A Mixed Sampling Approach for Temporal Trends of Spatial Means

Dick Brus¹, Jaap de Gruijter ¹

¹Alterra, Wageningen University and Research Centre

Motivation and aim

Four statistical approaches in space-time

 $\mathrm{D}_{\mathrm{S}}\mathrm{M}_{\mathrm{T}}$ approach

Estimation of Trend and its Variance

Case study

Conclusions

Motivation and aim

Four statistical approaches in space-time

 $\mathrm{D}_{\mathrm{S}}\mathrm{M}_{\mathrm{T}}$ approach

Estimation of Trend and its Variance

Case study

Conclusions

Motivation and aim

Four statistical approaches in space-time

 $D_{\rm S}M_{\rm T}$ approach

Estimation of Trend and its Variance

Case study

Conclusions

Motivation and aim

Four statistical approaches in space-time

 $D_{\rm S}M_{\rm T}$ approach

Estimation of Trend and its Variance

Case study

Conclusions

Motivation and aim

Four statistical approaches in space-time

 $D_{\rm S}M_{\rm T}$ approach

Estimation of Trend and its Variance

Case study

Conclusions

Motivation and aim

Four statistical approaches in space-time

 $D_{\rm S}M_{\rm T}$ approach

Estimation of Trend and its Variance

Case study

Conclusions

Motivation and aim

Four statistical approaches in space-time

 $\mathrm{D}_{\mathrm{S}}\mathrm{M}_{\mathrm{T}}$ approach

Estimation of Trend and its Variance

Case study

Conclusions

Water Framework Directive

- European Soil Strategy
- Habitats Directive
- Kyoto-agreement

- Water Framework DirectiveEuropean Soil Strategy
- Habitats Directive
- Kyoto-agreement

- Water Framework Directive
- European Soil Strategy
- Habitats Directive
- Kyoto-agreement

- Water Framework Directive
- European Soil Strategy
- Habitats Directive
- Kyoto-agreement

To work out a new statistical sampling approach for estimating

- temporal trends in an area,
- that can be used in situations were we can afford a *few* sampling locations per sampling round only, say less than 30

To work out a new statistical sampling approach for estimating

- temporal trends in an area,
- that can be used in situations were we can afford a *few* sampling locations per sampling round only, say less than 30

Simulated Space-Time Field

Map of Trend versus Trend of Spatial Means

Map of Trend at Points

Trend of Spatial Means

Motivation and aim

Four statistical approaches in space-time

 $\mathrm{D_SM_T}$ approach

Estimation of Trend and its Variance

Case study

Conclusions

Design-based and model-based approach

Definition of design-based and model-based approach

Type of approach	Sampling unit selection	Statistical inference
Design-based	Probability sampling	Design-based
Model-based	No requirement	Model-based
	(purposive)	

Four statistical approaches in space-time

		Space	
	Statistical approach	Design-based	Model-based
Time	Design-based Model-based	$D_S D_T$ $D_S M_T$	$\begin{array}{c} M_{\rm S} D_{\rm T} \\ M_{\rm S} M_{\rm T} \end{array}$

- Fully design-based approach, e.g. compliance monitoring of space-time mean (Brus and Knotters (2008), Water Resources Research 44)
- Fully model-based approach. Ter Braak et al (2008) JABES
 13 used geostatistical space-time model to compare
 space-time patterns for predicting the temporal trend of
 spatial means

- Fully design-based approach, e.g. compliance monitoring of space-time mean (Brus and Knotters (2008), Water Resources Research 44)
- Fully model-based approach. Ter Braak *et al* (2008) JABES
 13 used geostatistical space-time model to compare
 space-time patterns for predicting the temporal trend of
 spatial means

Motivation and aim

Four statistical approaches in space-time

 $\rm D_SM_T$ approach

Estimation of Trend and its Variance

Case study

Conclusions

Design-based approach in space followed by model-based approach in time

- Probability sampling in space at all sampling rounds; design-based estimation of spatial means and of sampling variances
- ► No requirements on selection of sampling times
- For estimating temporal trend, purposive selection of sampling times best option
- Constant interval, first round at the start, last round at the end of monitoring period

