditions (Supplementary Table S5 

and S6). Fig. 1 presents the degree of correlation among metabolites, together with their 

hierarchical clustering under the two treatments (see Supplementary Fig. S4 for a detailed 

representation of the dendrograms). By comparing the two heat maps, similarities as well as 

stress-induced population-wide differences in the correlations between leaf metabolites can 

be identified. Metabolites of the same class (mainly amino acids, sugars and organic acids) 

clustered together in both treatments (clusters of the same colour in Fig. 1). Only a single 

drought-specific cluster (yellow), including five amino acids (Asp, Glu, Gly, Ser and 

pyroglutamic acid) and allantoin, was identified. Drought stress resulted in stronger 

correlations between metabolites within each cluster than for control conditions as 

evidenced, particularly, by the amino acid cluster (red). Drought stress also increased the 

correlations (positive or negative) between clusters representing different metabolite classes. 

For example, under drought the amino acid (red) and sugar cluster (green) displayed an 

increased correlation with the latter also showing an increased negative correlation with the 

organic acid clusters (light blue and dark blue). Particularly, between the two organic acid 

clusters, the one containing three TCA intermediates, citric, isocitric and malic acid (light blue), 

showed the strongest negative correlation with the amino acid (red) and sugar (green) 

clusters. Weaker correlations with the same clusters were displayed by the other organic acid 

cluster (dark blue), enriched in metabolites of the shikimate pathway (shikimic acid, quinic 

acid and 3-dehydroshikimic acid). Interestingly, the drought-specific amino acid-enriched 

cluster (yellow) displayed a similar correlation pattern with the other metabolite clusters as 

the major amino acid cluster (red) to which it was strongly positively correlated. Under control 

conditions, the abovementioned clusters showed very low correlations with each other. In 

summary, drought stress resulted in a generally stronger correlation within and between all 

the leaf metabolite classes than under control conditions and induced one new (stress-

specific) cluster, containing Asp, Glu, Gly, Ser, pyroglutamic acid and allantoin. 
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Drought stress increases the correlations within and between metabolite classes 

Correlation analysis was performed to assess the nature and strength of the associations 

between flag leaf metabolites under control and drought conditions (Supplementary Table S5 

and S6). Fig. 1 presents the degree of correlation among metabolites, together with their 

hierarchical clustering under the two treatments (see Supplementary Fig. S4 for a detailed 

representation of the dendrograms). By comparing the two heat maps, similarities as well as 

stress-induced population-wide differences in the correlations between leaf metabolites can 

be identified. Metabolites of the same class (mainly amino acids, sugars and organic acids) 

clustered together in both treatments (clusters of the same colour in Fig. 1). Only a single 

drought-specific cluster (yellow), including five amino acids (Asp, Glu, Gly, Ser and 

pyroglutamic acid) and allantoin, was identified. Drought stress resulted in stronger 

correlations between metabolites within each cluster than for control conditions as 

evidenced, particularly, by the amino acid cluster (red). Drought stress also increased the 

correlations (positive or negative) between clusters representing different metabolite classes. 

For example, under drought the amino acid (red) and sugar cluster (green) displayed an 

increased correlation with the latter also showing an increased negative correlation with the 

organic acid clusters (light blue and dark blue). Particularly, between the two organic acid 

clusters, the one containing three TCA intermediates, citric, isocitric and malic acid (light blue), 

showed the strongest negative correlation with the amino acid (red) and sugar (green) 

clusters. Weaker correlations with the same clusters were displayed by the other organic acid 

cluster (dark blue), enriched in metabolites of the shikimate pathway (shikimic acid, quinic 

acid and 3-dehydroshikimic acid). Interestingly, the drought-specific amino acid-enriched 

cluster (yellow) displayed a similar correlation pattern with the other metabolite clusters as 

the major amino acid cluster (red) to which it was strongly positively correlated. Under control 

conditions, the abovementioned clusters showed very low correlations with each other. In 

summary, drought stress resulted in a generally stronger correlation within and between all 

the leaf metabolite classes than under control conditions and induced one new (stress-

specific) cluster, containing Asp, Glu, Gly, Ser, pyroglutamic acid and allantoin. 
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Leaf amino acid metabolism is strongly linked with stress-induced photorespiratory and 

antioxidative enzymes  

To investigate the relationships between leaf oxidative stress status and metabolism, 

correlation analysis and hierarchical clustering were conducted on the combined datasets (Fig. 

2, Supplementary Table S7 and S8). Strikingly, a cluster formed by two photorespiratory 

enzymes, hydroxypyruvate reductase (HPR) and glycolate oxidase (GOX), and the lipid 

peroxidation product malondialdehyde (MDA) was present under both control and drought 

conditions (brown). HPR and GOX showed the strongest positive correlation with a number of 

metabolites under both treatments, and, especially, with the main cluster of amino acids (red). 

The two enzymes also displayed a strong positive correlation with the drought-specific cluster 

of amino acids (yellow), which contains Gly and Ser, known to be produced by the 

photorespiratory pathway. MDA showed low correlations with all other metabolites under 

control, whereas, under stress, these correlations became stronger with an overall pattern 

very similar to that of HPR and GOX (Fig. 2). Under drought stress, the HPR-GOX-MDA cluster 

also showed a stronger negative correlation with the TCA cycle cluster (light blue) than under 

control conditions. Considering the other oxidative stress markers/enzymes, almost all (15 out 

of 17) displayed negative correlations with the single amino acid cluster (red) under control 

conditions. Under drought, a more limited number (7 out of 17) showed a negative correlation 

with the two amino acid clusters (red and yellow). However, among them, specific ROS 

scavenger enzymes such as dehydroascorbate reductase (DHAR), CAT and APX showed very 

strong negative correlations with the amino acid clusters (red and yellow), stronger than in 

control conditions. In summary, these results show the presence of a strong correlation 

between the flag leaf oxidative stress status and metabolome in both treatments but with 

strongest and more specific associations under drought, particularly between oxidative stress 

enzyme activities/markers and amino acids. The best correlations between the variables of 

the two datasets were the same under drought and control conditions: HPR with Gly and GOX 

with Ser (Fig. 3). For GOX and Ser, the correlation value (rs) was 0.76 under control and 0.91 

under drought stress, with the two linear models able to explain 58% and 83% of the variation, 

respectively. For HPR and Gly the correlation was even stronger, with rs = 0.84 under control 

and rs = 0.96 under drought, and with 75% and 93% of the variation, respectively, explained 

by the linear models. 
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Fig. 2. Hierarchical clustering and heatmap of the oxidative stress markers/enzymes versus 
metabolites pairwise correlations under the two treatments for the 292 rice accessions. 
Spearman correlations under control (top) and drought stress (bottom) conditions. The metabolite 
color code of the bar below the dendrograms as well as the color of the main clusters are the same as 
in Fig. 1. Malondialdehyde (MDA), polyphenols (Poly), protein oxidation (ProtOx), total antioxidant 
capacity (TAC), ascorbate oxidase (AO), ascorbate peroxidase (APX), catalase (CAT), dehydroascorbate 
reductase (DHAR), ferredoxins (Frxs), glycolate oxidase (GOX), glutathione peroxidase (GPX), 
glutathione reductase (GR), glutaredoxins (Grxs), glutathione S-transferase (GST), hydroxypyruvate 
reductase (HPR), monodehydroascorbate reductase (MDHAR), peroxidase (POX), peroxiredoxins 
(Prxs), superoxide dismutase (SOD), thioredoxins (Trxs). 
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with the two amino acid clusters (red and yellow). However, among them, specific ROS 

scavenger enzymes such as dehydroascorbate reductase (DHAR), CAT and APX showed very 

strong negative correlations with the amino acid clusters (red and yellow), stronger than in 

control conditions. In summary, these results show the presence of a strong correlation 

between the flag leaf oxidative stress status and metabolome in both treatments but with 

strongest and more specific associations under drought, particularly between oxidative stress 

enzyme activities/markers and amino acids. The best correlations between the variables of 

the two datasets were the same under drought and control conditions: HPR with Gly and GOX 

with Ser (Fig. 3). For GOX and Ser, the correlation value (rs) was 0.76 under control and 0.91 

under drought stress, with the two linear models able to explain 58% and 83% of the variation, 

respectively. For HPR and Gly the correlation was even stronger, with rs = 0.84 under control 

and rs = 0.96 under drought, and with 75% and 93% of the variation, respectively, explained 

by the linear models. 
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Fig. 2. Hierarchical clustering and heatmap of the oxidative stress markers/enzymes versus 
metabolites pairwise correlations under the two treatments for the 292 rice accessions. 
Spearman correlations under control (top) and drought stress (bottom) conditions. The metabolite 
color code of the bar below the dendrograms as well as the color of the main clusters are the same as 
in Fig. 1. Malondialdehyde (MDA), polyphenols (Poly), protein oxidation (ProtOx), total antioxidant 
capacity (TAC), ascorbate oxidase (AO), ascorbate peroxidase (APX), catalase (CAT), dehydroascorbate 
reductase (DHAR), ferredoxins (Frxs), glycolate oxidase (GOX), glutathione peroxidase (GPX), 
glutathione reductase (GR), glutaredoxins (Grxs), glutathione S-transferase (GST), hydroxypyruvate 
reductase (HPR), monodehydroascorbate reductase (MDHAR), peroxidase (POX), peroxiredoxins 
(Prxs), superoxide dismutase (SOD), thioredoxins (Trxs). 
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Fig. 3. Linear models between the photorespiratory enzymes and hydroxypiruvate reductase and 
glycolate oxidase and the amino acids glycine and serine under the two treatments. 
Linear models of the two best correlations between MetabOxi variables under the two treatments. 
Axes are expressed as log10 transformed detector response values for the metabolites glycine and 
serine and log10 enzyme activity for hydroxypyruvate reductase (HPR) and glycolate oxidase (GOX). In 
each plot are reported the Spearman correlation value (rs) between the two variables and the variation 
explained by the specific linear model (R2). 
 

Single MetabOxi variables are highly correlated with the genotypic variation in grain yield 

stability 

Next, a correlation analysis was carried out on the control and drought values of the 111 

MetabOxi variables and GY loss (Supplementary Table S9) to assess if single variables could be 

associated with yield stability of the 292 rice accessions.  

A higher number of significant correlations (Bonferroni corrected P-value < 0.05) with GY loss 

were found using drought values of the MetabOxi variables (53) than the control (25) values 

(Supplementary Table S9). Under both treatments, positive correlations outnumbered the 

negative ones (23 out of 25 positive correlations under control and 48 out of 53 under 
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drought). The variables that displayed the strongest correlations differed between the two 

treatments. Under control conditions (Table 2), erythritol showed the best correlation (rs = 

0.41) with GY loss, followed by a number of amino acids (Phe, Leu, beta-Ala as top ones) and 

2-amino-adipic acid, all displaying similar and positive values (rs ~ 0.30). The percentage of GY 

loss variance explained by the linear models (R2) under control was low (below 20%), with 

erythritol showing the highest contribution (17%). 

 
Table 2. MetabOxi variables with the best correlations between control values and grain yield loss. 
List of the 15 best (highest significance) Spearman correlations between control values of the 
MetabOxi variables and grain yield loss (GY loss). Spearman rank correlation values and significance 
between the same variables and flowering at sampling (Sam-Flow) are displayed.  R2: variance 
explained by the linear model created between the trait and each variable. Star (*) indicates a 
MetabOxi variable significantly correlated with both grain yield loss and flowering at sampling. 

 

Under drought, correlation values strongly increased (Table 3 and Supplementary Table S10) 

with seventeen MetabOxi variables displaying higher values than the top one under control 

conditions. The two best correlations with GY loss under drought were displayed by the lipid 

peroxidation product MDA (rs = 0.63) and the antioxidant enzyme DHAR (rs = -0.56), both 

showing a similar percentage of GY loss variance explained by their respective linear models 

(R2 = 0.38 and 0.37). Interestingly, DHAR was the only top ranked variable to show a negative 

correlation with GY loss. Under drought, many more amino acids, than under control 

conditions, ranked among the top correlated variables with GY loss (Thr, Arg, Val as top ones).  

 

 CONTROL  

 GY loss Sam-Flow  

Variable Spearman’s 
rho 

Bonf.corr. 
p-value R2 Spearman’s 

rho 
Bonf.corr. 

p-value R2  

Erythritol 
Phenylalanine 
Alanine, beta- 
Adipic acid, 2-amino- 
Leucine 
Maltose 
Proline 
Lysine 
Glucosamine, N-acetyl- 
Isoleucine 
Ribitol 
Mannosamine, N-acetyl- 
Ornithine 
Tyramine 
Poly 

0.41 
0.36 
0.33 
0.31 
0.33 
0.31 
0.31 
0.26 
0.30 
0.25 
0.25 
0.26 
0.23 
0.26 

-0.24 

4.28E-11 
4.69E-08 
1.75E-07 
5.48E-07 
1.62E-06 
1.65E-05 
2.83E-05 

0.0005 
0.0010 
0.0019 
0.0021 
0.0029 
0.0061 
0.0063 
0.0092 

0.17 
0.13 
0.12 
0.11 
0.11 
0.09 
0.09 
0.07 
0.07 
0.06 
0.06 
0.06 
0.06 
0.05 
0.05 

0.75 
0.57 
0.04 
0.11 
0.27 
0.17 
0.21 

-0.06 
0.76 
0.00 
0.43 
0.41 

-0.10 
0.44 

-0.01 

5.17E-34 
7.20E-16 

1 
1 

0.0313 
1 
1 
1 

7.95E-43 
1 

5.03E-10 
1.55E-08 

1 
2.96E-09 

1 

0.42 
0.23 
0.00 
0.01 
0.05 
0.01 
0.00 
0.02 
0.50 
0.00 
0.15 
0.13 
0.00 
0.14 
0.00 

* 
* 
 
 

* 
 
 
 

* 
 

* 
* 
 

* 
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Fig. 3. Linear models between the photorespiratory enzymes and hydroxypiruvate reductase and 
glycolate oxidase and the amino acids glycine and serine under the two treatments. 
Linear models of the two best correlations between MetabOxi variables under the two treatments. 
Axes are expressed as log10 transformed detector response values for the metabolites glycine and 
serine and log10 enzyme activity for hydroxypyruvate reductase (HPR) and glycolate oxidase (GOX). In 
each plot are reported the Spearman correlation value (rs) between the two variables and the variation 
explained by the specific linear model (R2). 
 

Single MetabOxi variables are highly correlated with the genotypic variation in grain yield 

stability 

Next, a correlation analysis was carried out on the control and drought values of the 111 

MetabOxi variables and GY loss (Supplementary Table S9) to assess if single variables could be 

associated with yield stability of the 292 rice accessions.  

A higher number of significant correlations (Bonferroni corrected P-value < 0.05) with GY loss 

were found using drought values of the MetabOxi variables (53) than the control (25) values 

(Supplementary Table S9). Under both treatments, positive correlations outnumbered the 

negative ones (23 out of 25 positive correlations under control and 48 out of 53 under 
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drought). The variables that displayed the strongest correlations differed between the two 

treatments. Under control conditions (Table 2), erythritol showed the best correlation (rs = 

0.41) with GY loss, followed by a number of amino acids (Phe, Leu, beta-Ala as top ones) and 

2-amino-adipic acid, all displaying similar and positive values (rs ~ 0.30). The percentage of GY 

loss variance explained by the linear models (R2) under control was low (below 20%), with 

erythritol showing the highest contribution (17%). 

 
Table 2. MetabOxi variables with the best correlations between control values and grain yield loss. 
List of the 15 best (highest significance) Spearman correlations between control values of the 
MetabOxi variables and grain yield loss (GY loss). Spearman rank correlation values and significance 
between the same variables and flowering at sampling (Sam-Flow) are displayed.  R2: variance 
explained by the linear model created between the trait and each variable. Star (*) indicates a 
MetabOxi variable significantly correlated with both grain yield loss and flowering at sampling. 

 

Under drought, correlation values strongly increased (Table 3 and Supplementary Table S10) 

with seventeen MetabOxi variables displaying higher values than the top one under control 

conditions. The two best correlations with GY loss under drought were displayed by the lipid 

peroxidation product MDA (rs = 0.63) and the antioxidant enzyme DHAR (rs = -0.56), both 

showing a similar percentage of GY loss variance explained by their respective linear models 

(R2 = 0.38 and 0.37). Interestingly, DHAR was the only top ranked variable to show a negative 

correlation with GY loss. Under drought, many more amino acids, than under control 

conditions, ranked among the top correlated variables with GY loss (Thr, Arg, Val as top ones).  

 

 CONTROL  

 GY loss Sam-Flow  

Variable Spearman’s 
rho 

Bonf.corr. 
p-value R2 Spearman’s 

rho 
Bonf.corr. 

p-value R2  

Erythritol 
Phenylalanine 
Alanine, beta- 
Adipic acid, 2-amino- 
Leucine 
Maltose 
Proline 
Lysine 
Glucosamine, N-acetyl- 
Isoleucine 
Ribitol 
Mannosamine, N-acetyl- 
Ornithine 
Tyramine 
Poly 

0.41 
0.36 
0.33 
0.31 
0.33 
0.31 
0.31 
0.26 
0.30 
0.25 
0.25 
0.26 
0.23 
0.26 

-0.24 

4.28E-11 
4.69E-08 
1.75E-07 
5.48E-07 
1.62E-06 
1.65E-05 
2.83E-05 

0.0005 
0.0010 
0.0019 
0.0021 
0.0029 
0.0061 
0.0063 
0.0092 

0.17 
0.13 
0.12 
0.11 
0.11 
0.09 
0.09 
0.07 
0.07 
0.06 
0.06 
0.06 
0.06 
0.05 
0.05 

0.75 
0.57 
0.04 
0.11 
0.27 
0.17 
0.21 

-0.06 
0.76 
0.00 
0.43 
0.41 

-0.10 
0.44 

-0.01 

5.17E-34 
7.20E-16 

1 
1 

0.0313 
1 
1 
1 

7.95E-43 
1 

5.03E-10 
1.55E-08 

1 
2.96E-09 

1 

0.42 
0.23 
0.00 
0.01 
0.05 
0.01 
0.00 
0.02 
0.50 
0.00 
0.15 
0.13 
0.00 
0.14 
0.00 

* 
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Table 3. MetabOxi variables with the best correlations between drought values and grain yield loss. 
List of the 15 best (highest significance) Spearman correlations between drought values of the 
MetabOxi variables and grain yield loss (GY loss). Spearman rank correlation values and significance 
between the same variables and flowering at sampling (Sam-Flow) are displayed.  R2: variance 
explained by the linear model created between the trait and each variable. Star (*) indicates a 
MetabOxi variable significantly correlated with both grain yield loss and flowering at sampling. 

 

Again, all these amino acids displayed similar correlation values with GY loss (rs ~ 0.45) but the 

correlations under drought, as well as the R2 values of their linear models (~ 20%), were 

substantially higher than under control conditions. 

Considering the previously described significant and similar correlation values between GY loss 

and flowering under both treatments (Supplementary Fig S2), we also decided to investigate 

if values of the MetabOxi variables were associated with differences in flowering among the 

accessions at sampling time. For this purpose, a new flowering variable (Sam-Flow) was 

created by subtracting the date of 50% flowering from the date of leaf sampling for every 

genotype (Supplementary Table S1) and correlation analysis was then performed between 

Sam-Flow and the control and drought values of the 111 MetabOxi variables (Supplementary 

Table S10). Interestingly, the top two correlated metabolites with GY loss under control 

conditions, erythritol and Phe, displayed significant and particularly high correlations (rs = 0.75 

and 0.57, respectively) with Sam-Flow. Different from the control conditions, the two top 

correlated variables with GY loss, MDA and DHAR, showed no significant correlation with Sam-

Flow (Table 3). 

 DROUGHT  

 GY loss Sam-Flow  

Variable Spearman’s 
rho 

Bonf.corr. 
p-value R2 Spearman’s 

rho 
Bonf.corr. 

p-value R2 
 

MDA 
DHAR 
Threonine 
Arginine 
Valine 
Ornithine 
Isoleucine 
Serine 
Methionine 
Leucine 
Glutamine 
Phenylalanine 
Tyrosine 
Alanine, beta- 
Lysine 

0.63 
-0.56 
0.48 
0.48 
0.47 
0.46 
0.46 
0.46 
0.45 
0.45 
0.44 
0.44 
0.44 
0.43 
0.41 

3.65E-30 
5.81E-29 
6.17E-18 
6.75E-18 
9.99E-17 
2.44E-16 
1.13E-15 
2.03E-15 
2.54E-15 
7.23E-15 
8.17E-15 
1.96E-14 
5.84E-14 
3.82E-13 
9.76E-13 

0.38 
0.37 
0.25 
0.25 
0.24 
0.23 
0.22 
0.22 
0.22 
0.21 
0.21 
0.21 
0.20 
0.19 
0.19 

0.23 
-0.06 
0.33 
0.36 
0.39 
0.35 
0.41 
0.25 
0.41 
0.40 
0.38 
0.45 
0.39 
0.32 
0.35 

0.1106 
1 

1.21E-06 
1.73E-06 
2.40E-09 
1.79E-07 
3.79E-12 

0.0248 
1.34E-11 
1.20E-12 
6.60E-11 
1.38E-16 
1.65E-12 
3.48E-08 
1.39E-08 

0.04 
0.00 
0.11 
0.11 
0.14 
0.12 
0.18 
0.05 
0.17 
0.19 
0.16 
0.24 
0.19 
0.13 
0.13 

 
 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
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Collectively, these results suggest that only drought values of the MetabOxi variables, and 

primarily of MDA and DHAR, are highly associated with GY loss performance across the 292 

genotypes. In addition, the non-significant correlation of MDA and DHAR with Sam-Flow 

further validates their true association with GY loss only. Nevertheless, the trait prediction 

accuracy of these two variables remains below 40% of the GY loss phenotypic variance.  

 

Prediction of grain yield loss by multivariate partial least squares regression models reveals 

the importance of leaf antioxidant system for yield stability 

Two models based on multivariate partial least squares regression (PLSR) were generated to 

predict GY loss performance of the population considering the 111 MetabOxi variables. In the 

first model, control values of variables were used for prediction of GY loss under drought. The 

best model (1LV, see Supplementary Fig. S5) showed a low predictability (Q2 = 0.15) (Fig. 4). 

This suggests that non-stressed values of flag leaf MetabOxi variables are not very accurate 

markers of tolerance/sensitivity for drought-induced GY loss across the population. In 

contrast, the best PLSR model based on values of the MetabOxi variables under drought 

conditions (6LVs, see Supplementary Fig. S5) displayed a high predictability (Q2 = 0.64) (Fig. 4), 

indicating a strong association between stress-induced changes in leaf metabolism/oxidative 

stress and GY loss. 

Both the PLSR models were based on ten different single sub-models generated by the cross-

validating procedure. By multiplying the ten ranks of each MetabOxi variable in the single sub-

models, their overall ranking was calculated (Supplementary Table S11 and S12). A low rank-

product implies that the variable has a high importance for the model. Among the top five 

predicting variables of the control model (Table 4), galactaric acid and erythritol ranked 1st and 

2nd, both showing a similarly low rank-product value (32 and 64, respectively). Interestingly, 

galactaric acid poorly correlates with GY loss whereas erythritol, as mentioned before, showed 

the highest correlation with the trait under control conditions. Additionally, erythritol showed 

a strong correlation with Sam-Flow whereas galactaric acid did not (Table 4). The next highest 

ranking predictors of the model, 2-aminoadipic acid, Trp and allantoin, showed a much lower 

importance than the first two, as represented by their high rank-product values. Interestingly, 

Trp, like erythritol, showed a strong positive correlation with Sam-Flow. 
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Table 3. MetabOxi variables with the best correlations between drought values and grain yield loss. 
List of the 15 best (highest significance) Spearman correlations between drought values of the 
MetabOxi variables and grain yield loss (GY loss). Spearman rank correlation values and significance 
between the same variables and flowering at sampling (Sam-Flow) are displayed.  R2: variance 
explained by the linear model created between the trait and each variable. Star (*) indicates a 
MetabOxi variable significantly correlated with both grain yield loss and flowering at sampling. 

 

Again, all these amino acids displayed similar correlation values with GY loss (rs ~ 0.45) but the 

correlations under drought, as well as the R2 values of their linear models (~ 20%), were 

substantially higher than under control conditions. 

Considering the previously described significant and similar correlation values between GY loss 

and flowering under both treatments (Supplementary Fig S2), we also decided to investigate 

if values of the MetabOxi variables were associated with differences in flowering among the 

accessions at sampling time. For this purpose, a new flowering variable (Sam-Flow) was 

created by subtracting the date of 50% flowering from the date of leaf sampling for every 

genotype (Supplementary Table S1) and correlation analysis was then performed between 

Sam-Flow and the control and drought values of the 111 MetabOxi variables (Supplementary 

Table S10). Interestingly, the top two correlated metabolites with GY loss under control 

conditions, erythritol and Phe, displayed significant and particularly high correlations (rs = 0.75 

and 0.57, respectively) with Sam-Flow. Different from the control conditions, the two top 

correlated variables with GY loss, MDA and DHAR, showed no significant correlation with Sam-

Flow (Table 3). 

 DROUGHT  

 GY loss Sam-Flow  

Variable Spearman’s 
rho 

Bonf.corr. 
p-value R2 Spearman’s 

rho 
Bonf.corr. 

p-value R2 
 

MDA 
DHAR 
Threonine 
Arginine 
Valine 
Ornithine 
Isoleucine 
Serine 
Methionine 
Leucine 
Glutamine 
Phenylalanine 
Tyrosine 
Alanine, beta- 
Lysine 

0.63 
-0.56 
0.48 
0.48 
0.47 
0.46 
0.46 
0.46 
0.45 
0.45 
0.44 
0.44 
0.44 
0.43 
0.41 

3.65E-30 
5.81E-29 
6.17E-18 
6.75E-18 
9.99E-17 
2.44E-16 
1.13E-15 
2.03E-15 
2.54E-15 
7.23E-15 
8.17E-15 
1.96E-14 
5.84E-14 
3.82E-13 
9.76E-13 

0.38 
0.37 
0.25 
0.25 
0.24 
0.23 
0.22 
0.22 
0.22 
0.21 
0.21 
0.21 
0.20 
0.19 
0.19 

0.23 
-0.06 
0.33 
0.36 
0.39 
0.35 
0.41 
0.25 
0.41 
0.40 
0.38 
0.45 
0.39 
0.32 
0.35 

0.1106 
1 

1.21E-06 
1.73E-06 
2.40E-09 
1.79E-07 
3.79E-12 

0.0248 
1.34E-11 
1.20E-12 
6.60E-11 
1.38E-16 
1.65E-12 
3.48E-08 
1.39E-08 

0.04 
0.00 
0.11 
0.11 
0.14 
0.12 
0.18 
0.05 
0.17 
0.19 
0.16 
0.24 
0.19 
0.13 
0.13 

 
 
* 
* 
* 
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* 
* 
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* 
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Collectively, these results suggest that only drought values of the MetabOxi variables, and 

primarily of MDA and DHAR, are highly associated with GY loss performance across the 292 

genotypes. In addition, the non-significant correlation of MDA and DHAR with Sam-Flow 

further validates their true association with GY loss only. Nevertheless, the trait prediction 

accuracy of these two variables remains below 40% of the GY loss phenotypic variance.  

 

Prediction of grain yield loss by multivariate partial least squares regression models reveals 

the importance of leaf antioxidant system for yield stability 

Two models based on multivariate partial least squares regression (PLSR) were generated to 

predict GY loss performance of the population considering the 111 MetabOxi variables. In the 

first model, control values of variables were used for prediction of GY loss under drought. The 

best model (1LV, see Supplementary Fig. S5) showed a low predictability (Q2 = 0.15) (Fig. 4). 

This suggests that non-stressed values of flag leaf MetabOxi variables are not very accurate 

markers of tolerance/sensitivity for drought-induced GY loss across the population. In 

contrast, the best PLSR model based on values of the MetabOxi variables under drought 

conditions (6LVs, see Supplementary Fig. S5) displayed a high predictability (Q2 = 0.64) (Fig. 4), 

indicating a strong association between stress-induced changes in leaf metabolism/oxidative 

stress and GY loss. 

Both the PLSR models were based on ten different single sub-models generated by the cross-

validating procedure. By multiplying the ten ranks of each MetabOxi variable in the single sub-

models, their overall ranking was calculated (Supplementary Table S11 and S12). A low rank-

product implies that the variable has a high importance for the model. Among the top five 

predicting variables of the control model (Table 4), galactaric acid and erythritol ranked 1st and 

2nd, both showing a similarly low rank-product value (32 and 64, respectively). Interestingly, 

galactaric acid poorly correlates with GY loss whereas erythritol, as mentioned before, showed 

the highest correlation with the trait under control conditions. Additionally, erythritol showed 

a strong correlation with Sam-Flow whereas galactaric acid did not (Table 4). The next highest 

ranking predictors of the model, 2-aminoadipic acid, Trp and allantoin, showed a much lower 

importance than the first two, as represented by their high rank-product values. Interestingly, 

Trp, like erythritol, showed a strong positive correlation with Sam-Flow. 
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Fig. 4. Predicted versus observed values of the control and drought PLSR models for the prediction 
of grain yield loss in the 292 rice accessions. 
PLSR plot of the cross-validated models for GY loss based on the control (top) and drought (bottom) 
values of the 111 MetabOxi variables.  Predictability (Q2) and linear latent variables (LVs) of the two 
models are reported. 

 

In the drought-based PLSR model of GY loss, all the five top predicting variables are oxidative 

stress enzymes or markers (Table 4). The most important predicting variable of the model, by 

far, is the antioxidant enzyme DHAR that ranked first in all the ten single sub-models (rank-

product = 1). The second highest ranking predicting variable of the model is the lipid 

peroxidation product MDA that displayed a still relatively low rank-product value (1024) albeit 
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already considerably higher than DHAR. DHAR and MDA are also the two variables that 

showed the highest correlation coefficients with GY loss, the first negative and the second 

positive. The model selected the antioxidant enzyme MDHAR and the level of total non-

enzymatic antioxidant capacity (TAC) as third and fourth best predicting variables even if both 

poorly correlate with GY loss. The fifth most important predicting variable of the PLSR drought 

model, ascorbate oxidase (AO) is, like DHAR and MDHAR, an enzyme involved in the ascorbate-

glutathione redox cycle. The high rank-product value displayed by MDHAR, TAC and AO 

indicates they have a substantially lower importance in the model than DHAR and MDA. 

Differently from the control model, the top predictors of the drought model did not show 

significant correlations with Sam-Flow (Table 4), except from AO that displayed a weak 

correlation.  

PLSR prediction models of grain yield stability in the population highlighted that only the 

drought stressed values of the MetabOxi variables could provide an accurate prediction of the 

trait. In addition, only antioxidant enzymes and oxidative stress markers ranked among the 

top ranked predicting variables of the drought model and they showed low correlations with 

Sam-Flow. This indicates that stress-induced alteration in the leaf oxidative stress status - 

much more than the metabolome - is tightly linked to the prevention of GY loss under drought. 

