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Summary

The central role of forests in climate change mitigation, as recognized in the Paris agreement,
makes it important to develop and test methods for monitoring and evaluating the carbon
e�ectiveness of e�orts that aim to reduce emissions from deforestation and forest degradation
and enhance carbon stocks (REDD+). Over the last decade, hundreds of subnational REDD+
initiatives have emerged, presenting an opportunity to pilot and compare di�erent approaches
to quantifying impacts on carbon emissions and to assess social synergies or trade-o�s in
parallel.

The study discussed in chapter 2 develops (1) a Before-After-Control-Intervention (BACI)
method to assess the e�ectiveness of these REDD+ initiatives; compares (2) the results at the
meso (initiative) and micro (village) scales; and compares (3) BACI with the simpler Before-After
(BA) results. Our study covers 23 subnational REDD+ initiatives in Brazil, Peru, Cameroon,
Tanzania, Indonesia and Vietnam. Annual tree cover loss was used as proxy for deforestation.
Data was aggregated into two periods (before and after the start of each initiative). Analysis
using control areas (‘control-intervention’) suggests better REDD+ performance, although
the e�ect is more pronounced at the micro than at the meso level. Yet, BACI requires more
data than BA, and is subject to possible bias in the before period. Selection of proper control
areas is vital, but at either scale is not straightforward. Low absolute deforestation numbers
and peak years in�uence both our BA and BACI results. In principle, BACI is superior, with
its potential to e�ectively control for confounding factors. We conclude that the more local
the scale of performance assessment, the more relevant is the use of the BACI approach. For
various reasons, we �nd overall minimal impact of REDD+ in reducing deforestation on the
ground thus far. Incorporating results from micro and meso level monitoring into national
reporting systems is important, since overall REDD+ impact depends on land use decisions on
the ground.

Chapter 3 delves deeper into the forest cover change data required for performance assessment
of REDD+. Innovations in remote sensing and forest monitoring provide ever-increasing levels
of coverage, spatial and temporal detail, and accuracy. More global products and advanced
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open-source algorithms are becoming available. Still, these datasets and tools are not always
consistent or complementary, and their suitability for local REDD+ performance assessments
remains unclear. These assessments should, ideally, be free of any confounding factors, but
performance estimates are a�ected by data uncertainties in unknown ways. In this chapter
we analyse (1) di�erences in accuracy between datasets of forest cover change; (2) if and how
combinations of datasets can increase accuracy; and we demonstrate (3) the e�ect of (not)
doing accuracy assessments for REDD+ performance measurements. In this chapter we cover
�ve local REDD+ initiatives in four countries across the tropics. We compared accuracies of a
readily available global forest cover change dataset and a locally modi�able open-source break
detection algorithm. We applied human interpretation validation tools using Landsat Time
Series data and high-resolution optical imagery. Next, we assessed whether and how combining
di�erent datasets can increase accuracies using several combination strategies. Finally, we
demonstrated the consequences of using the input datasets for REDD+ performance assessments
with and without considering their accuracies and uncertainties. Estimating the amount
of deforestation using validation samples could substantially reduce uncertainty in REDD+
performance assessments. We found that the accuracies of the various data sources di�er at site
level, although on average neither one of the input products consistently excelled in accuracy.
Using a combination of both products as strati�cation for area estimation and validated with a
sample of high-resolution data seems promising. In these combined products, the expected
trade-o�s in accuracies across change classes (before, after, no change) and across accuracy
types (user’s and producer’s accuracy) were negligible, so their use is advantageous over single-
source datasets. More locally calibrated wall-to-wall products should be developed to make
them more useful and applicable for REDD+ purposes. The direction and degree of REDD+
performance remained statistically uncertain, as con�dence intervals were overlapping in most
cases for the deforestation estimates before and after the start of the REDD+ interventions.
Given these uncertainties and inaccuracies and to increase the credibility of REDD+ it is advised
to (1) be conservative in REDD+ accounting, and (2) not to rely on results from single currently
available global data sources or tools without sample-based validation if results-based payments
are intended to be made on this basis.

In chapter 4 drivers of deforestation and forest degradation (DD) and REDD+ interventions
were assessed at �ve sites in Brazil, Peru, Indonesia and Vietnam. Early REDD+ programs and
local/subnational projects used various interventions (i.e. enabling measures, disincentives and
incentives), implemented by government, the commercial and non-commercial private sector,
but are currently understudied vis-à-vis their e�ectiveness to address site-speci�c DD drivers.
The study design included an integrated assessment of remotely sensed, spatially modelled, and
locally reported drivers. First, follow-up land use from high resolution imagery is assessed as
proxy for direct deforestation drivers. Second, spatial Random Forest modelling of DD drivers
allowed for in�uence quanti�cation of topographic, climatic and proximity variables at each
site. Third, direct and indirect DD drivers were identi�ed from pre-intervention surveys and
semi-structured interviews with �ve REDD+ implementers, 40 villages and 1200 households.
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Data gathered included perceived changes in forest cover and quality, and their causes. We
found general agreement between observed, modelled and reported local DD drivers, yet some
were inadequately addressed by interventions. Intra-site di�erences in drivers underscores
the importance of analysing micro-level DD drivers. Our interdisciplinary approach reveals
the complexities of local direct and indirect DD drivers, and the complementarity of remotely
sensed, spatially modelled and locally reported methods for driver identi�cation. A better
understanding of the alignment between DD drivers and REDD+ interventions is vital for
practitioners and policy makers to enhance the e�ectiveness, e�ciency, equity and co-bene�ts
of REDD+ at the local level.

Chapter 5 consists of an exploratory analysis to examine the relationships between the treatment
intensity of di�erent types of forest interventions, changes in forest cover (loss) and changes in
income and well-being in seventeen subnational sites across the tropics. Although the aim of
forest-based climate change mitigation interventions, such as REDD+, is to protect and enhance
forests, there are legal, moral and practical reasons formaking sure that this objective is achieved
while at a minimum not harming, and ideally ensuring bene�ts for, local people. Information
on interventions, household income and perceived well-being was gathered from village and
household level interviews from nearly 130 villages and 4,000 households. Global Forest Change
data (2000-2018) was used to derive information on forest cover and forest cover change at the
village level. Clusters of villages were de�ned based on similar levels of intervention treatment
intensities and deforestation trends to compare pre- and post-intervention characteristics.
Villages in the cluster with high treatment intensities and reduced deforestation rates consisted
mostly of Brazilian villages. These villages had higher income levels and deforestation rates
in the pre-intervention period. In the post-intervention period, these villages were generally
associated with an increase in income and its households reported a slightly better level of
perceived well-being. No clear di�erences in outcomes among di�erent intervention types were
found, nor were there any indications of pronounced trade-o�s between forest conservation
and well-being outcomes at all villages and households as a whole, although trade-o�s at
speci�c villages and households could not be ruled out. This analysis provides one way of
looking at the forest change and well-being outcomes of di�erent forest interventions, and
their possible trade-o�s. Such information can provide valuable insights for policy makers and
practitioners interested in developing REDD+ strategies that can provide both conservation
and livelihood bene�ts.

This thesis contributes to the understanding of the complexities involved in REDD+ performance
assessments at the subnational level. In chapter 2, 3 and 4, internal, methodological factors
in�uencing the performance assessment are being addressed, whilst chapter 4 and 5 address
the performance assessment outcomes. Hereby, this study contributes to the development of
performance assessments themselves as well as to the understanding of the e�ectiveness of the
interventions they intend to evaluate.





Samenva�ing

Bossen spelen een centrale rol in het beperken van klimaatverandering, wat erkend is in het
akkoord van Parijs. In het afgelopen decennium zijn op subnationaal niveau honderden initi-
atieven geïmplementeerd die zich ten doel hebben gesteld om koolstofemissies van ontbossing
en bosdegradatie te verminderen, en koolstofvoorraden in bossen te vergroten (Reducing Emis-
sions from Deforestation and Forest Degradation and Enhancing Carbon Stocks in het Engels,
afgekort REDD+). Om te weten of de initiatieven dit doel behalen is het belangrijk om de
koolstofemissies te monitoren en te evalueren. Aan de hand van deze praktijkvoorbeelden
kunnen we verschillende kwanti�catiemethodes testen en vergelijken, en tegelijkertijd onder-
zoeken hoe (veranderingen in) koolstofemissies samenhangen met lokale sociaal-economische
e�ecten.

Hoofdstuk 2 behandelt een studie waarin (1) een Voor-Na-Controle-Interventie (Before-After-
Control-Intervention in het Engels, afgekort BACI) methode wordt ontwikkeld; (2) de resultaten
op meso (initiatief-) en micro (dorps-) schaal worden vergeleken; en (3) BACI-resultaten worden
vergeleken met die van de eenvoudigere Voor-Na (Before-After in het Engels, afgekort BA)
methode. Deze studie omvat 23 subnationale REDD+ initiatieven in Brazilië, Peru, Kameroen,
Tanzania, Indonesië en Vietnam. De jaarlijkse vermindering van de kroonbedekking (tree cover
loss in het Engels) werd gebruikt als proxy voor ontbossing. Voor het meten van ontbossing
werden twee periodes onderscheiden, dat wil zeggen, voor en na de start van elk REDD+
initiatief. Analyse met behulp van controlegebieden (‘controle-interventie’) suggereert betere
REDD+ prestaties dan wanneer enkel een vergelijking tussen ontbossing voor en na de start
van het REDD+ initiatief wordt gemaakt. Het REDD+ e�ect is meer uitgesproken op micro-
dan op mesoniveau. BACI vereist echter meer data dan BA en kan mogelijk beïnvloed zijn
door verschillen in ontbossingstrends tussen de controle- en interventiegebieden in de pre-
interventieperiode. Selectie van de juiste, representatieve controlegebieden is van groot belang,
maar dit is op beide schaalniveaus niet vanzelfsprekend. Lage absolute ontbossingsaantallen
en piekjaren beïnvloedden zowel onze BA- als BACI-resultaten. In principe is BACI superieur,
omdat deze methode rekening kan houden met verstorende factoren. We concluderen dat de
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relevantie van een BACI-benadering toeneemt naargelang de REDD+ evaluatie op een meer
lokaal niveau uitgevoerd wordt. Over het algemeen vinden we een minimale invloed van
REDD+ op het verminderen van ontbossing tot nu toe. Het is belangrijk om dit soort micro- en
mesoniveau resultaten op te nemen in nationale rapportages, aangezien de algehele invloed
van REDD+ afhankelijk is van beslissingen over landgebruik op lokaal niveau.

Hoofdstuk 3 gaat dieper in op de ruimtelijke kroonbedekkingsdata die nodig zijn voor REDD+
evaluaties. Innovaties op het gebied van aardobservatie en bosmonitoring zorgen voor een
steeds groter ruimtelijk bereik, voor meer detail in tijd en ruimte, en voor een grotere
nauwkeurigheid. Ook worden er meer producten met wereldwijde dekking aangeboden,
alsook geavanceerde open-source algoritmen voor het detecteren en in kaart brengen van
ontbossing. Toch zijn deze datasets en hulpmiddelen niet altijd consistent of complementair en
blijft het onduidelijk in hoeverre ze geschikt zijn voor lokale REDD+ evaluaties. Deze evaluaties
zouden idealiter geen verstorende factoren mogen bevatten, maar onderzoek is nodig om vast
te stellen of en hoe resultaten worden beïnvloed door onzekerheden in de data die gebruikt
worden als input voor deze evaluaties. Daarom behandelt dit hoofdstuk (1) verschillen in
nauwkeurigheid tussen datasets die gebruikt worden om veranderingen in kroonbedekking te
meten; (2) of en hoe combinaties van datasets de nauwkeurigheid zouden kunnen verhogen; en
(3) laat het zien wat het e�ect is van het (niet) uitvoeren van nauwkeurigheidstests voor REDD+
evaluaties. Dit hoofdstuk omvat vijf lokale REDD+ initiatieven in vier verschillende tropische
landen. We vergeleken de nauwkeurigheid van een gebruiksvriendelijke ontbossingskaart en
een lokaal aanpasbaar open-source algoritme voor ontbossingsdetectie. We hebben een visuele
validatie toegepast met behulp van Landsat Time Series satellietdata en hoge resolutie beelden.
Het schatten van de hoeveelheid ontbossing aan de hand van validatiesteekproeven kan de
onzekerheid in REDD+ evaluaties aanzienlijk verminderen. We hebben geconstateerd dat de
nauwkeurigheid van de verschillende gegevensbronnen op initiatiefniveau verschilt, hoewel
over het algemeen geen van de twee producten de ander in nauwkeurigheid overtrof. Op basis
van onze resultaten constateren we dat het combineren van beide producten als strati�catie
voor het ramen van ontbossing veelbelovend is wanneer dit samengaat met een visuele validatie
aan de hand van een steekproef en met beelden met een hoge resolutie. In deze gecombineerde
producten waren de verwachte compromissen in nauwkeurigheid tussen veranderingsklassen
(vóór REDD+, na REDD+, geen verandering) en tussen nauwkeurigheidstypes (gerelateerd
aan de fouttypen vals-positief en vals-negatief) te verwaarlozen, dus het gebruik van een
gecombineerd product biedt voordelen ten opzichte van het gebruik van een enkele dataset.
Voor REDD+ gerelateerde analyses moeten meer lokaal gekalibreerde, adequate en toepasbare
“wall-to-wall” producten worden ontwikkeld. De richting en de mate van REDD+ prestaties
bleven statistisch onzeker, omdat de betrouwbaarheidsintervallen van de ontbossingsramingen
van vóór en na de start van REDD+ in de meeste gevallen elkaar overlapten. Gezien deze
onzekerheden en onnauwkeurigheden en om de geloofwaardigheid van REDD+ te vergroten,
adviseren we om (1) conservatief te zijn in REDD+ resultatenramingen, en (2) niet af te gaan op
resultaten van een enkele ontbossingskaart of hulpmiddel zonder steekproefsgewijze validatie,
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met name wanneer conditionele REDD+ vergoedingen (results-based payments in het Engels)
gebaseerd zullen worden op dit soort metingen.

Hoofdstuk 4 beschrijft de oorzaken van ontbossing en bosdegradatie (respectievelijk deforesta-
tion en forest degradation in het Engels, afgekort DD) en REDD+ interventies op vijf locaties in
Brazilië, Peru, Indonesië en Vietnam. De eerste ingevoerde REDD+ programma’s en lokale en
subnationale projecten omvatten verschillende typen interventies (dat wil zeggen faciliterende
maatregelen, belemmerende maatregelen, en positieve prikkels), die geïmplementeerd worden
door de overheid en door de commerciële en niet-commerciële particuliere sector. De e�ec-
tiviteit van deze initiatieven om locatie-speci�eke oorzaken van DD aan te pakken is tot nu toe
onvoldoende onderzocht. In ons onderzoek integreerden we (1) met satellietdata waargenomen,
(2) ruimtelijk gemodelleerde en (3) lokaal gerapporteerde DD oorzaken. Eerst werd, op basis van
hoge resolutie beelden, landgebruik na ontbossing gebruikt als proxy voor de directe ontboss-
ingsoorzaak. In het tweede deel werd een ruimtelijk computermodel van DD oorzaken gemaakt,
een zogeheten Random Forest model. Hiermee werd voor ieder studiegebied de invloed van
verschillende onderliggende topogra�sche, klimatologische en nabijheidsvariabelen gekwan-
ti�ceerd en gerangschikt. In het derde deel werden directe en onderliggende DD oorzaken
geïdenti�ceerd op basis van informatie uit verschillende enquêtes met vijf REDD+ initiatiefne-
mers, in 40 groepsgesprekken op dorpsniveau en met 1200 individuele huishoudens. Deze
enquêtes gingen onder andere over waargenomen veranderingen in bosareaal en -kwaliteit,
en de oorzaken daarvan. Over het algemeen kwamen de waargenomen, gemodelleerde en
gerapporteerde lokale DD oorzaken overeen, maar sommige van deze oorzaken werden onvol-
doende aangepakt door de REDD+ interventies. Omdat er niet alleen tussen, maar ook binnen
studiegebieden (ruimtelijke) verschillen in DD oorzaken werden gevonden, onderstreept dit het
belang van onderzoek naar DD oorzaken op lokaal niveau. Met onze interdisciplinaire aanpak
hebben we aangetoond dat het vaststellen van lokale directe en indirecte DD oorzaken een
complex proces is. Bovendien hebben we laten zien hoe de aardobservatie met hoge resolutie
beelden, ruimtelijke modellen en sociaal-economische enquêtes elkaar kunnen aanvullen om
tot een completer beeld van de lokale oorzaken van DD te komen. Een beter begrip van de
afstemming tussen DD oorzaken en REDD+ interventies is van vitaal belang voor REDD+
initiatiefnemers en beleidsmakers om de e�ectiviteit, e�ciëntie, billijkheid en nevenvoordelen
van REDD+ op lokaal niveau te verbeteren.

Hoofdstuk 5 bestaat uit een verkennende studie waarin de relaties worden onderzocht tussen de
behandelingsintensiteit van verschillende soorten bos-gerelateerde interventies, veranderingen
in (de reductie van) bosareaal en veranderingen in inkomen en welzijn in zeventien subnationale
initiatieven in de tropen. Het doel van bos-gerelateerde maatregelen ter beperking van de
klimaatverandering, waaronder REDD+, is om bossen te beschermen en hun areaal te vergroten.
Echter, er zijn wettelijke, morele en praktische redenen om ervoor te pleiten dat deze doelstelling
wordt bereikt zonder de lokale bevolking te benadelen, en er idealiter voor te zorgen dat het hen
ook voordelen biedt. Aan de hand van enquêtes op dorps- en huishoudenniveau in bijna 130
dorpen en 4000 huishoudens werd informatie verzameld over interventies, gezinsinkomen en
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subjectief welzijn. De Global Forest Change-dataset (2000-2018) werd gebruikt voor het bepalen
van de kroonbedekking en veranderingen daarin. Dorpen werden gegroepeerd in clusters op
basis van vergelijkbare niveaus van behandelingsintensiteit en ontbossingstrends. Het cluster
met hoge behandelingsintensiteit en vermindering van ontbossingsgraad bestond voornamelijk
uit Braziliaanse dorpen. De dorpen in deze cluster hadden in de pre-interventieperiode hogere
inkomensniveaus en hogere ontbossingspercentages. In de post-interventieperiode werden deze
dorpen over het algemeen getypeerd door een toename van het inkomen en de huishoudens
rapporteerden een iets beter niveau van subjectief welzijn. Er werden geen duidelijke verschillen
in uitkomsten tussen verschillende typen interventies gevonden, noch waren er aanwijzingen
voor uitgesproken compromissen tussen bosbehoud en welzijnsresultaten in alle dorpen en
huishoudens in hun geheel. Het kan echter niet worden uitgesloten dat deze compromissen
voorkomen in speci�eke dorpen en huishoudens. Dit is een nieuwe manier om naar de invloed
van verschillende bos-gerelateerde interventies op ontbossing en welzijn en de daarmee gepaard
gaande compromissen te kijken. Dergelijke informatie kan waardevol zijn voor beleidsmakers
en REDD+ initiatiefnemers die REDD+ strategieën ontwikkelen die zowel voordelen op het
gebied van bosbehoud als welzijn kunnen bieden.

De resultaten uit dit proefschrift dragen bij aan een beter begrip van de complexiteit van REDD+
evaluaties op subnationaal niveau. In hoofdstuk 2, 3 en 4 worden interne, methodologische
factoren die de evaluatie beïnvloeden behandeld, terwijl hoofdstuk 4 en 5 de resultaten van
zulke evaluaties behandelen. Hiermee draagt dit onderzoek zowel bij aan de ontwikkeling van
deze evaluaties zelf, als aan het beter begrijpen van de e�ectiviteit van de interventies waar
deze evaluaties op gericht zijn.
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1.1 Forests and climate change
Forest, and tropical forests in particular, provide a range of public and private goods and
services. Products include timber and other building material, food, fuel and medicine. In
terms of services, forests are an important element in the water cycle, prevent soil erosion and
provide nutrients to the soil, regulate the microclimate, serve as carbon sinks, have existence
values such as cultural and aesthetic values, and host 80% of the earth’s biodiversity.

These goods and services can be provided concomitantly by forests. However, overexploitation
can lead to forest degradation. This implies a lesser quality or amount of forest goods and
services provision, or complete depletion when forests are deforested and converted to other
land uses such as agriculture. Increased world population and corresponding increased demand
for food supply has put a pressure on forest land and is expected to continue to do so in the
coming decades (Blanco et al., 2014).

Forests can be considered a carbon sink when biomass accumulates in growing trees, while
forests can also be a carbon source when forests are degraded or converted into other land uses.
Since the 1970s, emissions from agriculture, forestry and other land uses (AFOLU) increased by
20% (Blanco et al., 2014), leading to a share of 23% of net anthropogenic global greenhouse gas
(GHG) emissions in the period 2007-2016 (IPCC, 2019).

The climate change mitigation potential of halting or reversing deforestation and forest
degradation is estimated to be 24-30% of the total mitigation potential (IPCC, 2014; Goodman and
Herold, 2014), which covers not only the avoided emissions but also the carbon sequestration
function of standing forests. This mitigation potential could be even higher when avoided
emissions from forest change to agriculture are not displaced to other lands and ecosystems
(i.e. leakage). In their most recent report, the Intergovernmental Panel on Climate Change
(IPCC), stressed that in order to stay below the 2°C increase in global temperature, land-based
mitigation is required, with most of the modelled pathways including di�erent combinations
of reforestation, a�orestation, reduced deforestation and bioenergy (IPCC, 2019).

1.2 REDD+

1.2.1 Global agreements and local action

To counter forest change, a framework has been developed by the United Nations Framework
Convention on Climate Change (UNFCCC) to reduce emissions from deforestation and forest
degradation, and enhance forest carbon stocks in developing countries (REDD+). The role of
forests in climate change mitigation was reiterated with the incorporation of REDD+ in the
Paris Agreement (UNFCCC, 2015). In their Nationally Determined Contributions (NDCs), many
tropical countries refer to REDD+ as mitigation strategy, while many others (including most
non-tropical countries) refer to forest and land sector related mitigation strategies without
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explicit reference to REDD+ (�gure 1.1).

No UNFCCC memberNot submitted
No REDD+, no land/forest sector mentionedNo REDD+, but land/forest sector mentionedREDD+ mentioned/specified

Figure 1.1: Coverage of REDD+ and the land/forest sector in countries’ mitigation plans as reported
in their NDCs (adapted from Pauw et al., 2016)

REDD+ as a framework is characterized by a phased evolution with a broadening scope.
Reducing emissions from deforestation (RED) was launched at COP11 in Montreal in 2005.
In 2007, the second “D” was added, representing forest degradation. Later, the extra “+”
represented reducing emissions from conservation, sustainable development and enhancement
of forest carbon stocks (Wertz-Kanounniko� and Angelsen, 2009). In the ‘Cancun Safeguards’,
agreements were made on ‘free, prior, and informed consent’ to protect the rights of indigenous
people living in intervention areas, as well as agreements on regular reporting of social and
environmental safeguards (UNFCCC, 2011).

REDD+ implementation at (sub)national level has three phases (readiness, policy reforms, and
result-based action). Besides a broadening of scope, and thus objectives, the initial idea of sole
result-based payments has also changed, since payments during the �rst and second phase
are not linked to the direct measurable outcomes of the policy in terms of reduced emissions
(Angelsen and McNeill, 2012). In the readiness phase, many existing Integrated Conservation
and Development Programmes (ICDPs) were reframed under the umbrella of REDD+ (Sunderlin
and Sills, 2012; Sunderlin et al., 2015; Simonet et al., 2015). These initiatives’ objectives were
built around a ‘triple-win’ scenario, in which objectives of conservation, development and
climate change mitigation were combined (Milbank et al., 2018).

Since its inception, hundreds of subnational REDD+ initiatives have been implemented across
the tropics (Simonet et al., 2015), which enabled both early action and evaluation on lessons
learned by implementation on the ground (Sills et al., 2014; Duchelle et al., 2017). These
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initiatives were implemented by non-governmental organizations, private sector corporations
and subnational governments. Originally, the theory of change behind REDD+ was mainly
centred around results-based payments using the concept of payment for environmental services
(PES). Yet in practice, these initiatives turned out to comprise of a basket of interventions,
policies and programmes that combine incentives, disincentives and enabling measures
(Angelsen et al., 2018). Since forces driving deforestation are complex, and space and time
dependent, the interventions needed to address them e�ectively need to be tailored accordingly
(Seymour and Harris, 2019).

1.2.2 Measurement, reporting and verification

E�ective REDD+ requires accurate estimates of emissions from deforestation and forest
degradation and changes therein. The international Good Practice Guidance (GPG) of the IPCC
guide countries to set up national Measurement, Reporting and Veri�cation (MRV) systems
(IPCC, 2003; GOFC-GOLD, 2016). One approach to calculate carbon emissions from forest loss
is by multiplying the activity data in a given area by an emission factor (Verchot et al., 2012;
IPCC, 2006b). Activity data is the area of land changed from forest into another type of land use.
Emission factors are proxies for terrestrial carbon stock densities per unit area. Both activity
data and emission factors can be estimated in di�erent ways.

Taking into account countries’ di�erences in capacities (Romijn et al., 2015), and the availability
and development of data sources and techniques needed for these estimates, the IPCC identi�es
di�erent levels of detail and accuracy, so-called Tiers 1 to 3 in terms of emission factors.
Here, Tier 1 entails default values per ecological zone, whereas Tier 3 would include spatially
explicit wall-to-wall maps with regularly updated carbon stock values. Moving up in Tiers
results in increased levels of detail, reduced uncertainty, and increased transparency of carbon
stocks reported (Asner et al., 2009), but also entails increased costs and analytical complexity
(UNFCCC, 2009). However, costs of activity data estimates have been reduced and quality
of these estimates has improved, due to recent innovations in forest monitoring and remote
sensing (section 1.3).

In this thesis, most focus is on the activity data side of the equation rather than emission factors,
since at subnational level, it is expected that changes in emissions are mostly driven by activity
data, rather than local variety in emission factors. This will be discussed in more detail in
chapter 6.

1.2.3 Performance assessment

Performance assessment for REDD+ encompasses both carbon emission MRV and MRV on
social and environmental safeguards and co-bene�ts. Performance assessment is important for
several reasons (Wertz-Kanounniko� and McNeill, 2012). First, it is necessary to monitor and
measure the e�ects of projects and policies, in order to see what is (not) working. Consequently,
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one can improve the design of projects and policies. Second, once results are evaluated, one
can use this as a basis for �nancial rewards. A third, more indirect value of performance
measurement regards accountability and promoting e�ective REDD+ implementation.

While monitoring involves reporting on certain indicators, performance assessment further
requires counterfactual thinking. Indicators allow for measurement of progress towards policy
goal, but lack the ability to attribute progress to speci�c interventions (Ferraro, 2009). This
attribution is closely linked to the REDD+ principle of additionality, that is, in case of reduced
emissions to what extent this reduction would not have occurred in absence of the intervention.
Countries measure the additionality by comparing actual emissions with a prede�ned forest
reference emission level (FREL), which usually comprises of a business-as-usual (BAU) scenario
(Herold et al., 2012). FRELs are therefore an indispensable element in performance assessments.
Yet, in the absence of a politically agreed, uniform way of de�ning FRELs, it is of critical
importance that countries, or any agent reporting REDD+ progress at national or subnational
levels, are transparent about their FREL de�nition.

1.3 Remote sensing for REDD+
MRV systems and REDD+ performance assessments require spatially explicit data on the state
of forests and forest change, which for an important part build upon satellite-based remote
sensing data. Since the launch of the �rst Landsat satellite in the 1970s, earth observation
missions have evolved rapidly (Belward and Skøien, 2014; De Sy et al., 2012). The Landsat
archive opened in 2008 which led to the provision of decades of earth observation data for free.
This allowed scientists to assess both anthropogenic and natural changes of the earth’s surface
at longer time series (Woodcock et al., 2008). In addition, the European Space Agency (ESA)
provides access to data acquired by the more recently launched Sentinels. In general, more earth
observation data are becoming available at lower costs and with higher spatial and temporal
resolution. At the same time, free or relatively cheap, cloud computing platforms emerge,
including FAO SEPAL, Google Earth Engine and Amazon Web Services, to deal with these
increasing �ows of data at larger scales (Petersen et al., 2018). This has led to a plethora of tools
and datasets focussing on di�erent aspects relevant for REDD+ monitoring, including global
forest change (e.g. Hansen et al., 2013), pan-tropical biomass (Baccini et al., 2012; Saatchi et al.,
2011; Avitabile et al., 2016), pan-tropical carbon emissions (Harris et al., 2012) and national-scale
carbon using LiDAR (Asner et al., 2013b). REDD+monitoring users may opt for readily available
global datasets or open algorithms which may require more technical knowledge but are usually
locally adjustable. To aid the user’s decision, a better understanding of accuracies of di�erent
datasets and tools and their consistency is required.
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1.4 Problem statement and research objectives
While especially in recent years monitoring of forests, carbon emissions, and changes therein
has progressed at the national level (Romijn et al., 2015), it remains unclear how subnational
e�orts and outcomes would feed into these national monitoring systems. Further, these
monitoring systems require data for which an increased number of datasets are available. Yet,
dataset (dis)agreements are understudied. Also more transparency and better cooperation
between the science and policy domain is required to measure –and realize– the mitigation
potential of REDD+ activities (Grassi et al., 2017). Understanding the implications of di�erent
methodologies or choices in data sources for REDD+ outcomes is therefore vital if results-based
payments are intended to be based on those estimates.

