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SUMMARY

T HE adoption of increasingly restrictive water quality standards is directed to main-
tain natural ecosystems in a good status. Complying with such standards requires

significant investments in water infrastructure and operations. Consequently, mathe-
matical simulation is usually applied to assist in the decision-making process for such
large-scale actuations. In particular, environmental models are proposed to represent
the wastewater cycle in natural water bodies, such that the effect of different pollution
mitigation alternatives can be estimated. Integrated catchment models (ICM) aim at
simulating water quality dynamics by representing the link between urban drainage net-
works, wastewater treatment operations, rural hydrology and river physical-biochemical
processes. However, these subsystems present dynamics across multiple spatiotemporal
scales and many relevant processes are still not fully understood. System observations
are scarce and often insufficient to identify most model representations. As a result, ICM
studies often produce significant output uncertainties.

Uncertainty analysis (UA) aims at quantifying the degree of reliability of modelling
outcomes and diagnosing simulation structures so that further data acquisition or model
improvements can be directed. However, UA is still seldom applied in the field of urban
drainage and environmental assessment studies, due to limitations in organisational
and computational resources available for ICM practitioners. Consequently, model-end
users are often not aware of the implications of many error sources, and there is an in-
sufficient communication of model structural assumptions and its associated uncertain-
ties. This thesis summarises efforts towards increasing the understanding of uncertainty
analysis in water quality integrated catchment modelling studies.

This work presents methods to describe the effects of spatial and temporal character-
istics of rainfall data for the simulation of dissolved oxygen depletion dynamics. Rainfall
is one of the main driving forces for organic-pollution loads in many urbanised catch-
ments, thus its appropriate consideration is of importance when simulating water qual-
ity impacts. The effect of using point and distributed rainfall data (e.g. rain gauges or
radar) is discussed, highlighting the need for the careful consideration of spatial rainfall
characteristics in low-land systems.

Uncertainties in combined sewer overflow (CSO) water quality influents also plays
a major role when simulating receiving water quality impacts. Unfortunately, scientific
understanding of in-sewer water quality processes is still poor, and thus such models
are highly uncertain. In this thesis, a simple method to represent the observed proba-
bility distribution and correlation structure of water quality pollutant concentrations is
presented. This is intended to draw attention on the possible underestimation of uncer-
tainties when neglecting the correlation structure between CSO processes.

Nevertheless, formal quantification of uncertainties in ICMs is still not widely ap-
plied (neither in practice nor science). One of the current largest limitations in its appli-
cability is the computational effort required. This thesis discusses the use of data-driven
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2 SUMMARY

emulation schemes to accelerate model evaluation during inference or forward uncer-
tainty quantification. A practical application is shown by emulating river flow and dis-
solved oxygen in a large-scale urban water system. The emulator allowed to estimate the
effect of changes in physical and biochemical river parameters on the output of a com-
putationally expensive simulator. This fast approximation was then used to infer pa-
rameter knowledge from local observations in the system. The application of model em-
ulation techniques can facilitate the integration of real-world scale catchment systems
into computationally demanding applications, such as sensitivity, uncertainty analysis
or formal parametric inference.

On the other hand, data-driven emulators are still severely limited by the input and
output spaces dimensionality. Classical applications involve emulating the effect of only
a handful of static parameters towards a one or two dimensional output space. Conse-
quently, time-dynamic inputs are seldom considered, thus limiting the range of applica-
bility of emulation. This thesis presents a novel method for encoding rainfall dynamics
and parametric information in a data-driven emulator for the physically-based simu-
lation of overland flow hydrodynamics (e.g. 2D Shallow water equations). This imple-
mentation allows sampling arbitrarily long dynamic rainfall inputs (yet spatially homo-
geneous) and parametric variations at a fraction of the original simulator time. There-
fore fast sampling applications as early-warning flooding schemes, statistical inference
or real time control can be applied in physically-based overland flow propagation.

To conclude, this work presents the formal application of an uncertainty quantifi-
cation and decomposition scheme to characterise the outcomes from a large-scale ICM
for water quality assessment. A by-source uncertainty decomposition revealed that prior
knowledge in river physical and biochemical parameters is responsible for most of the
dissolved oxygen output variability in the Dommel river (The Netherlands). Local mea-
surements in the system were used to update knowledge about the river submodel pa-
rameters. Rainfall uncertainties and CSO water quality submodel uncertainties remain
the largest uncertainty sources in the system after the update of river parameters. There-
fore, further efforts towards the reduction of epistemic uncertainties when modelling
dissolved oxygen dynamics (in the Dommel) should be directed to better understand
in-sewer water quality dynamics and rainfall spatio-temporal fields.
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INTRODUCTION AND SCOPE

1.1. WATER QUALITY MANAGEMENT

T HE EU Water Framework Directive (EC, 2000) enforces member states to reach a
“good ecological and chemical status in inland and coastal water bodies”. Currently,

meeting the proposed environmental regulations is still a challenge for many European
catchments. Complying with the environmental regulations often requires the adoption
of intensive infrastructure development and regulatory plans. For instance, it is esti-
mated that the extra cost needed to reach good surface water status in the Netherlands
is 7.1 billion Euros (between 2007-2027, Ligtvoet et al. (2008)).

Water quality processes have a wide range of spatiotemporal characteristic scales
associated (House et al., 1993), and mitigation or corrective measures largely differ de-
pending on those. Table 1.1 shows some of the most relevant anthropogenic environ-
mental impacts in surface and subsurface natural water bodies. For instance, the incor-
rect management of urban household sewage discharge is the direct cause for several of
these water-pollution processes. Specially relevant (even in systems with fully connected
sewage networks) are the discharge of wastewater through urban combined sewer over-
flow structures (CSOs) and insufficiently treated effluents from wastewater treatment fa-
cilities (WWTP). This discharge has the potential to impact the ecological and chemical
status of receiving water bodies.

Mathematical models are widely used to optimise the effect of pollution corrective
alternatives aiming towards a rational use of available resources. Integrated catchment
modelling (ICM) which simulates water quality dynamics at the urban-rural scale is con-
sidered a key tool in the decision-making process for water management (Langeveld
et al., 2013b; Rauch et al., 2002; Willems and Berlamont, 2002). ICMs often involve the
joint simulation of sewer hydrodynamics, wastewater treatment processes, rural hydrol-
ogy and river physical-biochemical dynamics, which renders highly complex modelling
studies (Keupers, 2016; Muschalla et al., 2009; Solvi, 2006).

Environmental modelling outputs (e.g. ICMs derived water quality predictions) of-
ten have significant uncertainties associated. These uncertainties are related to the model
abstraction process (i.e. highly complex systems represented by simplified and lumped
mathematical descriptions), parameterisation (uncertain value of model parameters,
which are system and time dependent), model forcing data (e.g. errors in measured
rainfall maps, water temperature, solar radiation measurements etc.), model input data

3
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Table 1.1: Common environmental impacts, factors and scales associated

Water quality process Parameters (examples) Main sources Space and time scales

Oxygen depletion
COD
BOD
N_Kjendahl

CSOs
WWTP

River-lake reach (100 m - 100 km)
Hour - Day

Eutrophication
Total Phosphorus
Total Nitrogen

CSOs
WWTP
Agriculture

River-lake reach (100 m - 100 km)
Week - Month

Acute toxicity
NH3
Temperature
pH

CSOs
WWTP
Industry

Local (10 m - 1000 m)
Minute - Hour

Infective diseases

Faecal coliforms
Salmonella
Enteroviruses
Vibrio cholera

CSOs
Urban flooding
WWTP

Local (10 m - 10 km)
Day - Month

Aesthetic pollution
Macro-Solids
Plastics

CSOs
Industry

River - lake - coastal reach (100m -
100 km)
Hours - Decade

Ecological toxicity
Endocrine disruptors
Pesticides

CSOs
WWTP
Agriculture
Industry

River - lake reach (100 m - 100 km)
Hour - Decade
(Trophic accumulation)

Accumulation of

heavy metals

Mercury
Arsenic
Lead
Zinc

Industry
CSOs

Regional (10 km - 100 km)
Year - Decade
(Trophic and sediment accumulation)

Groundwater nitrate

accumulation NO3
Agriculture
Farming

Regional (10 km - 100 km)
Year - Decade

(e.g. digital elevation models, errors in underground infrastructure databases), model
validation data (insufficient calibration-validation datasets), or model use (extrapolat-
ing system dynamics in the future). These uncertainty sources make that characterising
the outcomes of ICMs as a deterministic process, might render incorrect system diagno-
sis and lead to inefficient decision-making (Schellart et al., 2010). Therefore, performing
uncertainty analysis in ICMs is of foremost importance to increase reliability in model
outcomes and to direct further monitoring and modelling efforts.

Comprehensive uncertainty analysis is mostly applied by academics and seldom in
practice (Kleidorfer, 2010; Vanrolleghem et al., 2011). Furthermore, even academic ex-
amples for real-world integrated catchment modelling uncertainty analysis are very scarce
(Tscheikner-Gratl et al., 2019). Thus, increasing our knowledge on the applicability of
uncertainty analysis methodologies in ICMs is still necessary (Deletic et al., 2012).

1.2. THE EVOLUTION OF WATER QUALITY STANDARDS IN THE

NETHERLANDS

T HE progressive urbanisation experienced by most European countries from the early
1900s led to a spread of drinking water supply, and to the development of extensive

sewer networks. Severe water quality issues were common due to the direct discharge
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of wastewater into surface waters. This steered the large-scale adoption of mechani-
cal and biological treatment facilities for sewage, which occurred in the Netherlands by
1970-1980. The 1970 Pollution of Surface Waters Act (WVO Wet Verontreiniging Opper-
vlaktewater) was directed to the mitigation of countrywide severe oxygen depletion in
river and lakes. This action focused on the reduction of discharged biodegradable mat-
ter and materialised as the adoption of standards for the biodegradable oxygen demand
(BOD) and suspended solids (SS) concentration in WWTP effluents (Table 1.2). By 1978
new limitations were enforced to reduce ammonium levels. In the decade of the 80s, and
to this day, increasingly rigid standards limit the discharge of nitrogenous and phospho-
rous nutrients in natural water surfaces, to reduce the risk of eutrophication.

Table 1.2: Evolution of Dutch wastewater treatment standards (adapted from Langeveld (2004))

Period Standard Type Characteristics of the standard

Before 1970 No standard
Approximately only 30% of the sewage production is treated.
Mainly mechanical separation or trickling filters. Severe oxygen
depletion issues in lakes and rivers across the country.

1970 - now BOD 20 mgO2/l (10-day average)
Suspended Solids 30 mgSS/l (10-day average)

1978 - now Kjeldahl nitrogen 20 mgN/l (10-day average)
1990 - now Total phosphorus 2 mgP/l (for plants of <100,000 p.e.)

1 mgP/l (for plants of >100,000 p.e.)
1992 - now Total Nitrogen 15 mgP/l (for plants of <20,000 p.e.) (Yearly average)

10 mgP/l (for plants of >20,000 p.e.) (Yearly average)

In parallel to the adoption of wastewater treatment standards, limitations and de-
sign codes for the construction of urban drainage systems emerged as shown in Table
1.3. Early urban drainage networks were eminently combined systems (which today
still represent roughly 60% of the Dutch drainage network), meaning that rain water and
wastewater are collected and transported to treatment through the same pipe network.
Under heavy storm conditions, storm water might exceed the transport and storage ca-
pacity of combined sewers. To prevent urban flooding, emergency discharge structures,
also known as combined sewer overflows (CSO) discharge diluted wastewater to receiv-
ing water bodies, thus impacting on water quality if the pollutant load is too high or to
frequent. Early guidelines appearing in the 1950s focused on limiting this overflow dis-
charge frequency (to 3-10 CSO events per year). Excess pollution in surface waters, led to
the redefinition of standards by the 1990s, which regulated the model-assisted design of
sewer drainage systems. Firstly, the simulated annual volume of CSO discharges was lim-
ited and later it was extended to annual discharge of organic pollutants, as represented
by chemical oxygen demand (COD).

By the late 1990s and 2000s, the scientific and regulatory community questioned fur-
ther the validity of load-limiting based standards, which neglect the buffering capacity
of receiving water bodies. By 2000s, there was a shift in environmental policies, espe-
cially after the approval of the EU Water Framework Directive (EC, 2000). The WFD de-
fines an immision approach, which on top of the pre-existing load limiting standards,
require all natural receiving water bodies to have a good ecological and chemical status.
Good status is defined by evaluating the ecosystem’s adequacy to sustain populations
of indigenous fish species, micro-invertebrates and other selected flora and fauna. This



1

6 1. INTRODUCTION AND SCOPE

Table 1.3: Evolution of Dutch urban drainage environmental standards (adapted from Langeveld (2004))

Period Standard Type Characteristics

Before 1951 Wet weather flow dilution
Depending on the nature of the receiving water system, a dilution
factor between 3-10 times should be guaranteed before CSOs are activated

1951 - 1992 CSO frequency limitations
Acceptable overflow frequency between 3-10 CSO
discharges/year, depending on local characteristics

1992 - 2001 Limitation in CSO volume

Each designed combined sewer system should have an equivalent
annual overflow volume as an idealized ‘reference’ system with an
in-sewer storage capacity of 7 mm and a storm water settling tank
of 2 mm with a pumping capacity of 0.7 mm/h + dry weather flow

2001 - now Overflow Loads

The reference system is updated so it discharges the Chemical
oxygen demand load equivalent to 50 kgCOD/ha/year. Although, a
fix concentration of 250 mgCOD/l is used to compute the load,
thus is still a volume based assessment

1992 - now Receiving water quality assessment
Immision based approach. Evaluation of the discharges that cause
a deterioration of the local receiving water body

approach requires not only attention to the urban drainage and WWTP systems, but also
to the receiving water bodies.

Urban drainage and wastewater treatment systems are assets, which represent an
important public investment. This infrastructure is often designed to be serviceable for
long periods of time (30-60 years), yet change in technology, restrictions and legislative
requirements occurs at shorter time-scales. Therefore, meeting the standards often re-
quires retrofitting and upgrading pre-existing systems.

Figure 1.1 depicts the evolution of optimisation studies undertaken in the re-evaluation
of Dutch urban drainage systems. Between 1990s and 2010s, mainly uncalibrated mod-
els and measurement studies were carried out to optimise the hydraulic design capacity
in treatment works, and to re-evaluate compliance of emission regulations in sewer net-
works.

The call for model calibration and verification was early adopted from the 1990s by
the hydraulic modelling community. Although its generalisation into water emission
studies happens during the 2000s. This was eminently due to a lack of extensive mon-
itoring data, and a slow transfer of scientific methods to practice. New modelling stan-
dards (e.g. Clemens (2001); WaPUG (2002)), led to the development of calibrated emis-
sion sewer and WWTP optimisation studies (2nd generation). Currently, inline with the
legislative focus, optimisation studies account for the immision approach. Therefore,
the link between urban water, WWTP and receiving water quality is increasingly being
considered in new system studies. However, representing the full interaction of the wa-
ter subsystems requires of large amounts of monitoring data (Langeveld et al., 2013a),
which is still seldom available. This implies that the appropriate calibration and identi-
fication of simulated processes is still a challenge. This 3rd generation studies are carried
out with a multiobjective perspective, trying to reduce water pollution impacts, allocate
available resources optimally, reduce CO2 emissions and reduce the operational cost of
the water infrastructure assets. The undertaking of such multi-scale and multi-objective
assessments required the adaptation of simulation platforms to account for all relevant
water system links, which led to the development of integrated catchment modelling
studies.
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Practice Theory 

Single 
objective 

Multiple 
objectives 

2nd generation studies (2005-2010) 
- Emission sewer + WWTP 
- Use of monitoring data + calibrated models 

3rd generation studies (2010 → ) 
- Focus on receiving water quality (Immision) 
- Use of monitoring data + calibrated models 

1st generation studies (1990-2010)  
- Emission sewer 
- Hydraulic design capacity of WWTP 
- N+P removal at WWTP 
- Uncalibrated models 

4th generation studies (2010 →)  
- New sanitation concepts 
- Controlled systems 

Figure 1.1: Generations of optimisation studies for urban water quality studies

Additionally, new sanitation concepts are emerging in parallel to the operation of
conventional wastewater treatment facilities, focusing in resource recovery applications,
distributed treatment (Larsen et al., 2016), and alternative sanitation technologies (Rad-
hakrishnan et al., 2018). As these alternative technologies are adopted in practice, they
will become part of future operational system studies.