 
 
Table 4. Best predicting variables of the control and drought PLSR models for the prediction of grain 
yield loss in the 292 rice accessions. 
Top five ranked predicting variables of the double cross-validated PLSR models for grain yield loss 
prediction based on control (left) and drought (right) values. Variables are ranked based on their rank-
product value. Variables with the lower rank-product value are the ones with the larger discriminative 
power. rs: Spearman’s rho of correlation with grain yield loss (GY loss) and flowering at sampling (Sam-
Flow). Star (*) indicates a significantly correlated variable. 
 

 

 

 

CONTROL PLSR MODEL  DROUGHT PLSR MODEL 

Variable Rank-product GY loss 
rs 

Sam-Flow 
rs  Variable Rank-product GY loss 

rs 
Sam-Flow 

rs 
Galactaric acid 
Erythritol 
Adipic acid, 2-amino- 
Tryptophan 
Allantoin 

32 
64 

9.841E+04 
7.680E+05 
2.540E+07 

0.09 
0.41 * 
0.31 * 
0.27 * 
0.18 * 

0.00 
0.75 * 

0.11 
0.73 * 

0.18 

 

DHAR 
MDA 
MDHAR 
TAC 
AO 

1 
1024 

5.905E+04 
1.806E+07 
3.931E+07 

-0.56 * 
0.63 * 
-0.03 
0.08 

0.22 * 

-0.06 
0.23 
0.17 
0.07 

-0.17 * 
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Fig. 4. Predicted versus observed values of the control and drought PLSR models for the prediction 
of grain yield loss in the 292 rice accessions. 
PLSR plot of the cross-validated models for GY loss based on the control (top) and drought (bottom) 
values of the 111 MetabOxi variables.  Predictability (Q2) and linear latent variables (LVs) of the two 
models are reported. 

 

In the drought-based PLSR model of GY loss, all the five top predicting variables are oxidative 

stress enzymes or markers (Table 4). The most important predicting variable of the model, by 

far, is the antioxidant enzyme DHAR that ranked first in all the ten single sub-models (rank-

product = 1). The second highest ranking predicting variable of the model is the lipid 

peroxidation product MDA that displayed a still relatively low rank-product value (1024) albeit 
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already considerably higher than DHAR. DHAR and MDA are also the two variables that 

showed the highest correlation coefficients with GY loss, the first negative and the second 

positive. The model selected the antioxidant enzyme MDHAR and the level of total non-

enzymatic antioxidant capacity (TAC) as third and fourth best predicting variables even if both 

poorly correlate with GY loss. The fifth most important predicting variable of the PLSR drought 

model, ascorbate oxidase (AO) is, like DHAR and MDHAR, an enzyme involved in the ascorbate-

glutathione redox cycle. The high rank-product value displayed by MDHAR, TAC and AO 

indicates they have a substantially lower importance in the model than DHAR and MDA. 

Differently from the control model, the top predictors of the drought model did not show 

significant correlations with Sam-Flow (Table 4), except from AO that displayed a weak 

correlation.  

PLSR prediction models of grain yield stability in the population highlighted that only the 

drought stressed values of the MetabOxi variables could provide an accurate prediction of the 

trait. In addition, only antioxidant enzymes and oxidative stress markers ranked among the 

top ranked predicting variables of the drought model and they showed low correlations with 

Sam-Flow. This indicates that stress-induced alteration in the leaf oxidative stress status - 

much more than the metabolome - is tightly linked to the prevention of GY loss under drought. 

 
 
Table 4. Best predicting variables of the control and drought PLSR models for the prediction of grain 
yield loss in the 292 rice accessions. 
Top five ranked predicting variables of the double cross-validated PLSR models for grain yield loss 
prediction based on control (left) and drought (right) values. Variables are ranked based on their rank-
product value. Variables with the lower rank-product value are the ones with the larger discriminative 
power. rs: Spearman’s rho of correlation with grain yield loss (GY loss) and flowering at sampling (Sam-
Flow). Star (*) indicates a significantly correlated variable. 
 

 

 

 

CONTROL PLSR MODEL  DROUGHT PLSR MODEL 

Variable Rank-product GY loss 
rs 

Sam-Flow 
rs  Variable Rank-product GY loss 

rs 
Sam-Flow 

rs 
Galactaric acid 
Erythritol 
Adipic acid, 2-amino- 
Tryptophan 
Allantoin 

32 
64 

9.841E+04 
7.680E+05 
2.540E+07 

0.09 
0.41 * 
0.31 * 
0.27 * 
0.18 * 

0.00 
0.75 * 

0.11 
0.73 * 

0.18 

 

DHAR 
MDA 
MDHAR 
TAC 
AO 

1 
1024 

5.905E+04 
1.806E+07 
3.931E+07 

-0.56 * 
0.63 * 
-0.03 
0.08 

0.22 * 

-0.06 
0.23 
0.17 
0.07 

-0.17 * 
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DISCUSSION 

Drought affects flag leaf central metabolism and induces leaf senescence, protein 

degradation and nitrogen recycling 

Drought-induced stomatal closure reduces leaf photosynthetic activity, which induces 

metabolic reprogramming aimed to simultaneously adapt to the stressful condition and 

maintain active essential metabolic pathways (Obata and Fernie, 2012; Claeys and Inze, 2013). 

In this study, the imposition of drought stress during flowering resulted in a population-wide 

alteration of flag leaf central metabolism and oxidative stress status. The stress induced an 

increase in the level of most metabolites with a marked increase in the level of all the free 

amino acids and a, slightly less marked, increase of almost all the sugars, and decrease in the 

organic acids (Table 1). 

The increase in amino acid levels is a response to water limitation that has been observed 

before in leaves of many plant species (Obata and Fernie, 2012; Krasensky and Jonak, 2012; 

Obata et al., 2015; Fàbregas and Fernie, 2019) when exposed to severe drought stress in the 

vegetative stage. This accumulation has been associated with protein catabolism induced by 

premature stress-induced leaf senescence (Araújo et al., 2011; Watanabe et al., 2013; 

Hildebrandt et al., 2015). The presence of a strong drought-induced catabolic activity is further 

supported by the large increase under drought in the level of two metabolites, allantoin and 

2-aminoadipic acid (Table 1). Allantoin is an intermediate in purine catabolism known to be 

important for nitrogen remobilization and more recently postulated to have a role in stress 

tolerance by activating the production of abscisic acid (Watanabe et al. 2014). 2-Aminoadipic 

acid is the central metabolite involved in the plant catabolic pathway of lysine (Zhu et al., 

2000).  

Accumulation of specialized metabolites able to induce water retention and positive turgor 

pressure and to counteract the enhanced generation of ROS helps to protect cellular functions 

against the damage caused by drought-induced dehydration (Verslues and Juenger, 2011; 

Krasensky and Jonak, 2012; Nakabayashi and Saito, 2015). We found that the amino acid 

showing the highest population-wide increase was Pro, widely reported in the literature to 

accumulate under stressful conditions and considered as an osmolyte, ROS scavenger and 

stabilizer of protein structure (Hare and Cress, 1997; Verslues and Juenger, 2011). Similarly, 

the highest increase in the sugars was displayed by two members of the RFOs family, galactinol 
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and raffinose. These two sugar alcohols have been reported to accumulate, like Pro, in leaves 

exposed to environmental stress and to exert an osmoprotective action and scavenging 

activity against hydroxyl radicals (Nishizawa et al., 2008; Ende, 2013; Fàbregas and Fernie, 

2019). Interestingly and contrary to the literature, in our study the strong increase in Pro, 

galactinol and raffinose seemed not to be associated with a signature of stress tolerance. 

Indeed, drought values of these three metabolites neither showed negative correlations with 

GY loss (Supplementary Table S9) nor ranked as good model predictors for GY loss 

(Supplementary Table S12).   

Only few metabolite levels decreased under drought and most of them belonged to the class 

of organic acids with TCA cycle (isocitric and citric acid), and glycolysis (glyceric acid-3-

phosphate and phosphoenolpyruvic acid) intermediates displaying the highest decrease 

(Table 1). The TCA cycle and glycolysis are two interconnected pathways involved in the 

production of metabolic intermediates used in biosynthesis elsewhere in the cell (Araujo et 

al., 2012). Under drought, the strong reduction in the levels of metabolites of these two 

pathways could be due to an overall reduced biosynthetic activity of stressed leaves. This 

indirectly supports the fact that the increased levels of all the amino acids must be due to 

stress-induced protein degradation. 

 

Drought stress alters the relationships between central metabolic pathways 

Consistent with previous studies, hierarchical clustering analysis (Fig. 1) displayed the 

tendency of metabolites of the same class (amino acids, organic acids and sugars) to cluster 

together as evidence of commonly shared biosynthetic or catabolic pathways (Carreno-

Quintero et al., 2012; Obata and Fernie, 2012; Riedelsheimer et al., 2012; Obata et al., 2015). 

Drought induced a unique stress-specific cluster including allantoin and four amino acids, Asp, 

Glu, Gly and Ser (yellow in Fig. 1) that separated from the main cluster of the amino acids (red). 

Above, we already discuss the role of allantoin in nitrogen remobilisation as intermediate 

product of purine catabolism. A similar role is exerted by two amino acids of the cluster, Asp 

and Glu, both involved in nitrogen remobilisation as major long-distance phloem transport 

nitrogen forms (after their conversion to Asn and Gln) in senescent leaves (Watanabe et al., 

2013; Avila-Ospina et al., 2014). The other two amino acids of the stress-specific cluster, Gly 

and Ser, are well known markers of photorespiration as an increased activity of that process 
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pathways could be due to an overall reduced biosynthetic activity of stressed leaves. This 
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results in higher production of these compounds (Maurino and Peterhansel, 2010; Bauwe et 

al., 2010). The presence of this cluster, under drought conditions only, further supports the 

idea that physiological processes such as stress-induced senescence, nutrient recycling and 

photorespiration are co-ordinately enhanced by drought and have an impact on leaf central 

metabolism  (Avila-Ospina et al., 2014; Hildebrandt et al., 2015; Hodges et al., 2016).  

Confirming this hypothesis are the increased negative correlations that we found under 

drought between the amino acid clusters (red and yellow in Fig. 1) and the TCA cycle cluster 

(light blue). These negative correlations link high levels of photorespiration and presence of 

leaf senescence to low levels of mitochondrial respiration under drought stress (Atkin and 

Macherel, 2008). 

 

Photorespiration and ROS scavenging activity are linked with metabolic and oxidative 

damage induced by drought 

In addition to metabolic alterations, the drought-induced decrease in carbon assimilation 

results in enhanced generation of ROS in leaf cells (Suzuki et al., 2012; Noctor et al., 2014). 

Overall, we found that the activity of two photorespiratory enzymes, HPR and GOX, strongly 

positively correlated with the main amino acid clusters (Fig. 2). More specifically, the amounts 

of Gly and Ser in the flag leaf of the 292 genotypes almost perfectly correlated with the activity 

of the photorespiratory enzymes HPR and GOX under stress and showed very high correlations 

also under control conditions (Fig. 3). These results support the hypothesis of a direct 

interaction between photorespiration and amino acid metabolism (Fernie et al., 2013; Hodges 

et al., 2016) and they help to shed light on the contribution of the photorespiratory pathway 

to the overall supply of Gly and Ser in rice leaves under stressed and non-stressed conditions 

(Ros et al., 2013). The strength of these correlations (Fig. 3) highlights the importance of 

photorespiration in rice leaf central metabolism and suggests that its reduction to improve 

crop yield (Betti et al., 2016; Walker et al., 2016; South et al., 2019; Weber and Bar-Even, 2019) 

should be approached with great care as this could lead to leaf metabolic impairments 

resulting in even higher yield losses under drought. 

In the presence of limited CO2 supply, the photorespiratory pathway has often been 

considered as a protective mechanism able to reduce ROS generation, and the consequent 

oxidative damage, by consuming the excess of energy produced in the chloroplast (Wingler et 
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al., 2000; Takahashi and Badger, 2011; Hodges et al., 2016). However, the MDA values 

detected in this study do not support the ROS protective action of photorespiration. MDA is a 

lipid peroxidation product widely accepted as a marker of membrane oxidative damage 

(Møller et al., 2007). In the present study, under stress conditions, MDA values display a very 

similar correlation pattern with the main metabolic clusters as the one of GOX and HPR (Fig. 

2). This suggests that during enhanced photorespiration, a high rate of H2O2 production in the 

peroxisomes results in oxidation of cellular membrane lipids as previously described in maize 

leaves exposed to drought (Avramova et al., 2017). 

Plants have evolved a complex enzymatic and non-enzymatic antioxidative system to protect 

cells from the enhanced generation of ROS and their oxidative action (You and Chan, 2015). 

Under drought stress, we found that only the activity of some antioxidant enzymes, DHAR, 

CAT and APX, showed a strong negative correlation with the metabolic clusters associated 

with stress (Fig. 2) suggesting a specialized role of these enzymes in counteracting the adverse 

effects induced by drought. CAT and APX are considered the main antioxidant enzymes 

involved in H2O2 removal in leaves (Noctor et al., 2014). In particular, CAT directly converts 

H2O2 to water and oxygen (Mhamdi et al., 2010) and exerts most of its activity in the 

peroxisomes, where this enzyme counteracts H2O2 generation by GOX during photorespiration 

(Bauwe et al., 2010). APX protects chloroplast membranes by reducing H2O2 to water through 

the oxidation of ascorbate (Das and Roychoudhury, 2014). An efficient regeneration of 

reduced ascorbate is therefore essential for H2O2 scavenging. DHAR regenerates the oxidized 

ascorbate by using reduced glutathione as electron donor (Das and Roychoudhury, 2014) and 

the enzyme participates, like APX, in the ascorbate-glutathione pathway, the main redox hub 

in plants (Foyer and Noctor, 2011). CAT and APX activity displayed a strong population-wide 

increase under drought stress whereas, surprisingly, DHAR activity did not (Table 1). This could 

indicate that DHAR is not as ubiquitously important as CAT and APX, which are upregulated 

across the whole population or, alternatively, other regulatory mechanisms such as 

posttranslational modification or allosteric interactions could control DHAR in vivo, but are not 

discriminated in the in vitro assay (Sulpice et al., 2010). Nevertheless, differences in - in vitro 

analysed - DHAR activity in the vegetative stage between rice genotypes differing in drought 

tolerance have been described before (Selote and Khanna-Chopra, 2004). Conversely, and 

even more surprisingly, SOD, the enzyme showing the highest drought-induced increase 
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al., 2000; Takahashi and Badger, 2011; Hodges et al., 2016). However, the MDA values 

detected in this study do not support the ROS protective action of photorespiration. MDA is a 

lipid peroxidation product widely accepted as a marker of membrane oxidative damage 

(Møller et al., 2007). In the present study, under stress conditions, MDA values display a very 

similar correlation pattern with the main metabolic clusters as the one of GOX and HPR (Fig. 
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peroxisomes results in oxidation of cellular membrane lipids as previously described in maize 
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in plants (Foyer and Noctor, 2011). CAT and APX activity displayed a strong population-wide 
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(Table 1), did not show any strong positive or negative association with the metabolic clusters 

representative of stress (Fig. 2). In plants, SODs, localized in chloroplasts, mitochondria and 

cytosol, catalyse the conversion of the highly oxidative anion superoxide (O2-) to the less 

harmful H2O2 (Halliwell, 2006). Apparently, under drought stress, SOD activity increases 

independent of the genotype, thus representing a commonly-shared mechanism to generate 

high amounts of H2O2 that, in turn, can be detoxified by more genotype-dependent, localized 

and effective antioxidative responses.  

 

Multivariate modelling of GY loss reveals that the enzymes of the ascorbate-glutathione 

cycle are essential for GY stability under drought  

Differently from univariate statistics, multivariate analysis considers the simultaneous 

relationships between all the variables of a given dataset, thus increasing its predictive power, 

and it was used before in metabolomics-based plant trait prediction (Meyer et al., 2007; 

Mumm et al., 2016; Steinfath et al., 2010; Sulpice et al., 2009, 2013). The PLSR model based 

on control values of the MetabOxi variables showed low predictability for GY loss (Fig. 4). This 

observation suggests that basal levels of flag leaf primary metabolites, oxidative stress 

markers/enzymes and their interactions have little influence in determining the genotypic GY 

loss sensitivity upon the introduction of drought stress. Despite its low predictability, the PLSR 

control model suggested the highest importance for erythritol and galactaric acid. Consistent 

with the literature (Obata and Fernie, 2012; Fàbregas and Fernie, 2019), we found increased 

levels of erythritol under drought (Table 1) but only its control values displayed a positive 

correlation with drought-induced GY loss and an even stronger correlation with flowering time 

differences (Table 2 and 4). Considering the almost perfect correlation between flowering time 

differences between the two treatments and its influence on GY loss (Supplementary Fig. S2), 

it seems possible that the high ranking of erythritol in the control model reflects the relative 

importance of flowering differences at the time of stress imposition on GY loss performance 

of the 292 accessions. On the other hand, control values of the other equally important 

model’s predictor, galactaric acid, were not significantly correlated with GY loss, nor with 

flowering differences (Table 2 and 4). In a previous study on 21 rice genotypes, galactaric acid 

was described to correlate positively with plant growth, under both control and drought stress 

conditions (Degenkolbe et al., 2013). Its presence as top predictor in the control PLSR model 
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might reveal a hidden link between genotypic-induced differences in plant growth rate under 

optimal conditions and GY loss tolerance under drought stress. 

Different from the control model, the PLSR model based on drought values of the MetabOxi 

variables showed high predictability of GY loss (Fig. 4). This clearly indicates that the stress-

induced interaction between metabolites and oxidative stress markers/enzymes is tightly 

linked to the GY loss performance of the population. The top predictors of the drought model 

highlighted the importance of the enzymatic reduction of oxidized ascorbate as key 

mechanism to reduce the negative effect of oxidative stress on GY loss (Table 4). Particularly, 

DHAR outclassed all the other predictors in terms of model contribution. Above, we have 

already discussed the role of this enzyme in counteracting the adverse metabolic changes 

induced by drought (Fig. 2 and Table 3). Interestingly, another antioxidant enzyme, MDHAR, 

ranked 3rd in the model. MDHAR, just as DHAR, regenerates reduced ascorbate so that it can 

be used again by APX in the scavenging of H2O2 (Das and Roychoudhury, 2014). MDHAR, by 

the direct conversion of monodehydroascorbate to ascorbate before it spontaneously 

converts to dehydroascorbate (Smirnoff, 2000), might reduce the DHAR workload thus 

increasing the efficiency of ascorbate reduction. For this reason, MDHAR activity under 

drought might have been selected as a good predictor by the PLSR model despite its null 

correlation with GY loss (Table 4) and this demonstrates the value of this modelling approach 

above simple correlation analysis. The presence of MDA among the top three predictors of the 

drought model reinforces the link between leaf oxidative damage and GY loss. MDA values 

under drought showed the highest positive correlation with GY loss (Table 3 and 4) and 

displayed a strong correlation with photorespiratory activity and leaf senescence (Fig. 2). All 

these findings suggest that MDA represents the best biomarker of GY loss sensitivity under 

drought and that oxidative damage of leaf membrane lipids is among the most damaging 

processes caused by drought. 

 

CONCLUSIONS 

The metabolic and oxidative stress profiles of the rice flag leaf changed dramatically during 

drought stress in the reproductive stage. These changes proved to be highly informative for 

the grain yield loss sensitivity of the different rice accessions at harvest time. Multivariate 

modelling of grain yield loss revealed that the coordinated activity of enzymes involved in the 

Chapter 374   |



74 
 

(Table 1), did not show any strong positive or negative association with the metabolic clusters 

representative of stress (Fig. 2). In plants, SODs, localized in chloroplasts, mitochondria and 

cytosol, catalyse the conversion of the highly oxidative anion superoxide (O2-) to the less 

harmful H2O2 (Halliwell, 2006). Apparently, under drought stress, SOD activity increases 

independent of the genotype, thus representing a commonly-shared mechanism to generate 

high amounts of H2O2 that, in turn, can be detoxified by more genotype-dependent, localized 

and effective antioxidative responses.  

 

Multivariate modelling of GY loss reveals that the enzymes of the ascorbate-glutathione 

cycle are essential for GY stability under drought  

Differently from univariate statistics, multivariate analysis considers the simultaneous 

relationships between all the variables of a given dataset, thus increasing its predictive power, 

and it was used before in metabolomics-based plant trait prediction (Meyer et al., 2007; 

Mumm et al., 2016; Steinfath et al., 2010; Sulpice et al., 2009, 2013). The PLSR model based 

on control values of the MetabOxi variables showed low predictability for GY loss (Fig. 4). This 

observation suggests that basal levels of flag leaf primary metabolites, oxidative stress 

markers/enzymes and their interactions have little influence in determining the genotypic GY 

loss sensitivity upon the introduction of drought stress. Despite its low predictability, the PLSR 

control model suggested the highest importance for erythritol and galactaric acid. Consistent 

with the literature (Obata and Fernie, 2012; Fàbregas and Fernie, 2019), we found increased 

levels of erythritol under drought (Table 1) but only its control values displayed a positive 

correlation with drought-induced GY loss and an even stronger correlation with flowering time 

differences (Table 2 and 4). Considering the almost perfect correlation between flowering time 

differences between the two treatments and its influence on GY loss (Supplementary Fig. S2), 

it seems possible that the high ranking of erythritol in the control model reflects the relative 

importance of flowering differences at the time of stress imposition on GY loss performance 

of the 292 accessions. On the other hand, control values of the other equally important 

model’s predictor, galactaric acid, were not significantly correlated with GY loss, nor with 

flowering differences (Table 2 and 4). In a previous study on 21 rice genotypes, galactaric acid 

was described to correlate positively with plant growth, under both control and drought stress 

conditions (Degenkolbe et al., 2013). Its presence as top predictor in the control PLSR model 

75 
 

might reveal a hidden link between genotypic-induced differences in plant growth rate under 
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CONCLUSIONS 

The metabolic and oxidative stress profiles of the rice flag leaf changed dramatically during 

drought stress in the reproductive stage. These changes proved to be highly informative for 

the grain yield loss sensitivity of the different rice accessions at harvest time. Multivariate 

modelling of grain yield loss revealed that the coordinated activity of enzymes involved in the 
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ascorbate-glutathione cycle, and among them primarily DHAR, is an essential mechanism of 

drought tolerance in rice. Our study suggests that the co-expression of specific antioxidant 

enzymes of the ascorbate-glutathione cycle (DHAR and MDHAR) could represent a robust 

mechanism of tolerance that can minimize grain yield losses under drought. Finally, the 

genetic diversity of the 292 rice accessions used in this study offers the possibility to find 

genomic associations for the identified key enzymatic and metabolic determinants of grain 

yield loss under drought. These associations could be developed into genetic markers to be 

used in breeding for grain yield stability under drought in rice. 
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ABSTRACT 

Drought-stressed plants display reduced stomatal conductance, which results in increased 

leaf temperature by limiting transpiration. In this study, thermal imaging was used to quantify 

the differences in canopy temperature under drought in a rice diversity panel consisting of 

293 indica accessions. The population was grown under paddy field conditions and drought 

stress was imposed for 2 weeks at flowering. The canopy temperature of the accessions 

during stress negatively correlated with grain yield (r = -0.48) and positively with plant height 

(r = 0.56). Temperature values were used to perform a genome-wide association (GWA) 

analysis using a 45K-SNP map. A QTL for canopy temperature under drought was detected on 

chromosome 3 and fine-mapped using a high-density imputed SNP map. The candidate genes 

underlying the QTL point towards differences in the regulation of guard cell solute intake for 

stomatal opening as the possible source of temperature variation. Genetic variation for the 

significant markers of the QTL was present only within the tall, low-yielding landraces adapted 

to drought-prone environments. The absence of variation in the shorter genotypes, which 

showed lower leaf temperature and higher grain yield, suggests that breeding for high grain 

yield in rice under paddy conditions has reduced genetic variation for stomatal response 

under drought.  
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INTRODUCTION 

The increasing variation in temperature, precipitation, and their interaction, resulting from 

global climate change is predicted to increase the variability in global crop yield by more than 

30% (Ray et al., 2015). Among the cereals, rice is especially sensitive to water limitation and 

heat stress, particularly during the reproductive stage (Jagadish et al., 2007; Sandhu et al., 

2014). Climate change and the increasing probability of both prolonged and intermittent 

periods of drought are therefore likely to seriously affect rice production, particularly in rain-

fed lowland farmlands which account for more than 30% of the world’s total rice cultivation 

area (Bailey-Serres et al., 2010). Thus, plant breeders aim to develop varieties with improved 

yield performance under both favourable and water-limited conditions (Kumar et al., 2014). 

Crop germplasm collections stored in gene banks worldwide represent a large and potentially 

valuable reservoir of favourable alleles that can be used to develop new crop varieties that 

provide yield stability under both favourable and stressful environments (Tester and 

Langridge, 2010; Huang and Han, 2014). Over the last 10-20 years, rapid improvements in the 

throughput and cost-effectiveness of sequencing and genotyping have made it possible to 

generate extensive information about plant genetic variation at the genome level. This 

genomic information can be combined with phenotypic data for genetic analyses. The 

development of phenotyping tools has not progressed as rapidly, resulting in a ‘phenotyping 

bottleneck’ (Furbank and Tester, 2011; Cobb et al., 2013) which limits the genetic dissection 

of complex traits such as tolerance to drought stress. However, new, non-destructive, non-

invasive, image-based approaches to phenotyping in both the field and in controlled 

environments are increasingly available, greatly enhancing the potential to phenotype large 

populations (Furbank and Tester, 2011; White et al., 2012; Cobb et al., 2013; Reynolds et al., 

2016). The use of indirect ‘proxy’ indicators for stress can be particularly useful and a powerful 

resource for field-based phenotyping (Jones, 2014). Among them, canopy temperature, 

measured by thermal imaging, has already proven to be a good indicator of drought stress in 

the field, as it indirectly measures stomatal conductance (Leinonen et al. 2006; Munns et al. 

2010), one of the main physiological traits involved in the regulation of water loss (Schroeder 

et al., 2001). 

Several recent field studies successfully utilized infrared thermography to measure genotypic 

variation in stomatal conductance in a large number of genotypes (Jones et al., 2009; 
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Rebetzke et al., 2012; Zia et al., 2013; Prashar et al., 2013; Rutkoski et al., 2016). Critical to 

the success of such studies was the use of appropriate normalisation techniques to overcome 

the environmental fluctuations (air temperature, humidity, wind speed and incident 

radiation) that induce variation in canopy temperature during the process of imaging. The 

same studies also suggest that thermal image analysis of crop canopies is maximally effective 

in water-limited environments, as the genotypic differences in stomatal conductance are 

maximised under these conditions. As a consequence, thermal imaging provides a potentially 

useful phenotyping strategy for the selection of drought tolerant genotypes (Jones et al., 

2009; Prashar et al., 2013). 

In the present study, we assessed the effectiveness of thermal imaging to quantify genetic 

variation in canopy temperature/stomatal conductance in tropical rice, using a population of 

293 indica accessions grown in the field under control and drought conditions at the 

International Rice Research Institute (IRRI) in the Philippines. Statistical analyses revealed a 

relationship between canopy temperature during flowering, plant height and grain yield. We 

also report what is, to our knowledge, the first genome-wide association analysis of leaf 

temperature in rice, demonstrating that there is genetic variation for this trait and pinpoint 

genomic loci and a priori candidate genes that underlie this variation.   

 

MATERIALS AND METHODS 

Description of the field experiment 

A population consisting of 293 accessions of Oryza sativa subsp. indica was used in a field trial 

experiment at the International Rice Research Institute (IRRI), Los Baños, Philippines (14°11’N, 

121°15’E; elevation 21 m above sea level) during the 2014 dry season. The accessions are 

largely the same as those in the PRAY-indica panel (http://ricephenonetwork.irri.org) which 

includes traditional and improved indica rice lines originating from rice-growing countries in 

tropical and sub-tropical regions around the world.  The same panel was recently used in 

studies where a number of diverse traits were phenotyped as the basis for GWAS (Qiu et al., 

2015; Al-Tamimi et al., 2016; Rebolledo et al., 2016; Kadam et al., 2017, 2018; Kikuchi et al., 

2017). The field trial was carried out in two separate fields, one that served as control and the 

other for the drought stress treatment. Each field comprised three replicates of the 

population (A, B, C for control and D, E, F for drought) arranged into a serpentine design 
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(Supplementary Fig. S1). Each replicated accession consisted of 48 plants covering 2.5*0.8m 

area and arranged as four rows of 12 plants each. To manage the differences in flowering 

phenology, the accessions were sown at 7-day intervals and transplanted to create subgroups 

that allowed us to synchronize flowering. Eight subgroups were created according to the 

number of days required to reach 50% flowering. Each group was progressively sown and 

transplanted into the field with an interval of 7 days between each group. Inside each 

subgroup, accessions were transplanted from the shortest to the tallest one to minimise the 

positioning of short and tall genotypes next to each other (plant height data collected during 

the dry season 2013). The imposed drought stress treatment consisted of 14 consecutive days 

of water withholding applied only to the stress field at the reproductive stage (targeting 50% 

flowering). Weather data was collected during the entire experiment by a weather station 

located in the middle of the two fields. 26 tensiometers were randomly distributed over the 

stress field to record soil water potential. At the end of the stress period, the stress field was 

re-watered until all accessions reached the maturity stage for harvest. The control field was 

constantly kept in a flooded condition (paddy field). At harvest (on average 30 days after re-

watering) the following traits were scored for all replicates: plant height (cm), grain yield 

(grams/m2) and shoot biomass (grams/m2), harvest index (ratio between grain yield and total 

biomass). The dates of initial flowering, 50% flowering and 100% flowering were also recorded 

for replicated trials of each accession under both treatments. A more detailed description of 

the experiment, including the description of the same field trial conducted during the 2013 

dry season, can be found in Kadam et al., 2018. 

 

Thermal imaging 

A FLIR B660 (FLIR systems, USA) infrared camera was used for taking both infrared and visual 

images. The thermal camera is assembled with a focal plane array (FPA) uncooled 

microbolometer that operates in the spectral range of 7.5-13 μm with a resolution of 640 x 

480 pixels. The thermal camera is also equipped with a digital camera with a resolution of 3.2 

Megapixels. All pictures were taken from 3.5 m height (Jones et al., 2009) with each image 

covering approximately 50 m2 (Fig. 1 and Supplementary Fig. S1). The distance between the 

camera and the centre point of field in the image was kept constant, resulting in a camera 

angle of approximately 20° from the ground. Thermal pictures were taken, during the 

morning, 8, 9 and 10 days after the stress was applied (from 2nd to 4th April 2014). We 
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collected images to fully cover ‘Rep B’ (control), ‘Rep E’ and ‘Rep F’ (drought). For each 

replicate we collected images on two consecutive days at two different times during the 

morning period. To image an entire replicate, it took on average, 45 minutes. ‘Rep B&E’ were 

covered by 18 pictures whereas ‘Rep F’ by 27-28 (Supplementary Fig. S1 and Supplementary 

Table S1A and 1B). Camera settings were kept constant during the entire process of imaging 

with atmospheric temperature set to 30 °C and emissivity set at 0.95 according to Jones et al. 

2003, Prashar and Jones 2014 and Prashar and Jones 2016. 