In recent scienti�c debates on conservation and development initiatives, there have been
increased calls for a so-called “Conservation Evaluation 2.0”, in which conservation and
livelihood outcomes of di�erent policy tools applied across sites are assessed and compared
jointly through ex ante matched treatment and control units (Miteva et al., 2012; Sims and
Alix-Garcia, 2017). For comparison across initiatives and to achieve a higher level of learning,
performance assessments should incorporate 3E+ outcomes, that is, e�ectiveness, e�ciency,
equity and co-bene�ts including poverty alleviation and biodiversity (Jagger et al., 2009).
Despite calls for evidence based REDD+ and theoretically well-developed methodologies,
these quasi-experimental di�erences-in-di�erences (DID) or BACI assessments are scarcely
applied (Sills et al., 2017). Among other complicating factors, the timing of assessment and
necessity of research design before interventions are applied, attribution of results to speci�c
interventions, high multicollinearity, reliability of information, spatial mis�t between scale
of intervention e�ects and measured environmental outcomes, temporal lags, di�culties to
de�ne the appropriate indicators, and potential political sensitivity or privacy issues are making
performance assessment di�cult (Wertz-Kanounniko� and McNeill, 2012; Rissman and Smail,
2015; Sills et al., 2017).

Through empirical studies on REDD+ performance assessment, learning-by-doing can be
achieved to both operationalize and improve existing (theoretical) BACI methodologies and
to inform policy-makers and other intervention implementers on �rst REDD+ outcomes. The
Global Comparative Study on REDD+ (GCS-REDD+) of the Center for International Forestry
Research (CIFOR) provides the stage for such an empirical study, in which 23 early-REDD+
initiatives across the tropics are being studied using a BACI study design. The chapters in this
PhD thesis build upon the GCS-REDD+ data gathered through village and household level
socio-economic surveys and focus group discussions at pre- and post-intervention times.

Although performance measurement is at the heart of the GCS-REDD+ study, developing
a method for consistent performance measurement while comprehending the implications
of the chosen methodology remains a considerable challenge. Stepwise approaches have
been introduced in order to facilitate REDD+ implementation, reference level development
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and carbon monitoring (Herold et al., 2012; GOFC-GOLD, 2016). It remains unclear which
trade-o�s in terms of reasonable complexity and required accuracy are present when applying
a certain monitoring method as opposed to alternative methods. Moreover, it is unclear how
to promote interdisciplinary integration in order to better understand deforestation driver
processes, their alignment with REDD+ interventions, and synergies and trade-o�s between
carbon and non-carbon outcomes. Temporal lags and spatial-di�usion processes complicate
monitoring and measurement at the landscape level (Geoghegan, 1998) and thus complicate
these alignment, synergy and trade-o�s assessments. Jointly examining changes in forest
area, carbon emissions, environmental and socioeconomic variables and outcomes is essential
for deforestation driver and REDD+ performance assessment, but not straightforward, and
experiments using empirical data are needed to unravel those complexities.

This study aims to �ll several knowledge gaps related to both methodological issues and
understudied REDD+ outcomes. The objective of this thesis is to explore and empirically test
the use of environmental and socio-economic data sources to support subnational REDD+
performance assessment. To this end, the following research questions are de�ned:

1. What are the characteristics and consequences of di�erent forest change assessment
approaches?

2. How do the availability and choices of forest change datasets in�uence REDD+
measurements and corresponding uncertainties?

3. How can an integrated deforestation drivers assessment help understand
driver-intervention alignment?

4. What are the relationships between changes in forests and non-carbon outcomes in the
context of di�erent REDD+ interventions?

1.5 Thesis outline
Chapters 2 to 5 constitute the core chapters of this thesis. These four chapters are inherently
linked to the research questions as presented in section 1.4.

Chapter 2 presents a methodological assessment of di�erent ways to assess forest cover change
at the subnational level. It develops (1) a BACI method to assess the e�ectiveness of these
REDD+ initiatives; compares (2) the results at the meso (initiative) and micro (village) scales;
and compares (3) BACI with the simpler BA results. Hereby, it provides insights as to how the
choice of assessment method in�uence REDD+ measurements.

Chapter 3 delves deeper into the forest cover change data required for performance assessment
of REDD+. This chapter studies (1) the di�erences in accuracy between datasets of forest
cover change; examines (2) if and how combinations of datasets can increase accuracy; and
demonstrates (3) the e�ect of (not) doing accuracy assessments for REDD+ performance
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measurements. Like chapter 2, it discusses the implications of these results for REDD+
measurements.

Chapter 4 examines deforestation and forest degradation drivers and REDD+ interventions at
�ve sites in Latin America and Southeast Asia. An interdisciplinary analysis of remotely sensed,
spatially modelled, and locally reported drivers examines the complementarity of di�erent
driver assessment methods. It shows how a better understanding of the forest change drivers at
the local scale in the intervention design phase can contribute to a better alignment of REDD+
interventions with forest change drivers.

Chapter 5 consists of an exploratory analysis of changes in forests and well-being in the
context of forest conservation interventions in 17 subnational REDD+ initiatives across the
tropics. A combination of socioeconomic surveys and remote sensing analyses was used to
assess how interventions with di�erent levels of treatment intensity associated with changes in
deforestation trends, income, and perceived well-being at the household and village level.

The research conducted in this PhD contributes to the understanding of the complexities
involved in REDD+ performance assessments at the subnational level. In chapter 2, 3 and 4,
methodological factors are being addressed that are key to performance assessment design
and implementation, whilst chapter 4 and 5 address the performance assessment outcomes
(�gure 1.2). Hereby, this study contributes to the development of performance assessment itself
as well as to the understanding of the interventions’ e�ectiveness which these assessments
evaluate.

Chapter 6 presents the main conclusions of this thesis and revisits the research questions. This
synthesis further discusses the implications of these results for performance assessments of
climate change mitigation e�orts in the future.
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Figure 1.2: Linkages between the core chapters of the thesis
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Abstract
The central role of forests in climate change mitigation, as recognized in the Paris agreement,
makes it increasingly important to develop and test methods for monitoring and evaluating
the carbon e�ectiveness of REDD+. Over the last decade, hundreds of subnational REDD+
initiatives have emerged, presenting an opportunity to pilot and compare di�erent approaches
to quantifying impacts on carbon emissions. This study (1) develops a BACI method to assess
the e�ectiveness of these REDD+ initiatives; (2) compares the results at the meso (initiative)
and micro (village) scales; and (3) compares BACI with the simpler BA results. Our study
covers 23 subnational REDD+ initiatives in Brazil, Peru, Cameroon, Tanzania, Indonesia and
Vietnam. As a proxy for deforestation, we use annual tree cover loss. We aggregate data
into two periods (before and after the start of each initiative). Analysis using control areas
(“control-intervention”) suggests better REDD+ performance, although the e�ect is more
pronounced at the micro than at the meso level. Yet, BACI requires more data than BA, and
is subject to possible bias in the before period. Selection of proper control areas is vital, but
at either scale is not straightforward. Low absolute deforestation numbers and peak years
in�uence both our BA and BACI results. In principle, BACI is superior, with its potential
to e�ectively control for confounding factors. We conclude that the more local the scale of
performance assessment, the more relevant is the use of the BACI approach. For various reasons,
we �nd overall minimal impact of REDD+ in reducing deforestation on the ground thus far.
Incorporating results from micro and meso level monitoring into national reporting systems is
important, since overall REDD+ impact depends on land use decisions on the ground.
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2.1 Introduction
REDD+ has emerged as a key climate change mitigation strategy within the UNFCCC. Through
the Paris agreement, the necessity for supporting and implementing REDD+ was recon�rmed
and the role of forests as carbon sinks emphasized (UNFCCC, 2015). So far, approximately 401
countries mention either REDD+ or forests as part of the mitigation strategy in their NDCs. This
importance makes it critical to monitor and evaluate the carbon e�ectiveness of REDD+.

The MRV of carbon stocks and emissions is a vital part of national REDD+ schemes (Herold
and Skutsch, 2009; UNFCCC, 2015). Carbon emissions are calculated by multiplying activity
data – the area of land use/cover change due to human activity– by its corresponding emission
factor (Verchot et al., 2012). While national forest monitoring systems have progressed, e.g.,
with PRODES from the Brazilian Institute for Space Research (INPE), capacities in developing
and operationalizing these MRV systems vary widely among countries (Romijn et al., 2015).
In the last decade, technical innovations in remote sensing and forest-relevant monitoring
techniques resulted in a plethora of national and global datasets with increasing levels of
coverage, detail (spatial and temporal) and accuracy. Examples include the Landsat-based
Global Forest Change 2000-2014 (Hansen et al., 2013), global pan-tropical biomass datasets
(Baccini et al., 2012; Saatchi et al., 2011; Avitabile et al., 2016), and national carbon maps using
LiDAR (Asner et al., 2013b).

Meanwhile, at the subnational level, hundreds of REDD+ projects and programmes are led
by a diversity of actors including private non-pro�t organizations, for-pro�t companies
and government agencies (Simonet et al., 2015). The implementers of these initiatives
are applying a range of REDD+ interventions from enabling measures (such as tenure
clari�cation) to command-and-control measures (disincentives) to direct payments and
livelihood improvements (incentives). While data-driven developments facilitate forest and
carbon monitoring, it remains unclear how to align information on subnational performance
with national level reporting related to NDCs. The implementers of several of these subnational
REDD+ initiatives state that “vertical integration or nesting of MRV systems is important, but
has been elusive” (Ravikumar et al., 2015, p.919).

Any e�ectiveness assessment needs to compare an observed outcome with a hypothetical
counterfactual (business-as-usual scenario, baseline or reference level). In the face of dynamic
contexts globally (e.g. commodity prices), nationally (e.g. macroeconomic policies), and
locally (e.g. newly constructed roads), simple retrospective‘before-after’(BA) reference level
assessments fail to properly attribute factors of change, and consequently misjudge the impacts
of REDD+ interventions. Establishing a counterfactual that discriminates these confounding
e�ects is the key in assessing true policy impacts. The quasi-experimental BACI, or DID,
approach aims to control for these contextual changes. It is applied in ecological studies to
assess the e�ect of a stress or treatment on a given population (Smith, 2002) and in econometrics
1UNFCCC NDC registry http://www4.unfccc.int/ndcregistry/Pages/All.aspx, 5 December 2016
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and social sciences for program evaluation (e.g. Imbens and Wooldridge, 2009; Jagger et al.,
2010). The unit of interest is measured at (a minimum of) two points in time (before and after the
treatment) and in (at least) two di�erent locations, that is, an area subjected to the ‘treatment’
(intervention area) and an area that is not (control area), to identify changes that are additional.
The BA approach corresponds to using a conventional reference level, i.e. the average historical
deforestation (e.g. past 10 years). Hence, unlike BACI, it does not account for changes in drivers
during the intervention period. This chapter explores the application of both methods to
measuring the performance of subnational REDD+ initiatives. The purpose of the comparison
is to increase our understanding of conditions under which the more complex and costly BACI
approach is essential, and those conditions under which BA might be acceptable.

Here, we (1) develop a BACI method to assess the e�ectiveness of these REDD+ initiatives; (2)
compare the results at the meso (initiative) and micro (village) scales; and (3) compare BACI
with BA results. We focus on comparing the results of di�erent methods and scales, rather
than on explaining individual performance scores of the REDD+ initiatives.

2.2 Material and methods

2.2.1 Study area

Our study includes 23 subnational REDD+ initiatives in Brazil, Peru, Cameroon, Tanzania,
Indonesia and Vietnam from CIFOR’s GCS-REDD+ (�gure 2.1). They di�er greatly in terms
of proponent type (government, NGO, private sector), size (ranging from 28 to approximately
160,000 km2), environmental context (from dense primary rainforest to dry miombo woodlands)
and interventions applied (Sills et al., 2014). While speci�c interventions di�er across sites, most
proponents use customized combinations of enabling measures, disincentives and incentives to
reduce deforestation and degradation (Duchelle et al., 2017).
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Figure 2.1: Initiatives included in the Global Comparative Study on REDD+

2.2.2 Tree cover data

We use the Global Forest Change (GFC) data (version 1.2), which is based on a time series
analysis of Landsat satellite imagery, providing tree cover density for 2000 and annual tree



2

2.2 Material and methods 31

cover loss for 2001-2014 (Hansen et al., 2013). Some have questioned the local accuracy of
this global dataset (Bellot et al., 2014) which may over- or underestimate absolute forest area
and forest change in di�erent ways across the globe. Yet, it is currently the only source of
annual data on global tree cover loss at medium spatial resolution (Landsat 30m). Furthermore,
for the purpose of comparison among sites and countries, we only present the relative trends
of tree cover change and we do not aim to make any claims about deforestation numbers in
absolute terms (e.g. ha of forest converted into other land use). That is, in our analysis, we
use the data to compare trends within the same region (i.e. comparing villages inside and
outside intervention areas, and comparing intervention areas to the surrounding jurisdiction).
Thus, we only compare areas that should be subject to the same tendencies towards under- or
overestimation of deforestation, thereby removing that bias from the comparison.

Tree cover loss is used as proxy for emissions from deforestation. At this stage, we do not
consider carbon emissions (i.e. emission factors). We thus implicitly assume that emissions are
mainly driven by activity data. We de�ne forests as areas with >10% tree cover, in line with the
FAO (2000) de�nition. Accordingly, we generated a forest mask from the tree cover in 2000
layer from the Hansen data. Forest loss is de�ned as changes in tree cover from >10% in 2000
to ~0% (see Supplementary Material of Hansen et al., 2013) in any subsequent years. Areas of
forest loss and, correspondingly, annual forest loss as a percentage of initial forest cover were
calculated by using the area() function of the Raster package in R (Hijmans, 2016).

2.2.3 Performance assessment framework

For both approaches, we aggregate the time series data on annual tree cover loss into two
periods (before and after) (�gure 2.2. To compare assessment approaches, we simultaneously
apply BA and BACI approaches. Correspondingly, we calculate relative performance scores to
allow for comparison across sites and countries.

REDD+ initiatives’ starting years di�er, ranging from 2006 to 2013 (see appendix 6 of Sills et al.,
2014)2, thus the number of years in the after period ranges from two to nine (see table 2.1). The
BA score α is calculated as follows:

BA score α = x̄AI − x̄BI

with x̄AI =
1

na

na∑
i=1

xi and x̄BI =
1

nb

nb∑
i=1

xi

(2.1)

Where x̄AI represents the average annual deforestation rate in the intervention area in the
period since the intervention started, as a percentage of the total forest area in 2000; x̄BI

represents the average annual deforestation rate in the intervention area in the period from
the start year of measurement (here: 2001) up until the intervention started, na and nb the
2Start years for Bolsa Floresta, SE Cameroon and KCCP are slightly earlier compared to those reported in appendix 6
of Sills et al. (2014) because of activities preceding the o�cial REDD+ initiative start date.
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Figure 2.2: Theoretical framework for comparing performance assessment methods (BA and BACI)
at the meso and micro level. Homogeneous trends in the before period like those presented here show
the ideal situation.

number of years in respectively the after and before period. A BA score α of -2 thus means that
the average annual deforestation rate in the intervention area decreased by 2% points when
compared to pre-intervention years.

When including control areas in the assessment, the BACI score β is calculated as follows:

BACI score β = (x̄AI − x̄BI)− (x̄AC − x̄BC)

with x̄AI =
1

na

na∑
i=1

xi , ... etc.
(2.2)

Here, x̄AC and x̄BC represent the average annual deforestation rates in the control areas in
the after and before period, respectively. β thus scores performance in the intervention area
as compared to its control area. A negative β indicates a greater reduction or lower rise in
deforestation in the intervention area than in the control area, and thus a positive REDD+
impact. We calculate the BACI scores β at both meso and micro levels (see next section and
2.3).

2.2.4 Levels of analysis

To successfully assess the impacts of REDD+, cross-scale integration is needed (de Sassi et al.,
2015). We use two units of analysis for the intervention area: initiative boundaries (meso level)
and intervention village boundaries (micro level), as not all villages within any given initiative
area were subject to the same suite of interventions, and thus were not “treated” with the same
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intensity by implementers. For the meso level analysis, we used the site boundaries of all 23
REDD+ initiatives in the sample. Our control units at this level di�er depending on the size of
the initiative. Generally, they consist of the corresponding next higher jurisdictional level (left
panel, �gure 2.3), i.e. either districts (18 cases for smaller REDD+ projects), region (four cases
for district-level initiatives and larger REDD+ projects) or biome (one state-level jurisdictional
program in the Brazilian Amazon).3
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Figure 2.3: Decision tree for selecting control units at meso (left panel) and micro (right panel) levels.

For themicro level analysis (right panel, �gure 2.3), we focused on 16 of the 23 REDD+ initiatives,
known as “intensive sites” in the GCS-REDD+, where representative control villages were
selected based on matched reported percent forest cover, deforestation pressures, market
accessibility and socioeconomic factors from an ex ante rapid rural appraisal (Sunderlin et al.,
2016). Hence, for the seven sites without matched control villages, we performed the BA and
BACI analysis at the meso level only.

Village boundaries were made spatially explicit to re�ect the area in�uenced by villagers.
Since the concept of “village” varies by country, and village boundary data were sometimes
3In 17 cases, the intersecting districts were used as the control unit. District is de�ned as the jurisdictional level
below region, which corresponds to themunicipality in Brazil; district in Peru, Tanzania and Vietnam; department
in Cameroon; and regency in Indonesia. In �ve cases, the region that overlaps with the initiative was used as
the control unit. Region is de�ned as the �rst subnational jurisdictional level below the country, which is called
state, department and province in respectively Brazil, Peru and Indonesia. In the case of Acre’s State System of
Incentives for Environmental Services in Brazil, which is the largest initiative in our sample, the area of the
Brazilian Amazon biome was used as the control unit.
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unavailable, spatial boundaries were compiled to adequately re�ect local conditions. These
boundaries were either provided by the government; provided by the REDD+ proponents;
geo-referenced by �eld researchers; or obtained by bu�ering household points (see
appendix A.1).

2.3 Results

2.3.1 General results

Table 2.1 4 shows the summary statistics of the main variables introduced in section 2.2.3.

Table 2.1: Summary statistics

Level Variable Explanation n min max mean median

both start year start year of the initiative 23 2006 2013 2009 2009
both na years in after period 23 2 9 6 6
both nb years in before period 23 5 12 8 8
meso α BA scorea 23 -0.903 0.588 0.043 0.083
meso β BACI score 23 -1.184 0.315 -0.085 0.002
micro α BA scoreb 16 -2.139 0.669 -0.271 0.048
micro β BACI score 16 -2.277 2.827 -0.449 -0.466
a In initiative area.
b In intervention villages.

The results of the BA α and BACI β performance scores were grouped into good, neutral and
poor5, where a good score means a relative reduction in tree cover loss over time (BA, BACI)
and/or compared to the control area (BACI) (�gure 2.4).

First, we compare results from the two aggregation levels. At the meso (initiative) level,
the median scores for both approaches (BA and BACI) are close to zero (table 2.1), meaning
that there is no substantial change in deforestation rates between the two periods across the
sample as a whole. At the micro (village) level, however, the scores are typically lower when
compared to the results at meso level (i.e. better scores in terms of reduced deforestation rates)6.
Apparently, the interventions thus had less impact at the more aggregated level. This �nding
could be due to interventions targeting only a few villages (including the ones studied here)
within the site or within-site leakage from treated to untreated villages, which would lower
the scores at the meso level.
4See appendix A.2 for an extended version of the summary statistics.
5When grouping the scores, the following thresholds were used: good ≤ 0.1; 0.1>neutral<0.1; and poor ≥ 0.1.
We tested di�erent cut-o�s ranging from (-)0.05 to (-)0.5 which all led to similar conclusions, so for illustrative
reasons, we decided to use 0.1. Scores close to zero are more likely to be in�uenced by uncertainties in the data
than by a clear direction in performance.

6These results are not in�uenced by the di�erence in sample size between the meso and micro level (appendix A.3).
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Figure 2.4: BA and BACI classi�ed scores per analysis level, where n is the number of initiatives.

Second, we compare the two assessment methods. The BA scores (α) range from -2.139 (good
performance) to 0.669 (poor) and the BACI scores (β) range from -2.277 (good) to 2.827 (poor).
The BACI scores are typically lower than the BA scores at both meso and micro levels. Hence,
the intervention areas tend to outperform the control areas, regardless of the overall trend
in annual deforestation rates over time. Yet, median micro deforestation declines more in
intervention than in control areas (median BACI score of -0.466), indicating slightly better
REDD+ performance at lower aggregations. In turn, most good BACI scores at meso levels
represent cases of increased deforestation trends though these increases were generally lower
than in control areas.

2.3.2 Individual BA and BACI scores

To better understand the methodological di�erences, in this section we examine speci�c
scenarios. Table 2.2 shows the occurrences of the prevailing factors that a�ect the BA and
BACI scores, which we explain in more detail below.

Bias in the before period
To con�dently attribute changes (or lack thereof) to REDD+ activities in the after period,
tree-cover loss patterns for intervention and control areas should have been similar in the
before period (�gure 2.2). Yet, two sample t-tests show that in �ve meso cases, and in two sites
at both levels, signi�cant di�erences in the before period in�uenced the resulting BACI scores
(appendix A.4). One such case is shown in �gure 2.5 where meso-level before deforestation
rates in the initiative area exceeded those in the corresponding control districts.
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Table 2.2: Occurrences per analysis level of factors a�ecting the BA and BACI scores.

Level n
casesa

Bias in
before
periodb

Low
absolute

deforestationa

Peak
yearsa

Outperforming
control areab

Clear
comparative
performancea

Meso 23 7 9 16 1 5
Micro 16 2 8 13 1 1

a Relevant for both BA & BACI.
b Relevant for BACI only.
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Figure 2.5: Annual deforestation rates (%) in the before and after period for the intervention (a) and
control (b) areas for one initiative in Brazil, where n is the number of years per period. Upper and
lower extremes of whiskers represent Q3+1.5*IQR and Q1–1.5*IQR respectively, where IQR=Q3-Q1.

Low absolute deforestation
For four meso-level cases, three micro cases, and �ve sites at both levels, median annual
deforestation was less than 100 ha in absolute terms. Here, small year-to-year deviations
in deforestation can determine the BA and BACI scores. Furthermore, many of these
cases correspond to forest change maps where marked tree cover loss speckles may re�ect
degradation, climatic e�ects, or input data errors. We should thus be cautious in drawing
conclusions from the corresponding scores, which might be driven more by tree cover data
uncertainty than factual changes in deforestation dynamics.

Peak years
Single years of exceptionally high tree-cover loss (for intervention or control, before or after)
can heavily in�uence our target variable of mean annual deforestation for BA and BACI scores
alike. A peak is de�ned as an observation above the upper quartile. A post-intervention peak
might �ag failure to target big driver(s) of deforestation, but could also have natural causes. A
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Table 2.3: Evaluating BA and BACI score robustness to peak year in�uence

BA approach BACI approach

excluding peak year excluding peak year
good neutral poor good neutral poor

good 1 3 0 good 3 1 1
neutral 0 4 1 neutral 1 5 1

M
es
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l
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al
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e

poor 0 1 6 or
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al
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e

poor 0 2 2
excluding peak year excluding peak year
good neutral poor good neutral poor

good 5 1 0 good 8 1 0
neutral 0 1 0 neutral 0 2 1

M
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e

poor 0 2 4 or
ig
in
al

sc
or
e

poor 0 0 1
Bold numbers indicate highly sensitive cases where the particular score shifts from one extreme
category (good or poor) to the opposite. Grey numbers indicate robust scores that are not in�uenced
by the peak year.

peak in the control area in the before period and a peak in the intervention area in the after
period (and vice versa) can cancel each other out when having the same magnitude. Only
seven meso-level cases and three micro-level cases showed no peaks in the intervention or
control areas in the period 2001-2014. We checked the robustness of the BA and BACI scores
by recalculating the scores without peak years and recorded the shifts from one category (good
or poor) to the opposite (table 2.3, in bold). The majority of the scores do not shift categories
(grey numbers). In one case (meso level, BACI approach), the performance score would change
from good to poor if the peak years were excluded from the analysis.

Control area outperforms intervention area
Using the BACI method, good REDD+ performance can only be achieved if deforestation is
reduced more in the intervention than in the control area(s). One meso-level (�gure 2.6) and one
micro-level case show good BA scores, but poor BACI scores, because control areas improved
even more. In those cases, the slowdown in deforestation might have occurred even without
the REDD+ intervention (e.g. due to commodity prices or national policies).

Clear comparative performance scores
Clear comparative performance is de�ned as a score where we found no bias in the before
period; no low absolute annual deforestation (median); and where the presence of peak years
–if any– did not determine the category of the score. We found three meso level cases, three
micro level cases and three sites at both levels with clear comparative performance scores (BA
and BACI).

For these clear meso level scores, there were two with good, two with neutral, and two with
poor BACI scores. In one site, deforestation increased in its corresponding control area, while
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Figure 2.6: Annual deforestation rates (%) in the before and after period for the intervention (a) and
control (b) areas for one initiative in Brazil, where n is the number of years per period. Upper and
lower extremes of whiskers represent Q3+1.5*IQR and Q1–1.5*IQR respectively, where IQR=Q3-Q1.

deforestation decreased in the intervention area, yielding a good BACI score. One other site had
poor BA, but good BACI scores, meaning that deforestation increased during the intervention
phase, but less so than in control areas. Yet, arguably, it may be di�cult to celebrate this latter
case as a victory, since there was still more deforestation in the intervention area in the after
period than before the REDD+ initiative started.

For the clear micro level scores, there were four with good, and two with poor BACI scores. At
one site, deforestation decreased in the intervention area, while it increased in the control site,
yielding a good BACI score. At another site, deforestation also decreased in the intervention
area, while there was a less substantial decrease in the control area, resulting in another good
BACI score. The other two good BACI scores represent cases where there was an increase of
deforestation in the intervention areas, but less so than in the control areas. The two poor
BACI scores represent cases of outperforming control areas similar to those explained in the
previous section. That is, one denotes a case where deforestation increased in the intervention
areas, while deforestation in the respective control areas increased less. The other is a site
where deforestation decreased in the intervention villages (good BA score), but the decrease in
the control villages was even stronger.

2.4 Discussion
We applied BA and BACI approaches at meso and micro levels to assess subnational-level
REDD+ performance. Both approaches and levels of measurement have advantages and
disadvantages for e�ectiveness assessment (table 2.4). While the BA approach only considers
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trend shifts in local deforestation as an indicator for REDD+ performance, the BACI approach
adds comparative performance in control areas. In principle, the BACI approach thus enables
us to control for changes in deforestation that are unrelated to REDD+ interventions. Where
BA measures the direction of change, BACI intends to measure attributive change. This
approach, however, requires careful ex ante control site matching and selection. The high
sensitivity of the results to matching procedures is clear from our results. At seven sites in the
meso-level analysis, the jurisdiction used as the control area for the initiative had a signi�cantly
di�erent pre-intervention deforestation rate compared with the initiative. Although meso-level
assessment puts forest changes observed in the initiative area in a wider context, selecting
a suitable control area (i.e. districts, region, or country) is not straightforward, since ideally
these control areas should be subject to all of the same time-varying factors as the intervention
areas.

Table 2.4: Main advantages (+) and disadvantages (-) of BA versus BACI assessment approaches, and
of using meso versus micro aggregation levels.

Assessment method

BA approach BACI approach
+ relatively simple and objective to

implement
- susceptible to external factors of
in�uence, i.e. changes in deforestation
could wrongfully be attributed to the
intervention

+ able to discern additionality attributable
to the intervention

- requires careful ex ante control site
selection and matching

- high sensitivity of results to matching
method

Aggregation level

Meso level Micro level

+ helps understanding trends within
context

+ may indicate cases of leakage (but
further analysis is then still required)

- de�ning control areas may be more
di�cult

+ allows more precise comparison between
intervention-targeted and non-targeted
units

- the notion of village is not universal, and
delineating boundaries may be subjective

- small changes may obscure “bigger
picture”

- sensitive to extreme events or single
drivers

Assessing performance at the micro level allows for more precise comparison between targeted
and non-targeted villages. Yet, as the notion of village is not universal, delineating village
boundaries can turn out to be a subjective process, and small (absolute) forest changes at the
village level may wrongfully be interpreted as equivalent to large (absolute) forest changes
at higher levels. Moreover, matching intervention and control villages is challenging. At two
sites, in our micro-level analysis, baseline deforestation rates in the intervention villages and
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their control areas were signi�cantly di�erent, which resulted in uninformative BACI scores.
For the village matching in GCS-REDD+, our matched samples of intervention and control
villages had statistically similar means across a range of characteristics as later measured in a
village survey (Sills et al., 2017). Still, the percent forest cover variable used in the matching
was based on reported and not observed values, because global comparative satellite data for
all sites was not available when the initial matching was performed in 2010. This choice clearly
had implications for outcomes subsequently measured through the use of spatial data. Due
to recent developments in the remote sensing domain, ex ante village matching could now
be based on annual tree cover loss data from satellite data instead of reported forest cover
loss from cost- and labour-intensive �eld studies. Although the BACI approach has strong
analytical advantages, the sensitivity of results to control selection cannot be overstated.

Independent of approach, we found slightly better performance at the micro level compared to
the meso level, possibly re�ecting both a higher local treatment intensity, and more occurrence
of confounding factors at higher scales, as well as leakage (relocated deforestation activities)
from the intervention to control areas. Still, only four sites7 had both a good BACI score and
were not in�uenced by factors like control area bias, low absolute deforestation and peak
years.

