Sampling for monitoring: on design-based, model-based and mixed approaches

Dick Brus¹

¹Alterra, Wageningen University and Research Centre

Pure design-based approach for compliance monitoring

Pure model-based approach for trend monitoring

Mixed approach for trend monitoring

Conclusions

Pure design-based approach for compliance monitoring

Pure model-based approach for trend monitoring

Mixed approach for trend monitoring

Conclusions

Pure design-based approach for compliance monitoring

Pure model-based approach for trend monitoring

Mixed approach for trend monitoring

Conclusions

Pure design-based approach for compliance monitoring

Pure model-based approach for trend monitoring

Mixed approach for trend monitoring

Conclusions

Pure design-based approach for compliance monitoring

Pure model-based approach for trend monitoring

Mixed approach for trend monitoring

Conclusions

Pure design-based approach for compliance monitoring

Pure model-based approach for trend monitoring

Mixed approach for trend monitoring

Conclusions

CEN LIVINGSTONE ABO

"We've most probably passed the tipping point'

status monitoring

- trend monitoring
- compliance monitoring

- status monitoring
- trend monitoring
- compliance monitoring

- status monitoring
- trend monitoring
- compliance monitoring

- Statistical literature: strong focus on estimation (prediction); the data are already there
- Sampling for monitoring deserves more attention

- Statistical literature: strong focus on estimation (prediction); the data are already there
- Sampling for monitoring deserves more attention

Major design decision: Design-based or model-based approach?

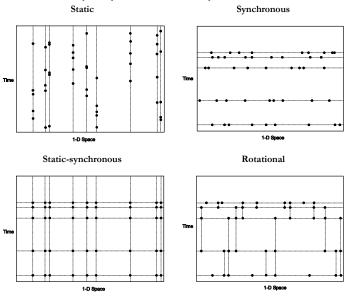
Definition of design-based and model-based approach

Type of approach	Sampling unit selection	Statistical inference
Design-based	Probability sampling	Design-based
Model-based	Purposive	Model-based

Four statistical approaches in space-time

		Space	
	Statistical approach	Design-based	Model-based
Time	Design-based	$D_S D_T$	M _S D _T
	Model-based	$\mathrm{D_{S}M_{T}}$	$M_{\rm S}M_{\rm T}$

Basic sample patterns in space-time



Pure design-based approach for compliance monitoring

Pure model-based approach for trend monitoring

Mixed approach for trend monitoring

Conclusions

Surface water in Dutch polder

D.J. Brus & M. Knotters (2008), Water Resources Research 44

► Testing quality of surface water against WFD-standards

- Does spatio-temporal mean concentration of N-total and P-total during summer-halfyear comply with MAR-values (N: 2.2 mg/l; P: 0.15 mg/l)?
- H_0 : 'water is dirty' ($c > c_{MAR}$)

- Testing quality of surface water against WFD-standards
- Does spatio-temporal mean concentration of N-total and P-total during summer-halfyear comply with MAR-values (N: 2.2 mg/l; P: 0.15 mg/l)?
- H_0 : 'water is dirty' ($c > c_{MAR}$)

- Testing quality of surface water against WFD-standards
- Does spatio-temporal mean concentration of N-total and P-total during summer-halfyear comply with MAR-values (N: 2.2 mg/l; P: 0.15 mg/l)?
- \blacktriangleright H₀: 'water is dirty' ($c > c_{MAR}$)

space-time mean: global quantity

- for compliance monitoring validity more important than efficiency
- too few data for space-time modelling

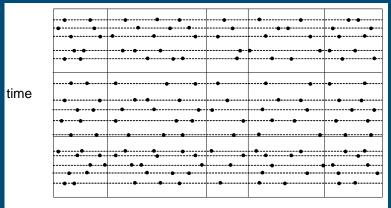
space-time mean: global quantity

 for compliance monitoring validity more important than efficiency

too few data for space-time modelling

- space-time mean: global quantity
- for compliance monitoring validity more important than efficiency
- too few data for space-time modelling

Synchronous pattern, STSI in space, STSI in time



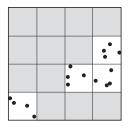
space

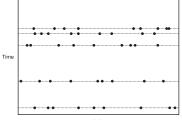
D.J. Brus & M. Knotters (2008), Water Resources Research 44

Why synchronous pattern?

Unbiased estimation of sampling variance (if samples independent!)