 

Plot identification and picture analysis 

Plot identification was achieved following the experimental design and by the use of three T-

boards placed at known positions in each image (Fig. 1). In addition, every plot in the field 

trial was marked by a stick placed between two consecutive plots. The stick was characterized 

by a relatively higher temperature than the plant canopies and it was visible in the thermal 

images (Fig. 1B and 1C). Temperature quantification was performed by loading the images 

into the ThermaCAM Researcher Professional 2.10 software (FLIR systems), selecting a 

rectangular area for each plot canopy and using the mean temperature of the pixels in the 

enclosed rectangular area as representative for the specific plot (Fig. 1C and 1D). The 

temperature of each T-board reference surface (black and white) was determined in the same 

way.  

 

Plot image normalisation 

We considered three methods to normalise plot temperatures. In the first method (‘image 

mean’), plot temperatures in each image were multiplied by the ratio between the mean 

temperature of all the plots in the replicate and the mean temperature of all the plots in the 

image. The normalised temperature of plots occurring in two consecutive images was 

calculated as the mean of the two resulting values (Prashar et al., 2013). The second and third 

methods are based on the same procedure but using the mean temperature of the reference 

surfaces (‘white reference’ and ‘black reference’) to calculate the ratios. Correlation analysis 

between normalised data was performed to evaluate which normalisation method produced 

the highest degree of reproducibility for the same replicate imaged over two consecutive 

days.  
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Statistical analysis 

Statistical analysis of the data was conducted by using R statistical software (version 3.4.3; 

The R Foundation for Statistical Computing). Correlation analysis and graphical matrices were 

produced using a modified function of the ‘corrplot’ R package. Box-Cox transformation of 

not normally distributed traits was calculated using the ‘forecast’ R package. SNP-based 

principal component analysis (PCA) was performed using the prcomp function in the ‘stats’ R 

package. 

 

Genome-wide association (GWA) analysis with 45K SNP map 

Residuals’ distribution of the single replicates and mean values for control and drought stress 

replicates were analysed first. In case a replicate showed a non-normal distribution of 

residuals (Shapiro-Wilk’s p-value < 0.05), temperature data were Box-Cox transformed before 

being used for association mapping (Supplementary Fig. S2). Genome-wide association 

studies (GWAS) were performed using a linear-mixed model in EMMAX (Kang et al., 2010), 

which corrects for population structure by including a kinship matrix (IBS matrix) as covariate. 

EMMAX also provides an estimate of the phenotypic variance (pseudo-heritability, h2) 

explained by the IBS matrix. Of the 293 accessions in the field experiment, 271 matched the 

original panel (indica Pray panel of 339 accessions) that was used to generate a 47K SNP map 

using Genotyping-By-Sequencing (GBS) (8.75% missing data imputed by Fast Phase Hidden 

Markov Model, Scheet and Stephens 2006) as reported by Kadam et al. (2017, 2018). The 

reduced number of accessions (271) altered the minor allele frequency (MAF) threshold of 

the 339 accessions panel, originally set at 0.05. To exclude rare alleles from the present study 

(n=271 accessions), the 47K SNP map was re-filtered for MAF > 0.05, resulting in 45,505 SNPs 

available for GWAS. Principle Component Analysis (PCA) based on the 45,505 SNPs was 

conducted to quantify subpopulation structure (Fig. S3). The main component (PC1) explained 

only 8.72% of the genetic variation and a combination of the first three components failed to 

clearly separate groups of accessions. Therefore, no PC covariates were added to the linear-

mixed model to correct for subpopulation structure, following the approach used in McCouch 

et al., (2016). GWAS results are presented as Manhattan and Quantile-Quantile plots using 

the ‘qqman’ R package. To avoid Type 1 error, a stringent significance threshold of p < 0.00001 

(i.e. -log10 p > 5.0) was used to identify marker-trait associations. This significance threshold 
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collected images to fully cover ‘Rep B’ (control), ‘Rep E’ and ‘Rep F’ (drought). For each 
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Statistical analysis 
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conducted to quantify subpopulation structure (Fig. S3). The main component (PC1) explained 
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clearly separate groups of accessions. Therefore, no PC covariates were added to the linear-
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(i.e. -log10 p > 5.0) was used to identify marker-trait associations. This significance threshold 

Association mapping and genetic dissection of
drought-induced canopy temperature differences in rice

4

|   85   



86 
 

was higher than in other GWAS on rice using SNP maps of similar density (Zhao et al., 2011; 

Dimkpa et al., 2016; Kadam et al., 2017, 2018). 

 

GWA analysis using a high-density imputed SNP map  

Imputation of the 47K SNP map was conducted using the Rice Imputation Server (RIS) 

following Wang et al. (2018). The 47K SNPs map (.hmp format) was first converted to Plink 

format (.ped/.map) and then to Oxford format (.gen/.sample) before being uploaded as a 

compressed folder (.tar.gz) in the RIS (http://rice-impute.biotech.cornell.edu). The RIS-

imputed map was downloaded as single Plink file (.bed/.bim./.fam format) and divided into 

12 individual chromosomes. Focusing only on chromosome 3, missing SNPs were imputed 

with Beagle version 4.1 (Browning and Browning, 2007). Finally, the Beagle-imputed map of 

chromosome 3 was filtered at MAF > 0.05, resulting in a set of 186,012 SNPs available for 

mapping on this chromosome. GWA analysis using the chromosome 3 imputed map was 

conducted as described above for the 45K SNP map. The IBS matrix of kinship used as a model 

covariate was calculated based on the 45K GBS SNP map (Wang et al., 2018). 

 

Linkage disequilibrium (LD) analysis and a priori candidate gene selection 

Local pairwise linkage disequilibrium (LD) pattern near the significant SNPs was calculated and 

graphically represented by the ‘snp.plotter’ R package (Luna and Nicodemus, 2007). The 

annotations of genes located within LD blocks were obtained from the MSUv7 rice genome 

database (http://rice.plantbiology.msu.edu/). Exact localization and functional annotation of 

significant SNPs was conducted using SNPEff version 2.05 (Cingolani et al., 2012) with MSUv7 

as the reference genome. 

 

RESULTS 

Thermal imaging and data normalisation 

Fluctuations in environmental conditions are the main obstacle to the use of thermal imaging 

to reliably analyse plant canopy temperature. Supplementary Table S1B shows the changes 

in air temperature, humidity, wind speed, and solar irradiance measured on the days and in 

the time windows during which the thermal imaging was performed. To reduce the overall 

effect of these factors on the analysis of canopy temperature, we imaged the field replicates 

only during the mornings on three consecutive days. Mornings were selected for imaging due 
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to the sharp increase in wind speed experienced every afternoon in the field location, and 

previous reports describing wind as a major factor strongly impacting stomatal conductance 

values (Jones, 1999; Maes and Steppe, 2012). Nevertheless, our data documented variation 

caused by environmental fluctuations between images (Supplementary Fig. S4) and therefore 

normalisation was needed (Prashar and Jones, 2014). We applied three different procedures 

to reduce the variation caused by environmental fluctuations (‘image mean’, ‘white 

reference’ and ‘black reference’) (see Material and Methods). By comparing the same field 

replicate imaged over two consecutive days we found that ‘image mean’ normalisation 

produced higher correlation values (B03-B04: from 0.075 to 0.37; E02-E03: from 0.23 to 0.69; 

F03-F04: from 0.25 to 0.65) than normalisation based on white and black references 

(Supplementary Fig. S5). Hence, ‘image mean’ normalisation was used in all subsequent 

analyses.  

 

 
Fig. 1. Plot identification and picture analysis. 
Example of a digital picture with the corresponding thermal picture area as indicated by a rectangle 
(A). Thermal picture used for plot identification (B). Selection of specific polygonal areas for the 
quantification of the genotypes’ temperature (C). Temperature of the polygonal areas selected in C 
(D). 
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Canopy temperature 

Drought stress induced a strong increase in canopy temperature. The mean value of the 

normalised stressed replicates E and F was 2.27 °C higher than that of the control B replicate 

(Fig. 2).  Together with the treatment, the time of day strongly impacted leaf temperature. 

Control replicate B03, which was imaged in the early morning, showed a lower canopy 

temperature range (mean diff.: -0.90 °C) than B04 which was imaged in the late morning 

(approx. 2 hours later) the following day. As with the control replicates, drought replicate E02 

showed a lower temperature (mean diff.: -1.85 °C) than E03. The temperature difference 

between the two E replicates was due to the combined effect of time of day (E02 measured 

earlier in the morning than E03) and an additional day of drought stress. Tensiometer readings 

showed that the soil water potential of the drought field decreased sharply during the days 

of imaging, moving from an average of -34 kPa on 2 April to -53 kPa on 4 April (Supplementary 

Fig. S6).  Of the two stress replicates, F03 was imaged half an hour earlier than F04 but the 

latter was exposed to one more day of stress, resulting in a higher temperature for F04 (mean 

diff.: 0.33 °C) than for F03.  

 

Fig. 2. Canopy temperature of the different field replicates. 
Boxplots representing the mean temperatures of control (B mean) and drought (EF mean) replicates 
(on the left), and of the six single replicates (on the right), together with the information on the days 
and time windows of picture taking (in the middle). White and grey boxplots are representing control 
and stress values, respectively. 
 

Relationships between canopy temperature and agronomic traits 

Canopy temperature was measured in the second of two years (2013 and 2014 dry seasons) 

in which a field experiment was conducted to collect information on phenotypic trait 

performance of all 293 rice accessions evaluated under well-watered and drought-stress 
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conditions (Kadam et al., 2018). Plant height (PHT), grain yield (GY), shoot biomass (Shoot 

bio.) and harvest index (HI) were among the agronomic traits recorded at the time of harvest 

in both years. A ‘flowering’ variable (FLW) was calculated during the stress period of the 2014 

field trial only, by subtracting the date of 50% flowering for every genotype in each replicate 

from the date of thermal imaging. Drought stress similarly affected all traits in both years 

(Supplementary Fig. S7) and particularly reduced GY and HI, but minimally affected Shoot bio. 

and FLW (2014 only). To investigate the relationship between canopy temperature at the time 

of stress exposure and plant traits at harvest time, we conducted a Spearman correlation 

analysis between normalised temperature and agronomic trait values (Fig. 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Correlation analysis between mean values of canopy temperature and agronomic traits. 
Mean canopy temperature values selected under control (CON) and drought stress (DRO) conditions 
were determined in the 2013 dry season while agronomic traits were determined in both field trials 
conducted during the 2013 and 2014 dry seasons. Correlation values were determined by Spearman’s 
correlation. White cells indicate a non-significant correlation value (p > 0.001). PHT: plant height; GY: 
grain yield; Shoot bio.: shoot biomass; HI: harvest index; FLW: flowering; B mean: mean temperature 
of control field replicates; EF mean: mean temperature of drought field replicates. 
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Mean canopy temperature values selected under control (CON) and drought stress (DRO) conditions 
were determined in the 2013 dry season while agronomic traits were determined in both field trials 
conducted during the 2013 and 2014 dry seasons. Correlation values were determined by Spearman’s 
correlation. White cells indicate a non-significant correlation value (p > 0.001). PHT: plant height; GY: 
grain yield; Shoot bio.: shoot biomass; HI: harvest index; FLW: flowering; B mean: mean temperature 
of control field replicates; EF mean: mean temperature of drought field replicates. 
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Canopy temperature negatively correlated with GY and HI and positively with PHT, Shoot bio. 

and FLW, under both conditions but with higher correlation coefficients under stress than 

control; FLW was not significantly correlated with canopy temperature under drought (Fig. 3A 

and 3B). Remarkably, almost identical correlations were found between canopy temperature 

measured in the 2014 dry season, and the agronomic traits scored during the field trial 

conducted in the 2013 dry season (Fig. 3C and 3D). In both years, the highest correlation 

coefficients were found between the mean values of canopy temperature under drought 

stress and PHT (r = 0.56 in 2014; r = 0.58 in 2013), GY (r = -0.48 in 2014; r = -0.38 in 2013) and 

HI (r = -0.53 in 2014; r = -0.54 in 2013). For these three traits, the percentage of variance 

explained by the linear models (R2) associating temperature and trait was equal to 34% for 

PHT in both years, 25% and 16% for GY, 30% and 28% for HI in 2014 and 2013, respectively 

(Supplementary Fig. S8). Overall, these results show that, under drought stress, thermal 

imaging of rice canopies at flowering time can detect canopy temperature differences that 

correlate with plant performance at the time of harvest. Furthermore, the almost identical 

correlations between the agronomic traits scored during the 2013 field trial and canopy 

temperature measured in 2014 indirectly validate the robustness of the temperature results 

across two seasons of field trials. 

 

GWAS and LD analysis using the 45K SNP map 

The results described above demonstrate the effectiveness of thermal imaging in detecting 

quantitative differences in canopy temperature. Hence, we decided to try to use canopy 

temperature as a trait for association mapping analysis. Considering the strong influence of 

time of day and the day itself on canopy temperature (Fig. 2), the values of the separate field 

replicates were analysed, in addition to the mean temperature values of control and drought 

replicates. GWA mapping was conducted using a 45K SNP map and a stringent threshold of 

genome-wide significance (-log10 p > 5.0) to detect only highly significant marker-trait 

associations. Quantile-Quantile plots relative to the GWA analyses are reported in 

Supplementary Fig. S9. 

Mean temperature variation of control replicates (B mean) as well as the temperature of 

separate control replicates (B03 and B04) was characterized by a low fraction of pseudo-

heritability (h2 = 0.17~0.24) (Supplementary Table S2), and, indeed, GWA analysis did not find 
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marker-trait associations above the threshold of significance (Supplementary Fig. S10). Low 

heritability levels and absence of significant marker-trait associations suggest that no major 

genetic determinants are responsible for temperature variation under control conditions in 

this population. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Manhattan plots of the significant GWA mapping results using the 45K SNP map. 
Manhattan plots of the GWA mapping results using the 45K SNP map for mean canopy temperature 
under drought (EF mean) and for the single field replicate F03. The red dashed line indicates the 
genome-wide threshold for significant associated markers (-log10 p > 5.0). SNPs above the red line are 
highlighted in red. 
 
Pseudo-heritability of mean temperature values under drought, ‘EF mean’, was equal to 0.5 

(Supplementary Table S2) and, by GWA mapping, two significant markers (-log10 p > 5.0) were 

identified on chromosome 3 (Fig. 4A). The distance between the two markers (SNP_12262251 

and SNP_12529189) is 267 kbp, they show a similar level of significance and their minor alleles 

are associated with higher canopy temperature values than the major alleles (Supplementary 

Table S3). Similar to their mean, canopy temperature values of the separate drought stress 
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Fig. 4. Manhattan plots of the significant GWA mapping results using the 45K SNP map. 
Manhattan plots of the GWA mapping results using the 45K SNP map for mean canopy temperature 
under drought (EF mean) and for the single field replicate F03. The red dashed line indicates the 
genome-wide threshold for significant associated markers (-log10 p > 5.0). SNPs above the red line are 
highlighted in red. 
 
Pseudo-heritability of mean temperature values under drought, ‘EF mean’, was equal to 0.5 

(Supplementary Table S2) and, by GWA mapping, two significant markers (-log10 p > 5.0) were 

identified on chromosome 3 (Fig. 4A). The distance between the two markers (SNP_12262251 

and SNP_12529189) is 267 kbp, they show a similar level of significance and their minor alleles 

are associated with higher canopy temperature values than the major alleles (Supplementary 
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replicates displayed a substantially higher pseudo-heritability than control replicates 

(Supplementary Table S2). F03, the field replicate characterized by the highest heritability (h2 

= 0.45), was the only one showing significant marker-trait associations by GWA mapping (Fig. 

4B and Supplementary Fig. S10). The five significant markers identified for F03 are located in 

the same region of chromosome 3 defined by the two significant markers identified for ‘EF 

mean’ (Fig. 4A). These two markers are commonly shared as significant between F03 and ‘EF 

mean’. Among them, SNP_12529189 is the top marker in both replicates and for F03 it is 

highly significant with a LOD score above the Bonferroni corrected threshold (-log10 p > 5.96). 

The minor alleles of all five significant markers of F03 are associated with higher canopy 

temperature values than the major alleles (Supplementary Table S3). The higher heritability 

of canopy temperature values under drought suggests a stronger genetic control for the trait 

under this stress condition. Mapping results indicate that the significant marker-trait 

associations on chromosome 3 are largely determined by the temperature results of replicate 

F03. Nevertheless, the detection of two significant markers in the same region using the 

drought mean values suggests that the allelic effect on canopy temperature for these markers 

is similar to F03 also in the other replicates, despite the fact that the LOD score in those 

replicates is below our stringent significance threshold. In agreement with this hypothesis, 

the minor alleles of both markers SNP_12529189 and SNP_12262251 were associated with 

higher canopy temperature values than the major alleles in all the individual field drought 

replicates (Supplementary Table S4). 

Local linkage disequilibrium (LD) analysis was conducted considering a region of 500 kbp 

upstream and downstream of the two significant markers (SNP_12262251 and 

SNP_12529189). The pairwise LD estimates (r2) of the 102 SNPs in this region (~1.2 Mbp) 

revealed that the two significant markers map to different LD blocks (r2 > 0.6-0.7) 

(Supplementary Fig. S11A). Only 16 SNPs are present in the more localized region (~600 Mbp), 

including the two LD blocks. It is noteworthy that SNP_12262251 delimits its own LD block, 

with its closest upstream marker (SNP_11994173) located ~ 270 kbp away, and that these 

two markers show a very low value of pairwise LD (Supplementary Fig. S11B). A low density 

of GBS markers around the two significant SNPs does not allow a precise determination of the 

LD configuration, and leads to a likely underestimation of the size of the LD block containing 

SNP_12262251. 
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Fine mapping of chromosome 3 using a high-density imputed SNP map 

GWA mapping of ‘EF mean’ canopy temperature values was performed again only for 

chromosome 3 using a high density SNP map generated by haplotype-based genetic 

imputation using the RIS (Wang et al., 2018). Following imputation, the number of SNP 

markers available for mapping of chromosome 3 increased 46X, from 4,039 (on the 45K SNP 

map) to 186,012 on the high-density imputed map. Overall, the imputed map drastically 

improved the mapping resolution. The number of significant SNPs (-log10 p > 5.0) associated 

with the ‘EF mean’ canopy temperature increased from 2 (45K map) to 65 (Fig. 5A and 

Supplementary Table S5). All newly imputed markers localized in the same region as the two 

significant markers (SNP_12262251 and SNP_12529189) previously identified using the GBS 

map (Supplementary Table S5). 

 
Fig. 5. Manhattan plots of the GWA mapping results for chromosome 3 using the imputed map. 
Manhattan plot of GWA mapping results for chromosome 3 using 186K SNPs for ‘EF mean’ canopy 
temperature. SNPs above the red line are highlighted in red (A). Zoom in in the region of the significant 
SNPs. The red arrows indicate the two QTLs (qCT1 and qCT2). SNPs of the GBS map are highlighted in 
light blue (B). In both figures, the red dashed line indicates the genome-wide threshold for significant 
associated markers (-log10 p > 5.0). 

 

Zooming into the region of significance (12.1-12.7 Mbp) on the high-density map showed two 

distinct QTLs, qCT1 and qCT2 (Fig. 5B). Previously, qCT2 could not be clearly detected due to 

the lack of markers around SNP_12262251 (Supplementary Fig. S11B). The significant SNPs 

define both QTLs are characterized by minor alleles associated with higher canopy 

temperature values than the major alleles (Supplementary Table S5). In the imputed high-
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replicates displayed a substantially higher pseudo-heritability than control replicates 

(Supplementary Table S2). F03, the field replicate characterized by the highest heritability (h2 

= 0.45), was the only one showing significant marker-trait associations by GWA mapping (Fig. 

4B and Supplementary Fig. S10). The five significant markers identified for F03 are located in 

the same region of chromosome 3 defined by the two significant markers identified for ‘EF 

mean’ (Fig. 4A). These two markers are commonly shared as significant between F03 and ‘EF 

mean’. Among them, SNP_12529189 is the top marker in both replicates and for F03 it is 

highly significant with a LOD score above the Bonferroni corrected threshold (-log10 p > 5.96). 

The minor alleles of all five significant markers of F03 are associated with higher canopy 

temperature values than the major alleles (Supplementary Table S3). The higher heritability 

of canopy temperature values under drought suggests a stronger genetic control for the trait 

under this stress condition. Mapping results indicate that the significant marker-trait 

associations on chromosome 3 are largely determined by the temperature results of replicate 

F03. Nevertheless, the detection of two significant markers in the same region using the 

drought mean values suggests that the allelic effect on canopy temperature for these markers 

is similar to F03 also in the other replicates, despite the fact that the LOD score in those 

replicates is below our stringent significance threshold. In agreement with this hypothesis, 

the minor alleles of both markers SNP_12529189 and SNP_12262251 were associated with 

higher canopy temperature values than the major alleles in all the individual field drought 

replicates (Supplementary Table S4). 

Local linkage disequilibrium (LD) analysis was conducted considering a region of 500 kbp 

upstream and downstream of the two significant markers (SNP_12262251 and 

SNP_12529189). The pairwise LD estimates (r2) of the 102 SNPs in this region (~1.2 Mbp) 

revealed that the two significant markers map to different LD blocks (r2 > 0.6-0.7) 

(Supplementary Fig. S11A). Only 16 SNPs are present in the more localized region (~600 Mbp), 

including the two LD blocks. It is noteworthy that SNP_12262251 delimits its own LD block, 

with its closest upstream marker (SNP_11994173) located ~ 270 kbp away, and that these 

two markers show a very low value of pairwise LD (Supplementary Fig. S11B). A low density 

of GBS markers around the two significant SNPs does not allow a precise determination of the 

LD configuration, and leads to a likely underestimation of the size of the LD block containing 

SNP_12262251. 
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Fine mapping of chromosome 3 using a high-density imputed SNP map 

GWA mapping of ‘EF mean’ canopy temperature values was performed again only for 

chromosome 3 using a high density SNP map generated by haplotype-based genetic 

imputation using the RIS (Wang et al., 2018). Following imputation, the number of SNP 

markers available for mapping of chromosome 3 increased 46X, from 4,039 (on the 45K SNP 

map) to 186,012 on the high-density imputed map. Overall, the imputed map drastically 

improved the mapping resolution. The number of significant SNPs (-log10 p > 5.0) associated 

with the ‘EF mean’ canopy temperature increased from 2 (45K map) to 65 (Fig. 5A and 

Supplementary Table S5). All newly imputed markers localized in the same region as the two 

significant markers (SNP_12262251 and SNP_12529189) previously identified using the GBS 

map (Supplementary Table S5). 

 
Fig. 5. Manhattan plots of the GWA mapping results for chromosome 3 using the imputed map. 
Manhattan plot of GWA mapping results for chromosome 3 using 186K SNPs for ‘EF mean’ canopy 
temperature. SNPs above the red line are highlighted in red (A). Zoom in in the region of the significant 
SNPs. The red arrows indicate the two QTLs (qCT1 and qCT2). SNPs of the GBS map are highlighted in 
light blue (B). In both figures, the red dashed line indicates the genome-wide threshold for significant 
associated markers (-log10 p > 5.0). 

 

Zooming into the region of significance (12.1-12.7 Mbp) on the high-density map showed two 

distinct QTLs, qCT1 and qCT2 (Fig. 5B). Previously, qCT2 could not be clearly detected due to 

the lack of markers around SNP_12262251 (Supplementary Fig. S11B). The significant SNPs 

define both QTLs are characterized by minor alleles associated with higher canopy 

temperature values than the major alleles (Supplementary Table S5). In the imputed high-
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density map, the top SNP associated with qCT1, SNP_12523765 (-log10 p = 6.26), is 5.4 kbp 

away from the top SNP identified using the GBS map (SNP_12529189, -log10 p = 5.19). In qCT2, 

a series of 15 SNPs show the same significance (-log10 p = 5.57), and among them, 

SNP_12267148 is closest (4.9 kbp away) to the top SNP on the GBS map, SNP_12262251 (-

log10 p = 5.10) (Fig. 5B and Supplementary Table S5). Thus, the imputed map supports the 

location of the QTL identified on chromosome 3 using the 45K SNP map, but provides 

improved resolution, making it possible to differentiate two, closely linked genomic 

associations. 

To determine if the two QTLs are independently associated with canopy temperature, we 

again performed GWA mapping, but this time we fitted the most-significant SNP of qCT1, and 

subsequently of qCT2, as a covariate in the linear-mixed model. Fixing either SNP_12523765 

(qCT1) or SNP_12267148 (qCT2) as model covariate yielded a similar loss of signal from all 

markers in the region (-log10 p < 3), causing both QTLs to disappear (Supplementary Fig. S12). 

This suggests the presence of linkage between the two QTLs. 

 

Haplotype analysis of qCT1-qCT2 and their relationships with agronomic traits 

Using 20 significant SNPs within the two QTLs, we analyzed the regional haplotypes to 

determine whether recombinant genotypes display a different association with canopy 

temperature, as well as with two agronomic traits, PHT and GY that we showed to be 

significantly correlated with the temperature results (Fig. 3). For the analysis, we selected the 

imputed SNPs showing the highest association with ‘EF mean’ in the two QTLs (3 SNPs for 

qCT1 and 15 SNPs for qCT2) plus the two most significant GBS SNPs (SNP_12529189 and 

SNP_12262251, in qCT1 and qCT2, respectively). In total, we identified 3 major haplotypes 

(present in at least 5% of the 246 accessions analyzed) (Table 1). The most common 

haplotype, Haplotype I, is harbored by 206 accessions that are fixed for the major alleles at 

the 20 SNPs defining the two QTLs. These accessions always display a lower canopy 

temperature (Supplementary Table S6). The other two haplotypes, Haplotype II and 

Haplotype III, are harbored by 22 and 18 accessions, respectively. Haplotype III is the mirror 

image of Haplotype I, carrying the minor alleles at all 20 SNPs for the two QTLs. 
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density map, the top SNP associated with qCT1, SNP_12523765 (-log10 p = 6.26), is 5.4 kbp 

away from the top SNP identified using the GBS map (SNP_12529189, -log10 p = 5.19). In qCT2, 

a series of 15 SNPs show the same significance (-log10 p = 5.57), and among them, 

SNP_12267148 is closest (4.9 kbp away) to the top SNP on the GBS map, SNP_12262251 (-

log10 p = 5.10) (Fig. 5B and Supplementary Table S5). Thus, the imputed map supports the 

location of the QTL identified on chromosome 3 using the 45K SNP map, but provides 

improved resolution, making it possible to differentiate two, closely linked genomic 

associations. 

To determine if the two QTLs are independently associated with canopy temperature, we 

again performed GWA mapping, but this time we fitted the most-significant SNP of qCT1, and 

subsequently of qCT2, as a covariate in the linear-mixed model. Fixing either SNP_12523765 

(qCT1) or SNP_12267148 (qCT2) as model covariate yielded a similar loss of signal from all 

markers in the region (-log10 p < 3), causing both QTLs to disappear (Supplementary Fig. S12). 

This suggests the presence of linkage between the two QTLs. 

 

Haplotype analysis of qCT1-qCT2 and their relationships with agronomic traits 

Using 20 significant SNPs within the two QTLs, we analyzed the regional haplotypes to 

determine whether recombinant genotypes display a different association with canopy 

temperature, as well as with two agronomic traits, PHT and GY that we showed to be 

significantly correlated with the temperature results (Fig. 3). For the analysis, we selected the 

imputed SNPs showing the highest association with ‘EF mean’ in the two QTLs (3 SNPs for 

qCT1 and 15 SNPs for qCT2) plus the two most significant GBS SNPs (SNP_12529189 and 

SNP_12262251, in qCT1 and qCT2, respectively). In total, we identified 3 major haplotypes 

(present in at least 5% of the 246 accessions analyzed) (Table 1). The most common 

haplotype, Haplotype I, is harbored by 206 accessions that are fixed for the major alleles at 

the 20 SNPs defining the two QTLs. These accessions always display a lower canopy 

temperature (Supplementary Table S6). The other two haplotypes, Haplotype II and 

Haplotype III, are harbored by 22 and 18 accessions, respectively. Haplotype III is the mirror 

image of Haplotype I, carrying the minor alleles at all 20 SNPs for the two QTLs. 
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Accessions carrying this haplotype always display a higher canopy temperature 

(Supplementary Table S6). Interestingly, Haplotype II is a recombinant between Haplotype I 

and Haplotype III and carries major alleles for the SNPs in qCT2 (like Haplotype I) and minor 

alleles for the SNPs in qCT1 (like Haplotype III). Therefore, the recombination breakpoint of 

Haplotype II falls between qCT1 and qCT2. Comparing the phenotypic performance of the 

accessions carrying Haplotype II with the performance of those carrying Haplotypes I and III 

can offer insight into the separate effect of the two QTLs on canopy temperature, PHT and GY. 

For this purpose, and considering the unbalanced sample sizes of the haplotype groups, we 

conducted a series of Welch’s t-tests (Fig. 6). 

 
Fig. 6. Canopy temperature, plant height and grain yield performance of the accessions carrying the 
different qCT1-qCT2 haplotypes. 
Boxplots representing the range of variation of mean canopy temperature (A), plant height (B) and 
grain yield (C) for the accessions of the three haplotypes (I, II, III) under control and drought stress 
conditions. White and grey boxplots are representing control and stress values, respectively. *, **, *** 
indicate the level of significant difference (p < 0.05, p < 0.01, p < 0.001) between the groups. ‘B mean’: 
mean canopy temperature under control conditions; ‘EF mean’: mean canopy temperature under 
drought conditions; PHT: plant height; GY: grain yield. 

 

A highly significant (p < 0.001) canopy temperature difference under drought (EF mean) was 

detected between accessions carrying Haplotypes I and III (mean 34.24 and 35.05 °C, 

respectively). Interestingly, the same significant difference for ‘EF mean’ temperature was 

shown between those carrying Haplotypes I and II (mean 34.85 °C) but no difference was 
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detected between accessions carrying Haplotypes II and III (Fig. 6A). The very similar mean 

temperatures of Haplotypes II and III (recombinant for the two QTLs) suggests that the main 

effect on canopy temperature under drought is exerted by qCT1. Similar results, but less 

significant (p < 0.01), were found for canopy temperature under control conditions (B mean). 

Under control conditions, the three haplotype groups displayed lower temperature 

differences (mean of Haplotype I = 32.02 °C, Haplotype II = 32.39 °C and Haplotype III = 32.29 

°C) than under drought stress. We detected an almost identical pattern of significant 

differences between the three haplotype groups for PHT under both treatments (Fig. 6B). 

These differences are dependent on the fact that mean PHT of accessions carrying Haplotype 

II and III is ~20 cm higher than in those carrying Haplotype I (Table1). 

Among the 48 accessions shorter than 100 cm (based on PHT in control conditions), 47 (98%) 

carry Haplotype I and only a single accession carries Haplotype II (cv Binulawan from 

Philippines) while none carries Haplotype III (Supplementary Table S6). The presence of only 

tall accessions among those carrying Haplotypes II and III suggests that the short semi-dwarf 

accessions of this population are fixed for Haplotype I and, thus, carry only major alleles at 

qCT1 (associated with lower canopy temperature). Finally, we considered the differences in 

GY between the accessions of the different haplotype groups (Fig. 6C). Those carrying 

Haplotypes II and III showed a lower mean GY under control conditions (mean: 382 and 417 

grams/m2, respectively) than accessions carrying Haplotype I (mean: 475 grams/m2) (Table 1), 

but these differences were either not significant, or only slightly significant (p < 0.05) (Fig. 6C). 