The overall underwhelming performance of the studied initiatives could be due to a host of
factors. First, performance scores are highly sensitive to cases with a late start year, and
one could question how much REDD+ impact is reasonable to expect in the early years of
initiative implementation. That is, multiple sites only had a couple of years of after observation.
Furthermore, funding has been a major constraint for REDD+, meaning that interventions
may not have been rolled out in the intensity originally planned (Sunderlin et al., 2015). Short
time spans combined with limited funding would naturally lead to less e�ective ‘treatment’,
which may explain underperformance. Second, we did not consider forest degradation, which
contributes to forest-based emissions considerably (Lambin et al., 2003; Putz et al., 2008; Nepstad
et al., 1999) and is the focus of REDD+ interventions at many sites (e.g. improved cooking stoves
in Tanzania, sustainable forest management in Peru (Sills et al., 2014)). While removals due to
selective logging, undergrowth �res and fuelwood collection cannot yet be clearly detected
by remote sensing based methods (Wertz-Kanounniko� et al., 2008), substantial progress has
been made in recent years for measuring areas a�ected by forest degradation (De Sy et al.,
2012; GOFC-GOLD, 2016). The dataset used in this study is unable to identify (reductions in)
forest degradation, so any success regarding the second “D” of REDD+ would have been missed
here. Third, we only considered change in forest loss as proxy for the carbon impact of REDD+
and did not include forest gain, i.e. carbon stock enhancements that are integral to REDD+.
Indeed, at several sites in the sample, restoration activities are a key part of the overall REDD+
strategy, but would also need more time to become signi�cant and measurable. Finally, possibly
the REDD+ proponents did not always e�ectively target the main driver(s) of deforestation at
their sites, which may genuinely a�ect deforestation outcomes. For instance, most focus their
7Two sites at micro level, and two sites at both meso and micro level
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e�orts on smallholders, but sometimes these are not the main agents of deforestation, such as
in some sites in Brazil and Indonesia (appendix 5 of Sills et al., 2014; Sunderlin et al., 2015).
This prioritization of interventions targeting smallholders could also explain why we found
slightly better results at the village than at the site level. However, as a general caveat, both BA
and BACI methods work better with longer timeframes, and with before and after periods that
are approximately equal. Future analysis is thus needed to understand the longer-term impacts
of REDD+ at these sites and to better understand why impact varies across initiatives, taking
into account the variation in both treatment and context.

2.5 Conclusions
Much early REDD+ progress has been through the implementation of subnational initiatives,
yet we know very little about their carbon e�ectiveness. In this paper, we compared two
approaches for assessing the e�ectiveness of 23 REDD+ initiatives in six countries through:
(1) analysing trend development (BA approach); and (2) including control areas to correct for
confounding factors (BACI approach).

We conclude that the more local the scale of performance assessment, the more relevant is the
use of the BACI approach. Although BA is a good starting point for assessment, it is not able
to distinguish between the REDD+ e�ect and confounding factors. BACI allows getting closer
to attribution by removing the confounding in�uence of background dynamics, yet the results
are only as good as the choice of control areas. While this remains a key challenge, new global
forest datasets allow for improved control area matching and selection.

Nevertheless, there may be local situations where a BA approach, with its focus on the direction
of change, is useful. For instance, in cases where BA scores �ag poor and BACI scores good
performance, due to increases in deforestation being higher in control areas than in intervention
areas, the BA score makes clear that deforestation is still increasing, just less rapidly than
would have occurred in the absence of REDD+. The poor BA score �ags that the goal to reduce
deforestation has become more distant (change has overall gone into the wrong direction); the
good BACI score re�ects that under a “no intervention” counterfactual things would have been
even worse (positive attribution). Conversely, in situations of generalized positive changes,
BA scores alone risk painting a rosier picture than what could reasonably be attributed to the
REDD+ intervention.

The BA and BACI assessment approaches used in our research both highlight overall
minimal impact of REDD+ in reducing deforestation thus far. This could be due to the slow
implementation of REDD+ interventions and low treatment density; proponents focussing
primarily on smallholders instead of other important drivers; and/or our analytical focus on
deforestation only, without examining degradation or reforestation. Furthermore, we did not
examine speci�c REDD+ intervention mixes and strategies applied at di�erent sites. To better
understand what works (or not) in which contexts, linking the performance assessment results
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to the (types of) interventions would be an important next step. Results-based payments for
REDD+ will use conventional reference level approaches at the national level, yet there is
clearly a need to understand the carbon e�ectiveness of local REDD+ interventions. Indications
of which combinations of intervention mixes have shown to be more or less e�ective under
variable contextual circumstances may provide valuable pointers for selective upscaling options
to national REDD+ policies. Countries should seek ways to incorporate results from local level
monitoring into their national reporting systems, since overall REDD+ impact depends on land
use decisions on the ground.
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Abstract
Assessing the performance of e�orts to reduce emissions from deforestation and forest
degradation (REDD+) requires data on forest cover change. Innovations in remote sensing and
forest monitoring provide ever-increasing levels of coverage, spatial and temporal detail, and
accuracy. More global products and advanced open-source algorithms are becoming available.
Still, these datasets and tools are not always consistent or complementary, and their suitability
for local REDD+ performance assessments remains unclear. These assessments should, ideally,
be free of any confounding factors, but performance estimates are a�ected by data uncertainties
in unknown ways. Here, we analyse (1) di�erences in accuracy between datasets of forest cover
change; (2) if and how combinations of datasets can increase accuracy; and we demonstrate (3)
the e�ect of (not) doing accuracy assessments for REDD+ performance measurements.

Our study covers �ve local REDD+ initiatives in four countries across the tropics. We compared
accuracies of a readily available global forest cover change dataset and a locally modi�able
open-source break detection algorithm. We applied human interpretation validation tools using
Landsat Time Series data and high-resolution optical imagery. Next, we assessed whether and
how combining di�erent datasets can increase accuracies using several combination strategies.
Finally, we demonstrated the consequences of using the input datasets for REDD+ performance
assessments with and without considering their accuracies and uncertainties.

Estimating the amount of deforestation using validation samples could substantially reduce
uncertainty in REDD+ performance assessments. We found that the accuracies of the various
data sources di�er at site level, although on average neither one of the input products
consistently excelled in accuracy. Using a combination of both products as strati�cation
for area estimation and validated with a sample of high-resolution data seems promising. In
these combined products, the expected trade-o�s in accuracies across change classes (before,
after, no change) and across accuracy types (user’s and producer’s accuracy) were negligible,
so their use is advantageous over single-source datasets. More locally calibrated wall-to-wall
products should be developed to make them more useful and applicable for REDD+ purposes.
The direction and degree of REDD+ performance remained statistically uncertain, as con�dence
intervals were overlapping in most cases for the deforestation estimates before and after the
start of the REDD+ interventions. Given these uncertainties and inaccuracies and to increase
the credibility of REDD+ it is advised to (1) be conservative in REDD+ accounting, and (2) not to
rely on results from single currently available global data sources or tools without sample-based
validation if results-based payments are intended to be made on this basis.
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3.1 Introduction
Under the UNFCCC, REDD+ has been initiated as an important climate change mitigation
strategy. Hundreds of government and non-government led REDD+ programs and projects
have emerged at the subnational and local level over the past decade (Simonet et al., 2015). In
order to track the performance of these initiatives, implementers must create or leverage MRV
schemes for carbon stocks and carbon emissions. One approach to calculate carbon emissions
is by multiplying the activity data in a given area by an emission factor (Verchot et al., 2012;
IPCC, 2006a). Activity data is the area of land changed from forest into another type of land
use.

The estimation of activity data evolved rapidly through innovations in remote sensing and
forest monitoring, with algorithms and datasets with ever increasing levels of coverage, spatial
and temporal detail, and accuracy. However, these datasets do not necessarily agree with each
other, and more transparency and better cooperation between the science and policy domain is
required to measure –and realize– the mitigation potential of REDD+ activities (Grassi et al.,
2017). Estimates can di�er due to many factors, including misalignment of reference levels
and time periods, forest and deforestation de�nitions used, and (remote sensing) data sources
used for a map product (e.g. di�erent satellite data) (Melo et al., 2018). Although the resulting
di�erences in estimates are expectable and understandable, the ambiguity leaves room for
political manoeuvring around the data (Wong et al., 2016) which threatens accountability. On
the positive side, it is becoming more common practice to systematically report map product’s
accuracies and uncertainties (e.g. Olofsson et al., 2013, 2014; Stehman, 2014), increasing both
transparency and product comparability. To this end, a reference classi�cation is needed.
Accuracy is de�ned as the degree to which the produced map agrees with this reference
classi�cation (Olofsson et al., 2013), which generally requires a sample-based validation. The
uncertainty of the corresponding area estimates of, in this case, deforestation, is then expressed
by the variance, standard error, or con�dence intervals (CIs) of these estimates. One could
account for these uncertainties in the input data by being conservative about the subsequent
REDD+ estimates, so as to prevent overestimation of the reduced emissions (Grassi et al.,
2008).

Locally calibrated products are often favoured over global products, as this can considerably
reduce the sample size for validation purposes (GFOI, 2016). Still, some widely used regional
forest change datasets are found to be inaccurate by underestimating forest loss (Milodowski
et al., 2017). Also, trade-o�s exist between accuracy, local adjustability, and sample size needed
on the one hand, and ease of use, processing time, knowledge and skills required on the other
(Duchelle et al., 2015). While at the national level, in recent years the capacities of countries
are increasing (Romijn et al., 2015), for local and subnational REDD+ initiatives it is often
di�cult and impractical to gain su�cient capacities and resources to perform proper area
estimations. Here, the availability of open-source products provides an attractive opportunity.
It remains understudied however, to what extent these readily available datasets and tools can
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contribute to challenges in the environmental domain and to REDD+ performance assessments
in particular.

For local forest cover loss measurements, it is of vital importance to understand the di�erences
in accuracies of forest cover loss maps derived from di�erent products and tools. This supports
the choice to use either more complex, time-consuming, but locally adaptable tools that provide
the required high accuracies, or to opt for a readily available product with global coverage
which might su�ce in certain cases. In addition, accuracy assessment of combinations of
products and tools can reveal their complementarities and show how uncertainties can be
minimized while maximizing accuracies. In other words, in terms of increased accuracy and
decreased uncertainty, a combined product may be better than the sum of its parts. An earlier
study has focused on a comparison of available datasets in terms of in accuracy and uncertainty
in one country (Melo et al., 2018), while others have studied the di�erences across several
tropical countries (e.g. Turubanova et al., 2018). To the best of our knowledge, this is the �rst
e�ort however, to compare di�erent products at di�erent (subnational) sites across the tropics,
while exploring the potential and added value of combining those products.

Datasets used for REDD+ performance assessments should, ideally, be free of any confounding
factors, but it is currently unclear how performance estimates are a�ected by data uncertainties.
Hence, a systematic accuracy assessment is necessary to compare accuracies in various map
products and to gain insight in the remaining uncertainty in deforestation area estimates.
Furthermore, it remains understudied whether and how map products could complement each
other and to what extent they are suitable for measuring the performance of REDD+. Therefore,
the objectives of this study are to analyse if and how combinations of datasets can increase
accuracy, and to understand how di�erences in accuracy between forest cover change datasets
and its corresponding uncertainty in�uence REDD+ performance assessments. We de�ned the
following research questions:

1. How do forest cover loss datasets di�er in terms of accuracy?

2. What is the complementarity of these forest cover loss datasets in increasing accuracy?

3. How do map accuracy and area estimate uncertainty in�uence REDD+ performance
assessment?

3.2 Material and methods

3.2.1 Study area

We use data from �ve local REDD+ initiatives located in four countries across the tropics (table
3.1). These initiatives are part of the Global Comparative Study on REDD+ (CIFOR, 2017) and
were selected to represent a wide range of intervention types ((dis)incentives and enabling
measures), implementer types (government, non-governmental organization, private sector),
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and geographies across the tropics. Furthermore, they vary in terms of size and environmental
context, namely from dense primary rainforest to dry miombo woodlands (Sills et al., 2014).
Data availability constraints a�ected the selection procedure, as the availability of both map
products (section 3.2.3) was a prerequisite for this study.

Table 3.1: Site characteristics

National forest de�nition1

Site
(Approx.) size

(ha) of AOI2
Main
ecozone(s)3

REDD+
start year

Tree cover
(%)

MMU4

(ha)

Peru 1,100,000 Tropical rainforest 2009 30 0.09
Tanzania 200,000 Tropical dry forest/

tropical shrubland
2010 10 0.50

Vietnam 800,000 Tropical rainforest/
tropical moist
deciduous forest

2009 10 0.50

Indonesia-A 2,000,000 Tropical rainforest 2008 30 0.25
Indonesia-B 3,600,000 Tropical rainforest 2009 30 0.25
1 Based on most recent submissions to UNFCCC (2019).
2 Area of interest
3 Source: FAO
4 Minimum mapping unit.

3.2.2 Summary of workflow

The work�ow and processing steps (�gure 3.1) were repeated for each study site. We compared
the accuracy of a tree cover change dataset, i.e. GFC, and a map developed using an open-source
algorithm to detect forest cover change, i.e. Breaks For Additive Season and Trend (BFAST).
For each study site and based on national forest de�nitions, we used the same forest mask
using tree cover (TC) percentage and an area sieve using the minimum mapping unit (MMU)
(table 3.1). We thus compared di�erences in change detection between the two input products,
rather than di�erences in forest de�nitions applied. We considered three classes: before, after
and no change. The transition between before and after is de�ned by the start year of each
studied initiative. We combined the two products using di�erent reclassi�cation strategies,
which led to a set of new combined change map products. We applied a strati�ed random
sample on the change map and validated the original products and reclassi�ed products using
a set of visual tools. Accuracies were calculated using these validation samples, as well as the
di�erences in accuracies relative to the two input map products. The uncertainty in the area
estimates was expressed using the 95% and 50% CIs of those estimates. We compared the map
estimates and reference-based area estimates. Finally, we assessed the in�uence of uncertainty
in the area estimates and their trends on REDD+ performance measurements. All analytical
steps are discussed in more detail below.
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3.2.3 Input data

For the �rst map product, we used Global Forest Change (GFC) data (version 1.3), a
Landsat-based time-series dataset of tree cover density in 2000 and annual tree cover loss
for 2001-2015 (Hansen et al., 2013). The GFC product provides yearly forest cover loss data
with global coverage. Together with baseline data on forest cover in 2000, users can relatively
easily examine deforestation patterns using their own forest de�nitions. Data analysis using
the Global Forest Watch tools does not require expert GIS knowledge. The other product
is based on the BFAST algorithm (Verbesselt et al., 2010, 2012; DeVries et al., 2015), which
requires a time series of local input data (here, Normalized Di�erence Vegetation Index (NDVI)
and Normalized Di�erence Moisture Index (NDMI) based on Landsat satellite data). With
this adaptable open-source deforestation detection algorithm, users can analyse deforestation
patterns in their own time series data in, for example, a cloud processing environment. It is
usually applied to smaller areas, as processing time increases with longer time series and larger
area spans. Some degree of remote sensing knowledge and coding skills are necessary to apply
the algorithm on the time series. The algorithm is highly �exible and can be adapted to the
local (environmental) context and user needs. The user can calibrate the model by adjusting the
parameters to the local context, resulting in change rasters with interannual precision. Both
products allow the user to create forest cover change products with a temporal resolution of
one year or shorter, and a spatial resolution of 30m. The main di�erences between the two
products regard their �exibility, coverage, and ease-of-use (table 3.2).

Table 3.2: Comparison of GFC and BFAST products (with information from Hansen et al. (2013);
Verbesselt et al. (2012); Gross et al. (2017)).

GFC BFAST

Type 2000 tree cover; loss; gain;
and loss year raster products

Change detection algorithm

Sensor Landsat ETM+ Depends on user input, here: Landsat ETM+
Spatial resolution 30m Depends on user input, here: 30m

Temporal resolution Year Julian day, limited by user input and
cloud coverage

Spatial coverage Global Site based; ’case studies’
Algorithm Bagged decision tree model Additive season and trend model

Advantages Global coverage; easy to use;
end product freely available

Locally modi�able; open source

Disadvantages Algorithm not �exible;
not near-real time

Requires user’s input data;
requires expert knowledge;
computationally intensive

Source http://earthenginepartners.appspot.com/
science-2013-global-forest

http://bfast.r-forge.r-project.org/

Reference Hansen et al. (2013) Verbesselt et al. (2012)
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3.2.4 Pre-processing

We aligned our forest de�nitions with the corresponding countries’ de�nitions1. These generally
consist of a tree cover or crown percentage at the baseline year and a MMU (table 3.1). GFC’s
tree cover density layer for the year 2000 (TC2000) allowed us to create forest masks based on
the nationally de�ned tree cover percentage thresholds. Next, we applied area sieves following
the countries’ de�ned MMU and applied these forest masks to both input products. We de�ned
deforestation as a change from forested land (using the forest mask) to land that has been clear
cut (i.e. bare soil)2. In addition to aligning forest and deforestation de�nitions, we needed to
temporally align the data for the products to represent the same time periods (table 3.3). We
then aggregated the change products into three classes, representing (1) the period before the
REDD+ interventions started, (2) the period after the interventions started, and (3) no change
(i.e. stable forest). All other pixels, (i.e. non-forest; forest cover change in other years etc.) were
excluded from further analyses.

Table 3.3: Temporal alignment of change products per study site.

Site
Time frame
GFC

Time frame
BFAST

REDD+
start year

Aligned
before period

Aligned
after period

Peru 2001-2015 1999-2014 2009 2001-2008 2009-2014
Tanzania 2001-2015 2005-2015 2010 2005-2009 2010-2015
Vietnam 2001-2015 2005-2014 2009 2005-2008 2009-2014
Indonesia-A 2001-2015 2001-2014 2008 2001-2007 2008-2014
Indonesia-B 2001-2015 2001-2015 2009 2001-2008 2009-2015

3.2.5 Reclassification of change products

Since these datasets generally have their own strengths and weaknesses (table 3.2), we assessed
whether joint products can lead to an accuracy increase. Therefore, we combined the two
products at pixel level using �ve di�erent reclassi�cation strategies. The �rst four strategies
are de�ned by di�erences in sensitivity to change and in timing of change detection (�gure
3.2), based on the following decision rules:

I Sensitive early – Adopt value of change product that detects a disturbance the earliest,
regardless of the other change product’s detection;

II Sensitive late – Adopt value of change product that detects a disturbance the latest,
regardless of the other change product’s detection;

1Following the submissions to the UNFCCC’s REDD+ platform (UNFCCC, 2019)
2Sometimes land use change from (natural) forest to forest plantation is considered degradation or even
enhancement of carbon stock (e.g. in Vietnam’s REDD+ Forest reference level (FRL) submission to the UNFCCC,
2016), but here it is considered deforestation, since at –at least- one point in time the forest was cleared which
leads to a re�ectance of bare soil.
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III Conservative early – If any of the change products classi�es the pixel as no change, then
the decision for the reclassi�ed product is no change. If both products detect change,
trust the earliest detection;

IV Conservative late – If any of the change products classi�es the pixel as no change, then
the decision for the reclassi�ed product is no change. If both products detect change,
trust the latest detection.

A �fth strategy was added to represent a case in which the timing of change detection is
irrelevant. Here, the two individual products were aggregated into two binary change-no
change rasters, disregarding the year or corresponding period of change detection. Details are
visualized in appendix B.1.
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Figure 3.2: Rationale behind reclassi�cation strategies

Table 3.4 shows the reclassi�cation strata for each strategy, which formed the input for the
strati�ed sampling (see next section). For each site, the �ve reclassi�cation strategies resulted
in six extra change maps, that is, four combined and two ‘timeless’ raster datasets, which
were added to the accuracy assessment for comparison with the original GFC and BFAST
products.

3.2.6 Validation

Sample size is important when designing validation schemes for comparative purposes (Foody,
2009). Although our individual aggregated change raster datasets consisted of three classes
(change before, change after and no change), for simpli�cation in the sampling design we
considered them as having a binomial distribution (either change or no change) and used an
alpha of 0.10, planned proportion estimate of 0.5 (i.e. conservative), and 0.05 margin of error
leading to a sample size of 270 pixels per site (Foody, 2009; Cochran, 1977). We overlaid the
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Table 3.4: Strata and classi�cation values of di�erent reclassi�cation strategies

Combination strategies Timeless strategies

I II III IV V

GFC BFAST
Validation
stratum

sensitive -
early

sensitive -
late

conservative -
early

conservative -
late

timeless-
GFC

timeless-
BFAST

before before 1 before before before before change change
after before 3 before after before after change change
no change before 4 before before no change no change no change change
before after 3 before after before after change change
after after 2 after after after after change change
no change after 5 after after no change no change no change change
before no change 4 before before no change no change change no change
after no change 5 after after no change no change change no change
no change no change 6 no change no change no change no change no change no change

two input change products with each three classes, resulting in nine possible combination
values. These nine classes were aggregated into six strata (table 3.4). At each site, the 270 pixels
were randomly selected across the strata, which led to 45 sample pixels per stratum (�gure
3.3).

A validation survey was developed using Open Foris Collect (Open Foris, 2019). The survey
and samples were loaded into Google Earth via CollectEarth and simultaneously visualised in
R using the TimeSync package (Cohen et al., 2010). Each sample was visually checked through
multiple available historical images within Google Earth (if any), the most recent Bing Maps
image, the most recent image via Google Earth Engine, and false colour yearly composites
of Landsat data within Google Earth Engine. Within R, a time series of RGB and false colour
(Near-infrared (NIR), short-wave infrared (SWIR)1, red) snapshots were created with TimeSync.
Together this allowed us to determine (1) whether there was any disturbance and, (2) if so, to
�nd the timeliest disturbance date. In case of multiple disturbances within the time series, the
�rst disturbance was recorded.

3.2.7 Accuracy assessment

After completing the validation survey, the visual judgements from the validation survey were
compared with the �ndings from the GFC, BFAST and reclassi�ed products. A map pixel was
considered correct if both the status (change or no change) and time period (before or after)
matched the visual judgement. Accuracies of the map products and the class area proportions
were estimated while taking into account the inclusion probability of the samples per site.
Since the sampling strati�cation was a combination of GFC and BFAST results, we followed
the approaches detailed in Stehman (2014) which addresses estimating map accuracies and
class areas when the sampling strata are di�erent from the map classes. CIs of the estimation
also followed the same method (Stehman, 2014; Cochran, 1977). For the remainder of this
article, with ‘map-based area estimates’ we refer to area estimations directly calculated from
the maps, whereas ‘reference-based area estimates’ refers to the areas as derived from the class
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Figure 3.3: Study sites with validation samples and areas of agreement and con�ict between the two
input map products.
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area proportions coming from the sample-based validation using reference data. Next, the
di�erences in overall, producer’s (inversely linked to errors of omission) and user’s (inversely
linked to errors of commission) accuracies were assessed by calculating the relative accuracy
changes, which give insight in which reclassi�cation strategy provides the largest increase in
accuracy compared to the original input products. Relative accuracy change was calculated as
follows:

RA(x) =
(Ax − Ay)

Ay

(3.1)

Where x is the alternative map product, y is the original map product (either GFC or BFAST),
and A is the corresponding accuracy (overall, producer’s or user’s accuracy).

3.2.8 Performance assessment

In this study, we simplify REDD+ performance by referring to the direction in deforestation
trend over time, hence good REDD+ performance corresponds to reduced average annual
deforestation. We compared the trends in average annual deforestation from before and after
the start of the REDD+ intervention (Bos et al., 2017). The impact of ignoring data accuracy in
REDD+ performance assessments was assessed by comparing the average annual deforestation
per period for the map estimates and reference-based area estimates.

Trends and uncertainties were assessed in two ways. First, they were visually assessed by
focusing on the overlap of the CIs of the deforestation estimates in the before and after period.
Presence of such overlap would mean that direction and magnitude of REDD+ performance
remains uncertain. Absence of such overlap would reveal the direction of deforestation trend
and its magnitude with more certainty. In addition to the commonly used 95% CI, we applied a
50% CI. This means one accepts a 25% probability of overestimating the ‘true’ REDD+ value in
the monitoring period, which is similar to the adjustment procedure under Article 5.2 of the
Kyoto Protocol (UNFCCC, 2006; as cited in Grassi et al., 2008). Second, the trend uncertainty
was calculated using the (joint) variances and CI of the trend itself (GOFC-GOLD, 2016).

The conservativeness principle (Grassi et al., 2008) was applied to a case with a decreasing
trend, to examine the in�uence of di�erent conservativeness standards on the �nal REDD+
estimate.

3.3 Results

3.3.1 Annual deforestation rates

Figure 3.4 shows an overview of the annual deforestation rates for both GFC and BFAST input
products at each site before the accuracy was assessed and thus before the area estimates of
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deforestation using the reference data were calculated. Both products show overall higher
annual deforestation rates in the Southeast Asian sites compared to the sites in Peru and
Tanzania. The deforestation trends appear similar when comparing the two products at all
sites. However, deforestation estimates in individual years di�ered considerably, especially
so in Vietnam (2005) and Indonesia (2006 and 2007), which might indicate di�erences in
timeliness of deforestation detection. In terms of REDD+ performance, these results reveal
some ambiguity of the deforestation trends. In Peru, the GFC showed slightly increasing
deforestation while according to BFAST deforestation was generally going down since the
start of the REDD+ initiative. The site in Tanzania showed no clear performance while the
steep drop in deforestation in site Indonesia-B after 2007 might indicate positive REDD+
performance.
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Figure 3.4: Site-based comparison of annual deforestation rates. Rates represent the deforestation
detected by the input products as percentage of forest cover in 2000. Note that the x and y-scales
di�er per site. The vertical dotted line represents the start year of the REDD+ intervention(s) in the
corresponding site and thus the transition from the before to after period.

3.3.2 Accuracy

Overall, user’s and producer’s accuracy
For all original and reclassi�ed map products, the error matrices were calculated based on the
comparison between the map class (change before, change after, no change) and the visually
assigned class using the reference data. Figure 3.5 shows the overall accuracies (OAs), user’s
accuracies (UAs) and producer’s accuracies (PAs) stemming from these error matrices.

While the OAs for all products were high, this result primarily stems from correctly detected
no change areas (stable forest cover) which spans the majority of the areas studied. The UAs
and PAs, and their corresponding errors of commission and omission respectively, were more
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informative for change related classes. In general, the lower PAs indicate that all products
underestimate deforestation. When comparing the two input products, BFAST shows on
average slightly higher accuracies (OA, UA and PA) compared to the GFC product. We found a
general tendency of lower variation in accuracies of BFAST as compared to GFC across the
sites.

However, whether GFC or BFAST performed better in terms of accuracy di�ers per study site
(appendix B.2). In the Peruvian site, the GFC and BFAST accuracies were quite similar, although
there were some notable di�erences in PA. The Tanzanian site was characterized by low
accuracies in general, but BFAST seemed to perform better at distinguishing real deforestation
impacts from seasonal e�ects, hence the di�erence in UA between the two products. In both
Indonesian sites the PA of BFAST in the after class was lower compared to GFC, indicating that
the most recent changes are not well detected by BFAST. In the Vietnamese site, this was the
opposite, as the PA of BFAST outperformed GFC in the after class.
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Figure 3.5: Overall (OA), user’s (UA) and producer’s (PA) accuracies of GFC and BFAST products.
All classes (i.e. change before, change after, and no change) are included. Upper and lower extremes
of whiskers represent Q3 + 1.5∗interquartile range (IQR) and Q1− 1.5 ∗ IQR respectively, where
IQR = Q3−Q1.

Relative accuracy change
Comparing accuracies of the original map products and the reclassi�ed map products based
on the �ve strategies (section 3.2.5), in four out of �ve sites3 combining input maps following
a sensitive-early strategy led to signi�cantly higher accuracies compared to the original map
products alone (�gure 3.6, appendices B.3 and B.4). Still, in the Tanzanian site, none of the
reclassi�cation strategies led to higher accuracies4 compared to (one of the) individual datasets,
due to the poor performance of the GFC product in this study area.
3With the Tanzanian site being the exception.
4Increases in OA and PA in the change classes, with non to only slight (insigni�cant) decreases in UA, signi�cance
level 0.95 (appendix B.3).
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Figure 3.6: Relative change of the accuracies per alternative product. The �gure includes the
accuracies (only PA and UA) of the before and after change classes of all sites. Upper and lower
extremes of whiskers represent Q3 + 1.5∗interquartile range (IQR) and Q1− 1.5 ∗ IQR respectively,
where IQR = Q3−Q1.

3.3.3 REDD+ performance assessment

Revealing the deforestation trend
To assess the in�uence of the map products’ accuracies and area estimate uncertainties on
REDD+ performance assessments, we visualize the average annual deforestation (in ha) in
the before and after class (�gure 3.7). The results show that both the magnitude and trend
of deforestation delineated from the map products di�ered greatly from reference-based area
estimates. In Peru, Tanzania and Vietnam, the map-based deforestation estimates of the
reclassi�ed map product are closer to the reference-based estimates than those of the two
original products. In addition, in four out of �ve cases5 the reclassi�ed product reveals the
same deforestation trend as the reference-based area estimates, although the magnitude of
change di�ered (table 3.5). This re�ects the added value of using a combined product over a
single product, although accuracy assessment thus remains necessary. As table 3.5 shows, in
three out of �ve sites the direction of the deforestation trend according to the best reclassi�ed
product was di�erent from at least one of the individual products, which would have had
major implications if results-based payments would be based on a single product alone and
disregarding the product’s map accuracies and estimate uncertainties.

The majority of the map-based estimates (both the two input products and reclassi�ed product)
fell outside the 95% CI of the reference-based area estimates of both change classes, which
a�rms the importance of doing a (sample-based) validation of the map products. At the
Indonesia-B site, the accuracy assessment elucidated the direction of performance considerably,
as the 95%CIs around the reference-based area estimates are relatively small. Here, the average
5Indonesia-A being the exception, here the area estimates showed a slight decrease, while the I-sensitive early
product showed a slight increase.



