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A B S T R A C T

Robust sub-seasonal and seasonal drought forecasts are essential for water managers and stakeholders coping
with water shortage. Many studies have been conducted to evaluate the performance of hydrological forecasts,
that is, streamflow. Nevertheless, only few studies evaluated the performance of hydrological drought forecasts.
The objective of this study, therefore, is to analyse the skill and robustness of meteorological and hydrological
drought forecasts on a catchment scale (the Ter and Llobregat rivers in Catalonia, Spain), rather than on a
continental or global scale. Meteorological droughts were forecasted using downscaled (5 km) probabilistic
weather reforecasts (ECMWF-SEAS4). These downscaled data were also used to produce hydrological drought
forecasts, derived from time series of streamflow data simulated with a hydrological model (LISFLOOD). This
resulted in seasonal hydro-meteorological reforecasts with a lead time up to 7months, for the time period
2002–2010. These monthly reforecasts were compared to two datasets: (1) droughts derived from a proxy for
observed data, including gridded precipitation data and discharge simulated by the LISFLOOD model, fed by
these gridded climatological data; and (2) droughts derived from in situ observed precipitation and discharge.
Results showed that the skill of hydrological drought forecasts is higher than the climatology, up to 3–4months
lead time. On the contrary, meteorological drought forecasts, analysed using the Standardized Precipitation
Index (SPI), do not show added value for short accumulation times (SPI1 and SPI3). The robustness analysis
showed that using either a less extreme or a more extreme threshold leads to a large change in forecasting skill,
which points at a rather low robustness of the hydrological drought forecasts. Because the skill found in hy-
drological drought forecasts is higher than the meteorological ones in this case study, the use of hydrological
drought forecasts in Catalonia is highly recommended for management of water resources.

1. Introduction

Drought events are one of the most costly weather-related natural
hazards, because their effects can be widespread and long-lasting. For
instance, the 2003, 2015, and 2018 droughts affected and triggered
damages in large parts of Europe (EEA, 2010; Van Lanen et al., 2016;
WMO, 2019). Even though the term drought might seem straightfor-
ward, it is not unambiguous, as many different definitions have been
proposed. Here, we use the definition proposed by Tallaksen and Van
Lanen (2004): a sustained period of below-normal water availability. The
following three types of natural droughts can be determined (Wilhite,
2000; Tallaksen and Van Lanen, 2004): (1) meteorological drought:
below-normal precipitation; (2) soil moisture drought: below-normal

soil moisture content; and (3) hydrological drought: below-normal
(ground)water levels and discharge. According to Heinrich and Gobiet
(2012); Orlowsky and Seneviratne (2013); Russo et al. (2013);
Prudhomme et al. (2014); Pascual et al. (2015); Wanders and Van
Lanen (2015); Wanders et al. (2015) and Van der Wiel et al. (2019),
climate change will lead to drier conditions in many regions and river
basins, causing drought events to occur more frequently, and increasing
their impacts. Therefore, reliable and robust sub-seasonal and seasonal
drought forecasts are essential for water managers and stakeholders.

In Europe, seasonal meteorological drought forecasts currently
range up to seven months (e.g. Hwang and Carbone, 2009; Dutra et al.,
2014; Mo and Lyon, 2015), and are usually based on the Standardized
Precipitation Index (SPI, McKee et al., 1993) or the Palmer Drought
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Severity Index (PDSI, Palmer, 1965). Pre-operational seasonal hydro-
meteorological drought forecasts have recently also been made avail-
able for Europe and on a regional scale for Catalonia under the EU-
funded project ANYWHERE (www.anywhere-h2020.eu) (Sutanto and
Van Lanen, in preparation). Though hydro- and meteorological drought
forecasts are both available, so far, they were mostly discussed sepa-
rately. Therefore, in this paper, a comparison is made between hydro-
logical and meteorological droughts.

In the early days of hydrological forecasting, deterministic weather
forecasts were used as input for a hydrological model. The essence of
deterministic forecasting is that, based on the current state of the
system, there is only one way in which the system will develop, re-
sulting in just one forecast without providing information on un-
certainty. The first one who introduced the concept of uncertainties in
hydrological forecasting was Krzysztofowicz (2001). Since then, a shift
towards probabilistic hydrological modelling has been taking place
(Schaake et al., 2007; Cloke and Pappenberger, 2009). Probabilistic
forecasts indicate that a system can develop in many different ways,
representing uncertainty in the forecasts. Thus, in probabilistic hydro-
logical forecasting, multiple ensembles of numerical weather forecasts
are used as input for a hydrological model, resulting in the same
number of forecasted hydrological ensembles. The use of probabilistic
hydrological forecasts differs from Ensemble Streamflow Prediction
(ESP, introduced by Day, 1985). In probabilistic hydrological forecasts,
a hydrological model is forced by probabilistic weather forecasts. On
the other hand, ESP indicates that a hydrological model is initialized
with current hydrological conditions, that subsequently is driven with
different samples of historical meteorological data (Wood and
Lettenmaier, 2008; Shukla and Lettenmaier, 2011; Staudinger and
Seibert, 2014; Arnal et al., 2018; Monhart et al., 2019). In this study, we
use probabilistic hydrological forecasts, which are, from now on, re-
ferred to as “hydrological drought forecasts”. Though all forecast en-
sembles together can indicate the uncertainty of the hydrological
drought forecasts, each ensemble in itself differs from the reference
data. The skill of the forecast is a measure for the magnitude of the
difference between the forecast and the reference data (Bradley et al.,
2008). In this paper, the skill of the forecast ensembles will be dis-
cussed.