Under drought stress, GY differences between Haplotype I (mean: 296 grams/m2) and the 

other two groups (mean of Haplotype II = 169 and III = 187 grams/m2) became highly 

significant (p < 0.001) (Fig. 6C) suggesting a negative effect of the minor alleles at qCT1 for GY 

under stress. 

 

LD analysis of qCT1 and a priori candidate gene identification 

LD analysis of qCT1 was performed to identify possible candidate genes underlying the LD 

blocks surrounding the most significant SNPs associated with ‘EF mean’ temperature. We 

considered SNPs of the imputed map showing values of association of -log10 p > 2 in regions 

125 kbp upstream and 125 kbp downstream of the most significant marker, SNP_12523765. 
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Accessions carrying this haplotype always display a higher canopy temperature 

(Supplementary Table S6). Interestingly, Haplotype II is a recombinant between Haplotype I 

and Haplotype III and carries major alleles for the SNPs in qCT2 (like Haplotype I) and minor 

alleles for the SNPs in qCT1 (like Haplotype III). Therefore, the recombination breakpoint of 

Haplotype II falls between qCT1 and qCT2. Comparing the phenotypic performance of the 

accessions carrying Haplotype II with the performance of those carrying Haplotypes I and III 

can offer insight into the separate effect of the two QTLs on canopy temperature, PHT and GY. 

For this purpose, and considering the unbalanced sample sizes of the haplotype groups, we 

conducted a series of Welch’s t-tests (Fig. 6). 

 
Fig. 6. Canopy temperature, plant height and grain yield performance of the accessions carrying the 
different qCT1-qCT2 haplotypes. 
Boxplots representing the range of variation of mean canopy temperature (A), plant height (B) and 
grain yield (C) for the accessions of the three haplotypes (I, II, III) under control and drought stress 
conditions. White and grey boxplots are representing control and stress values, respectively. *, **, *** 
indicate the level of significant difference (p < 0.05, p < 0.01, p < 0.001) between the groups. ‘B mean’: 
mean canopy temperature under control conditions; ‘EF mean’: mean canopy temperature under 
drought conditions; PHT: plant height; GY: grain yield. 
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detected between accessions carrying Haplotypes II and III (Fig. 6A). The very similar mean 

temperatures of Haplotypes II and III (recombinant for the two QTLs) suggests that the main 

effect on canopy temperature under drought is exerted by qCT1. Similar results, but less 

significant (p < 0.01), were found for canopy temperature under control conditions (B mean). 

Under control conditions, the three haplotype groups displayed lower temperature 

differences (mean of Haplotype I = 32.02 °C, Haplotype II = 32.39 °C and Haplotype III = 32.29 

°C) than under drought stress. We detected an almost identical pattern of significant 

differences between the three haplotype groups for PHT under both treatments (Fig. 6B). 

These differences are dependent on the fact that mean PHT of accessions carrying Haplotype 

II and III is ~20 cm higher than in those carrying Haplotype I (Table1). 

Among the 48 accessions shorter than 100 cm (based on PHT in control conditions), 47 (98%) 

carry Haplotype I and only a single accession carries Haplotype II (cv Binulawan from 

Philippines) while none carries Haplotype III (Supplementary Table S6). The presence of only 

tall accessions among those carrying Haplotypes II and III suggests that the short semi-dwarf 

accessions of this population are fixed for Haplotype I and, thus, carry only major alleles at 

qCT1 (associated with lower canopy temperature). Finally, we considered the differences in 

GY between the accessions of the different haplotype groups (Fig. 6C). Those carrying 

Haplotypes II and III showed a lower mean GY under control conditions (mean: 382 and 417 

grams/m2, respectively) than accessions carrying Haplotype I (mean: 475 grams/m2) (Table 1), 

but these differences were either not significant, or only slightly significant (p < 0.05) (Fig. 6C). 

Under drought stress, GY differences between Haplotype I (mean: 296 grams/m2) and the 

other two groups (mean of Haplotype II = 169 and III = 187 grams/m2) became highly 

significant (p < 0.001) (Fig. 6C) suggesting a negative effect of the minor alleles at qCT1 for GY 

under stress. 

 

LD analysis of qCT1 and a priori candidate gene identification 

LD analysis of qCT1 was performed to identify possible candidate genes underlying the LD 

blocks surrounding the most significant SNPs associated with ‘EF mean’ temperature. We 

considered SNPs of the imputed map showing values of association of -log10 p > 2 in regions 

125 kbp upstream and 125 kbp downstream of the most significant marker, SNP_12523765. 
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Pairwise LD estimates (r2) of the 418 SNPs in this region showed that all the SNPs in qCT1 form 

a single, large LD block characterized by r2 values greater than ~0.5 (Fig. 7A). However, the 

most significant marker of the QTL is preceded by many markers with lower significance (-log10 

p < 5) and all map within a sub-block characterized by high pairwise LD (r2 > 0.8). Furthermore, 

the 20 most significantly associated SNPs with ‘EF mean’ (-log10 p > 5, red in Fig. 7A) are 

localized between two highly significant markers, SNP_12523765 and SNP_12460502 within 

qCT1 (dashed black line in Fig. 7A). Thus, we considered the region delimited by these two 

markers (~42 kbp) as the most interesting for the identification of a priori candidate genes.  

Seven genes are included in this region (Fig. 7B and Supplementary Table S7). 

 
 

Fig. 7. Localized linkage disequilibrium analysis of qCT1. 
Manhattan plots displaying the level of significance (y-axis) over genomic positions (x-axis) in a window 
of 125 kbp upstream and downstream of the marker (12523765) most significantly associated with 
canopy temperature of ‘EF mean’ and located on chromosome 3 in qCT1 (A). Localized region (zoom 
in, black dashed triangle in A) showing the genes (black arrows) underlying the most significantly 
associated (-log10 P-value > 5.0) markers’ loci (B). Different colors are used to represent the pairwise 
LD estimates (r2) for each genomic location. Genomic locations of the most significant markers are 
projected on the LD matrix and on gene positions (only in B) by red lines. SNPs of the GBS map are 
highlighted in dark blue. 
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Among these 7, two were considered interesting candidate genes for their possible role in 

physiological processes regulating stomatal function. One gene is known to be responsive to 

abiotic stress (GOSlim terms) and encodes a putative mitochondrial fumarate hydratase 

(LOC_Os03g21950). This gene is located between SNP_12545362 and SNP_12560502, two of 

the three most significant markers in qCT1 (Fig. 7B). Fumarate hydratase (fumarase) is 

responsible for the conversion of fumarate to malate, a solute involved in the mechanism of 

stomatal opening/closure. The other interesting gene in this region (LOC_Os03g21890) 

encodes for a plasma membrane high-affinity potassium (HAK) transporter (Bañuelos et al., 

2002) and is located in close proximity to the most significant marker (SNP_12523765) within 

qCT1 (Fig. 7B). HAK transporters are involved in guard cell K+ flux that controls stomatal 

opening/closure (Jezek and Blatt, 2017). Finally, we considered the predicted functional effect 

of each of the 20 significant SNPs (-log10 p > 5) in this region to determine whether any of them 

could result in an amino acid change or a putative regulatory change affecting a specific gene 

candidate (Supplementary Table S8). None of the SNPs were associated with predicted non-

synonymous mutations that could point towards a particular candidate, but many are located 

upstream of the gene coding region and thus potentially associated with changes in regulation 

of gene expression, including the most significant one, SNP_12523765, which is located 711 

bp upstream of the HAK transporter. 

 

DISCUSSION 

Normalisation and physiological implication of canopy temperature results 

The main determinants of canopy temperature in plants include genetic components affecting 

stomatal aperture and canopy structure (which may also affect aerodynamic resistance and 

radiation interception) and a range of environmental factors. The ability to reduce 

environmental fluctuations in humidity, irradiance and wind speed is key to screening for true 

genetic variation in stomatal conductance (Prashar et al., 2013). Jones et al. (2009) 

demonstrated that the variation in canopy temperature between different rice genotypes can 

be detected in field experiments by thermal imaging with the use of appropriate normalisation 

techniques. In this paper we took this approach to the next level by screening a diversity panel 

consisting of 293 indica accessions. To date, only a few studies have followed a similar 
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Among these 7, two were considered interesting candidate genes for their possible role in 
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(LOC_Os03g21950). This gene is located between SNP_12545362 and SNP_12560502, two of 

the three most significant markers in qCT1 (Fig. 7B). Fumarate hydratase (fumarase) is 

responsible for the conversion of fumarate to malate, a solute involved in the mechanism of 
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encodes for a plasma membrane high-affinity potassium (HAK) transporter (Bañuelos et al., 

2002) and is located in close proximity to the most significant marker (SNP_12523765) within 

qCT1 (Fig. 7B). HAK transporters are involved in guard cell K+ flux that controls stomatal 

opening/closure (Jezek and Blatt, 2017). Finally, we considered the predicted functional effect 

of each of the 20 significant SNPs (-log10 p > 5) in this region to determine whether any of them 

could result in an amino acid change or a putative regulatory change affecting a specific gene 

candidate (Supplementary Table S8). None of the SNPs were associated with predicted non-

synonymous mutations that could point towards a particular candidate, but many are located 

upstream of the gene coding region and thus potentially associated with changes in regulation 

of gene expression, including the most significant one, SNP_12523765, which is located 711 

bp upstream of the HAK transporter. 

 

DISCUSSION 

Normalisation and physiological implication of canopy temperature results 

The main determinants of canopy temperature in plants include genetic components affecting 

stomatal aperture and canopy structure (which may also affect aerodynamic resistance and 

radiation interception) and a range of environmental factors. The ability to reduce 

environmental fluctuations in humidity, irradiance and wind speed is key to screening for true 

genetic variation in stomatal conductance (Prashar et al., 2013). Jones et al. (2009) 

demonstrated that the variation in canopy temperature between different rice genotypes can 

be detected in field experiments by thermal imaging with the use of appropriate normalisation 

techniques. In this paper we took this approach to the next level by screening a diversity panel 

consisting of 293 indica accessions. To date, only a few studies have followed a similar 
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extensive approach using thermal imaging of plant canopies under field conditions (Zia et al., 

2013; Prashar et al., 2013; Rutkoski et al., 2016). Normalisation of the raw canopy temperature 

data by ‘image mean’ reduced the influence of environmental factors. This is clearly shown by 

the increased correlation between the normalised canopy temperature data of the same field 

measured over two consecutive days (Supplementary Fig. S5A and 5B). Our results show that 

drought stress strongly increased canopy temperature. Other factors that may significantly 

affect canopy temperature are the time window and day of imaging and, for the stressed 

replicates only, the drought exposure time (Fig. 2). These results confirm that canopy 

temperature determined by thermal imaging is a reliable field proxy for stomatal conductance 

(Prashar and Jones, 2014; Jones, 2014), and that this trait is characterised by a very dynamic 

response to changing environmental conditions (Vico et al., 2011; Drake et al., 2013). The 

results of this study also suggest that water limitation reduced this dynamic response, as 

evidenced by the higher correlation coefficients under drought between the temperatures for 

the same field replicate imaged at different moments (Supplementary Fig. S5B).  

 

Canopy temperature and agronomic traits at harvest time 

Genotypic variation in stomatal conductance in rice may be responsible for differences in 

photosynthesis, even under optimal growing conditions (Ohsumi et al., 2006; Ouyang et al., 

2017). Reduction of stomatal conductance is a well described physiological response to 

drought stress in rice (Centritto et al., 2009; Ji et al., 2012). The resulting limitation in leaf CO2 

diffusion has been shown to cause grain yield reduction in rice genotypes grown under water-

limited conditions with the stress imposed at the flowering stage in the field (Centritto et al., 

2009; Lauteri et al., 2014). There is evidence - obtained with a limited number of genotypes - 

that canopy stomatal conductance monitoring by thermal remote sensing at the flowering 

stage could be an effective criterion for the selection of high-yielding rice genotypes (Horie et 

al., 2006). In the present study, canopy temperature measurements were used to screen 293 

rice accessions for stomatal conductance differences at anthesis and to explore correlations 

between the genotypic variation in canopy temperature and several plant agronomic traits.  

Canopy temperature was strongly and positively correlated with plant height, and an equally 

strong negative correlation was found with grain yield and harvest index, particularly under 
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stress conditions (Fig. 3 and Supplementary Fig. S8). It is interesting to note that very similar 

correlations were found between canopy temperature and agronomic traits scored in both 

years of field trials (Fig. 3), even if canopy temperature was measured one year only.  The 

consistency of these correlations indirectly reinforces the effectiveness of our normalisation 

procedure in reducing the influence of environmental factors on canopy temperature results. 

It can therefore be assumed that the effective detection of true genotypic differences in 

canopy temperature in one year could be similarly correlated with the performance of the 

accessions for agronomic traits, such as plant height and grain yield, over the two years of field 

trials. 

The stronger correlations we found between canopy temperature and agronomic traits under 

drought stress support the idea that stomatal conductance is more important for plant 

performance under stress than under optimal conditions, as reported in previous large field 

studies in other C3 and C4 cereals. For example, a similar negative correlation between canopy 

temperature in the reproductive stage and grain yield was described for segregating bi-

parental wheat populations (Saint Pierre et al., 2010). Zia et al. (2013) also found a negative 

correlation between canopy temperatures at anthesis, and grain yield in 150 maize single 

cross-hybrids under water-limited conditions. 

The positive correlation between plant height and thermal data found in this study (Fig. 3) is 

contrary to what has been observed for other crops including wheat (Giunta et al., 2008; 

Rebetzke et al., 2012) and potato (Prashar et al., 2013). The negative correlation between 

canopy temperature and plant height observed in the latter studies was interpreted in terms 

of an atmospheric temperature profile where an increased aerodynamic resistance in the 

shorter genotypes was responsible for their higher leaf temperature (Rebetzke et al., 2012). 

It is unclear why this does not apply in our rice trial, but it might be that the taller genotypes 

really do have more closed stomata than the shorter genotypes, with this effect overriding 

any aerodynamic effect of height. This hypothesis would need to be tested using direct 

stomatal conductance measurements, for instance using porometer measurements. The 

tendency for shorter rice genotypes to have more open stomata may be linked to the fact that 

the new, semi-dwarf and high-yielding varieties were selected under irrigated conditions 
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drought stress support the idea that stomatal conductance is more important for plant 
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(Pingali, 2012; Kumar et al., 2014) without considering water as a limiting factor, unlike in 

many wheat production environments.  

Another aspect that may confound the interpretation of the thermal imaging data is the effect 

of flowering on the canopy temperature measurements. Our dataset allowed the 

quantification of the contribution of differences in flowering stage to canopy temperature 

results. The accessions of the panel were sown and transplanted to the field in a staggered 

way to synchronize phenology with the aim of imposing stress at 50% flowering in all the 

varieties. Despite the good synchronization of flowering observed among genotypes (Kadam 

et al., 2018), a perfect synchronization is difficult to achieve with such a large and diverse 

panel, grown under varying conditions. Indeed, drought affects flowering time and in many 

cases accelerates it, a phenomenon referred to as drought escape (Zhang et al., 2016). The 

significant correlation between canopy temperature and flowering stage in control plants (Fig. 

3A) is in agreement with a 2°C higher temperature in unstressed wheat canopies with spikes, 

compared to unstressed canopies without spikes (Hatfield et al., 1984), and suggests that the 

quantification of plant canopy temperature can be significantly affected by differences in 

flowering. However, flowering time differences did not significantly affect the canopy 

temperature under drought (Fig. 3B). This result may be explained by the fact that under 

water-limited conditions the rise in leaf temperature may be larger than the increase resulting 

from the presence of panicles. 

 

Association mapping and QTL identification 

In the present study we used the observed phenotypic variation for rice canopy temperature 

under control and drought conditions in a GWA mapping experiment to identify the genetic 

factors contributing to this variation. The genotypic differences observed in canopy 

temperature under the two treatments show that there is substantial genetic variation, which 

is especially visible under drought. Mapping results indicate a low pseudo-heritability under 

control conditions both for the single replicates and their averaged canopy temperature 

(Supplementary Table S2).  This may indicate that either the environmental noise masks the 

genetic factors under control conditions, or that the absence of stress did not trigger their 
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expression. The absence of significant marker-trait associations for mean canopy temperature 

values under control conditions (Supplementary Fig. S10) indirectly confirm this. 

In accordance with other reports (Jones et al., 2009), thermal data under drought stress 

showed good heritability, substantially higher than under control conditions (Supplementary 

Table S2). This suggests that stress maximises the genotypic differences in canopy 

temperature, which therefore can be more effectively detected by thermal imaging.  A main 

marker-trait association was identified on chromosome 3 using the mean temperature values 

of the single stress replicates and the 45K SNP (GBS) map (Fig. 4). Mapping of chromosome 3 

with the imputed high-density SNP map increased the signal strength of the marker-trait 

association and even more the mapping resolution (Fig. 5), supporting the idea that 

imputation is a quick and cost-effective tool for adding value to existing genotyped panels 

(Wang et al., 2018). The increased resolution of the imputed map allowed the identification 

of two distinct, neighbouring QTLs (Fig. 5B). This distinction could not be resolved using the 

GBS map because of the low density of markers across the region (Supplementary Fig. S11). 

Haplotype analysis of recombinant accessions carrying either major or minor SNP alleles 

across the two QTL regions revealed that only one of them, qCT1, is responsible for canopy 

temperature variation (Table 1 and Fig. 6A). This suggests that the detection of qCT2 is only 

due to genotypes simultaneously carrying the minor alleles of two QTLs (e.g. Haplotype III in 

Table 1). The minor alleles for the SNPs defining qCT1 are associated with a higher canopy 

temperature and occur in taller, low-yielding genotypes (Fig. 6 and Supplementary Table S5) 

whereas the major alleles across qCT1 are almost completely fixed in the shorter (plant height 

< 100 cm) genotypes of this panel (Supplementary Table S6). This finding may support the 

hypothesis that rice genetic variation for stomatal conductance (here indirectly determined 

by canopy temperature measurements) was reduced as a result of selection for short-

statured, high tillering and productive genotypes for flooded environments. The taller 

accessions of the population are mostly low tillering and low yielding landraces that were 

selected for drought-prone, rain-fed environments (Kumar et al., 2014) where alleles 

responsible for reduced transpiration are preferred, even if it negatively affects grain yield 

under non-stressed conditions (Passioura, 2012). Fixation of the major alleles at qCT1 in short-

statured genotypes suggests that, in rice breeding, selection for high grain yield under flooded 
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(Pingali, 2012; Kumar et al., 2014) without considering water as a limiting factor, unlike in 

many wheat production environments.  

Another aspect that may confound the interpretation of the thermal imaging data is the effect 
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significant correlation between canopy temperature and flowering stage in control plants (Fig. 

3A) is in agreement with a 2°C higher temperature in unstressed wheat canopies with spikes, 

compared to unstressed canopies without spikes (Hatfield et al., 1984), and suggests that the 

quantification of plant canopy temperature can be significantly affected by differences in 

flowering. However, flowering time differences did not significantly affect the canopy 

temperature under drought (Fig. 3B). This result may be explained by the fact that under 

water-limited conditions the rise in leaf temperature may be larger than the increase resulting 

from the presence of panicles. 

 

Association mapping and QTL identification 

In the present study we used the observed phenotypic variation for rice canopy temperature 

under control and drought conditions in a GWA mapping experiment to identify the genetic 

factors contributing to this variation. The genotypic differences observed in canopy 

temperature under the two treatments show that there is substantial genetic variation, which 

is especially visible under drought. Mapping results indicate a low pseudo-heritability under 

control conditions both for the single replicates and their averaged canopy temperature 

(Supplementary Table S2).  This may indicate that either the environmental noise masks the 

genetic factors under control conditions, or that the absence of stress did not trigger their 
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expression. The absence of significant marker-trait associations for mean canopy temperature 

values under control conditions (Supplementary Fig. S10) indirectly confirm this. 

In accordance with other reports (Jones et al., 2009), thermal data under drought stress 

showed good heritability, substantially higher than under control conditions (Supplementary 

Table S2). This suggests that stress maximises the genotypic differences in canopy 

temperature, which therefore can be more effectively detected by thermal imaging.  A main 

marker-trait association was identified on chromosome 3 using the mean temperature values 

of the single stress replicates and the 45K SNP (GBS) map (Fig. 4). Mapping of chromosome 3 

with the imputed high-density SNP map increased the signal strength of the marker-trait 

association and even more the mapping resolution (Fig. 5), supporting the idea that 

imputation is a quick and cost-effective tool for adding value to existing genotyped panels 

(Wang et al., 2018). The increased resolution of the imputed map allowed the identification 

of two distinct, neighbouring QTLs (Fig. 5B). This distinction could not be resolved using the 

GBS map because of the low density of markers across the region (Supplementary Fig. S11). 

Haplotype analysis of recombinant accessions carrying either major or minor SNP alleles 

across the two QTL regions revealed that only one of them, qCT1, is responsible for canopy 

temperature variation (Table 1 and Fig. 6A). This suggests that the detection of qCT2 is only 

due to genotypes simultaneously carrying the minor alleles of two QTLs (e.g. Haplotype III in 

Table 1). The minor alleles for the SNPs defining qCT1 are associated with a higher canopy 

temperature and occur in taller, low-yielding genotypes (Fig. 6 and Supplementary Table S5) 

whereas the major alleles across qCT1 are almost completely fixed in the shorter (plant height 

< 100 cm) genotypes of this panel (Supplementary Table S6). This finding may support the 

hypothesis that rice genetic variation for stomatal conductance (here indirectly determined 

by canopy temperature measurements) was reduced as a result of selection for short-

statured, high tillering and productive genotypes for flooded environments. The taller 

accessions of the population are mostly low tillering and low yielding landraces that were 

selected for drought-prone, rain-fed environments (Kumar et al., 2014) where alleles 

responsible for reduced transpiration are preferred, even if it negatively affects grain yield 

under non-stressed conditions (Passioura, 2012). Fixation of the major alleles at qCT1 in short-

statured genotypes suggests that, in rice breeding, selection for high grain yield under flooded 
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conditions reduced the genetic variation available for traits related to more conservative 

water use. 

The marker-trait association detected on chromosome 3 using the mean temperature values 

of stress replicates was also identified using the temperature values of replicate F03 alone 

(Fig. 4B) but not using F04 (Supplementary Fig. S10), the other drought replicate that shared 

the field location with F03 (Supplementary Fig. S1). This difference may be explained by the 

different severity levels of the imposed stress between the two days of imaging, in 

combination with other environmental variation. F04 was imaged at almost the same time of 

day, but during a time window characterised by higher mean solar radiation and wind speed 

(Supplementary Table S1B). Furthermore, F04 was imaged one day later than F03, such that 

the water limitation further increased (Supplementary Fig. S6), resulting in higher canopy 

temperature values than observed in F03 (Fig. 2). It is likely that, due to the increased severity 

of the stress in F04 (Fig. 3), the stomata closed in a larger number of genotypes, thus reducing 

the variability and sensitivity to detect genetic differences in stomatal closure that were still 

detectable the day before. This confirms the very dynamic response of stomata to changing 

environmental conditions (Vico et al., 2011; Drake et al., 2013) and suggests the need of 

reducing the time window during which the thermal imaging is performed to increase the 

number of replicates imaged per day. This target can be achieved by assembling thermal 

cameras on unmanned aerial vehicles (Shi et al., 2016). 

 

Candidate genes 

A region of ~42 kbp was identified inside the qCT1 LD block by considering the most significant 

SNPs associated with mean canopy temperature under drought (Fig. 7B). This region contains 

seven genes (Supplementary Table S7), of which two were targeted as interesting a priori 

candidate genes, a mitochondrial fumarase (LOC_Os03g21980) and a plasma membrane high 

affinity potassium (HAK) transporter (LOC_Os03g21950). Plant guard cells accumulate solutes 

like K+ and malate during stomata opening and release/metabolize them during stomata 

closure. During these processes, solute flux through the plasma membrane of guard cells is 

highly active with K+ intake driving stomata opening with the involvement of different types 

of transporters, including HAK-type transporters (Jezek and Blatt, 2017).  Gago et al. (2016) 
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and Santelia and Lawson (2016) recently reviewed the role of guard cell and adjacent 

mesophyll cell metabolism in stomatal movement, highlighting the importance of malate 

(negatively charged) intake as a counter ion for K+ during stomatal opening. Fumarase is a 

mitochondrial enzyme involved in the production of malate, through the hydration of 

fumarate, in a critical step of the tricarboxylic acid (TCA) cycle (Sweetlove et al., 2010). In 

transgenic tomato plants, inhibition of fumarase resulted in a reduction in TCA cycle activity. 

This reduction had little effect on leaf metabolism but markedly reduced plant biomass 

because of a deficiency in stomatal function that resulted in reduced stomatal conductance 

(Nunes-Nesi et al., 2007). The co-location of fumarase and of a HAK transporter, both 

important for the mechanism of stomatal opening, in the QTL region of highest interest 

associated with canopy temperature/stomatal conductance variation reinforces our mapping 

results. 

Finally, our functional analysis of SNPs within the ~42 kbp region of highest significance within 

qCT1 did not highlight variants responsible for amino acid changes (Supplementary Table S8) 

but identified many upstream gene variants suggesting that changes in gene regulation may 

explain the phenotypic variation associated with this region. This hypothesis should be further 

investigated by sequencing the candidate genes and their promoter regions in a subset of 

contrasting lines carrying the major and minor alleles at the significant markers within qCT1, 

and testing gene expression differences in response to stress. This would help to pinpoint the 

functional nucleotide polymorphisms and to assess how they impact stomatal conductance 

and response to water stress. 

The significant SNPs across qCT1 may also be of interest to breeding programs aiming to 

develop drought resistant varieties. These SNPs represent a useful target for either marker-

assisted selection or genome editing using CRISPR Cas9. This should help to determine 

whether introducing minor alleles at qCT1 into semi-dwarf and high yielding varieties equips 

them with new genetic potential for a more conservative water-use strategy under stress. This 

trait is currently not available in this germplasm. It will be of great interest to see whether 

improved water use efficiency in these high-yielding varieties can be accomplished without 

negatively impacting their productivity when water is abundant. 
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conditions reduced the genetic variation available for traits related to more conservative 

water use. 
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and Santelia and Lawson (2016) recently reviewed the role of guard cell and adjacent 

mesophyll cell metabolism in stomatal movement, highlighting the importance of malate 

(negatively charged) intake as a counter ion for K+ during stomatal opening. Fumarase is a 
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fumarate, in a critical step of the tricarboxylic acid (TCA) cycle (Sweetlove et al., 2010). In 

transgenic tomato plants, inhibition of fumarase resulted in a reduction in TCA cycle activity. 

This reduction had little effect on leaf metabolism but markedly reduced plant biomass 

because of a deficiency in stomatal function that resulted in reduced stomatal conductance 

(Nunes-Nesi et al., 2007). The co-location of fumarase and of a HAK transporter, both 

important for the mechanism of stomatal opening, in the QTL region of highest interest 

associated with canopy temperature/stomatal conductance variation reinforces our mapping 

results. 
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The significant SNPs across qCT1 may also be of interest to breeding programs aiming to 

develop drought resistant varieties. These SNPs represent a useful target for either marker-

assisted selection or genome editing using CRISPR Cas9. This should help to determine 

whether introducing minor alleles at qCT1 into semi-dwarf and high yielding varieties equips 

them with new genetic potential for a more conservative water-use strategy under stress. This 

trait is currently not available in this germplasm. It will be of great interest to see whether 

improved water use efficiency in these high-yielding varieties can be accomplished without 

negatively impacting their productivity when water is abundant. 
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CONCLUSIONS 

Physiological profiling of plant traits combined with genetic analysis has the potential to 

greatly accelerate crop improvement (Reynolds and Langridge, 2016). The present study 

shows that changes in stomatal conductance, an important physiological response to water-

limitation, can be indirectly measured by thermal imaging and that the latter technique can 

be used to quantitatively screen a large panel of rice accessions. Canopy temperature during 

stress is a good predictor of grain yield performance and, therefore, thermal imaging 

represents an effective tool that can be used to accelerate physiological selection in plant 

breeding. In addition, association mapping of thermal data revealed the presence of genetic 

variation controlling canopy temperature under stress. The a priori candidate genes that were 

identified as underlying this genetic variation suggest that differences in the regulation of 

genes involved in guard cell solute intake affect stomatal behavior, which we detected as 

canopy temperature differences. Finally, our analysis shows that the major donors of genetic 

variation for canopy temperature/stomatal conductance are the tall landraces of rice. These 

old varieties and landraces present in crop germplasm collections represent a strategic reserve 

of genetic variation that can be tapped for developing new understanding of stress response 

and new varieties that are physiologically adapted to highly variable, water-limited 

environments. 
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SUPPLEMENTARY DATA 

Supplementary data are available at: 

https://drive.google.com/open?id=1t9Bn8RFIDTjwmXHs02OBtD1VAnY65Vts 

Fig. S1. Field trial at IRRI during the dry season 2013-2014. 
Fig. S2. Density of distribution of the standardized residuals for all the imaged field replicates. 
Fig. S3. Principal component analysis plots for the 271 indica rice accessions. 
Fig. S4. Mean temperature of thermal pictures relative to E03 drought field replicate. 
Fig. S5. Correlation matrices of non-normalised and normalised field replicates. 
Fig. S6. Soil water potential of the drought field. 
Fig. S7. Boxplots representing the range of variation for the recorded agronomic traits. 
Fig. S8. Scatterplots between drought stress mean temperature values and plant height, grain 
yield and harvest index scored during the 2013 and 2014 dry seasons. 
Fig. S9. Quantile-Quantile plots of expected versus observed p-values for the GWA mapping 
results. 
Fig. S10. Manhattan plots of the GWA mapping results of control replicate B mean, B03 and 
B04 and of the separate drought replicates E02, E03 and F04. 
Fig.S11. Manhattan plots displaying the level of significance over genomic positions of the 
chromosome 3 region of the two markers’ loci significantly associated with canopy 
temperature of ‘EF mean’. 
Fig. S12. Manhattan plots of the GWA mapping results for the QTL region of chromosome 3 
using the imputed map for ‘EF mean’ canopy temperature. 
Table S1A. Detailed information on imaged field replicates. 
Table S1B. Weather station data of the days of imaging. 
Table S2. Pseudo-heritability (h2) of temperature results for all the field replicates. 
Table S3. Significant SNPs identified by GWA mapping of canopy temperature under drought 
stress using the GBS SNP map. 
Table S4. Allelic effect on canopy temperature for markers of the most significant SNPs, 
located on chromosome 3, in the different drought field replicates and for their mean values. 
Table S5. Significant SNPs identified by GWA mapping of ‘EF mean’ canopy temperature using 
the imputed map. 
Table S6. List of the 246 accessions carrying one of the three haplotype groups, identified 
considering the most significant SNPs of qCT1 and qCT2, and their phenotypic performance.  
Table S7. Genes included in the localized region delimited by the most significantly associated 
SNPs with canopy temperature of ‘EF mean’ and located inside qCT1. 
Table S8. Effect of the 20 SNPs present in the qCT1 region and significantly associated with 
‘EF mean’ canopy temperature. 
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ABSTRACT 

The elucidation of the genetic basis of biochemical components predictive of grain yield 

represents an alternative breeding strategy for increasing crop yield and contributing to global 

food security.  In this study, flag leaf central metabolism and oxidative stress status of 271 

indica rice (Oryza sativa) accessions, grown in the field under well-watered and reproductive 

stage drought conditions, were used to predict grain yield performance using a multivariate 

statistical model. The resulting models for grain yield under well-watered conditions and 

drought displayed a higher predictability than multivariate models using genome data as 

explanatory variables, especially for the prediction of grain yield under drought and for stress-

induced grain yield loss. The best predictive variables of the metabolome/oxidative stress-

based models represent metabolic and enzymatic biomarkers that can be used in breeding for 

grain yield performance in rice. For these biomarkers, the fraction of their genetic basis 

associated with grain yield differences among accessions was determined by genome-wide 

association mapping. In this way, we identified genomic regions, and underlying candidate 

genes, that potentially represent breeding targets to improve rice grain yield under optimal 

conditions and grain yield/yield stability under drought stress. 
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INTRODUCTION 

A deeper understanding of the genetic basis of yield in response to environmental stress is 

key to improving the sustainability and productivity of major agricultural crops. In rice, as in 

most crops, grain yield is a complex trait with low heritability. It is controlled by many genes 

of small-effect, and the gene networks that ultimately control grain yield are influenced by 

genotype-environment interactions, as well as pleiotropic and epistatic effects (Xing and 

Zhang, 2010). These characteristics make it difficult to identify “yield genes” using genome-

wide association (GWA) mapping, because the multiple layers of interaction among variables 

are not easily incorporated into the linear-mixed models used in GWA mapping (Liu and Yan, 

2019). An alternative strategy for identifying “yield loci” would be to dissect yield per se into 

smaller, component traits that could be measured with greater accuracy and precision, and to 

identify genes and molecular variants associated with rate-limiting yield-component traits as 

the basis for improving crop yields in applied breeding programs (Reynolds and Langridge, 

2016). 