3

58 Accuracy, uncertainty, complementarity & impact of forest change datasets

Original map estimates
(before validation)

GFC

BFAST

I − Sensitive early

Confidence level
50%

95%

Decreasing trend

Ambiguous trend

Degree of (un)certainty
in deforestation trend

0

5000

10000

before after

REDD+ intervention period

A
ve

ra
ge

 a
n

nu
al

 d
ef

or
es

ta
tio

n 
(h

a)

Peru

0

1000

2000

3000

4000

5000

before after

REDD+ intervention period
A

ve
ra

ge
 a

n
nu

al
 d

ef
or

es
ta

tio
n 

(h
a)

Tanzania

0

5000

10000

15000

20000

25000

before after

REDD+ intervention period

A
ve

ra
ge

 a
n

nu
al

 d
ef

or
es

ta
tio

n 
(h

a)

Vietnam

0

10000

20000

30000

40000

before after

REDD+ intervention period

A
ve

ra
ge

 a
n

nu
al

 d
ef

or
es

ta
tio

n 
(h

a)

Indonesia-A

0

2000

4000

6000

before after

REDD+ intervention period
A

ve
ra

ge
 a

n
nu

al
 d

ef
or

es
ta

tio
n 

(h
a)

Indonesia-B

Figure 3.7: In�uence of accuracy assessment and area estimates’ uncertainty on REDD+ performance
measurements. The grey bars represent the average annual deforested areas (reference-based area
estimates), with 95% CIs. We corrected the CIs for di�erences in the number of years between the
before and after period, assuming variances to be equally distributed in time. The selection of best
performing reclassi�ed product is based on the highest relative accuracy change, excluding the two
V-timeless reclassi�ed products, leading to I-sensitive early for all sites. The pink shaded areas
represent the remaining degree of uncertainty, in which the direction of the deforestation trend
remains ambiguous after considering the accuracy assessment. There is no overlap in the CIs of Peru
(50%CI) and Indonesia-B (both 50%CI and 95%CI), hence the absence of a pink shaded area. The green
shaded areas in those sites represent the downwards trend in deforestation, without overlap of CIs.

annual deforestation decreased from the before to the after class, while the corresponding CIs
did not overlap, indicating a clear downwards trend in deforestation (green shaded area in
�gure 3.7, 3.5). At the site in Peru, both CIs in the before period are relatively large, but at a
50%CI a clear downwards trend in deforestation was found, as the CIs did not overlap. In all
other sites, uncertainty in the direction of performance remained, since the CIs of the before
and after period overlapped, as illustrated by the pink shaded area in �gure 3.7.

Uncertainty of the deforestation trend
In addition to the visual assessment of uncertainty of the trend, we quanti�ed the uncertainty of
the trend’s magnitude. Therefore, we estimated the trend uncertainty (two rightmost columns
of table 3.5), which is based on the joint variance of the twomonitoring periods, and is expressed
in percent points (GOFC-GOLD, 2016). As an example, in Vietnam the reference-based area
estimates revealed an average annual decrease in deforestation of 10% with a trend uncertainty
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Figure 3.8: Conservativeness principle applied to calculate the REDD+ estimates for Indonesia-B.
With approach A (left) one prevents overestimation of the reference estimates (before period) and
underestimation of the assessment period (after period). Estimates in approach B (right) are derived
from the uncertainty of the trend. Numbers next to curly brackets show the conservative REDD+
estimate (activity data only) in ha assessed at the 95%CI and 50%CI, and as percentages of the trend
from the reference-based area estimates (grey bar in B).

of ±13% points at the 50%CI. Thus, at this con�dence level an actual increase in deforestation
of 3% is one of the possibilities. In Indonesia-B, the absence of overlapping CIs revealed a
downwards trend. According to our area estimates this average annual decrease is 24% with a
trend uncertainty of ±12 and ±4% points at a 95% and 50%CI respectively.

Applying the conservativeness principle to the REDD+ estimate – a case study
As illustrated above, deforestation estimates are subject to uncertainty, which is why one
should be conservative when accounting for REDD+ in order to increase its credibility despite
those uncertainties (Grassi et al., 2008). In other words, one should take into account the data
uncertainties to prevent overestimation of the reduced emissions. Grassi et al. (2008) present
four approaches to account for data uncertainty using the conservativeness principle, of which
we apply two (A2 and B1 in Grassi et al. (2008), here referred to as A and B respectively) to our
deforestation estimates of Indonesia-B. As �gure 3.8 shows, both the approach and con�dence
level chosen have a great impact on the REDD+ estimate, with conservative estimates of reduced
annual deforestation ranging from 390 to 1082ha, or 7 to 20% respectively.

3.4 Discussion
Most likely any deforestation map contains classi�cation errors (Olofsson et al., 2013), and
deforestation area estimates from these maps would thus di�er from reality. We showed that a
systematic accuracy assessment is critically important to value the usefulness of wall-to-wall
forest cover change datasets for local REDD+ performance measurements. Distinguishing
between overall, user’s and producer’s accuracy allowed comparison of di�erent maps and
helped to understand to what extent a map is likely to over- or underestimate real deforestation.
The subsequent analysis of the variances and CIs showed to what extent the deforestation
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estimates remained uncertain. Furthermore, in this multi-site analysis, we assessed if, how
and where a combination of forest cover change datasets can help to increase the accuracy
and reduce the uncertainty of deforestation estimates for measuring the performance of local
REDD+ initiatives.

We found high overall accuracies but striking di�erences in user’s and producer’s accuracies
and area estimates, which is in line with �ndings from Melo et al. (2018) in Guinea-Bissau. In
our multi-site study however, large regional di�erences appeared in the degree of discrepancy
between the map products, with notable di�erences in the producer’s accuracies particularly.
Several recent changes were missed by BFAST leading to a lower PA in the after period,
while BFAST’s PA outperformed the GFC product in the �rst years of the monitoring period.
Combining forest cover change datasets using a sensitive-early strategy generally improved
accuracies and reduced uncertainties despite expected trade-o�s between di�erent types of
accuracies. That is, although a sensitive-early strategy led, as expected, in three of the sites to
slightly lower user’s accuracies in the change classes because of a small increase in commission
errors, the OAs and PAs increased more than the UAs deteriorated. Still, only in cases where
the individual datasets showed reasonable to good accuracies, combining datasets led to a map
product that was more accurate than the individual datasets, as low accuracies in one dataset
could not be compensated by high accuracies in the other.

We found di�erences in timeliness of deforestation detection between GFC and BFAST, although
these di�erences were not unidirectional across all sites. As stated in section 3.2.1, in the
Indonesian sites, the lower PA of BFAST indicates omission errors in the after class, while in
the Vietnamese site, BFAST appears to detect recent changes better than GFC does. Both GFC
and BFAST appeared to have issues with a timely detection of deforestation due to mining,
leading to errors of omission, while the visual validation with false-colour images showed
easily detectable changes. More research is needed to verify if there is a correlation between
the time series bands and corresponding vegetation and moisture indices, and their �tness to
detect mining.

With our strati�ed sampling design (section 3.2.4) there was less risk of overlooking missed
deforested pixels (i.e. missed omission errors), as con�icting pixels (in which change is detected
in one, but not in the other product) were included in the sample as a separate stratum. On the
downside, this might have led to an overestimation of omission errors due to the large area
weight of stable forest classes in strati�ed sampling. Although our error matrices accounted
for disproportional sampling of con�icting pixels, it is still likely that the producer’s accuracies
of both products were negatively in�uenced by this sampling design. At the same time, due
to our sampling design we may have missed some omission errors in the non-forest class, i.e.
pixels that were (erroneously) not included in the initial forest mask but in fact deforested.
We focus on the (in)correct classi�cation of change or no-change within the (initial) forest
however, rather than the initial classi�cation of forest or non-forest. We thus compared the
change products in itself, and not di�erences in (or the accuracy of) forest masks. As the
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reference-based area estimates are only based on the reference samples due to the applied
method (Stehman, 2014), the sampling design has a great in�uence on the results. Increasing
the sample size further would reduce the uncertainty in the area estimates.

We focused on the uncertainty in performance assessments as caused by the underlying forest
cover change dataset(s). Yet, uncertainty may come from more sources, including the precision
and in�uence of the REDD+ initiative start year. We aggregated the (sub)annual deforestation
detections into three classes, that is, change before REDD+, change after REDD+ started and no
change. This rather sudden, and mainly theoretical, transition from the before to after class
may have in�uenced our accuracies estimates. In practice, many local REDD+ initiatives are
continuations of earlier integrated conservation and development projects, so interventions
towards protecting local forests may predate the o�cial start dates (Sunderlin et al., 2015).
Since transitions in forests and forest use are often gradual processes too, this complicates
performance assessments even further. Longer time series might be needed to clearly show the
impact. Finally, all accuracies calculated are relative to the reference dataset, which is in this
case created through the visually validated samples. Errors in the classi�cation through visual
validation were limited by using multiple time series data sources (e.g. RapidEye, Landsat TM)
and multiple tools (i.e. TimeSync and CollectEarth).

It is important to note that for each site, a right-angled AOI was de�ned using the initiative’s
boundaries and a bu�er (�gure 3.3). Therefore, the AOIs included more than the ‘pure’
REDD+ intervention areas. Our objective was to explore the potential of combining activity
datasets for accuracy improvement, and to demonstrate the implications of ignoring data
uncertainties for performance measurements, rather than to calculate (change in) deforestation
and corresponding carbon emissions for individual sites or to assess actual performance of
speci�c initiatives. The results presented in section 3.3.3 should therefore not be used to assess
the performance of these REDD+ initiatives as such.

3.5 Conclusions
We analysed the di�erences in accuracy and uncertainty between two forest cover change
datasets for �ve sites and studied if and how combinations of datasets can increase accuracies
and reduce uncertainties in the context of local REDD+ performance assessments. We
demonstrated the use and usefulness of these global products to assess forest cover loss at local
level.

How do forest cover loss datasets di�er in terms of accuracy?
We found that accuracies di�er at site level, although on average neither GFC nor BFAST
excelled in accuracy. In the sites in Peru, Tanzania and Vietnam, BFAST performed better, while
in the Indonesian sites, GFC achieved higher accuracies. Both GFC and BFAST underestimated
deforestation, as re�ected by the lower producer’s accuracies and corresponding higher errors
of omission.
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What is the complementarity of these forest cover loss datasets in increasing accuracy?
Knowing the strengths and weaknesses of the individual products, we assessed their
complementarity by overlaying the two products using di�erent reclassi�cation strategies. The
strategy that led to the highest accuracy increases and uncertainty decreases di�ered per site.
In four out of �ve cases, a sensitive-early strategy led to higher accuracies compared to the
individual products. Only when both products’ individual accuracies were already reasonable
to good, a reclassi�cation strategy resulted in higher accuracies. Products with low accuracies
could not be ameliorated by any of our reclassi�cation strategies.

How do map accuracy and uncertainty in�uence REDD+ performance assessment?
We show the in�uence of input data accuracies and remaining uncertainties in annual
deforestation estimates on REDD+ performance assessment and demonstrate the importance
of accuracy assessment. As the overlap in CIs indicated, in three out of �ve sites some degree
of uncertainty in the deforestation trend remained, even after accuracy assessment. In one
site, the accuracy assessment revealed a clear downwards trend in deforestation. In one other
site, the (absence of a) clear downwards trend was dependent on the con�dence level chosen.
In three sites, the annual deforestation estimates of the reclassi�ed product were closer to
the reference-based estimates when compared to the estimates of GFC and BFAST. Still, these
map-based estimates were mostly outside the 95%CI of the reference-based estimates, thus
a�rming the persisting need for validation. But even reference-based estimates are subject
to uncertainty, thus leading to a need to be conservative in the accounting of corresponding
REDD+ estimates.

The growing availability of global, readily available datasets and tools is of vital importance
as local implementers’ monitoring capacities are often limited. Our comparative study shows
that consideration of and transparency about accuracies, (un)certainties and corresponding
(dis)abilities of datasets and tools, is of key importance if results-based payments are to be
based upon these performance measurements. Being conservative in REDD+ accounting could
allow for these uncertainties and thus increase the credibility of the REDD+ estimates. To
get insights in, and ultimately reduce, uncertainty, we showed that the value of sample-based
accuracy assessments cannot be overstated.

3.6 Acknowledgements
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Abstract
E�orts to reduce emissions from deforestation and forest degradation and enhancing forest
carbon stocks (REDD+) have evolved over the past decade. Early REDD+ programs and
local/subnational projects used various interventions (i.e. enabling measures, disincentives
and incentives), implemented by government, the commercial and non-commercial private
sector, but are currently understudied vis-à-vis their e�ectiveness to address site-speci�c
drivers of deforestation and forest degradation (DD). We assess how well REDD+ interventions
addressed DD at �ve project sites in Peru (1), Brazil (1), Vietnam (1) and Indonesia (2). Our
study design includes an integrated assessment of remotely sensed, spatially modelled, and
locally reported drivers. First, we observe follow-up land use from high resolution imagery
as proxy for direct deforestation drivers. Second, spatial Random Forest modelling of DD
drivers allows for in�uence quanti�cation of topographic, climatic and proximity variables at
each site. Third, we report direct and indirect DD drivers from pre-intervention surveys and
semi-structured interviews with �ve REDD+ implementers, 40 villages and 1200 households.
Data gathered included perceived changes in forest cover and quality, and their causes. We
found general agreement between observed, modelled and reported local DD drivers, yet some
were inadequately addressed by interventions. Intra-site di�erences in drivers underscores
the importance of analysing micro-level DD drivers. Our interdisciplinary approach reveals
the complexities of local direct and indirect DD drivers, and the complementarity of remotely
sensed, spatially modelled and locally reported methods for driver identi�cation. A better
understanding of the alignment between DD drivers and REDD+ interventions is vital for
practitioners and policy makers to enhance the e�ectiveness, e�ciency, equity and co-bene�ts
of REDD+ at the local level.
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4.1 Introduction
Deforestation and other land use changes contribute signi�cantly to carbon emissions (IPCC,
2006). E�orts to reduce emissions from deforestation and forest degradation and to enhance
carbon stocks (REDD+) were embedded in the Paris Agreement (UNFCCC, 2015). To design
e�ective policies, it is important to know: what land use change activities are happening; who
are the agents linked to these changes; and what underlying forces are at play?

Numerous conceptual models can be used to understand the drivers of deforestation and forest
degradation and their interactions. Geist and Lambin (2002) focus mainly on distinguishing
proximate (“direct”) and underlying (“indirect”) causes, whereas Wood and Porro (2002) put
more emphasis on the distinction between biophysical and socio-economic factors at di�erent
spatial scales. The approach of Kaimowitz and Angelsen (1998) is more similar to Geist and
Lambin’s, although the focus di�ers by concentrating on the economics behind the immediate
and underlying factors. It is important to monitor drivers of deforestation and forest degradation
at the local level because they di�er across space and time (Rudel, 2007; Rudel et al., 2009;
Defries et al., 2010; Hosonuma et al., 2012; De Sy et al., 2015; Curtis et al., 2018).

The methods to assess drivers are nested in di�erent scienti�c disciplines. They range from
visual assessment of land use, land cover, and changes therein (LULCC) (e.g. De Sy et al.,
2015), socio-economic survey data collected in the �eld (e.g. Walker et al., 2002), to machine
learning techniques assessing the relative importance of spatial factors explaining land cover
change (e.g. Zanella et al., 2017). Each of these methods have their strengths and weaknesses
in terms of the driver elements (e.g. agent, location, extent) that they can accurately assess.
Remotely sensed imagery can help to identify the land cover following deforestation, which
can then be used as proxy for the direct driver (De Sy et al., 2015). Recent technical innovations
in remote sensing and forest-relevant monitoring techniques have resulted in national and
global datasets with increasing levels of coverage, spatial and temporal detail and accuracy
(Bos et al., 2017), which can capture changes in forest cover, including land uses following
deforestation. Socio-economic data can complement these remote sensing techniques in helping
to identify the agents or underlying factors at play. Spatial modelling with machine learning
techniques, such as Random Forest modelling, provide powerful tools to reveal underlying
spatial factors in�uencing DD. When used in isolation however, they lack the ability to provide
a meaningful interpretation of these results. Rather than to compare the capabilities of each
of the methods, we argue that an assessment of their complementarity is more valuable as
combined, interdisciplinary approaches provide better understanding of the processes at stake
than single-source approaches.

Information on drivers can help determine the appropriate policy interventions to address those
change processes (Finer et al., 2018). As the activities leading to DD di�er between continents
and countries (Hosonuma et al., 2012; De Sy et al., 2015), there is no single intervention to
address all drivers e�ectively (Seymour and Harris, 2019). Similarly, REDD+ interventions
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vary greatly in terms of type and implementer. Ideally, interventions are tailored to the local
context (Godar et al., 2014; Austin et al., 2019), which requires an integrated assessment of
relevant drivers. Information on drivers is therefore bene�cial in all stages of the REDD+ design,
implementation and evaluation De Sy et al. (2018). Incorporating this type of information is
not straightforward, however, as recurrent monitoring is complex and costly.

The objectives of this study (represented by the linkages between the triangles in �gure 4.1)
are, (1) to assess the complementarity of di�erent data sources in providing information
on DD drivers; (2) to identify the most prevalent DD drivers in our study sites; and (3) to
identify possible (mis)matches between the pre-identi�ed DD drivers and REDD+ interventions.
However, the aim of this study is not to assess how successful these interventions are in
addressing these DD drivers, as this requires an impact assessment, which goes beyond the
scope of this study. The topic of impact assessments is addressed in more detail in chapter
2 and 5. In order to reach our objectives, we will address the following research questions
(represented by the elements within the triangles in �gure 4.1):

1. To which land cover and land uses are forests converted, based on high resolution
imagery?

2. What are the most important topographic, climatic and proximity variables explaining
deforestation, based on a Random Forest Model?

3. What are the dominant locally reported direct and indirect DD drivers, based on
household, village, and key informant interviews?

4. Which DD activities and agents are targeted by the REDD+ interventions?

RO 1
DD drivers

assessment

results

...

DD drivers
assessment

methods

REDD+
intervention
assessmentRO 3

RQ 1

RQ 3

RQ 2

RQ 4

RO 2

Figure 4.1: Relationship between research objectives (ROs), and research questions (RQs)
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4.2 Material and methods

4.2.1 Conceptual framework

Figure 4.2 shows the conceptual framework of this study, which builds upon existing LULCC
models as discussed in the previous section, but puts the activity inducing DD at the centre.
In this way, we provide a holistic approach that can be used in both spatial and non-spatial
assessments.

In our conceptual model, drivers are de�ned as the interplay of agents, land activities and
underlying forces that lead to deforestation and forest degradation. Agents refer to entities
performing land activities on the ground and include smallholders and communities, large
agricultural land holders, large scale agribusinesses and logging or mining companies. Activities
are human actions that lead to forest change (e.g. agricultural expansion, logging, infrastructure
expansion) often referred to as direct drivers (see for example De Sy et al., 2018). Environmental
factors consist of biophysical or topographic elements that allow or limit certain activities (e.g.
slope, availability of soil minerals, etc.) but which in essence cannot be in�uenced by humans
through policies or other interventions. Underlying forces, such as economic and political
processes, are often complex and can interact with each other. They directly or indirectly
in�uence the decision-making of the agents (e.g. farmers, government agencies, agricultural or
mining companies etc.) who are performing the activities.

REDD+ interventions can be divided into three types (i.e. enabling measures, disincentives
and incentives), which can be applied by di�erent types of implementers (government,
non-government, and private sector actors) at di�erent levels (e.g. national and subnational
programs vs. local level REDD+ projects). While incentives (e.g. payments for environmental
services) and disincentives (e.g. command-and-control measures) aim to change agents’
decision-making in terms of forest change activities, enabling measures (e.g. tenure clari�cation,
environmental education) can in�uence agents, and thus indirectly their activities, or underlying
forces.

4.2.2 Study areas

In our study we focus on �ve sites, located in four countries in Latin America and Asia
(�gure 4.3, table 4.1). These �ve sites are part of CIFOR’s Global Comparative Study on
REDD+ (GCS-REDD+), and were selected to represent a wide range of intervention types
((dis)incentives and enabling measures), implementer types (government, non-governmental
organization (NGO), private sector), and geographies across the tropics (CIFOR, 2017). Further,
data availability constraints concerning the availability of di�erent forest change map products
a�ected the �nal selection (Bos et al., 2019).
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Drivers

Agents Activities
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interventionsEnvironmental 

factors

Enabling 
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Figure 4.2: Conceptual framework. Orange arrows represent interactions between di�erent driver
elements. Green arrows represent how di�erent REDD+ interventions envision to in�uence these
elements or its interactions.
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Figure 4.3: Study areas

Sustainable Se�lements in the Amazon
From 2012 to 2017, this project targeted smallholders in the Transamazon Highway region
(Eastern Brazilian Amazon) to promote sustainable agricultural practices and was implemented
by the NGO Amazon Environmental Research Institute (IPAM). In 2000, forest cover was 95.4%
but 19.2% points were lost during 2001-2012 (Sunderlin et al., 2014b). Smallholders sampled
had 69% forest cover on their landholdings in 2010 (Duchelle et al., 2014), earning their income
mostly from cropping and livestock, and clearing forest mostly for crops (Cromberg et al.,
2014b). Interventions focused on more sustainable agriculture and economic compensation
(Simonet et al., 2019).

REDD+ Project in Brazil Nut Concessions (BAM & FEPROCAMD)
The objective of the REDD+ project in Madre de Dios (MDD), Peru was to provide incentives for
Brazil nut concessionaries to conserve the forests on which they depend. This area is heavily
forested (99% in 2000) with very low deforestation, that is only 0.3% point loss from 2001 to
2012 (Sunderlin et al., 2014b). Brazil nut producers in the area glean most of their local income
from forests, including Brazil nuts and timber (Garrish et al., 2014). The project began in 2009
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Table 4.1: Site characteristics

Country Site Area	of	
interest
(in	mln	ha)

Ecozone	
(FAO)

REDD+
start
year

REDD+
end
year

Implementer	
type

Brazil Transamazon1 4.8 TRF6 2013 2017 NGO
Peru Madre de Dios (MDD)2 1.1 TRF6 2009 Ongoing Private sector
Indonesia KCCP3 2.0 TRF6 2008 Ongoing NGO
Indonesia Katingan4 3.6 TRF6 2009 Ongoing Private sector
Vietnam Cat Tien5 0.8 TRF6/ TMDF7 2009 2012 NGO
1 Sustainable Settlements in the Amazon (IPAM)

2 REDD+ Project in Brazil Nut Concessions (BAM & FEPROCAMD)

3 KetapangCommunity Carbon Pools (FFI)

4 Katingan Peatland Restoration & Conservation Project (PT.RMU)

5 Cat Tien National Park Pro-Poor REDD+ Project (SNV)

6 Tropical rainforest

7 Tropical moist deciduous forest

as a collaboration between the private company Bosques Amazonicos and the local Brazil nut
producers’ federation and targeted 405 concessionaries over 308,757 ha (BAM, 2012). It was
validated by Veri�ed Carbon Standard (VCS) in 2012 and sold 1.5 million veri�ed carbon units
through the voluntary market.

Ketapang Community Carbon Pools (FFI)
The Ketapang Community Carbon Pool (KCCP, referred to as Indonesia-A in chapter 3) is
a forest carbon initiative of Fauna and Flora International (FFI) Indonesia Programme. The
lowland and peat swamps in this area in West Kalimantan experienced 4.6% forest loss in the
period 2001-2012, threatening biodiversity and carbon-rich tropical forests (Sunderlin et al.,
2014b; Intarini et al., 2014). Started in 2008, the NGO focusses on arranging community forest
rights for local villages, aiming to strengthen communities’ tenure security and counter threats
from large-scale external actors (Intarini et al., 2014).

Katingan Peatland Restoration & Conservation Project (PT.RMU)
The Katingan Peatland Restoration & Conservation Project, currently known as the Katingan
Mentaya project and referred to as Indonesia-B in chapter 3, was founded in 2007, and is
managed by PT Rimba Makmur Utama (PT.RMU), a private company based in Indonesia
(Indriatmoko et al., 2014). The villages collaborating in the project are adjacent to Sebangau
National Park. The REDD+ project site is largely forested and experienced 2.6% forest loss
in the period 2001-2012 (Sunderlin et al., 2014b). The main project strategy is to protect
an entire peat hydrological unit (i.e. ‘peat dome’) by converting the status of the land into
a restoration concession and supporting communities with locally suitable and sustainable
income-generating activities.

Vietnam - Cat Tien National Park Pro-Poor REDD+ Project (SNV)
This project (2009-2012) was initiated by SNV (the Netherlands Development Organisation) as
a REDD+ readiness project to assess the opportunity for accessing the voluntary carbon market
and to establish a forest carbon facility in participation with local villagers. In the project
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area, 58%–71% of villagers interviewed considered agriculture as their primary or secondary
occupation (Huynh, 2014). Their largest proportion of land consist of secondary forest, followed
by agriculture. Natural forests are owned by the government. The forest cover in this area
is high (94.5% in 2000), with 5.3% forest loss from 2001-2012 (Sunderlin et al., 2014b). The
REDD+ readiness interventions primarily focused on carbon monitoring and participatory
forest monitoring trainings (Huynh, 2014).

4.2.3 Summary of workflow

The work�ow of this study is visualized in �gure 4.4. In this section, the elements are introduced
brie�y, and will be discussed in more detail in the following sections. This study consists of
three parts, that is, (1) a DD drivers, (2) a REDD+ interventions, and (3) an alignment assessment.
The DD drivers analysis uses three methods which build upon di�erent data sources. Here,
insights from high resolution imagery, spatial modelling and socio-economic surveys jointly
provide insights in the DD drivers of the di�erent study sites. The REDD+ intervention
assessment builds upon village level survey data and a database containing information on
REDD+ interventions in the di�erent study sites. The DD drivers analysis formed the basis for
the assessment of the complementarity of di�erent (disciplinary) methods and datasets. Finally,
we assessed the alignment of the DD drivers and REDD+ interventions.

4.2.4 Remotely observed land cover and land use pa�erns a�er DD
using high-resolution imagery

For the �rst research question (�gure 4.1, section 4.1), we used tree cover loss data based on a
combination of the Global Forest Change (GFC) dataset (Hansen et al., 2013, version 1.3) and
the Breaks For Additive Season and Trend (BFAST) algorithm (Verbesselt et al., 2010, 2012). For
methods and sampling design regarding the forest loss detection, we refer to Bos et al. (2019)1.
We de�ne deforestation as a conversion from land above a certain tree cover percentage and
covering more than a certain MMU2 to land with very limited or no tree cover. Therefore, we
follow the land cover de�nition of deforestation, which is more practical to assess, rather than
a land use de�nition of deforestation (Seymour and Busch, 2016). Forest degradation refers to a
decrease in quality of certain features of the forests while the predominant land cover and land
use remains forest. In this study, degradation is exempli�ed by a reduction in tree cover, while
still exceeding the threshold of the corresponding forest de�nition.

Follow-up land use or land cover after DD was used as proxy for the direct driver of
1In the original study, the sample size was 270 pixels for each of the sites, and included both forest loss and
stable forest pixels. For this particular study, we only focussed on the forest loss pixels, which led to slightly
di�erent sample sizes for each of the sites, that is, n=197 for Brazil-Transamazon; n=203 for Peru-Madre de Dios;
n=206 for Indonesia-Ketapang Community Carbon Pools (KCCP); n=203 for Indonesia-Katingan; and n=227 for
Vietnam-Cat Tien.
2Following national forest de�nitions, source UNFCCC (2009). For speci�c thresholds used, see Bos et al. (2019).
Forest de�nition used for Brazil-Transamazon is >=10% tree cover and an MMU of 0.5ha.
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Figure 4.4: Work�ow

deforestation3. To assess land use following deforestation, we assessed the forest loss samples
from Bos et al. (2019), and determined follow-up land use using high-resolution imagery,
consisting of Google Earth and RapidEye imagery. In addition, time series data of Landsat TM
was assessed to clarify certain land use patterns. Although the spatial resolution of these data is
limited (30m), in cases of large-scale land conversion (such as tree crop plantations) and limited
availability of high-resolution imagery, Landsat TM was often su�cient to validate follow-up
land use. For recording the follow-up land use, we developed a survey using Open Foris Collect
(Open Foris, 2019). For each sample, the con�dence level was recorded. When a sample’s land
3We acknowledge that in certain areas, the �rst follow-up land use may not always re�ect the main driver of
forest clearance (e.g. in Amazonian areas where forest loss is often followed by cropping, but long term land
use consists of pasture. Likewise, in Indonesia, deforestation can be followed by rice crops, while this is only
temporary until their rubber trees mature), but emphasize that longitudinal high resolution imagery or other
methods such as household level surveys may better reveal these type of processes.
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use or land cover was con�rmed with multiple imagery data sources, a high con�dence level
was given. Samples for which no decisive follow-up land use or land cover could be given
due to data limitations or other reasons were assessed by an additional independent remote
sensing expert or local expert. When uncertainty remained, samples were marked with a low
con�dence level. Follow-up land use classes were aggregated into four classes (table 4.2). The
relative size of each class was calculated using Stehman’s methods, while taking into account
unequal sample class distributions (Stehman, 2014; Bos et al., 2019).

Table 4.2: Observations and corresponding aggregated classes of follow-up land use and land cover

Aggregated class
Degradation Tree plantations Agriculture Other

Observations ∙  Burned areas
∙  Selectively logged areas 

(but remains 
predominantly forest) 

∙  Regrowth (partial)

∙  Rubber1

∙  Palm oil1

∙  Large scale tree 
plantations

∙  Crops
∙  Cale pastures
∙  Shrub mix farm
∙  Small scale agroforestry 

systems (incl. orchards, 
coffee etc.)

∙  Mining
∙  Water

o change in river flow
o hydropower 

reservoir)

∙ Road infrastructure
∙ Buildings

Example

1 To align with findings from the socioeconomic data we decided not to aggregate   these under the “agriculture” class, as according to reported data, agents linked to these conversions 

oen differ from agents for (subsistence or small scale cash crop) agriculture.