Two-stage sampling in space Synchronous samping in space-time





1-D Space

For SI in both stages:

$$\hat{V}(\hat{\bar{y}}) = \frac{1}{r} \{ \hat{V}_{\mathcal{T}} + \frac{1}{n} \hat{V}_{\mathcal{S}} \}$$

r: number of sampling times (psu's)

- n: number of sampling locations per sampling time (ssu's)
- $\hat{V}_{\mathcal{T}}$: temporal variance of spatial means
- $\hat{V}_{\mathcal{S}}$: spatial variance of y

$$\hat{V}(\hat{\bar{y}}) = \frac{1}{r} \{ \hat{V}_{\mathcal{T}} + \frac{1}{n} \hat{V}_{\mathcal{S}} \}$$

- r: number of sampling times (psu's)
- n: number of sampling locations per sampling time (ssu's)
- V_T : temporal variance of spatial means
- $\hat{V}_{\mathcal{S}}$: spatial variance of y

$$\hat{V}(\hat{\bar{y}}) = \frac{1}{r} \{ \hat{V}_{\mathcal{T}} + \frac{1}{n} \hat{V}_{\mathcal{S}} \}$$

- r: number of sampling times (psu's)
- n: number of sampling locations per sampling time (ssu's)
- ▶ V_T: temporal variance of spatial means
- $\hat{V}_{\mathcal{S}}$: spatial variance of y

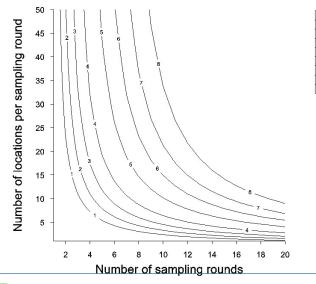
$$\hat{V}(\hat{\bar{y}}) = \frac{1}{r} \{ \hat{V}_{\mathcal{T}} + \frac{1}{n} \hat{V}_{\mathcal{S}} \}$$

- r: number of sampling times (psu's)
- n: number of sampling locations per sampling time (ssu's)
- \hat{V}_T : temporal variance of spatial means
- $\hat{V}_{\mathcal{S}}$: spatial variance of y

$$\hat{V}(\hat{\bar{y}}) = \frac{1}{r} \{ \hat{V}_{\mathcal{T}} + \frac{1}{n} \hat{V}_{\mathcal{S}} \}$$

- r: number of sampling times (psu's)
- n: number of sampling locations per sampling time (ssu's)
- \hat{V}_T : temporal variance of spatial means
- $\hat{V}_{\mathcal{S}}$: spatial variance of y

Contourplot of power for N



8 : 0.9900 7 : 0.9750 6 : 0.9500 5 : 0.9000 4 : 0.8000 3 : 0.7000 2 : 0.6000 1 : 0.5000

ALTERRA WAGENINGEN UR D.J. Brus & M. Knotters (2008), Water Resources Research 44

Pure design-based approach for compliance monitoring

Pure model-based approach for trend monitoring

Mixed approach for trend monitoring

Conclusions

C.J.F. ter Braak, D.J. Brus & E. Pebesma (2008), JABES 13, p. 159-176

Monitoring-networks in the Netherlands

	Number of locations	Sampling interval
Groundwater	371 (1 per 100 km 2)	4 y (25 m)
Soil and	200	бу
freatic groundwater		

Static-synchronous pattern

Purposive sampling of locations

Monitoring-networks in the Netherlands

	Number of locations	Sampling interval
Groundwater	371 (1 per 100 km 2)	4 y (25 m)
Soil and	200	бу
freatic groundwater		

Static-synchronous pattern

Purposive sampling of locations

C.J.F. ter Braak, D.J. Brus & E. Pebesma (2008), JABES 13, p. 159-176

Monitoring-networks in the Netherlands

	Number of locations	Sampling interval
Groundwater	371 (1 per 100 km 2)	4 y (25 m)
Soil and	200	бу
freatic groundwater		

- Static-synchronous pattern
- Purposive sampling of locations

"What is the efficiency of the networks compared to alternatives"

- Other sampling densities (space) and sampling frequencies (time)
- Alternative patterns, such as synchronous and serially alternating

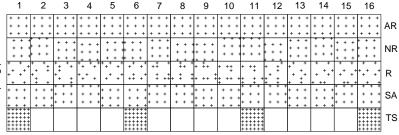
"What is the efficiency of the networks compared to alternatives"

- Other sampling densities (space) and sampling frequencies (time)
- Alternative patterns, such as synchronous and serially alternating