1.3. INTEGRATED URBAN WATER QUALITY MODELLING

T HE immision assessment paradigm required the adaptation of modelling platforms
to account for the interaction between the different subsystems. Consequently, re-

quiring to simulate the link between urban drainage water quality-quantity models, WWTP
models, rural hydrology and receiving water models (Rauch et al., 2002). Figure 1.2
shows a time-line of the development of integrated urban water systems (IUWS) mod-
elling as depicted by Bach et al. (2014). The 1st INTERURBA conference (Lijklema et al.,
1993) marked the beginning of an international effort to consolidate theoretical ideas
into real applications for integrated modelling. Several research studies started linking
pre-existing submodel implementations in an input-to-output approach (see early ex-
amples in Leinweber et al. (1999) or Clifforde et al. (1999)), often transferring data in a
manual way. During the 2000’s there was a wide recognition of the need of determin-
istic integrated catchment modelling as a key tool in the assessment of urban drainage
impacts in natural ecosystems, which was revisited in the 2nd INTERURBA conference
(Harremöes, 2002). This led to a rapid growth of dedicated IUWS model software pack-
ages, such as SIMBA (IFAK, 2007) or WEST (Vanhooren et al., 2003; Solvi, 2006), among
others. The popularisation of integrated catchment studies was followed by the creation
of modelling guidelines and recommendations (Benedetti et al., 2013a; Muschalla et al.,
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2009).

Time

1970s 1980s 1990s 2000s 2010s

- First physical studies

- Dynamic modelling concepts
- Recognition of issues with
 the emmision standards

- Simplified model 
aided design. CSOs 
frequency limits

- Increase in standards
WWTP and CSO volumes

- Advances in WWTP models

- First integration of WWTP
and urban drainage models

1993
1st INTERURBA

Conference

2000
EU Water

Framework
Directive

2002
2st INTERURBA

Conference

~ 2006
emergence of the

IUWS
paradigm

- Adoption of immision
 standards

- Improvement of Modelling
software

- ICMs for water 
quality simulation

- Multiobjective 
optimization studies

- Guidelines for integrated
catchment modelling

- Real time control 
studies in practice

- Uncertainties in 
modelling studies are 
an increasing concern

- Practical optimisation 
studies integrating urban, 
WWTP and receiving water 
systems

- Uncertainty quantification
of model outputs

- Uncertainty analysis in
small scale real ICMs

Figure 1.2: Time line of integrated urban catchment modelling development (adapted and expanded from
Bach et al. (2014))

Deterministic ICMs are the chosen tool to assess compliance of the EU Water frame-
work directive and from the 2010s, integrated catchment models are increasingly been
applied in real-case studies as in Langeveld et al. (2013b), Andrés-Doménech et al. (2010)
or Vezzaro et al. (2014b). These modelling platforms are used to justify significant invest-
ments in water systems. For instance, Benedetti et al. (2013b) discussed the selection of
cost-effective solutions for the improvement of the water quality performance of the sys-
tem of the Dommel river (The Netherlands). This made use of a deterministic ICM study
to select measures with ranging capital investments between 40M€ to 160M€, aiming to-
wards a reduction of dissolved oxygen and ammonium acute impacts in the river. There-
fore, quantifying the degree of confidence in ICM outcomes, and transparently commu-
nicating its limitations is necessary for an educated decision making process.

1.4. UNCERTAINTIES IN ENVIRONMENTAL MODELLING

U NCERTAINTIES are intrinsic to any modelling activity. The mere act of modelling im-
plies building a construct based on hypotheses on the phenomenological or mech-

anistic behaviour of a particular system. Given system observations, the selected math-
ematical model can be adjusted so it achieves a quantifiable degree of representativity.
Then, this mathematical structure is often used to infer further knowledge, predict fu-
ture system states or test the effect of hypothetical scenarios. Figure 1.3 shows a scheme
of the model abstraction process from a given physical reality along with error sources.

Underlying assumptions in environmental models are often strong simplifications
of complex phenomena. Also, gathering data about a particular system is hampered by
logistic, budgetary or practical constraints, thus the complete physically-based system
description is often utopical in most environmental modelling endeavours. Inputs used
as boundary conditions in the system delimitation, often come from measurements or
other modelling activities, which induce additional uncertainties. Furthermore, using
the modelling platform to predict or test virtual scenarios implies extrapolating existing
system mechanics. Thus, complex modelling studies for environmental applications of-
ten render highly uncertain outputs, to a level, which can sometimes preclude decision-
making (Reichert and Borsuk, 2005). The identification and quantification of the effect
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Real system Mathematical Model

Physical Process

Selected system’s 
boundary

Yobs + eMeasurements ↔ 

Measured 
variable of 

interest
External inputs

Model structure
M(I, x0, θ)

Model inputs, I

Model 
parameters, θ

Ymod+ eModel struc

Simulated
variable of 

interest

Abstraction

Extrapolation

Initial system state, x0 

+ einputs
Input error uncertainties

+ eparametrers
Parametric 
uncertainty+ esystem intital state

Figure 1.3: From the physical reality to model abstraction (adapted from Reichert (2014))

of those uncertainties is necessary for a transparent model implementation and an ef-
fective decision-making process (Pappenberger and Beven, 2006).

Modelling uncertainty is commonly classified in two broad categories (Slijkhuis et al.,
1999):

• Aleatoric uncertainty: which is dominated by the intrinsic randomness of a certain
process.

• Epistemic uncertainty: derived by a lack of knowledge on the underlying process.

This classification is rather subjective, since it depends on modeller’s experience and
means. In general, epistemic uncertainty is reserved for uncertainties which are related
to the assumptions taken in the model abstraction phase and that can be reduced with
further data acquisition, better calibration, or increase in process knowledge. Mean-
while, aleatoric uncertainty refers to the cases in which further efforts cannot be directed
to reduce the uncertainty of a given process, and the modeller assumes a stochastic na-
ture of the process. As an illustrative example, if challenged to model the trajectory of a
cannon ball shot, one could take into account Newtonian mechanics, air drag, and wind
direction to build a mathematical model of the expected trajectory. However, experi-
mental observations may still render certain dispersion over the target. By taking into
account even more processes and gathering additional knowledge (e.g. estimating the
Coriolis acceleration or the projectile rotation and gyroscopic effect) one could further
reduce the uncertainty of the predicted trajectory. However, measuring other influen-
tial physical variables as air density fluctuations in the projectile path, or propellant and
projectile material heterogeneities, might be out of reach for today’s observational ca-
pabilities. Thus, this residual error due to immeasurable variables might be considered
as aleatoric uncertainty by the modeller. Uncertainty analysis is a scientific field, which
deals with the quantification of modelling uncertainty sources with the aim of reducing
epistemic uncertainties to aleatoric ones.

Refsgaard et al. (2007) proposed a classification of uncertainties in environmental
modelling attending to: i) The location or source of uncertainty, ii) the type of uncer-
tainty and iii) its nature (epistemic or stochastic). An analogous classification is adopted
within the QUICS framework for uncertainty quantification and reporting in integrated
catchment modelling studies (Tscheikner-Gratl et al., 2017). This structured classifica-
tion is directed to systematically identify, report and quantify sources of uncertainty dur-
ing the integrated model design and operation.
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Uncertainty sources are classified as: a) Contextual, if the source of uncertainty is
outside the boundaries of the system under study, b) input uncertainty, when it refers
to forcing elements of the model simulation, c) parameter uncertainty, d) calibration, or
uncertainties stemming from errors or insufficient data in the calibration measurement
set and d) model structure, which is caused by an erroneous description of the system
dynamics in the abstraction process. Nevertheless, several authors discuss that practical
decomposition of parametric and structural uncertainties might not be possible, since
they are fundamentally interlinked Bedford and Cooke (2001).

Attending to the degree of available knowledge, this classification identifies four types
of uncertainty: a) Deterministic, b) statistical, c) scenario and d) deep uncertainties.
This goes closely related to scale of determinacy from pure determinism to ignorance
(Wynne, 1992). If the effect of a source of uncertainty cannot be quantified with the
available data or knowledge, it is considered as a deep uncertainty source. This type of
uncertainties might be larger than quantifiable ones in applications for environmental
modelling (Willems, 2008), thus should be identified and reported, acknowledging the
limits of extrapolation of the model under study. The evaluation of scenario uncertainty
analysis is highly relevant when performing predictions from the modelling platform,
and allows evaluating the effect of assumptions made in the abstraction process (e.g.
revisiting assumptions of demographic growth when predicting an urban system devel-
opment in time). On the other hand, studying statistical uncertainties plays a larger role
in the diagnostic of model structures. This refers to the propagation of uncertainties in
parameters, inputs and measured data to the output variables of the system. Statistical
uncertainty evaluation can be used to direct further system observations and modelling
efforts towards a reduction of epistemic sources of uncertainty.

1.5. STRATEGIES FOR THE QUANTIFICATION AND ANALYSIS OF

MODELLING UNCERTAINTIES

A Large number of methods have been proposed to analyse uncertainties and their
propagation in hydrological and water quality modelling (see a review in Beck (1987),

Beven and Binley (1992) and Jakeman and Jakeman (2017)). Frameworks for their appli-
cation in water quality and environmental modelling can be found in Tscheikner-Gratl
et al. (2017), Deletic et al. (2012) or Refsgaard et al. (2006). However, the applicability
of many of those strategies is limited by the characteristics and objectives of the model
under study (Dotto et al., 2012; Sriwastava and Moreno-Rodenas, 2017).

Uncertainty analysis (UA) aims to identify and quantify the variability in modelling
outcomes as a result of errors or uncertainties present in the simulation process (e.g.
system abstraction, input forcing data errors, parameter uncertainties etc.). It can be
understood, as evaluating the effect (in the modelling output) of the description of be-
liefs on the value of uncertain elements, when taking into account all inter-subjective
scientific knowledge available to the modeller (Reichert et al., 2015), and its identifica-
tion by source.
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1.5.1. FORWARD PROPAGATION ANALYSIS

Forward uncertainty quantification is directed to estimate the degree of uncertainty in
model outputs. A popular approach in environmental modelling is the use of Monte-
Carlo (MC) simulation. MC has the advantage of being a purely numerical implemen-
tation, and highly parallelisable. MC is based in drawing random samples of inputs
and parametric joint probability distributions and propagating them through the model
structure. Each random sample serves to populate the probability distribution of the
output, which can later be characterised by descriptive statistics.

Probability theory is used to describe variability in the value of model elements (often
encoded as empirical or parametric probability density functions), which is derived from
knowledge in physical constraints, measurements, expert elicitation (Garthwaite et al.,
2005; O’Hagan, 1998) or inferred from observed data.

In order to accelerate the exploration of highly multidimensional spaces, samples
can be drawn from structured samplings strategies (instead of drawing purely pseudo-
random realisations), to this effect, Latin Hypercube (McKay et al., 1979) or orthogo-
nal sampling (Owen, 1994) are often applied to reduce the number of required samples
needed to describe the output distribution. Multi-fidelity modelling (Laloy et al., 2013)or
model emulation (Conti and O’Hagan, 2010) can also be used when the simulator is too
slow to sample from (yet limited to reduced parametric dimensionality). Also, when as-
sessing the probability of rare events, MC convergence might require an impractically
large amount of samples. To speed MC convergence, importance sampling is often ap-
plied (Bucklew, 2013).

On the other hand, when uncertain elements cannot be easily described in terms
of formal probability distributions, scenario analysis may be applied. Thus, generat-
ing discrete simulations under changing conditions, which capture the variability of the
underlying process and its influence in the modelling objectives (Börjeson et al., 2006;
Urich and Rauch, 2014).

1.5.2. INVERSE UNCERTAINTY QUANTIFICATION

Model parametric inference represents a key approach in the description of modelling
uncertainties. Prior knowledge about the uncertainty and characteristics of the model
elements is updated in view of additional system observations. A Bayesian approach
provides a formal manner to account for this transfer of observed information to a re-
fined knowledge in model elements. In essence, the estimations of a model structure are
contrasted against measured data:

Yobs = M(x0, I ,θM )+Z (1.1)

being Yobs a layout of observed system states, simulated through a mathematical
model structure M , dependent on a set of initial conditions x0, input forcing data I , un-
certain parameters θm , and being Z an error generating process which captures model
structural uncertainties and measurement errors. This approach requires the construc-
tion of Z , based in fundamental assumptions about the model and measurement error
structure.
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Prior knowledge in model parameters (or input latent variables) is encoded as a joint
probability distribution of density, P (θm). Attending to the Bayes theorem:

P (θm |Yobs ) = P (Yobs |θm) ·P (θm)

P (Yobs )
(1.2)

the conditional (or posterior) distribution of the model parameters on the observed
data, P (θm |Yobs ) can be updated when knowing the value of the prior density P (θm), the
probability of the data being generated by a combination of parameters (also known as
likelihood distribution) P (Yobs |θm), which is derived from the assumptions made in the
stochastic model for the error generating process in Equation 1.1, and the total probabil-
ity of the observed data, P (Yobs ). In practice, computing this last term is very challeng-
ing, since it constitutes an integral form covering all possible data realisations, thus it is
often mathematically intractable from a practical perspective. Yet, treating P (Yobs ) as a
scaling constant:

P (θm |Yobs ) ∝ P (Yobs |θm) ·P (θm) (1.3)

a sampling algorithm (typically a Markov-chain sequence) can be used to populate
the posterior distribution P (θm |Yobs ) (e.g. Metropolis et al. (1953) or Goodman and
Weare (2010)) from random parameter vector realisations.

The error generating process Z , is encoded by the modeller’s assumptions (Kuczera,
1983; Schoups and Vrugt, 2010), and errors induced by its incomplete description can
be transmitted into the inferred probability distributions. Bias in model-measurement
comparison is often present when complex physical processes with a strong system mem-
ory are simulated (e.g. flow dynamics or water quality processes), errors in the model
structure can be identified by the use of time-dependent parametric descriptions (Re-
ichert and Mieleitner, 2009), or by the description of model bias (Del Giudice et al.,
2013). Nevertheless, observation errors and model structural uncertainties are challeng-
ing to decompose with this approach since they are fundamentally unidentifiable by the
model-measurement comparison although, some authors have attempted to integrate
its identification by using highly informative priors (Renard et al., 2010).

The adequate description of error generating processes in many cases is still a chal-
lenge, and although analysis of residuals in hydrological simulation have received a sub-
stantial amount of attention (Ammann et al., 2018; Evin et al., 2013a; Schoups and Vrugt,
2010), other variables, which present a more complex response (e.g. dissolved oxygen,
ammonium and other non-conservative water quality processes) appear to be less ex-
plored in the literature, in Chapter 3 of this thesis, a parametric inversion scheme for
flow and dissolved oxygen concentrations in a water quality simulator is discussed.

The difficulty to propose adequate descriptions of the likelihood function led to the
development of non-formal analysis techniques as GLUE (Beven and Freer, 2001), which
employs user-defined objective functions and thresholds to update the parametric prob-
ability distribution and that has been extensively used in environmental and urban drainage
modelling (Dotto et al., 2012; Freni et al., 2008; Thorndahl et al., 2008). Although this
method has been highly controversial due to the impossibility to test the validity of sub-
jectively chosen criteria (Mantovan and Todini, 2006). Also, Clemens (2001) discussed
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the use of frequentist calibration in urban drainage hydrodynamic models and the ex-
traction of local sensitivities and identifiability of calibrated parameters by principal
component analysis of the Jacobian matrix at the optimal parameter vector. This cali-
bration procedure can be used to direct the redefinition of the model structure or the
measurement layout.

1.5.3. UNCERTAINTY DECOMPOSITION BY SOURCE

Quantifying modelling uncertainty levels in environmental modelling is key for gaining
confidence in the model performance and to communicate it to end-users. However, of
even more importance from the scientific and operational perspective is the diagnosis
of the uncertainty propagation structure. This intends to classify uncertainty sources
by relevance, aiming to direct modelling efforts and further data acquisition to improve
current knowledge and reduce modelling epistemic uncertainties.