4.2.5 Spatial modelling of underlying factors associated with forest
loss

For the second research question, we created a Random Forest model (RF) to assess the relative
importance of prede�ned spatial variables to predict deforestation. A RF is a non-parametric
method based on classi�cation or regression tree learning. Unlike many other spatial models,
RFs are known for their robustness, reduced risk of over�tting, capability to deal with non-linear
relationships between prediction variables, and ability to address interactions without explicitly
de�ning them in the model (Breiman, 2001). The forest loss data (response variable) used
di�ered across the sites, and was based on the map product with the highest accuracy as found
in Bos et al. (2019)4. The predictor variables used are described in table 4.3. These topographic,
climatic and proximity variables are known to play a role in land use and land cover change
processes (e.g. Kaimowitz and Angelsen, 1998; Wood and Porro, 2002; Geist and Lambin, 2002),
but their relative importance may di�er in di�erent contexts. Variable importance of these
predictor variables was used as proxy for underlying forces of deforestation. Classi�cation trees
were computed for a binary categorical response variable (forest loss and stable forest). For each
4The GFC dataset (Hansen et al., 2013) was used for Brazil-Transamazon, Peru-Madre de Dios, and Indonesia-KCCP.
The combined dataset sensitive-early (Bos et al., 2019) was used for Indonesia-Katingan and Vietnam-Cat Tien.
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Table 4.3: Prediction variables for Random Forest model

Variable Type Unit Source

Elevation Topographic Meters CIAT-CSI SRTM (Jarvis et al., 2008)

Slope Topographic Degrees Derived from elevation, see above.

Annual precipitation Climatic Millimetres WorldClim 2 (Fick and Hijmans, 2017)

Annual mean temperature Climatic Temperature Celsius WorldClim 2 (Fick and Hijmans, 2017)

Distance to agriculture Proximity Meters ESA Climate Change Initiative Land 
Cover Map (2015)

Distance to roads Proximity Meters OpenStreetMap

Distance to waterways Proximity Meters OpenStreetMap

of the sites, 5% of non-NA pixels were sampled for training data. To weigh all misclassi�cations
equally in the trained RF, balanced training samples were generated so that 50% of the training
samples consisted of forest loss, and 50% of stable forest. For each site, the random forest
consisted of 500 classi�cation trees. The spatial predictor variables selected for this study were
elevation, slope, distance to roads, distance to waterways, distance to existing agriculture,
average annual temperature and average annual precipitation. Following Breiman (2001) and
using the randomForest package (Liaw and Wiener, 2018) in R, the relative variable importance
using the mean decrease in accuracy (MDA) was calculated by (1) computing the out-of-bag
statistic with the data for the i-th predictor variable intact, (2) permuting the data for the
i-th predictor variable, (3) recalculating the out-of-bag statistic using the permuted data for
the i-th predictor, (4) calculating the di�erence. This procedure was repeated for all seven
prediction variables. Accuracies of the prediction maps were calculated following Olofsson
et al. (2014).

4.2.6 Socio-economic survey data for perceived direct and indirect
drivers of deforestation

For the third research question (�gure 4.1, section 4.1) we used data on reported direct and
indirect DD drivers. These data were gathered during semi-structured interviews with REDD+
implementers, village-level focus groups (mixed gender and women’s only), and household
surveys. The surveys were conducted in 2010-2011 and targeted approximately 1200 households
in 40 villages. Data gathered included forest regulations; perceived causes of forest cover/quality
change; and household level clearance of forests and its purpose (appendix C.1). A complete
overview of the questions asked and methods applied can be found in the technical guidelines
(Sunderlin et al., 2016, 2010).

Survey data from village focus groups and household interviews were cleaned, aggregated
and visualized using R. Simple descriptive statistics were calculated for the main household
variables, while a qualitative assessment was done for the data collected from the village
surveys. The assessment focussed on the following themes and variables: area (size) per land
use, purpose of clearing, principal crop and crop type after clearing, forest area and forest
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quality change and perceived (exogenous) causes of forest cover change.

4.2.7 Assessment of forest-based interventions and alignment with
DD drivers

Data from a survey of village interventions were used to document the most relevant forest
interventions at each site (Sunderlin et al., 2016). During the second phase of �eldwork
(2013/2014), the research team �rst compiled a list of all interventions that aimed to conserve
or restore forests that were documented in the study villages in earlier interviews with
implementers and village focus group discussions. That list was re�ned with REDD+
implementers, and then with key informants in all study villages following the methods
outlined in Sunderlin et al. (2016). Forest interventions included not only those implemented
by the REDD+ proponent, but also national/subnational policies and programs that a�ected
local forest use at the study sites. For each forest intervention, information on agent (target
stakeholder (group)), sector (e.g. forest, agriculture), and level (national, subnational or local)
were recorded to assess the degree of alignment with the DD drivers results as found in the
earlier parts of the study.

4.3 Results

4.3.1 Forest change pa�erns observed with remote sensing

Table 4.4 gives an overview of the relative shares of forest area conversions. The aggregated
classes in table 4.4 are broadly de�ned, but there are cross-site di�erences within those classes.
That is, agriculture in Brazil is marked by pasture lands mainly, while in Indonesia-Katingan
this is mainly cropland, including rice. In Indonesia-KCCP, tree plantations constitute of oil
palm plantations, unlike the tree plantations in Vietnam Cat-Tien. Figure 4.5 shows some
of these cross-site di�erences within the four classes. Site-speci�c �ndings are given below.
appendix C.2 reports the con�dence levels for the classes per site.

Table 4.4: Area proportion (%) of follow-up land use and land cover classes

degradation tree plantations agriculture other
Brazil-Transamazon 10% 0% 87% 3%
Peru-MDD 59% 0% 35% 6%
Indonesia-KCCP 32% 50% 15% 3%
Indonesia-Katingan 51% 24% 16% 9%
Vietnam-Cat Tien 14% 30% 42% 14%

Brazil – Transamazon
The class degradation (n=13) constitutes mostly (n=11) of samples that were characterised by
regrowth after forest disturbance. All samples marked as agriculture (n=177), were pastural
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1

Figure 4.5: Examples of DD activities encountered. Brazil-Transamazon: (a) agriculture (pasture) and
(b) other (infrastructure). Peru-MDD: (c) degradation and (d) other (mining). Indonesia-KCCP: (e)
other (mining) and (f) tree plantation (oil palm). Indonesia-Katingan: (g) degradation (�re) and (h)
agriculture (crops). Vietnam-Cat Tien: (i) other (hydropower reservoir) and (j) tree plantation.

lands, often marked with cattle and cattle tracks. The samples marked as other (n=7) were
roads, buildings, or other infrastructures.

Peru – MDD
Samples classi�ed as degradation were characterised by small scale disturbances after which
some degree of regrowth was visible in the subsequent years. Agriculture consisted mainly of
pastural lands (n=83) and to a lesser degree crops (n=16). Although the other class was relatively
small (i.e. 6% of the total area of forest deforested, table 4.4), the spatial distribution of this
class gave some clear insights (appendix C.3), with patches of mining, clearly distinguishable
near the main river.

Indonesia-KCCP
Degradation in this site consisted of forest a�ected by �res, and logging after which regrowth
occurred with a mixture of trees and small shrubs. Tree plantations consisted primarily
of large-scale oil palm plantations, although often only marked several years after the
deforestation disturbance was detected. Agriculture consisted of rice paddies and other crops.
Conversions marked as other (n=11) were mostly cases of mining (n=7), and some conversions
to infrastructure.

Indonesia-Katingan
Samples marked as degradation consisted mostly of partially logged plots and degraded forest
at oil palm plantation edges. To a lesser degree, �res were noted, as well as some cases of
partial regrowth after forest disturbance. Tree plantations consisted mostly (60 out of 62 cases)
of oil palm plantations. Samples with agriculture were mostly small-scale croplands. The other
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class consisted of infrastructure (buildings) (n=3) and some cases of bare land (n=5) for which
no other follow up land use was detected.

Vietnam – Cat Tien
Samples marked as degradation consisted of forests with clearly visible selective logging, and
to a lesser degree recurrent disturbed forests with intermediate regrowth. A considerable
amount of samples (n=44) were marked as large-scale monocultural tree plantations. Agriculture
consisted mainly of cropland (n=110), including bushy crops, co�ee and cashew trees. To
a lesser degree, pastural lands were found (n=12) and some mixed areas with cropland and
small-scale plantations (n=6). The other class consisted of infrastructure (buildings and roads,
n=8), and �ooded areas due to the building of a new hydropower dam (n=8).

4.3.2 Spatial modelling

Appendix C.4 shows the spatial distribution for each of the prediction variables, as well
as comparisons between forest loss and stable forest pixels per site. Error matrices and
corresponding error-adjusted areas were estimated and accuracies were calculated for all
model predictions based on a comparison between the models’ predictions and the input
deforestation maps. The accuracies are listed in table 4.5, the error matrices can be found in
appendix C.5. In general, the random forest models predicted deforestationwell using the spatial
layers as predictors, with overall accuracies exceeding 86%. The relative high overall accuracies
build con�dence in the RFs in general, as low accuracies in the models’ predictions would
also suggest that the variable importance �ndings would be less meaningful. The relatively
low user’s accuracies of forest loss class for Peru-MDD and Indonesia-KCCP indicate that the
models overestimated forest loss at those sites. Here, the random forest models’ predictions
are thus well capable of modelling the spatial patterns of forest loss when using the available
information from the prediction variables, but they are less capable of estimating the magnitude
of forest loss.

Table 4.5: Accuracies of Random Forest Model predictions

Brazil -
Transamazon

Peru -
MDD

Indonesia-
KCCP

Indonesia-
Katingan

Vietnam-
Cat Tien

Loss Stable Loss Stable Loss Stable Loss Stable Loss Stable
UA 93.5% 84.8% 34.1% 99.9% 57.3% 97.6% 74.7% 94.6% 66.3% 96.5%
PA 96.3% 75.5% 98.5% 89.8% 90.7% 85.0% 89.1% 86.4% 90.6% 85.1%
OA 91.8% 90.3% 86.0% 87.3% 86.4%

UA = User’s accuracy; PA = Producer’s accuracy; OA = Overall accuracy

The MDA is an indicator of variable importance5. Figure 4.6 shows that in general, distance
to existing agriculture, annual precipitation (i.e. micro-climate di�erences), and distance to
5MDAs refer to accuracies of single tree models, and should not be confused with the model accuracies of the map
accuracies of the model’s predictions as presented in table 4.5.
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Figure 4.6: Random Forest models variable importance

roads are important spatial factors for explaining deforestation, although there are di�erences
between sites. In Peru-Madre de Dios for example, the relative importance of distance to
agriculture as deforestation predictor is higher than in Vietnam-Cat Tien, where it is ranked as
the third-highest explanatory factor.

4.3.3 Socio-economic survey data for perceived direct and indirect
drivers of deforestation

Perceived forest area and forest quality change at village level
During the mixed gender focus group discussions, the majority of villages reported a decrease
in forest area in the past two years6. Forest quality was de�ned as the availability of goods
and services of the forest related to density of woody material, forest health, and biological
productivity and diversity, and is thus a proxy for forest degradation. The majority of the
villages reported a decrease in forest quality in the past two years, with Vietnam-Cat Tien being
the exception7.
6There were eight village level focus groups at each site (total n=40). Decreased forest area was reported in six
villages in Brazil-Transamazon and in Indonesia-Katingan, seven in Peru-MDD and in Indonesia-KCCP. Only in
Vietnam-Cat Tien, a minority of the villages reported a decrease in forest area (n=2).
7For the same 40 village level focus groups, the majority of the villages in Brazil-Transamazon (n=7), Peru-MDD
(n=8), Indonesia-KCCP (n=8) and Indonesia-Katingan (n=6) reported a decrease in forest quality. In Vietnam-Cat
Tien, three villages reported no forest quality change, while the remaining �ve did not know or did not answer.
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Perceived forest pressure sources at village level
During the mixed gender and women focus group discussions, participants were asked to
report their perceived forest pressure sources in their village area and surroundings.

In Brazil-Transamazon pressures that were mentioned included incoming migrants who cleared
for farmland. During the women’s focus groups, the presence of logging companies (both small
and large scale), seasonal migrants, people from neighbouring villages, and agro-industrial
farms (cattle) were mentioned as forest pressure sources.

In Peru-MDD people mentioned unclear tenure rights in and outside Brail nut concession areas.
In the women’s focus group discussions, respondents mentioned the pressure from logging
companies. One village noted that an agro-industrial �rm (rubber) formed a pressure on the
forest. We found di�erences in forest pressures between people who lived in areas close to the
road, and people who live in more remote areas. In the former, pressures included incoming
migrants for papaya plantations and timber (local logging companies). In the latter, people
experience forest pressure due to gold mining.

In Indonesia-KCCP, respondents mentioned the presence of industrial companies for pulp
and paper, soy and cattle. Also, some pressure due to swidden agriculture was mentioned. A
large food estate project (rice, by the government), posed another pressure on the forested
land. Some villages experience pressure due to the rise of oil palm plantations and illegal gold
mining. Some villagers started rubber plantations as an e�ort to prevent conversion to oil palm
by outsiders. Logging (legal) for housing infrastructure, logging by timber companies, and
poaching were also mentioned, the latter in women’s focus groups only.

In Indonesia-Katingan, pressures mentioned included palm oil companies, small scale
(unregulated) mining and extension of agricultural lands and infrastructural developments
due to stimulating government programs. In addition, women also mentioned poaching as
putting a pressure on the forest resources, as well as people from both in- and outside the
villages, small scale loggers, large scale cattle and rubber plantation �rms, and timber plantation
companies.

In Vietnam-Cat Tien, people mentioned that the government’s forest allocation policies led to
a conversion of degraded forest land to agroforestry systems by villagers.

Forest clearance and purpose by households
The previous section reported both exogenous and endogenous pressures on the villages’
forests. Here, we focus on household level clearing of forests as reported in the household
surveys, which represents endogenous pressures.

The results are visualised in �gure 4.7. Whether or not households clear forests di�ers greatly
between the sites. While in Brazil-Transamazon >75% of interviewed households report forest
clearing in the past two years, in Vietnam-Cat Tien this is <5%. Also, the mean and median area
of forest cleared di�ers widely, although there are large di�erences between the spreads within
sites, as Brazil-Transamazon and Peru-MDD contain more outliers above the boxplot’s maxima.
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Figure 4.7: Reported forest clearance and purpose by households. (a) shows the response to the
question “did your household clear any forest during the past 2 years?” (b) Forest clearance (area) by
households that reported >0 ha clearance. Upper and lower extremes of whiskers represent Q3+1.5*IQR
and Q1–1.5*IQR respectively, where IQR=Q3-Q1. (c) Total forest clearance by households (respondents
only) per site (d) Follow up use of forest area cleared. n represents number of respondents per purpose
category.
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In all sites, household clearance is mostly for cropping. In the South American sites, relatively
few households report a relatively large area cleared for pasture8, while in the Southeast
Asian sites this regards clearance for tree plantations such as oil palm and rubber plantations9
(�gure 4.7d). Still, it is worth noting that especially the reported clearance for tree plantation is
sensitive to the moment of survey data collected, as households reported not to clear for tree
plantations regularly. For example, in the survey round of a few years later (not reported here),
the amount of forest cleared for tree plantations in Indonesia-KCCP was signi�cantly larger
compared to the results of the �rst survey round as presented in �gure 4.7.

4.3.4 REDD+ Interventions

Site level descriptions of interventions
Brazil-Transamazon
Three main interventions were applied, which all focused on local small-to-medium sized
farmers: 1) direct cash payments conditional on forest conservation and �re-free agricultural
production; 2) investments in alternative production; and 3) support for farmers to comply
with environmental regulations. Most interventions thus featured change in land use strategies
(land-saving strategies) and compensated direct forest protection. At the same time, federal
command-and-control policies had signi�cantly curbed deforestation – from all sectors and
actors alike (Börner et al., 2014). Yet, ultimately the Brazilian Forest Code was also reformed
in ways that particularly pardoned smallholder deforestation, thus loosening somewhat
command-and-control leverages on smallholders (Cromberg et al., 2014a; Simonet et al.,
2019).

Peru-Madre de Dios
At the Madre de Dios site, Bosques Amazonicos, FEPROCAMD and a local Peruvian NGO
provided extensive technical support to Brazil nut producers to help them comply with national
forest management regulations, speci�cally related to the formulation of annual operational
and 5-year management plans for their concessions. However, the main planned interventions
of the REDD+ project – namely implementation of a forest monitoring and surveillance system,
construction of a local nut processing plant to increase the market value of harvested nuts, and
eventual payments from the sale of carbon credits (Garrish et al., 2014) – never came through
due to expiration of operational funds for the project in 2014.

Indonesia-KCCP
8In Brazil-Transamazon, 25 households (10% of respondents) together reported approximately 190 ha of clearance
for pasture, which equals 19% of reported forest area cleared. In Peru-MDD, 7 households (3% of respondents)
together reported approximately 74 ha of clearance for pasture, which equals 25% of total reported forest area
cleared.

9In Indonesia-KCCP, 5 households (2% of respondents) together reported approximately 4 ha of clearance for
tree plantations, which equals 5% of total reported forest area cleared. In Indonsia-Katingan, 12 households (5%)
together reported approximately 15 ha of clearance for tree plantations, which equals 56% of total reported forest
area cleared. In Vietnam-Cat Tien, 1 household (<0.5%) reported 3 ha of clearance for tree plantations, which
equals 9% of total reported forest area cleared.
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The objective of KCCP is to protect biodiversity and reduce greenhouse gasemissions from
deforestation and forest degradation (Intarini et al., 2014). The project’s main intervention
is attaining a designation for speci�c forest areas in groups of villages as a Hutan Desa, or
Village Forest (HD), forming a forest carbon pool. This overcomes the issue of economies
of scale, related to monitoring and establishing community-based REDD+ projects (Intarini
et al., 2014). The tenure-based intervention is done in combination with support for village
boundary mapping, land use planning, and reforestation. At the same time, there were existing
government reforestation program and a forest monitoring activity by a separate NGO. By
attaining the HD status, the tenure of speci�c villages over communally-managed forest areas
are clari�ed. This paves the way for getting management rights of the forest. By 2011, six
villages10 in Ketapang district, West Kalimantan, have proposed and attained HD status from
the central government. During the same year, the Indonesian Ministry of Forestry initiated
a national moratorium on the issuance of new permits for forest utilization and conversion
on peatlands and primary forests, partially overlapping our study area in KCCP (Indonesian
Ministry of Forestry, 2011). This moratorium became permanent in August 2019, covering 66
million hectares of rainforest (Diela, 2019). By 2014, none of the studied villages had attained
the next necessary step of the HD status, which is to secure management rights from the
provincial governor. An important element of this initiative is FFI’s role as facilitator, which
was crucial in bringing diverse communities together Intarini et al. (2014).

Indonesia-Katingan
The main interventions of this initiative are: (i) prevent large-scale deforestation by attaining
an Ecosystem Restoration Concession (ERC) over a carbon-dense peat dome between the
Katingan andMentaya rivers; (ii) provide incentives for communities living in areas surrounding
PT.RMU’s ERC to support the prevention of DD through various alternative livelihood
interventions agreed upon with communities; (iii) restore degraded peat forests through forest
restoration activities; and (iv) establish �re-�ghting teams in communities. The Indonesian
government granted PT RMU their �rst ERC covering an area of 108,225 ha in 2013, and
granted an additional, 49,497 ha in 2016 (Indriatmoko et al., 2014). Between 2010 and 2018, the
project generated 23.3 million Veri�ed Carbon Units (VCUs) equivalent to 23.3 million tons of
greenhouse gas emissions removed (VCS, 2015). The project is active as of the time of writing
(September 2019). These ERC areas overlap with 34 village territories and are located inland
and therefore do not signi�cantly overlap with areas actively managed by communities nearer
to the rivers. Nevertheless, communities (especially village leaders) are important in deciding
on whether outside players have access to the ERC area. During our 2018 study, all the study
villages had areas within their village territory that are managed by private land users, such
as palm oil and timber production companies. Also, all villages received signi�cant levels of
Village Funds (Dana Desa), totalling IDR 1 billion (USD 70,240) or more per village, used mainly
for village infrastructure and public facilities and not for forestry-related purposes11.
10Including the four GCS-REDD+ intervention villages
11Based on 2018 rates: USD 1= IDR 14,237 from https://data.worldbank.org/indicator/PA.NUS.FCRF?locations=ID.
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Vietnam-Cat Tien
Interventions in Vietnam-Cat Tien were implemented by government agencies and NGOs, and
mainly focussed on forest protection through trainings (on forest protection, REDD+ carbon
credits, agroforestry), alternative livelihoods provisions (focussing on cacao and cashew) and
participatory monitoring (participatory forest management) activities. Government agencies
such as the National Park management and NGOs targeted their activities to communities
living in the bu�er zone of a national park. In one intervention, an NGO assisted district
government agencies, focussing on REDD+ policy making.

Overview of interventions across all sites
Table 4.6 shows an overview of the forest interventions as discussion in the previous section.
Together with the information on deforestation drivers (section 4.3.1- 4.3.3), table 4.6 was used
for the identi�cation of (mis)matches between interventions and drivers (section 4.4.3).

4.4 Discussion and conclusion
In this �nal section, we summarize our �ndings on DD drivers, evaluate the complementarity of
data sources in DD driver identi�cation, recognize potential (mis)matches between DD drivers
and REDD+ interventions, re�ect upon our study design and results and conclude with some
�nal remarks.

4.4.1 Drivers

Land pa�erns following DD observed by high resolution imagery
We detected both across- and within-site variability of land patterns following DD. While
agriculture is the dominant DD in the sites of Brazil (mainly pasture) and Vietnam (mainly
crops), in Indonesia-KCCP tree plantations (oil palm) are most prevalent. Degradation is the
main forest change in Peru-MDD (selective logging) and Indonesia-Katingan (near oil palm).
This is in line with �ndings from earlier studies in those four countries (e.g. Soares-Filho et al.,
2006; Asner et al., 2013a; Gaveau et al., 2018; Khuc et al., 2018). Most of our sites showed
within-site spatial variability in land patterns (appendix C.3). In Peru-MDD mining was found
only close to the main river in the south, pastures mainly close to roads, while selectively
logged areas were also observed further away from roads and rivers. In Indonesia-KCCP
mining was found in the south west, while other conversion types were found across the site.
In Indonesia-Katingan large areas of oil palm plantations were found in the north east, while
degraded forest due to �res were mainly found along the two main rivers. In Vietnam-Cat Tien,
crops were found in the north, tree plantations in the west, and deforestation in the east was
associated with the establishment of a large hydropower dam.

The minimum wage for Central Kalimantan in 2018 was USD 170/month
(https://www.karirpad.com/blog/daftar-umr-umk-ump-2018-di-seluruh-indonesia/). Public facilities include
indoor toilets, health centres/posts, village hall, and water ambulance.
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Spatially modelled variables explaining DD
Overall, spatial factors’ relative importance did not di�er considerably between the sites.
Distance to existing agriculture and distance to roads were found to be in the top three
important spatial factors for explaining and predicting DD, with Vietnam-Cat Tien being
the exception where climatic variability was more important. Local variability in annual
precipitation turned out to be important across all sites, which can also be derived from the
density plots (appendix C.4), which show distinct di�erences in precipitation between the
groups of stable forest and forest loss pixels. Yet, local variability in annual precipitation may
be correlated with other variables both included in, and excluded from these models. In general,
the topographical factors of slope and elevation were least important.

Locally reported DD drivers
In all sites both endogenous and exogenous causes of DD were reported, although their degrees
di�ered greatly across the sites. In the Southeast Asian sites, commercial and governmental
large-scale conversions were reported and mainly comprised of agro-industrial activities such
as oil palm, pulp and food plantations. In the South American sites, a greater mixture of
endogenous and exogenous causes prevailed, including agriculture by small holders, settlement
of migrants, presence of logging companies, agro-industrial �rms and mining. In absolute
terms, more household level clearing was reported at the Brazilian site than other sites in the
study, though large di�erences between households exist. In the Transamazon, in terms of
both household count and forest area cleared, annual crops were cited mostly as clearance
purpose.

4.4.2 Complementarity of di�erent data sources in providing DD
drivers information

Each data source and method used has its advantages and disadvantages. Their ability to assess
certain driver elements is shown in table 4.7. Human interpretation of high resolution remotely
sensed imagery provides insights into the activities associated with di�erent conversion types.
When a proper sampling design is applied, a sample-based approach like ours allows for
estimating the relative share of di�erent conversion types. Increasing the number of DD classes
may lead to more informative results but requires increased numbers of samples (Foody, 2009).
Further, although going beyond the scope of this research, temporal changes in DD processes
can be revealed when the same samples are assessed repeatedly over time. Mapping the di�erent
conversion type �ndings of the samples reveals within-site spatial patterns (appendix C.3).

Spatial modelling and random forest models in particular can reveal the relative importance
of preselected underlying factors, while they can deal with non-linear relationships between
prediction variables. Yet, the relationships between the prediction variable and spatial factors
that turn out to be important may not be easily interpretable. While not part of this particular
study, the spatially explicit prediction maps allow for identi�cation of areas at immediate
deforestation risk.
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Table 4.7: Complementarity of methods and datasets

 Agent Activity Location Time Underlying factors Size (of activity) 
 who what where when why how much 

High resolution imagery       

Random Forest model   ~   ~ 

Socio-economic surveys   ~ ~ ~  
 yes 
~ to some extent 
 no 

Village and household level surveys further complement the previous methods, as they can
provide insights in to the agents of speci�c DD activities. Further, local stakeholders can often
help to identify the underlying factors at play. The spatial and temporal information about
DD activities are often limited compared to remotely observed methods, but participatory
mapping and recurrent surveys can be of added and unique value when combined with the
spatial information on DD.

4.4.3 Alignment of DD drivers and REDD+ interventions

Site specific findings
In Brazil–Transamazon, local interventions generally focus on local small-to-medium sized
farmers by promoting sustainable farming practices (incentives), while federal forest restrictive
policies (disincentives) do not distinguish between agents and sectors. Both local interventions
and federal restrictive policies thus seem to be aligned with the agriculture related DD drivers.
Yet, the national policy partially pardons small-scale deforestation, thus somewhat contrasting
federal policies.

In Peru-MDD, we found clear within-site spatial di�erences in DD drivers, which calls for a
locally tailored approach. The REDD+ initiative focusses on Brazil nut concession owners north
of the river, thus not targeting the large-scale mining near the main river. Further research
is needed to verify whether other interventions target mining agents speci�cally or if indeed
this driver is currently not addressed su�ciently. The REDD+ initiative indirectly addressed
small-scale logging by adding value to Brazil nut concessions via increased prices for producers.
Yet, limited logging under forestry regulation in Peru is allowed (Garrish et al., 2014).

In Indonesia-KCCP, the initiative’s focus on tenure clari�cation is aimed as an empowerment
tool for local communities, in order to keep exogenous agents out. In that sense, these
interventions are in line with the exogenous threats coming from large scale palm oil companies.
Mining was found to be a considerable, but very localised driver present in the south west of
the area. This again calls for a locally tailored approach of REDD+ interventions, as mining
was not addressed speci�cally by any of the interventions in this study.
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Part of the initiative’s focus in Indonesia-Katingan is �re prevention, to correspondingly reduce
the impact of �res and thus prevent forest degradation. This is in line with the major threat we
found in the area. Exogenous agents such as palm oil companies play an increasing role in the
area’s forest change activities, and is correspondingly putting a pressure on local communities.
These exogenous drivers are not targeted directly by the interventions.

In Vietnam-Cat Tien, mostly secondary forests are being converted to agriculture and
plantations (mainly orchards and cashew plantations). Interventions focused primarily on
environmental education and stimulating sustainable livelihood practices through the provision
of livelihood enhancements. Yet, reported clearance at household level was minimal, so
conversions by other actors may have been addressed insu�ciently.

General remarks regarding driver-intervention alignment
While national or subnational policy interventions across the sites mostly comprise of
regulations to restrict forest access, the local initiatives often comprise of a mixture of
interventions. These ‘baskets’ are regularly targeted towards individual smallholders or
communities, and are often continuations of existing integrated development and conservation
projects and programmes, as described in earlier studies based on the GCS-REDD+ data
(Sunderlin et al., 2014a; Duchelle et al., 2017).

The village and household level survey data showed that exogenous agents played an important
role in DD and high-resolution imagery revealed most conversion activities to be large-scale,
while most REDD+ interventions mainly targeted local communities and smallholders. Still,
incentives to smallholders are of value as they can compensate for disincentives a�ecting
smallholders and large landholders alike.

Müller et al. (2013) argue that proper driver-intervention alignment does not necessarily mean
that REDD+ should prioritise its activities on the largest driver at play (mechanized agriculture
in that case), but rather should take into account its opportunity costs. In addition, one
might argue that for e�ective and e�cient REDD+ alone, driver-intervention alignment is not
essential as, at least in theory, DD can be addressed by forest use restrictions combined with
e�ective law enforcement. However, this is most likely not equitable in the sense that people
who depend on the forest the most for their livelihoods, will most likely be disproportionally
a�ected by restrictive interventions. Reduced DD may then lead to trade-o�s in well-being and
forest-related income (chapter 5). As Godar et al. (2014, p. 15595) acknowledge: “Beyond the
technical di�culties and increased costs, e�orts to curb deforestation in areas dominated by
smallholders are politically and socially problematic because many smallholders depend on
clearing small areas of forest for their livelihoods and subsistence”. Therefore, understanding
driver-intervention alignment is at the least essential to understand who is most likely to
lose out from curtailing deforestation, and where trade-o�s between carbon and well-being
outcomes can be expected.
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4.4.4 Study reflections

Dynamics of drivers over time
In addition to spatial variability in drivers, drivers can change over time, as a result of
interventions or due to other processes. As Godar et al. (2014) argue, the changing (relative)
contributions of speci�c actors to deforestation and degradation need to be examined in order to
achieve further reductions in DD. These dynamics should be studied in more detail, and be taken
duly into account when designing, implementing or evaluating REDD+ interventions.