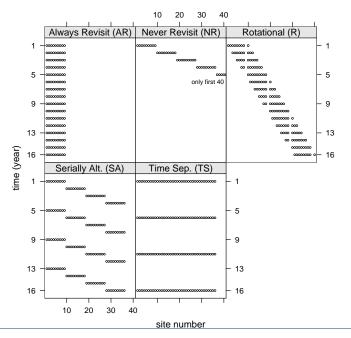
"What is the efficiency of the networks compared to alternatives"

- Other sampling densities (space) and sampling frequencies (time)
- Alternative patterns, such as synchronous and serially alternating

sampling pattern



time (year)



Geostatistical space-time model:

 $Y(\mathbf{s},t) = \mu(\mathbf{s},t) + \varepsilon(\mathbf{s},t)$

$$\mu(\mathbf{s},t) = \sum_{j=1}^{p} \beta_j x_j(\mathbf{s},t)$$

Special case: $x_1(\mathbf{s},t) = 1, x_2(\mathbf{s},t) = t \rightarrow t$

$$Y(\mathbf{s}, t) = \beta_1 + \beta_2 t + \varepsilon(\mathbf{s}, t)$$

Geostatistical space-time model:

 $Y(\mathbf{s},t) = \mu(\mathbf{s},t) + \varepsilon(\mathbf{s},t)$

$$\mu(\mathbf{s},t) = \sum_{j=1}^{p} \beta_j x_j(\mathbf{s},t)$$

Special case: $x_1(\mathbf{s}, t) = 1, x_2(\mathbf{s}, t) = t \rightarrow t$

$$Y(\mathbf{s},t) = \beta_1 + \beta_2 t + \varepsilon(\mathbf{s},t)$$

Geostatistical space-time model:

 $Y(\mathbf{s},t) = \mu(\mathbf{s},t) + \varepsilon(\mathbf{s},t)$

$$\mu(\mathbf{s},t) = \sum_{j=1}^{p} \beta_j x_j(\mathbf{s},t)$$

Special case: $x_1(\mathbf{s}, t) = 1, x_2(\mathbf{s}, t) = t \rightarrow t$

$$Y(\mathbf{s},t) = \beta_1 + \beta_2 t + \varepsilon(\mathbf{s},t)$$

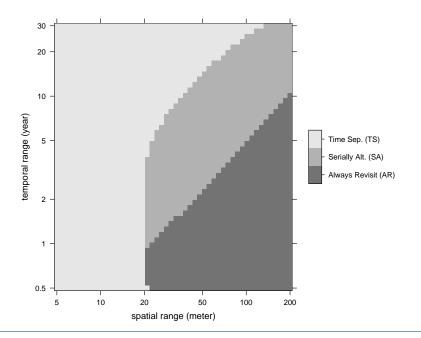
Geostatistical space-time model:

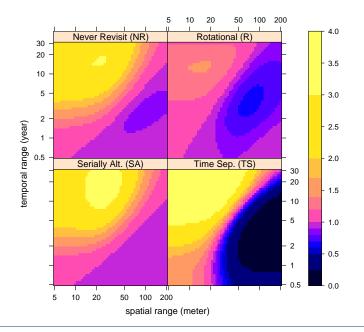
 $Y(\mathbf{s},t) = \mu(\mathbf{s},t) + \varepsilon(\mathbf{s},t)$

$$\mu(\mathbf{s},t) = \sum_{j=1}^{p} \beta_j x_j(\mathbf{s},t)$$

Special case: $x_1(\mathbf{s}, t) = 1, x_2(\mathbf{s}, t) = t \rightarrow t$

$$Y(\mathbf{s},t) = \beta_1 + \beta_2 t + \varepsilon(\mathbf{s},t)$$





Some characteristics of AR, TS and SA

	# of time series	Sampling density	Sampling frequency
AR	few	low	high
TS	many	high	low
SA	many	low	low

Introduction

Pure design-based approach for compliance monitoring

Pure model-based approach for trend monitoring

Mixed approach for trend monitoring

Conclusions

Mixed D_SM_T approach

 Probability sampling in space, design-based estimation of spatial means

- Purposive sampling in time, constant time interval: first sampling round at start (T₁), last round at end (T₂) of monitoring period
- Linear Regression Model for spatial means at $t = T_1 \cdots T_2$