Metabolites are related to the biochemical and physiological status of the plant and may be 

considered intermediate phenotypes. They can also be yield-component traits and therefore, 

represent a promising alternative target (Luo, 2015). Metabolites are end products of cellular 

regulatory processes and they inherently incorporate the effect of genetic (i.e. pleiotropy and 

epistasis) and environmental factors, as well as their interactions (Fiehn, 2002; Herrmann and 

Schauer, 2013). In many ways, metabolite levels are more closely linked to phenotype than 

are gene transcripts, and in recent years, an expanding number of studies in diverse plant 

species have focused on large-scale metabolite profiling of bi-parental populations and 

association mapping panels (Carreno-Quintero et al., 2013; Luo, 2015; Fernie and Tohge, 

2017), including rice (Gong et al., 2013; Chen et al., 2014; Dong et al., 2015; Matsuda et al., 

2015). In most of these studies, metabolite levels were considered to be quantitatively 

inherited phenotypes and their genetic control was successfully explored through QTL or GWA 

mapping, but their association with traits of agronomic interest was not demonstrated. In 

different studies, the plant metabolome was used to predict complex traits such as biomass 

in Arabidopsis and maize (Meyer et al., 2007; Sulpice et al., 2009, 2013; Steinfath et al., 2010; 

Riedelsheimer et al., 2012) or grain yield in rice (Matsuda et al., 2015). These studies 
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highlighted the value of metabolic traits as either functional intermediates or correlated 

biomarkers for predicting yield-related traits, leading to the idea that metabolomics could 

complement genomics- and genetics-based breeding for crop yield improvement (Herrmann 

and Schauer, 2013; Valluru et al., 2014; Luo, 2015; Kumar et al., 2017). 

Recently, Melandri et al. (2019) showed that a multivariate model based on flag leaf central 

metabolites and oxidative stress-related markers/enzymes accurately predicted drought-

induced grain yield loss variation in a population of 292 landrace and modern indica rice 

varieties. Here we investigate whether the multivariate model – successfully used to predict 

grain yield loss under drought – could also accurately predict grain yield per se under well-

watered and under drought stress conditions. Using 271 (out of 292) accessions genotyped 

with 81,347 SNP markers, we also determine the predictive power of the partial least squares 

regression (PLSR) model for the same traits. The best predictors of each model were 

subsequently analyzed as quantitative traits in a GWA study using the 81,347 SNPs. The 

resulting associations allowed us to identify genetic markers that can be economically used in 

breeding to improve rice grain yield under optimal conditions and/or grain yield/yield stability 

under drought stress. 

 

MATERIALS AND METHODS 

Genetic resources and plant growth  

The two-hundred seventy-one accessions of Oryza sativa subsp. indica (Supplementary Table 

S1) were part of a larger panel (~300) used in a field experiment at the International Rice 

Research Institute (IRRI), Los Baños, Philippines during the 2013 dry season. The accessions 

are largely those of the PRAY-indica panel (http://ricephenonetwork.irri.org) which includes 

traditional and improved indica rice varieties originating from rice-growing countries in 

tropical and sub-tropical regions around the world. The same panel was recently used in 

studies where a number of diverse traits were phenotyped as the basis for GWA mapping (Qiu 

et al., 2015; Al-Tamimi et al., 2016; Rebolledo et al., 2016; Kadam et al., 2017, 2018; Kikuchi 

et al., 2017). The experiment comprised a control field and a drought stress field, each with 

three replicates of the population arranged in a serpentine design. To synchronize flowering, 

the accessions were divided into six groups according to days required to flower (previously 
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collected data), and progressively sown and transplanted with intervals of 10 days between 

each group. Drought stress consisted of 14 consecutive days of water withholding applied only 

to the stress field at the reproductive stage (targeting 50% flowering). At the end of stress, the 

field was re-watered until all the accessions reached maturity for harvest. The same 

experiment was conducted again during the 2014 dry season. Further details on the field 

experiments conducted in the two years can be found in Kadam et al. (2018). 

 

Phenotyping 

Grain yield (grams/m2) under control (GY-con) and drought (GY-dro) conditions was calculated 

considering only the replicates (two for GY-con and three for GY-dro) sampled for 

metabolomics and oxidative stress status analyses. Percentage of grain yield loss (GY-loss) of 

each accession was calculated as 100*(GY-con – GY-dro)/(GY-con). Plant height under control 

(PH-con) and drought (PH-dro) was calculated as for GY-con and GY-dro and expressed in cm. 

Flowering time differences (expressed in days) among the accessions under control (FT-con) 

and drought (FT-dro) were calculated as the date of leaf sampling, minus the date of 50% 

flowering considering the same field replicates as for GY and PH. For the 2014 field trial, GY-

con, GY-dro and GY-loss were calculated considering all three field replicates. The values of 

these traits for all accessions for the 2013 and 2014 field experiments are shown in 

Supplementary Table S1. 

 

Leaf sampling, metabolite profiling and determination of oxidative stress-related marker 

values and enzyme activities 

Flag/top leaves of each accession were sampled and immediately frozen in liquid nitrogen as 

described in Melandri et al. (2019). Leaf samples of the 271 accessions were analyzed by 

untargeted GC-MS-based metabolite profiling to assess the variation in polar metabolites as 

described by Riewe et al. (2012) and Riewe et al. (2016). For each accession and treatment, 

equal amounts of replicates (two for GY-con and three for GY-dro) were pooled prior to GC-

MS analysis and metabolite identification. A total of 88 metabolites were identified, 

predominantly primary metabolites (amino acids, sugars and organic acids). Glucose, fructose 

and sucrose were quantified spectrophotometrically (Riewe et al., 2008). Further details on 

metabolite profiling can be found in Melandri et al. (2019). The same leaf materials were 
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analyzed for the oxidative stress status. For this, the level of molecular antioxidants (2), 

oxidative stress markers (2) and the activity of enzymes (16) involved in ROS scavenging 

mechanisms and photorespiration were quantified using high-throughput colorimetric assays 

(Melandri et al., 2019). The 111 metabolites and oxidative stress markers/enzymes considered 

in this study, and their variation among the accessions, are shown in Supplementary Table S2. 

 

Data analysis and PLSR models 

Results of all metabolites and oxidative stress markers/enzymes were log10-transformed to 

improve normality. Statistical analyses and graphical representations were performed using R 

(version 3.4.3; The R Foundation for Statistical Computing). Imputation of missing values, prior 

statistical analyses, was performed by the knnImputation function in the ‘DMwR’ R package. 

Correlation analysis and graphical matrices were produced using a modified function of the 

‘corrplot’ R package. SNP-based principal component analysis (PCA) was performed using the 

prcomp function in the ‘stats’ R package. To predict GY-con, GY-dro and GY-loss, cross-

validated partial least squares regression (PLSR, ‘pls’ R package) models were used (Mevik and 

Wehrens, 2007; Mumm et al., 2016). Observations were auto-scaled in the PLSR procedure. 

The number of latent variables to include in each model was selected by testing the 

predictability value (Q2) using an increasing number of latent variables from 1 to 10. 

Considering the PLSR model based on metabolites and oxidative stress markers/enzymes, the 

relative importance of the model variables was summarized by multiplying the ten ranks of 

each variable in the single sub-models generated by the cross-validating procedure (rank-

products). 

 

Genome-wide association (GWA) mapping 

Genome-wide association (GWA) mapping was performed using a linear-mixed model in 

EMMAX (Kang et al., 2010), which corrects for population structure by including a kinship 

matrix (IBS matrix) as covariate. EMMAX also provides an estimate of the phenotypic variance 

(pseudo-heritability, h2) explained by the IBS matrix. The 271 accessions of this study are a 

subgroup of the original panel (PRAY-indica panel, n=339 accessions) that was used to 

generate a 88,753 SNP map using Genotyping-By-Sequencing (GBS) (23.26% missing data 

imputed by Fast Phase Hidden Markov Model, Scheet and Stephens 2006). The reduced 
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number of accessions (271) altered the minor allele frequency (MAF) threshold of the 339 

accessions panel, originally set at 0.05. To exclude rare alleles from the present study (n=271 

accessions), the 88,753 SNP map was re-filtered for MAF > 0.05, resulting in 81,347 SNPs 

available for GWA mapping. PCA based on the 81,347 SNPs was conducted to quantify 

subpopulation structure. The main component (PC1) explained only 8.30% of the genetic 

variation but it showed association with the geographical area of origin of the accessions 

(Supplementary Fig. S1) and, therefore, it was included as covariate in all the GWA mapping 

runs. GWA mapping results are presented as Manhattan and Quantile-Quantile plots using the 

‘qqman’ R package. To avoid Type 1 error, a suggestive significance threshold of p < 0.0001 

(i.e. -log10 p > 4.0) was used to identify significant marker-trait associations. This significance 

threshold was commonly used in other GWA mapping studies on rice based on SNP maps of 

similar density (Zhao et al., 2011b; Dimkpa et al., 2016; Rebolledo et al., 2016; Kadam et al., 

2017, 2018). Quantitative trait loci (QTLs) were defined by the presence of a SNP with 

significance of -log10 p > 4.0 and at least two additional SNPs showing significance of -log10 p 

> 3.0 and distance < 150 kbp from the most significant marker. The specific SNP distance 

interval represents the double of the ~75 kbp linkage disequilibrium (LD) decay estimated in 

indica rice by Mather et al. (2007). For each significant QTL, the phenotypic effect of the minor 

allele of the most significant (top) SNP marker was calculated for the traits used in GWA 

mapping and for the other agronomic traits. Welch’s t-tests were conducted to evaluate the 

significance of the phenotypic differences between the groups of accessions carrying the 

minor and major allele of each top marker. Furthermore, considering that the genome-wide 

LD decay of this specific rice panel was estimated to be ~65 kbp (Kadam et al., 2017), we 

applied this interval before and after the top markers of each QTL to identify the specific LD 

blocks. 

 

RESULTS and DISCUSSION 

Genotypic variation in phenotypic traits and their correlations 

In this study, the grain yield (GY) performance of 271 traditional and improved indica rice 

varieties (Supplementary Table S1), assembled from major tropical and subtropical rice-

growing regions around the world, was assessed in a field experiment under irrigated (control) 
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growing regions around the world, was assessed in a field experiment under irrigated (control) 
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and reproductive-stage drought conditions (Kadam et al., 2017). Drought stress significantly 

(Paired t-test: P ≤ 0.001) reduced GY by an average of 29.4% (GY-loss) (Supplementary Table 

S3). 

 
Fig. 1. Trait correlations and distributions.  
This figure summarizes the correlation matrix between grain yield (GY), grain yield loss (GY-loss), plant 
height (PH) and flowering time difference (FT) under control (-con) and drought (-dro) conditions. GY 
units are expressed in grams/m2, GY-loss in percentage, PH in centimetres and FT in days between 
flowering and sampling date. In the upper-right portion of the matrix are reported correlation values 
determined by Spearman’s correlation (stronger correlations are represented by larger numbers) and 
significance levels (in green, ‘***’= P ≤ 0.001, ‘**’= P ≤ 0.01, ‘*’= P ≤ 0.05). In the bottom-left portion 
of the matrix are shown scatterplots of the pairwise combinations between traits (trendline in red). 
Trait distributions are represented along the diagonal of the matrix (trendline in blue). 

 

GY under control (GY-con) and drought (GY-dro) conditions were highly correlated (rs = 0.75, 

P ≤ 0.001), suggesting strong genotypic control of the trait under both treatments. However, 

GY-loss was significantly (P ≤ 0.001) and negatively correlated (rs = -0.59) with GY-dro only (Fig. 

1). This observation suggests that the GY-dro performance is also largely influenced by 

genotype-by-treatment interactions. Considering that this rice panel includes traditional 

landraces and improved modern varieties, and that plant height (PH) and flowering time (FT) 
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have been significantly impacted by modern breeding efforts, we assessed the relationships 

between the GY-related traits and these two important agronomic traits, which both displayed 

high genotypic diversity (Fig. 1 and Supplementary Table S1). We also synchronized FT by 

sowing and transplanting the accessions on different dates such that drought stress was 

imposed on all genotypes at the same stage of development (Kadam et al., 2017). Flowering 

was indeed largely synchronized, but not entirely.  Melandri et al. (2019) showed a prevalent 

influence of genotype on FT under both control and drought, and that drought stress results 

in an almost identical delay in flowering for all accessions. A similar genotype-induced 

correlation (rs = 0.95, P ≤ 0.001) on the delay of flowering under drought (FT-dro) versus 

control (FT-con) was confirmed in the 271 genotypes (Fig. 1 and Supplementary Table S3). FT-

dro was positively correlated with GY-loss (rs = 0.28, P ≤ 0.001; Fig. 1) confirming that, in rice, 

drought-induced yield loss is influenced by FT differences during stress imposition (Liu et al., 

2006), though this effect is not very large. Specifically, the correlation shows that accessions 

that flowered before the onset of stress (< 10% of the total) had relatively greater GY-loss than 

those that flowered during stress (booting stage ~60% and heading stage ~30% of the total) 

(Kadam et al., 2017). Intriguingly, however, FT-dro does not correlate with GY-dro (Fig. 1), 

showing that, unlike for GY-loss, the genotype effect on GY-dro totally masked the influence 

of FT differences. Similar to FT, genotypic differences almost exclusively determined PH under 

both control (PH-con) and drought (PH-dro) conditions, consistent with the high correlation 

(rs = 0.94, P ≤ 0.001) observed in the two environments, with the drought treatment causing 

a significant (P ≤ 0.001) mean reduction of 8.1 cm (Supplementary Table S3). Interestingly and 

different from GY and FT, the PH distribution under both treatments is bi-modal, with two 

distinct normal distributions around two different peaks (Fig. 1). This bi-modal distribution is 

caused by the composition of the rice panel which includes tall, pre-green revolution 

traditional varieties and shorter post-green revolution modern varieties. In rice indica 

germplasm, the shorter stature of modern varieties (semi-dwarf phenotype) is mainly 

determined by the introduction of a recessive allele (sd1) of the gibberellin 20-oxidase 

biosynthetic gene (OsGA20ox2, LOC_Os01g66100), while the functional wild-type allele (SD1) 

is present in the taller, traditional varieties (Monna et al., 2002; Spielmeyer et al., 2002; Sasaki 

et al., 2002). Confirming our hypothesis, Kadam et al. (2017) identified a QTL, and the 

underlying OsGA20ox2 gene, associated with PH differences in this panel. The semi-dwarf 
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showing that, unlike for GY-loss, the genotype effect on GY-dro totally masked the influence 

of FT differences. Similar to FT, genotypic differences almost exclusively determined PH under 

both control (PH-con) and drought (PH-dro) conditions, consistent with the high correlation 

(rs = 0.94, P ≤ 0.001) observed in the two environments, with the drought treatment causing 

a significant (P ≤ 0.001) mean reduction of 8.1 cm (Supplementary Table S3). Interestingly and 

different from GY and FT, the PH distribution under both treatments is bi-modal, with two 

distinct normal distributions around two different peaks (Fig. 1). This bi-modal distribution is 

caused by the composition of the rice panel which includes tall, pre-green revolution 

traditional varieties and shorter post-green revolution modern varieties. In rice indica 

germplasm, the shorter stature of modern varieties (semi-dwarf phenotype) is mainly 

determined by the introduction of a recessive allele (sd1) of the gibberellin 20-oxidase 

biosynthetic gene (OsGA20ox2, LOC_Os01g66100), while the functional wild-type allele (SD1) 

is present in the taller, traditional varieties (Monna et al., 2002; Spielmeyer et al., 2002; Sasaki 
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underlying OsGA20ox2 gene, associated with PH differences in this panel. The semi-dwarf 
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stature in modern, high-yielding varieties is associated with higher harvest index, with more 

assimilates partitioned to the grains than to the leaves and stems. This translates into a higher 

yield for semi-dwarf varieties compared to the taller landraces and old varieties (Hedden, 

2003). This stature-associated yield difference is present in our rice panel and evidenced by 

the significant (P ≤ 0.001) negative correlations between PH and GY under both control (rs = -

0.30) and drought (rs = -0.26). PH differences are also correlated with drought-induced yield 

losses (GY-loss and PH-dro; rs = 0.15, P ≤ 0.05; Fig. 1) although the low level of significance and 

strength of correlation indicate that the stress treatment reduced the influence of the height-

yield relationship (Fig. 1). 

 

Metabolome/oxidative stress-based multivariate models display higher prediction power 

for grain yield variation than genomic-based models 

Multivariate, metabolome-based models of complex plant traits (i.e. biomass or yield) display 

higher predictive power than univariate statistical methods (like pairwise correlation analysis), 

and simultaneously allow identification of the most important predictive metabolites for use 

as biomarkers in breeding (Meyer et al., 2007; Sulpice et al., 2009, 2013; Steinfath et al., 2010; 

Fernandez et al., 2016). In rice, these models were successfully employed to predict the yield 

of hybrids by directly using the hybrid’s metabolite profiles (Xu et al., 2016) or those of the 

parents (Dan et al., 2016). Despite the value of these findings for hybrid breeding programs, 

the narrow genetic background of the materials used in these studies did not explore the large, 

qualitative and quantitative genetic diversity available for rice metabolism (Chen et al., 2014; 

Fernie and Tohge, 2017). In addition, most of the metabolomics studies in crop species, 

including rice, have been conducted under control conditions while, in Arabidopsis, natural 

variation in metabolic plasticity was shown to be an important factor contributing to 

phenotypic plasticity (Kleessen et al., 2014). Recently, Melandri et al. (2019) showed that a 

cross-validated partial least squares regression (PLSR) model, based on the levels of 111 flag 

leaf metabolites and oxidative stress markers/enzymes (hereafter MetabOxi), efficiently 

predicted stress-induced GY-loss in 292 genetically diverse indica rice genotypes. 

Here, we expand the PLSR modelling approach to predict GY-con and GY-dro, in addition to, 

GY-loss in a subset of 271 accessions from the same experiment using the MetabOxi dataset. 
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The 271 accessions were genotyped with 81,347 SNP markers, and the genomic dataset was 

also used – instead of the MetabOxi data – to build PLSR models for prediction of the above-

mentioned traits. Fig. 2 shows the observed versus predicted values and predictability (Q2) of 

the best (based on increasing latent variables, Supplementary Table S4) cross-validated 

MetabOxi- and genomic-based PLSR models for the three traits. 

 

 

Fig. 2. Predicted versus observed values of the MetabOxi-and genomic- based PLSR models for 
prediction of grain yield and grain yield loss under control and drought conditions.  
PLSR plot of the cross-validated models for GY-con (top), GY-dro (middle) and GY-loss (bottom) based 
on values of the 111 MetabOxi variables (left) and on 81,347 SNPs (right). Predictability (Q2) and linear 
latent variables (LVs) of the model are displayed in each plot. Each MetabOxi-based model shows the 
mean results of the model replicated five times. 
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Trait predictability is always higher for the MetabOxi- than for the genomics-based models. 

Particularly for GY-dro and GY-loss (Q2 = 0.52 and 0.63), large differences were observed 

between the MetabOxi-based models (both built using the values of the MetabOxi variables 

under drought; Supplementary Table S2) and their respective genomic-based models (Q2 = 

0.37 and 0.05). Overall, the higher predictive power of the MetabOxi dataset compared to the 

genomic dataset shows that metabolite values and enzyme activities are more closely aligned 

to the phenotype than are single genetic determinants (Herrmann and Schauer, 2013; Xu et 

al., 2016). This closer alignment can be explained by the fact that metabolites/enzyme 

activities represent complex biological processes whose measured value or activity 

incorporates the effect of a dynamic network comprised of multiple layers of regulation (DNA, 

RNA, protein) in response to dynamic internal and external stimuli (Sulpice and McKeown, 

2015). This is especially true in the context of environmental stress-driven perturbations, 

including those caused by drought. Indeed, the ability of plants to dynamically respond to 

environmental change (phenotypic plasticity) is often achieved by adjusting metabolite levels 

and enzyme activities through rapid responses to external signals from the environment 

mediated via post-translational and/or transcriptional regulation (Stitt et al., 2010). In support 

of this hypothesis, we observed that the MetabOxi-based model was the best in predicting 

GY-loss, while the genomic-based model was the least predictive (almost null) (Fig. 2). Under 

control conditions, the predictive power of the MetabOxi- (based on control values of the 

variables, Supplementary Table S2) and genomic-based prediction models for GY-con were 

virtually the same (Q2 = 0.37 and 0.34, respectively). This observation supports our 

interpretation that the reason for the improved predictive accuracy of the MetabOxi-based 

model under drought is due to the fact that the variables in the model (basal flag leaf levels of 

central metabolites and oxidative stress markers/enzymes) integrate the effect of post-

translational and transcriptional regulatory processes that differentiate the ability of plant 

genotypes to respond to stress, while these stress-responsive physiological and biochemical 

processes are not significant determinants of plant performance under control conditions. 

 

Best model predictors and their relationships with grain yield, flowering and plant height  

Each MetabOxi-based PLSR model provided a ranking of importance for the predictive 

variables. Table 1 shows the top three variables for the GY-con, GY-dro and GY-loss models, 
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together with their rank-product values. The top three MetabOxi variables for each model, 

those with the lowest rank-products (lower rank-product implies higher importance) 

(Supplementary Table S5) are potentially useful biomarkers for GY. We next performed a 

correlation analysis. Table 1 summarizes the correlations of the top-ranked variables with the 

predicted GY trait, as well as with FT and PH (correlations between all the MetabOxi variables 

and traits are reported in Supplementary Table S6 and S7). The top-ranked MetabOxi variable 

for GY-con (chlorogenic acid) was significantly correlated with both FT and PH, while the 

second- and third-ranked variables for GY-con (isocitric acid and citric acid) were correlated 

with PH, but not with FT.  None of the top-ranked variables for GY-dro or GY-loss were 

significantly correlated with either PH or FT. Table 1 provides additional information about the 

nature (positive or negative) and strength (rs) of the associations. 

Among the 111 MetabOxi variables evaluated as predictors of grain yield under control 

conditions (Supplementary Table S6), the top-ranked variables were all organic acids (Table 

1). Among them, chlorogenic acid (3-caffeoyl-quinic acid) is by far the most important 

predictor (rank-prod.=1). Its negative correlation with GY-con (rs= -0.40) is surprising, 

considering that chlorogenic acid is noted in the literature for its beneficial antioxidant and 

anti-herbivore activity in plants (Takahama and Oniki, 1997; Niggeweg et al., 2004; Ferreres et 

al., 2011; Kundu and Vadassery, 2019). A possible explanation lies in the fact that chlorogenic 

acid is positively correlated with both PH-con and, to a lesser extent, with FT-con (Table 1), 

and that GY-con is strongly and negatively associated with PH-con (Fig. 1). In general, tall, late-

flowering, low-yielding traditional varieties/landraces of rice are characterized by a higher 

degree of environmental robustness, derived from their adaptation to environmentally 

variable low-input production systems (Lempe et al., 2013; Dwivedi et al., 2016), in 

comparison to shorter,  early-flowering, higher-yielding modern varieties that have been bred 

for relatively stable, high-input systems. It might be that in this field trial, under irrigated 

conditions and with the application of fertilizers and weed, insect and disease control, a 

constitutively higher activity of the chlorogenic acid pathway in the traditional, tall accessions 

produced no advantage in terms of GY and, on the contrary, was associated with lower GY 

performance.  
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RNA, protein) in response to dynamic internal and external stimuli (Sulpice and McKeown, 

2015). This is especially true in the context of environmental stress-driven perturbations, 

including those caused by drought. Indeed, the ability of plants to dynamically respond to 

environmental change (phenotypic plasticity) is often achieved by adjusting metabolite levels 

and enzyme activities through rapid responses to external signals from the environment 

mediated via post-translational and/or transcriptional regulation (Stitt et al., 2010). In support 

of this hypothesis, we observed that the MetabOxi-based model was the best in predicting 

GY-loss, while the genomic-based model was the least predictive (almost null) (Fig. 2). Under 

control conditions, the predictive power of the MetabOxi- (based on control values of the 

variables, Supplementary Table S2) and genomic-based prediction models for GY-con were 

virtually the same (Q2 = 0.37 and 0.34, respectively). This observation supports our 

interpretation that the reason for the improved predictive accuracy of the MetabOxi-based 

model under drought is due to the fact that the variables in the model (basal flag leaf levels of 

central metabolites and oxidative stress markers/enzymes) integrate the effect of post-

translational and transcriptional regulatory processes that differentiate the ability of plant 

genotypes to respond to stress, while these stress-responsive physiological and biochemical 

processes are not significant determinants of plant performance under control conditions. 

 

Best model predictors and their relationships with grain yield, flowering and plant height  

Each MetabOxi-based PLSR model provided a ranking of importance for the predictive 

variables. Table 1 shows the top three variables for the GY-con, GY-dro and GY-loss models, 
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together with their rank-product values. The top three MetabOxi variables for each model, 

those with the lowest rank-products (lower rank-product implies higher importance) 

(Supplementary Table S5) are potentially useful biomarkers for GY. We next performed a 

correlation analysis. Table 1 summarizes the correlations of the top-ranked variables with the 

predicted GY trait, as well as with FT and PH (correlations between all the MetabOxi variables 

and traits are reported in Supplementary Table S6 and S7). The top-ranked MetabOxi variable 

for GY-con (chlorogenic acid) was significantly correlated with both FT and PH, while the 

second- and third-ranked variables for GY-con (isocitric acid and citric acid) were correlated 

with PH, but not with FT.  None of the top-ranked variables for GY-dro or GY-loss were 

significantly correlated with either PH or FT. Table 1 provides additional information about the 

nature (positive or negative) and strength (rs) of the associations. 

Among the 111 MetabOxi variables evaluated as predictors of grain yield under control 

conditions (Supplementary Table S6), the top-ranked variables were all organic acids (Table 

1). Among them, chlorogenic acid (3-caffeoyl-quinic acid) is by far the most important 

predictor (rank-prod.=1). Its negative correlation with GY-con (rs= -0.40) is surprising, 

considering that chlorogenic acid is noted in the literature for its beneficial antioxidant and 

anti-herbivore activity in plants (Takahama and Oniki, 1997; Niggeweg et al., 2004; Ferreres et 

al., 2011; Kundu and Vadassery, 2019). A possible explanation lies in the fact that chlorogenic 

acid is positively correlated with both PH-con and, to a lesser extent, with FT-con (Table 1), 

and that GY-con is strongly and negatively associated with PH-con (Fig. 1). In general, tall, late-

flowering, low-yielding traditional varieties/landraces of rice are characterized by a higher 

degree of environmental robustness, derived from their adaptation to environmentally 

variable low-input production systems (Lempe et al., 2013; Dwivedi et al., 2016), in 

comparison to shorter,  early-flowering, higher-yielding modern varieties that have been bred 

for relatively stable, high-input systems. It might be that in this field trial, under irrigated 

conditions and with the application of fertilizers and weed, insect and disease control, a 

constitutively higher activity of the chlorogenic acid pathway in the traditional, tall accessions 

produced no advantage in terms of GY and, on the contrary, was associated with lower GY 

performance.  
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As noted above, chlorogenic acid also shows a significant, positive correlation (rs= 0.33) with 

FT-con (Table 1), but the overall influence of flowering time on GY-con is low (Fig. 1), and thus 

we regard this association as having limited importance in understanding the selection of 

chlorogenic acid as one of the top predictors in the model. Indeed, the control values of many 

other MetabOxi variables display stronger correlations with FT-con than chlorogenic acid 

(Supplementary Table S6). 

The second and third highest ranking predictive variables of the GY-con model, isocitric and 

citric acid (rank-prod.=1,024 and 527,018 respectively), correspond to the two first 

intermediates of the tricarboxylic acid (TCA) cycle, a fundamental pathway that provides 

energy and carbon skeletons for many plant biosynthetic processes (Sweetlove et al., 2010; 

Araujo et al., 2012). The fact that the two organic acids are positively correlated with GY-con 

(rs= 0.39 and 0.35, respectively, Table 1) suggests that their high rank-values represent a 

signature of sustained metabolic activity in accordance with higher GY performance. In 

contrast to the positive correlation with GY-con, isocitric and citric acid are strongly and 

negatively associated with PH-con (rs= -0.42 and -0.46, respectively). These negative 

correlations suggest the presence of higher TCA/biosynthetic activity in the short, high-

yielding varieties of the panel compared to the tall, lower-yielding traditional accessions. This 

suggests that the ability to translate increased radiation- and nitrogen-use efficiency into 

higher yields in modern rice varieties (Zhu et al., 2016) is related to metabolic adaptations of 

central metabolism. Overall, the top predictive MetabOxi variables of the GY-con model are 

also individually strongly correlated with grain yield under control conditions, but their 

respective linear models explain only a low percentage of the trait variance (R2 = 0.13~0.15) 

(Table 1). In addition, these variables are strongly associated with FT-con (chlorogenic acid) 

and PH-con (all three), two traits with a confounding effect on yield (Fig. 1). For these reasons, 

the use of chlorogenic acid, isocitric and citric acid as biomarkers for GY performance in rice 

under well-watered conditions should be treated with caution. 