In Europe, work on the improvement of hydrological forecasts, that
is, prediction of river flow, is done in multiple projects, such as the
Hydrological Ensemble Prediction EXperiment (HEPEX, Schaake et al.,
2007)), the European Flood Awareness System (EFAS, Burek et al.,
2011)), Improving PRedictions and management of hydrological EX-
tremes (IMPREX, Van den Hurk et al., 2016)), and the End-to-end De-
monstrator for improved decision-making in the water sector in Europe
(EDgE, Samaniego et al., 2018; Samaniego et al., in press). The early
projects were set up to decrease the impact of flooding, but later these
projects also included hydrological forecasts and drought projections
under different climate change scenarios at the pan-European scale (e.g.
Marx et al., 2018; Thober et al., 2018; Wanders et al., 2019). However,
none of them addresses hydrological drought forecasts. Drought fore-
casting requires an additional step using the forecasted time series of a
hydrological variable, such as river flow. The hydrological drought
community makes a clear difference between, for instance, low river
flow (which is hydrology), which is described by the k-day lowest flows
each year, and drought in river flow (river flow drought) that is char-
acterized by, for instance, deficit volumes, drought duration and
drought intensity (e.g. Hisdal et al., 2004). Thus, whereas low flows
occur every year at some stage due to normal seasonal variations, hy-
drological droughts indicate an anomaly from the normal situation (i.e.
climatology, hydrological regime) and, therefore, do not happen every
year. Accurate prediction of hydrological droughts, including water
deficits, which is not directly provided by low flow forecasting, is
therefore of prime importance to water managers in drought-prone
regions, who can take accurate measures to alleviate drought impacts.
The difference between low streamflow and river flow drought

appeared to result in a substantially different skill between projections
of low flow and drought (Alderlieste et al., 2014; Van Lanen et al.,
2018). Hence, skills of hydrological forecasts, which are known (e.g.
Wanders et al., 2019), and skills of hydrological drought forecasts are
anticipated to be different.

Next to the projects which are merely restricted to hydrological
forecasting, a few projects have developed operational hydrological
drought forecasts at the pan-European scale, namely the European
Drought Observatory (EDO, Vogt et al., 2011, http://edo.jrc.ec.europa.
eu/) within the Copernicus programme, and the aforementioned H2020
project EnhANcing emergency management and response to extreme
WeatHER and climate Events (ANYWHERE, Sutanto et al., in prepara-
tion, http://anywhere-h2020.eu/). Both projects use simulated time
series of hydrological variables with the LISFLOOD model (Burek et al.,
2013). EDO forecasts droughts based on soil moisture anomalies with a
lead time of 7 days and a meteorological drought forecast with a lead
time of 3months. The ANYWHERE drought early warning system
produces probabilistic hydro-meteorological drought forecasts, e.g.
droughts in precipitation, soil moisture, runoff, streamflow, and
groundwater, with lead times up to 7months. These indices have a
spatial resolution of 5× 5 km, which is assumed to be meaningful for
the water management scale, i.e. the catchment scale. The forecasts are
updated at the beginning of each month and can be found online on
http://a4cat.hydsdev.net/login for registered users.

The aim of this study was to investigate the skill and robustness of
ANYWHERE hydrological drought forecasts at the catchment scale. Our
study was performed on two small sub-catchments of the Ter and
Llobregat river basins, located in the north of Catalonia, because the use
of a delineated area allowed for a comparison with in situ observations.
Both rivers are of prime importance regarding the water supply to,
among others, the Barcelona metropolitan area, and can therefore
benefit from improved drought forecasting. This study differs from the
few existing hydrological drought forecast studies at the catchment or
river basin scale (Fundel et al., 2013; Zappa et al., 2014; Trambauer
et al., 2015) in the sense that first, it provides a more comprehensive
analysis of the skill and robustness of drought forecasts. Second, in
addition to obtaining the drought forecasting skills by comparing re-
forecasts against a proxy for reality, as done in the aforementioned
studies, a comparison was made between reforecasts and in situ ob-
servations. This aids the interpretation of the results, as it gives a direct
indication of the utility of reforecasts in actual situations. Finally, not
only have hydrological drought forecasts been analysed using the
threshold method (Yevjevich, 1967), but also meteorological drought
forecasts have been included in the comparison, through the Standar-
dized Precipitation Index (SPI, McKee et al., 1993). These together give
a better insight on the skill and robustness of hydro-meteorological
drought forecasts, addressing different types of drought occurring at the
catchment scale.

2. Methods & data

2.1. Methods

2.1.1. Data comparison
Gridded observed precipitation and discharge data spanning the

period between 1990 and 2016, obtained from the LISFLOOD model
(Simulation Forced with Observations, hereafter referred to as “SFO”
for both precipitation and discharge, Section 2.2.2) were used as proxy
for observations to calculate the skill of reforecasts of drought in pre-
cipitation (meteorological drought) and drought in discharge (hydro-
logical drought), respectively, for the years 2002 to 2010. The main
reason for this is that both the proxy for observations and the refor-
ecasts were calculated using the same approach, resulting in time series
of precipitation and discharge at a 5× 5 km grid. Therefore, the bias of
the reforecasts, compared to the SFO, did not influence the results of the
study (Wetterhall and Giuseppe, 2018). Moreover, the quality of the
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SFO data is equal throughout the entire studied period, whereas in situ
observed data contain missing data (Section 2.2.3). A comparison be-
tween the SFO and actual observations was performed, to make sure
that the use of the SFO as a proxy for observations produces a valid
result.

To quantify differences between the SFO and observations (pre-
cipitation, discharge), efficiency parameters were calculated separately
for both studied catchments: the coefficient of determination (R2,
Wright, 1921), the Nash Sutcliffe Efficiency (NSE, Nash and Sutcliffe,
1970) and the Kling-Gupta Efficiency (KGE, Gupta et al., 2009).

2.1.2. SPI
Meteorological droughts, which are associated with a deviation

from the normal precipitation, were analysed using the Standardized
Precipitation Index (SPI, McKee et al., 1993). This widely used method
was chosen, because it gives a good indication on the occurrence of
meteorological droughts. Additional advantages of this method include
its ability to quantify meteorological drought severity for different time
scales and its low complexity compared to indices such as the PDSI,
since it only needs time series of precipitation (e.g. McKee et al., 1993;
Hayes et al., 1999; Hayes et al., 2011).