 $m_A\{Y(t)\} = \beta_1 + \beta_2 t + \eta(t) + \varepsilon(t)$

 $\eta(t) \sim G(\mathbf{0}, \mathbf{C}_{\xi})$

 $\varepsilon(t) \sim G(\mathbf{0}, \mathbf{C}_p)$

Mixed D_SM_T approach

- Probability sampling in space, design-based estimation of spatial means
- Purposive sampling in time, constant time interval: first sampling round at start (T₁), last round at end (T₂) of monitoring period
- Linear Regression Model for spatial means at $t = T_1 \cdots T_2$

 $m_A\{Y(t)\} = \beta_1 + \beta_2 t + \eta(t) + \varepsilon(t)$

 $\eta(t) \sim G(\mathbf{0}, \mathbf{C}_{\xi})$

 $\varepsilon(t) \sim G(\mathbf{0}, \mathbf{C}_p)$

Mixed D_SM_T approach

- Probability sampling in space, design-based estimation of spatial means
- Purposive sampling in time, constant time interval: first sampling round at start (T₁), last round at end (T₂) of monitoring period

▶ Linear Regression Model for spatial means at $t = T_1 \cdots T_2$

$$m_A\{Y(t)\} = \beta_1 + \beta_2 t + \eta(t) + \varepsilon(t)$$

 $\eta(t) \sim G(\mathbf{0}, \mathbf{C}_{\xi})$

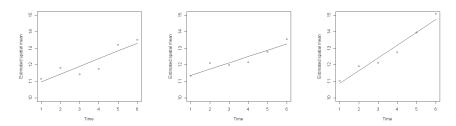
 $\varepsilon(t) \sim \overline{G(\mathbf{0}, \mathbf{C}_p)}$

Number of sampling locations per round: 10

0.469

0.380

0.768

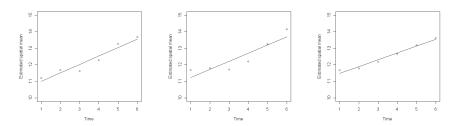


Number of sampling locations per round: 50

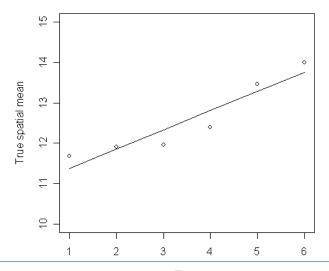
0.508

0.490

0.412



All locations; temporal trend: 0.475



Estimators for trend and variance of trend

$$\mathbf{b} = (\mathbf{X}^T \mathbf{C}_{\xi p}^{-1} \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{C}_{\xi p}^{-1} \mathbf{y})$$

 $\mathsf{Var}(\mathbf{b}) = (\mathbf{X}^T \mathbf{C}_{\xi p}^{-1} \mathbf{X})^{-1}$

 $\mathbf{C}_{\xi p} = \mathbf{C}_{\xi} + \mathbf{C}_p$

Estimators for trend and variance of trend

$$\mathbf{b} = (\mathbf{X}^T \mathbf{C}_{\xi p}^{-1} \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{C}_{\xi p}^{-1} \mathbf{y})$$
$$\mathsf{Var}(\mathbf{b}) = (\mathbf{X}^T \mathbf{C}_{\xi p}^{-1} \mathbf{X})^{-1}$$

Estimators for trend and variance of trend

Lέ

 \mathtt{L}_p

$$C = c_{\text{round}} \cdot r + c_{\text{site}} \cdot r \cdot n$$

c_{round}: costs per sampling round

- c_{site}: costs per sampling site
- r: number of sampling rounds
- n: number of sampling sites per sampling round

$$C = c_{\text{round}} \cdot r + c_{\text{site}} \cdot r \cdot n$$

- c_{round}: costs per sampling round
- c_{site}: costs per sampling site
- r: number of sampling rounds
- n: number of sampling sites per sampling round

$$C = c_{\text{round}} \cdot r + c_{\text{site}} \cdot r \cdot n$$

- c_{round}: costs per sampling round
- c_{site}: costs per sampling site
- r: number of sampling rounds
- n: number of sampling sites per sampling round

$$C = c_{\text{round}} \cdot r + c_{\text{site}} \cdot r \cdot n$$

- c_{round}: costs per sampling round
- c_{site}: costs per sampling site
- r: number of sampling rounds
- n: number of sampling sites per sampling round