Sensitivity analysis (SA) schemes (or parameter screening) are often used to identify
relevant parameters (Cosenza et al., 2013), or input-parameter combinations (Pianosi
et al., 2016). Global sensitivity analysis schemes classify a selected parametric space
based on the magnitude of their effect on a certain output. SA requires the definition of
ranges for the parameters under study. In uncertainty analysis those parametric ranges
are derived formally as a way of conveying the degree of certainty in their value. How-
ever, SA is often purely based on the model response, neglecting the effect of structural
uncertainties.

Willems (2012) proposed a variance decomposition approach. The variance decom-
position takes into account the structural mismatch at the model-observations compar-
ison, and thus classifies the importance of uncertainty sources in a quantitative manner.
This method is nevertheless subjected to several challenges, since it assumes indepen-
dence of error sources (which might be violated when dealing with heavily interlinked
systems, i.e. see Freni and Mannina (2010b)) and requires homoscedastic residuals (thus
often relying on data-transformations).

Gupta et al. (2008) also discussed the need for developing a diagnostic approach
in modelling endeavours. Current model inversion methods are considered to have
poor capability to pin-down and identify errors in the model description phase at par-
ticular subprocesses of the modelling scheme. Likelihood-based methods fail to cap-
ture all available information, since they narrow down the residual structure to a zero-
dimensional metric. This approach suggests the benefits of using multi-metric approxi-
mated Bayes computation (ABC) to identify individual processes erroneously described,
which render a systematic mismatch with observations in the system, and thus, helping
to guide in the model improvement phase (Vrugt and Sadegh, 2013; Kavetski et al., 2018).
However, insufficient examples are still available and metrics for water quality processes
have not been proposed or tested.

1.5.4. TECHNICAL CONSTRAINTS IN THE APPLICABILITY OF UNCERTAINTY

ANALYSIS METHODOLOGIES

Despite the availability of many strategies, they are generally not applied in practice.
Sriwastava and Moreno-Rodenas (2017) and Tscheikner-Gratl et al. (2019) discussed as-
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pects of this phenomena in detail. In general, there is a lack of incentive in consultancy
firms to acknowledge the inconsistency and limitation of modelling endeavours and
there is still a culture in the regulatory body of acceptance of deterministic (and some-
times even uncalibrated/unvalidated) realisation of modelling studies, which does not
force modellers to fully justify their assumptions.

There are only a few academic examples on full uncertainty analysis for integrated
catchment modelling applications. Schellart et al. (2010) presented a full-integrated
catchment model to which uncertainties were identified and partially propagated (due
to largely computational constraints). Radwan et al. (2004a) presented a probabilistic
assessment of a partial ICM (simulating only the river submodel) study for a relatively
small system (500 ha, 12,000 p.e.), discussing that error in rainfall inputs and water qual-
ity sewer elements dominated receiving water uncertainties. A similar study was pre-
sented by Freni and Mannina (2010b) in which the uncertainty contribution by source
was evaluated in a small integrated urban system (115 ha, 9,000 p.e.).

This lack of studies is probably due to technical constraints in setting up such type
of models; insufficient monitoring data, massive labour effort needed to set a full inte-
grated modelling study, and computational limitations. Recent frameworks for uncer-
tainty quantification in urban drainage (e.g. Deletic et al. (2012) and Tscheikner-Gratl
et al. (2017)), have provided a common nomenclature and understanding of uncertainty
quantification in the field. Also, Chapter 4 of this thesis provides an example for a formal
uncertainty analysis scheme applied to a large-scale integrated catchment modelling
study (4400 ha, 750,000 p.e.). Further examples are still needed to complement current
scientific literature.

One of the severe limitations in the implementations of formal uncertainty analysis
methods is the fact that modelling structures are computationally heavy (hours-days per
simulation). And thus, sampling the model often falls beyond the practical capabilities
of most research and practical users. Chapter 3 of this thesis is dedicated to the use of
data-driven emulation schemes to accelerate the sampling of computationally expen-
sive modelling platforms in uncertainty analysis schemes.

1.6. UNCERTAINTY SOURCES IN INTEGRATED CATCHMENT MOD-
ELLING

I NTEGRATED catchment modelling aims simulating the link between different water
quantity and quality subsystems (Rauch et al., 2002). Tscheikner-Gratl et al. (2019)

provides a comprehensive review of most commonly accounted subsystems in urban
ICMs, which are classified as: Rainfall-runoff and wash-off submodels, urban drainage,
rural runoff routing, river physical-biochemical and wastewater treatment process mod-
elling. Each of these submodels induces uncertainties, which propagate towards the out-
put variables. Identifying and classifying uncertainty sources is necessary for directing
model structure improvements, data acquisition and communicating the limitations of
the modelling study.
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1.6.1. UNCERTAINTY SOURCES IN SUBMODEL COMPONENTS

1.6.1.1. URBAN DRAINAGE SUBMODEL

This submodel encompasses the simulation of rainfall-runoff, transport and generation
of sewage occurring in urbanised areas. Often, several subprocesses are linked; rainfall-
runoff dynamics (e.g. evaporation, infiltration, accumulation, and overland flow), sur-
face pollution wash-off (e.g. mobilisation of surface particulate matter), flow routing in
the transport system (e.g. water infiltration, hydrodynamics), and in-sewer water quality
processes (e.g. sewage generation, transport and transformations).

Deletic et al. (2012) reviewed in detail the main sources of uncertainty in urban drainage
modelling and proposed a guideline for its systematic consideration. Korving and Clemens
(2005) presented an uncertainty analysis in the simulation of CSO volume, discussing
the effect of database errors. Also, Sriwastava et al. (2018) reported a sensitivity anal-
ysis in CSO volume estimations of a hydrodynamic modelling study, concluding that
runoff-coefficient, roughness and the weir crest level parameters to be the most relevant
ones, yet neglecting the effect of rainfall uncertainties. Cristiano et al. (2017) and Ochoa-
Rodriguez et al. (2015) addressed the effect spatial and temporal resolutions of rainfall
in urban hydrology, yet many aspects of this interaction remain poorly understood. In
the Section 2.2 of this thesis, the effect of rainfall input characteristics in receiving water
body DO concentrations in an ICM study is presented (Moreno-Rodenas et al., 2017b).

In general, uncertainties associated to the water quality routine of urban drainage
modelling are considered to be significantly larger than those contained in water quan-
tity processes (Mannina and Viviani, 2010; Sandoval et al., 2018; Willems, 2006). Fur-
thermore, uncertainties in CSO pollutant concentrations are reported to be highly rele-
vant when modelling water quality impacts in the receiving water bodies (Radwan et al.,
2004a).

1.6.1.2. WASTEWATER TREATMENT PLANT SUBMODEL

Modelling wastewater treatment processes has reached a certain degree of maturity, and
it is a standard in practice (Gernaey et al., 2004). Common WWTP simulators link highly
detailed biochemical process descriptions (e.g. ASM2d, Gernaey and Jørgensen (2004))
with low detail flow simulations (often well-stirred tanks). Nevertheless, current model
structures often render highly over-parameterised implementations, requiring robust
calibration practices to minimise uncertainties in the process (Rieger et al., 2012; Vanrol-
leghem et al., 2003). Sensitivity analysis is often proposed to identify relevant parameters
in WWTP operation (Benedetti et al., 2012; Sin et al., 2011). Belia et al. (2009) identified
the most relevant sources of uncertainty in WWTP simulations as arising from: influent
flow, influent pollutant loads, solids retention time, overflow rates, aeration and denitri-
fication rates. Yet, uncertainties associated with change in regulations or operations are
often dominant when predicting WWTP scenarios (Dominguez and Gujer, 2006).

1.6.1.3. RURAL HYDROLOGY SUBMODEL

The rural catchment often represents a significant proportion of the baseflow contribu-
tion to river bodies, and also agricultural exploitations are distributed sources for several
pollutant classes. Thus, estimating the surface and sub-surface flow propagation can be
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highly relevant for the river water quality dynamics, which are often intensively influ-
enced by water depth and volume of the stretch (Moreno-Rodenas et al., 2017a). McMil-
lan et al. (2012) provide a comprehensive benchmarking of observational uncertainties
in hydrology, for rainfall, river discharge and water quality measurements. In hydrolog-
ical flow estimations, the effect of input resolution uncertainties has been reported as
relatively low (Camargos et al., 2018), yet they can become more relevant when predict-
ing pollutant flows (Chaubey et al., 2005).

1.6.1.4. RIVER PHYSICAL AND BIOCHEMICAL SUBMODEL

Beck (1987) presented a detailed review on the uncertainty analysis in river water quality
modelling studies. River water quality models render highly complex simulation stud-
ies, mixing physical, chemical and biological processes, which occur at a large range of
time and space scales. The IWA group for river water quality modelling presented the
RWQM1 (Shanahan et al., 2001; Reichert et al., 2001; Vanrolleghem et al., 2001). Yet this
type of biokinetically focused models often render highly parameterised structures, with
largely un-identifiable processes. Reichert and Vanrolleghem (2001) discussed the iden-
tifiability and uncertainty propagation in several forms of river water quality modelling
when accessing to data of several measured river parameters.

Lindenschmidt et al. (2007) showed that for several examples, structural uncertain-
ties are mostly dominant in river water quality modelling studies. Moreno-Rodenas et al.
(2017a) compared the effect of two river hydrological routing conceptualisations (i.e. a
varying parameter Muskingum-McCarthy routing and a tank-in-series schemes), show-
ing the effect of river flow submodel structural uncertainties in the calibration of river
biochemical processes, yet the interaction of the selected hydraulic model complexity
and the water quality processes are poorly understood. Nevertheless, the implementa-
tion of river water quality modelling is highly dependent in local characteristics. Thus,
detailed study of the relevant dynamics and uncertainty sources in each case is recom-
mended. Chapter 3 of this thesis contains an example for the practical application of
sensitivity analysis and parametric inversion in computationally expensive river mod-
els. Also, Chapter 4 of this thesis shows that literature-elicited parametric uncertainties
for river biological processes dominate uncertainties in a highly urbanised river catch-
ment for the simulation of dissolved oxygen processes, thus highlighting the relevance
of inferring river biochemical parameter values from local measured data.

1.6.2. UNCERTAINTY SOURCES IN THE MODEL DEFINITION AND OPERATION

1.6.2.1. UNCERTAINTIES DUE TO BOUNDARY CONDITIONS

During the model construction process, the system of interest has to be clearly identi-
fied. As depicted in Figure 1.3, the system is delimited by a defined boundary region.
The modelling process represents system dynamics inside this boundary, and relevant
external influences are considered modelling forcing data or inputs. Identifying these el-
ements and characterising the knowledge of their value is relevant to quantify their influ-
ence in the output variables of interest. The nature of such inputs in ICMs is often time
and space dependent, and thus their characterisation often involves the construction
of spatio-temporal stochastic models (see examples for rainfall forcing data stochastic
descriptions in Del Giudice et al. (2016), or the merging of data error sources in rainfall
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spatiotemporal estimations in Cecinati et al. (2018)).

1.6.2.2. UNCERTAINTIES IN THE EXTRAPOLATION OF SYSTEM DYNAMICS

Verifying the accuracy of the model structure representation of the real system is usu-
ally performed comparing observed and simulated dynamics through different distance
metrics. This is often regarded as calibration, validation and verification of model struc-
tures. Nevertheless, modelling platforms are often used to assist in the decision-making
process to test alteratives (i.e. testing the effect of virtual system changes, e.g. Langeveld
et al. (2013b)). However, the performance of the virtual system configuration cannot be
formally evaluated without experimental replication (which in environmental modelling
is often impractical). Therefore, the plausibility and validity of model structure assump-
tions during extrapolation should be discussed and reported.

1.6.2.3. UNCERTAINTIES INDUCED BY THE SUBMODEL INTEGRATION AND THE NUMERI-
CAL IMPLEMENTATION

One challenge in the creation of integrated models is the representation of submodel
links. Submodel conceptualisations often simulate different state variables (Benedetti
et al., 2013a) which should be transformed to generate an output to input link basis (e.g.
different pollutant representations in sewer water quality and WWTP simulators). Also,
models often render processes at different spatial or temporal resolution, requiring up-
scaling or downscaling processes in the submodel boundary (Heuvelink, 1999; Torres-
Matallana et al., 2018).

Solver selection and settings analysis should be carried out, aiming to minimise its
influence in the simulation process (e.g. see Benedetti et al. (2012)). Also, errors in the
implementation, and post-processing of simulation outcomes should be considered.

1.7. THE DOMMEL WATER SYSTEM

T HIS thesis contains multiple references to the Dommel water system in which a sys-
tematic evaluation of modelling uncertainties was performed. This section intro-

duces its main characteristics, and will be therein referred in the text.

The Dommel is a natural stream, which runs through the north of Belgium (approx.
35 km) and the south of the Netherlands (approx. 85 km), tributary to the Dieze and the
Meuse, which drain into the North Sea. It has a discharge ranging from 2-30 m3/s. The
catchment covers an area of more than 800 km2 composed predominantly of forestry
and medium intensity agricultural areas, which are naturally drained and characterised
by mild slopes. In the Dutch section, the Dommel receives the discharge of several
combined municipal drainage systems scattered around the city of Eindhoven (approx-
imately 4400 ha of connected urban area). There are nearly 200 Combined Sewer Over-
flow structures (CSOs) along the Dommel and its tributaries. Additionally, the system
receives the effluent of a large Wastewater Treatment Plant (WWTP) of 750,000 p.e. de-
sign capacity located in the east of the city of Eindhoven. WWTP and CSO discharges
of partially treated or untreated wastewater are relatively common under heavy rainfall
conditions, leading to the deterioration of the river ecological and chemical conditions.
In particular, the biological breakdown of high organic content loads (exacerbated by



1

18 1. INTRODUCTION AND SCOPE

low DO WWTP effluent) generates oxygen depletion processes in the river, which can
lead to fish death.

Figure 1.4 presents a scheme of the water system of the Dommel. The graphic de-
picts the wastewater transport system, which is actively controlled and mixes gravity and
pressurised pipe networks. Also, the location of rain gauge measuring stations and the
relative location of the catchment with respect to the two KNMI meteorological Radar
stations are provided.

The Waterboard of the Dommel envisioned a series of substantial investments (Benedetti
et al., 2013b) aiming improve the ecological status of the river Dommel. A full-integrated
catchment model was developed (Langeveld et al., 2013b) as an output of the Kallisto
project (Weijers et al., 2012), aiming towards a better understanding of pollution dy-
namics in the system. This ICM study aimed to simulate the link between the WWTP, all
relevant urban and rural contributing areas and the receiving water body (the Dommel
and its tributaries), thus modelling the dynamics of dissolved oxygen and ammonium
impacts in the river.

The system can be divided in three main sections, which were modelled seamlessly
under the same model platform:

1. The urban drainage system is composed of 29 urban drainage networks. Each mu-
nicipality is connected to the main WWTP through a controlled pipe network mix-
ing pressurised and gravity sections. The influent of the WWTP has three separate
pipelines; Nuenen-Son, Riool Zuid and the Eindhoven collector. There are more
than 200 CSOs along the river Dommel and its tributaries. Several of those struc-
tures have stormwater settling tanks (SST) to reduce solid discharges. A lumped
model structure was used to simulate each local urban drainage (conceptualised
as in Solvi (2006)). This represents a hydrological structure for the rainfall-runoff
response (accounting for wetting losses) and a tank-in-series routing scheme to
simulate gravity and pressurised sewer transport. Event mean concentration vec-
tors were used to link water quantity sewer outputs with CSO discharge to the re-
ceiving water body.

2. A WWTP with three biological lines with a combined capacity of 26,250 m3/h (de-
picted in Figure 1.5). Each line consists of; one primary settler, a biological treat-
ment tank and four secondary settling tanks. Additionally the plant has a by-pass
storm settling tank structure with an extra capacity of 8,750 m3/h for storm water
treatment. The WWTP was simulated with an ASM2d biokinetic model (Gernaey
and Jørgensen, 2004). The calibration procedure is depicted in Langeveld et al.
(2013b). The link between in-sewer water quality and the WWTP influent was rep-
resented by an empirical influent model (Langeveld et al., 2017).