- Design-based approach in space followed by model-based approach in time
- Probability sampling in space at all sampling rounds; design-based estimation of spatial means and of sampling variances
- No requirements on selection of sampling times
- For estimating temporal trend, purposive selection of sampling times best option
- Constant interval, first round at the start, last round at the end of monitoring period

- Design-based approach in space followed by model-based approach in time
- Probability sampling in space at all sampling rounds; design-based estimation of spatial means and of sampling variances
- No requirements on selection of sampling times
- For estimating temporal trend, purposive selection of sampling times best option
- Constant interval, first round at the start, last round at the end of monitoring period

- Design-based approach in space followed by model-based approach in time
- Probability sampling in space at all sampling rounds; design-based estimation of spatial means and of sampling variances
- No requirements on selection of sampling times
- For estimating temporal trend, purposive selection of sampling times best option
- Constant interval, first round at the start, last round at the end of monitoring period

- Design-based approach in space followed by model-based approach in time
- Probability sampling in space at all sampling rounds; design-based estimation of spatial means and of sampling variances
- No requirements on selection of sampling times
- For estimating temporal trend, purposive selection of sampling times best option
- Constant interval, first round at the start, last round at the end of monitoring period

- In estimating the trend a stochastic time-series model for the spatial means is used, i.e. model-based estimation
- Space-time field is a realisation of a stochastic space-time process
- Space-time process is only partly described by a model of the temporal variation of the spatial mean
- Uncertainty about trend accounts for
 - random selection of sampling locations
 - stochastic space-time process

- In estimating the trend a stochastic time-series model for the spatial means is used, i.e. model-based estimation
- Space-time field is a realisation of a stochastic space-time process
- Space-time process is only partly described by a model of the temporal variation of the spatial mean
- Uncertainty about trend accounts for
 - random selection of sampling locations
 - stochastic space-time process

- In estimating the trend a stochastic time-series model for the spatial means is used, i.e. model-based estimation
- Space-time field is a realisation of a stochastic space-time process
- Space-time process is only partly described by a model of the temporal variation of the spatial mean
- Uncertainty about trend accounts for
 - random selection of sampling locations.
 - stochastic space-time process

- In estimating the trend a stochastic time-series model for the spatial means is used, i.e. model-based estimation
- Space-time field is a realisation of a stochastic space-time process
- Space-time process is only partly described by a model of the temporal variation of the spatial mean
- Uncertainty about trend accounts for
 - random selection of sampling locations
 - stochastic space—time process

- In estimating the trend a stochastic time-series model for the spatial means is used, i.e. model-based estimation
- Space-time field is a realisation of a stochastic space-time process
- Space-time process is only partly described by a model of the temporal variation of the spatial mean
- Uncertainty about trend accounts for
 - random selection of sampling locations
 - stochastic space-time process

- In estimating the trend a stochastic time-series model for the spatial means is used, i.e. model-based estimation
- Space-time field is a realisation of a stochastic space-time process
- Space-time process is only partly described by a model of the temporal variation of the spatial mean
- Uncertainty about trend accounts for
 - random selection of sampling locations
 - stochastic space-time process

Motivation and aim

Four statistical approaches in space-time

 $\mathrm{D_SM_T}$ approach

Estimation of Trend and its Variance

Case study

Conclusions

Time-Series Model for Spatial Means

$$\bar{y}(t) = \sum_{j=1}^{q} \beta_j x_j(t) + \eta(t)$$

with $\eta(t)$ the model error, mean 0 and covariance matrix $\mathbf{C}_{m{\xi}}$ $ar{y}(t)$ unknown, must be estimated:

$$\hat{\bar{y}}(t) = \sum_{j=1}^{q} \beta_j x_j(t) + \eta(t) + \varepsilon(t)$$

with $\varepsilon(t)$ the sampling error, mean 0 and covariance matrix \mathbf{C}_p