Total costs: 1000

- Number of sampling rounds r = 2...50
- ▶ c_{round}: 10, 100; c_{site}: 1
- Model variance of residuals $\sigma_{\xi}^2 \{\eta(t)\} = 0.01 \cdots 1$
- Exponential correlogram for residuals $\eta(t)$
- Spatial variance $v_A\{y(t)\} = 0.25 \cdots 25$
- Constant spatial variance: $v_A\{y(t_i)\} = v_A\{y(t_j)\}$
- ► Simple random sampling in space: sampling variance of estimated spatial mean $\sigma_p^2 \{ \hat{m}_A(y) \} = v_A \{ y(t) \} / n$
- Systematic sampling in time: first round at start, last round at end of monitoring period

- Total costs: 1000
- Number of sampling rounds r = 2...50
- ▶ c_{round}: 10, 100; c_{site}: 1
- Model variance of residuals $\sigma_{\xi}^{2} \{\eta(t)\} = 0.01 \cdots 1$
- Exponential correlogram for residuals $\eta(t)$
- Spatial variance $v_A\{y(t)\} = 0.25 \cdots 25$
- Constant spatial variance: $v_A\{y(t_i)\} = v_A\{y(t_j)\}$
- ► Simple random sampling in space: sampling variance of estimated spatial mean $\sigma_p^2 \{ \hat{m}_A(y) \} = v_A \{ y(t) \} / n$
- Systematic sampling in time: first round at start, last round at end of monitoring period

- Total costs: 1000
- Number of sampling rounds r = 2...50
- ▶ c_{round}: 10, 100; c_{site}: 1
- Model variance of residuals $\sigma_{\xi}^2\{\eta(t)\}=0.01\cdots 1$
- Exponential correlogram for residuals $\eta(t)$
- Spatial variance $v_A\{y(t)\} = 0.25 \cdots 25$
- Constant spatial variance: $v_A\{y(t_i)\} = v_A\{y(t_j)\}$
- ► Simple random sampling in space: sampling variance of estimated spatial mean $\sigma_p^2 \{ \hat{m}_A(y) \} = v_A \{ y(t) \} / n$
- Systematic sampling in time: first round at start, last round at end of monitoring period

- Total costs: 1000
- Number of sampling rounds r = 2...50
- ▶ c_{round}: 10, 100; c_{site}: 1
- Model variance of residuals $\sigma_{\xi}^2 \{\eta(t)\} = 0.01 \cdots 1$
- Exponential correlogram for residuals $\eta(t)$
- Spatial variance $v_A\{y(t)\} = 0.25 \cdots 25$
- Constant spatial variance: $v_A\{y(t_i)\} = v_A\{y(t_j)\}$
- ► Simple random sampling in space: sampling variance of estimated spatial mean $\sigma_p^2 \{ \hat{m}_A(y) \} = v_A \{ y(t) \} / n$
- Systematic sampling in time: first round at start, last round at end of monitoring period

- Total costs: 1000
- Number of sampling rounds r = 2...50
- ▶ c_{round}: 10, 100; c_{site}: 1
- Model variance of residuals $\sigma_{\xi}^2 \{\eta(t)\} = 0.01 \cdots 1$
- Exponential correlogram for residuals $\eta(t)$
- Spatial variance $v_A\{y(t)\} = 0.25 \cdots 25$
- ▶ Constant spatial variance: $v_A\{y(t_i)\} = v_A\{y(t_j)\}$
- ► Simple random sampling in space: sampling variance of estimated spatial mean $\sigma_p^2 \{ \hat{m}_A(y) \} = v_A \{ y(t) \} / n$
- Systematic sampling in time: first round at start, last round at end of monitoring period

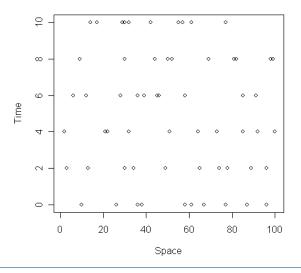
- Total costs: 1000
- Number of sampling rounds r = 2...50
- ▶ c_{round}: 10, 100; c_{site}: 1
- Model variance of residuals $\sigma_{\xi}^2 \{\eta(t)\} = 0.01 \cdots 1$
- Exponential correlogram for residuals $\eta(t)$
- Spatial variance $v_A\{y(t)\} = 0.25 \cdots 25$
- ▶ Constant spatial variance: $v_A\{y(t_i)\} = v_A\{y(t_j)\}$
- ► Simple random sampling in space: sampling variance of estimated spatial mean $\sigma_p^2 \{ \hat{m}_A(y) \} = v_A \{ y(t) \} / n$
- Systematic sampling in time: first round at start, last round at end of monitoring period