In contrast to the GY-con model, the top three predictive variables of the GY-dro and GY-loss 

models are not significantly associated with variation in either FT or PH (Table 1) and, 

therefore, likely represent more reliable trait biomarkers. Interestingly, the GY-dro and GY-

loss models display the same three top predictors, in the same rank order and with similar 
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ranking-products (Table 1). Dehydroascorbate reductase (DHAR) is the most important 

predictor (rank-prod.=1 in both models), and is on its own also positively correlated with GY-

dro (rs= 0.59) and negatively with GY-loss (rs= -0.57). The correlations between DHAR and GY-

dro/GY-loss are the most significant among the 111 MetabOxi variables (Supplementary Table 

S7). The third highest ranking predictor, monodehydroascorbate reductase (MDHAR), shows 

a marked reduction of importance compared with DHAR (rank-prod.=186,332 and 59,049 in 

the GY-dro and GY-loss models, respectively), and is not significantly correlated with GY-dro 

or GY-loss. However, DHAR and MDHAR are both involved in the ascorbate-glutathione cycle, 

the central redox-hub in plants, where they regenerate oxidized ascorbate into its reduced 

form which, in turn, can be utilized for ROS scavenging (Foyer and Shigeoka, 2010; Foyer and 

Noctor, 2011). The presence of these two enzymes as top predictors of the GY-dro and GY-

loss models highlights the importance of antioxidant defenses, primarily of the ascorbate-

glutathione cycle, in preventing drought-induced oxidative damage at the flowering stage that 

negatively impacts rice GY (Melandri et al., 2019). The non-significant correlation between 

MDHAR and GY-dro/GY-loss demonstrates that the multivariate modelling approach does not 

select variables only based on their simple linear association with the trait being predicted. 

Nevertheless, because of the low correlation of MDHAR with the GY traits, only DHAR can be 

regarded as an effective trait biomarker, especially considering that alone, it already explains 

a high percentage of the trait variance (R2 = 0.34 and 0.38 for GY-dro and GY-loss, 

respectively). 

The second top ranked variable of the two models (Table 1), malondialdehyde (MDA), is a lipid 

peroxidation product indicative of oxidative damage to the cellular lipid membranes (Møller 

et al., 2007). MDA is relatively important for the models (rank-prod.= 1,126 and 1,024 in the 

GY-dro and GY-loss models, respectively) and shows a negative correlation with GY-dro (rs= -

0.40, R2= 0.17) and an even stronger positive correlation with GY-loss (rs= 0.62, R2= 0.37). 

These strong correlations support the role of MDA as reliable biomarker of GY in rice under 

drought conditions, especially for GY-loss (Melandri et al., 2019). The presence of DHAR, MDA 

and MDHAR as top-ranked predicting variables of the GY-dro and GY-loss models indicates 

that, during drought imposition, the flag leaf oxidative stress status of the accessions is more 

predictive of GY performance than their flag leaf central metabolism. This insight is supported 

 
 

 

 
 

125 

by the fact that the model for predicting GY-loss selected two additional oxidative stress-

related variables, ascorbate oxidase (AO) and total antioxidant capacity (TAC), as fourth and 

fifth highest ranked variables (Supplementary Table S5). AO and TAC, similar to the other 

oxidative stress-related variables, are not significantly correlated with FT-dro and PH-dro 

(Supplementary Table S7) (Fig. 1). In contrast, the fourth and fifth highest ranked predictors 

for GY-dro, a trait highly correlated with GY-con (Fig. 1), were α-ketoglutaric acid and isocitric 

acid. Similar to the predictors selected by the GY-con model, these two predictors were both 

highly and negatively correlated with PH-dro (rs= -0.37 and -0.43, respectively) 

(Supplementary Table S7), an observation that indirectly confirms the genotypic signature on 

GY-dro from a metabolic perspective. 

 

GWA mapping of metabolic and enzymatic grain yield predictors 

Metabolic and enzymatic biomarkers originate from and are fully exploited by researchers in 

the medical field, especially as diagnostic and predictive markers for diseases, but their 

application in plant breeding remains very limited (Herrmann and Schauer, 2013; Fernandez 

et al., 2016). In this study we have identified a set of metabolic and enzymatic predictors for 

grain yield in a large panel of genetically diverse indica rice accessions, and found that these 

metabolic and enzymatic biomarkers are particularly valuable for predicting GY under 

drought. We next investigated the possibility of identifying genomic regions (QTLs) associated 

with quantitative variation in levels/activities of these predictors as the basis for converting 

them into high-throughput, low cost DNA markers (SNPs), greatly facilitating their application 

in breeding (Valluru et al., 2014). 

To achieve this target, we conducted GWA mapping using levels of the top predictors of the 

GY PLSR models (Table 1) as phenotypes, and the 81,347 SNP markers as genotypes for the 

271 accessions of the panel. We used the first SNP-based principal component (PC1) as a 

covariate in the linear-mixed model to control for variation associated with geographical origin 

of the accessions (Supplementary Fig. S1), and because of the correlations between model 

predictors, and PH and FT (particularly in the GY-con model) (Table 1), we also included these 

traits as covariates in the model. GWA mapping was performed using the values/activities of 

each predictor estimated under control and independently under drought conditions to 
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determine whether the detected QTLs were identified in one or both of the environments (Wu 

et al., 2018). As summarized in Fig. 3, the phenotypic distributions of predictor 

values/activities were approximately normal in both environments and therefore suitable for 

genetic analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Phenotypic distribution of control and drought stress values/activities of the best predictors 
of the PLSR models.  
Phenotypic distributions of log10-tranformed values/activities for the best GY-con predictors 
(chlorogenic acid, isocitric acid, citric acid) and GY-dro/GY-loss predictors (DHAR, MDA, MDHAR) in the 
271 accessions of the panel. Each plot displays the distribution of predictor values/activities under 
control (green) and drought (brown) conditions, together with the condition-specific mean values 
(mean CON and mean DRO). Drought stress marginally affected the flag leaf levels of chlorogenic acid, 
which displayed similar mean values in both conditions. In contrast, drought reduced the mean levels 
of isocitric and citric acids (more marked) and the mean activity of DHAR and MDHAR (less marked) 
while MDA displayed a stress-induced increase of the population mean value. Additionally, the shape 
of the distribution curves of chlorogenic acid, isocitric acid and MDA was similar in both conditions 
whereas, citric acid, DHAR and MDHAR displayed curves with different shapes, a narrow distribution 
around the mean under control conditions and a wider distribution under drought.  
 
GWAS of the best GY-con predictors: chlorogenic acid, isocitric acid and citric acid 

Using the control values of the top GY-con predictors, a total of 6 QTLs were detected (Fig. 4), 

3 for chlorogenic acid, 2 for isocitric acid and 1 for citric acid (Quantile-Quantile plots available 

in Supplementary Fig. S2). The best GY-con predictors displayed a high marker-based 

heritability (or pseudo-heritability, h2), varying between 0.34 and 0.66 (Supplementary Table 

S8), which suggests strong genetic control of their levels. This holds particularly true for 
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chlorogenic acid and isocitric acids (h2 = 0.62 and 0.66, respectively) for which the same QTLs 

were detected under control and drought conditions. In contrast, citric acid showed a lower 

pseudo-heritability (h2 = 0.34) and the single QTL identified under control conditions was not 

detected under drought (Supplementary Fig. S3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Fig. 4. Manhattan plots of GWA mapping results using control values of the best GY-con PLSR model 
predictors.  
Manhattan plots of the GWA mapping results using 81,347 SNP markers for the control values of 
chlorogenic acid (A), isocitric acid (B) and citric acid (C). The red dashed line indicates the genome-wide 
significance threshold for QTLs (-log10 P > 4.0). Significant QTLs are indicated by name in the plots, 
where q=QTL, followed by a 3-6 letter abbreviation indicating the MetabOxi-predictor, and a numerical 
suffix indicating the chromosome location. 
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determine whether the detected QTLs were identified in one or both of the environments (Wu 

et al., 2018). As summarized in Fig. 3, the phenotypic distributions of predictor 

values/activities were approximately normal in both environments and therefore suitable for 

genetic analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Phenotypic distribution of control and drought stress values/activities of the best predictors 
of the PLSR models.  
Phenotypic distributions of log10-tranformed values/activities for the best GY-con predictors 
(chlorogenic acid, isocitric acid, citric acid) and GY-dro/GY-loss predictors (DHAR, MDA, MDHAR) in the 
271 accessions of the panel. Each plot displays the distribution of predictor values/activities under 
control (green) and drought (brown) conditions, together with the condition-specific mean values 
(mean CON and mean DRO). Drought stress marginally affected the flag leaf levels of chlorogenic acid, 
which displayed similar mean values in both conditions. In contrast, drought reduced the mean levels 
of isocitric and citric acids (more marked) and the mean activity of DHAR and MDHAR (less marked) 
while MDA displayed a stress-induced increase of the population mean value. Additionally, the shape 
of the distribution curves of chlorogenic acid, isocitric acid and MDA was similar in both conditions 
whereas, citric acid, DHAR and MDHAR displayed curves with different shapes, a narrow distribution 
around the mean under control conditions and a wider distribution under drought.  
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in Supplementary Fig. S2). The best GY-con predictors displayed a high marker-based 

heritability (or pseudo-heritability, h2), varying between 0.34 and 0.66 (Supplementary Table 

S8), which suggests strong genetic control of their levels. This holds particularly true for 
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chlorogenic acid and isocitric acids (h2 = 0.62 and 0.66, respectively) for which the same QTLs 

were detected under control and drought conditions. In contrast, citric acid showed a lower 

pseudo-heritability (h2 = 0.34) and the single QTL identified under control conditions was not 

detected under drought (Supplementary Fig. S3). 
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Manhattan plots of the GWA mapping results using 81,347 SNP markers for the control values of 
chlorogenic acid (A), isocitric acid (B) and citric acid (C). The red dashed line indicates the genome-wide 
significance threshold for QTLs (-log10 P > 4.0). Significant QTLs are indicated by name in the plots, 
where q=QTL, followed by a 3-6 letter abbreviation indicating the MetabOxi-predictor, and a numerical 
suffix indicating the chromosome location. 
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Among the three QTLs identified for chlorogenic acid, those on chromosomes 2 (qCGA-2) and 

10 (qCGA-10) were the most significant. The top SNP for qCGA-2 (LOD = 6.11) had a minor 

allele frequency (MAF) of 0.395, and was associated with lower chlorogenic acid values (Table 

2). This minor allele is significantly (P < 0.001) associated with higher GY-con performance 

(+68.1 grams/m2), in accordance with the negative correlation between chlorogenic acid and 

GY-con (Table 1). qCGA-2 is also significantly associated with PH-con (P < 0.001) and FT-con (P 

< 0.01); accessions carrying the minor allele have lower levels of chlorogenic acid, and are both 

shorter in stature and earlier in flowering than accessions carrying the major allele at this 

locus. This observation is consistent with the positive correlation observed between 

chlorogenic acid levels, and PH-con and FT-con (Table 1) and identifies this QTL as a key 

determinant (possibly a rate-limiting factor) of the relationship between levels of chlorogenic 

acid, GY-con, PH and FT. The fact that there is substantial residual variation in PH-con and FT-

con within both genotypic groups (Supplementary Fig. S4) underscores the value of qCGA-2 as 

a target for rice GY improvement under agronomically optimal conditions. 

qCGA-10 is associated with a large (5-10 Mbp) QTL region on chromosome 10 (Supplementary 

Fig. S5). The most significant SNP, qCGA-10 (LOD = 6.21) has a minor allele (MAF = 0.280) 

associated with higher values of chlorogenic acid and lower GY-con performance (-65.6 

grams/m2), but it was not associated with significant differences in PH-con and FT-con (Table 

2 and Supplementary Fig. S4). The absence of a significant PH/FT correlation makes this QTL 

an optimal target for altering leaf levels of chlorogenic acid and improving GY-con in rice under 

agronomically optimal conditions. 

We next examined the qCGA-2 and qCGA-10 QTL regions for a priori candidate genes with 

known functions potentially associated with the observed variation in chlorogenic acid leaf 

levels. The qCGA-2 marker maps within a putative UDP-glucosyltransferase 

(LOC_Os02g37690). Glucosylation increases the solubility and stability of phenolic compounds 

(Cui et al., 2016) such as chlorogenic acid which accumulates to high levels in the cell vacuole 

where it exerts its antioxidative activity (Nakabayashi and Saito, 2015). Additionally, in 

Medicago truncatula and Arabidopsis, glucosylated polyphenols have been shown to be 

transported into the vacuole by MATE efflux transporter proteins (Marinova et al., 2007; Pang 

et al., 2008; Zhao and Dixon, 2009; Zhao et al., 2011a). A MATE efflux protein 
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(LOC_Os10g13940) maps within the qCGA-10 QTL region, localized ~59 kbp away from one of 

the most significant QTL markers, and a second MATE efflux protein (LOC_Os10g11860) is 

localized ~900 kbp upstream of the start of the QTL (Table 2 and Supplementary Table S9). 

While just outside the QTL detected in this study, MATE efflux protein “LOC_Os10g11860” was 

indicated as a candidate gene underlying a chlorogenic acid QTL in a previous GWA mapping 

study in rice (Chen et al., 2014). The third significant QTL identified for chlorogenic acid (qCGA-

12) (Table 2) is located on chromosome 12 and has a minor allele (MAF = 0.118) that is strongly 

associated with higher chlorogenic acid values, but not with differences in GY-con. qCGA-12 is 

therefore of limited interest for GY improvement. 

Two QTLs associated with variation in control values of isocitric acid were identified, one on 

chromosome 1 (qIsocit-1) and the second on chromosome 4 (qIsocit-4) (Fig. 4). Minor alleles 

at the two QTLs had opposite effects on organic acid values. The top qIsocit-1 marker was 

highly significant (LOD = 7.82) and its minor allele (MAF = 0.247) was associated with higher 

values of isocitric acid (Table 2). The top qIsocit-4 marker was less significant (LOD = 4.31) and 

its minor allele (MAF = 0.203) was associated with lower values of the metabolite 

(Supplementary Fig. S6).  An isocitrate dehydrogenase (OsIDHa; LOC_Os01g16900) gene which 

catalyzes the production of α-ketoglutaric acid using isocitric acid as substrate in the TCA cycle 

(Table 2) (Abiko et al., 2005) was identified just ~273 kbp upstream of the top qIsocit-1 marker 

(Supplementary Table S9), and  a second isocitrate dehydrogenase (LOC_Os04g42920) was 

localized inside the qIsocit-4 QTL, approximately 28 kbp from the most significant marker 

(Table 2 and Supplementary Table S9). Despite the significant association with levels of 

isocitric acid, neither of these QTLs was associated with differences in GY-con (Table 2). We 

next examined the relationship between these QTLs as determinants of isocitric acid levels, 

given the opposing effects of their minor alleles.  To do this, we included the most significant 

qIsocit-1 marker as a covariate in the GWA model and re-ran the analysis using the control 

values of isocitric acid. We again detected a significant signal from qIsocit-4, confirming that 

the two QTLs are independent and explain different components of variation (Table 3 and 

Supplementary fig. S7). Of greater interest was the fact that, with qIsocit-1 as a co-variate in 

the model, three additional QTLs were detected: qIsocit-4+, qIsocit-7+ and qIsocit-11+ (LOD = 

4.77, 4.51 and 5.00, respectively). Signal from these three QTLs was also visible in the previous 
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Among the three QTLs identified for chlorogenic acid, those on chromosomes 2 (qCGA-2) and 

10 (qCGA-10) were the most significant. The top SNP for qCGA-2 (LOD = 6.11) had a minor 

allele frequency (MAF) of 0.395, and was associated with lower chlorogenic acid values (Table 

2). This minor allele is significantly (P < 0.001) associated with higher GY-con performance 

(+68.1 grams/m2), in accordance with the negative correlation between chlorogenic acid and 

GY-con (Table 1). qCGA-2 is also significantly associated with PH-con (P < 0.001) and FT-con (P 

< 0.01); accessions carrying the minor allele have lower levels of chlorogenic acid, and are both 

shorter in stature and earlier in flowering than accessions carrying the major allele at this 

locus. This observation is consistent with the positive correlation observed between 

chlorogenic acid levels, and PH-con and FT-con (Table 1) and identifies this QTL as a key 

determinant (possibly a rate-limiting factor) of the relationship between levels of chlorogenic 

acid, GY-con, PH and FT. The fact that there is substantial residual variation in PH-con and FT-

con within both genotypic groups (Supplementary Fig. S4) underscores the value of qCGA-2 as 

a target for rice GY improvement under agronomically optimal conditions. 

qCGA-10 is associated with a large (5-10 Mbp) QTL region on chromosome 10 (Supplementary 

Fig. S5). The most significant SNP, qCGA-10 (LOD = 6.21) has a minor allele (MAF = 0.280) 

associated with higher values of chlorogenic acid and lower GY-con performance (-65.6 

grams/m2), but it was not associated with significant differences in PH-con and FT-con (Table 

2 and Supplementary Fig. S4). The absence of a significant PH/FT correlation makes this QTL 

an optimal target for altering leaf levels of chlorogenic acid and improving GY-con in rice under 

agronomically optimal conditions. 

We next examined the qCGA-2 and qCGA-10 QTL regions for a priori candidate genes with 

known functions potentially associated with the observed variation in chlorogenic acid leaf 

levels. The qCGA-2 marker maps within a putative UDP-glucosyltransferase 

(LOC_Os02g37690). Glucosylation increases the solubility and stability of phenolic compounds 

(Cui et al., 2016) such as chlorogenic acid which accumulates to high levels in the cell vacuole 

where it exerts its antioxidative activity (Nakabayashi and Saito, 2015). Additionally, in 

Medicago truncatula and Arabidopsis, glucosylated polyphenols have been shown to be 

transported into the vacuole by MATE efflux transporter proteins (Marinova et al., 2007; Pang 

et al., 2008; Zhao and Dixon, 2009; Zhao et al., 2011a). A MATE efflux protein 
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(LOC_Os10g13940) maps within the qCGA-10 QTL region, localized ~59 kbp away from one of 

the most significant QTL markers, and a second MATE efflux protein (LOC_Os10g11860) is 

localized ~900 kbp upstream of the start of the QTL (Table 2 and Supplementary Table S9). 

While just outside the QTL detected in this study, MATE efflux protein “LOC_Os10g11860” was 

indicated as a candidate gene underlying a chlorogenic acid QTL in a previous GWA mapping 

study in rice (Chen et al., 2014). The third significant QTL identified for chlorogenic acid (qCGA-

12) (Table 2) is located on chromosome 12 and has a minor allele (MAF = 0.118) that is strongly 

associated with higher chlorogenic acid values, but not with differences in GY-con. qCGA-12 is 

therefore of limited interest for GY improvement. 

Two QTLs associated with variation in control values of isocitric acid were identified, one on 

chromosome 1 (qIsocit-1) and the second on chromosome 4 (qIsocit-4) (Fig. 4). Minor alleles 

at the two QTLs had opposite effects on organic acid values. The top qIsocit-1 marker was 

highly significant (LOD = 7.82) and its minor allele (MAF = 0.247) was associated with higher 

values of isocitric acid (Table 2). The top qIsocit-4 marker was less significant (LOD = 4.31) and 

its minor allele (MAF = 0.203) was associated with lower values of the metabolite 

(Supplementary Fig. S6).  An isocitrate dehydrogenase (OsIDHa; LOC_Os01g16900) gene which 

catalyzes the production of α-ketoglutaric acid using isocitric acid as substrate in the TCA cycle 

(Table 2) (Abiko et al., 2005) was identified just ~273 kbp upstream of the top qIsocit-1 marker 

(Supplementary Table S9), and  a second isocitrate dehydrogenase (LOC_Os04g42920) was 

localized inside the qIsocit-4 QTL, approximately 28 kbp from the most significant marker 

(Table 2 and Supplementary Table S9). Despite the significant association with levels of 

isocitric acid, neither of these QTLs was associated with differences in GY-con (Table 2). We 

next examined the relationship between these QTLs as determinants of isocitric acid levels, 

given the opposing effects of their minor alleles.  To do this, we included the most significant 

qIsocit-1 marker as a covariate in the GWA model and re-ran the analysis using the control 

values of isocitric acid. We again detected a significant signal from qIsocit-4, confirming that 

the two QTLs are independent and explain different components of variation (Table 3 and 

Supplementary fig. S7). Of greater interest was the fact that, with qIsocit-1 as a co-variate in 

the model, three additional QTLs were detected: qIsocit-4+, qIsocit-7+ and qIsocit-11+ (LOD = 

4.77, 4.51 and 5.00, respectively). Signal from these three QTLs was also visible in the previous 
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GWAS but just below the threshold (Supplementary Fig. S7). When we examined the 

accessions carrying minor alleles at qIsocit-4+, qIsocit-7+ and qIsocit-11+, (MAF = 0.269, 0.114, 

0.133, respectively), we observed that they had lower values of isocitric acid and a strong 

reduction in GY-con (between -122.7 and -79.7 grams/m2) (Table 3). The effects of the three 

additional QTLs help explain the positive correlation observed between control values of 

isocitric acid and GY-con in the 271 accessions of the panel (Table 1). Further, accessions 

carrying minor alleles at qIsocit-4+, qIsocit-7+ and qIsocit-11+ were also significantly taller than 

accessions carrying the major alleles (Table 3), consistent with the negative correlation 

between isocitric acid values and PH-con (Table 1). This is similar to the situation described for 

chlorogenic acid (qCGA-2), but in contrast to Isocit-4, where individuals carrying the minor 

allele had lower isocitric acid levels but showed no significant association with PH or GY-con. 

A single QTL for citric acid was detected on chromosome 8 (qCit-8) (Fig. 4). The minor allele of 

the most significant qCit-8 marker was extremely rare (MAF = 0.054; present in only 15 

individuals in the panel) and was associated with higher values of citric acid (P < 0.01) and 

higher GY-con (P < 0.05; +56.7 grams/m2). No obvious candidate genes involved in the 

biosynthetic pathway of citric acid (i.e., citrate synthase or aconitase; Sweetlove et al., 2010) 

were detected within the qCit-8 QTL region (Supplementary Table S9) or its proximity. 

Nevertheless, because of its association with GY-con, we regard this QTL as a possible breeding 

target of interest for GY improvement under well-watered conditions.  
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GWAS but just below the threshold (Supplementary Fig. S7). When we examined the 

accessions carrying minor alleles at qIsocit-4+, qIsocit-7+ and qIsocit-11+, (MAF = 0.269, 0.114, 

0.133, respectively), we observed that they had lower values of isocitric acid and a strong 

reduction in GY-con (between -122.7 and -79.7 grams/m2) (Table 3). The effects of the three 

additional QTLs help explain the positive correlation observed between control values of 

isocitric acid and GY-con in the 271 accessions of the panel (Table 1). Further, accessions 

carrying minor alleles at qIsocit-4+, qIsocit-7+ and qIsocit-11+ were also significantly taller than 

accessions carrying the major alleles (Table 3), consistent with the negative correlation 

between isocitric acid values and PH-con (Table 1). This is similar to the situation described for 

chlorogenic acid (qCGA-2), but in contrast to Isocit-4, where individuals carrying the minor 

allele had lower isocitric acid levels but showed no significant association with PH or GY-con. 

A single QTL for citric acid was detected on chromosome 8 (qCit-8) (Fig. 4). The minor allele of 

the most significant qCit-8 marker was extremely rare (MAF = 0.054; present in only 15 

individuals in the panel) and was associated with higher values of citric acid (P < 0.01) and 

higher GY-con (P < 0.05; +56.7 grams/m2). No obvious candidate genes involved in the 

biosynthetic pathway of citric acid (i.e., citrate synthase or aconitase; Sweetlove et al., 2010) 

were detected within the qCit-8 QTL region (Supplementary Table S9) or its proximity. 

Nevertheless, because of its association with GY-con, we regard this QTL as a possible breeding 

target of interest for GY improvement under well-watered conditions.  
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GWAS of the best GY-dro and GY-loss predictors: DHAR, MDHAR and MDA  

A total of ten QTLs were detected using the drought values/activities of the top GY-dro and 

GY-loss model predictors (Fig. 5), one for DHAR, five for MDHAR, and four for MDA (Quantile-

Quantile plots available in Supplementary Fig. S9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Manhattan plots of GWA mapping results using drought values of the best GY-dro and GY-loss 
PLSR model predictors. 
Manhattan plots of GWA mapping results using 81,347 SNP markers for the control values of DHAR 
(A), MDA (B) and MDHAR (C). Red dashed lines indicate the genome-wide significance threshold for 
QTLs (-log10 P > 4.0).  Significant QTLs are indicated by name in the plots, where q=QTL, followed by a 
3-6 letter abbreviation indicating the MetabOxi-predictor, and a numerical suffix indicating the 
chromosome location. 
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The best GY-dro and GY-loss predictors showed h2 values between 0.17 and 0.48, lower than 

the pseudo-heritability of the predictors for GY-con (Supplementary Table S8). The QTLs 

mapped using values/activities of DHAR, MDHAR and MDA estimated under drought 

conditions were entirely different than those mapped using control values/activities 

(Supplementary Fig. S10). This suggests that the variation associated with these ten QTLs is 

specifically associated with the stress environment, and could be exploited to improve rice GY 

performance under drought, potentially without impacting GY under control conditions. 

A single QTL was identified on chromosome 6 (qDHAR-6) for the activity of DHAR under 

drought (Fig. 5). The top SNP of qDHAR-6 (LOD = 4.93) had a MAF of 0.284, and the minor 

allele was associated with higher enzyme activity (Table 4), but not with GY differences (Table 

4 and Supplementary Fig. S11). An ascorbate oxidase gene, OsAAO1 (LOC_Os06g37080), was 

localized in the qDHAR-6 QTL region ~10 kbp from the most significant QTL marker 

(Supplementary Table S10), and a homolog, OsAAO2 (LOC_Os06g37150), was located in close 

proximity,  ~68 kbp outside of the QTL region (Table 4). Both genes are annotated as 

responsive to salinity and drought stress in rice, with OsAAO1 being expressed in both shoots 

and roots, and OsAAO2 only in shoots (Batth et al., 2017). Additionally, Wu et al. (2017) 

described OsAAO2 as responsive to Fe-toxicity in rice shoots, with  higher expression of the 

gene associated with tolerance. Ascorbate oxidases are cell-wall localized enzymes that 

oxidize reduced ascorbate (the active form utilized for ROS scavenging) to 

monodehydroascorbate, an unstable compound that spontaneously and rapidly converts to 

dehydroascorbate (Smirnoff, 2000). In turn, dehydroascorbate can be converted back to 

reduced ascorbate by the action of DHAR (Foyer and Noctor, 2011). Thus, considering the role 

of ascorbate oxidase in regulating the redox state of the apoplastic ascorbate pool, which is 

key in the response to abiotic stress in plants (Pignocchi and Foyer, 2003; Fotopoulos et al., 

2006; De Tullio et al., 2013), qDHAR-6 may indicate that variation in OsAAO1 and/or OsAAO2 

plays a pivotal role in determining the activity of DHAR, without being directly responsible for 

the final activity values measured in the flag leaves of the accessions. We tested this 

hypothesis by re-running the association analysis for the activity of DHAR under drought, 

adding one of the top qDHAR-6 markers as a covariate in the linear-mixed model. 
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The best GY-dro and GY-loss predictors showed h2 values between 0.17 and 0.48, lower than 

the pseudo-heritability of the predictors for GY-con (Supplementary Table S8). The QTLs 

mapped using values/activities of DHAR, MDHAR and MDA estimated under drought 

conditions were entirely different than those mapped using control values/activities 

(Supplementary Fig. S10). This suggests that the variation associated with these ten QTLs is 

specifically associated with the stress environment, and could be exploited to improve rice GY 

performance under drought, potentially without impacting GY under control conditions. 

A single QTL was identified on chromosome 6 (qDHAR-6) for the activity of DHAR under 

drought (Fig. 5). The top SNP of qDHAR-6 (LOD = 4.93) had a MAF of 0.284, and the minor 

allele was associated with higher enzyme activity (Table 4), but not with GY differences (Table 

4 and Supplementary Fig. S11). An ascorbate oxidase gene, OsAAO1 (LOC_Os06g37080), was 

localized in the qDHAR-6 QTL region ~10 kbp from the most significant QTL marker 

(Supplementary Table S10), and a homolog, OsAAO2 (LOC_Os06g37150), was located in close 

proximity,  ~68 kbp outside of the QTL region (Table 4). Both genes are annotated as 

responsive to salinity and drought stress in rice, with OsAAO1 being expressed in both shoots 

and roots, and OsAAO2 only in shoots (Batth et al., 2017). Additionally, Wu et al. (2017) 

described OsAAO2 as responsive to Fe-toxicity in rice shoots, with  higher expression of the 

gene associated with tolerance. Ascorbate oxidases are cell-wall localized enzymes that 

oxidize reduced ascorbate (the active form utilized for ROS scavenging) to 

monodehydroascorbate, an unstable compound that spontaneously and rapidly converts to 

dehydroascorbate (Smirnoff, 2000). In turn, dehydroascorbate can be converted back to 

reduced ascorbate by the action of DHAR (Foyer and Noctor, 2011). Thus, considering the role 

of ascorbate oxidase in regulating the redox state of the apoplastic ascorbate pool, which is 

key in the response to abiotic stress in plants (Pignocchi and Foyer, 2003; Fotopoulos et al., 

2006; De Tullio et al., 2013), qDHAR-6 may indicate that variation in OsAAO1 and/or OsAAO2 

plays a pivotal role in determining the activity of DHAR, without being directly responsible for 

the final activity values measured in the flag leaves of the accessions. We tested this 

hypothesis by re-running the association analysis for the activity of DHAR under drought, 

adding one of the top qDHAR-6 markers as a covariate in the linear-mixed model. 
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This analysis detected an additional QTL on chromosome 6 (qDHAR-6+) (Supplementary Fig. 

S12), similar to what we observed for qIsocit-1. The qDHAR-6+ locus is characterized by a rare 

minor allele (MAF = 0.081) associated with a significant (P < 0.001) reduction in DHAR activity, 

a reduction in GY-dro (-94.3 grams/m2), an increase in GY-loss (13.4%), and non-significant 

differences in PH-dro and FT-dro (Table 5 and Supplementary Fig. S13). The detection of 

qDHAR-6+ helps explain the positive correlation of DHAR activity with GY-dro and the negative 

correlation with GY-loss (Table 1). Interestingly, one of the two DHAR isoforms (glutathione S-

transferases) present in rice (Jain et al., 2010), OsDHAR2 (LOC_Os06g12630), is localized ~224 

kbp from the top qDHAR-6+ marker (Table 5). For these reasons, the qDHAR-6+ QTL, and 

specifically the underlying OsDHAR2 candidate gene, represent promising targets for 

manipulating DHAR activity and improving the GY performance of rice under drought stress. 

It is worth noting that 21 of the 22 accessions carrying the deleterious minor allele at the most 

significant qDHAR-6+ marker originate from China (Supplementary Table S11 and Fig. S1), 

including the variety Minghui 63, one of the most successful male parents adopted for hybrid 

rice production in China (Xie and Zhang, 2018). It would be of interest to introduce the 

favorable allele of OsDHAR2 (LOC_Os06g12630) into Minghui 63 and/or related hybrid 

varieties to determine the impact on GY performance under drought. 