Fig. 1a indicates the steps taken for this part of the study. Every step
in the figure is indicated in the text below by square brackets, e.g.
[1a.1] or [1a.a]. The SFO precipitation data (Section 2.2.2) were ana-
lysed first [1a.1]. Precipitation data from the grid cells located in the
Ripoll and Guardiola catchments were extracted for the entire time
period (1990–2016). A spatial average of precipitation in each grid cell
was taken to get the precipitation over the entire catchment [mm/day].
Then, daily averaged precipitation data were added up to monthly to-
tals [mm/month].

The next step was to calculate the SPI [1a.2] using the SPEI package
(Beguería and Vicente-Serrano, 2017). In this package, monthly data is
transformed into 12 gamma distributions, one for every month of the
year. Every gamma distribution can be described by two parameters: α
(the shape parameter) and β (the inverse scale parameter). The gamma
distribution was used as it has been proved to be well suited for cal-
culating SPI across Europe for all accumulation periods (Stagge et al.,
2015). Data resulting from the calculations thus consist of monthly
values of SPI and 12 α and β values [1a.3] for each catchment. This
procedure can be performed for different accumulation times (i, in
months). An accumulation time, in this case, means that the pre-
cipitation is summed over the current month and the past i-1 months. In
this study, the SPI was calculated for accumulation times of 1, 3, 6, and
12months, using SFO data as a proxy for observations.

For the next step, the reforecasted precipitation data (available for
the period 2002–2010, Section 2.2.4) had to be organized. In the cal-
culation of SPI3, SPI6, and SPI12, SFO precipitation data had to be
added to the reforecast data, to be able to get SPIi values in all refor-
ecast months (Yuan et al., 2013a, 2013b; Dutra et al., 2014). This
means that, for instance in the SPI6 reforecasted dataset, the SPI6 for a
lead time of one month (LT= 1) consists of five months of SFO pre-
cipitation data and one month of reforecasted precipitation data. Si-
milarly, for LT=3 in the same dataset, the SPI6 consists of three

months of SFO precipitation data and three months of reforecasted
precipitation data.

Once the data were ready for analysis, the SPI was calculated [1a.b]
using the α and β values generated from the SFO precipitation data
[1a.3]. This resulted in monthly SPI values for the reforecasted data
[1a.c]. The reforecasted data were fitted to the probability distributions
of the SFO precipitation data, because the time period of the refor-
ecasted data (9 years) is too small to create meaningful monthly prob-
ability distributions.

In steps [1a.4] and [1a.c], drought events were identified. A
threshold had to be incorporated in the SPI analysis (Section 2.1.4), to
be able to calculate the forecast skill and compare it to the results from
the threshold analysis (Section 2.1.3). The last step in the approach was
the calculation of the skill score [1a.5]. This calculation and the sen-
sitivity analysis are discussed in Sections 2.1.4 and 2.1.5, respectively.

2.1.3. Threshold method
Hydrological droughts can be analysed using indices, such as the

Standardized Runoff Index (Shukla and Wood, 2008), the Standardized
Streamflow Index (Vicente-Serrano et al., 2012), the Standardized
Groundwater Index (Bloomfield and Marchant, 2013), or the threshold
method. In this study, the threshold method (introduced by Yevjevich
(1967) and elaborated by Zelenhasić and Salvai (1987)) was selected to
analyse droughts in discharge (Drought_Q). The difference between the
methods is that in the standardized indices, an anomaly in discharge is
analysed, whereas in the threshold method, the focus is on the water
deficit. Using the threshold method on discharge time series is parti-
cularly useful for the catchments in northern Catalonia: knowing when
discharge will be below a certain threshold, helps water managers to
take measures regarding water demand and water allocation. More-
over, data analysed using the threshold method has the potential for
analysis of deficit volumes (Tallaksen and Van Lanen, 2004)

Drought determination using the threshold method can be per-
formed using either a variable or a constant threshold (Hisdal et al.,
2004). Heudorfer and Stahl (2017) studied the (dis)advantages of both
types of thresholds. Based on their results, it was decided to use the
variable threshold method in this study, to account for the seasonality
in discharge in the study area. The threshold can be at any percentile,
but for perennial streams, it is common to use a percentile ranging
between 5% and 30% (Meigh et al., 2002; Hisdal et al., 2004; Fleig
et al., 2006). The 20th percentile is used more often (Van Loon, 2015),
and was used in this study as well. A threshold at the 20th percentile
indicates that the discharge on that day is equalled or exceeded 80% of
the time in other years on the same day, and is referred to as the Q80
threshold. Similarly, when speaking of a Q70 or Q90 threshold, the
discharge is equalled or exceeded 70% or 90% of the time. Fig. 1b
shows the flow chart for analysis of the threshold method. Every step of
this analysis is described below. Numbers and letters between brackets
(e.g. [1b.1] or [1b.a]) refer to the steps indicated in Fig. 1b.

From the SFO dataset, discharge was extracted for two locations
[1b.1]. These locations are based on the coordinates of the Ripoll and
Guardiola flow gauging stations. For every day of the year, the Q80
threshold was identified [1b.2], using the entire SFO dataset

Fig. 1. Steps taken to convert different data to skill scores, using the SPI (a) and variable threshold (b) methods. The analysis of the observations (green) is part of the
sensitivity analysis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(1990–2016). A two-sided 31-day moving average was then applied to
create a smoothed threshold curve. Then, the time series of SFO dis-
charge data were compared to the smoothed Q80 threshold curve, to
identify droughts in this dataset [1b.3]. The next step was to extract the
reforecasted discharge data for the same two locations from the sea-
sonal reforecasts [1b.a]. The smoothed 31-day moving average, which
was applied to SFO data, was also applied to the reforecast data. This
enabled a fair comparison between hydrological drought forecasts and
meteorological drought forecasts, which are accumulated over at least
one month. Moreover, smoothing the forecasts avoided short wet spells
to influence the results. Applying the two-sided moving average led to
missing values for the first and last 15 days of every reforecast. To
overcome this, SFO discharge data were added to the reforecast for the
15 days leading up to the first reforecast day, before applying a moving
average. The moving average then gave values starting from the first
day of the reforecasts. SFO discharge data were not added to the last
15 days of the reforecasts, as that would hugely inflate the skill of the
reforecast in the last month. The reforecast data were then compared to
the Q80 threshold, calculated from the SFO discharge data [1b.b], to
identify droughts [1b.c]. The calculation of the skill score [1b.4] and
the sensitivity analysis are discussed in Sections 2.1.4 and 2.1.5, re-
spectively.

