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Types of monitoring

I status monitoring
I trend monitoring
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Sampling and estimation

I Statistical literature: strong focus on estimation (prediction);
the data are already there

I Sampling for monitoring deserves more attention
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Major design decision: Design-based or model-based approach?

Definition of design-based and model-based approach
Type of approach Sampling unit selection Statistical inference
Design-based Probability sampling Design-based
Model-based Purposive Model-based

de Gruĳter, Brus, Bierkens & Knotters (2006), Sampling for Natural Resource Monitoring



Four statistical approaches in space–time

Space
Statistical
approach

Design-based Model-based

Time Design-based DSDT MSDT
Model-based DSMT MSMT

de Gruĳter, Brus, Bierkens & Knotters (2006), Sampling for Natural Resource Monitoring



Basic sample patterns in space–time
Static

 

Synchronous

 

Static-synchronous 

 

Rotational 
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Surface water in Dutch polder
Study area: lowland peat in western part of the 

Netherlands

D.J. Brus & M. Knotters (2008), Water Resources Research 44



Aim

I Testing quality of surface water against WFD-standards
I Does spatio-temporal mean concentration of N-total and

P-total during summer-halfyear comply with MAR-values (N:
2.2 mg/l; P: 0.15 mg/l)?

I H0: ’water is dirty’ (c > cMAR)
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Why DSDT-approach?

I space–time mean: global quantity
I for compliance monitoring validity more important than

efficiency
I too few data for space-time modelling
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Synchronous pattern, STSI in space, STSI in time

time

space
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Why synchronous pattern?

Unbiased estimation of sampling variance (if samples independent!)

Two-stage sampling in space Synchronous samping in space–time

D.J. Brus & M. Knotters (2008), Water Resources Research 44



Estimation of sampling variance

I For SI in both stages:

V̂ (ˆ̄y) = 1
r {V̂T + 1

n V̂S}

I r : number of sampling times (psu’s)
I n: number of sampling locations per sampling time (ssu’s)
I V̂T : temporal variance of spatial means
I V̂S : spatial variance of y
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Contourplot of power for N

D.J. Brus & M. Knotters (2008), Water Resources Research 44
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Monitoring-networks in the Netherlands

Number of locations Sampling interval
Groundwater 371 (1 per 100 km2) 4 y (25 m)
Soil and 200 6 y
freatic groundwater

I Static-synchronous pattern
I Purposive sampling of locations
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Research question

“What is the efficiency of the networks compared to alternatives”
I Other sampling densities (space) and sampling frequencies

(time)
I Alternative patterns, such as synchronous and serially

alternating
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Pure model-based (MSMT) approach

Geostatistical space–time model:

Y (s, t) = µ(s, t) + ε(s, t)

µ(s, t) =
p∑

j=1
βjxj(s, t)

Special case: x1(s, t) = 1, x2(s, t) = t →

Y (s, t) = β1 + β2t + ε(s, t)

SMTT, either defined as model-parameter or as population
parameter, can be estimated by Universal Kriging
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Some characteristics of AR, TS and SA

# of time series Sampling density Sampling frequency
AR few low high
TS many high low
SA many low low

C.J.F. ter Braak, D.J. Brus & E. Pebesma (2008), JABES 13, p. 159-176
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Mixed DSMT approach

I Probability sampling in space, design-based estimation of
spatial means

I Purposive sampling in time, constant time interval: first
sampling round at start (T1), last round at end (T2) of
monitoring period

I Linear Regression Model for spatial means at t = T1 · · ·T2

mA{Y (t)} = β1 + β2t + η(t) + ε(t)

η(t) ∼ G(0,Cξ)

ε(t) ∼ G(0,Cp)

Design-based, model-based and mixed sampling approaches for monitoring
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Number of sampling locations per round: 10

0.469 0.380 0.768

Design-based, model-based and mixed sampling approaches for monitoring



Number of sampling locations per round: 50

0.508 0.490 0.412

Design-based, model-based and mixed sampling approaches for monitoring



All locations; temporal trend: 0.475

Design-based, model-based and mixed sampling approaches for monitoring



Estimators for trend and variance of trend

b = (XT C−1
ξp X)−1(XT C−1

ξp y)

Var(b) = (XT C−1
ξp X)−1

Cξp = Cξ + Cp
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Simple cost model

C = cround · r + csite · r · n

I cround: costs per sampling round
I csite: costs per sampling site
I r : number of sampling rounds
I n: number of sampling sites per sampling round
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Experiment

I Total costs: 1000
I Number of sampling rounds r = 2...50
I cround: 10, 100; csite: 1
I Model variance of residuals σ2

ξ{η(t)} = 0.01 · · · 1
I Exponential correlogram for residuals η(t)
I Spatial variance vA{y(t)} = 0.25 · · · 25
I Constant spatial variance: vA{y(ti)} = vA{y(tj)}
I Simple random sampling in space: sampling variance of

estimated spatial mean σ2
p{m̂A(y)} = vA{y(t)}/n

I Systematic sampling in time: first round at start, last round
at end of monitoring period

Design-based, model-based and mixed sampling approaches for monitoring
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Synchronous pattern, independent SI samples
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Synchronous pattern, independent samples