3. The river Dommel and its local tributaries. With an approximate length of 120
km in the area of interest. The river system was modelled through the use of 65
tank-in-series well-stirred sections. This conceptualisation is a hydrological ap-
proximation of the flow propagation process. The physical and biochemical reac-
tions relevant for dissolved oxygen dynamics were encoded following the Duflow
dissolved oxygen routine. This includes oxidation of two organic matter fractions,
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Figure 1.4: General scheme of the Dommel water system from the Belgium border to Sint-Oedenrode
depicting rainfall measurement stations, the main municipal drainage and wastewater transport system
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sedimentation, nitrification, reaeration and macrophyte oxygen exchange. The
processes accounted in the river model can be seen at Appendix B.

The full-integrated model was built using WEST (DHI) simulation platform for ICMs.
A detailed description of the integrated catchment model structure and its development
and validation process can be found at Langeveld et al. (2013b). A description of the
main spatial and temporal characteristic scales in the Dommel system was reported in
Moreno-Rodenas et al. (2017b) and can be found in Chapter 2 of this Thesis.

Riool-Zuid 
Q = 0.6 (3.7) m3/s

Eindhoven
Q = 0.7 (3.8) m3/s
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SST: Storm Settling Tank

Qmax  = 2.5 m3/s

Qmax = 7.2 m3/s

Figure 1.5: Scheme of the Eindhoven wastewater treatment plant. Flows are given by its median value and in
parenthesis the 99% percentile from measured data series (2011-2013)

1.8. OBJECTIVES AND OUTLINE OF THE THESIS

T HE formal consideration of uncertainties in real scale integrated water quality sys-
tems is still seldom performed in practice. There is still a lack of bibliographic sources

covering uncertainty analysis studies and a lack of understanding on the interaction of
many error sources in urban water quality studies. Consequently, the European Union fi-
nanced the QUICS (Quantifying Uncertainties in Integrated Catchment Studies) project
(FP7-ITN No.607000), which represents an effort to increase current knowledge about
the nature and magnitude of error sources for the modelling of catchment scale water
quality processes. This thesis, part of such endeavour, targets studying the applicability
of uncertainty analysis strategies for large-scale water systems. The main goal is to iden-
tify relevant error sources, quantify their propagation across the integrated catchment
model and identify the main contributors for the uncertainty of modelled dissolved oxy-
gen dynamics in integrated water systems.

Chapter 2 provides the identification of the main sources of uncertainty for an ICM
study of the river Dommel. This chapter contains the analysis of sub-model driven un-
certainty sources and the detail description of two error sources. Firstly, the effect of
spatial and temporal characteristics of urban rainfall forcing data is described for the
simulation of dissolved oxygen dynamics in the river Dommel. Secondly, the effect of
uncertainties in combined sewer overflow pollutant concentration in the receiving wa-
ter quality simulations. Two stochastic processes were used to describe uncertain knowl-
edge about sewer-to-river link variables. The impact of neglecting the correlation of the
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different variables is discussed, presenting a methodology to draw stochastic CSO pollu-
tant variables respecting the observed correlation structure.

The numerical implementation is still one of the challenges of uncertainty analysis
schemes in real-scale integrated catchment studies. This type of models often result in
highly computationally expensive structures and sampling the simulator becomes im-
practical. The use of model emulation techniques to accelerate model sampling is dis-
cussed in Chapter 3. In a first example, the use of an emulator platform is described
for the implementation of a global sensitivity analysis and a formal Bayesian inference
to reduce parametric uncertainty in flow and dissolved oxygen dynamics for the river
Dommel. Additionally, one of the main constraints of today’s emulation state-of-the-art
is the dimensionality curse. This forces the number of parameters used in the emulation
process to be reduced, limiting the consideration of dynamic inputs. This is a severe
limitation in cases in which an emulator platform is required to extrapolate to differ-
ent dynamic conditions from the training scheme (e.g. an emulator to accelerate the
simulation of flooding schemes under different storm conditions). In Chapter 3 a novel
methodology to integrate the use of rainfall dynamics and static parameters for the em-
ulation of 2-D flow propagation schemes is described.

Chapter 4 discusses the application of a statistical uncertainty analysis to a full-integrated
catchment model. This involved quantifying the degree of uncertainty in modelling out-
comes when simulating the current system status. It also provides a decomposition of
the effect of several sources of uncertainty involved in the simulation of dissolved oxy-
gen dynamics in the system. Knowledge on the relevance of the source of uncertainties
is important to direct further monitoring and modelling efforts.

Chapter 5 presents the conclusions of this thesis, reflecting about the current prob-
lems of uncertainty quantification in integrated catchment modelling along with recom-
mendations for future research.
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2.1. REPORTING MODELLING UNCERTAINTIES *

T HIS chapter briefly presents the application of the QUICS framework for reporting
modelling uncertainties (Tscheikner-Gratl et al., 2017) to an ICM study for the sim-

ulation of dissolved oxygen dynamics in the Dommel water system. Furthermore, the
detailed characterisation of two relevant uncertainty sources for the simulation of re-
ceiving water quality impacts is shown. Firstly, the effect of the spatio-temporal char-
acteristics of urban rainfall input data in river dissolved oxygen dynamics is discussed.
Secondly, the probabilistic description of combined sewer overflow pollutant concen-
trations is presented and the effect of neglecting the correlation structure observed in
measured discharged pollutant fractions is shown.

2.1.1. OBJECTIVES OF THE MODELLING STUDY

Clearly stating modelling objectives is key to effectively select the adequate structure,
identifying necessary data and stating required tolerances in the simulation process (Ref-
sgaard et al., 2007; Laniak et al., 2013)

The Dommel ICM study targets the simulation of dissolved oxygen dynamics at the
receiving water body level. The model application involves the estimation of the effect of
system changes (e.g. adding a storm water storage facilities, reducing particulate matter
in CSOs etc.) on the frequency and magnitude of dissolved oxygen concentration water
quality impacts. This implies that the simulator should closely represent the current sys-
tem state (which can be assessed by comparing simulated and measured variables), yet

*This chapter section is partially adapted from: Tscheikner-Gratl, F., Lepot, M., Moreno-Rodenas, A.,
Schellart, A. (2017). QUICS report: A Framework for the application of uncertainty analysis. doi: 10.5281/zen-
odo.1240926
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also should be valid to extrapolate system mechanistic relationships (e.g. virtual scenar-
ios), which cannot be formally validated without physically changing the system.

The water quality status is assessed by concentration-duration-frequency (CDF) met-
rics (Appendix A), which limits are derived from a local ecological assessment (FWR,
2012). The performance of the simulator is also evaluated by comparison with mea-
sured time-series of flow, depth and dissolved oxygen at different locations of the sys-
tem. Langeveld et al. (2013a) and Langeveld et al. (2013b) provide further detail in the
construction of the modelling platform and the required data sources for its calibration
and validation process.

2.1.2. IDENTIFICATION OF UNCERTAINTY SOURCES

During the model development phase, uncertainties at each stage should be reported
and classified. Figure 2.1 provides the main sources of uncertainty in the Dommel ICM
study. Uncertainties are reported following the classification depicted by Refsgaard et al.
(2007), attending to the nature, type and source of modelling uncertainties.

Along with the identification of uncertainty sources, a pre-screening analysis is rec-
ommended to rank the most influential and uncertain factors, thus prioritising mod-
elling efforts. This pre-screening is nevertheless subjective and based on the modeller’s
experience, since ranking formally many sources of uncertainty (e.g. deep uncertain-
ties) is not straightforward, yet it is useful to report and discuss modelling abstraction
assumptions. Tscheikner-Gratl et al. (2017) suggested the use of elicited uncertainty pri-
oritisation graphical panels by showing an estimated sensitivity and uncertainty magni-
tude for each source. An example of the application of this prioritisation can be found in
Figure 2.2, in which an elicited ranking was proposed for the main identified sources.

The estimated prioritisation was used to report the possible effect of the main sources
and to discuss the actions taken to reduce uncertainties in the output variables inline
with the model construction phase. Some of these efforts are hereby presented:

1. River upstream pollution loads (source 3): Water quality dynamics in the upstream
river boundaries are not included in the modelling scheme, but are represented by
a constant concentration pollutant load. This simplification was expected to im-
pact the modelling of dissolved oxygen concentrations. Therefore the Waterboard
of the Dommel carried out a dedicated monitoring campaign and verified that ex-
pected pollutant loads in the boundary have a reduced influence in the down-
stream sections.

2. Sediment evolution (dredging and transport) (source 9): The sediment bed rep-
resents a relevant oxygen sink term in the river Dommel. This effect is modelled
through a constant sediment oxygen demand term and through a dynamic sed-
imentation and consumption of particulate BOD matter (Appendix B). However,
dredging and transport of sediments are not appropriately modelled in the sys-
tem, thus non-stationarities in the process might not be well captured, potentially
rendering a model structural mismatch.

3. Errors at measured water quality data (source 10): Measurement conditions in nat-
ural water bodies are not ideal and constant maintenance is required. Errors in
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reported series for water quality variables in the river are expected and this can in-
fluence calibration and validation processes. Detailed assessment of data quality
is carried out to minimise this effect (see Schilperoort (2011)).

4. Urban drainage CSO mean pollutant concentration vectors (source 18): Sufficient
data is not available for the calibration of local in-sewer water quality process
models. Thus the model uses mean concentration pollutant vectors to estimate
sewer loads into the receiving water body. This is expected to result in highly un-
certain input loads, which effect should be quantified.

5. Rainfall data input characteristics (space-time resolution) (source 12): Selection of
sources for rainfall data and the characteristics of the inputs are expected to influ-
ence the dynamics at the urban drainage processes, affecting timing and volume
of urban discharges.

This chapter contains two examples in which the effect of rainfall data input charac-
teristics and the impact of uncertainties in CSO mean pollution concentration vectors
are explored. Characterising the effect of statistical uncertainty sources in the simulated
dynamics of dissolved oxygen is also further discussed in Chapter 4, along with a formal
ranking of the sensitivity of the model output. A dedicated study should be carried out
when using the model under extrapolation conditions to evaluate the effect of scenario
uncertainties.

a) River submodel b) Urban drainage submodel

c) WWTP submodel d) Integrated Model

3

Figure 2.2: Prioritisation panels for the three main submodels and the full version of the Dommel ICM
(Tscheikner-Gratl et al., 2017). Points refer to the uncertainty sources depicted in Figure 2.1.
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River 

1 Temperature River (measurement)             

2 Luminosity River (measurement)             

3 River upstream pollution (estimated)             

4 Baseflow hydrology             

5 Pollution load rural catchment             

6 River diversion/retention structures levels             

7 River geometry             

8 River energy losses/roughness             

9 Sediment evolution (e.g. dredging and transport)             

10 Errors in measured water quality data             

 

Urban drainage 

11 Rainfall Data measurement errors             

12 Rainfall input time-space resolution             

13 Soil characteristics for infiltration             

14 Water infiltration in the sewer             

15 Evaporation potential             

16 Daily/seasonal pattern urban pollution load             

17 Population density             

18 Urban drainage CSO pollution mean concentration             

19 Pumping capacity-activation levels             

20 Georeference of main CSO structures             

21 CSO weir geometry             

22 Layout of connected draining areas             

23 Control set points in transport system             

 

Wastewater 

treatment plant 

24 WWTP reactors dynamic state             

25 Temperature water WWTP             

26 Control WWTP             

27 Water treatment chemical addition             

 

Integrated 

Model 

28 Model structure extrapolation             

29 Climatological scenarios             

30 Urban to WWTP link state-variable transformations             

31 WWTP to River link state-variable transformations             

32 Changes of environmental criteria and legislation             

33 Technological changes             

34 Change in urbanisation structure             

35 Change in land usage (agriculture-industrial)             

36 Solver settings             

Figure 2.1: Classification of main sources of uncertainty for the Dommel ICM study (adapted from
Tscheikner-Gratl et al. (2017)).
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2.2. IMPACT OF SPATIOTEMPORAL CHARACTERISTICS OF RAIN-
FALL INPUTS ON INTEGRATED CATCHMENT DISSOLVED OXY-
GEN SIMULATIONS *

2.2.1. INTRODUCTION

R AINFALL is one of the main driving forces for water pollution dynamics in urbanised
catchments. Combined urban drainage systems often generate discharges from par-

tially treated WWTP effluents and combined sewer overflow structures (CSO) under se-
vere storm conditions. These discharges impact on the chemical and ecological status
of the receiving surface waters. When modelling water quality processes, it is often nec-
essary to represent urban pollution loads, which are heavily linked to rainfall-runoff dy-
namics. Several studies have addressed the effect of rainfall input errors in the behaviour
of individual urban drainage systems for hydrodynamic modelling. For instance, Sun
and Bertrand-Krajewski (2013) reported that the uncertainties in rainfall input data have
a lower contribution to the total uncertainty compared with flow measurement errors
for the simulation of discharges in a small urban drainage system ( 180 ha). Ochoa-
Rodriguez et al. (2015) presented a comprehensive sensitivity analysis of urban drainage
flow simulations (urban system with areas ranging between 200-800 ha) for varying rain-
fall spatio-temporal resolutions. This showed that the impact of rainfall errors rapidly
decreases with catchment’s area, and reported a strong link between temporal and spa-
tial effects. The impact of rainfall dataset selection in the calibration of urban hydrody-
namic models is recognised as significant (Tscheikner-Gratl et al., 2016).

Nevertheless, when modelling receiving water quality dynamics, urban drainage sim-
ulators are often conceptualised using spatially lumped model structures (Langeveld
et al., 2013b; Vezzaro et al., 2014a). Lumped urban rainfall-runoff models reduce sig-
nificantly the simulator’s computational cost, which allow for long simulation periods
and fast evaluation. Also, accuracy at modelled outflow variables is expected to be suf-
ficient for the application at large-scale water quality modelling and real time control of
drainage systems (van Daal-Rombouts et al., 2016). These lumped model structures fur-
ther distort the effect of uncertainties in rainfall measurement data, especially those as-
sociated with the in-catchment micro spatial and temporal scales. Also, urban wastewa-
ter systems are often composed by several connected sewer networks across municipal
areas (e.g. centralised wastewater treatment layouts), and the distances between those
connected catchments are often beyond the de-correlation length of convective storm
events (Bruni et al., 2015).

Literature covering the effect of rainfall input characteristics at integrated catchment
scale and their impact on water quality dynamic simulation is scarce. The total contribu-
tion of rainfall errors in water quality modelling uncertainties is expected to be moderate
(Willems, 2012), however it is important to characterise the desired properties of rainfall
input datasets when modelling water quality processes at large scale urban systems.

This subchapter investigates the effect of the spatiotemporal variability of selected
rainfall inputs on the simulation of dissolved oxygen dynamics in the Dommel urban wa-

*This section is an adapted version of: Moreno-Rodenas, A.M., Cecinati, F., Langeveld, J. and Clemens,
F.H.L.R. (2017) Impact of Spatiotemporal Characteristics of Rainfall Inputs on Integrated Catchment Dissolved
Oxygen Simulations. Water 9(12), 926. doi: 10.3390/w9120926
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ter system. It aims to ascertain whether uncertainties induced by the misrepresentation
of the rainfall field at the municipal scale are transferred to the simulation of dissolved
oxygen dynamics at a sensitive river section. The performance of a large-scale concep-
tual integrated catchment model was compared against monitoring data. This provided
insights on the optimal selection of rainfall data sources in large lowland urban water
systems for dissolved oxygen environmental assessment.

2.2.2. MATERIALS AND METHODS

2.2.2.1. SYSTEM AND DATA DESCRIPTION

River data (water-depth, velocity and Dissolved Oxygen (DO) concentration) were ob-
tained at a monitoring station (M0121, as shown in Figure 1.4) located at roughly 17 km
downstream of the WWTP. DO measurements were taken by an online probe located in
the river, with a sampling frequency of 10 minutes. The measuring station was periodi-
cally maintained and calibrated. Manual data inspection was performed to validate time
series by the water authority of De Dommel. Time series for combined sewer overflow
(CSO) discharges were estimated from water depth monitoring data at the main struc-
tures (although those estimations can contain significant level of uncertainties). The
WWTP operator provided water quantity and quality data of the influent-effluent. Three
years of data were obtained (2011-2013), more information about the data set can be
found at (Langeveld et al., 2013a).