2.1.4. Forecast skill analysis
As a last step in the SPI [1a.5] and threshold method [1b.4] the

forecast skill was calculated. We chose to use the Brier Skill Score (BSS,
Brier, 1950). It is a comprehensive skill score, as it gives an indication
of the skill of the forecast, compared to the use of climatology as
forecasts. The BSS is widely used in atmospheric science, because it is
able to handle probabilistic forecasts.

The calculation of the BSS consists of two equations: Eq. (1), the
calculation of the Brier Skill for both the climatology (BSclim) and the
forecasts (BSf); and Eq. (2), the calculation of the Brier Skill Score using
these two values.

=
N

p oBS , BS 1 ( )
N

f clim 1
2

(1)

=BSS 1 BS
BS

f

clim (2)

The BSf was calculated using the probability of an event (p), based
on the number of ensemble members forecasting a drought, divided by
the total number of ensemble members (N), in this case 15 (p varies
from 0 to 1). The parameter called Observed (o) was assigned either 1,
when a drought was observed, or 0, if no drought was observed. The
BSclim is based on the climatology, in this case the threshold. For the
precipitation dataset, a threshold of SPI=−0.5 was chosen, because
this gives a good balance between capturing either too many minor
droughts or too few droughts, the latter leading to a small sample size
(Trambauer et al., 2015). The −0.5 threshold value stems from a
normal distribution, and therefore the value for p is 0.3085 for every
month. For the discharge dataset, the Q80 threshold was used, which
gives p=0.2. If the BSS is close to 1, the second term in its equation is
small, indicating that BSf < BSclim and thus that the forecast is more
certain than the climatology. If the BSS is smaller than zero, the op-
posite is true. In that case, it would be better to use the climatology than
to use the forecasts. Thus, the goal of functional forecasting is to get at
least a BSS that is positive, but preferably higher.

The calculation of the BSS was done in a similar fashion for droughts
in the SPI and discharge datasets. The only difference is that, after
processing the data, discharge drought data consist of daily values,
whereas SPI drought data consist of monthly values. To be able to
compare droughts in discharge to droughts in SPI, the BSS values of
discharge data were averaged into monthly values.

Every seasonal reforecast ensemble contains 7months of data and
results may vary considerably between these months. Results were

therefore compared for each of the 7months (lead times, LT) sepa-
rately. Furthermore, reforecasts initiated in different seasons were
analysed separately and for the whole year. Skills of reforecasts in-
itiated in December, January, and February (DJF, winter) are com-
bined. Similarly, March, April, and May (MAM, spring), June, July, and
August (JJA, summer) and September, October, and November (SON,
autumn) are combined. As an example: a forecast done in February is
part of the winter forecasts, even though the forecast also includes
August (LT=7months).

2.1.5. Robustness
A sensitivity analysis was performed to see how robust the forecasts

are, if: (1) the analysis was performed using in situ observations (pre-
cipitation and discharge) instead of the SFO data; and (2) the analysis
was performed using different thresholds: SPI= 0 and SPI=−1 for the
standardized drought indices (meteorological droughts), and (3) Q70
and Q90 for the threshold method (hydrological droughts).

The results of the sensitivity analysis for the whole year are visua-
lised in a colour-coded table. Four arbitrary categories were dis-
tinguished, based on what was considered to be an acceptable value.
The BSS was considered to be good if the values are in between 0.50
and 1.00, acceptable if the values are in between 0.00 and 0.50, poor if
the values are in between −0.50 and 0.00 and bad if the values are in
between - and −0.5. This classification was chosen arbitrarily, based
on the information that BSS=1 indicates perfect skill, and BSS≤0
indicates no skill. Delgado et al. (2018) also used the BSS with an ar-
bitrary classification, but opted not to differentiate between values
below zero. We did want to make a distinction between very negative
and slightly negative values in our study, and therefore decided to
decide on the aforementioned classification.

2.2. Data

2.2.1. Study area
Catalonia is located in northeastern Spain and is characterised by a

mountainous area in the north, and a lowland region in the south.
Southeast Catalonia borders with the Mediterranean Sea, the north with
the French Pyrenees and west Catalonia borders with inland Spain.
Because of the highly varying topography, there are three main climates
in Catalonia. The Pyrenees are characterised by a mountainous climate,
leading to high precipitation amounts, cold winters, and mild summers.
The coastline is influenced by the Mediterranean Sea. Temperatures in
summer are high and winters are mild. Inland Catalonia has a more or
less continental climate with warm and dry summers and cool winters.
Heavy precipitation in the area is usually associated with convective
events, which occur in spring, late summer, and autumn. During the
winter season, precipitation is often classified as stratiform, with only a
small percentage of convective events (Barrera Escoda and Llasat
Botija, 2015). Droughts occur regularly in the region, and have a large
impact on society, especially in agricultural areas, where economical
effects are largest (Llasat et al., 2009). Water demand is already close to
the available water resources (Agència Catalana de l’Aigua, 2008), and
in the future, Catalonia will likely suffer from an increase in drought
occurrence, due to climate change (Pascual et al., 2015). The most se-
vere drought that hit Catalonia in recent years was the drought oc-
curring in the years 2007–2008. To prevent Catalonian water taps from
running dry during this drought, extreme measures were taken, such as
importing drinking water from different regions in 2008, when re-
servoir levels dropped below the 20% capacity emergency level
(Martin-Ortega et al., 2012).