• If we take $x_1(t) = 1$ and $x_2(t) = t$, then

$$\hat{\overline{y}}(t) = \beta_1 + \beta_2 \cdot t + \eta(t) + \varepsilon(t)$$

with β_2 the linear trend parameter to be estimated

Time-Series Model for Spatial Means

$$\bar{y}(t) = \sum_{j=1}^{q} \beta_j x_j(t) + \eta(t)$$

with $\eta(t)$ the model error, mean 0 and covariance matrix $C_{\xi} \rightarrow \bar{y}(t)$ unknown, must be estimated:

$$\hat{\bar{y}}(t) = \sum_{j=1}^{q} \beta_j x_j(t) + \eta(t) + \varepsilon(t)$$

with $\varepsilon(t)$ the sampling error, mean 0 and covariance matrix \mathbf{C}_p If we take $x_1(t) = 1$ and $x_2(t) = t$, then

$$\hat{\overline{y}}(t) = \beta_1 + \beta_2 \cdot t + \eta(t) + \varepsilon(t)$$

with β_2 the linear trend parameter to be estimated

Time-Series Model for Spatial Means

$$\bar{y}(t) = \sum_{j=1}^{q} \beta_j x_j(t) + \eta(t)$$

with $\eta(t)$ the model error, mean 0 and covariance matrix $\mathbf{C}_{\xi} \rightarrow \bar{y}(t)$ unknown, must be estimated:

$$\hat{\bar{y}}(t) = \sum_{j=1}^{q} \beta_j x_j(t) + \eta(t) + \varepsilon(t)$$

with $\varepsilon(t)$ the sampling error, mean 0 and covariance matrix \mathbf{C}_p If we take $x_1(t) = 1$ and $x_2(t) = t$, then

$$\hat{\overline{y}}(t) = \beta_1 + \beta_2 \cdot t + \eta(t) + \varepsilon(t)$$

with β_2 the linear trend parameter to be estimated

GLS Estimation of Trend

GLS Estimation of Trend

GLS Estimation of Trend

Motivation and aim

Four statistical approaches in space-time

 $\mathrm{D}_{\mathrm{S}}\mathrm{M}_{\mathrm{T}}$ approach

Estimation of Trend and its Variance

Case study

Conclusions

Four sampling rounds, interval one year

- Twenty locations per round
- Simple random sampling of 20 locations per round
- Rotational pattern, matching proportion 0.5
- Three sampling depths (depth depends on soil horizons)
- ▶ Four soil properties were measured: pH, NO₃ (mg kg⁻¹), NH₄ (mg kg⁻¹), NO₃ (mg l⁻¹)

- Four sampling rounds, interval one year
- Twenty locations per round
- Simple random sampling of 20 locations per round
- Rotational pattern, matching proportion 0.5
- Three sampling depths (depth depends on soil horizons)
- ▶ Four soil properties were measured: pH, NO₃ (mg kg⁻¹), NH₄ (mg kg⁻¹), NO₃ (mg l⁻¹)

- Four sampling rounds, interval one year
- Twenty locations per round
- Simple random sampling of 20 locations per round
- Rotational pattern, matching proportion 0.5
- Three sampling depths (depth depends on soil horizons)
- ▶ Four soil properties were measured: pH, NO₃ (mg kg⁻¹), NH₄ (mg kg⁻¹), NO₃ (mg l⁻¹)

- Four sampling rounds, interval one year
- Twenty locations per round
- Simple random sampling of 20 locations per round
- Rotational pattern, matching proportion 0.5
- Three sampling depths (depth depends on soil horizons)
- ▶ Four soil properties were measured: pH, NO₃ (mg kg⁻¹), NH₄ (mg kg⁻¹), NO₃ (mg l⁻¹)

- Four sampling rounds, interval one year
- Twenty locations per round
- Simple random sampling of 20 locations per round
- Rotational pattern, matching proportion 0.5
- Three sampling depths (depth depends on soil horizons)