Measured rainfall data were obtained from three sources (Table 2.1): 1) An auto-
matic rain gauge network from the Dutch Meteorological agency (KNMI). One of the
stations was installed close to the civil airport of the city of Eindhoven (KNMI_370 in
Figure 1.4), and six more were found within a radius of 70 km from the centre of catch-
ment (those rain gauges add relevant information to constrain the interpolation scheme
at the boundary areas). KNMI automatic rain gauges use a floating device and an elec-
tronic register, providing a high accuracy, measuring frequency and resolution (1% of
the rainfall rate - 1 min - 0.02 mm/h). These stations are calibrated and maintained reg-
ularly. 2) A local network of tipping bucket rain gauges (resolution 0.15 mm). This is
composed of six stations managed by the Waterboard de Dommel and the municipality
of Eindhoven. Rain gauge stations are located within the urban area of several munic-
ipalities (Figure 1.4). 3) Single polarisation C-Band radar rainfall estimations from the
composite of the KNMI. Rainfall estimated maps are provided at a resolution of 1 km2

and 5-minute accumulation. The radar based estimates were also bias-corrected by the
KNMI (from 3-hour and 1-day rain gauge accumulated data) in order to eliminate the
systematic errors present in the raw radar data (Overeem et al., 2009).

The urban system connected to the studied section of the river Dommel is composed
of 29 main contributing urbanised areas, which are characteristic of a lowland area with
high in-sewer storage and low slopes. Catchment areas were extracted manually from
a land-use GIS database. This catchment comprises a rural area of approximately 800
km2, which contributes to the baseflow of the river and is mainly composed by forestry
and low intensity agricultural areas. The system is characterised by mild slopes and it is
naturally drained. Section 2.2.2.5 and 2.2.2.6 contain further description of the system
under study, attending in detail to the relevant characteristic spatiotemporal scales.
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Table 2.1: Rainfall data sources and measurement characteristics

Source Sampling frequency Spatial Resolution Remarks

WB Dommel Rain gauges 5 min Point data (6 gauges)
Tipping buckets, 0.1-0.15 mm
resolution gauges

KNMI Rain gauges 10 min Point data (7 gauges)
High quality maintenance, weighting gauges
0.01 mm resolution

KNMI Radar 5 min 1 km2 KNMI areal Radar-based precipitation estimation
C-Band single polarisation

2.2.2.2. MODEL STRUCTURE

An integrated catchment model (ICM) was developed with the purpose to simulate water
quality dynamics (dissolved oxygen and ammonium) in the river Dommel. A previous
version can be found at Langeveld et al. (2013b) along with a detailed description of the
monitoring data needed for its development and the calibration process (in a data set
from 2001-2010). The ICM consists of: a) An urban drainage routine, which was concep-
tualised as a set of lumped rainfall-runoff models representing the 29 urban systems of
the Dommel area. A tanks in series scheme served to simplify the hydraulic routing net-
work to the WWTP. A total of 192 CSO structures were reduced to 30 clusters represent-
ing the spatial locations of the most relevant discharge structures. b) A WWTP model,
the characteristics and calibration of which are described in detail at Langeveld et al.
(2013b). This model represents three biological lines and a storm-bypass section. The
link of state variables at the boundary urban drainage – WWTP were produced using an
stochastic generator (Langeveld et al., 2017). c) A river sub-model, which is composed by
a flow propagation scheme, modelled through a hydrological storage-discharge model
(Tank-In-Series scheme). This was calibrated based on river flow and depth measure-
ments during 1 year (2012) using CSO and WWTP discharge measured data and hydro-
logical derived base-flow as inputs. The calibration scheme produced a Nash-Sutcliffe
efficiency at calibration/validation of 0.92/0.84 for river flow dynamic series. Further de-
scription of the calibration process can be found at Moreno-Rodenas et al. (2017a). The
water quality routine was conceptualised assuming completely stirred reactor-like river
sections (with section length between 800-3000 meters).

Figure 2.3 provides a scheme of the link between subsystems and the processes ac-
counted for in the water quantity and quality routines. Within the river model section
a graphical scheme summarises the water quality processes used to simulate dissolved
oxygen dynamics. This included the balance between a three-phase layout (atmosphere,
water volume and sediment), fractionation of Biological Oxygen Demand (BOD) in dis-
solved/particulate and fast/slow biodegradability, oxygen exchange from macrophyte
biomass (Primary Producers) and nitrification-denitrification. The main source term in
the DO dynamic balance is the reaeration process (KLT), which depends on water tur-
bulence, depth and temperature. Meanwhile, consumption is generated by oxidation of
fast and slow biodegradable matter in the sediment/suspended fraction (kd1, kd2 and
kBODs) and from the nitrification process (knit). The sedimentation of organic matter
was also considered (Vs1 and Vs2). Appendix B contains the full description of biological
processes simulated in the river section.
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Figure 2.3: Scheme of submodel links and processes

2.2.2.3. STORM SELECTION

Three periods of summer were selected for a continuous modelling time-window: pe-
riod 1) 10/08/2011 – 31/08/2011 (21 days), period 2) 05/07/2012 – 04/08/2012 (30 days)
and period 3) 25/07/2013 – 19/08/2013 (25 days). Summer storm impacts are considered
critical for the dissolved oxygen content in urban rivers since these events often couple
several critical factors; high temperatures lead to a lower oxygen saturation point at the
water mass (which consequently produces a lower initial DO concentration during the
event), to faster biodegradability rates (in the suspended and sedimented fractions) and
low base-flow level, which reduces the buffering capacity of the river.

As water quality-related processes exhibit a significant inertia (e.g. biological masses
at the waste water treatment works can take stabilisation times up to weeks-months),
the initial conditions for each simulated period were extracted from one-year of previ-
ous continuous simulation (using the rain gauge KNMI370 as an homogeneous urban
rainfall input).

A total of 7 rainfall events were selected within the three periods (which induced oxy-
gen levels at the river monitoring station lower than 3 mg/l). A summary of the storm
characteristics can be found in Table 2.2. Rainfall maximum intensity and accumulated
depth were calculated using five rain gauge stations located within the boundaries of the
Dommel system (maximum distance-to-centre, 18 km). Rainfall variability and measur-
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ing errors induced dispersion in the chosen parameters, thus the mean value and one
standard deviation are provided as r̂ (±σ). Visual and quantitative assessment of rain
gauge time series did not show systematic deviations in the measurements.

Table 2.2: Storm characteristics. Rainfall volume and maximum intensity computed from 5 rain gauges within
the Eindhoven catchment. ADWP stands for antecedent dry weather period length. D refers to the duration of
the rainfall in minutes. All variables were calculated from the 10 minutes accumulated time series

Event Code Period Storm time window Rainfall depth (mm) Max intensity (mm/h) D (min) ADWP (days)
1 1 18-08-2011 14:00 18-08-2011 21:00 7.9 (±5.4) 3.1 (±2.1) 170 4
2 1 22-08-2011 21:00 23-08-2011 14:00 30.8(±10.1) 17.8 (±6.9) 270 3
3 1 26-08-2011 06:00 26-08-2011 14:00 7.1 (±2.2) 5.8 (±2.1) 100 2.5
4 2 11-07-2012 10:00 11-07-2012 22:00 24.7 (±12.3) 7.6 (±3.8) 320 2
5 2 28-07-2012 17:00 28-07-2012 20:00 9.6 (±3.0) 7.9 (±2.0) 30 3.5
6 3 27-07-2013 05:00 28-07-2013 03:00 33.5 (±6.4) 17.6 (±5.4) 220 2
7 3 11-08-2013 11:00 11-08-2013 23:00 11.4 (±1.9) 6.5 (±0.8) 150 4

2.2.2.4. GENERATION OF RAINFALL ESTIMATIONS

Rain gauge and disdrometer networks are usually considered the most reliable data source
for rainfall measurements at urban scale. However, those networks present low spatial
densities, thus the representativity of point samples decreases when extrapolating mea-
surements to ungauged locations. On the other hand, weather radar rainfall estima-
tions can represent the spatial structure of storm processes (at the cost of lower accu-
racy). When possible, both data sources should be merged to provide rainfall measure-
ments respecting both point rain gauge measurements and spatial structures contained
in radar estimations (Nanding et al., 2015; Velasco-Forero et al., 2009).

The allocation of rainfall inputs from measured locations to the model of an indi-
vidual draining area is generally done based on the modeller’s expertise. The modeller
defines a time-accumulation scale in which the rainfall estimations will be generated.
This time step definition is constrained by data technical specifications (lower limit)
and by the dynamics of the modelled process (upper limit). Manual/automatic quality
checks are performed to assign reliable time-windows to each dataset. Then a selec-
tion of those measured points is used to generalise values to the rest of the catchment.
This is often done by spatially interpolating sampled data by using Thiessen polygons,
distance-averaging schemes or through geostatistical methods. A geostatistical interpo-
lation scheme was used since it allows accounting for the spatial structure of the rainfall
process and it facilitates the merging of different data sources.

When generating rainfall predictions, an often-neglected factor is the spatial sup-
port of the estimation. In this case, the studied ICM was composed by several individual
lumped rainfall-runoff model structures. These models spatially aggregate the internal
connected areas. Thus, the rainfall input should be representative for the full domain
and not only of an arbitrary internal location. Although measurements provided by rain
gauge networks are of point nature, rainfall predictions should be performed over a cer-
tain area. This is often referred to as change of block spatial support (Heuvelink, 1999).

Figure 2.4 depicts the strategies followed to generate spatial rainfall predictions by
interpolating the different data sources: a) Direct application of a single rain gauge mea-
sured series to all subcatchments in the system. b) Rainfall estimations at area (B) block
support of each subcatchment are rendered from a block kriging scheme from n point
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Figure 2.4: Rainfall estimations under change of spatial support from different data sources; (a) Single rain
gauge data source (direct application) (b) kriging estimation from n point measurements with change of

block support for the area B, areal estimation (c) weighted average of radar map (R) for the area B (d) merged
product between n rain gauges and the radar map through a kriging with external drift estimation under

change of spatial support.

samples. c) The estimated rainfall is extracted from a weighted average of the radar pix-
els covered by the catchment. d) Radar measurements are used as an external covariate
within the area support to refine an interpolation from n rain gauges (point-to-block
kriging with external drift). The simplification of spatial rainfall description through
point or block estimates will not always contribute significantly to the rainfall predic-
tive accuracy. Its influence depends on the spatial variability of the observed field and
the size of the support area. In other words, a highly correlated spatial field would be
well approximated by a point estimate. However, spatial variability of rainfall may be-
come increasingly relevant at large draining areas subjected to highly convective storm
conditions.

Rainfall input time series were generated using four data sources:

1. Single rain gauge (BK1_T): Using only the most reliable rain gauge (KNMI_370 in
Figure 1.4). This rain gauge was selected to generate spatially homogeneous rain-
fall fields, which simulates the case in which data is only present at a single loca-
tion inside the catchment area.

2. Block kriging of all available rain gauges (BKall_T): Use of the full rain gauge net-
work to generate predictions from an Ordinary Kriging model at the spatial sup-
port of each draining area.

3. Averaged radar quantitative estimation (ARadar_T): Spatially weighted average of
the gridded radar-derived rainfall estimations (resolution 1 km2) for each draining
area.

4. Kriging with external drift (UBK_T): Use of the full rain gauge network and radar
rainfall estimated field as a covariate. Predictions were rendered at spatial support
of urban drainage systems.

Rainfall input time series were generated by varying the accumulated time step T (at
10, 30 and 60 minutes) for each of the four data sources, thus generating 12 different
products for each of the 29 individual rainfall-runoff model catchments.
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2.2.2.4.1. ORDINARY KRIGING WITH CHANGE OF SPATIAL SUPPORT

Kriging is a well-known geostatistical technique (Matheron, 1971) widely used to gener-
ate estimations of continuously spatially distributed variables at non-sampled locations,
taking into account the spatial structure exhibited by the variable.

Let, r (x0) be the rainfall intensity at a certain non-sampled location x0. This can be
approximated by a linear combination of, i = 1, ...,n observed values at nearby locations,
r (xi ):

r̂ (x0) =
n∑

i=1
[wi (x0) · r (xi )] (2.1)

where wi denotes a set of local weights. Ordinary Kriging stems from the assumption
that the process is Gaussian and has a constant and unknown mean value or E [r (x0)] =
E [r (xi )] = m. Forcing the estimation to be unbiased, E [ε(x0)] = E [r (x0)− r̂ (x0)] = 0 and
minimising the prediction’s variance leads to the derivation of the kriging system, which
in matrix form is:

[
w
µ

]
=

[
Ci j 1

1 0

]−1

·
[

Ci 0

1

]
(2.2)

in which µ refers to the Lagrange multiplier (used on the minimisation of the vari-
ance), Ci j ∈ Rnxn to the covariance matrix between data points, Ci 0 ∈ Rnx1 covariance
vector between each of the measured points at the estimation’s location and 1 ∈Rnx1 an
all-ones vector.

Block kriging usually denotes a variation of the kriging system in which the target is
not a point estimate but a spatially averaged prediction within a certain area domain, B .
This is computed as:

r (B) = 1

|B |
∑

j | j∈B
r j (2.3)

in this case, the covariance structure changes to the point-to-block covariance, or:

C̃i B = cov(rB ,ri ) = E [rB ri ]−E [rB ] ·E [ri ] = 1

|B |
∑

j | j∈B
Ci j (2.4)

which represents the average covariance between the location i and all the possible
locations within the block B . Thus the kriging system accounting for the estimation at
block level is:

[
wB

µ

]
=

[
Ci j 1

1 0

]−1

·
[

C̃i B

1

]
(2.5)

by solving wB (xB ) and using it as the weights for the Equation 2.1, it is possible to
generate estimations at the target area support.
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2.2.2.4.2. KRIGING WITH EXTERNAL DRIFT (KED) AND CHANGE OF SPATIAL SUPPORT

Ordinary kriging is analogous to a Gaussian process model with an unknown but con-
stant mean field. However, additional variables that are correlated to the targeted pro-
cess (and extensively measured) can be used to further refine the spatial model. Regres-
sion kriging and Kriging with external drift formally account for this case. This involves
assuming a spatial model, which has a deterministic mean (m(x)) and a stochastic com-
ponent (ε(x)):

r (x) = m(x)+ε(x) (2.6)

m(x) =
p∑

k=0
βk ·qk (x) (2.7)

and in which the mean field is linearly related to a set of k = 1, . . . , p external vari-
ables qk (x) through a vector of weights β (also referred as regression coefficients). In
Regression Kriging, the mean field is first fitted, and the field of stochastic residuals ε(x)
is interpolated though Simple or Ordinary Kriging. On the other hand, Kriging with Ex-
ternal Drift (KED) includes the regression process within the solution of kriging system.
Thus, predictions on KED are also performed as a linear combination of the values at
observed locations:

r̂ (x0) =
n∑

i=1
wK ED

i (x0) · r (xi ) (2.8)

in which the weight values are obtained by solving the KED equation system ∀i ∈
1, . . . ,n:

∑n
j=1 wK ED

i ·Ci , j +µ0 +∑p
k=1µk ·qk (xi ) =Ci 0∑n

i=1 wK ED
i ·qk (xi ) = qk (x0)∑n

i=1 wK ED
i = 1

(2.9)

Radar-reflectivity derived rainfall maps were the only covariate used in this study.
Therefore, the solution of the KED system in matrix notation with radar as an extra co-
variate could be expressed as:

wK ED

µ0

µ1

=
Ci j 1 Ri

1 0 0
RT

i 0 0

−1

·
 Ci 0

1
R(x0)

 (2.10)

in which µ0 and µ1 are the Lagrange multipliers, RT
i = {R(x1),R(x2), . . . ,R(xn)} a row

vector of the radar values associated to the observed locations, Ci j the covariance ma-
trix between sampled points and Ci 0 ∈ Rnx1 the covariance vector between each of the
measured points and the targeted location.

As discussed in the case of Ordinary Kriging, the objective estimation should be done
at an area block support. Thus the equations were adapted in an analogous manner:
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wK ED
B
µ0

µ1

=
Ci j 1 Ri

1 0 0
RT

i 0 0

−1

·
 C̃i 0

1
R(x0)

 (2.11)

the covariance matrix should represent the point-to-block covariance (C̃i B ). And the
radar covariate was averaged within the block area:

R(xB ) = 1

|B |
∑

j | j∈B
R(x j ) (2.12)

this step facilitates the implementation of the kriging system, and it is consistent
since the deterministic mean (in Equation 2.6) is calculated through a linear application.
Thus, averaging the covariate beforehand is equivalent to performing predictions at each
location and later spatially averaging them.