In this study, we use two sub-catchments of the Llobregat and Ter
river basins, located in the north of Catalonia. A map, showing the lo-
cations of the river basins and the corresponding river networks, is
shown in Fig. 2a. The discharge in the mid- and downstream parts of
both catchments is highly managed, to maintain a constant water
supply for agriculture and inhabitants of the region. Therefore, we
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decided to analyse forecasted drought in precipitation and discharge
from two relatively unmanaged sub-catchments, that is: Ripoll
(737 km2, in the Ter river) and Guardiola (333 km2, in the Llobregat
river). The sub-catchments are located upstream of the Sau and Baells
dams, respectively. They thus reflect a rather natural discharge time
series and therefore give a better indication of natural droughts than
time series measured by discharge stations downstream of the dams.

Both the Ripoll and Guardiola catchments house perennial streams,
indicating that at least part of the water ending up at the gauging sta-
tions, originates from subsurface water storage. Hydrogeological maps
(ICGC and ACA, 2017) show that aquifers in the Guardiola catchment
mainly consist of carbonated consolidated material with high porosity,
due to carstification. The Ripoll catchment, on the other hand, gen-
erally has low permeability, with presence of aquifers only locally. It is
therefore expected that storage plays a more prominent role in the
hydrology of the Guardiola catchment than in the Ripoll catchment.

Fig. 2b shows the average monthly precipitation throughout the
year for both sub-catchments. From April until November, the observed
precipitation is rather constant, around 70 and 90mm/month for
Guardiola and Ripoll, respectively. A clear dip in precipitation is ob-
served in the winter season, which corresponds with the results of
Barrera Escoda and Llasat Botija (2015). There is no large difference in
normalized precipitation rates between the two sub-catchments. Fig. 2c
shows the average monthly discharge throughout a year for both dis-
charge stations. What can be clearly distinguished is the peak in spring
(May) in both catchments, caused by snowmelt in the Pyrenees. After
that, discharge decreases, even though the precipitation remains con-
stant. The reason for the decrease is the high evapotranspiration rates in
summer. The next peak, at the end of autumn, is caused by a decrease in
evapotranspiration, while precipitation remains constant. There is only
a slight difference in specific discharge between the two stations.

2.2.2. The SFO dataset
The SFO dataset was provided by the European Flood Awareness

System (EFAS, www.efas.eu), which is part of the Copernicus
Emergency Management Services (CEMS). The dataset contains gridded
time series of hydrological and meteorological variables.
Meteorological variables were obtained by spatially interpolating in
situ observations to a 5× 5 km grid, using inverse distance weighting
(Ntegeka et al., 2013; Smith et al., 2016). Hydrological variables, e.g.
discharge, were simulated with the LISFLOOD model, using observed
meteorological variables as model input and previously simulated hy-
drological variables as initial conditions. LISFLOOD is a physically-
based, spatially distributed, rainfall-runoff model (Burek et al., 2013).
As its main input, LISFLOOD uses soil properties (King et al., 1994),
land cover (EEA, 2012), elevation data (Farr et al., 2007), and me-
teorological variables: precipitation, potential evapotranspiration and
average daily temperature (Ntegeka et al., 2013). LISFLOOD was de-
signed to simulate water balances for large European river basins.
Originally it was set up to simulate floods, but it has already success-
fully been used to analyse streamflow droughts in other studies (e.g.
Feyen and Dankers, 2009; Forzieri et al., 2014; Cammalleri et al.,
2017). The model has also previously been validated, e.g. by Zajac et al.
(2013) and Smith et al. (2016), who indicated that model efficiency was
relatively low on the Iberian Peninsula. Nonetheless, a comparison of
both meteorological and hydrological drought forecasts, resulting from
both in situ observed and synthetic data, might lead to new insights on
the performance of the model in drought forecasting. In this study, a
daily SFO dataset was used, covering the pan-European region on a
5×5 km spatial resolution from January 1, 1990, to December 31,
2016. From this dataset, discharge (m3/s) and precipitation (mm/d)
were selected to represent hydrological and meteorological conditions,
respectively.

Fig. 2. Catchment properties. a shows Catalonia, with the locations of the Guardiola and Ripoll sub-catchments. Elevation data was taken from the European Digital
Elevation Model (EU-DEM v1.1) with a resolution of 25m, obtained from the EEA Copernicus project. The map of Spain was obtained from www.vectorstock.com. b
and c show the average monthly precipitation (1996–2016) and discharge (1990–2016), respectively, per catchment and for the different datasets (OBS: observed,
and SFO: proxy observed).
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2.2.3. In situ observations
In situ observed precipitation and discharge were obtained from the

Catalan Water Agency (Agència Catalana de l'Aigua, ACA). Daily pre-
cipitation data were available for 13 different stations in and around
the Ripoll and Guardiola catchments (1996-present), whose locations
are shown in Fig. 2a. Additionally, Fig. A.1a in the appendix shows a
timeline with the availability of in situ precipitation data per station.
Precipitation data were interpolated to catchment averages using
Thiessen polygons, because of the simplicity and the short computation
time of the method. For each time step in the dataset, polygons were
computed based on the stations which had data available. An example
for a time step for which all stations have data, is given in Fig. A.1b

Daily discharge observation data were supplied for two gauging stations:
Ripoll and Guardiola (1916-present). Missing data were filled in using the
percentile method, outlined in Tallaksen and Van Lanen (2004, pp 120).