I Synchronous pattern (Never Revisit), independent samples →

Covp{ε(ti), ε(tj)} = 0, i 6= j

Design-based, model-based and mixed sampling approaches for monitoring



Correlogram of model residuals η(t)
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Optimal number of sampling rounds;cround = 10

Pure nugget Exponential(5)
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Optimal number of sampling rounds;cround = 10
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Optimal number of sampling rounds;cround = 100

Pure nugget Exponential(5)
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Optimal number of sampling rounds;cround = 100
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Results

I Optimal number of sampling rounds not always 2!
I Optimal number of sampling rounds is determined by ratio of

spatial variance of target variable and model variance of
residuals (given the cost model parameters)

I The smaller the ratio, the larger the optimal number of
sampling rounds

I Given a ratio, the stronger the temporal correlation, the
smaller the optimal number of sampling rounds
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Conclusions

I Model in DSMT approach less complicated than in MSMT
approach, fewer assumptions required → better validity
properties

I Mixed DSMT approach with probability sampling in space
seems promising for estimating Temporal Trend of Spatial
Means

I Further research:
I other spatial sampling designs
I optimization of r and n in static-synchronous and rotational

patterns
I optimal matching proportion in rotational sampling
I in DSMT approach cross-correlation in space–time not used →

less precise then MSMT approach?

Design-based, model-based and mixed sampling approaches for monitoring



Conclusions

I Model in DSMT approach less complicated than in MSMT
approach, fewer assumptions required → better validity
properties

I Mixed DSMT approach with probability sampling in space
seems promising for estimating Temporal Trend of Spatial
Means

I Further research:
I other spatial sampling designs
I optimization of r and n in static-synchronous and rotational

patterns
I optimal matching proportion in rotational sampling
I in DSMT approach cross-correlation in space–time not used →

less precise then MSMT approach?

Design-based, model-based and mixed sampling approaches for monitoring



Conclusions

I Model in DSMT approach less complicated than in MSMT
approach, fewer assumptions required → better validity
properties

I Mixed DSMT approach with probability sampling in space
seems promising for estimating Temporal Trend of Spatial
Means

I Further research:
I other spatial sampling designs
I optimization of r and n in static-synchronous and rotational

patterns
I optimal matching proportion in rotational sampling
I in DSMT approach cross-correlation in space–time not used →

less precise then MSMT approach?

Design-based, model-based and mixed sampling approaches for monitoring



Conclusions

I Model in DSMT approach less complicated than in MSMT
approach, fewer assumptions required → better validity
properties

I Mixed DSMT approach with probability sampling in space
seems promising for estimating Temporal Trend of Spatial
Means

I Further research:
I other spatial sampling designs
I optimization of r and n in static-synchronous and rotational

patterns
I optimal matching proportion in rotational sampling
I in DSMT approach cross-correlation in space–time not used →

less precise then MSMT approach?

Design-based, model-based and mixed sampling approaches for monitoring



Conclusions

I Model in DSMT approach less complicated than in MSMT
approach, fewer assumptions required → better validity
properties

I Mixed DSMT approach with probability sampling in space
seems promising for estimating Temporal Trend of Spatial
Means

I Further research:
I other spatial sampling designs
I optimization of r and n in static-synchronous and rotational

patterns
I optimal matching proportion in rotational sampling
I in DSMT approach cross-correlation in space–time not used →

less precise then MSMT approach?

Design-based, model-based and mixed sampling approaches for monitoring



Conclusions

I Model in DSMT approach less complicated than in MSMT
approach, fewer assumptions required → better validity
properties

I Mixed DSMT approach with probability sampling in space
seems promising for estimating Temporal Trend of Spatial
Means

I Further research:
I other spatial sampling designs
I optimization of r and n in static-synchronous and rotational

patterns
I optimal matching proportion in rotational sampling
I in DSMT approach cross-correlation in space–time not used →

less precise then MSMT approach?

Design-based, model-based and mixed sampling approaches for monitoring



Conclusions

I Model in DSMT approach less complicated than in MSMT
approach, fewer assumptions required → better validity
properties

I Mixed DSMT approach with probability sampling in space
seems promising for estimating Temporal Trend of Spatial
Means

I Further research:
I other spatial sampling designs
I optimization of r and n in static-synchronous and rotational

patterns
I optimal matching proportion in rotational sampling
I in DSMT approach cross-correlation in space–time not used →

less precise then MSMT approach?

Design-based, model-based and mixed sampling approaches for monitoring



Outline

Introduction

Pure design-based approach for compliance monitoring

Pure model-based approach for trend monitoring

Mixed approach for trend monitoring

Conclusions

de Gruĳter, Brus, Bierkens & Knotters (2006), Sampling for Natural Resource Monitoring



Conclusions

I For compliance monitoring of global quantities a full
design-based approach can be advantageous

I For trend monitoring: full model-based or mixed (DSMT)
approach most appropriate

I Full model-based approach: Serially alternating pattern good
option

I Mixed (DSMT) approach: model more simple, better validity,
but less efficient?
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Message to take home

Start thinking before you go into the field!

de Gruĳter, Brus, Bierkens & Knotters (2006), Sampling for Natural Resource Monitoring



Thanks for your attention

de Gruĳter, Brus, Bierkens & Knotters (2006), Sampling for Natural Resource Monitoring
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