2.2.2.4.3. RAINFALL SPATIAL CORRELATION

The covariance used in Equation 2.5 and Equation 2.11 represents the spatial structure
exhibited by the measured process. This was expressed in terms of a semivariogram
structure, which in this case is related to the covariance as:

γ(xi , x j ) =C0 −C (xi , x j ) (2.13)

being C0 = var (r (x)) (total variance). An empirical semivariogram was computed
from the rain gauge dataset. This should ideally be computed independently at each
time step (as temporal autocorrelation was neglected). However, in most cases, the ur-
ban scale rain gauge network does not present enough spatial density to compute a re-
liable semivariogram structure per time step. Therefore the rain field was assumed to
be stationary of second order, isotropic and was computed as a time-lumped process,
obtaining an averaged structure for each storm event in the form:

γ̂(xi , x j ) = 1

2m

m∑
t=1

1

N (h) · s2
t (R)

N (h)∑
i=1

[R(ui , t )−R(ui +h, t )]2 (2.14)

for which N (h) is the number of sampled pairs located at distance h = |xi − x j | (Eu-
clidean distance). The semivariogram was time-averaged over each selected indepen-
dent storm process and normalised by the variance of the rainfall variable at each time
step s2

t (R).

The empirical semivariogram is a cloud of discrete points relating space l ag (h) and
semivariance. In order to generate a continuous spatial correlation map, a valid func-
tional representation (experimental semivariogram) was fitted. An exponential structure
was used in this case:

γ(h) =
{

0 for h = 0

c0 + c(1−e
−3|h|
φ ) for h > 0

(2.15)
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where c is the partial sill, c0 is the nugget effect and φ the effective range or de-
correlation distance (distance at which the semivariogram value reaches the 95% of the
total sill). No relevant nugget was found in a preliminary study and therefore it was ex-
cluded from the semivariogram model (which was reported also by van de Beek et al.
(2012)).

2.2.2.5. TEMPORAL SCALES IN THE DOMMEL SYSTEM

A characterisation of the system’s reaction time was extracted from observed datasets at
the rain gauge network, CSO structures, WWTP and river. Table 2.3 provides a summary
of the characteristic temporal scales. Additionally, the accumulated discharged volume
from all CSO discharges and the minimum DO level in the river linked to each storm
process are shown. This provides an insight on the impact mechanism of each event
and on the reaction patterns of the system.

Table 2.3: Characteristic time scales. Calculated as the delay time between the main rainfall peak and the
system’s response for: 1) the sum of combined sewer overflows (CSO), 2) the time to reach maximum flow
capacity at the treatment works (WWTP) and 3) the time of stabilisation of the dissolved oxygen minimum
river level (DO, measured ∼ 17km downstream of the WWTP, M_0121)

Event Code Storm time window CSO WWTP DO CSO Volume (m3)
Min DO level
(gO2/m3)

1 18-08-2011 14:00 18-08-2011 21:00 2 h 5 h 28 h 119.6 ·103 1.3
2 22-08-2011 21:00 23-08-2011 14:00 1 h 2 h 13 h 573.1 ·103 0.7
3 26-08-2011 06:00 26-08-2011 14:00 - 4 h 23 h 3.7 ·103 0.8
4 11-07-2012 10:00 11-07-2012 22:00 3 h 3 h 23 h 157.4 ·103 2.8
5 28-07-2012 17:00 28-07-2012 20:00 1 h 1 h 25 h 20.8 ·103 0.8
6 27-07-2013 05:00 28-07-2013 03:00 2 h 3 h 18 h 103.3 ·103 0.6
7 11-08-2013 11:00 11-08-2013 23:00 - 3 h 14 h 0.45 ·103 1.6

2.2.2.6. SPATIAL SCALES IN THE DOMMEL SYSTEM

Figure 1.4 shows the geographical location of the different municipalities connected to
the Dommel catchment. The system is composed by 29 individual drainage areas, which
are scattered in an area of roughly 25x30km. The distance from the different urban
drainage systems along with their drained area morphology plays a role on the sensitivity
to rainfall spatial scales (e.g. a highly clustered system could be sufficiently represented
with a few sampled locations, while a sparse one may require a more detailed spatial
description). Figure 2.5 introduces the main spatial dimensions of the Dommel system.
The lower triangular matrix displays the distance between centroids of the catchment
areas, the area Ai in km2 is shown in the diagonal, while the upper triangular matrix in-
troduces a ranking metric of importance between area couples (normalised

p
Ai ·

√
A j ).

This ranking metric shows the clustering effect exerted by the biggest municipal area
(the city of Eindhoven).

A global characteristic spatial scale was computed as a weighted average of the centroid-
to-centroid distances plus the average area length scale, expressed as:

L̂c =
∑

i> j [(di j +
p

Ai +
√

A j ) ·pAi ·
√

A j ]∑
i> j [

p
Ai ·

√
A j ]

≈ 15km (2.16)
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Figure 2.5: Length scales for each municipal urban drainage system. Distance between area centroids (km) is
shown in the lower triangular. The diagonal displays the catchment’s size (km2). And the upper triangular

shows a ranking metric of the relative importance between areas.

being Ai the area of the i th catchment, di j the distance between the centroids i and
j . This metric aims at accounting for the distances between connected areas giving an
increased importance to larger area couples, thus providing with an estimated catch-
ment characteristic scale, which can be used to diagnose the system’s behaviour against
rainfall processes with different correlation scales.

2.2.3. RESULTS

2.2.3.1. URBAN DRAINAGE DYNAMICS

The effect of rainfall input source (space-time variability) in the urban drainage dynam-
ics is illustrated by the comparison of the four most relevant internal variables: 1) Max-
imum estimated rainfall intensity in the catchment, 2) accumulated rainfall depth, 3)
peak discharge at the CSO and 4) accumulated discharged volume. The estimated rain-
fall intensity and accumulated depth describes differences in the rainfall input at each
catchment. Each of the selected inputs were propagated through the urban drainage
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submodel, and subsequently rendered the pollutant load in the river system. The ur-
ban drainage response is characterised by the CSO dynamics, described by the discharge
peak and the accumulated discharged volume. Figure 2.6 shows the effect of rainfall in-
put on the urban drainage system of Valkenswaard (Figure 1.4). This municipal system
is an especially illustrative example since it is located approximately 12 km from the rain
gauge KNMI_370 (source for the BK1 product) and represents a relevant contribution
to the total discharged volume (second largest combined sewer connected area). This
example allows the observation of the joint effect of time and space variability.

The selected time aggregation influences the estimated maximum rainfall intensity,
which however does not propagate to the estimation of total rainfall volume and to the
CSO simulation. A minor effect of time-aggregation at the interpolated rainfall products
(BKall and UBK) can be observed. However, this difference is relatively small compared
with the exhibited by the selected spatial data sources. The use of a single rain gauge in-
put, BK1 creates an appreciable deviation in the computation of CSO dynamics in most
of the rainfall processes studied when compared with monitoring data. Differences be-
tween the other three products (BKall, UBK and ARadar) are less apparent.

Figure 2.6: Rainfall input and urban drainage response for the municipality of Valkenswaard. Each graph
depicts the effect of the four rainfall products rendered at different time accumulation steps. From left to
right; maximum rainfall intensity, accumulated rainfall depth, maximum CSO flow and accumulated CSO

volume.

The time-space rainfall input variations were decoupled to display the effect on all
urban drainage catchments connected to the water system. Figure 2.7 shows the ef-
fect of variations of the spatial product (at fixed 60 minutes time aggregation) for each
catchment (represented by their connected areas in abscises). The rainfall intensity and
depth provided by the product BK1 produces a distortion of the rainfall map, which can
be appreciated in events 1, 2 and 5 (Figure 2.7). Although in some cases like in Storm 6
or Storm 7, BK1 can be representative of the mean of the process, it generally induces
a deviation into the rainfall input description with respect to the rest of the products
generated. This error is not systematic and it is linked to the homogeneity of the rain-
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fall process (if the central rain gauge is representative for the overall spatial domain or
not). In consequence, those differences in the rainfall quantification due to spatial data
variation affects the CSO simulated dynamics. Event 1 and 4 are a good example of this
phenomena, for which BK1 underestimates first and overestimates later the total rain
volume being consequently transferred to the accumulated CSO volume.

Figure 2.8 shows the effect of the selection of time-aggregation level at each urban
drainage system (using the ARadar spatial data source as fixed input). Here it can be
seen how the selection of a certain time aggregation (10-60 minutes) impacts on the es-
timation of the maximum rainfall intensity, however those differences do not propagate
to the computation of accumulated rainfall volume and in consequence to the simula-
tion of CSO discharges.

2.2.3.2. RAINFALL SPATIAL VARIABILITY

The spatial characteristics of the observed rainfall processes under study were estimated
by the use of a time-averaged empirical semivariogram (as described in the methods
section). Table 2.4 shows the fitted range and sill parameters for each storm process de-
pending on the time-aggregation level. This describes the correlation structure present
in the rainfall process. A large range indicates a spatially homogeneous rainfall process.
The increase in accumulation time of the rainfall input produced a more spatially corre-
lated map (seen by the increase on range). This was to be expected since aggregating on
time acts as smoothing of the process. Additionally, Figure 2.9 shows the accumulated
rainfall depth map at 24 hours from the start of each storm. This represents the storm
main path, describing the total rainfall volume spatial distribution.

Table 2.4: Fitted parameters sill and range (φ, in km) for an averaged exponential semivariogram model.

Event 1 Event 2 Event 3 Event 4 Event 5 Event 6 Event 7
T Sill φ Sill φ Sill φ Sill φ Sill φ Sill φ Sill φ

10’ 0.87 17.6 0.69 15.8 0.93 18.8 0.87 13.6 0.4 5.3 0.31 26.7 0.64 12.7
30’ 0.86 24.7 0.88 24.5 0.87 25.2 0.87 25 0.83 23.4 0.9 26.4 0.91 26.4
60’ 1.13 43.6 1.16 45.5 1.09 40.8 1.15 45.3 1.14 44.4 1.08 40.1 1.07 39.4

2.2.3.3. RAINFALL INPUT EFFECT ON DISSOLVED OXYGEN DYNAMICS

In order to assess the effect of rainfall input in dissolved oxygen simulations, modelled
time-series were compared against existing monitoring data. Table 2.5 presents the resid-
uals between the minimum oxygen level observed and modelled at all storm-input com-
binations. Minimum oxygen simulated level is highly relevant in practice since it cap-
tures the magnitude of impact at the receiving water body and is directly related to the
pollution load in the system (which is driven by the rainfall process). Table 2.6 shows
the root-mean-squared-error (rmse) between simulated-observed time series from the
beginning of the storm event until 5 days later when the DO concentration is recov-
ered. The performance indicators for dissolved oxygen show that the effect of time-
accumulation of the rainfall input is negligible.

Figure 2.10 presents a graphical comparison between dissolved oxygen (DO) river
observations and modelled series at each spatial data source selection (fixed 60 min-
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Figure 2.7: By-catchment response to rainfall spatial information for the 10 minutes temporal-accumulated
product (catchments are represented in the x axis by their connected area in km2).

utes time accumulation). The graph considers the three time-period simulations as de-
scribed at Table 2.1.

This shows that the effect of rainfall selection had a varying impact depending on
the storm process. This is linked to the mechanism of DO depletion of each event and
on the characteristics of the rainfall process. For instance, storms from period 1 and 2
exhibit differences due to the spatial data selection in both the DO depletion depth and
recovery duration. However, the events occurring in period 3 show low sensitivity to the
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Figure 2.8: By-catchment response to rainfall temporal accumulation for the ARadar spatial product
(catchments are represented in the x axis by their connected area in km2).

selected rainfall input. In the case of event 7 this can be explained by the fact that CSO
volumes were low (see Table 2.3), thus the DO depletion was likely not due to CSOs but
rather due to the discharge from the WWTP (which filters the effect of time-space) or by
unaccounted processes not included in the model structure. Event 6, on the other hand,
presented a rainfall event for which the rain gauge KNMI_370 was a good representation
of the main contributing urban areas.
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Figure 2.9: Spatial distribution of 24h-accumulated rainfall (over the urban areas of the Dommel system)
covering the seven storm events (extracted from the radar product).

Table 2.5: Difference between observed and modelled minimum dissolved oxygen concentration (gO2/m3).

Rainfall input Event 1 Event 2 Event 3 Event 4 Event 5 Event 6 Event 7
BK1_10’ -3.9 -1 -1.4 1.2 -2.15 -0.49 -1.1
BK1_30’ -3.9 -1 -1.4 1.2 -2.15 -0.49 -1.2
BK1_60’ -3.9 -1 -1.4 1.2 -2.15 -0.49 -1
BKall_10’ -1.25 -0.76 -1.3 -0.05 -1.8 -0.38 -1.15
Bkall_30’ -1.25 -0.67 -1.21 -0.2 -1.5 -0.38 -1.1
Bkall_60’ -1.25 -0.58 -1.1 -0.2 -1.35 -0.38 -1.05
UBK_10’ -1.3 -0.49 -1.09 0.55 -1.74 -0.4 -1.2
UBK_30’ -1.28 -0.52 -1.09 0.65 -1.5 -0.4 -1.25
UBK_60’ -1.28 -0.51 -1.09 0.65 -1.4 -0.4 -1.2
ARadar_10’ -1.26 -0.71 -1.2 1.05 -0.9 -0.37 -1.4
ARadar_30’ -1.26 -0.72 -1.2 1.06 -0.9 -0.37 -1.4
ARadar_60’ -1.26 -0.72 -1.2 1.06 -0.9 -0.37 -1.3

2.2.4. DISCUSSION

Figure 2.6 and Figure 2.7 show the deviation generated by the homogenous rainfall source
(BK1) for the rainfall estimation (depth and intensity), which was consequently trans-
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Figure 2.10: Graphical comparison of dissolved oxygen dynamics measured vs modelled by the different
spatial products (60 min time-accumulated).
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Table 2.6: RMSE between observed and modelled dissolved oxygen concentration (5 days).

Rainfall input Event 1 Event 2 Event 3 Event 4 Event 5 Event 6 Event 7
BK1_10’ 1.58 1.27 1.2 1.9 1.85 0.98 1.15
BK1_30’ 1.58 1.27 1.2 1.92 1.87 0.99 1.15
BK1_60’ 1.57 1.26 1.18 1.94 1.86 1 1.14
BKall_10’ 1.16 0.99 0.54 0.88 1.76 0.96 1.2
Bkall_30’ 1.12 0.95 0.44 0.87 1.58 0.98 1.18
Bkall_60’ 1.12 0.91 0.31 0.89 1.5 0.98 1.17
UBK_10’ 0.99 0.88 0.2 1.1 1.61 0.96 1.07
UBK_30’ 1 0.87 0.15 1.15 1.81 0.95 1.1
UBK_60’ 0.99 0.88 0.17 1.14 1.69 0.95 1.14
ARadar_10’ 1.07 0.98 0.64 1.47 1.28 1.26 1.16
ARadar_30’ 1.07 0.97 0.6 1.51 1.28 1.25 1.16
ARadar_60’ 1.1 0.97 0.57 1.51 1.28 1.26 1.16

ferred to the CSO discharge patterns. There is a clear difference between predictions
rendered by a homogenous rainfall data source (BK1) and the results stemming from the
use of extra spatial information either the extended rain gauge network (BKall), radar
spatial predictions (ARadar) or a merged product rain gauge-radar (UBK).

Varying the time aggregation of rainfall products (at 10, 30 or 60 minutes) influenced
the maximum estimated rainfall peak. However, this difference was not transferred to
the estimated total rainfall volume (depth) and to the CSO-DO dynamics. Figure 2.8
shows that the influence of time aggregation on CSO patterns is almost negligible when
modelling discharged volumes and that this is generalizable to all catchments under
study. This is explained by the nature of the urban drainage system, which as described,
is characterised by low slopes and large in-sewer storage. Thus, the behaviour of CSO
spills is dominated by the rainfall volume and less by its dynamic component.