2.2.4. Reforecasts
The final dataset used in this study consists of gridded seasonal

hydro-meteorological reforecasts, i.e. precipitation and discharge, at a
5×5 km scale. These reforecasts were calculated by the LISFLOOD
model in a similar way as the SFO dataset (Section 2.2.2), but it used
downscaled ECMWF-SEAS4 meteorological reforecasts as input, instead
of gridded observed meteorological data. The grid cells in this dataset are
therefore located on the same locations as in the SFO dataset. Reforecast
data were provided for the years 2002 to 2010, including a severe
drought event in the Iberian Peninsula (2007–2008, Stagge et al., 2013;
Ionita et al., 2017; Gonzáles-Hidalgo et al., 2018). ECMWF-SEAS4 is a
dataset of probabilistic seasonal weather reforecasts, produced by the
ECMWF (Molteni et al., 2011). Seasonal in this case means that ensemble
reforecasts with a lead time of 215 days (about 7months) were available
for each month. The seasonal weather reforecasts used in this study
consist of 15 ensemble members. Each of these ensemble members pro-
vided a time series of reforecasted meteorological data, such as pre-
cipitation, temperature, and evapotranspiration, which were run through
LISFLOOD, returning a daily time series of reforecasted discharge. In
total, we used 15 daily time series of reforecasted precipitation and
discharge (each 215 days long) for each of the 108months in the period
2002–2010 for the evaluation of the skill and robustness.

3. Results

3.1. Data comparison

The efficiency parameters (R2, KGE, and NSE) between the time
series of daily SFO and in situ observed precipitation and discharge are
summarised in Table 1. If the SFO and the in situ observed precipitation
data were compared (upper part of Table 1) using R2, analyses with and
without moving averages show similar correlation (± 0.5). This is not
the case for the NSE. In the Guardiola catchment, both precipitation

NSEs are positive and improve if a moving average is applied, because
the peaks are smoothed. In the Ripoll catchment, on the other hand, the
NSE for the moving average is smaller than the non-moving average,
and both are negative. Both the NSE and the KGE are higher in the
Guardiola than in the Ripoll catchment. Moreover, in both catchments,
the KGE is higher when a moving average was applied.

The lower part of Table 1 shows the results for the discharge data. It
indicates that the SFO precipitation data is closer to the in situ observed
values than the SFO discharge: before applying a moving average, some
of the discharge efficiency parameters are very low. LISFLOOD con-
stantly underestimates the discharge in the Ripoll catchment. In the
Guardiola catchment, the main trends are well modelled, the model
only misses some peaks. For both stations, R2 is higher if a moving
average was applied. The NSE is higher in the Guardiola than in the
Ripoll catchment. Likewise, the KGE shows that the LISFLOOD model
performs better in the Guardiola than in the Ripoll catchment. The
difference between the two catchments can be explained by the dif-
ference in catchment behaviour: the Guardiola catchment is more sto-
rage-dominated than the Ripoll catchment (Section 2.2.1), which
usually improves discharge forecasts, due to a more predictable time lag
between precipitation and discharge peaks.

3.2. Forecast skill

Fig. 3a-d shows that meteorological drought forecasts (SPI1, SPI3), as
compared to the SFO data, do generally not outperform the climatology
for these short accumulation times (shown by BSS < 0). Skill increases
as accumulation time increases (SPI6, SPI12, Fig. 3e-h). The BSS is po-
sitive for short LT and long accumulation times. However, the positive
BSS is mainly caused by the addition of SFO data to the reforecast data
(Section 2.1.2), which was necessary to calculate the SPI with large ac-
cumulation times (Dutra et al., 2013; Yuan et al., 2013a, 2013b).

The seasonal results show that: (1) Winter (DJF, red) often has a
higher BSS than the annual skill for almost all SPIs and LTs; (2) Spring
(MAM, green) often shows lower values than the annual BSS; (3)
Summer (JJA, cyan) generally shows similarity to the annual BSS, ex-
cept for Guardiola at SPI6, where summer skill is lower than annual
skill, and Ripoll at SPI12, where the summer BSS is higher than the
annual values; and (4) Autumn (SON, purple) is comparable to the
annual BSS, except for SPI6, where values are considerably lower for
short LTs, and higher for long LTs.

Hydrological drought reforecasts outperform the climatology up to
3–4months LT (shown by BSS > 0 in Fig. 3i,j). Seasonal hydrological
drought forecasts are comparable to the annual values for both catch-
ments. The higher performance of the hydrological drought forecasts
than the meteorological drought forecasts is caused by memory of the
catchments, that is, storage capacity, which does not play a role in
meteorological forecasts.

3.3. Robustness

Table 2 shows the results of the sensitivity analysis to assess aspects
of robustness. The BSS was calculated using different thresholds, and
using in situ observed data instead of SFO data both for the meteor-
ological drought (SPI) and for the hydrological drought (Drought_Q).
Changes in BSS are visible, which points at a relatively low robustness
of the model. In general, if the skill is higher in the first three months
(LT=1–3), the skill is also higher in the second part of the reforecasts
(LT=4–7months), and vice versa.

When the observed datasets were used (OBS in Table 2), instead of the
SFO data, the meteorological drought forecasts show lower skill in most
cases for both catchments, especially in the Ripoll catchment. This is in line
with Trambauer et al. (2015), who hypothesised that forecasts using ob-
served datasets compared to SFO data would show the highest possible skill.

The sensitivity analysis also shows that the use of a less extreme
threshold value (SPI= 0, Q70 in Table 2) leads to decreased skill in the

Table 1
Efficiencies of the water balance variables compared to the in situ observations in
the period 2002–2010. Efficiencies for both the precipitation (upper) and discharge
(lower) are shown. “GU“ and “RI” are abbreviations for Guardiola and Ripoll, re-
spectively, “MA“ indicates that a moving average was applied to both datasets before
the efficiencies were calculated.

R2 NSE KGE

Precipitation RI 0.49 −0.04 0.25
MA RI 0.60 −0.45 0.30
GU 0.49 0.14 0.52
MA GU 0.62 0.39 0.65

Discharge RI 0.37 −6.25 −1.61
MA RI 0.58 −0.25 0.03
GU 0.28 −0.13 0.25
MA GU 0.57 0.41 0.44
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hydrological drought forecasts and improved skill in the meteorological
drought forecasts, for all accumulation times. Oppositely, the use of a
more extreme threshold (SPI=−1, Q90 in Table 2) leads to a higher
skill for the hydrological drought forecasts and a lower skill in the
meteorological drought forecasts.