- Total costs: 1000
- Number of sampling rounds r = 2...50
- ▶ c_{round}: 10, 100; c_{site}: 1
- Model variance of residuals $\sigma_{\xi}^{2}{\eta(t)} = 0.01 \cdots 1$
- Exponential correlogram for residuals $\eta(t)$
- Spatial variance $v_A\{y(t)\} = 0.25 \cdots 25$
- Constant spatial variance: $v_A\{y(t_i)\} = v_A\{y(t_j)\}$
- Simple random sampling in space: sampling variance of estimated spatial mean $\sigma_p^2 \{ \hat{m}_A(y) \} = v_A \{ y(t) \} / n$
- Systematic sampling in time: first round at start, last round at end of monitoring period

- Total costs: 1000
- Number of sampling rounds r = 2...50
- ▶ c_{round}: 10, 100; c_{site}: 1
- Model variance of residuals $\sigma_{\xi}^{2}{\eta(t)} = 0.01 \cdots 1$
- Exponential correlogram for residuals $\eta(t)$
- Spatial variance $v_A\{y(t)\} = 0.25 \cdots 25$
- Constant spatial variance: $v_A\{y(t_i)\} = v_A\{y(t_j)\}$
- Simple random sampling in space: sampling variance of estimated spatial mean $\sigma_p^2 \{ \hat{m}_A(y) \} = v_A \{ y(t) \} / n$
- Systematic sampling in time: first round at start, last round at end of monitoring period

- Total costs: 1000
- Number of sampling rounds r = 2...50
- ▶ c_{round}: 10, 100; c_{site}: 1
- Model variance of residuals $\sigma_{\xi}^{2}{\eta(t)} = 0.01 \cdots 1$
- Exponential correlogram for residuals $\eta(t)$
- Spatial variance $v_A\{y(t)\} = 0.25 \cdots 25$
- Constant spatial variance: $v_A\{y(t_i)\} = v_A\{y(t_j)\}$
- Simple random sampling in space: sampling variance of estimated spatial mean $\sigma_p^2 \{ \hat{m}_A(y) \} = v_A \{ y(t) \} / n$
- Systematic sampling in time: first round at start, last round at end of monitoring period

Synchronous pattern, independent SI samples



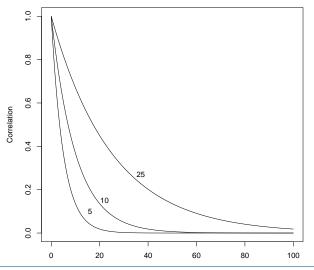
Synchronous pattern, independent samples

 \blacktriangleright Synchronous pattern (Never Revisit), independent samples \rightarrow

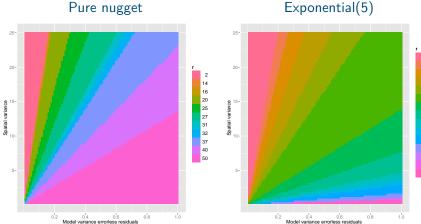
 $\mathsf{Cov}_p\{\varepsilon(t_i), \varepsilon(t_j)\} = 0, i \neq j$

Correlogram of model residuals $\eta(t)$

Exponential correlogram

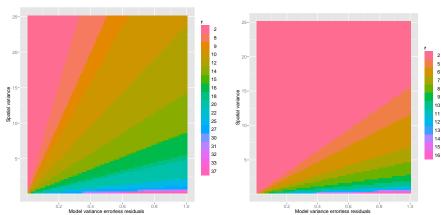


Time lag



Pure nugget

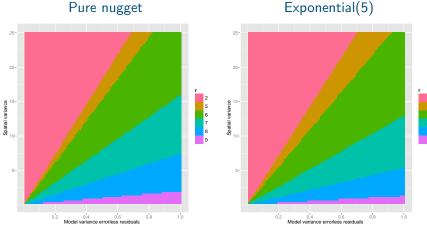
Design-based, model-based and mixed sampling approaches for monitoring

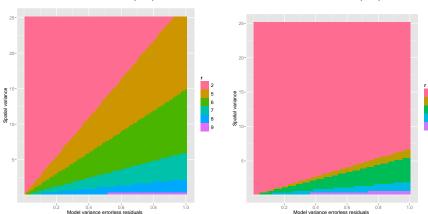


Exponential(10)

Design-based, model-based and mixed sampling approaches for monitoring

Exponential(25)





ALTERRA WAGENINGEN UR

Design-based, model-based and mixed sampling approaches for monitoring

Exponential(25)

5 6

Results

Optimal number of sampling rounds not always 2!