Five QTLs were identified for MDHAR under drought (Fig. 5), two on chromosome 6 (qMDHAR-

6.1 and qMDHAR-6.2), one on chromosome 9 (qMDHAR-9) and two on chromosome 11 

(qMDHAR-11.1 and qMDHAR-11.2). The minor alleles at the most significant markers for the 

five QTLs were not significantly associated with GY-dro or GY-loss differences (Table 4 and 

Supplementary Fig. S14) and, therefore, the QTLs are not of immediate interest as breeding 

targets for improving GY performance of rice under drought. This observation is consistent 

with the lack of correlation observed between the drought values of MDHAR and GY-dro/GY-

loss (Table 1). Nevertheless, it is noteworthy that the most significant of the five QTLs, 

qMDHAR-6.2 (LOD = 10.40), is closely linked to qDHAR-6 at a distance of 50 - 70 kbp (Table 4). 

The qMDHAR-6.2 QTL region (Supplementary Table S10) includes both OsAAO1 

(LOC_Os06g37080) and OsAAO2 (LOC_Os06g37150), discussed above as a priori candidate 

genes for qDHAR-6. It is possible that genetic variation in the two ascorbate oxidases may be 

crucial to determining the different levels of MDHAR activity under drought, considering that 
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This analysis detected an additional QTL on chromosome 6 (qDHAR-6+) (Supplementary Fig. 

S12), similar to what we observed for qIsocit-1. The qDHAR-6+ locus is characterized by a rare 

minor allele (MAF = 0.081) associated with a significant (P < 0.001) reduction in DHAR activity, 

a reduction in GY-dro (-94.3 grams/m2), an increase in GY-loss (13.4%), and non-significant 

differences in PH-dro and FT-dro (Table 5 and Supplementary Fig. S13). The detection of 

qDHAR-6+ helps explain the positive correlation of DHAR activity with GY-dro and the negative 

correlation with GY-loss (Table 1). Interestingly, one of the two DHAR isoforms (glutathione S-

transferases) present in rice (Jain et al., 2010), OsDHAR2 (LOC_Os06g12630), is localized ~224 

kbp from the top qDHAR-6+ marker (Table 5). For these reasons, the qDHAR-6+ QTL, and 

specifically the underlying OsDHAR2 candidate gene, represent promising targets for 

manipulating DHAR activity and improving the GY performance of rice under drought stress. 

It is worth noting that 21 of the 22 accessions carrying the deleterious minor allele at the most 

significant qDHAR-6+ marker originate from China (Supplementary Table S11 and Fig. S1), 

including the variety Minghui 63, one of the most successful male parents adopted for hybrid 

rice production in China (Xie and Zhang, 2018). It would be of interest to introduce the 

favorable allele of OsDHAR2 (LOC_Os06g12630) into Minghui 63 and/or related hybrid 

varieties to determine the impact on GY performance under drought. 

Five QTLs were identified for MDHAR under drought (Fig. 5), two on chromosome 6 (qMDHAR-

6.1 and qMDHAR-6.2), one on chromosome 9 (qMDHAR-9) and two on chromosome 11 

(qMDHAR-11.1 and qMDHAR-11.2). The minor alleles at the most significant markers for the 

five QTLs were not significantly associated with GY-dro or GY-loss differences (Table 4 and 

Supplementary Fig. S14) and, therefore, the QTLs are not of immediate interest as breeding 

targets for improving GY performance of rice under drought. This observation is consistent 

with the lack of correlation observed between the drought values of MDHAR and GY-dro/GY-

loss (Table 1). Nevertheless, it is noteworthy that the most significant of the five QTLs, 

qMDHAR-6.2 (LOD = 10.40), is closely linked to qDHAR-6 at a distance of 50 - 70 kbp (Table 4). 

The qMDHAR-6.2 QTL region (Supplementary Table S10) includes both OsAAO1 

(LOC_Os06g37080) and OsAAO2 (LOC_Os06g37150), discussed above as a priori candidate 

genes for qDHAR-6. It is possible that genetic variation in the two ascorbate oxidases may be 

crucial to determining the different levels of MDHAR activity under drought, considering that 
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MDHAR directly reduces monodehydroascorbate to ascorbate before it spontaneously 

converts to dehydroascorbate (Smirnoff, 2000). In addition, by its activity, MDHAR may reduce 

the DHAR workload, thus increasing the efficiency of ascorbate reduction and, therefore, 

qMDHAR-6.2 helps to explain, from a genetic perspective, why the activity of this enzyme 

under drought has been selected as an important predictor by the GY-dro and GY-loss PLSR 

models (Table 1). 

Four QTLs were detected for the lipid peroxidation product MDA (Fig. 5), two on chromosome 

2 (qMDA-2.1 and qMDA-2.2), one on chromosome 7 (qMDA-7) and one on chromosome 12 

(qMDA-12). The top marker for qMDA-2.2 was not associated with significant differences in 

GY-dro or GY-loss (Table 4) and thus, this QTL is of marginal interest for breeding applications. 

In contrast, the other three QTLs were significantly associated with MDA values under 

drought, GY-dro and GY-loss. The minor alleles at all three loci were rare (MAF ranged from 

0.055 to 0.063) but conferred a favorable effect, enhancing GY-dro between +80.6 to +110.8 

grams/m2, and decreasing GY-loss from -12.9% to -16.5% (Table 4 and Supplementary Fig. 

S11). Thus, these loci represent interesting breeding targets for improving rice grain yield 

stability under drought, and are consistent with the negative correlation between drought 

values of MDA and GY-dro and the positive correlation with GY-loss (Table 1). The most 

significant of the three QTLs is qMDA-2.1 (LOD = 5.97), and one of the most significant SNP 

markers within this QTL is localized within a DNA-binding heat shock transcription factor, 

OsHsfC2a (LOC_Os02g13800) (Table 4 and Supplementary Table S10). OsHsfC2a is described 

as a primary player in the pathways involving ROS accumulation and sensing in rice plants 

exposed to oxidative and heat stresses (Mittal et al., 2009).  The second most significant MDA 

QTL is qMDA-12 (LOD = 4.58), and a candidate gene encoding a phospholipase C (OsPLC3; 

LOC_Os12g37560) is located ~58 kbp from the most significant marker for this QTL (Table 4 

and Supplementary Table S10). Phospholipases are enzymes that hydrolyze phospholipids and 

lead to the generation of lipid-derived messengers involved in many plant physiological 

processes, including stress responses (Chen et al., 2012). It is particularly noteworthy that 

OsPLC3 is specifically and strongly up-regulated in leaf tissue at the reproductive stage (panicle 

development) in rice plants exposed to drought stress (Singh et al., 2013). The identification 

of two a priori candidate genes with stress-induced regulatory and signaling functions, such as 

 
 

 

 
 

139 

OsHsfC2a and OsPLC3, underlying two different MDA QTLs suggests that flag leaf levels of 

MDA under drought are determined by the action of several, possibly independent, genetic 

pathways, with genetic variation occurring in genes that regulate key, rate-limiting steps that 

impact GY performance under drought.  

 

Validation of selected QTLs with an effect on GY performance in a second field trial 

Although functional validation of the genetic associations (QTLs and underlying a priori 

candidate genes) disclosed and discussed above is beyond the scope of this study, we 

undertook a second field trial to determine whether the QTLs identified in the first experiment 

(2013) were significantly associated with GY differences the following year (2014). We used 

the same rice panel, and performed the experiment under the same conditions (control and 

drought stress) and in the same location (Kadam et al., 2017). In the 2014 field trial, 268 

accessions (out of the 271 from 2013) were used to evaluate GY performance under well-

watered and drought conditions (Supplementary Table S1). The reduced number of accessions 

in 2014 only marginally altered the allele frequencies at the QTL markers identified in 2013. 

This allowed a fair comparison of the effect of these markers between years. Under control 

conditions, all six QTLs associated with GY-con identified in 2013 also displayed significant GY-

con differences in 2014 (Table 6). The GY-con variation associated with these QTLs was, in fact, 

greater in 2014 than in the 2013 experiment, with the single exception of qCGA-10. Under 

drought conditions, the four QTLs associated with GY-dro/GY-loss identified in 2013 had a less 

marked effect in the 2014 experiment, and were not always significant (Table 7). These results 

are not entirely surprising, given the challenges involved in precisely duplicating the timing 

and intensity of drought stress, and the dynamic nature of plant response to stress. These 

results also suggest that the GY-associated QTLs determined by GWA mapping of the best GY-

con biomarkers are less influenced by genotype-by-year interactions than the ones mapped 

for the best GY-dro/GY-loss biomarkers. This is likely dependent on the more stable 

environment present under well-watered conditions than under drought stress over the two 

years. Indeed, the stronger influence of environmental factors in determining the levels of the 

best GY-dro/GY-loss biomarkers than the GY-con ones is confirmed by their lower pseudo-

heritability values (Supplementary Table 8). However, it is noteworthy that the effect of all the 

top markers of the GY-associated QTLs in 2013 was consistent in the 2014 (Table 6 and 7), 
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MDHAR directly reduces monodehydroascorbate to ascorbate before it spontaneously 

converts to dehydroascorbate (Smirnoff, 2000). In addition, by its activity, MDHAR may reduce 

the DHAR workload, thus increasing the efficiency of ascorbate reduction and, therefore, 

qMDHAR-6.2 helps to explain, from a genetic perspective, why the activity of this enzyme 

under drought has been selected as an important predictor by the GY-dro and GY-loss PLSR 

models (Table 1). 

Four QTLs were detected for the lipid peroxidation product MDA (Fig. 5), two on chromosome 
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OsPLC3 is specifically and strongly up-regulated in leaf tissue at the reproductive stage (panicle 

development) in rice plants exposed to drought stress (Singh et al., 2013). The identification 

of two a priori candidate genes with stress-induced regulatory and signaling functions, such as 
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OsHsfC2a and OsPLC3, underlying two different MDA QTLs suggests that flag leaf levels of 

MDA under drought are determined by the action of several, possibly independent, genetic 

pathways, with genetic variation occurring in genes that regulate key, rate-limiting steps that 

impact GY performance under drought.  

 

Validation of selected QTLs with an effect on GY performance in a second field trial 

Although functional validation of the genetic associations (QTLs and underlying a priori 

candidate genes) disclosed and discussed above is beyond the scope of this study, we 

undertook a second field trial to determine whether the QTLs identified in the first experiment 

(2013) were significantly associated with GY differences the following year (2014). We used 

the same rice panel, and performed the experiment under the same conditions (control and 

drought stress) and in the same location (Kadam et al., 2017). In the 2014 field trial, 268 

accessions (out of the 271 from 2013) were used to evaluate GY performance under well-

watered and drought conditions (Supplementary Table S1). The reduced number of accessions 

in 2014 only marginally altered the allele frequencies at the QTL markers identified in 2013. 

This allowed a fair comparison of the effect of these markers between years. Under control 

conditions, all six QTLs associated with GY-con identified in 2013 also displayed significant GY-

con differences in 2014 (Table 6). The GY-con variation associated with these QTLs was, in fact, 

greater in 2014 than in the 2013 experiment, with the single exception of qCGA-10. Under 

drought conditions, the four QTLs associated with GY-dro/GY-loss identified in 2013 had a less 

marked effect in the 2014 experiment, and were not always significant (Table 7). These results 

are not entirely surprising, given the challenges involved in precisely duplicating the timing 

and intensity of drought stress, and the dynamic nature of plant response to stress. These 

results also suggest that the GY-associated QTLs determined by GWA mapping of the best GY-

con biomarkers are less influenced by genotype-by-year interactions than the ones mapped 

for the best GY-dro/GY-loss biomarkers. This is likely dependent on the more stable 

environment present under well-watered conditions than under drought stress over the two 

years. Indeed, the stronger influence of environmental factors in determining the levels of the 

best GY-dro/GY-loss biomarkers than the GY-con ones is confirmed by their lower pseudo-

heritability values (Supplementary Table 8). However, it is noteworthy that the effect of all the 

top markers of the GY-associated QTLs in 2013 was consistent in the 2014 (Table 6 and 7), 
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confirming their robustness as breeding targets to improve GY in rice. Interestingly, the GY-

associated QTLs described in this study were not detected when the field trials (2013 and 

2014) were used for the direct GWA mapping of GY and its components (Kadam et al., 2018). 

This supports the validity of our approach which allowed to dissect the complex genetics of 

GY performance into relevant biochemical components (biomarkers) and to identify the 

fraction of the genetic variation of these components associated with GY only. 

 

Table 6. Effect and significance of QTLs associated with GY-con in 2013 compared to the 2014 field 
trial. 

 

 

 
 
 
 
 
 

 
 
 
Table 7. Effect and significance of QTLs associated with GY-dro/GY-loss in 2013 compared to the 2014 
field trial. 
 

 

 

 

 

 

 

CONCLUSIONS 

This study has shown that in a large panel of phenotypically and genetically diverse rice 

accessions the flag leaf central metabolism and oxidative stress status during the reproductive 

stage represent a proxy for the plant’s physiological status that is highly informative for 

predicting GY performance under both well-watered conditions and under drought stress. We 

showed that the predictive power of metabolites and oxidative stress markers/enzymes was 

equal to genetic markers for predicting GY-con, and significantly better than genetic markers 

QTL name Chr 
2013  2014 

GY-con 
(gr./m2)                 P 

 GY-con 
(gr./m2)                 P 

qCGA-2 2 68.1 ***  126.1 *** 
qCGA-10 10 -65.6 ***  -48.7 ** 
qIsocit-4+ 4 -91.7 ***  -116.4 *** 
qIsocit-7+ 7 -122.7 ***  -167.4 *** 
qIsocit-11+ 11 -79.7 **  -131.9 *** 
qCit-8 8 56.7 *  104.0 ** 

QTL name Chr 
2013  2014 

GY-dro 
(gr./m2)                 P GY-loss 

(%)                 P 
 GY-dro 

(gr./m2)                 P GY-loss 
(%)                 P 

qDHAR-6+ 6 -94.3 *** 13.4 **  -78.0 ** 14.4 ** 
qMDA-2.1 2 107.9 ** -15.5 ***  76.8 n.s. -10.2 n.s. 
qMDA-7 7 80.6 * -12.9 **  67.4 n.s. -4.8 n.s. 
qMDA-12 12 110.8 ** -16.5 **  112.3 ** -12.8 n.s. 
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for predicting GY-dro and GY-loss. This underscores the importance of plant metabolism and 

oxidative stress status in contributing to phenotype and as the basis for improving crop GY, 

especially in the attempt to create drought resilient crop varieties. Our metabolome-oxidative 

stress-based multivariate models identified a set of biomarkers predictive of GY-con, GY-dro 

and GY-loss. Despite their value, using metabolites and enzyme activities as GY biomarkers is 

challenging because of their responsiveness to environmental changes, developmental stages 

and even diurnal variation. The efforts of collecting a large number of plant tissues in the field, 

in a limited time window, and synchronizing the developmental stage of many hundreds of 

accessions, as we did in this study, will likely remain a job for the fundamental research 

community rather than for breeders. However, in this study, we demonstrated that it is 

possible to convert GY biomarkers into genetic markers associated with GY performance. 

These DNA markers, and the underlying candidate genes they tag, represent easy and cost-

effective tools that are readily available to the breeding community to improve rice GY under 

non-stress and drought-stress conditions. 

Finally, the complex and polygenic nature of agronomic traits, such as GY, is often determined 

by many small effect loci that are difficult to identify by direct GWA mapping of the trait. The 

research approach described in the present study represents an effective strategy to begin to 

disentangle the dynamic complexity of grain yield and to facilitate the discovery of trait 

heritability hidden into its metabolic and enzymatic components.  

 

ACKNOWLEDGEMENTS 

This work is part of the ‘Growing Rice like Wheat’ research programme financially supported 

by an anonymous private donor, via Wageningen University Fund, for the first author’s PhD 

fellowship (GM). We acknowledge financial support from the ‘Rapid Mobilization of Alleles for 

Rice Cultivar Improvement in Sub-Saharan Africa’ project at Cornell (GM, SMc) funded 

(through the Africa Rice Foundation) by the Bill & Melinda Gates Foundation. 

 

 

 

  

Chapter 5140   |



 
 

 

 
 

140 

confirming their robustness as breeding targets to improve GY in rice. Interestingly, the GY-

associated QTLs described in this study were not detected when the field trials (2013 and 

2014) were used for the direct GWA mapping of GY and its components (Kadam et al., 2018). 

This supports the validity of our approach which allowed to dissect the complex genetics of 

GY performance into relevant biochemical components (biomarkers) and to identify the 

fraction of the genetic variation of these components associated with GY only. 

 

Table 6. Effect and significance of QTLs associated with GY-con in 2013 compared to the 2014 field 
trial. 

 

 

 
 
 
 
 
 

 
 
 
Table 7. Effect and significance of QTLs associated with GY-dro/GY-loss in 2013 compared to the 2014 
field trial. 
 

 

 

 

 

 

 

CONCLUSIONS 

This study has shown that in a large panel of phenotypically and genetically diverse rice 

accessions the flag leaf central metabolism and oxidative stress status during the reproductive 

stage represent a proxy for the plant’s physiological status that is highly informative for 

predicting GY performance under both well-watered conditions and under drought stress. We 

showed that the predictive power of metabolites and oxidative stress markers/enzymes was 

equal to genetic markers for predicting GY-con, and significantly better than genetic markers 

QTL name Chr 
2013  2014 

GY-con 
(gr./m2)                 P 

 GY-con 
(gr./m2)                 P 

qCGA-2 2 68.1 ***  126.1 *** 
qCGA-10 10 -65.6 ***  -48.7 ** 
qIsocit-4+ 4 -91.7 ***  -116.4 *** 
qIsocit-7+ 7 -122.7 ***  -167.4 *** 
qIsocit-11+ 11 -79.7 **  -131.9 *** 
qCit-8 8 56.7 *  104.0 ** 

QTL name Chr 
2013  2014 

GY-dro 
(gr./m2)                 P GY-loss 

(%)                 P 
 GY-dro 

(gr./m2)                 P GY-loss 
(%)                 P 

qDHAR-6+ 6 -94.3 *** 13.4 **  -78.0 ** 14.4 ** 
qMDA-2.1 2 107.9 ** -15.5 ***  76.8 n.s. -10.2 n.s. 
qMDA-7 7 80.6 * -12.9 **  67.4 n.s. -4.8 n.s. 
qMDA-12 12 110.8 ** -16.5 **  112.3 ** -12.8 n.s. 

 
 

 

 
 

141 

for predicting GY-dro and GY-loss. This underscores the importance of plant metabolism and 

oxidative stress status in contributing to phenotype and as the basis for improving crop GY, 

especially in the attempt to create drought resilient crop varieties. Our metabolome-oxidative 

stress-based multivariate models identified a set of biomarkers predictive of GY-con, GY-dro 

and GY-loss. Despite their value, using metabolites and enzyme activities as GY biomarkers is 

challenging because of their responsiveness to environmental changes, developmental stages 

and even diurnal variation. The efforts of collecting a large number of plant tissues in the field, 

in a limited time window, and synchronizing the developmental stage of many hundreds of 

accessions, as we did in this study, will likely remain a job for the fundamental research 

community rather than for breeders. However, in this study, we demonstrated that it is 

possible to convert GY biomarkers into genetic markers associated with GY performance. 

These DNA markers, and the underlying candidate genes they tag, represent easy and cost-

effective tools that are readily available to the breeding community to improve rice GY under 

non-stress and drought-stress conditions. 

Finally, the complex and polygenic nature of agronomic traits, such as GY, is often determined 

by many small effect loci that are difficult to identify by direct GWA mapping of the trait. The 

research approach described in the present study represents an effective strategy to begin to 

disentangle the dynamic complexity of grain yield and to facilitate the discovery of trait 

heritability hidden into its metabolic and enzymatic components.  

 

ACKNOWLEDGEMENTS 

This work is part of the ‘Growing Rice like Wheat’ research programme financially supported 

by an anonymous private donor, via Wageningen University Fund, for the first author’s PhD 

fellowship (GM). We acknowledge financial support from the ‘Rapid Mobilization of Alleles for 

Rice Cultivar Improvement in Sub-Saharan Africa’ project at Cornell (GM, SMc) funded 

(through the Africa Rice Foundation) by the Bill & Melinda Gates Foundation. 

 

 

 

  

Genome wide association mapping reveals the genetic basis of
metabolic and enzymatic biomarkers for rice grain yield stability under drought

5

|   141   



 
 

 

 
 

142 

SUPPLEMENTARY DATA 

Supplementary data are available at: 

https://drive.google.com/drive/folders/1t7R7GDWJja4KkugdDFtRLC963QfACgdL?usp 

Fig. S1. Principal component analysis (PCA) based on 81,347 SNPs for the 271 indica rice 
accessions. 

Fig. S2. Quantile-Quantile plots of GWA mapping results using values of the best GY-con PLSR 
model predictors. 

Fig. S3. Manhattan plots showing GWA mapping results for control and drought values of the 
best GY-con PLSR model predictors. 

Fig. S4. Box-plots displaying trait variation among accessions carrying major or minor alleles 
at top SNP markers detecting GWA-QTLs for control values of chlorogenic acid. 

Fig. S5. Manhattan plot displaying a GWA peak on chromosome 10 for control values of 
chlorogenic acid. 

Fig. S6. Box-plots displaying trait variation among accessions carrying major or minor alleles 
at top SNP markers detecting GWA-QTLs for control values of isocitric acid and citric acid. 

Fig. S7. Manhattan plots of GWA mapping results for control values of isocitric acid.  

Fig. S8. Box-plots displaying trait variation among accessions carrying major or minor alleles 
at top SNP markers detecting GWA-QTLs for control values of isocitric acid adding the top 
qIsocit-1 marker as a covariate. 

Fig. S9. Quantile-Quantile plots of GWA mapping results for values of the best GY-dro and GY-
loss PLSR model predictors. 

Fig. S10. Manhattan plots showing GWA mapping results for drought and control values of the 
best GY-dro and GY-loss PLSR model predictors. 

Fig. S11. Box-plots displaying trait variation among accessions carrying major or minor alleles 
at top SNP markers detecting GWA-QTLs for drought values/activities of DHAR and MDA. 

Fig. S12. Manhattan plots showing GWA mapping results for drought activity values of DHAR. 

Fig. S13. Box-plots displaying trait variation among accessions carrying major or minor alleles 
at top SNP markers detecting GWA-QTLs for drought activity values of DHAR and using the top 
qDHAR-6 marker as a covariate.    

Fig. S14. Box-plots displaying trait variation among accessions carrying major or minor alleles 
at top SNP markers detecting GWA-QTLs for drought activity values of MDHAR. 

Table S1. Grain yield, flowering and plant height for the 271 indica rice accessions. 

Table S2. Flag leaf values of the 111 MetabOxi variables in the 271 indica rice accessions under 
control and drought stress conditions. 
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Table S3. Phenotypic trait performance of the panel. 

Table S4. Predictability of the cross-validated PLSR models based on increasing latent 
variables. 

Table S5. Ranking of the variables of the best MetabOxi-based PLSR models for the prediction 
of grain yield under control and drought conditions and for grain yield loss. 

Table S6. Correlations between  control values of the 111 MetabOxi variables and grain yield, 
flowering and plant height under control conditions. 

Table S7. Correlations between  drought values of the 111 MetabOxi variables and grain yield, 
flowering and plant height under control conditions and drought-induced grain yield loss. 

Table S8. Phenotypic variance explained by the genetic markers. 

Table S9. List of genes mapping within the QTL regions determined by GWA mapping of the 
best GY-con predictors. 

Table S10. List of genes mapping within the LD blocks of the QTLs determined by GWA 
mapping of the best GY-dro/GY-loss predictors. 

Table S11. List of accessions carrying the major and minor allele of the top qDHAR-6+ marker. 
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Plants are often exposed to conditions of limited water supply and this reduces their 

productivity. Ray et al. (2015) showed that the variation in temperature, precipitation and 

their interaction explains 32-39% of the globally average year-to-year yield variability of maize, 

rice, wheat and soybean during the period 1979-2008. In the coming decades, drought 

episodes associated with global climate change are projected to become more frequent and 

erratic. Recently, Leng and Hall (2019) estimated that by the end of the 21st century the risk of 

drought-induced grain yield loss in the major Asian rice producing countries will increase by 

18-19% compared to present conditions. In this context, improving drought resilience in rice 

will be critical to meet the growing global food demand, particularly considering that, in Asia, 

~40% of the total crop area is cultivated in rainfed agroecosystems (FAO, 2014) which are 

prone to droughts. 

In this thesis I identified mechanisms of tolerance to drought, by investigating how stress-

induced changes in the physiology, central metabolism, and oxidative stress status of rice 

impact its growth and yield. In Chapter 2, I show that a number of physiological, metabolic and 

antioxidative responses to drought are associated with stress-tolerance during the vegetative 

and reproductive stages in three selected rice varieties. In Chapter 3, I identify the coordinated 

activity of antioxidant enzymes from the ascorbate-glutathione cycle as an essential 

mechanism to prevent drought-induced yield loss in a population of rice accessions exposed 

to drought at the reproductive stage. I also studied drought-induced leaf metabolic 

reprogramming of the accessions, and found that photorespiration, protein degradation and 

nitrogen recycling were the main processes induced by drought. Of these three processes, 

photorespiration is caused by limitation of CO2 diffusion into the leaf due to drought-induced 

stomata closure. Therefore, in Chapter 4, the differences in transpiration among the same 

accessions used in Chapter 3 were quantified by measuring canopy temperature, a proxy for 

stomatal conductance. Just as for Chapter 3, the accessions were exposed to drought at the 

reproductive stage and their canopy temperature during stress showed a significant negative 

correlation with grain yield, proving that leaf temperature under stress is a good predictor of 

plant performance. In addition, temperature data were used in a genome-wide association 

(GWA) study and a QTL for canopy temperature under drought was detected. In Chapter 5, I 

show that models based on the set of metabolites and oxidative stress markers/enzymes that 
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in Chapter 3 predicted drought-induced grain yield loss, accurately predict grain yield per se 

under well-watered and drought conditions in the ~270 accessions of the population I used. 

These metabolic- and oxidative stress-based models always predicted grain yield more 

accurately than genomic-based models. Finally, the best metabolic and stress-enzyme model 

predictors of grain yield were used as traits in a GWA study and the resulting associations 

allowed to identify genetic markers that can be used in breeding to improve rice grain yield 

under optimal conditions and/or grain yield/yield stability under drought stress. Here, in 

Chapter 6, I will discuss the main highlights of this thesis by connecting the results of the 

different experimental chapters. I will also discuss the possible follow-up research based on 

my findings and the prospects for their use in agriculture and breeding. 

 

The developmental stage influences the effectiveness of drought tolerance mechanisms  

Among the different plant developmental stages, the reproductive stage is the most sensitive 

to drought in cereals (Passioura, 2012; Biswal and Kohli, 2013; Reynolds et al., 2016) and 

particularly in rice, in which even a moderate stress during flowering can induce a marked 

reduction in grain yield (Liu et al., 2006; Venuprasad et al., 2007). As a consequence, breeders 

have directed the majority of their efforts towards the improvement of rice drought tolerance 

at the reproductive stage, often using direct selection for grain yield under stress (Lanceras et 

al., 2004; Venuprasad et al., 2007; Kumar et al., 2008, 2014; Vikram et al., 2011). Nevertheless, 

when grown in rainfed agroecosystems, rice can be exposed to periods of drought between 

major rainfall events during its entire life cycle, including the vegetative stage (Kamoshita et 

al., 2008). Additionally, considering the increased uncertainty and variability of rainfall 

patterns due to global warming (Reynolds et al., 2016), in the coming years, the occurrence of 

drought stress will likely increase at every plant stage. In this perspective, a better 

understanding of drought tolerance mechanisms at different developmental stages might help 

in the selection of drought-resilient rice genotypes with an improved tolerance throughout 

the entire crop cycle. 

In Chapter 2, I investigated the drought-induced changes in leaf central metabolism and 

oxidative stress status in three indica rice varieties exposed to drought during the vegetative 

and reproductive stage. These three varieties, a lowland (IR64), an aerobic (Apo) and an 
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upland (UPL Ri-7) one, were selected based on their good yield potential under well-watered 

conditions and their contrasting levels of tolerance to drought (low in IR64 and higher in Apo 

and UPL Ri-7). Overall, Chapter 2 clearly showed that, when drought is applied at the 

reproductive stage, the leaves of the three varieties maintained a stable sugar export (low 

levels of glucose and fructose in the leaves) with this highlighting the importance of the flag 

leaf as source of assimilates for the developing panicles and thus for yield (Yoshida, 1972; 

Biswal and Kohli, 2013). In contrast, when exposed to mild-to-severe drought at the vegetative 

stage, the leaves of the three varieties accumulated sugars (high levels of glucose and 

fructose), which provides osmotic protection against dehydration (Luquet et al., 2008). The 

fact that this sugar-mediated osmotic adjustment did not occur at the reproductive stage, 

caused much stronger drought-induced oxidative stress (higher levels of lipid peroxidation and 

protein oxidation) at this stage. Under these conditions, only Apo, the variety displaying the 

strongest antioxidative response (enzymatic antioxidant activities), exhibited limited drought-

induced grain yield loss. The importance of antioxidant enzymes for grain yield stability under 

drought at the reproductive stage was also discovered in Chapters 3 and 5 by multivariate 

modelling of leaf metabolome and oxidative stress status in a large association panel of 

phenotypically and genetically diverse indica rice accessions.  

Focusing on the vegetative stage, Chapter 2 results highlighted that the accumulation of sugars 

(glucose and fructose) in the leaves of the improved upland variety UPL-Ri7 was a genotype-

specific acclimation response that occurred early during drought. The sugar-mediated osmotic 

acclimation in UPL-Ri7 was equally effective in limiting stress-induced biomass loss as the 

strong antioxidative response displayed by Apo at a more severe intensity of stress. Lilley and 

Ludlow (1996) have shown the presence of wide genotypic variation in osmotic adjustment 

and dehydration avoidance in rice lines exposed to water-limited conditions. Particularly, they 

observed a greater osmotic adjustment capacity under stress among indica lines compared to 

japonica ones. Chapter 2 results confirm these genotypic differences in the three indica lines 

and highlight the importance of osmotic adjustment for drought tolerance at the vegetative 

stage. For these reasons, it would be of great interest to perform, at the vegetative stage, the 

same metabolic profiling that I conducted during flowering in Chapter 3 on the association 

mapping panel. This would allow to map possibly new genetic control mechanisms of sugar-
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under well-watered and drought conditions in the ~270 accessions of the population I used. 

These metabolic- and oxidative stress-based models always predicted grain yield more 

accurately than genomic-based models. Finally, the best metabolic and stress-enzyme model 

predictors of grain yield were used as traits in a GWA study and the resulting associations 

allowed to identify genetic markers that can be used in breeding to improve rice grain yield 

under optimal conditions and/or grain yield/yield stability under drought stress. Here, in 

Chapter 6, I will discuss the main highlights of this thesis by connecting the results of the 

different experimental chapters. I will also discuss the possible follow-up research based on 

my findings and the prospects for their use in agriculture and breeding. 