4. Discussion

4.1. Uncertainty in data

The performance of the EFAS datasets, precipitation and discharge
(SFO), was assessed by comparing these data to in situ observed data,
using several efficiency metrics. Both the discharge and precipitation

simulations show higher efficiencies in the Guardiola catchment than in
the Ripoll catchment (Table 1). It was expected that the precipitation
would have a higher efficiency coefficient than the discharge, as the
gridded precipitation, which was used as input for LISFLOOD, was
produced from observations (Section 2.2). Nonetheless, precipitation
efficiency coefficients were lower than expected, likely caused by the
different methods used for spatial interpolation in the two datasets and
the number and distribution of stations. The in situ observations were
interpolated using Thiessen polygons (TP), a quick and simple method,
whereas the SFO precipitation data were interpolated using inverse
distance weighting (IDW). Vicente-Serrano et al. (2003) studied dif-
ferent interpolation methods on precipitation data in the Ebro delta
(Spain) and found that the use of IDW resulted in r2= 0.90, whereas

Fig. 3. Brier Skill Scores (BSS) in SPI1 (a,b), SPI3 (c,d), SPI6 (e,f), SPI12 (g,h) and in discharge drought, Drought_Q (i,j), for the Ripoll (a-i) and Guardiola (b-j)
catchments. The coloured and black lines show the BSS per season and for the entire year, respectively. The dashed line shows the optimum of the BSS (1) and the
dots at BSS= 0 support to recognize when the model skill outperforms the climatology.

Table 2
Summary of the sensitivity analysis of the forecast skills of meteorological drought (SPI) and hydrological drought (Drought_Q), for the Ripoll
and Guardiola catchments. The BSS (entire year) is divided into two lead time periods: per catchment, the upper row shows the average BSS in
the first 3months lead time, whereas the lower row shows the average BSS in the last 4months lead time. The BSS is considered to be good
(green colour) if the values are in between 0.50 and 1.00, acceptable (yellow colour) if the values are in between 0.00 and 0.50, poor (orange
colour) if the values are in between −0.50 and 0.00 and bad (red colour) if the values are in between -∞ and −0.5. OBS stands for in situ
observations and SFO for simulation forced with observations.
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the use of TP resulted in r2= 0.86. The different interpolation methods
could thus have led to different values for precipitation in the two
datasets, and therefore to lower efficiency coefficients.

4.2. Drought forecasts skill and robustness

In this study, for the very first time, hydrological and meteorological
forecasts from the LISFLOOD model were compared to both in situ
observations and a proxy for observations on a basin scale. This new
approach showed that the skill of meteorological drought (SPI) fore-
casts, calculated from gridded precipitation data, is lower than clima-
tology for short accumulation periods (SPI1-3). For SPI data with longer
accumulation periods, the model skill is higher, indicated by a positive
BSS. This is to be expected, as longer accumulation periods have a
higher proportion of SFO data, so the skill is artificially inflated.
Hydrological drought (Drought_Q) forecasts simulated by the LISFL-
OOD model show higher skill than the climatology, for lead times up to
3–4months. The difference between skill in meteorological and hy-
drological drought forecasts can be explained by catchment memory,
that is, prevailing catchment storage capacity (soil water, ground-
water). Soil water and groundwater explain over 50% of the variance in
discharge forecasts for short LTs (1–2months) and remains about 40%
up to LT=3–4months (Wanders et al., 2019).

The hydrological drought forecasts in Fundel et al. (2013), show
high skill throughout the 1month lead time forecast. This study shows
that forecasting skill remains positive for lead times up to 3–4months,
and consequently, that it proves to be useful to look at longer time
scales for hydrological drought forecasts. A comparison between the
flood forecast results of Bartholmes et al. (2009) and the drought
forecast results of this study, shows that drought forecasts have a higher
skill than flood forecasts. The BSS at LT=1month in seasonal drought
forecasts, as analysed here, is higher than the BSS at LT=10 days in
the 10-day flood forecasts (Bartholmes et al., 2009). An explanation is
given by Hirschberg et al. (2011), who indicate that processes on a
longer time scale usually have a lower uncertainty than processes oc-
curring in a relatively short time scale. Floods are often related to hy-
drological processes and catchment state variables (e.g. surface runoff,
topsoil wetness) that drive quick response of discharge on a precipita-
tion event. Floods thus act on a short time scale, and consequently are
expected to have high uncertainty. During a drought event, on the other
hand, the low discharge is more linked to processes and state variables
(e.g. base flow, groundwater table depth) that control slow response.
Droughts, therefore, act on a longer time scale, and consequently are
expected to have low uncertainty (Hirschberg et al., 2011).

The robustness analysis showed that in general, changes in BSS
occur, which points at a rather low robustness of the model.
Furthermore, in general, the use of a more extreme threshold led to
increased skill in hydrological drought forecasts and decreased skill in
meteorological drought forecasts. Trambauer et al. (2015) stated that
forecast skills calculated using an SFO dataset should be treated as the
upper skill limit. Our results show that this holds for droughts in the
two case study catchments as well (Table 2).

4.3. The use of LISFLOOD and ECMWF SEAS4

As described in Section 2.2, the hydrological forecasts and the SFO
data, which were used as a proxy for observations, were simulated by
the LISFLOOD model. Output from different continental-scale hydro-
logical models could have been used, but literature shows that it is
unlikely that this would have increased drought forecast performance
(Kauffeldt et al., 2016; Trambauer et al., 2013). Kauffeldt et al. (2016)
studied 24 large-scale hydrological models to be encapsulated in an
operational forecasting tool, and concluded that other pan-European
models than LISFLOOD do not result in a better framework. A similar
conclusion was drawn by Trambauer et al. (2013), who performed a
review of 16 continental-scale hydrological models on the African

continent for drought forecasting. Trambauer et al. (2015) used a fine
resolution version of the PCR-GLOBWB model, and compared three
seasonal drought forecasting methods for both streamflow and Stan-
dardised Runoff Index data: (1) ECMWF SEAS-4 (S4); (2) Ensemble
Streamflow Prediction (ESP) approach using resampled historical data;
and (3) an ESP approach conditional on the El Niño Southern Oscilla-
tion (ESP-cond). They found that S4 performs better than both ESPs at
longer lead times. Contrarily, Arnal et al. (2018), who studied LISFL-
OOD seasonal streamflow forecasts over Europe with a spatial resolu-
tion of 0.7°, found that, on average, ESPs perform better than S4 for
longer lead times, though this differs per season. It remains to be ex-
plored if this would also be the case for high resolution data in Cata-
lonia.