In our study, the timeframes from our remote sensing and spatial modelling assessment
(2001-2014/2015) di�er from the timeframe addressed in the socio-economic surveys (conducted
in 2010-2011, with reported forest clearing regarding the two years prior to the surveys). Remote
sensing requires longer timeframes to detect follow-up land use and other DD patterns, which
would complicate year-to-year comparison between remotely sensed patterns and reported
drivers. We argue that for the purpose of method complementarity assessment, however,
year-to-year alignment is of lesser importance, as the di�erent data sources and corresponding
methods focus on di�erent driver elements.

Discrepancies in deforestation magnitudes and deforestation drivers
Although assessing their complementarity was the main reason for using multiple data sources,
the results contain some, at least seemingly, discrepant �ndings regarding deforestation
estimates and direct drivers categories.

We only report relative shares (in percentages) of forest change patterns observed by remote
sensing, as the area of interests of the remote sensing analysis are based on rectangular bu�ers
around the REDD+ initiative areas and therefore comprise most likely of more than the study
villages’ area of in�uence. In the absence of spatially explicit household areas, direct comparison
of deforestation numbers in absolute terms would therefore be impossible. It is possible that
household level clearance was under-, or over-reported, althoughmultiple veri�cation questions
in the household survey limited this chance considerably.

In section 4.2.4 we already acknowledged that the follow-up land use after deforestation is not
always the main driver of deforestation. Findings on ‘drivers’ from high resolution imagery can
therefore seemingly contradict the �ndings from village and household surveys. In addition to
the reasons addressed in the previous section, this would call for a longitudinal study on local
land use patterns, in which corresponding DD drivers and changes therein would be repeatedly
assessed.

Study limitations and further research
We acknowledge that in this study, we have put limited focus on the underlying forces
in�uencing agents’ land use decisions. Here, we limited ourselves to aspects of land tenure,
while other potential underlying forces including commodity prices were largely ignored. We
do argue however that REDD+ interventions may have limited in�uence on these (global)
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market prices, whereas strengthening land rights is at the core of many interventions as shown
in this study.

In the drivers assessment part of this study, our main focus was to examine the complementarity
of di�erent data sources in addressing di�erent driver elements. We therefore simpli�ed the
study design for each of the three methods. This means that especially in the spatial modelling
part further research is needed. Among other things, future studies could experiment with
feeding the RF with more or other spatial factors that potentially explain or relate to DD, such
as distance to cities and markets, distance to palm oil mills, and other microclimate factors.
In that way, the RF could further enhance the understanding of the relative importance of
di�erent spatial factors determining DD, and to further increase the accuracies of the prediction
models, so as to identify future deforestation risk areas.

4.4.5 Concluding remarks

DD activities are the result of a complex interplay of agents, underlying forces and the
environment. Our study showed that DD patterns di�er across and within sites. This calls for
a locally tailored approach when designing and implementing REDD+ interventions. We show
that no single dataset or method can reveal all facets (who, what, where, why, when and how
much) of DD drivers, while a combined assessment leads to a better understanding.

Despite the di�erences between sites, some general lessons can be drawn. The remote
sensing analysis on DD classes showed that in most sites the predominant activity was
large-scale agriculture or large-scale tree plantations. Household survey results showed that
household-level forest clearance was mainly for annual crops. A basket of REDD+ interventions
were applied in the study areas aiming to prevent forest conversions. Our results show that the
local interventions mainly targeted households and small-scale processes, in contrast with the
remote sensing �ndings that drivers were mostly large-scale.

In this interdisciplinary study, we have provided insights into the complexity of DD driver
identi�cation and complementarity of di�erent driver related data sources at the local scale.
Further, we have assessed the alignment of these identi�ed drivers and REDD+ interventions.
A better understanding of the alignment between DD drivers and REDD+ interventions is
vital for practitioners and policy makers to enhance the e�ectiveness, e�ciency, equity and
co-bene�ts of REDD+ at the local level.
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Abstract
Although the aim of forest-based climate change mitigation interventions, such as REDD+, is
to protect and enhance forests, there are legal, moral and practical reasons for making sure
that this objective is achieved while at a minimum not harming, and ideally ensuring bene�ts
for, local people. Here, we performed an exploratory analysis to examine the relationships
between the treatment intensity of di�erent types of forest interventions, changes in forest
cover (loss) and changes in select measures of well-being (income and perceived well-being)
in seventeen subnational sites across the tropics. Information on interventions, household
income and perceived well-being was gathered from village and household level interviews
from nearly 130 villages and 4,000 households. Global Forest Change data (2000-2018) was
used to derive information on forest cover and forest cover change at the village level. We
de�ned clusters of villages based on similar levels of intervention treatment intensities and
deforestation trends to compare pre- and post-intervention characteristics.

We found that villages in the cluster with high treatment intensities and reduced
post-intervention deforestation rates consisted mostly of Brazilian villages. These villages
had higher income levels and deforestation rates in the pre-intervention period. In the
post-intervention period, these villages were generally associated with an increase in income
and its households reported a slightly better level of perceived well-being. In this analysis,
we did not �nd clear di�erences in outcomes among di�erent intervention types although
restrictions in forest access and conversions were considered the least positive interventions in
terms of e�ect on perceived well-being. We did not �nd indications of pronounced trade-o�s
between forest conservation and well-being outcomes at all villages and households as a whole,
although trade-o�s at speci�c villages and households could not be ruled out. This analysis
provides one way of looking at the forest change and select well-being outcomes of di�erent
forest interventions, and their possible trade-o�s.
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5.1 Introduction

5.1.1 Background

The world’s tropical forests hold important potential for mitigating climate change and
contributing to development objectives. Halting deforestation, along with other ‘natural
climate solutions’ such as restoring degraded lands and sustainably managing forests, could
provide at least 37% of the cost-e�ective emissions mitigation needed by 2030 to keep global
warming below 2°C (Griscom et al., 2017). Additionally natural forests and wildlands provide
approximately 28% of total household income for communities in and around tropical forests
in terms of food, fuelwood and �bre for consumption and sale, which is almost as much as
income derived from agricultural crops (Angelsen et al., 2014).

When the REDD+ concept emerged ten years ago, it was considered a way to not only mitigate
climate change, but also conserve biologically diverse forests, improve forest governance,
and enhance the livelihoods of forest-dependent people (Brown et al., 2008). The focus on
these so-called “non-carbon bene�ts” was enshrined in the REDD+ social and environmental
safeguards negotiated under the UNFCCC.

Since its inception, REDD+ initiatives have grown at national, subnational and local scales
(Duchelle et al., 2018b). Although a key characteristic of the UNFCCC REDD+ framework
is its focus on the national level (or subnational in the interim), hundreds of local REDD+
projects were launched after the UN climate negotiations in 2007 called for “demonstration
activities.” These projects have been mostly implemented by NGOs or for-pro�t companies
with an orientation toward voluntary carbon markets and a focus on smallholders (Simonet
et al., 2015; Sills et al., 2014). Implementers of these initiatives apply intervention packages
that in customized ways combine enabling measures (e.g. free, prior, informed consent (FPIC)
and land tenure clari�cation), disincentives (e.g. restrictions on forest access or conversion),
and incentives (conditional or non-conditional) with the aim to achieve better protection of
forests (Sunderlin et al., 2015; Duchelle et al., 2017).

In REDD+ and other conservation interventions, there is a broad consensus that these
conservation and climate change activities should be ‘evidence-based’. Yet, approaches
that enable impact evaluation through quasi-experimental approaches are hardly applied
in conservation sciences (Sills et al., 2017). Although local REDD+ projects are fundamentally
di�erent than national- and subnational-level programs, they represent the natural laboratory
for evaluation of interventions on the ground that are needed to inform the design and
implementation of higher-level policies aimed at conserving forests while simultaneously
promoting local well-being.
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5.1.2 REDD+ project theory of change

Given the variety of possible impacts of REDD+ initiatives on local forests and people, it is
important to understand what implementers set out to achieve, and through which types
of interventions. Figure 5.1 illustrates the possible intended outputs, outcomes and impacts
of the di�erent types of REDD+ interventions. These elements are described in more detail
below.

Outcomes & 
impacts

Reduced deforestation 
and forest degradation
(direct impact and 
spillovers): 
�Carbon;
�Biodiversity;
�Other ecosystem 

services

Enhanced well-being:
�Income and 

livelihoods;
�Perceived

well-being;
�Distributive equity;
�Social capital;

etc.

Outputs

Violations of land-use 
rules identified and 

sanctioned

Incentives delivered 
to communities and 
smallholders in an 

efficient and 
equitable manner

REDD+ interventions 
understood by and 

designed with inputs 
of local people

Ownership and 
control of forestland 

clear and 
uncontested

Treatment

Enabling measures
(e.g. ensuring FPIC, 

clarifying land tenure)

Disincentives
(e.g. enforcing laws 

and rules)

Incentives
(conditional and non-

conditional)

Input

REDD+ finance
(donors, carbon 

markets, national/
subnational 

governments)

Figure 5.1: Theory of change for local REDD+ initiatives. Adapted from Duchelle et al. (2018a)

The primary input to local REDD+ initiatives is �nance from donors, voluntary carbon
markets, and governments. Donor-driven funding for REDD+ has been limited to a handful
of donor countries and multilateral institutions and has thus far been insu�cient to support
the mitigation potential of tropical forests (Norman and Nakhooda, 2015; Atmadja et al., 2018).
In terms of local REDD+ initiatives, fewer implementers have sold carbon credits than what
was initially envisioned as the primary way in which REDD+ would be �nanced (Sunderlin
et al., 2015). Implementing agencies have instead also relied on donor funding, which allows
them to apply a package of land-use interventions to villages and individual households in
the intervention areas. Subnational governments have also heavily subsidized local REDD+
initiatives (Luttrell et al., 2018).

The ‘treatment’ through REDD+ interventions is diverse. Enabling measures, such as FPIC,
land tenure clari�cation and environmental education, help set the stage for responsible land
stewardship, e.g. in terms of adequate information and assignments of rights. Disincentives
include regulation and enforcement of restrictions in access to, and conversion of, forests. In
theory, violations of forest and land-use rules should be identi�ed and sanctioned through
e�ective monitoring and enforcement by village associations and governmental agencies, and
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thus protect forests. Conditional incentives (e.g. PES) require participants to protect or improve
local forests in exchange for bene�ts, unlike non-conditional livelihood support in which forest
conservation and restoration activities are promoted by investing in productive alternatives
(e.g. more sustainable agricultural practices) without consequences for non-adherence.

There are a variety of outputs associated with the di�erent REDD+ interventions. For example,
land tenure clari�cation activities should lead to clear and uncontested ownership of forestlands.
Environmental education should lead to local awareness of REDD+ interventions, as well as to
a better understanding of environmental legislation and the bene�ts of sustainable land use
practices where relevant. Conditional and/or non-conditional livelihood enhancements should
be delivered in an equitable manner (i.e. a substantial proportion of households should receive
incentives and the distribution of incentives should re�ect the foregone economic opportunities
by all participants). Through e�ective monitoring and enforcement by village associations
and governmental agencies, violations of forest and land-use rules should be identi�ed and
sanctioned.

Ultimately, the main desired outcomes of REDD+ interventions are: 1) reduced carbon emissions
and biodiversity loss from deforestation and forest degradation in the intervention area; and
2) enhanced well-being of local land users in the intervention area. While there are many
possible frameworks for conceptualizing and measuring well-being, the common impacts
assessed in the recent REDD+ literature are income or livelihoods, project costs, perceived
well-being, distributive equity, and social capital (Duchelle et al., 2018c). Beyond these, REDD+
interventions can also promote individual well-being through higher level impacts on increased
land tenure security (Sunderlin et al., 2014c), local capacities, institutions and networks.

Since an important focus of REDD+ is to restrict deforestation and forest degradation activities,
likely trade-o�s between conservation and livelihood bene�ts must be examined. Local people
are likely to incur opportunity costs (Rakatama et al., 2017), but also may bene�t from forest
conservation activities, especially when the damage is caused by external actors (Clements et al.,
2014). In addition, REDD+ implementers may intentionally overcompensate local opportunity
costs, which are di�cult to quantify, to ensure that participating communities experience
some net welfare gains (Ickowitz et al., 2017). These bene�ts may take time to materialize,
however, as new activities start to pay o�. One challenge is that certain groups often bear the
costs of forest conservation, i.e. the poorest may be the most dependent on clearing forest
for subsistence uses and adversely a�ected by conservation restrictions (Poudyal et al., 2018).
There is also increasing evidence of elite capture in REDD+ bene�t sharing schemes (Poudyal
et al., 2016). At the same time, wealthier households often glean more absolute bene�ts from
forests, meaning they would need higher compensation for foregone forest uses than poorer
households (Ickowitz et al., 2017). To deliver maximum well-being bene�ts, incentives should
be to a substantial proportion of households – and not just the village elites –, and local
perceptions of equity (i.e. perceived fairness of bene�ts) should be taken into account (Loft
et al., 2017).
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In this context, we performed an exploratory analysis to examine the relationships between
the treatment intensity of di�erent types of forest interventions, changes in forest cover (loss)
and changes in income and well-being at seventeen local REDD+ initiative sites in Brazil, Peru,
Cameroon, Tanzania, Indonesia and Vietnam (Sills et al., 2017). Note that for this analysis we
are looking at a broader set of forest interventions then those that are speci�cally labelled as
a REDD+ interventions. Although the datasets used (described in the next sections) include
a series of outcome variables broadly related to well-being, such as income (including cash
and subsistence components), asset indices and key selected assets, perceived well-being, and
perceived tenure security, among others, we chose to focus one objective measure of well-being
(i.e. income) and one subjective measure (i.e. perceived well-being) for this exploratory analysis.
We see this exploration as an important step towards the fourth objective of this dissertation,
namely to begin to understand the relationships between forest change outcomes and select
well-being outcomes of di�erent REDD+ interventions. Based on lessons learned from this
exploratory analysis, we provide recommendations for further steps toward a more rigorous
impact and trade-o� assessment of forest and well-being outcomes of REDD+ interventions. In
summary, the objectives of this analysis are to (1) explore the relationship between the treatment
intensity of di�erent types of forest interventions and changes in forest cover; and (2) explore
the relationship between the treatment intensity of di�erent types of forest interventions and
changes in household income and perceived well-being.

5.2 Material and methods

5.2.1 Study sites

For this analysis, we focused on seventeen local REDD+ sites in Brazil, Peru, Cameroon,
Tanzania, Indonesia and Vietnam as part of CIFOR’s GCS-REDD+ (�gure 5.2). GCS-REDD+
is characterized by a quasi-experimental research approach through which socio-economic
surveys were applied in nearly 130 villages and 4,000 households in 2010-2011 (pre-intervention)
and 2013-2014 (post-intervention). See Sunderlin et al. (2016) and Sills et al. (2017) for a
detailed description of the methods used for site selection, matching of intervention and control
villages, and random sampling of households to be interviewed. For this particular analysis,
we combined the results of these surveys with an analysis of Global Forest Change (GFC)
data (2000-2018) to assess how di�erent interventions are related to changes in forest cover,
income, and perceived well-being at the village level. We describe the operationalization of
and data collection associated with each of the three outcome variables in sections 5.2.4 (forest
cover loss), 5.2.6 (changes in household income) and 5.2.7 (perceived changes in household
well-being) below.
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Figure 5.2: REDD+ initiatives analyzed through CIFOR’s Global Comparative Study on REDD+

5.2.2 Categorization of village and household interventions

In the post-intervention period (2013-2014), we applied a survey to document all interventions
in the study villages that intentionally aimed to protect or restore forests. For this survey, we
�rst compiled a list of the main forest interventions applied at each site from project documents
and the �rst research phase. Interventions included those that were applied by the REDD+
implementers themselves, as well as higher-level policy interventions that directly a�ected
local forests and landholders (e.g. Brazilian command-and-control policy actions). A list of the
top ten interventions per village was veri�ed by the REDD+ implementer and village-level key
informants before �eldwork began. In the household interviews during the post-intervention
phase, we asked if the household had been involved in each intervention, and if so, how it
a�ected their land use and perceived well-being.

For disincentives, we focused on regulation, monitoring or enforcement activities that restricted
forest access or conversion (RFAC). At our study sites, these interventions included monitoring
and enforcement of forest protection laws and regulations; imposition of �nes; restrictions
on local forest clearing and burning; and community monitoring to clarify boundaries and
establish land use plans (Duchelle et al., 2017).

Incentives applied included conditional and non-conditional livelihood enhancements, as
well as forest enhancements. Conditional transfers (e.g. PES) were comprised of direct cash
payments and funds for sustainable production and infrastructure; they required participants to
protect or improve local forests in exchange for getting this support. Non-conditional livelihood
enhancements included support for a diversity of sustainable forestry, agriculture, and energy
activities. Forest enhancement activities were primarily support for restoration of degraded
lands with agroforestry systems, and enrichment planting with valuable timber and non-timber
forest products (Duchelle et al., 2017).

For enabling measures, we focused on tenure clari�cation and environmental education
activities. Tenure clari�cation (TC) activities aimed at resolving unclear or contested ownership
and access rights over local forestlands, trees and carbon. At our study sites, TC activities
included participatory forest mapping, land and resource con�ict resolution, and regularization
and change of tenure classi�cation (Sunderlin et al., 2018). Environmental education (EE)
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activities were information sharing, including via FPIC processes, along with outreach and
extension aimed at clarifying relevant environmental legislation and demonstrating the tangible
bene�ts associated with protecting and/or enhancing local forests.

5.2.3 Treatment intensity of interventions

For this analysis, our measure of treatment intensity (TI) was based on a combination of
households reached and households impacted by the di�erent intervention types (ITs) described
above. It bases on the rationale that the in�uence of an intervention does not solely depend on
the amount of people targeted by an intervention alone (i.e. the reach), but also depends on the
degree to which this intervention actually changed the behavior of the people targeted (i.e. the
impact). The treatment intensity score per intervention type and per village was calculated as
follows:

TreatmentIntensityIT,v = ReachIT,v × ImpactIT,v

=

∑nv

i=1 IT i

nv

×
∑m

j=1 LU j∑nv

i=1 IT i

=

∑m
j=1 LU j

nv

(5.1)

Correspondingly, the total treatment intensity score per village was calculated as follows:

TotalTreatmentIntensityv =
t∑

k=1

(∑m
j=1 LU j

nv

)
k

(5.2)

Where IT i ∈ [0, ...,∞] refers to the exposure of a household to each of the interventions per
intervention type. This is generally 1|0, but can be >1 in cases where a household is involved in
multiple interventions of the same type. nv is the number of household respondents per village.
LU j ∈ [0, 1] refers to either a reported land use change behaviour (1) or not (0).

∑nv

i=1 IT i is
the sum of instances where households are exposed to one or more intervention of the same
type. m is the number of instances per village where households reported to be involved in
an intervention type.

∑m
j=1 LU j is the sum of instances where households reported a change

in land use behaviour. t is the number of di�erent intervention types, which is six in our
study.

Figure 5.3 shows the average treatment intensity per country as derived from
TotalTreatmentIntensityv. Treatment intensity in Brazil and Peru is mainly de�ned by
restrictions on forest access and conversion, whereas Indonesia is characterized mostly by
non-conditional livelihood enhancements and forest enhancements.
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Figure 5.3: Average treatment intensity in all study villages per country

5.2.4 Change in forest cover loss as proxy for REDD+
e�ectiveness

We assessed annual forest cover loss in both the pre- and post-intervention period as well as
the di�erence in average annual deforestation rates between those periods as proxy for REDD+
e�ectiveness.

We used Global Forest Change (GFC) data (version 1.6), which includes both a tree cover density
in 2000 layer (treecover2000) and information on tree cover loss for 2001-2018 (lossyear) (Hansen
et al., 2013). GFC provides data on global tree cover loss annually at a spatial resolution of
30m. Following FAO (2000), we de�ned forests as areas with >10% tree cover. The treecover2000
layer was used to create forest masks using the 10% threshold. Accordingly, forest loss1 was
then de�ned as a conversion from >10% tree cover in 2000 to 0% in any of the years 2001-2018.
We calculated the areas of forest loss (pixels) and average annual forest cover loss (%) relative
to initial forest cover in 2000. See Bos et al. (2017) for an elaboration on the processing steps
using the GFC data. Spatially explicit boundaries of the villages were based on government
data; REDD+ implementer data; grid corner points as collected by �eld researchers using GPS
devices; or a bu�ering of household GPS points.

Next, as proxy for the e�ect of the REDD+ interventions on the deforestation trends, we
compared the average annual deforestation rates before and after the start year of the REDD+
initiative. To this end, we calculated the Before-After (BA) score for each of the villages,
following Bos et al. (2017):
1We refer to tree cover loss data when discussing the raw input data (Hansen et al., 2013). Tree cover refers to
the within-pixel coverage of trees. Once a forest mask is applied, based the FAO’s de�nition of forests, and we
discuss the tree cover loss in an aggregated area (e.g. a village area), we refer to forest cover loss.
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BA score α = x̄after − x̄before

with x̄after =
1

nafter

nafter∑
i=1

xi and x̄before =
1

nbefore

nbefore∑
i=1

xi

(5.3)

Where x̄after represents the average annual deforestation rate in the village area in the period
since the intervention started (i.e. post-intervention), as a percentage of the total forest area
in 2000; x̄before represents the average annual deforestation rate in the intervention area in
the period from the start year of measurement (here: 2001) up until the intervention started,
nafter and nbefore the number of years in respectively the after and before period. A negative α
would thus signify a reduction in average annual deforestation, and thus potentially signify a
positive REDD+ e�ect in terms of avoided deforestation.

5.2.5 Cluster building

As can be derived from �gure 5.4, exploratory analysis showed no clear relationship between
treatment intensity and REDD+ e�ectiveness, meaning that the expected negative relationship
between BA score (i.e. reduced deforestation rates) and TI (i.e. high degree of interventions
that changed behaviour) was not consistent across all study villages. To understand why some
villages with high treatment intensities experienced reduced deforestation rates, while others
were characterized by increased rates of deforestation, we used the TI and BA scores to de�ne
�ve clusters of villages with relatively homogeneous TI and BA scores. These homogeneously
distributed clusters allow us to examine the contextual conditions and intervention types that
might explain di�erences in (non)performance under similar levels of intervention application.
In addition, it provides a framework to explore post-intervention changes in income and
perceived well-being.

For the BA score classi�cation, we used the thresholds from Bos et al. (2017) to di�erentiate
between good, neutral and poor BA scores, representing decreased, stable and increased
deforestation rates respectively. The TI class cut-o� points were based on the median
of all village-level TI scores, meaning that class none represents TI scores of 0, class low
contains 0<TI<median(TI), and class high contains villages with TI>= median(TI). All possible
combinations of the BA and TI classes were then aggregated into �ve clusters (table 5.1,
�gure 5.4.

Next, we used these clusters as the basis for analysis on: (1) pre-intervention characteristics
comparisons (results in section 5.3.1), (2) intervention type composition comparisons (results in
section 5.3.2), and (3) the e�ects of REDD+ interventions on household income and perceived
well-being (results in section 5.3.3).
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Table 5.1: Cluster de�nitions
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5.2.6 Changes in household income

To understand the e�ects of REDD+ on household income, detailed income data (all cash and
subsistence sources, following Angelsen et al. 2014) were collected for over 4,000 households
in 130 villages in the 2010-2011 (pre-intervention) and 2013-2014 (post-intervention) periods,
using a BACI study design and calculated as income per adult equivalent. Treated and control
villages were reasonably well balanced at baseline (Sills et al., 2017), but we used matching on
several household and village characteristics (de Sassi et al., in prep) to maximize accuracy
in the comparison of intervention against control groups. For this particular analysis, we
did not di�erentiate between the dichotomous classes of control and intervention, but rather
focused on the degree of treatment intensity per village. Since forest interventions were
applied by non-REDD+ implementers in control areas, villages assigned to the ‘control’ class
in GCS-REDD+ can have a treatment intensity of >0. For our pre-intervention measure of
household income, we use the data from 2010-2011. For post-intervention change in income, we
calculated both absolute and relative di�erence between the 2010-2011 and 2013-2014 periods
of data collection at the village level.

5.2.7 Perceived changes in household well-being

To complement our analysis of changes in household income, we also analyzed subjective
measures of well-being. The Organisation for Economic Co-operation and Development (OECD)
de�nes assessments of subjective well-being as “. . .measures of how people experience their life
as a whole” (OECD, 2013, p. 10). Such measures of well-being have been increasingly adopted
in national and international levels and gained credibility through the demonstrated correlation
between these subjective measures and objective ones, such as income (Sunderlin et al., 2017;
Krueger and Schkade, 2008). Following the methods outlined in Sunderlin et al. (2017), we
used the data on households’ perceptions of change in well-being (better o� now, about the
same, worse o� now) in the two years prior to the post-intervention survey, and we assessed
di�erences between clusters. In addition, and as described earlier, for all interventions in which
households were involved, we asked them to evaluate the e�ect of each speci�c intervention
on their household’s well-being. Responses were categorized as very negative, negative, mixed
or no e�ects, positive, or very positive. For both sets of questions on well-being, we did not
impose a rigid de�nition of well-being to allow respondents to refer to their own conceptions
of well-being (Sunderlin et al., 2016).

5.3 Results and discussion
In this section, we �rst show the di�erences and similarities in certain characteristics between
the clusters in the pre-intervention period to assess whether theses clusters were already
inherently di�erent before interventions were applied (5.3.1). In this way, we aim to get a better
understanding of the contextual conditions that might explain di�erences in (non)performance
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under similar levels of REDD+ intervention application. Next, for the two clusters with high
TI (i.e. A and C), we show whether the composition of di�erent intervention types di�ered
between the two clusters (5.3.2). Then, we show the post-intervention changes in income and
perceived well-being for the di�erent clusters (5.3.3). We close with some study re�ections
(5.3.4).

5.3.1 Pre-intervention cluster characteristics

The main characteristics of the di�erent clusters before interventions were applied are shown
in �gure 5.5.

Cluster A, which represents high TI and a decrease in average annual deforestation rates, is
mainly observed in study villages in Brazil2 (�gure 5.5a). In fact, 46% of all Brazilian villages in
our sample were part of cluster A3. Conversely, cluster E, which represents no TI and neutral
or poor BA (E), is predominantly found in the Indonesian and Tanzanian study villages4. This
cluster alone contained 39% of the Indonesian and 43% of the Tanzanian villages. The other
clusters show a rather mixed country composition. Since some of the clusters appeared to be
dominated by single countries, we tested whether di�erences between clusters were mainly
country driven or not. The detailed results can be found in appendix D.1. Although we found
some obvious di�erences between countries including, but not limited to, income (change)
and initial forest cover, grouping villages by country did not result in distinct clusters of
treatment intensities and change in average annual deforestation rates (�gures D.1.1, D.1.2,
D.1.3). Thus, country-origin alone is not the explanatory factor for reductions or increases in
deforestation.

We applied Kruskal-Wallis Rank Sum tests (Hollander and Wolfe, 1973) and unpaired Wilcoxon
Rank Sum tests using the Stats package in R to assess whether the clusters di�ered at baseline
in terms of pre-intervention income, forest cover in 2000 and pre-intervention deforestation
rates5. Detailed results can be found in appendix D.2.

For pre-intervention income (�gure 5.5b), �ve cluster pairs turned out to be signi�cantly
di�erent from each other, that is A-C, A-D, A-E, C-E and D-E. Overall, villages in cluster A
showed higher initial incomes compared to most other clusters, and villages in cluster E showed
a lower initial incomes compared to most other clusters. We presume that this was largely due
to the di�erences in country composition between the clusters, rather than due to other cluster
characteristics.
2Note that the number of initiatives and correspondingly the number of villages di�ers between countries, resulting
in larger numbers of villages for Indonesia and Brazil, and fewer villages in Vietnam

3Nine out of these seventeen villages were classi�ed as intervention in the original research design. The remaining
six villages were control villages.

4The vast majority of the villages in cluster E (24 out of 26) were classi�ed as control villages in the original
research design. The remaining two villages were intervention villages.

5H0 location parameters of the distribution of each variable are the same in each cluster. The alternative (HA) is
that they di�er in at least one cluster.
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Figure 5.5: Pre-intervention cluster characteristics, showing (a) country composition, (b)
pre-intervention income, (c) forest cover in 2000 and (d) pre-intervention deforestation rates. Forest
cover in 2000 was de�ned as percentage of pixels with >10% tree cover in 2000 relative to the total
village area. Upper and lower extremes of whiskers represent Q3 + 1.5∗interquartile range (IQR) and
Q1− 1.5 ∗ IQR respectively, where IQR = Q3−Q1.

For forest cover in 2000 (�gure 5.5c), the p-value of the Kruskal-Wallis test was <0.05, while
none of the one-to-one cluster pairs appeared to be signi�cantly di�erent. We thus conclude
that a village’s pre-intervention forest cover degree did not determine a good or poor BA score
nor levels of REDD+ treatment intensity.

In contrast, for pre-intervention deforestation rates (�gure 5.5d), we found that six cluster
pairs di�ered signi�cantly: A-C, A-D, A-E, B-C, B-D and B-E. Generally speaking, villages in
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cluster A showed higher deforestation rates than most other clusters, and cluster E villages
showed lower deforestation rates than most others. This result might be driven by the unequal
country distribution in the clusters (�gure 5.5a) meaning that sites in Brazil are in general
characterized by higher deforestation rates, but it may also indicate that areas with high
deforestation pressures are more likely to reach ‘good’ reduced deforestation results from
interventions than areas with lower deforestation pressures. While REDD+ interventions often
target areas facing higher deforestation pressures (Sunderlin et al., 2018), initial deforestation
rates in cluster C villages (similar treatment intensities as cluster A, but with neutral or poor
BA scores) were signi�cantly lower than in cluster A.