▶ Four soil properties were measured: pH, NO₃ (mg kg⁻¹), NH₄ (mg kg⁻¹), NO₃ (mg l⁻¹)

- Four sampling rounds, interval one year
- Twenty locations per round
- Simple random sampling of 20 locations per round
- Rotational pattern, matching proportion 0.5
- Three sampling depths (depth depends on soil horizons)
- Four soil properties were measured: pH, NO₃ (mg kg⁻¹), NH₄ (mg kg⁻¹), NO₃ (mg l⁻¹)

Rotational pattern

Space

Estimation of variance-covariance matrix

Estimation of sampling covariance

$$\operatorname{Cov}_p(\hat{\bar{y}}_i, \hat{\bar{y}}_j) = \operatorname{Cov}_p\left(\frac{m_{ij}}{n_i}\hat{\bar{y}}_i^{(m)}, \frac{m_{ij}}{n_j}\hat{\bar{y}}_j^{(m)}\right) = \frac{m_{ij}}{n_i n_j}S_{ij}^2$$

We assumed model-independence of spatial means

The model variance was estimated from the data, by tuning this variance in iterative fitting until:

$$\mathbf{e}'\mathbf{C}_{\xi p}^{-1}\mathbf{e} = df_{\mathrm{res}}$$

Estimation of variance-covariance matrix

Estimation of sampling covariance

$$\mathsf{Cov}_p(\hat{\bar{y}}_i, \hat{\bar{y}}_j) = \mathsf{Cov}_p\left(\frac{m_{ij}}{n_i}\hat{\bar{y}}_i^{(m)}, \frac{m_{ij}}{n_j}\hat{\bar{y}}_j^{(m)}\right) = \frac{m_{ij}}{n_i n_j}S_{ij}^2$$

We assumed model-independence of spatial means

The model variance was estimated from the data, by tuning this variance in iterative fitting until:

$$\mathbf{e}'\mathbf{C}_{\xi p}^{-1}\mathbf{e} = df_{\mathrm{res}}$$

Estimation of variance-covariance matrix

Estimation of sampling covariance

$$\mathsf{Cov}_p(\hat{\bar{y}}_i, \hat{\bar{y}}_j) = \mathsf{Cov}_p\left(\frac{m_{ij}}{n_i}\hat{\bar{y}}_i^{(m)}, \frac{m_{ij}}{n_j}\hat{\bar{y}}_j^{(m)}\right) = \frac{m_{ij}}{n_i n_j}S_{ij}^2$$

- We assumed model-independence of spatial means
- The model variance was estimated from the data, by tuning this variance in iterative fitting until:

$$\mathbf{e}' \mathbf{C}_{\xi p}^{-1} \mathbf{e} = df_{\text{res}}$$

Fitted trend for NO₃ (mg N kg⁻¹)

Depth	trend	se	se_p	se_{ξ}
top	-0.089	0.19	0.077	0.18
mid	0.0054	0.071	0.047	0.052
sub	0.014	0.043	0.030	0.030

Motivation and aim

Four statistical approaches in space-time

 $\mathrm{D}_{\mathrm{S}}\mathrm{M}_{\mathrm{T}}$ approach

Estimation of Trend and its Variance

Case study

Conclusions

Mixed, design-based model-based sampling approach can be an attractive alternative to fully model-based approach when data are **sparse** and interest is in **global space**—time quantities such as the temporal trend of the spatial mean:

- More simple
- Better validity
- More robust

Mixed, design-based model-based sampling approach can be an attractive alternative to fully model-based approach when data are **sparse** and interest is in **global space**—time quantities such as the temporal trend of the spatial mean:

- More simple
- Better validity
- More robust

Mixed, design-based model-based sampling approach can be an attractive alternative to fully model-based approach when data are **sparse** and interest is in **global space**—time quantities such as the temporal trend of the spatial mean:

- More simple
- Better validity
- More robust

Thanks for your attention