- Optimal number of sampling rounds is determined by ratio of spatial variance of target variable and model variance of residuals (given the cost model parameters)
- The smaller the ratio, the larger the optimal number of sampling rounds
- Given a ratio, the stronger the temporal correlation, the smaller the optimal number of sampling rounds

- Optimal number of sampling rounds not always 2!
- Optimal number of sampling rounds is determined by ratio of spatial variance of target variable and model variance of residuals (given the cost model parameters)
- The smaller the ratio, the larger the optimal number of sampling rounds
- Given a ratio, the stronger the temporal correlation, the smaller the optimal number of sampling rounds

Results

- Optimal number of sampling rounds not always 2!
- Optimal number of sampling rounds is determined by ratio of spatial variance of target variable and model variance of residuals (given the cost model parameters)
- The smaller the ratio, the larger the optimal number of sampling rounds
- Given a ratio, the stronger the temporal correlation, the smaller the optimal number of sampling rounds

Results

- Optimal number of sampling rounds not always 2!
- Optimal number of sampling rounds is determined by ratio of spatial variance of target variable and model variance of residuals (given the cost model parameters)
- The smaller the ratio, the larger the optimal number of sampling rounds
- Given a ratio, the stronger the temporal correlation, the smaller the optimal number of sampling rounds

▶ Model in D_SM_T approach less complicated than in M_SM_T approach, fewer assumptions required \rightarrow better validity properties

- Mixed D_SM_T approach with probability sampling in space seems promising for estimating Temporal Trend of Spatial Means
- ► Further research:
 - other spatial sampling designs
 - optimization of r and n in static-synchronous and rotational patterns
 - optimal matching proportion in rotational sampling
 - in D_SM_T approach cross-correlation in space–time not used \rightarrow less precise then M_SM_T approach?

- ▶ Model in D_SM_T approach less complicated than in M_SM_T approach, fewer assumptions required \rightarrow better validity properties
- Mixed D_SM_T approach with probability sampling in space seems promising for estimating Temporal Trend of Spatial Means
- Further research:
 - 🔹 🕨 other spatial sampling designs
 - optimization of r and n in static-synchronous and rotational patterns
 - optimal matching proportion in rotational sampling
 - in D_SM_T approach cross-correlation in space—time not used \rightarrow less precise then M_SM_T approach?

- ▶ Model in D_SM_T approach less complicated than in M_SM_T approach, fewer assumptions required \rightarrow better validity properties
- Mixed D_SM_T approach with probability sampling in space seems promising for estimating Temporal Trend of Spatial Means
- Further research:
 - other spatial sampling designs
 - optimization of r and n in static-synchronous and rotational patterns
 - optimal matching proportion in rotational sampling
 - ▶ in D_SM_T approach cross-correlation in space-time not used \rightarrow less precise then M_SM_T approach?

- ▶ Model in D_SM_T approach less complicated than in M_SM_T approach, fewer assumptions required \rightarrow better validity properties
- Mixed D_SM_T approach with probability sampling in space seems promising for estimating Temporal Trend of Spatial Means
- Further research:
 - other spatial sampling designs
 - optimization of r and n in static-synchronous and rotational patterns
 - optimal matching proportion in rotational sampling
 - ▶ in D_SM_T approach cross-correlation in space–time not used \rightarrow less precise then M_SM_T approach?

- ▶ Model in D_SM_T approach less complicated than in M_SM_T approach, fewer assumptions required \rightarrow better validity properties
- Mixed D_SM_T approach with probability sampling in space seems promising for estimating Temporal Trend of Spatial Means
- Further research:
 - other spatial sampling designs
 - optimization of r and n in static-synchronous and rotational patterns
 - optimal matching proportion in rotational sampling
 - ▶ in D_SM_T approach cross-correlation in space–time not used \rightarrow less precise then M_SM_T approach?

- ▶ Model in D_SM_T approach less complicated than in M_SM_T approach, fewer assumptions required \rightarrow better validity properties
- Mixed D_SM_T approach with probability sampling in space seems promising for estimating Temporal Trend of Spatial Means
- Further research:
 - other spatial sampling designs
 - optimization of r and n in static-synchronous and rotational patterns
 - optimal matching proportion in rotational sampling
 - ▶ in D_SM_T approach cross-correlation in space–time not used \rightarrow less precise then M_SM_T approach?