Thus, we conclude that apart from forest cover in 2000, the clusters di�ered already considerably
before interventions were applied.

5.3.2 Intervention type di�erences between clusters

A detailed overview of the intervention type composition per cluster can be found in
appendix D.3. To examine whether di�erences in BA scores were associated with di�erences in
intervention type composition, we focused on a comparison of the clusters A and C, which have
similar TI scores, but di�er in BA. Using a Levene’s test, we checked whether we should assume
equal variances in intervention type speci�c TI scores between the clusters. The p-values of
these Levene’s tests were not signi�cant (i.e. p-values > 0.05), thus we assumed equal variances
in the corresponding two sample t-tests. Detailed results can be found in appendix D.4.

Comparing the treatment intensities for the separate intervention types of clusters A and C,
none were found to be signi�cantly di�erent (�gure 5.6). Thus, for our sample there is no single
intervention type that explains the di�erence between good and poor performance in terms
of reduced deforestation rates. Further research is needed to explore which combinations of
intervention types might be most e�ective. In addition, other aggregation methods than our
clusters may be tested as, for example, di�erent intervention types might di�er in e�ectiveness
between di�erent countries. Or, as discussed in chapter 4 of this thesis, these results might
indicate that a reduction in deforestation rate is not dependent upon a speci�c intervention
type, but this supposition evidently requires further research.

5.3.3 Post-intervention changes in income and well-being

Income change
We assessed the cluster di�erences in income change between the two data collection periods
in both absolute and relative terms. The results can be found in �gure 5.7. Again, we used
Kruskal-Wallis Rank Sum tests and unpaired Wilcoxon Rank Sum tests to assess whether the
clusters di�ered signi�cantly. Detailed test results can be found in appendix D.5. One cluster
pair appeared to di�er signi�cantly in absolute terms only (A-E) which is again a re�ection
of di�erences in country distribution across the clusters, whereas two cluster pairs di�ered
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Figure 5.6: Boxplots of intervention type composition for clusters A and C. RFAC= Restrictions on
forest access & conversion; CLE = conditional livelihood enhancements; NCLE = non-conditional
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clari�cation. Upper and lower extremes of whiskers represent Q3 + 1.5∗interquartile range (IQR)
and Q1− 1.5 ∗ IQR respectively, where IQR = Q3−Q1.

signi�cantly in both absolute and relative terms (A-C and A-D). Villages in cluster A experienced
predominantly increases in income while in cluster C and D this was mixed (both decreases
and increases) with medians and means close to 0. When assessing A and C as a single, merged
cluster (both clusters with high TI), we �nd that a high TI is not necessarily associated with an
increase (nor decrease) in income.

Perceived changes in household well-being
As mentioned earlier, in the post-intervention period (2013-2014), respondents were asked to
evaluate both their household’s general change in well-being as well as change in well-being
associated with di�erent interventions. Figure 5.8 shows the general perceived change in
well-being, while �gure 5.9 shows the reported e�ect of interventions on perceived well-being
for clusters A and C, aggregated by intervention type. The results for the other clusters and for
all households together can be found in appendix D.6. In addition, we clustered the e�ects on
perceived well-being per country. These results can be found in appendix D.7.

Relatively speaking, slightly more respondents from households in cluster A reported an
increase in perceived well-being than in other clusters. With regards to the e�ects of speci�c
intervention types, we found that interventions were generally associated with a positive
in�uence onwell-being, particularly interventions of forest enhancement, conditional livelihood
enhancements and environmental education. Of all intervention types, restrictions on forest
access and conversion was reported to have the most negative in�uence on perceived well-being,
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Figure 5.8: Respondents’ general perceived change in well-being reported in the post-intervention
phase. n represents number of respondents (households).

although the tendency was still towards the neutral or positive side. When comparing countries
(appendix D.7), households sampled in sites in Brazil, Peru and Cameroon were more negatively
a�ected by interventions, especially by RFAC, compared to households sampled in other
countries.
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5.3.4 Reflections on exploratory analysis

We begin by re�ecting on two methodological issues. First, although the thresholds for
classifying the BA scores have been tested before (Bos et al., 2017), the treatment intensity
thresholds that we used to de�ne the clusters can be considered arbitrary. A sensitivity
analysis would be needed to assess the e�ect the cut-o� values used on the results. A second
methodological caveat regards the mismatch in timeframes when assessing the change in
socio-economic variables (income, perceived well-being) and the change in deforestation rates.
The former is linked to the timing of the two surveys, that is, 2010-2011 for the pre-intervention
period and 2013-2014 for the post-intervention period. The timeframe for the deforestation
rates is 2001-2018, where the distinction between the before and after period is based on the
start year of the associated REDD+ initiative (see section 5.2.4). Still, we argue that using these
di�erent timeframes in parallel is justi�ed, as the e�ect on changes in land use behaviour
inherently requires longer timeframes to detect.

Second, our analysis is not designed as a cause-e�ect examination of REDD+ interventions on
forests and people, but is rather meant as an exploration of intervention treatment intensity,
and forest and household/village characteristics that might explain di�erences in deforestation
trends. Our focus on comparing clusters revealed some interesting �ndings as addressed above,
but other levels of aggregation and further regression analyses are required to further enhance
the understanding of the relations between REDD+ interventions and outcomes on forests and
people, as described below. We have experienced the bene�ts of a carefully and thoroughly
ex ante planned BACI research design, but also realize that in the absence of a controlled
lab environment, one needs to be adaptive when it comes to the ex post evaluation. For this
analysis, we diverted from the original BACI design of GCS REDD+ as in light of the particular
objectives of this analysis, some of our assigned control villages could be considered intervention
villages as they were not ‘free’ from forest interventions. Still, the results from our clustering
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method did show that the vast majority of villages in cluster E were both ex ante selected
as control villages in GCS-REDD+, and in practice turned out to be evident controls. This
result thus provides clear possibilities for further research to quantify the additionality of these
interventions on reducing deforestation and to further enhance the understanding of trade-o�s
between carbon and well-being outcomes.

The �ndings of this exploratory analysis should be put into context of the GCS REDD+ impact
evaluation results so far. First, we have observed no systematic negative impacts of REDD+ on
local welfare across the study sites (Sunderlin et al., 2017; Duchelle et al., 2018a). Yet, it is clear
that at sites where restrictions on forest access and conversion are applied more heavily (i.e. in
Brazil), negative e�ects on subjective well-bring are more pronounced due to households being
unable to clear forests to grow subsistence and cash crops (Sunderlin et al., 2017; Duchelle et al.,
2017). At the same time, such restrictions were extremely e�ective in reducing forest clearing,
especially among households at the Brazil sites that reported clearing larger areas of forest in
the pre-intervention period (Duchelle et al., 2017). In this context, incentives for smallholders
and communities (e.g. payments or infrastructure), signi�cantly alleviated the burdens of land
use restrictions (e.g. through law enforcement, protected areas) associated with some REDD+
initiatives (Duchelle et al., 2017).

5.3.5 Recommendations for further research

In this analysis, we did not �nd indications for general trade-o�s between forest conservation
and well-being outcomes. We did, however, �nd indications for potential trade-o�s at the
level of individual sites and villages that need to be studied further, possibly at the household
level. For example, within the cluster where reduced deforestation rates were observed (A),
some households encountered reductions in income as the lower whisker spread below 0
(�gure 5.7). Likewise, some households in cluster A, but also in clusters with lower treatment
intensities reported negative e�ects of certain interventions on their perceived well-being
(�gure 5.9). Conversely, we also observe villages with similar rates of forest loss but contrasting
income well-being patterns, suggesting that these relationships may not always have similar
behaviors.

Further research is needed to assess whether and under what conditions trade-o�s (and possible
synergies) between forest conservation and well-being outcomes exist at the village and
household level. As next steps of the analysis, we will return to the BACI structure of the data
to assess the impacts of treatment intensity of individual intervention types on deforestation,
income and perceived changes in well-being at a higher level of aggregation (i.e. three categories
instead of six: disincentives, incentives and enabling measures). Similarly, it may prove useful
to better understand the relationship between our constructed measure of treatment intensity
relative to the e�ect on perceived well-being of intervention types, as non-linear patterns in this
relationship may help explain some of the divergent results. Results of the impact evaluation
will also need to be better situated in context of the study countries and the speci�c theories of
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change of the di�erent REDD+ initiatives.

5.4 Conclusions
This exploratory analysis provides insights into changes in forest cover and select measures
of well-being in the context of di�erent forest-based climate change mitigation interventions.
We used data on forest cover change, treatment intensity and type of interventions, and two
measures of well-being (income and perceived well-being) from seventeen sites across the
tropics. Through assigning study villages into clusters with relatively homogenous deforestation
and treatment intensity levels, we assessed select forest and well-being characteristics of these
clusters in the pre-intervention period, and used the clusters to assess the e�ects of di�erent
treatment intensities on household incomes and perceived well-being.

Villages in the cluster with high treatment intensities and reduced deforestation rates
consisted mostly of Brazilian villages. These villages had higher income levels and higher
deforestation rates in the pre-intervention period compared to villages in other clusters. In
the post-intervention period, they were generally associated with an increase in income with
households reporting a slightly better level of perceived well-being compared to households in
other clusters. In this particular analysis, we did not �nd indications of pronounced trade-o�s
between forest conservation and well-being outcomes, nor did we �nd clear di�erences in
outcomes between di�erent intervention types. At the individual village and household level
however, there were indications for potential trade-o�s as some of the villages and households
in the cluster with high treatment intensities and reduced deforestation were associated with
lower incomes and reported negative e�ects of interventions on perceived well-being.

In general, the lack of robust studies on forest and land use outcomes in the REDD+ literature
makes it di�cult to draw general conclusions about carbon versus well-being trade-o�s
(Duchelle et al., 2018c). While disincentives may be the most e�ective REDD+ instrument for
conserving forests, other measures are needed to safeguard and enhance community well-being
(Simonet et al., 2018; Duchelle et al., 2018a). This exploratory analysis is one way of looking at
possible trade-o�s based on treatment intensity of forest interventions. This type of information
is particularly relevant in the context of REDD+ as it can provide valuable insights for policy
makers and practitioners interested in developing REDD+ strategies that can provide both
conservation and livelihood bene�ts.
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6.1 Main findings
The main objective of this thesis was to explore and empirically test the use of environmental
and socio-economic data sources to support subnational REDD+ performance assessment. As
described in section 1.4, four research questions delineated this objective. Below, each of these
questions is addressed, based on the �ndings from the corresponding chapters.

6.1.1 Forest change assessments – characteristics and consequences
for REDD+

What are the characteristics and consequences of di�erent forest change assessment
approaches?

This question was addressed in chapter 2. To assess whether REDD+ interventions had an e�ect
on their inherent goal -reducing emissions- forest changes over time need to be assessed, as well
as changes in those trends compared to a certain counterfactual. In chapter 2, two forest change
assessment methods were applied for comparison in data requirements and in measured REDD+
outcomes. The �rst, simpler Before-After (BA) method corresponds to the use of a conventional
reference level, which is based on the assumption that expected future deforestation under a
business-as-usual (BAU) scenario can be derived from historical deforestation (e.g. average of
the past decade). The quasi-experimental Before-After-Control-Intervention (BACI) approach
aims to control for confounding factors by assessing the unit of interest at two points in time
(before and after the treatment) and in two di�erent locations, that is, an area subjected to
the ‘treatment’ (intervention area) and an area that is not (control area). In this way, when
reductions in deforestation in the intervention area are observed, one can verify whether these
changes are additional to what could have been expected without interventions.

A comparison of the BA and BACI methods shows that BA is simpler in terms of study design
and data required. In principle, BA requires less decisions to be made and is thus less prone
to subjective choices in the study design. Yet, (absence of) reductions in deforestation cannot
be attributed to an intervention. BACI on the other hand is able to discern additionality
attributable to interventions. A disadvantage of BACI is that it requires careful ex ante control
site selection and matching, and that these results are sensitive to the decisions made in the
matching process. These �ndings are not limited to the context of forest change assessments,
however, but apply to other types of studies, such as socio-economic assessments on income
and perceived well-being.

Our �ndings from chapter 2 showed that several factors a�ected both BA and BACI
measurements in forest change assessments. For BACI to work, it is of vital importance that in
the reference period, the control and intervention areas show similar rates of deforestation.
Despite careful ex ante matching at village level, that was not the case in all of our study areas.
Further, low absolute deforestation numbers and peak years in�uenced both our BA and BACI



6

6.1 Main �ndings 113

scores.

In terms of REDD+ performance outcomes, BA and BACI led to somewhat di�erent conclusions.
Overall, forest change assessment using BACI showed better REDD+ performance compared
to BA, although the e�ect appeared to be more pronounced at the village (micro) level than at
initiative level (meso). This thus reveals that especially at micro level, there were intervention
villages with increasing deforestation rates during the intervention period, but these increases
were less than in corresponding control villages. This raises the question whether increasing
deforestation rates could still be considered ‘good’ REDD+ performance. On the other hand,
when the magnitude of deforestation reduction in the intervention area is smaller than in the
control area, a good BA score will correspond to a poor BACI score. The poor BACI score
then indicates that the reduced deforestation in the intervention villages cannot be considered
additional. While �gure 2.4 on page 35 only indicates the ‘net’ di�erences between BA and BACI
at the meso and micro level, �gure 6.1 shows these internal ‘shifts’ in more detail. Figure 2.4
shows that at the meso level, BA and BACI do not appear to di�er considerably. However,
�gure 6.1 indicates that these scores do di�er greatly when looking at initiatives separately. At
the micro level, the general tendency that BACI scores indicate better REDD+ performance is
visible in �gures 2.4 and 6.1 alike.

BACI was found to be more relevant at the local level, as constructing comparable control areas
at scales higher than landscape level becomes problematic. Thus, national REDD+ monitoring
would most likely not bene�t from a BACI approach, as national level control areas would be
di�cult, if not impossible, to de�ne.

6.1.2 Global data for local use – data uncertainty and consequences
for REDD+

How do the availability and choices of forest change datasets in�uence REDD+ measurements and
corresponding uncertainties?

This question was addressed in chapter 3. In recent decades, the remote sensing and forest
monitoring arena is characterized by rapid developments in terms of ever-increasing levels of
coverage, accuracy, and spatial, temporal and spectral detail. This resulted in a plethora of both
global map products and advanced open-source algorithms alike. These products and tools are
not always consistent or complementary, and data uncertainties a�ect REDD+ performance
estimates in unknown ways. Therefore, in chapter 3, we compared and tested two of these
products for the purpose of REDD+ performance assessment, of which one is a relatively easy
to use global dataset and the other requires more technical know-how and computing power
to implement, but is �exible and can be tailored to the local context.

Our results showed that the accuracies of the various data sources di�er at site level, although
on average neither one of the products excelled in accuracy consistently. Yet, both products
underestimated deforestation, as re�ected by the lower producer’s accuracy and corresponding
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higher omission errors. The use of a combination of both products as strati�cation for
area estimation and validated with a sample of high-resolution data showed promising
results. In these combined products, the expected trade-o�s in accuracies across change
classes (pre-intervention, post-intervention, no change) and across accuracy types (user’s
and producer’s accuracy) were negligible, so their use is advantageous over single-source
datasets. In four out of �ve sites, using a combination strategy based on the earliest detection
of deforestation, led to higher accuracies than the individual products. Yet, the direction (i.e.
reduced, stable or increased deforestation trends) and degree (i.e. magnitude of observed
changes) of REDD+ performance remained statistically uncertain, as in three sites CIs of the
deforestation estimates of pre- and post-intervention periods were overlapping. Although the
developments of new, more detailed map products and tools are usually associated with lower
uncertainties, a complete elimination of data uncertainty is unrealistic. Therefore, for REDD+
performance assessments, decisions need to be made concerning the degree of uncertainty that
can be considered acceptable for accounting purposes, especially at the local level.

Estimating deforestation using a visual validation with a strati�ed sampling strategy could
substantially reduce uncertainty in REDD+ performance assessments. The development of
more locally calibrated wall-to-wall products could make them more useful and applicable
for REDD+ purposes. Based on the results in chapter 3, it is advised to take note of and
address these data uncertainties and inaccuracies through conservative and transparent REDD+
accounting, while not relying on results from single-source currently available global datasets
alone.

6.1.3 Deforestation drivers and alignment with REDD+
interventions

How can an integrated deforestation drivers assessment help understand driver-intervention
alignment?

This question was addressed in chapter 4. The study builds upon empirical research on
early, local REDD+ projects in which di�erent mixes of interventions (i.e. enabling measures,
disincentives and incentives) were implemented by private sector and non-governmental
organizations.

The study in chapter 4 contributes to reducing the knowledge gap on how to assess drivers
at the local level in the context of REDD+. Our drivers assessment included a combination
of optical remote sensing, spatial modelling and socio-economic survey methods to gain a
better understanding of the complex interactions between driver elements (agents, activities,
environmental factors and underlying forces) at the local level. We found considerable
complementary power in combining di�erent methods. The research in chapter 4 showed that
no single dataset or method can reveal all facets (who, what, where, why, when and how much)
of DD drivers, which stresses the added value of applying a combined assessment.
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In terms of driver-intervention alignment, we found that higher level interventions focussing on
restrictive use of forest resources generally do not target a particular DD driver, while in general
local level interventions target primarily small holders and communities to either provide
non-conditional livelihoods enhancements and forest enhancement practices to stimulate
sustainable agricultural practices, or focus on tenure clari�cation to strengthen the position of
local small holders and communities against large scale exogenous drivers. Yet, some of the
drivers found in chapter 4 were inadequately addressed by the interventions included in the
study, particularly those related to practices like illegal mining and illegal logging. The inter-
and intra-site di�erences in drivers that were found underscore the importance of analysing
micro-level DD drivers in a spatially explicit way, and of designing and implementing locally
tailored interventions.

6.1.4 Changes in forest cover and well-being in the context of
di�erent REDD+ interventions

What are the relationships between changes in forests and non-carbon outcomes in the context of
di�erent REDD+ interventions?

This question is linked to the study in chapter 5. In that chapter, we applied a data-driven
approach through which we tried to ‘unpack’ di�erences in forest change outcomes by
evaluating both pre- and post-intervention characteristics in forest cover, forest cover change,
and well-being. This exploratory analysis will feed into a more rigorous impact evaluation in
the future, in order to understand what interventions worked in terms of reducing deforestation,
why it worked, why there, and, in case trade-o�s are observed, at what cost?

The study in chapter 5 comprised of an exploratory analysis to examine the relationships
between the treatment intensity and type of forest conservation interventions, changes in forest
cover (loss) and changes in income and well-being for di�erent types of forest interventions
(disincentives, incentives and enabling measures) in seventeen subnational sites across the
tropics. Clusters of villages were de�ned based on similar levels of intervention treatment
intensities and deforestation trends to compare pre- and post-intervention characteristics.

We found that villages in the cluster with high treatment intensities and reduced
post-intervention deforestation rates primarily consisted of Brazilian villages, had higher
income levels and deforestation rates in the pre-intervention period. In the post-intervention
period, these villages were generally associated with an increase in income and its households
reported a slight increase in perceived well-being. Di�erences in intervention types were not
driving these outcomes. No clear trade-o�s were found between forest conservation outcomes
(i.e. a reduction in deforestation) and well-being outcomes across all study sites as a whole.
Yet, trade-o�s in speci�c villages and households could not be ruled out. Further research is
needed at local scales and initiative level to apply a regression model and unpack impacts and
trade-o�s further. REDD+ strategies that can provide both conservation and livelihood bene�ts
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will ultimately be designed and improved based on empirical �ndings like these.

6.2 Reflection and outlook

6.2.1 Forest fires and tropical deforestation – a hot topic

At the time of writing (Third quarter of 2019), Brazil seems to head for a record-breaking year
in terms of forest �res, with the highest number in �re counts since recordkeeping of �res
started in 2013 (Gajanan, 2019). Meanwhile, in Indonesia, nearly a million people su�er from
respiratory problems caused by thousands of wild�res on Sumatra and Kalimantan (Paddock
et al., 2019). Fed by newspaper articles like these, international pressure is rising to counter
these �res and tropical deforestation. Yet, scientists warn to not jump to conclusions, as the
data on which these alarming newspaper headlines are based, are easily misinterpreted (Molijn,
2019).

To give an example, in the case of the Brazilian forest �res, the spatial resolution of imagery
from the Brazilian INPE satellites is approximately 375m. Each time a satellite passes over a
certain area and detects a �re, a �re count is recorded. One �re may encompass more than one
pixel, one pixel can contain multiple �res, and a single prolonged �re can be counted multiple
times when a satellite revisits the same area. To what extent these yearly �res are occurring in
forests or rather on agricultural �elds (i.e. for clearing biomass) is not easily detectable, and
takes months to verify (Molijn, 2019).

Thus, estimating the amount and magnitude of forest �res -and deforestation in general- is
complex, and the public debate would bene�t from information which is presented with a
transparent explanation vis-à-vis its abilities, limitations and accuracies.

6.2.2 Data-driven decisions in the policy cycle

The forest �re example in the previous section illustrates that (spatial) data on forests, forest
change, and changes in forest trends play an important role in raising awareness and in de�ning
a problem such as deforestation. In other stages of the policy cycle too, provision of transparent
information is important for informed decision-making (De Sy et al., 2018).

In the policy option and selection stage (�gure 6.2), based on spatially explicit information
on deforestation hotspots and DD drivers, policy-makers can decide what areas and which
agents to prioritise on, for example as part of national climate change mitigation plans written
for the Paris Agreement (i.e. NDCs). In the implementation stage, repeatedly updated forest
data allow for continuous progress tracking of interventions. Recent advances in remote
sensing allow for near-real time alert systems targeting logging or �res, for example with the
Brazilian DETER-B system (Diniz et al., 2015) and GLAD Forest Loss Alerts (Hansen et al.,
2016). Finally, for evaluation and performance assessment purposes, forest observation data
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Figure 6.2: Stages in the policy cycle

plays a role at di�erent scales, varying from estimating UNFCCC stock-takes at the global level,
to national-level GHG and NDCs progress reporting, and locally, as discussed in this thesis,
intervention e�ectiveness and impact evaluation. In order to proceed towards an optimal
use of data and achieve e�ective policies, we have to consider whether we are doing things
right in terms of data usage and assessment methodology (chapter 2,3,4), and whether we are
focussing on the right things (drivers and interventions) in the �rst place (chapter 4,5, see also
�gure 1.2 on page 25). These two questions will be discussed in the following two sections
respectively.

6.2.3 Are we doing things right? Monitoring & evaluation

The question ‘are we doing things right’ refers to the methodological and data related factors to
consider when monitoring forests, assessing drivers and evaluating REDD+ performance.

Chapters 2 and 3 have shown that both the assessment method -and corresponding reference
level type- and datasets used may in�uence the direction and degree of the measured REDD+
e�ect considerably. This raises the issue that data could be framed in such a way, that it tells
the story the reporting agency wants to present, thus undermining the values of integrity
and trust. In light of the diversi�cation of REDD+ implementers, transparent monitoring
and evaluation should therefore be considered the cornerstones in building the credibility
of REDD+. Additionally, independent (non-state) stakeholders including UNFCCC experts
and local implementers require data for their own performance assessments, for verifying
assessments of other agencies or governments, or for global stock-take purposes. Therefore, it
is likely that scientists and other independent organizations will play an increasingly important
role in the provision of data and tools.

Chapter 4 has shown that integrating di�erent datasets or methods helps to better understand
all facets of deforestation drivers (who, what, where, why, when and how much) compared to a
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single dataset alone. For evaluations on local deforestation drivers it is therefore advised not to
rely on single-source datasets or methods. The value and use of drivers assessments will be
discussed in more detail in the next section.

As discussed in chapters 2 and 5, in order to attribute observed changes to certain interventions
applied, one requires a study design which includes control units as counterfactual, such as the
BACI design. Inherent to this BACI design is the matching procedure, in which intervention
and control sites are matched based on key factors that could have been potential confounders.
Still, intervention and control villages di�ered in the sense that the majority of intervention
villages, but a minority of control villages, had prior experience with conservation NGOs
(Lin, 2012; Sills et al., 2017), which indicates that the location of local REDD+ initiatives is
not random, but often a continuation of existing conservation e�orts (Sills et al., 2014). This
might be a confounding factor too, in the sense that people who have been taught sustainable
agricultural or forest conservation practices prior to REDD+, might be more likely to show
more sustainable land use behaviour regardless of the REDD+ intervention.

This phenomenon is not unique to conservation studies, as it has very similar characteristics
to the so-called ‘healthy donor e�ect’ in medical studies (e.g. Ullum et al., 2015). In these
studies, blood donors are often associated to have lower mortality rates and fewer health issues
compared to non-donors. This cannot be attributed to the blood donation itself however, but is
rather caused by the fact that blood donors are often inherently healthier than non-donors, as
their health status is repeatedly being checked throughout their donation career leading to
informed and health-conscious donors (Pe�er, 2015). Thus, one could argue that intervention
villages in conservation studies may be considered ‘healthy donors’ too, which needs to be
accounted for in order to show unbiased REDD+ performance results.

6.2.4 Are we doing the right things? Interventions, drivers &
outcomes

The question ‘are we doing the rights things’ refers to the interventions, to assess whether
these are targeting the drivers (chapter 4), and in terms of outcomes, to what extent these
interventions a�ect forest change and well-being (chapter 5).

In the past decade in which REDD+ design and monitoring has developed, but also in this
thesis, most emphasis has been on developing performance assessments methods for REDD+.
Few studies have focussed on measuring actual REDD+ performance assessment on the ground
(Duchelle et al., 2018c), perhaps because overall REDD+ progress has been much slower than
anticipated (Angelsen et al., 2012). Scholars have attributed the overall underwhelming progress
to a lack of (continued) �nance (Norman and Nakhooda, 2015; Duchelle et al., 2018b) and the
related low treatment intensity (Fischer et al., 2016) or the slow progress on land tenure and
carbon rights reform (e.g. Dunlop and Corbera, 2016). Most local REDD+ initiatives have
focused mainly on smallholders, even though the drivers of deforestation often operate at
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larger scales (Luttrell et al., 2018), so for enhancing the carbon performance it is argued to
broaden the focus of REDD+ interventions to other agents of deforestation (Bos et al., 2017;
Thaler and Anandi, 2017). One of the main rationales for setting up MRV systems and doing
performance assessments has been to get results-based payments o� the ground (Wong et al.,
2016; Korhonen-Kurki et al., 2013; La Viña and de Leon, 2014), but perhaps obtaining an
enhanced understanding of the complex and changing interactions of interventions and drivers
is an additional value of doing performance assessments that is currently underestimated.

6.2.5 Towards robust performance assessments

The word ‘towards’ in the title of this thesis implies that the �ndings of this study contribute
to the development of performance assessments, by providing insights in the implications of
choosing certain datasets or methods, and by exploring ways to examine driver-intervention
alignment and the intervention-outcome relations. But which promising developments in terms
of data provision lie ahead and which features for setting up a robust REDD+ performance
assessment system are still missing?

Developments in forest monitoring
As discussed earlier in this synthesis (section 6.1.2), the data and tools available for monitoring
forest change are evolving rapidly. In spaceborne remote sensing, for example, advances in
global radar data from Sentinel-1 allow near real-time forest monitoring (Reiche et al., 2016).
Compared to optical remote sensing, radar has the ability to penetrate through clouds and haze,
and to detect degradation (Olander et al., 2008). Increasingly available airborne and terrestrial
LiDAR (Light Detection And Ranging) data help mapping the vertical forest structure, to
estimate tree heights, tree volume and biomass (GOFC-GOLD, 2016; Hyyppä et al., 2012).
Monitoring agencies including REDD+ countries need to have the technical capacity and funds
to truly bene�t from these technological advances (Petersen et al., 2018; Romijn et al., 2015).
To this end, Norway recently pledged to spend 53 million United States Dollar (USD) on high
resolution imagery (Solsvik, 2019) and granting collaborating REDD+ countries free access to
bring transparent forest monitoring for conservation purposes to the next level.

This thesis has focussed mainly on the activity data (forest area change) component of carbon
assessments (see also chapter 1), as it was assumed thatwhen plot level data on carbon stocks and
�uxes are not available, andwhen carbon data are thus limited to a single emission factor per site,
the amount of forest loss (activity data) is driving the emissions from deforestation. Currently,
there is not yet a single biomass dataset that serves all users’ needs with regards to area coverage,
timeliness and uncertainty requirements (Herold et al., 2019). Yet, developments in carbon
data provision (see chapter 1), and developments in satellite missions (e.g. ESA’s GlobBiomass
project and the Sentinel satellites) allow to estimate emission factors with much greater detail
and accuracies, so future studies will bene�t from these developments to incorporate these in
REDD+ performance assessments.
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Scalar integration – a ‘nested’ approach
REDD+ is inherently a multi-level framework. As Korhonen-Kurki et al. (2012, p. 91) put it,
“local people face global demands for climate change mitigation that must be e�ected through
existing and emerging national and subnational institutions and structures”. While most funds
are organised at the national level through bilateral agreements, the fundamental idea of
REDD+ was that carbon rights holders receive direct compensation for their activities and
corresponding avoided emissions.

Just as the payments, also policy implementations have to cross di�erent levels, as explained
by Seymour and Angelsen (2009, p. 295): “National REDD+ institutions must make upward
and downward linkages: transferring funds from the national to the local level, managing
incentives (both policy measures and payments) and channelling information from the local to
the national and international levels”. Although national monitoring systems are being put in
place with increased levels of detail and accuracy, in light of results-based payments there are
calls to adjust the level of monitoring to the level in line to where the payments are made (Vatn
and Angelsen, 2009). A ‘nested’ approach to REDD+ would entail that multiple levels of forest
governance are linked, also through translocal and transnational networks (Visseren-Hamakers
et al., 2012). In terms of carbon monitoring, this nesting would also prevent double counting
and ine�cient mitigation. This requires decisions on what to measure, at what scale and e�ort,
and how reporting from local to international levels should have to take place (de Sassi et al.,
2015). The broadening set of implementers makes this scalar integration di�cult, yet it is
crucial for attributing the performance to interventions at higher levels and to assess potential
leakage.