A direct link between the rainfall characteristics (maximum intensity, total volume,
average correlation range) and the sensitivity of dissolved oxygen to rainfall events could
not be established. Figure 2.9 shows the accumulated rainfall volume spatial distribu-
tion of the rainfall events. It can be appreciated how the storm cell evolution can play
an important role in the process since its variability occurs within the spatial scale of the
catchment system. Thus, the spatial distribution of storm processes should be included
in synthetic rain generators used for design and test purposes (as described in Willems
(2001)). A slightly higher influence of the time-step is observed at both kriging inputs
BKall and UBK (for modelling CSO discharge). This was due to the nature of the interpo-
lation process which performance is known to decrease at short time scales (lower than
30’, e.g. Nanding et al. (2015)).

The effect of time aggregation of the rainfall field in DO dynamics is negligible. This
is shown at Table 2.5 in which the variation of the modelled-observed minimum oxygen
level residual is practically insensitive to the variation in time. This effect is explained by
the fact that DO dynamics in the system are mainly affected by the WWTP effluent and
by the total CSO discharged volume. Both of them seem to be relatively insensitive to
rainfall input time accumulation (between 10-60 minutes). Additionally, DO processes



2.2. IMPACT OF SPATIOTEMPORAL CHARACTERISTICS OF RAINFALL INPUTS ON

INTEGRATED CATCHMENT DISSOLVED OXYGEN SIMULATIONS

2

45

present a significant inertia with respect to the rainfall process (15-28 h, as shown in
Table 2.3), acting like a high-frequency filter of the CSO dynamics.

This study intends to describe the interaction of a large-scale integrated urban catch-
ment model and the rainfall input characteristics. It is relevant to mention that such
integrated modelling studies are subjected to several sources of uncertainties (which
are not independent). The water quality model applied has not been calibrated for the
studied time series, due to the fact that the main goal of this study is the observation of
changes due to input data source. Therefore several errors can be observed in the simu-
lated time series. First, there is a systematic underestimation of DO depletion processes
of 1-0.5 mg/l (which could be indicative of a wrong description of the urban-WWTP pol-
lutant concentration load). Additionally the DO simulations reacted slightly faster (1-8
h) than observed in the measured data, which can be indicative of a wrong timing ef-
fect on CSO-WWTP effluent simulation (since hydraulics in the system were calibrated).
Those errors however are not expected to have an influence on the conclusions of the
study.

Partial studies on the effect of input errors in similar systems can be found in (Rad-
wan et al., 2004a), which described the sensitivity of a river model to several sources of
uncertainties, indicating that 60% of DO simulation variability is explained by the input
data. However this considered variations in pollution load inputs from urban systems
and not directly on rainfall. A full uncertainty quantification scheme was proposed for a
small integrated system in Willems (2008), but only accounting for urban drainage and
WWTP outputs (not receiving water), and reported that rainfall uncertainties had a con-
tribution of 15-20% to uncertainties in BOD loads from a sewer and WWTP effluents.
These studies report a relative sensitivity of DO or related variables to the input descrip-
tion. Thus reducing the errors in the rainfall input data set could influence the ability
to simulate DO patterns. The findings of this study aim to describe the relevant char-
acteristics that the input data source should have when modelling DO in a large urban
integrated water system. Which can be used to direct further monitoring and modelling
efforts in this system or in similar ones.
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2.3. ACCOUNTING FOR CORRELATION IN THE STOCHASTIC SIM-
ULATION OF CSO POLLUTANT LOADS *

2.3.1. INTRODUCTION

P OLLUTANT concentrations at combined sewer overflows (CSO) exhibit dynamics that
are challenging to represent. Current knowledge about the physical processes in-

volved is still limited and sufficient data to calibrate models is often not available. It
is acknowledged that deterministic results of sewer water quality models are generally
poor (Dotto et al., 2014; Sandoval et al., 2018). For this reason, mean concentration pol-
lutant vectors are often used as input when modelling sewer overflow impacts in scarcely
monitored environments (Langeveld et al., 2013b; Llopart-Mascaró et al., 2015). This
simplification can render uncertain model outputs. Nevertheless, these uncertainties
can still be of the same order of magnitude when using uncalibrated sewer water qual-
ity models (Willems, 2006). Thus, assessing the propagation of uncertainties product of
these assumptions is necessary when checking the reliability of the simulation platform.

Forward uncertainty propagation schemes rely on sampling parameters from prob-
ability ranges in order to evaluate its effect on the model output variables. Parametric or
input probability distributions are often inferred, elicited from expert beliefs (O’Hagan,
1998) or when possible, derived from measured data. In this example, a water quality
model utilises pollutant mean concentration values to transform flow simulations from
urban drainage structures to receiving water pollutant loads (Langeveld et al., 2013b).
The full-integrated model simulates water quality dynamics (i.e. dissolved oxygen im-
pacts in the receiving water body) and integrates the simulation of rural-urban pollution
sources, wastewater treatment processes and river biochemical and physical dynamics
at the river Dommel.

Uncertainty ranges for water quality pollutants are derived from measured series,
and propagated through the model platform, thus estimating the magnitude of their ef-
fect on dissolved oxygen concentrations in a downstream section of the receiving wa-
ter body. Literature reports for CSO pollutant concentration across systems show that
storm pollution loads present highly skewed distributions and strong pollutant correla-
tions (Aarts et al., 2013).

A stochastic model is created to represent the CSO pollutant variability, from which
samples are drawn in a Monte-Carlo forward uncertainty propagation. Nevertheless,
parametrically representing a correlated non-Gaussian multivariate joint probability dis-
tribution is not straightforward, thus the correlation of uncertainty sources is often ne-
glected. In this example, two stochastic models are compared, one that draws indepen-
dent samples from the marginal distribution of pollutant loads (uncorrelated marginal)
and one, which respects the correlation structure of observed pollution samples (copula
sampler). The individual effect of the variability of CSO pollutant loads and the effect of
neglecting pollutant correlation are shown.

*This section is based in the conference paper: Moreno-Rodenas, A. M., Langeveld, J. and Clemens, F.
H. L. R. (2017). Accounting for correlation in uncertainty propagation. A copula approach for water quality
modelling. Presented at the International conference in Urban drainage (ICUD 2017), Prage. Czech Republic
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2.3.2. MATERIALS AND METHODS

The ICM study for the Dommel system (described in Section 1.7) was used to simulate
water quality dissolved oxygen impacts in the receiving water body. To further minimise
the effect of other uncertainty sources, CSO flow discharges were represented using esti-
mated data-series from idealised weir discharge models and depth monitoring data (al-
though these can still contain significant sources of uncertainty, see van Daal-Rombouts
(2017)).

Distributions for each pollutant concentration were obtained from a monitoring cam-
paign at several CSO structures (Moens et al., 2009). Figure 2.11 shows the marginal dis-
tribution from each pollutant variable extracted from the measurement data. A paramet-
ric probability distribution was fitted to each marginal distribution by selecting the min-
imum sum of square error fit. Additionally, the spearman correlation matrix was used
to represent the structural correlation between pollutant variables. Dispersion of mean
concentration values shown in the dataset were consistent with previously reported val-
ues in literature (e.g. see Aarts et al. (2013) for a compilation of CSO pollutant loads
across European sewer systems).

A comprehensive review on generating correlated non-Gaussian multivariate sam-
ples can be found at Schoelzel and Friederichs (2008). In this study an elliptical Gaussian
copula (GC) was applied as a way to generate a joint distribution, which reproduces the
pollutant structural correlation and each marginal probability density.

In order to construct the GC, let X be a random vector, with components [X1, . . . , XN ]
representing the set of pollutant concentrations with known marginal cumulative den-
sity functions (CDF) [FX1 , . . . ,FXN ]. By applying the CDF to the samples of each variable,
FXi (Xi ) = Ui a uniformly distributed set can be obtained, Ui ∼ U (0,1), which can be
transformed by F−1

N (0,1)(Ui ) = Zi (using the inverse CDF of a standard normal distribu-
tion). Thus the vector Z forms a Gaussian multivariate distribution ∼ Nk (0,ΣGC ). This
Gaussian multivariate density describes implicitly a Gaussian copula with a correlation
structure given by the covariance matrix ΣGC .

Samples from the joint probability density function defined by the copula are drawn
following the inverse process, starting from a random realization of the copula density
(drawing samples from Z ∼ Nk (0,ΣGC ), for which ΣGC represents the observed covari-
ance function) and back-transforming to the desired marginals by using [F−1

X1
(FN (0,1)(Z1)),

. . . ,F−1
XN

(FN (0,1)(ZN ))], thus obtaining a vector of correlated samples which follow the in-
dividual marginal distribution and the correlation structure.

The model was evaluated using 500 samples from the GC distribution and from the
uncorrelated marginals. The number of samples was selected to ensure a stable output
variance. The variables used were concentrations of chemical oxygen demand (COD),
biological oxygen demand (BOD) and ammonium concentrations (NH4). Predicted dis-
solved oxygen concentrations in a river section (M0121, Figure 1.4) were compared with
monitoring data for a period of 6 months (01-04-2012 / 31-09-2012).
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Figure 2.11: Histograms and correlation matrix (spearman rank correlation) of measured data, mean and 95%
confidence intervals. Blue solid line; fitted probability density function

2.3.3. RESULTS AND DISCUSSION

A comparison of the rank (spearman’s) correlation matrix for the measured data, along
with 300 samples from the proposed Gaussian copula and random sampling from the
marginal pdf’s are shown at Figure 2.12. Also, a graphical scatter plot for the variables
BOD and COD are provided in the three scenarios. The Gaussian copula formulation
successfully captures the structural correlation of the dataset at the same time that real-
isations respect the marginal probability density functions for each pollutant variable.

The model was evaluated at 500 pseudo-random samples from the Gaussian copula
and the uncorrelated marginal stochastic representations. Figure 2.13 depicts the com-
parison between the observed and simulated dissolved oxygen when using the Copula
distribution for roughly 1.5 months occurring in summer of 2012. Storm events exhibit
a differential sensitivity to CSO pollutant variability. This variable sensitivity is a good
example of the complexity of the underlying process. Dissolved oxygen is depleted fol-
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Figure 2.12: Comparison of measured data, Gaussian copula and random sampling from marginals, scatter
plot of BOD-COD (above) and correlation matrix of measured and simulated concentrations (below).

lowing different mechanistic relationships depending on the dynamic state of the sys-
tem. Some events as 14-Jul-2012 or 28-Aug-2012 show a high sensitivity to CSO pollu-
tant concentrations, suggesting that those events were predominantly caused by urban
discharges, whereas in the 18-Aug-2012, a high impact event occurs which shows a low
sensitivity to CSO discharges, and hence likely caused by a WWTP overload.

Figure 2.14 presents the comparison of the river DO probability density when draw-
ing samples from the CSO water quality copula representation or from the uncorrelated
marginal distribution of pollutants at 8 characteristic events. The two-sample Kolmogorov-
Smirnov and the k-sample Anderson-Darling tests were used to assess whether both
samples (copula vs. random) produce an equivalent DO estimation. Comparison for all
selected events in Figure 2.14 resulted in p-values < 1%, thus the null hypothesis (both
samples originate from the same underlying probability distribution) could be rejected.
This result suggest that neglecting the correlation structure shown by measured CSO wa-
ter quality variables results in a significant underestimation of the effect in the receiving
dissolved oxygen depletion simulation.

It should be noted that Gaussian copulas have zero tail dependence, meaning that
extreme cases in the tails of the copula are asymptotically independent. This makes
them relatively unsuitable for applications focusing in concomitant extreme value pro-
cesses, where other copula formulations (e.g. Gumbel or Clayton) should be preferred
(Malevergne and Sornette, 2003). In this case, the lack of a large measured CSO pollutant
dataset makes the description of high-magnitude correlations unreliable, thus for sim-
plicity a symmetric Gaussian copula was applied. Nevertheless, the selection of copula
family should be considered based on the characteristics of the process to represent.

Additionally, the presented stochastic representation of pollutant concentrations is
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Figure 2.13: Dissolved oxygen concentration measured (black dots), simulated mean (black line) and 95%
interval (blue range) from the propagation of the Gaussian Copula distribution at the river (∼ 17km

downstream of the WWTP, M0121).
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Figure 2.14: Minimum dissolved level for events in which river oxygen measured concentration fall below 3
mgO2/l (M0121 station). The graph shows the density of the predicted series from the forward uncertainty

propagation (500 samples) using the Gaussian copula distribution and uncorrelated samples from the
marginals. Additionally the observed minimum (black square) and the deterministic realization using the

mean of the pollution concentrations (red dot) are shown.

highly simplified, since it does not account for the time-dependency of pollutant con-
centration, it assumes spatial independency across CSO systems and it does not con-
sider the link between nearby events (e.g. availability of in-sewer sediment stocks). This
simplified representation is due to the lack of long time-series for water quality in-sewer
variables. Further knowledge in the process should be acquired to reduce epistemic un-
certainties in the description of CSO pollutant loads.
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2.4. SUMMARY AND CONCLUSIONS

T HE identification and characterisation of uncertainty sources should be considered
an elemental step of the integrated urban catchment modelling process (Tscheikner-

Gratl et al., 2019). Existing uncertainty analysis frameworks (see Deletic et al. (2012),
Refsgaard et al. (2007) or Tscheikner-Gratl et al. (2017)) provide a valuable guideline to
report uncertainties to end-users in a structured manner. The a priori selection of the
main sources of uncertainty sources depicted in this section (see Figure 2.2) should be
complemented with a quantitative formal analysis scheme. An example of such analysis
is further described in Chapter 4 of this thesis. Nevertheless, the exercise of eliciting the
expected contribution of uncertainty sources a priori, allows discussing and commu-
nicating the effect of non-quantifiable sources of uncertainty (e.g. deep uncertainties).
Such prior analysis should effectively communicate uncertainty sources so that the end-
users are fully aware of the expected representativity and limitations of the modelling
endeavour.

2.4.1. ON THE IMPACT OF RAINFALL SPATIO-TEMPORAL DESCRIPTION IN

ESTIMATED DO DYNAMICS

The section 2.2 of this chapter addresses the influence of rainfall input spatial and tem-
poral characteristics in the modelling of dissolved oxygen patterns in a large lowland
integrated urban water system. The effect of varying the rainfall process description
by using different accumulation time scales and different rainfall measurement sources
was investigated. A total of 12 rainfall input products were tested for 7 storm events,
which generated significant oxygen depletion events in the receiving water body. Rain-
fall inputs were generated at three time-accumulation levels (10, 30 and 60 minutes) and
using four different rainfall sources: 1) a single rain gauge (BK1), 2) a block kriging in-
terpolation from 13 rain gauges (BKall), 3) radar-derived rainfall composites from the
KNMI (ARadar) and 4) the results of Kriging with External Drift merging of rain gauges
and radar (UBK). All estimations were generated at the spatial support of the individual
connected urban drainage networks.

The tested rainfall time-accumulation level did not influence the modelled dissolved
oxygen patterns in the river. Although it influenced the maximum estimated rainfall
intensity, the effect on rainfall-accumulated volumes was mostly limited. This effect
was not propagated to simulated CSO dynamics at the urban system in most cases and
therefore the effect on DO dynamics was negligible. It was found that the use of a single
rainfall point measurement generates a non-systematic deviation in the simulated CSO
series. This miss representation has the potential to affect DO dynamics.

The results obtained in this example can only be generalised to similar systems (i.e.
low-land and volume driven) with an equivalent mechanistic relationship urban drainage-
WWTP-river. Nevertheless, a detailed description is provided for: 1) Characterising the
rainfall process and the system’s response patterns, 2) generate rainfall inputs at the spa-
tial support of the target catchment and 3) assess the sensitivity of the model to the char-
acteristics of rainfall input. This process can be followed in other integrated catchment
studies in order to identify the desired characteristics of rainfall input data sets for each
selected system-variable.
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2.4.2. THE EFFECTS OF NEGLECTING THE CORRELATION PATTERNS IN CSO
POLLUTANT STOCHASTIC GENERATORS

Uncertainties in CSO pollution loads can impact significantly DO depletion patterns.
The pollution load affects especially the intensity and the recovery of dissolved oxygen
concentrations in the river Dommel, which are highly relevant parameters when charac-
terizing river impacts through concentration-duration-frequency environmental impact
tables (Appendix A).