- ▶ Model in D_SM_T approach less complicated than in M_SM_T approach, fewer assumptions required \rightarrow better validity properties
- Mixed D_SM_T approach with probability sampling in space seems promising for estimating Temporal Trend of Spatial Means
- Further research:
 - other spatial sampling designs
 - optimization of r and n in static-synchronous and rotational patterns
 - optimal matching proportion in rotational sampling
 - ▶ in D_SM_T approach cross-correlation in space–time not used \rightarrow less precise then M_SM_T approach?

Introduction

Pure design-based approach for compliance monitoring

Pure model-based approach for trend monitoring

Mixed approach for trend monitoring

Conclusions

- For compliance monitoring of global quantities a full design-based approach can be advantageous
- \blacktriangleright For trend monitoring: full model-based or mixed $(D_S M_T)$ approach most appropriate
- Full model-based approach: Serially alternating pattern good option
- \blacktriangleright Mixed ($D_{\rm S}M_{\rm T})$ approach: model more simple, better validity, but less efficient?

- For compliance monitoring of global quantities a full design-based approach can be advantageous
- \blacktriangleright For trend monitoring: full model-based or mixed ($\rm D_SM_T)$ approach most appropriate
- Full model-based approach: Serially alternating pattern good option
- \blacktriangleright Mixed (D_SM_T) approach: model more simple, better validity, but less efficient?

- For compliance monitoring of global quantities a full design-based approach can be advantageous
- \blacktriangleright For trend monitoring: full model-based or mixed $(D_S M_T)$ approach most appropriate
- Full model-based approach: Serially alternating pattern good option
- \blacktriangleright Mixed (D_SM_T) approach: model more simple, better validity, but less efficient?

- For compliance monitoring of global quantities a full design-based approach can be advantageous
- \blacktriangleright For trend monitoring: full model-based or mixed $(D_S M_T)$ approach most appropriate
- Full model-based approach: Serially alternating pattern good option
- \blacktriangleright Mixed ($\rm D_SM_T)$ approach: model more simple, better validity, but less efficient?

Start thinking before you go into the field!

Thanks for your attention

1A.4.P. DO R OUTPER workeds as a construct and statistical consultant at Alternative Wagningen Obversively and Neurosch Centre for 59 years and his retriement by Neversber 2005; His research Interest focuses on statistical methodology for spatial providence of the statistical methodology and Construction (Statistical Methodology and Construction) and the statistical methodology for spatial providence of the statistical methodology and Construction (Statistical Methodology and Construction).

DICK 7, BRUS is senior researcher at Alterra, Wageningen University and Besearch Centre, Hist main acbritists include research on statistical methods for survey and mentioring of natural resources, propagation of errors in soil maps, as well as statistical consulting. He has published numerous papers in journals including Geoderma, Environmetric and Buropean Journal of Soil Science.

MARC K. R BIERRENS is a Professor of Hydrology at Utrecht University. His fields of expertise are proundwater hydrology, stochastic hydrology, hydrological regional isation and geostatistics. He received Best Paper Awards in the field of pedometrics in 1994 and 2004, and the hydrology Prize of the Netherlands Hydrological Society for the years 1994 to 1997.

MARTIK KNOTTERS is a soll scientist and hydrologist at Alberra. Wageningen Duiverity and Research Carter aince yosky. This fields of interest include spatio-temporal modelling of water table depths, designing monitoring networks, and the utilization of statistical knowledge on ansertuins yn environmental policy. He has publinded relevant papers in the journals Water Resources Research, Journal of Hydrologyand Geoderna.

de Gruijter - Brus - Bierkens - Knotters Sampling for Natural Resource Monitoring

The look present the national laconcludge and multi-body of sample and data analysis used for spatial increment and modelineing of natural trouction. The authors somited all theory not essential for argultations in the local state of the sampless and the sample state of the infinitional extrasts as the numbers pay much attention to hooker that infinitional extrasts as the numbers pay much attention to hooker that infinitional extrasts as the numbers pay much attention to hooker that and numbers argo procession of the sampless and the sampless and schemes and modeling asystems can be designed in view of the atms and constraints of the project.

de Gruijter us • Bierkens Knotters

Sampling for Natural Resource Monitoring Jaap de Gruijter Dick Brus Marc Bierkens Martin Knotters

D Springer

Sampling for Natural Resource

Monitoring