Disciplinary integration
This thesis assessed outcomes in terms of potential social co-bene�ts or trade-o�s by focusing
on income and perceived well-being only. Certainly, this is a simpli�cation, as other social
elements have to be considered too, including, but not limited to, status and change in tenure
security (Sunderlin et al., 2014c) and women’s empowerment (Larson et al., 2018). Moreover,
this thesis did not consider how to monitor the potential environmental co-bene�ts or trade-o�s
with respect to, for example, biodiversity (Larson et al., 2018).

In a recent call for an integrated monitoring approach, opportunities for scalar and disciplinary
integration for REDD+ monitoring were suggested (de Sassi et al., 2015) (see �gure 6.3). An
example of a scalar integration is the combined use of both local level forest inventory plot data
and higher level remotely sensed wall-to-wall maps in national forest monitoring systems. An
example of disciplinary integration is the combined monitoring of carbon and socio-economic
outcomes, to detect potential synergies or trade-o�s (see also chapter 4). Since reductions
in carbon emissions must be achieved while aiming for co-bene�ts and avoid doing harm to
social and environmental values over time and across scales (Brown et al., 2008), integrated
monitoring for REDD+ is essential.
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Figure 6.3: Opportunities for disciplinary and scalar integration for REDD+ monitoring. Concepts
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cross-disciplinary elements. (Adapted from de Sassi et al., 2015)

This thesis has shown that REDD+ performance assessments at the subnational level are not

set in stone yet, and that they are affected by choices in method, datasets and corresponding

data uncertainties. Nevertheless, with recent and future technological developments and

increasing experience through empirical studies on the ground, accurate, transparent and

timely information about the state of the forests and the people who depend on them is within

reach.
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Appendix A Supplementary material for chapter 2

A.1 Village boundary delineation

In Tanzania, REDD+ proponents provided o�cial village boundary data. In Indonesia, �eld
researchers used boundaries provided by the government for the study villages as a base for
veri�cation with key informants. Village boundaries were later modi�ed through digitalization
in ArcGIS/Google Earth based on local knowledge of village limits. In Peru, proponents and
other partners provided o�cial spatial data for study villages at the Ucayali site and individual
Brazil nut concession boundaries for the Madre de Dios site. Village units in Madre de Dios
were constructed by aggregating concessions whose owners were members of the same social
association and/or in close spatial proximity to one another. In Cameroon, �eld researchers
geo-referenced a few known borders with the assistance of key informants for subsequent
digitalization in ArcGIS to delineate village boundaries. In Brazil, village associations are social
rather than spatial units, so village boundaries were created through either spatializing social
constructs of villages in the �eld or bu�ering and merging georeferenced household points. In
Vietnam, the lowest o�cial jurisdictional level is commune, which consists of a set of villages,
so village boundaries were also estimated using a bu�er around household points. In both
cases, additional o�cial spatial data (e.g. agrarian reform settlement project boundaries in
Brazil, and district limits in Vietnam) were used to inform village extent.

A.2 General results extended

Table A.2 (page 139) shows an extended version of the summary statistics in section 2.3.1.

A.3 BA and BACI classified scores for intensive sites only

Figure A.3 (page 140) reports results at both the meso and micro level for the 16 ‘intensive’
sites only, which as described in section 2.2.4 include both intervention and matched control
villages. These results are mostly consistent with the results presented in �gure 2.4, con�rming
our �nding (presented in section 2.3.1) that performance generally looks better at the micro
than at the meso level (i.e. evaluating REDD+ at the micro level makes it appear more e�ective
in terms of reducing deforestation). Figure A.3 con�rms that this �nding is not due to the
di�erence in sample size for the meso and micro level analysis reported in �gure 2.4.

A.4 Test results for bias detection

Table A.4 (page 141) shows the results of the Levene’s and T-Tests to test for bias in the before
period (see section 2.3.2).
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Figure A.3: BA and BACI classi�ed scores with equal sample sizes for both levels.
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Appendix B Supplementary material for chapter 3

B.1 Decision trees for reclassification strategies

Figure B.1 (page 143) shows the decision trees that were used to de�ne the reclassi�cation
values.

After applying an overlay of the two map products, every pixel from the sample was reclassi�ed
according to the di�erent reclassi�cation strategies. The squares represent the possible
pixel-level combinations of the two datasets. The rightmost column shows the decision in each
of the reclassi�ed map products.

B.2 Accuracies with 95%CI for all original and reclassified
products

Table B.2 (page 144) shows all accuracies (UA, PA, OA) for all original and reclassi�ed
products.

B.3 Paired T-tests

Table B.3 (page 145) shows the results of the paired T-tests, to test if the accuracies of the
original and reclassi�ed products di�er signi�cantly.

B.4 Relative Accuracy Changes Per Site

Figure B.4 (pages 146-147) shows the Relative Accuracy Changes of both map products for each
individual site.



Appendix B Supplementary material for chapter 3 143

Map classes in original products
Map class

in combined product

Any no change? Then adopt as no change.
Both change? Take latest

IV
 C

on
se

rv
at

iv
e 

- 
la

te

>= 1 product
no change

no change (3)True

>= 1 product
change after

change after (2)

2 products:
change before

False

True

False

change before (1)True

3
3

3
2

3
1

2
3

1
3

2
2

2
1

1
2

1
1

Any no change? Then adopt as no change.
Both change? Take earliest

III
 C

on
se

rv
at

iv
e

 -
 e

ar
ly

>= 1 product
no change

no change (3)True

>= 1 product
change before

change before (1)

2 products:
change after

False

True

False

change after (2)True

3
3

3
2

3
1

2
3

1
3

2
2

2
1

1
2

1
1

Adopt value of dataset that detects a disturbance the latest,

regardless of the other dataset’s detection

>= 1 product
change after

change after (2)True

>= 1 product
change before

change before (1)

2 products:
no change

False

True

False

no change (3)True

3
3

3
2

2
3

2
2

2
1

1
2

3
1

1
3

1
1

II 
S

en
si

tiv
e 

- 
la

te

Adopt value of dataset that detects a disturbance the soonest,
regardless of the other dataset’s detection

>= 1 product
change before

change before (1)True

>= 1 product
change after

change after (2)

2 products:
no change

False

True

False

no change (3)True

3
1

2
1

1
3

1
2

1
1

3
2

2
3

2
2

3
3

I S
en

si
tiv

e 
- 

ea
rly

For each individual product (GFC & BFAST):
Change in before or after? Then adopt as change.
No change? Then adopt as no change

V
 T

im
el

es
s

Change before OR 
change after

change (1)True

>= 1 product
change after

no change (3)

False

True

21

3

Legend
Pixel with conflicting values for the two products
(one “change in before period”, and other “change in after period”)

321
Pixel value:
Change in before period

Pixel value:
Change in after period

Pixel value:
No change

1
2

Figure B.1: Decision trees for reclassi�cation strategies
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Table B.2: Accuracies with 95%CI for all original and reclassi�ed products

Product Strata UA PA OA Product Strata UA PA OA

Pe
ru

GFC
Change before 0.91±0.08 0.40±0.26

0.95±0.04

In
do

ne
sia

-A

GFC
Change before 0.85±0.12 0.26±0.11

0.85±0.06Change after 0.59±0.11 0.73±0.13 Change after 0.79±0.07 0.79±0.19
No change 0.96±0.04 0.99±0.00 No change 0.87±0.08 0.99±0.01

BFAST
Change before 0.86±0.08 0.49±0.32

0.95±0.04 BFAST
Change before 0.80±0.10 0.43±0.17

0.83±0.06Change after 0.70±0.12 0.54±0.13 Change after 0.76±0.09 0.58±0.15
No change 0.96±0.04 0.99±0.00 No change 0.84±0.08 0.96±0.02

I
Change before 0.84±0.07 0.64±0.40

0.96±0.04 I
Change before 0.78±0.09 0.56±0.21

0.88±0.06Change after 0.67±0.11 0.94±0.06 Change after 0.76±0.08 0.84±0.20
No change 0.98±0.04 0.99±0.00 No change 0.91±0.08 0.95±0.02

II
Change before 0.84±0.08 0.57±0.36

0.96±0.04 II
Change before 0.77±0.11 0.45±0.17

0.86±0.06Change after 0.58±0.10 0.97±0.06 Change after 0.70±0.07 0.86±0.20
No change 0.98±0.04 0.99±0.00 No change 0.91±0.08 0.95±0.02

III
Change before 0.97±0.02 0.33±0.21

0.94±0.04 III
Change before 0.91±0.06 0.23±0.09

0.82±0.06Change after 0.89±0.09 0.30±0.05 Change after 0.96±0.06 0.52±0.13
No change 0.94±0.04 1.00±0.00 No change 0.80±0.07 1.00±0.00

IV
Change before 1.00±0.00 0.26±0.16

0.94±0.04 IV
Change before 1.00±0.00 0.13±0.05

0.81±0.06Change after 0.54±0.07 0.33±0.06 Change after 0.80±0.05 0.54±0.13
No change 0.94±0.04 1.00±0.00 No change 0.80±0.07 1.00±0.00

V-GFC Change 0.86±0.06 0.54±0.27 0.95±0.04 V-GFC Change 0.96±0.04 0.62±0.14 0.88±0.06No change 0.96±0.04 0.99±0.00 No change 0.87±0.08 0.99±0.01

V-BFAST Change 0.89±0.06 0.55±0.27 0.96±0.04 V-BFAST Change 0.84±0.06 0.55±0.13 0.84±0.06No change 0.96±0.04 0.99±0.00 No change 0.84±0.08 0.96±0.02

Ta
nz
an
ia

GFC
Change before 0.41±0.15 0.05±0.05

0.83±0.08

In
do

ne
sia

-B

GFC
Change before 0.97±0.05 0.60±0.08

0.94±0.01Change after 0.26±0.15 0.10±0.08 Change after 0.74±0.08 0.84±0.09
No change 0.86±0.08 0.97±0.01 No change 0.96±0.01 0.99±0.01

BFAST
Change before 0.90±0.10 0.14±0.12

0.89±0.08 BFAST
Change before 0.79±0.08 0.81±0.08

0.93±0.01Change after 0.71±0.15 0.50±0.32 Change after 0.92±0.08 0.50±0.09
No change 0.90±0.08 0.99±0.01 No change 0.94±0.01 0.97±0.01

I
Change before 0.67±0.11 0.18±0.15

0.87±0.08 I
Change before 0.81±0.08 0.98±0.03

0.97±0.01Change after 0.54±0.14 0.54±0.34 Change after 0.86±0.08 0.98±0.02
No change 0.91±0.08 0.96±0.01 No change 1.00±0.00 0.96±0.01

II
Change before 0.67±0.13 0.15±0.13

0.87±0.08 II
Change before 0.80±0.08 0.87±0.03

0.96±0.01Change after 0.53±0.14 0.54±0.34 Change after 0.76±0.07 1.00±0.00
No change 0.91±0.08 0.96±0.01 No change 1.00±0.00 0.96±0.01

III
Change before 0.77±0.10 0.04±0.03

0.85±0.08 III
Change before 0.98±0.02 0.54±0.05

0.91±0.01Change after 0.96±0.06 0.06±0.04 Change after 0.96±0.06 0.34±0.03
No change 0.85±0.08 1.00±0.00 No change 0.91±0.01 1.00±0.00

IV
Change before 1.00±0.00 0.01±0.01

0.85±0.08 IV
Change before 1.00±0.00 0.43±0.04

0.90±0.01Change after 0.71±0.06 0.06±0.04 Change after 0.66±0.05 0.36±0.04
No change 0.85±0.08 1.00±0.00 No change 0.91±0.01 1.00±0.00

V-GFC Change 0.42±0.16 0.11±0.07 0.84±0.08 V-GFC Change 0.94±0.04 0.77±0.06 0.95±0.01No change 0.86±0.08 0.97±0.01 No change 0.96±0.01 0.99±0.01

V-BFAST Change 0.91±0.08 0.43±0.22 0.90±0.08 V-BFAST Change 0.84±0.06 0.70±0.06 0.93±0.01No change 0.90±0.08 0.99±0.01 No change 0.94±0.01 0.97±0.01

Vi
et
na
m

GFC
Change before 0.99±0.03 0.29±0.08

0.80±0.06Change after 0.68±0.06 0.43±0.16
No change 0.81±0.08 1.00±0.00

BFAST
Change before 0.99±0.02 0.73±0.17

0.89±0.06Change after 0.88±0.07 0.59±0.21
No change 0.88±0.08 1.00±0.01

I
Change before 0.98±0.02 0.80±0.18

0.92±0.06Change after 0.89±0.07 0.68±0.24
No change 0.91±0.08 1.00±0.01

II
Change before 0.99±0.03 0.62±0.14

0.89±0.06Change after 0.73±0.06 0.68±0.24
No change 0.91±0.08 1.00±0.01

III
Change before 0.99±0.02 0.40±0.09

0.80±0.06Change after 0.93±0.07 0.33±0.12
No change 0.78±0.07 1.00±0.00

IV
Change before 1.00±0.00 0.22±0.05

0.78±0.06Change after 0.64±0.05 0.34±0.12
No change 0.78±0.07 1.00±0.00

V-GFC Change 1.00±0.00 0.47±0.10 0.84±0.06No change 0.81±0.08 1.00±0.00

V-BFAST Change 0.99±0.02 0.69±0.15 0.90±0.06No change 0.88±0.08 1.00±0.01
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Figure B.4: Relative Accuracy Changes Per Site
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Figure B.4: Relative Accuracy Changes Per Site (continued)
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Appendix C Supplementary material for chapter 4

C.1 Socio-economic survey questions

Perceived forest area and forest quality change at village level (mixed gender and
women focus group discussions)
Section: Change in forest area, quality and use

1. Overall, has the net area of forest cover in this village increased, stayed the same, or
decreased since two years ago? Codes: 1 = increased; 2 = stayed the same; 3 = decreased; -8
= does not apply; -9 = respondents do not know

2. Overall, has forest quality increased, stayed the same, or decreased since two years ago?
By forest quality we mean the availability of goods and services of the forest related to
density of woody material, forest health, and biological productivity and diversity. Codes:
1 = increased; 2 = stayed the same; 3 = decreased; -8 =does not apply; -9 = respondents do
not know

Perceived forest pressure sources at village level (mixed gender and women focus
group discussions)
Section: Change in forest area, quality and use

1. If there has been change in the area of forest cover in the village since two years ago,
please tell us in what land tenure areas these changes occurred and the three main on-site
causes of those changes. (coded per land tenure type, type (increase/decrease) and ranking
of causes of forest change)

2. If there are particular driving forces related to these forest cover changes (e.g. change of
policies, rules, prices, REDD+ project), please explain what those forces are.

3. If there has been change in forest quality since two years ago, please tell us in what land
tenure areas these changes occurred, and the three main on-site causes of those changes.
(coded per land tenure type, type (increase/decrease) and ranking of causes of forest change)

4. If there are particular driving forces related to these changes in forest quality (e.g. change
of policies, rules, prices), please explain what those forces are.

Section: Change in forest cover and forest income in the last two years

We want to know how your forest-based income has changed in the last two years (24 months)
and the reasons for that change.

1. Has your household cleared any forest during the past two years? 1 = yes; 0 = no

2. If yes, how much forest was cleared in total in the last 2 years? Indicate total area cleared
in hectares, in up to 3 parcels total.
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3. If yes, whatwas themain purpose of clearing the forest land? Codes: 1=cropping; 2=pasture;
3=tree plantation; 4=non-agricultural uses

4. If for cropping, which principal crop was grown? See code book: Product

C.2 Reported confidence levels for forest conversion reporting using
high resolution imagery

Brazil – Transamazon
For the samples where a forest conversion was found (n=197 out of n=270), 82% (n=161) were
marked with high con�dence, 18% (n=35) with middle con�dence and 0.5% (n=1) with low
con�dence. Most of the samples with middle or low con�dence (n=31) were in the agriculture
(here: pasture) conversion class. In those cases, the resolution of the available imagery was not
high enough to con�dently mark these as pastures.

Peru – MDD
71% (n=145) of the forest conversion samples (n=203) were marked with high con�dence, 28%
(n=57) with middle, and 1 sample with low con�dence. Most of the samples with a middle
con�dence were in the agriculture and degradation class (n=28 and n=25 respectively). Here,
it often encompassed small-scale disturbances with some degree of regrowth and recurrent
degradation over time, sometimes containing bushy cropland.

Indonesia-KCCP
76% (n=156) of the forest conversion samples (n=206) were marked with high con�dence, 24%
(n=50) with middle con�dence, and no samples were marked as low con�dence. The samples
with middle con�dence occurred mostly in the agriculture (n=15), degradation (n=18) and tree
plantation (n=16) classes. In most of these cases the distinction between degraded forest and
shrub-mix dryland farming was rather di�cult to make. For the tree plantation samples with
middle con�dence, it was unsure if it was oil palm or some other tree crop (when it concerned
plantations in an early stage).

Indonesia-Katingan
Of the forest conversion samples (n=203), 62% (n=126) and 38% (n=77) were marked with high
and middle con�dence respectively. Most of the samples with middle con�dence were in the
degradation class. Due to cloud coverage in the high-resolution imagery, it was often not clear
if those samples marked as degraded were later converted to oil palm or not.

Vietnam – Cat Tien
Of the forest conversion samples (n=227), 71% (n=162) and 29% (n=65) were marked with high
and middle con�dence respectively. The samples with middle con�dence occurred mainly in
the agriculture (n=39) and degradation (n=21) class. In the agriculture class, this was caused
by uncertainty whether some pixels where covered with an orchard or cashew plantation
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(agriculture) or some other type of plantation. Uncertainty in the degradation class was caused
by disturbed forest with partial regrowth.

C.3 Remotely sensed forest loss and follow-up land use/cover

Left maps show forest cover loss in 2001-2015, source Global Forest Watch (Hansen et al., 2013)
and forest de�nition thresholds applied (section 4.2.4). Right maps show the forest conversion
samples and corresponding follow-up land cover and land use types as observed with high
resolution imagery.

(a) Brazil-Transamazon
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(b) Peru-Madre de Dios

(c) Indonesia-KCCP
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(d) Indonesia-Katingan

(e) Indonesia-Vietnam-Cat Tien

Figure C.3: Remotely sensed forest loss and follow-up land uses and land covers
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C.4 Random Forest prediction variables

Figure C.4 shows the spatial distribution and density plots of all the Random Forest prediction
variables per site. From left to right, top to bottom: elevation (I), slope (II), annual precipitation
(III), annual temperature (IV), distance to agriculture (V), distance to roads (VI), and distance to
waterways (VII).
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C.5 Error matrices Random Forest model predictions

Brazil -Transamazon

Error matrix (pixel counts) Error matrix (estimated area proportions) Accuracies

Reference (input) Reference (input)

R
F 

pr
ed

ic
ti

on

Loss Stable Total Wi

R
F 

pr
ed

ic
ti

on

Loss Stable Total (Wi) Loss Stable

Loss 248,142 17,389 8,576,936 0.808 Loss 0.755 0.053 0.808 User's 0.935 0.848

Stable 40,294 225,237 2,044,336 0.192 Stable 0.029 0.163 0.192 Producer's 0.963 0.755

Total 288,436 242,626 10,621,272 1.000 Total 0.784 0.216 1.000 Overall 0.918

Peru-MDD

Error matrix (pixel counts) Error matrix (estimated area proportions) Accuracies

Reference (input) Reference (input)

R
F 

pr
ed

ic
ti

on

Loss Stable Total Wi
R

F 
pr

ed
ic

ti
on

Loss Stable Total (Wi) Loss Stable

Loss 550,447 1,062,626 1,613,073 0.146 Loss 0.050 0.096 0.146 User's 0.341 0.999

Stable 8,242 9,400,193 9,408,435 0.854 Stable 0.001 0.853 0.854 Producer's 0.985 0.898

Total 558,689 10,462,819 11,021,508 1.000 Total 0.051 0.949 1.000 Overall 0.903

Indonesia-KCCP

Error matrix (pixel counts) Error matrix (estimated area proportions) Accuracies

Reference (input) Reference (input)

R
F 

pr
ed

ic
ti

on

Loss Stable Total Wi

R
F 

pr
ed

ic
ti

on

Loss Stable Total (Wi) Loss Stable

Loss 2,526,043 1,881,180 4,407,223 0.287 Loss 0.165 0.123 0.287 User's 0.573 0.976

Stable 258,710 10,670,168 10,928,878 0.713 Stable 0.017 0.696 0.713 Producer's 0.907 0.850

Total 2,784,753 12,551,348 15,336,101 1.000 Total 0.182 0.818 1.000 Overall 0.860

Indonesia-Katingan

Error matrix (pixel counts) Error matrix (estimated area proportions) Accuracies

Reference (input) Reference (input)

R
F 

pr
ed

ic
ti

on

Loss Stable Total Wi

R
F 

pr
ed

ic
ti

on

Loss Stable Total (Wi) Loss Stable

Loss 9,772,681 3,302,353 13,075,034 0.371 Loss 0.277 0.094 0.371 User's 0.747 0.946

Stable 1,190,706 21,012,218 22,202,924 0.629 Stable 0.034 0.596 0.629 Producer's 0.891 0.864

Total 10,963,387 24,314,571 35,277,958 1.000 Total 0.311 0.689 1.000 Overall 0.873

Vietnam-Cat Tien

Error matrix (pixel counts) Error matrix (estimated area proportions) Accuracies

Reference (input) Reference (input)

R
F 

pr
ed

ic
ti

on

Loss Stable Total Wi

R
F 

pr
ed

ic
ti

on

Loss Stable Total (Wi) Loss Stable

Loss 1,538,655 782,643 2,321,298 0.334 Loss 0.221 0.113 0.334 User's 0.663 0.965

Stable 159,888 4,467,936 4,627,824 0.666 Stable 0.023 0.643 0.666 Producer's 0.906 0.851

Total 1,698,543 5,250,579 6,949,122 1.000 Total 0.244 0.756 1.000 Overall 0.864

Wi: area weight

Figure C.5: Error matrices, area proportions and map accuracies
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D.1 Pre- and post-intervention di�erences between countries

0

1

2

3

4

−4 −2 0 2

Change in average annual deforestation rate (BA score, %)

T
re

at
m

en
t I

nt
en

si
ty

Country
Brazil

Peru

Cameroon

Tanzania

Indonesia

Vietnam
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Figure D.1.2: Pre-intervention di�erences between countries
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Table D.1: Test results of pre- and post-intervention di�erences between countries, with p-values
<0.05 in bold

Pre-intervention: income
Kruskal-Wallis Wilcoxon rank sum test, p-values corrected using ‘holm’ method
chi-squared df p-value Brazil Peru Cameroon Tanzania Indonesia
102.2906 5 1.738338e-20 Peru 0.503

Cameroon 0.000 0.000

Tanzania 0.000 0.000 0.000

Indonesia 0.000 0.000 0.249 0.000

Vietnam 0.000 0.000 0.537 0.000 0.884
Pre-intervention: forest cover in 2000
Kruskal-Wallis Wilcoxon rank sum test, p-values corrected using ‘holm’ method
chi-squared df p-value Brazil Peru Cameroon Tanzania Indonesia
45.65748 5 1.066358e-08 Peru 0.001

Cameroon 0.009 0.334
Tanzania 0.258 0.172 0.065
Indonesia 0.386 0.001 0.007 0.258
Vietnam 0.000 0.000 0.002 0.011 0.000

Pre-intervention: average annual deforestation rates
Kruskal-Wallis Wilcoxon rank sum test, p-values corrected using ‘holm’ method
chi-squared df p-value Brazil Peru Cameroon Tanzania Indonesia
26.24086 5 8.01E-05 Peru 1.000

Cameroon 0.502 0.000

Tanzania 1.000 1.000 0.001

Indonesia 0.007 0.004 1.000 0.006

Vietnam 0.658 0.502 1.000 0.502 1.000
Post-intervention: treatment intensity
Kruskal-Wallis Wilcoxon rank sum test, p-values corrected using ‘holm’ method
chi-squared df p-value A B C D
25.50602 5 1.11E-04 Peru 0.941

Cameroon 0.191 0.994
Tanzania 1.000 1.000 1.000
Indonesia 0.001 0.064 1.000 1.000
Vietnam 0.000 0.001 0.941 1.000 1.000

Post-intervention: change in average annual deforestation rates (BA score)
Kruskal-Wallis Wilcoxon rank sum test, p-values corrected using ‘holm’ method
chi-squared df p-value Brazil Peru Cameroon Tanzania Indonesia
26.24086 5 8.013152e-05 Peru 1.000

Cameroon 0.502 0.000

Tanzania 1.000 1.000 0.001

Indonesia 0.007 0.004 1.000 0.006

Vietnam 0.658 0.502 1.000 0.502 1.000
Post-intervention: income change(absolute)
Kruskal-Wallis Wilcoxon rank sum test, p-values corrected using ‘holm’ method
chi-squared df p-value Brazil Peru Cameroon Tanzania Indonesia
86.02071 5 4.60E-17 Peru 0.000

Cameroon 0.000 0.000

Tanzania 0.000 0.000 0.127
Indonesia 0.000 0.000 0.002 0.170
Vietnam 0.000 0.000 0.170 0.467 0.467

Post-intervention: income change(relative)
Kruskal-Wallis Wilcoxon rank sum test, p-values corrected using ‘holm’ method
chi-squared df p-value Brazil Peru Cameroon Tanzania Indonesia
52.40483 5 4.46E-10 Peru 0.000

Cameroon 0.000 1.000
Tanzania 1.000 0.002 0.060
Indonesia 0.098 0.000 0.001 1.000
Vietnam 0.073 0.045 0.534 1.000 1.000
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D.2 Test results for assessment of pre-intervention cluster
di�erences

NB: With p-values <0.05 in bold

Table D.2: Test results for assessment of pre-intervention cluster di�erences

Initial income (pre-intervention)
Kruskal-Wallis Wilcoxon rank sum test, p-values corrected using ‘holm’method
chi-squared df p-value A B C D
33.64487 4 8.81E-07 B 6.96E-01 NA NA NA

C 1.59E-02 1.00E+00 NA NA
D 9.92E-04 1.00E+00 1.00E+00 NA
E 3.69E-08 1.00E+00 6.36E-04 9.09E-03

Forest cover in 2000
Kruskal-Wallis Wilcoxon rank sum test, p-values corrected using ‘holm’method
chi-squared df p-value A B C D
11.47567 4 2.17E-02 B 1.00E+00 NA NA NA

C 2.00E-01 2.11E-01 NA NA
D 1.00E+00 1.00E+00 2.11E-01 NA
E 1.00E+00 1.00E+00 1.96E-01 1.00E+00

Average annual deforestation rates (pre-intervention)
Kruskal-Wallis Wilcoxon rank sum test, p-values corrected using ‘holm’method
chi-squared df p-value A B C D
51.5132 4 1.74E-10 B 6.10E-02 NA NA NA

C 1.49E-12 2.38E-02 NA NA
D 1.40E-11 4.43E-02 1.00E+00 NA
E 7.38E-12 2.09E-02 1.00E+00 1.00E+00
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D.3 Intervention type composition – clusters compared
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Figure D.3: Boxplots of treatment intensity of intervention types per cluster. RFAC= Restrictions
on forest access & conversion; CLE = conditional livelihood enhancements; NCLE = non-conditional
livelihood enhancements; FE = forest enhancements; EE = environmental education; TC = tenure
clari�cation. Upper and lower extremes of whiskers represent Q3 + 1.5∗interquartile range (IQR)
and Q1− 1.5 ∗ IQR respectively, where IQR = Q3−Q1.
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D.4 Tests results for di�erences in treatment intensity per
intervention type between cluster A and C

Table D.4: Levene’s test and T-Tests results

Intervention type Levene’s test F value Levene’s test p-value T-Testp-valuea Potential differenceb

RFAC 1.383161 0.243989 0.173087 FALSE

CLE 2.744392 0.102569 0.102569 FALSE

NCLE 2.205201 0.142533 0.233251 FALSE

FE 2.155323 0.147052 0.147052 FALSE

EE 0.488797 0.487038 0.538822 FALSE

TC 3.091226 0.083572 0.083572 FALSE
a Equal variances assumed, as all Levene’s tests’p-values were >0.05
b True if p-value of T-test > 0.05

D.5 Test results for assessment of post-intervention cluster
di�erences

NB: With p-values <0.05 in bold

Table D.5: Test results for assessment of post-intervention cluster di�erences

Change in income (pre-vs post-intervention)
Kruskal-Wallis Wilcoxon rank sum test, p-values corrected using ‘holm’ method
chi-squared df p-value A B C D
24.72397 4 5.72E-05 B 3.70E-01 NA NA NA

C 5.55E-05 9.66E-01 NA NA
D 2.18E-04 9.66E-01 9.66E-01 NA
E 8.25E-04 9.66E-01 7.78E-01 9.66E-01

Relative change in income (pre-vs post-intervention)
Kruskal-Wallis Wilcoxon rank sum test, p-values corrected using ‘holm’ method
chi-squared df p-value A B C D
14.39925 4 6.12E-03 B 1.00E+00 NA NA NA

C 3.40E-02 1.00E+00 NA NA
D 1.75E-02 1.00E+00 1.00E+00 NA
E 1.00E+00 1.00E+00 3.53E-01 1.23E-01
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D.6 Intervention types e�ects on perceived well-being

Figure D.6: E�ects of intervention types on perceived well-being (All, cluster B, D, E)
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D.7 Intervention types e�ects on perceived well-being (country)

Figure D.7: E�ects of intervention types on perceived well-being per country
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