LISFLOOD was calibrated for the EFAS by Zajac et al. (2013), whose
results were also discussed by Smith et al. (2016). Results showed that
NSE was very low on the Iberian Peninsula, compared to the rest of
Europe, during the validation period. Moreover, several studies on
LISFLOOD model validation in more than 231 river basins across
Europe, show that LISFLOOD can produce reasonable river discharge
compared to observations (Feyen et al., 2007, 2008; Feyen and
Dankers, 2009; Van der Knijff et al., 2010). This is promising, as they
indicate that forecast skill in catchments outside the Iberian Peninsula
is likely to be higher than in the two studied pilot sites.

4.4. Limitations of the study

Amongst others, Kumar (2009) and Shi et al. (2015) stated that skill
scores, calculated based on small verification time series, can sub-
stantially deviate from their expected values because of sampling er-
rors. The Brier Skill Score, which we used in this study to analyse
forecast skill, is dependent on the number of droughts per period, as
discussed by Stanski et al. (1989). If relatively few droughts occur, the
BSS is often low due to a very small BSclim, which is (0.2–0)2= 0.04 if
no drought occurs (Eq. (1)). Oppositely, if more droughts occur, the BSS
automatically increases, as the BSclim increases to (0.2–1)2= 0.64
during a drought event. According to Stanski et al. (1989), this issue can
only be overcome with large sample sizes. A small sample size can thus
have a large impact on the generated results. In this study, a reforecast
period of nine years was used, which is substantially smaller than the
30 years, which are recommended for a skill score unaffected by sam-
pling errors (Kumar, 2009). It is important to realize that the small
sample size could have affected the results presented in this paper, and
that a larger reforecast dataset would likely have improved reliability of
the results.

The relatively low correlation parameters in Table 1 show that some
improvements can still be made in the forecasts. Bias correction is an
interesting starting point for further research. Shi et al. (2008) studied
the effect of bias correction on seasonal streamflow forecasts and found
that the effect of bias correction on skill scores is almost equally large as
the effect of model calibration. Furthermore, Wang et al. (2011) found
that bias correction can be especially helpful if the NSE and KGE are
much lower than the R2, which is the case in this study (Table 1). This
indicates that bias correction could decrease the bias and, consequently,
will likely increase drought forecasting skill in Catalonia. The skill in
the results shown here can presumably be further increased by e.g.: (1)
improving the quality of the initial conditions (Koster et al., 2010;
Singla et al., 2012; Fundel et al., 2013); (2) using a multi-model en-
semble of both climate models and hydrological models (Thober et al.,
2015; Samaniego et al., 2017; Thober et al., 2018; Wanders et al.,
2019); (3) using improved meteorological reforecasts, i.e. ECMWF
SEAS-5, which became operational in November 2017 (Yuan et al.,
2011; Singla et al., 2012; Meißner et al., 2017); (4) using a small-scale
hydrological model, as several physical processes occur on a smaller
scale than the spatial scale of 5×5 km, which was used in this study
(Zappa et al., 2014); and (5) taking into account the coupling between
for instance soil moisture and air temperature, so that meteorological
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variables are influenced by hydrology, and not only the other way
around.

5. Conclusions

This study led to improved knowledge on drought forecasting on a
catchment scale in Catalonia. First, results show that both seasonal
meteorological and hydrological drought forecasts show highest skill
when they are done in winter, whereas forecasts performed in spring
show the lowest skill. Second, it can be concluded that meteorological
drought forecasts have higher uncertainty than hydrological drought
forecasts.

In this study, we analysed the skill and robustness of meteorological
drought and hydrological drought forecasts in two catchments in
Catalonia, using the LISFLOOD hydrological model driven by prob-
abilistic ECMWF-SEAS (S4) seasonal weather forecasts. The seasonal
hydro-meteorological forecasting with lead times up to 7months is part
of the Multi-Hazard Early Warning System (MH-EWS) developed in the
framework of the ANYWHERE project (http://anywhere-h2020.eu/). It
is the newest pre-operational MH-EWS currently available at the pan-
European scale, and the first one that provides seasonal drought fore-
casts rather than only hydrological forecasts (soil moisture, discharge).

Forecasting both meteorological and hydrological drought enabled
intercomparison, which shows that skills of hydrological drought
forecasting in the case study catchments are higher than skills of me-
teorological forecasting, except for precipitation accumulation periods
of 6 and 12months. This is an important finding for Catalonian water
resources management, which should rely more on hydrological
drought forecasts. If these hydrological forecasts are unavailable, SPI
forecasts with long accumulation times can be used as an alternative,
but it remains a challenge to find the right SPI accumulation time,

which is unique for every river basin.
Skill and robustness of hydrological and meteorological drought

forecasts may be increased if bias is further reduced, ECMWF-SEAS5
reforecasts are used, a new EFAS system with improved LISFLOOD
model calibration and parameterization is included, and hydrological
initial conditions are improved.
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Appendix A

See Fig. A.1 and Table A.1.

Fig. A.1. The bars in Figure a show when data are available for each of the thirteen precipitation stations in the Guardiola (left in b and c) and the Ripoll catchment
(right in b and c). The location of each precipitation station is shown in Figure b, including the corresponding Thiessen polygons, which were used for spatial
interpolation of precipitation data. Figure c shows an example of the Thiessen polygons which were used if only the eight shown stations contained data. The
abbreviations used in this figure belong to meteorological stations given in Table A.1.
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