 

The developmental stage influences the effectiveness of drought tolerance mechanisms  

Among the different plant developmental stages, the reproductive stage is the most sensitive 

to drought in cereals (Passioura, 2012; Biswal and Kohli, 2013; Reynolds et al., 2016) and 

particularly in rice, in which even a moderate stress during flowering can induce a marked 

reduction in grain yield (Liu et al., 2006; Venuprasad et al., 2007). As a consequence, breeders 

have directed the majority of their efforts towards the improvement of rice drought tolerance 

at the reproductive stage, often using direct selection for grain yield under stress (Lanceras et 

al., 2004; Venuprasad et al., 2007; Kumar et al., 2008, 2014; Vikram et al., 2011). Nevertheless, 

when grown in rainfed agroecosystems, rice can be exposed to periods of drought between 

major rainfall events during its entire life cycle, including the vegetative stage (Kamoshita et 

al., 2008). Additionally, considering the increased uncertainty and variability of rainfall 

patterns due to global warming (Reynolds et al., 2016), in the coming years, the occurrence of 

drought stress will likely increase at every plant stage. In this perspective, a better 

understanding of drought tolerance mechanisms at different developmental stages might help 

in the selection of drought-resilient rice genotypes with an improved tolerance throughout 

the entire crop cycle. 

In Chapter 2, I investigated the drought-induced changes in leaf central metabolism and 

oxidative stress status in three indica rice varieties exposed to drought during the vegetative 

and reproductive stage. These three varieties, a lowland (IR64), an aerobic (Apo) and an 
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upland (UPL Ri-7) one, were selected based on their good yield potential under well-watered 

conditions and their contrasting levels of tolerance to drought (low in IR64 and higher in Apo 

and UPL Ri-7). Overall, Chapter 2 clearly showed that, when drought is applied at the 

reproductive stage, the leaves of the three varieties maintained a stable sugar export (low 

levels of glucose and fructose in the leaves) with this highlighting the importance of the flag 

leaf as source of assimilates for the developing panicles and thus for yield (Yoshida, 1972; 

Biswal and Kohli, 2013). In contrast, when exposed to mild-to-severe drought at the vegetative 

stage, the leaves of the three varieties accumulated sugars (high levels of glucose and 

fructose), which provides osmotic protection against dehydration (Luquet et al., 2008). The 

fact that this sugar-mediated osmotic adjustment did not occur at the reproductive stage, 

caused much stronger drought-induced oxidative stress (higher levels of lipid peroxidation and 

protein oxidation) at this stage. Under these conditions, only Apo, the variety displaying the 

strongest antioxidative response (enzymatic antioxidant activities), exhibited limited drought-

induced grain yield loss. The importance of antioxidant enzymes for grain yield stability under 

drought at the reproductive stage was also discovered in Chapters 3 and 5 by multivariate 

modelling of leaf metabolome and oxidative stress status in a large association panel of 

phenotypically and genetically diverse indica rice accessions.  

Focusing on the vegetative stage, Chapter 2 results highlighted that the accumulation of sugars 

(glucose and fructose) in the leaves of the improved upland variety UPL-Ri7 was a genotype-

specific acclimation response that occurred early during drought. The sugar-mediated osmotic 

acclimation in UPL-Ri7 was equally effective in limiting stress-induced biomass loss as the 

strong antioxidative response displayed by Apo at a more severe intensity of stress. Lilley and 

Ludlow (1996) have shown the presence of wide genotypic variation in osmotic adjustment 

and dehydration avoidance in rice lines exposed to water-limited conditions. Particularly, they 

observed a greater osmotic adjustment capacity under stress among indica lines compared to 

japonica ones. Chapter 2 results confirm these genotypic differences in the three indica lines 

and highlight the importance of osmotic adjustment for drought tolerance at the vegetative 

stage. For these reasons, it would be of great interest to perform, at the vegetative stage, the 

same metabolic profiling that I conducted during flowering in Chapter 3 on the association 

mapping panel. This would allow to map possibly new genetic control mechanisms of sugar-
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mediated osmotic adjustment, a prime drought stress adaptive trait (Blum, 2017), for which 

QTLs were already detected in rice using bi-parental populations (Robin et al., 2003; Lilley et 

al., 2007). 

 

Metabolic and enzymatic biomarkers for grain yield stability under drought can complement 

genomic and genetic tools for the improvement of the trait 

Despite genomics-assisted crop breeding has greatly contributed to the improvement of 

complex traits (Varshney et al., 2014), closing the gap between genotype and phenotype 

remains a difficult breeding target. This is particularly true for a trait like grain yield under 

drought conditions which shows low heritability, complex polygenic control and, most 

importantly, a strong genotype-by-environment interaction (Cattivelli et al., 2008). Plants are 

highly plastic in their response to dynamic environments and physiological trait plasticity is 

particularly important for the adaptation to extremely adverse environmental conditions 

(Dalal et al., 2017), such as periods of drought. Plant metabolism is a readout of the plant 

physiological status and, thus, metabolites represent functional intermediate phenotypes 

linking the genotype to complex traits (Luo, 2015). For these reasons, targeting metabolic 

traits might represent a successful breeding strategy for improving crop yield under drought 

stress. 

In Chapter 5, I found that a set of flag leaf central metabolites and oxidative stress 

markers/enzymes displayed a higher accuracy than DNA markers (SNPs) for the prediction of 

grain yield performance under drought in a large panel of indica rice accessions. Under well-

watered conditions, the grain yield prediction accuracy of the metabolites and enzymes was 

equal to the one of the SNPs. These observations support the idea that metabolites and 

enzymes - because the effect of stress-induced dynamic regulatory processes is integrated in 

their levels and activities, respectively (Fiehn, 2002; Herrmann and Schauer, 2013) - are closer 

to plant grain yield performance under drought than the ‘fixed’ genetic markers. It is, 

therefore, under stressful conditions, more than under control, that the physiological 

information carried by the leaf metabolites and oxidative stress markers/enzymes can 

effectively complement genetics and genomics to improve drought tolerance in rice varieties. 
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In Chapter 3, I analyzed flag leaf primary metabolism under drought in the accessions of the 

panel and identified that photorespiration, protein degradation and nitrogen recycling were 

the main processes involved in the drought-induced leaf metabolic reprogramming. 

Additionally, by considering the oxidative stress status under drought of the same accessions, 

I showed that high levels of photorespiration and protein degradation were strongly linked 

with high values of malondialdehyde (MDA), a lipid peroxidation product indicative of 

membrane oxidative damage (Møller et al., 2007). This link suggests that under drought, the 

high rate of peroxisomal H2O2 production, induced by enhanced photorespiration, is 

responsible for the oxidation of proteins and membrane lipids (Noctor, 2002; Avramova et al., 

2017). Plants counteract the enhanced generation of ROS and their oxidative action by 

enzymatic and non-enzymatic antioxidants (Miller et al., 2010; Gill and Tuteja, 2010; You and 

Chan, 2015). In Chapter 3, I found that the activity of the antioxidant enzymes ascorbate 

peroxidase (APX), catalase (CAT) and dehydroascorbate reductase (DHAR) displays a negative 

correlation with the metabolic processes associated with drought stress. These results 

highlight how drought stress deeply alters cellular ROS homeostasis and that this has profound 

effects on leaf metabolism. In addition, even if genotypic variation in antioxidative responses 

to drought in different rice varietie was observed before (Selote and Khanna-Chopra, 2004; 

Basu et al., 2009), the work conducted in Chapter 3 represents, to the best of my knowledge, 

the only large screening of drought-induced changes in the oxidative stress status of a crop 

species. 

Besides representing the plant physiological status, metabolites and enzymes are also 

interesting breeding targets because they may serve as ‘biomarkers’ predictive of trait 

performance (Fernandez et al., 2016). In Chapter 3 and 5, multivariate modelling and 

correlation analysis of flag leaf metabolome and oxidative stress status of the rice accessions 

revealed that DHAR and MDA were the best biomarkers for grain yield and grain yield loss 

under drought at the reproductive stage. These results further confirm that stress-induced 

alteration of leaf oxidative stress status is crucial for grain yield performance under drought 

at flowering and it is more predictive of trait variation than metabolic alterations. 

The identification of DHAR and MDA as biomarkers for rice grain yield stability under drought 

is one of the main achievements of this thesis work. However, it is important to note that in 
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mediated osmotic adjustment, a prime drought stress adaptive trait (Blum, 2017), for which 

QTLs were already detected in rice using bi-parental populations (Robin et al., 2003; Lilley et 

al., 2007). 
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physiological status and, thus, metabolites represent functional intermediate phenotypes 

linking the genotype to complex traits (Luo, 2015). For these reasons, targeting metabolic 

traits might represent a successful breeding strategy for improving crop yield under drought 
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equal to the one of the SNPs. These observations support the idea that metabolites and 

enzymes - because the effect of stress-induced dynamic regulatory processes is integrated in 

their levels and activities, respectively (Fiehn, 2002; Herrmann and Schauer, 2013) - are closer 

to plant grain yield performance under drought than the ‘fixed’ genetic markers. It is, 

therefore, under stressful conditions, more than under control, that the physiological 

information carried by the leaf metabolites and oxidative stress markers/enzymes can 

effectively complement genetics and genomics to improve drought tolerance in rice varieties. 
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In Chapter 3, I analyzed flag leaf primary metabolism under drought in the accessions of the 

panel and identified that photorespiration, protein degradation and nitrogen recycling were 

the main processes involved in the drought-induced leaf metabolic reprogramming. 

Additionally, by considering the oxidative stress status under drought of the same accessions, 

I showed that high levels of photorespiration and protein degradation were strongly linked 

with high values of malondialdehyde (MDA), a lipid peroxidation product indicative of 

membrane oxidative damage (Møller et al., 2007). This link suggests that under drought, the 

high rate of peroxisomal H2O2 production, induced by enhanced photorespiration, is 

responsible for the oxidation of proteins and membrane lipids (Noctor, 2002; Avramova et al., 

2017). Plants counteract the enhanced generation of ROS and their oxidative action by 

enzymatic and non-enzymatic antioxidants (Miller et al., 2010; Gill and Tuteja, 2010; You and 

Chan, 2015). In Chapter 3, I found that the activity of the antioxidant enzymes ascorbate 

peroxidase (APX), catalase (CAT) and dehydroascorbate reductase (DHAR) displays a negative 

correlation with the metabolic processes associated with drought stress. These results 

highlight how drought stress deeply alters cellular ROS homeostasis and that this has profound 

effects on leaf metabolism. In addition, even if genotypic variation in antioxidative responses 

to drought in different rice varietie was observed before (Selote and Khanna-Chopra, 2004; 

Basu et al., 2009), the work conducted in Chapter 3 represents, to the best of my knowledge, 

the only large screening of drought-induced changes in the oxidative stress status of a crop 

species. 

Besides representing the plant physiological status, metabolites and enzymes are also 

interesting breeding targets because they may serve as ‘biomarkers’ predictive of trait 

performance (Fernandez et al., 2016). In Chapter 3 and 5, multivariate modelling and 

correlation analysis of flag leaf metabolome and oxidative stress status of the rice accessions 

revealed that DHAR and MDA were the best biomarkers for grain yield and grain yield loss 

under drought at the reproductive stage. These results further confirm that stress-induced 

alteration of leaf oxidative stress status is crucial for grain yield performance under drought 

at flowering and it is more predictive of trait variation than metabolic alterations. 

The identification of DHAR and MDA as biomarkers for rice grain yield stability under drought 

is one of the main achievements of this thesis work. However, it is important to note that in 
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addition to being predictive, biomarkers need to be easy and cheap to score in order to be 

successfully applied in plant breeding (Zabotina, 2013; Fernandez et al., 2016). As previously 

discussed, metabolites and enzymes are responsive to environmental and developmental 

changes (Florian et al., 2014; Sulpice et al., 2014; Sulpice and McKeown, 2015) and their 

analysis as biomarker would imply a huge effort in collecting a large number of samples in the 

field, during a limited time window and with all plants synchronized at the same plant 

developmental stage. In addition, these samples would need to undergo expensive laboratory 

procedures for the quantification of metabolites/enzyme activities. The time and costs 

associated with sample collection and laboratory work currently limits their use to 

fundamental research rather than to breeding. Nevertheless, in recent years, the development 

of field high-throughput phenotyping has allowed rapid and low-cost measurements of many 

phenotypes across time and space (Pauli et al., 2016). Furthermore, the use of hyperspectral 

sensors has demonstrated the possibility to infer leaf chemical properties, including nitrogen 

and lignin content, with enormous throughput in different plant species (Martin et al., 2008; 

Ustin et al., 2009; Asner et al., 2011; Feilhauer et al., 2015). Thus, it can be conceived that, in 

the near future, the routine use in agriculture of high-throughput phenotyping devices (e.g 

gantries, drones and satellites) equipped with different types of sensors will enable the kind 

of biochemical markers described in my thesis in a time- and cost-effective manner. An 

alternative solution to translate the information carried by metabolic and enzymatic 

biomarkers into a breeder-friendly format is described in Chapter 5. By using the drought 

values of DHAR and MDA as quantitative traits in GWA mapping, I identified loci (SNPs) that 

represent the genetics that are underpinning these biomarkers associated with grain yield 

differences among the accessions of the panel. DNA markers are easy and cost-effective tools 

readily available to breeders. In addition, the loci identified in Chapter 5, were not determined 

by GWA mapping of grain yield under drought and, therefore, they represent a new source of 

genetic variation for improving rice grain yield under drought that was hidden in its metabolic 

and enzymatic components. 

 

The importance of selecting the right trait for the right drought scenario 

The thought-provoking idea that any trait or trait-related allele can increase or decrease 

drought tolerance depending on the drought scenario (Tardieu, 2012), highlights the 
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fundamental importance of genotype-by-environment interactions in determining plant 

productivity under water-limited conditions. I have already discussed above and in Chapter 1, 

how different mechanisms of drought tolerance in rice can have a positive or negative effect 

on yield based on length, intensity and timing (relative to plant developmental stage) of the 

drought event. Thus, it is of great importance to consider the prevailing water supply of a 

specific agroecosystem in order to identify the right combination of alleles and traits that can 

confer drought tolerance under those specific conditions (Tardieu et al., 2018; Varshney et al., 

2018). In rice, most of the tall upland varieties and landraces have a good level of drought 

tolerance when grown in rainfed upland fields, where conditions of mild-to-severe drought 

often prevail, but perform poorly under irrigated lowland conditions (Bernier et al., 2008). This 

is caused by the fact that tolerance to drought of upland rice varieties mainly relies on 

mechanisms of drought avoidance (e.g. early flowering, reduced leaf growth, limited tillering, 

deep rooting, and reduced stomatal conductance) which, by  promoting a constitutive 

moderation of water use, hamper high plant productivity when water is available (Blum, 

2005). 

An example of the contrast between mechanisms of drought avoidance and yield 

maximization is the negative correlation between stomatal conductance (indirectly measured 

by canopy temperature) and plant height, observed in Chapter 4, among the accessions of the 

already mentioned association panel of indica rice lines. This negative correlation was present 

under both well-watered (less marked) and drought stress (more marked) conditions and 

confirms that reduced stomatal conductance is a constitutive water-saving trait associated 

with the tall and low-yielding upland rice varieties. In the same study, I also found that 

stomatal conductance was positively correlated with grain yield of the accessions under both 

treatments and, particularly, under drought stress. Considering that the closure of stomata to 

conserve water status contrasts with carbon assimilation and productivity (Luo, 2010), 

Chapter 4 results contribute to explain, from a physiological perspective, the negative link 

between drought avoidance mechanisms and high yield in rice (Price et al., 2002). In addition, 

it is noteworthy that the maintenance of high stomatal conductance under stress of the high-

yielding, semi-dwarf varieties of the panel did not represent a negative factor for their grain 

yield performance. This might be due to the advantageous evaporative cooling effect under 
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addition to being predictive, biomarkers need to be easy and cheap to score in order to be 
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developmental stage. In addition, these samples would need to undergo expensive laboratory 

procedures for the quantification of metabolites/enzyme activities. The time and costs 

associated with sample collection and laboratory work currently limits their use to 
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of field high-throughput phenotyping has allowed rapid and low-cost measurements of many 

phenotypes across time and space (Pauli et al., 2016). Furthermore, the use of hyperspectral 
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differences among the accessions of the panel. DNA markers are easy and cost-effective tools 

readily available to breeders. In addition, the loci identified in Chapter 5, were not determined 

by GWA mapping of grain yield under drought and, therefore, they represent a new source of 

genetic variation for improving rice grain yield under drought that was hidden in its metabolic 

and enzymatic components. 
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fundamental importance of genotype-by-environment interactions in determining plant 

productivity under water-limited conditions. I have already discussed above and in Chapter 1, 

how different mechanisms of drought tolerance in rice can have a positive or negative effect 

on yield based on length, intensity and timing (relative to plant developmental stage) of the 

drought event. Thus, it is of great importance to consider the prevailing water supply of a 

specific agroecosystem in order to identify the right combination of alleles and traits that can 

confer drought tolerance under those specific conditions (Tardieu et al., 2018; Varshney et al., 

2018). In rice, most of the tall upland varieties and landraces have a good level of drought 

tolerance when grown in rainfed upland fields, where conditions of mild-to-severe drought 

often prevail, but perform poorly under irrigated lowland conditions (Bernier et al., 2008). This 

is caused by the fact that tolerance to drought of upland rice varieties mainly relies on 

mechanisms of drought avoidance (e.g. early flowering, reduced leaf growth, limited tillering, 

deep rooting, and reduced stomatal conductance) which, by  promoting a constitutive 

moderation of water use, hamper high plant productivity when water is available (Blum, 

2005). 

An example of the contrast between mechanisms of drought avoidance and yield 

maximization is the negative correlation between stomatal conductance (indirectly measured 

by canopy temperature) and plant height, observed in Chapter 4, among the accessions of the 

already mentioned association panel of indica rice lines. This negative correlation was present 

under both well-watered (less marked) and drought stress (more marked) conditions and 

confirms that reduced stomatal conductance is a constitutive water-saving trait associated 

with the tall and low-yielding upland rice varieties. In the same study, I also found that 

stomatal conductance was positively correlated with grain yield of the accessions under both 

treatments and, particularly, under drought stress. Considering that the closure of stomata to 

conserve water status contrasts with carbon assimilation and productivity (Luo, 2010), 

Chapter 4 results contribute to explain, from a physiological perspective, the negative link 

between drought avoidance mechanisms and high yield in rice (Price et al., 2002). In addition, 

it is noteworthy that the maintenance of high stomatal conductance under stress of the high-

yielding, semi-dwarf varieties of the panel did not represent a negative factor for their grain 

yield performance. This might be due to the advantageous evaporative cooling effect under 
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drought determined by the high transpiration of the short, high-yielding varieties that avoided 

heat stress (Jagadish et al., 2015). Another possible explanation might be due to the fact that 

higher transpiration reduces photorespiration that, in Chapter 3, was shown to be associated 

with drought-induced premature leaf senescence and oxidation of membrane lipids, two 

processes that have strong negative effects on grain yield. However, it is important to remark 

that, in the experiment conducted in Chapter 4, the accessions of the stressed field were 

grown in paddy field conditions except for 14 consecutive days of drought stress treatment 

during the flowering stage. It is therefore likely that, under more prolonged and severe 

drought conditions, the sustained transpiration of the short, high-yielding varieties of the 

panel would have exposed their leaves to strong dehydration resulting in a drawback for their 

yield performance. The latter consideration reinforces the idea that each trait can have a 

positive or negative effect on yield depending on the drought scenario (Tardieu, 2012). 

Interestingly, in Chapter 4, a QTL associated with stomatal conductance differences among 

the accessions under drought was mapped on chromosome 3 and genetic variation for the 

significant markers of this QTL was present only within the tall, low-yielding upland varieties 

of the panel. The absence of genetic variation for this QTL in the high-yielding, semi-dwarf 

accessions suggests that selection for high grain yield under paddy conditions has resulted in 

reduced genetic variation for their stomatal response under drought. Thus, only the tall upland 

rice varieties and landraces possess the genetic variation associated with reduced stomatal 

conductance which could be exploited to induce a more conservative water use in the modern 

high-yielding varieties allowing their survival in growing environments exposed to prolonged 

water-limited conditions. 

Under persistent water-limited conditions, the disruption of cellular homeostasis enhances 

the generation of reactive oxygen species (ROS), which, if they exceed the cellular ROS 

scavenging capacity, leads to oxidative damage to proteins, lipids and DNA (Halliwell, 2006; 

Suzuki et al., 2012; Noctor et al., 2014). As previously discussed, in Chapter 3 and 5, the lipid 

peroxidation product MDA was identified as an accurate biomarker of grain yield loss and grain 

yield per se under drought, suggesting that drought-induced oxidative damage is a major 

factor limiting rice productivity under stress. Chapter 2, 3 and 5 results show that the higher 

activity of antioxidant enzymes, particularly the ones involved in the ascorbate-glutathione 
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cycle, has a fundamental effect in improving rice grain yield stability under drought at the 

reproductive stage. Furthermore, in Chapter 2, I also found that, when exposed to severe 

drought at the vegetative stage, the strong antioxidant response displayed by the aerobic rice 

variety Apo was effective in limiting stress-induced biomass reduction. This indicates that a 

strong antioxidant system confers tolerance to drought at both the vegetative and 

reproductive stage. Different from constitutive drought avoidance mechanisms, which conflict 

with yield maximization when water is available, the ROS scavenging antioxidant defenses are 

only triggered by stress-induced ROS accumulation (Gill and Tuteja, 2010; You and Chan, 2015) 

and, therefore, should not result in yield penalty under sufficient water supply. Supporting this 

hypothesis, in Chapter 5, the QTLs mapped using the drought activities of the two ascorbate-

glutathione antioxidative enzymes, DHAR and MDHAR, identified as highly predictive of grain 

yield and grain yield loss under drought, were not detected using their control activity values, 

suggesting that the genetic expression of these QTLs is stress-triggered only. In addition, the 

drought activities of DHAR and MDHAR did not show significant correlations with plant height 

differences among the accessions of the indica rice panel (Chapter 5). This further suggests 

that, in contrast to the reduced stomatal conductance, the higher activity of these two 

enzymes does not conflict with the better yield performance of the semi-dwarf rice varieties. 

For all these reasons, increasing the (drought-induced) ROS scavenging capacity of the modern 

high-yielding rice varieties might represent an effective and robust trait to improve their 

tolerance to periods of severe drought, and possibly during the entire crop cycle. The bio- and 

genetic markers I have discovered in my thesis may make an important contribution to this. 

 

Concluding remarks 

The results of this thesis work contribute to a deeper understanding on how drought-induced 

changes in stomatal regulation, central metabolism, and oxidative stress status impact rice 

physiology and, ultimately, biomass and grain yield. The identification of DHAR and MDA as 

biomarkers for grain yield stability under drought provide two important breeding targets for 

improving rice tolerance to drought. I also identified a set of genetic markers (SNPs) associated 

with these two biomarkers as well as with differences in stomatal conductance in a large panel 

of indica rice accessions. These SNPs are readily available to the breeders for improving rice 

productivity under drought or for increasing survival to the stress, through marker-assisted 
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drought determined by the high transpiration of the short, high-yielding varieties that avoided 

heat stress (Jagadish et al., 2015). Another possible explanation might be due to the fact that 

higher transpiration reduces photorespiration that, in Chapter 3, was shown to be associated 

with drought-induced premature leaf senescence and oxidation of membrane lipids, two 

processes that have strong negative effects on grain yield. However, it is important to remark 
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significant markers of this QTL was present only within the tall, low-yielding upland varieties 

of the panel. The absence of genetic variation for this QTL in the high-yielding, semi-dwarf 
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cycle, has a fundamental effect in improving rice grain yield stability under drought at the 

reproductive stage. Furthermore, in Chapter 2, I also found that, when exposed to severe 

drought at the vegetative stage, the strong antioxidant response displayed by the aerobic rice 

variety Apo was effective in limiting stress-induced biomass reduction. This indicates that a 

strong antioxidant system confers tolerance to drought at both the vegetative and 

reproductive stage. Different from constitutive drought avoidance mechanisms, which conflict 

with yield maximization when water is available, the ROS scavenging antioxidant defenses are 

only triggered by stress-induced ROS accumulation (Gill and Tuteja, 2010; You and Chan, 2015) 

and, therefore, should not result in yield penalty under sufficient water supply. Supporting this 

hypothesis, in Chapter 5, the QTLs mapped using the drought activities of the two ascorbate-

glutathione antioxidative enzymes, DHAR and MDHAR, identified as highly predictive of grain 

yield and grain yield loss under drought, were not detected using their control activity values, 

suggesting that the genetic expression of these QTLs is stress-triggered only. In addition, the 

drought activities of DHAR and MDHAR did not show significant correlations with plant height 

differences among the accessions of the indica rice panel (Chapter 5). This further suggests 

that, in contrast to the reduced stomatal conductance, the higher activity of these two 

enzymes does not conflict with the better yield performance of the semi-dwarf rice varieties. 

For all these reasons, increasing the (drought-induced) ROS scavenging capacity of the modern 

high-yielding rice varieties might represent an effective and robust trait to improve their 

tolerance to periods of severe drought, and possibly during the entire crop cycle. The bio- and 

genetic markers I have discovered in my thesis may make an important contribution to this. 

 

Concluding remarks 

The results of this thesis work contribute to a deeper understanding on how drought-induced 

changes in stomatal regulation, central metabolism, and oxidative stress status impact rice 

physiology and, ultimately, biomass and grain yield. The identification of DHAR and MDA as 

biomarkers for grain yield stability under drought provide two important breeding targets for 

improving rice tolerance to drought. I also identified a set of genetic markers (SNPs) associated 

with these two biomarkers as well as with differences in stomatal conductance in a large panel 

of indica rice accessions. These SNPs are readily available to the breeders for improving rice 

productivity under drought or for increasing survival to the stress, through marker-assisted 
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selection. Finally, further analysis is needed to validate the a priori candidate genes that are 

underlying these markers. The confirmation of these genes as functional targets would allow 

their rapid modification through genome-editing technologies which would greatly accelerate 

the improvement of drought tolerance in rice. 
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Summary 

 
In Chapter 1, I explain that in the coming decades, drought episodes associated with climate 

change will be more frequent and erratic. Under this scenario, increasing or maintaining crop 

yields to meet the growing global food demand will become gradually more difficult. Rice 

(Oryza sativa), a staple food for more than half of the world’s population, shows the greatest 

sensitivity to water limitation among the cereal crops. Improving drought tolerance in rice by 

limiting the stress-induced yield penalties is pivotal for global food security. 

Drought stress impacts the physiology of plants and disrupts cellular homeostasis leading to 

metabolic alterations and increased oxidative stress. In this thesis, I investigate how drought-

induced changes in rice physiology, central metabolism and oxidative stress status impact crop 

growth and yield. I also exploit the genetic diversity of a large panel of indica rice accessions 

to map genes and genomic regions associated with the quantitative variation in metabolic and 

physiological traits important for drought tolerance. 

In Chapter 2, I study the physiological, metabolic and antioxidative responses to drought in 

three indica rice varieties selected for their contrasting levels of tolerance/susceptibility to the 

stress. The analysis was conducted during both the vegetative and reproductive stages and 

different mechanisms of tolerance to drought were identified between the different tolerant 

varieties and between stages. This study provides a framework for the exploration of the 

genetic control of these mechanisms of tolerance to drought. 

In Chapter 3, I analyse the stress-induced changes in flag leaf central metabolism and oxidative 

stress status in ~300 indica rice accessions exposed to drought in the field at the reproductive 

stage. Photorespiration, protein degradation and nitrogen recycling were identified as the 

main flag leaf metabolic processes induced by drought. By integrating the metabolite data and 

the oxidative stress status of the accessions I showed that the activity of specific enzymatic 

antioxidants is important to limit the metabolic processes associated with drought stress 

which have a negative impact on grain yield. Finally, the levels of metabolites and oxidative 

stress markers/enzymes were also used to generate a multivariate model that accurately 
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Summary 

 
In Chapter 1, I explain that in the coming decades, drought episodes associated with climate 

change will be more frequent and erratic. Under this scenario, increasing or maintaining crop 

yields to meet the growing global food demand will become gradually more difficult. Rice 

(Oryza sativa), a staple food for more than half of the world’s population, shows the greatest 

sensitivity to water limitation among the cereal crops. Improving drought tolerance in rice by 

limiting the stress-induced yield penalties is pivotal for global food security. 

Drought stress impacts the physiology of plants and disrupts cellular homeostasis leading to 

metabolic alterations and increased oxidative stress. In this thesis, I investigate how drought-

induced changes in rice physiology, central metabolism and oxidative stress status impact crop 

growth and yield. I also exploit the genetic diversity of a large panel of indica rice accessions 

to map genes and genomic regions associated with the quantitative variation in metabolic and 

physiological traits important for drought tolerance. 

In Chapter 2, I study the physiological, metabolic and antioxidative responses to drought in 

three indica rice varieties selected for their contrasting levels of tolerance/susceptibility to the 

stress. The analysis was conducted during both the vegetative and reproductive stages and 

different mechanisms of tolerance to drought were identified between the different tolerant 

varieties and between stages. This study provides a framework for the exploration of the 

genetic control of these mechanisms of tolerance to drought. 

In Chapter 3, I analyse the stress-induced changes in flag leaf central metabolism and oxidative 

stress status in ~300 indica rice accessions exposed to drought in the field at the reproductive 

stage. Photorespiration, protein degradation and nitrogen recycling were identified as the 

main flag leaf metabolic processes induced by drought. By integrating the metabolite data and 

the oxidative stress status of the accessions I showed that the activity of specific enzymatic 

antioxidants is important to limit the metabolic processes associated with drought stress 

which have a negative impact on grain yield. Finally, the levels of metabolites and oxidative 

stress markers/enzymes were also used to generate a multivariate model that accurately 

|   177   Summary



 
 

 

 
 

178 

predicts grain yield loss across the accessions. The best predictors of this model can be used 

as biomarkers for grain yield stability in rice under drought. 

In Chapter 4, I quantify the differences in transpiration among the same accessions used in 

Chapter 3 by measuring canopy temperature, a proxy for stomatal conductance, in the field. 

Canopy temperature under drought at the reproductive stage was negatively correlated with 

the grain yield performance of the accessions, proving that leaf temperature under stress is a 

good predictor of drought tolerance that can be used to accelerate physiological selection in 

plant breeding. In addition, association mapping of canopy temperature data revealed a QTL 

associated with temperature differences under drought. Genetic variation for the significant 

markers of the QTL was present only within the tall, low-yielding landraces of rice adapted to 

drought-prone environments. This study confirms that these old varieties and landraces 

represent a strategic reservoir of genetic variation that can be tapped into for developing new 

varieties that are physiologically adapted to environments with unpredictable and variable 

water availability. 

In Chapter 5, I show that the multivariate model based on the set of metabolites and oxidative 

stress markers/enzymes developed in Chapter 3 also accurately predicts grain yield per se 

under well-watered and drought conditions in ~270 accessions of the population. The latter 

model predicted grain yield more accurately than a genomics-based model that I developed 

for the same genotypes. Finally, the best metabolic and enzymatic model predictors of grain 

yield were used as traits in a GWA study and the resulting associations allowed me to identify 

genetic markers that can be used in breeding to improve rice grain yield under optimal 

conditions and/or grain yield/yield stability under drought stress. 

Finally, in Chapter 6, I discuss the main findings of this thesis, connecting the results of the 

different experimental chapters and highlighting how they can be used to improve drought 

tolerance in rice. 
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