This example presents a simple method to account for correlation in forward uncer-
tainty propagation schemes for water quality applications. Not accounting for structural
pollutant correlation in the uncertainty propagation of CSO uncertainties produced a
certain underestimation of DO uncertainty bands. However, it has to be noted that the
use of correlation did not lead to a systematic improvement of observed values coverage.
Nevertheless, when knowledge about the correlation structure is available it is recom-
mended to include it in the uncertainty propagation process.



3
ACCELERATING UNCERTAINTY

QUANTIFICATION

3.1. EMULATION FOR WATER QUALITY AND QUANTITY SIMU-
LATORS

O NE of the current challenges in the implementation of uncertainty quantification
schemes in environmental modelling is the impracticability of sampling slow mod-

els (Reichert, 2012; Tscheikner-Gratl et al., 2019). This is specially applicable to inte-
grated catchment modelling studies (Sriwastava and Moreno-Rodenas, 2017), where the
computational burden increases rapidly when performing full-scale catchment simula-
tions. A common approach to accelerate the simulation process is to simplify submodel
representations by means of conceptual or parsimonious model structures, which is a
common practice in urban drainage modelling (Solvi, 2006; van Daal-Rombouts, 2017)
or flood modelling (Bermúdez et al., 2018). However, even conceptual-lumped approaches
lead to slow simulators when scaled (e.g. real-scale integrated urban water systems), and
this strategy does not respect the structure of physically based simulations, thus adding
extra (structural) sources of uncertainty in the model operation process.

Data-driven model emulation can be used to accelerate the sampling of computa-
tionally expensive models. This aims to generate an interpolation map between a se-
lected group of parameters and the solution space of some desired simulator variables
(Castelletti et al., 2012). This has been successfully applied to several dynamic models
(Carbajal et al., 2017; Conti and O’Hagan, 2010; Machac et al., 2016a; Yang et al., 2018).

This chapter comprises two sections; First an example is given in which a formal
Bayesian inference scheme is applied to update prior knowledge on the river water qual-
ity and quantity submodel parameters of the Dommel system. The original model is
computationally expensive and it should be evaluated during long time windows (months-
years) to capture local and seasonal dynamics. Thus, the classical use of MCMC poste-
rior sampling algorithms (which require on the order of tens of thousands samples) is
beyond the available time and computational resources. Consequently, a dynamic emu-
lator was created to link the river water quality and quantity parameters to the one-year
(hourly frequency) output time-series of flow and dissolved oxygen concentration at the
closing section of the Dommel system (station M_0121, Figure 1.4). Using this emulator,
several likelihood structure hypotheses could be tested during the inference process, al-
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lowing to discuss the residual structure of the posterior inferred dynamics.

Secondly, classical model emulation techniques are severely limited to the use of a re-
duced number of parameters under a given dynamic period. This means that proposing
an emulator for a certain hydraulic or hydrological process (for instance a rainfall-runoff
model) is relatively feasible for a low number of static parameters (e.g. roughness or pa-
rameterised geometrical features). Yet, once trained, the emulator is only valid within
that fixed interval of time. Thus, if the user wants to explore the effect of a different
rainfall event (or dynamic process in the general case), the emulator should be retrained
under the new conditions. This implies to sample again from the original computation-
ally expensive simulator to build a new training database. In the second section of this
chapter, a novel method is presented which allows including rainfall dynamic inputs
of arbitrary length along with static parameters in an emulator structure for physically
based flow simulation. After the training process, this emulator structure can be used
to approximate the response of the model to new rainfall events and parametric sce-
narios in a fraction of the original simulator running time. This opens the applicability
of physically based hydrodynamic simulation (e.g. 2D-SWE or other CFD based flood
propagation implementations) to fast sampling schemes, as model-based flooding early
warning schemes, real time control under uncertain data or propagation of uncertainties
in rainfall and parameters for hydrodynamic simulators.
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3.2. FACILITATING PARAMETRIC INFERENCE IN LARGE WATER

QUALITY RIVER SYSTEMS *

3.2.1. INTRODUCTION

T HE description of processes in environmental modelling is seldom purely physically
based, which is due to an incomplete understanding of the real underlying dynam-

ics, to the lack of field measurements or due to a need of simplification. This often leads
to the use of non-physical parameters, which cannot be directly measured or that lump
several processes. The numerical value of such parameters is determined by calibration
to ensure that the model and reality have a quantifiable degree of resemblance. The
transferability of parameters from one system to others is typically limited, yet the mod-
eller often has some prior knowledge acquired by simulating similar cases, which could
be used in the calibration process. This process is often approached from a Bayesian per-
spective, in which the modeller encodes its knowledge as a joint probability distribution
of the parameters, which are updated in view of new information.

Integrated urban water modelling focuses on the joint simulation of processes affect-
ing water dynamics through the urban-river system (Muschalla et al., 2009; Rauch et al.,
2002). These models jointly evaluate wastewater treatment processes, urban drainage
and river dynamics, which usually generates a rapid escalation of complexity (Benedetti
et al., 2013a). The representation of all subsystems involved, produces highly parame-
terised conceptualisations, requiring a large amount of data in the identification-calibration
process (Langeveld et al., 2013a). Additionally, the dynamics of interest often occur at
very different time-space scales, for instance, urban combined sewer overflow (CSO)
discharges have a characteristic time of minutes-hours whereas river dissolved oxygen
dynamics are at hourly-monthly scale.

Quantifying and analysing uncertainties in integrated catchment modelling platforms
is required to avoid over-confidence in modelling results and to guide further model im-
provements (Deletic et al., 2012; Tscheikner-Gratl et al., 2017). Most uncertainty anal-
ysis strategies rely on sampling intensive techniques (Dotto et al., 2012). For instance,
Bayesian inversion schemes often require a large number of model evaluations (on the
order of 104 −105) to reach convergence. This renders the inference in the original sim-
ulation platform impractical for most real-scale model platforms, which might take be-
tween minutes to hours per sample. Hence, the computational effort required is a severe
limitation for the applicability of uncertainty analysis techniques in most real-scale in-
tegrated catchment modelling studies (Tscheikner-Gratl et al., 2019).

One approach to speed up convergence time is the use of optimised sampling schemes;
as drawing samples in parallel (Goodman and Weare, 2010; Laloy and Vrugt, 2012) or
with informed adaptive Markov chain Monte Carlo (Hoffman and Gelman, 2014). How-
ever, this still often requires a prohibitive number of model samples (for practical en-
gineering standards). Another strategy is the use of data-driven or mechanistic model
emulation, where a black-box (or grey-box) mathematical representation is used to repli-
cate the link between a vector of parameters and the dynamic response of the simulator.

*This section is an adapted version of: Moreno-Rodenas, A., Langeveld, J., and Clemens, F. (2019). Para-
metric emulation and inference in computationally expensive integrated urban water quality simulators. En-
vironmental Science and Pollution Research. doi: 10.1007/s11356-019-05620-1.
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For instance, Laloy et al. (2013) proposed a two stage sampling scheme, first generating
a rough estimate from a model surrogate and later from the simulator itself to perform
parametric inference in a groundwater model. Carbajal et al. (2017) compared the per-
formance of mechanistic vs. data-driven emulation for urban drainage simulators, con-
cluding that in general a data-driven approach is to be preferred unless confronted with
highly sparse training datasets. Yang et al. (2018) used a Gaussian process data-driven
emulator to perform a parametric uncertainty analysis in a semi-distributed hydrologi-
cal model. Those approaches are useful when the dimensionality of the problem allows
for the fit of a data-driven emulator.

This subsection deals with a large-scale urbanised catchment model integrating wastew-
ater treatment processes, urban drainage and receiving water dynamics for the estima-
tion of dissolved oxygen depletion in a formal Bayesian inference scheme. Prior knowl-
edge on the probability distribution of river water quality and quantity parameters is up-
dated using flow and dissolved oxygen system observations. The simulator platform is
too computationally expensive to be directly used in the sampling scheme. Thus two
emulation platforms are created to represent a mapping for four water quantity and
eight water quality process parameters for river flow and dissolved oxygen concentra-
tion. The training is performed under a given dynamic realisation of the system during
the full year of 2012. The performance of the two emulators is validated under an inde-
pendent dataset. The emulators are used to implement a global sensitivity analysis and
an inference scheme under various likelihood function conceptualisations. The residual
structure of the posterior mean sample is contrasted with the building hypotheses of the
likelihood function. This example shows how the use of a dynamic emulator scheme
can assist in gaining further knowledge in the sensitivity and probably distribution of
process-driven model parameters in a large-scale water quality simulator.

3.2.2. MATERIALS AND METHODS

3.2.2.1. DYNAMIC EMULATION

Two polynomial chaos expansion (PCE) structures (Xiu, 2010) were used to emulate flow
and dissolved oxygen dynamic series during one year at hourly frequency (01-01-2012 –
31-12-2012). The PCE emulator aims at creating an interpolation map between the pa-
rameters and model output multi-dimensional spaces, such that the effect on the model
output of additional parameter combinations can be readily approximated.

The model (M) can be though of a coupled system of partial or ordinary differential
equations, which represents the water quality processes of an integrated catchment sys-
tem. An arbitrary time-dependent output state variable (Ysi m ∈RD ) can be computed by
solving the model:

Ysi m = M(x0,x(t ),θM ,θI ) (3.1)

given a set of m initial conditions (x0 ∈Rm), a set of dynamic inputs (x(t )) and a num-
ber of global model parameters [θM ,θI ]. The set of global parameters is decomposed in
two sub-groups, being θM ∈RS a group of global parameters which are considered fixed
(during the emulation), and θI ∈RP a number of P global parameters which the modeller
seeks to emulate.
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The PCE is composed of a series of N orthogonal polynomials (Φ(θI ) ∈ RN x1), such
that:

Ysi m(t ,θI ) ≈Φ(θI )T ·c (3.2)

where c ∈ RN xD is a matrix of coefficients which is fitted based on samples drawn
from the simulator. Thus, Equation 3.2 forms a mapping between the parameter and
output spaces (RP →RD ). The training dataset is pre-computed by evaluating the model
response (Equation 3.1) at a number of K combinations of the parameter vector (θI =
qi f or i = 1...K ). The training dataset is then used to calibrate the matrix of coefficients
(c):

 Ysi m(t ,θI = q1)
...

Ysi m(t ,θI = qN )

=

Φ1(q1) . . . ΦN (q1)
...

. . .
...

Φ1(qK ) . . . ΦN (qK )

 ·

 c1(t )
...

cN (t )

 (3.3)

A least squares approach is used to approximate the value of the coefficients c based
on known realizations of the model structure and the computed value of the polynomial
series (only dependent on the emulated parameter vector). Then, Equation 3.2 can be
used to approximate the output variable at new combinations o the emulated model
parameters (θI ). Further information about the fit of the polynomial expansion and the
selection of orthogonal series can be found at Hadigol and Doostan (2018); Feinberg
(2015); Xiu and Karniadakis (2002).

A training database of 200 samples was created by drawing realisations of flow series
using a Latin hypercube sampling scheme (LHS) for four static parameters. Table 3.1
presents the river flow parameters along with the parametric range used to create the
PCE database. Parametric ranges for the emulator training dataset were designed to fully
cover the probability density distribution of the parameter prior-knowledge as extracted
from expert elicitation, measurements and literature.

Table 3.1: River hydrology parameter PCE training ranges (emulation) and prior distributions (inference).
∼U(a,b) refers to a uniform distribution between a and b.

Name Units Description PCE training Prior distribution
n s ·m−1/3 Manning’s roughness ∼ U(0.02, 0.15) ∼ U(0.025, 0.12)
kz - Embankment slope multiplier ∼ U(0.3, 2) ∼ U(0.7, 1.3)
kW - River bed width multiplier ∼ U(0.3, 2) ∼ U(0.5, 1.5)
kh - Rural flow input multiplier ∼ U(0.3, 2) ∼ U(0.7, 1.3)

A second emulator was built by simulating dissolved oxygen dynamics with the full-
integrated model under the mean inferred flow parametric values. A LHS scheme was
used to draw 200 samples from an eight-dimension parameter space of river water qual-
ity process parameters (Table 3.2). The process equations related to these parameters
are shown at Appendix B. Both training samples were taken by fixing the rest of parame-
ters and input stochastic processes of the integrated model to their mean value.

A Legendre orthogonal polynomial series truncated at third order was used in both
emulators (Gautschi, 1994). Training was done by a non-intrusive least squares fitting
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of the polynomial coefficients (Hadigol and Doostan, 2018) using the implementation
of Feinberg and Langtangen (2015). A detailed description of the polynomial expan-
sion construction and fitting methodology used can be found at Moreno-Rodenas et al.
(2018b). An independent validation set was created using a LHS of 100 samples for flow
and 50 for dissolved oxygen. Nash-Sutcliffe efficiency was computed between the emu-
lated and simulated one-year time series to validate the emulator’s performance.

Table 3.2: River dissolved oxygen parameter PCE training ranges (emulation) and prior distributions (infer-
ence)

Name Units Description PCE training Prior distribution
Kd1 d−1 Decay rate for BOD fast ∼U(0.3, 1) ∼U(0.3, 0.8)
Kd2 d−1 Decay rate for BOD slow ∼U(0.2, 1) ∼U(0.2, 0.4)
Vs1 m ·d−1 Sedimentation rate for BOD fast ∼U(0.2, 40) ∼U(0.5, 20)
Vs2 m ·d−1 Sedimentation rate for BOD slow ∼U(5, 100) ∼U(10, 60)
TKd - Temperature coefficient for BOD oxidation ∼U(1, 1.1) ∼U(1, 1.1)
TKL - Temperature coefficient for reaeration ∼U(1, 1.1) ∼U(1, 1.03)
TSOD - Temperature coefficient for SOD ∼U(1, 1.1) ∼U(1, 1.1)
VKL - Velocity reaeration coefficient ∼U(2, 8) ∼U(2, 5)

3.2.2.2. PARAMETRIC INFERENCE

Prior parameter knowledge was encoded by means of uniform probability density func-
tions. Ranges were defined based on literature values and expert criteria (non-formal
elicitation). Table 3.1 and Table 3.2 show the prior probability density function selected
for each parameter.

This prior knowledge was updated by using an observation layout Yobs ∈ R1xn for
hourly measured flow and dissolved oxygen concentration at the outlet of the Dommel
catchment during a period of approximately seven months (15-Jan-2012 – 05-Aug-2012).
The basic model-observation layout was defined as:

Yobs = M(x0,x(t ),θM ,θI )+Z (3.4)

where M refers to the system of differential equations representing the integrated
model (urban drainage, WWTP and receiving water body), which depends on a set of
initial conditions x0 (computed by a warming up simulation period of 1 year for the
WWTP initial conditions and a dedicated general initialisation of the previous 15 days
between 01-Jan-2012 until 15-Jan-2012 for the rest of the variables), which are fixed in
the sampling scheme. A set of dynamic inputs x(t ), containing distributed urban rainfall
estimations, measured river and WWTP water temperature, river solar radiation, bound-
ary conditions for river tributaries and control strategies. θM represents a vector of m
global model parameters, which were fitted by submodel calibration and expert elicita-
tion. Whereas θI represents the P model parameters used in the inference scheme for
the river flow and dissolved oxygen dynamics. The term Z refers to the residual structure
between the simulated (M(x0,x(t ),θM ,θI )) and the observations (Yobs ). This error term
lumps measurement and model errors together. During the inference scheme, a prob-
abilistic description of the model-measurement residuals Z is assumed a priori, and is
later validated based on the posterior computed residuals. A common initial guess is
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to assume that residuals are independent, identically and Gaussianly distributed. This
assumption leads to the following log-likelihood structure:

`(θI |Yobs ) ∝−1

2
l og (det (Σ))− 1

2
(Yobs −M(θI ))T ·Σ−1 · (Yobs −M(θI )) (3.5)

where Σ represents the residual covariance structure. When assuming that residu-
als are uncorrelated and present a constant variance (homoscedasticity), the covariance
takes the form:

ΣZ =σ2
1 · I (3.6)

being I ∈Rnxn the identity matrix and σ2
1 a constant variance of the residuals.

Flow dynamics are well known to render heteroscedastic error structures. This im-
plies that residuals trend to be systematically larger when the discharge is larger. This is
often encoded by assuming that the residual standard deviation follows a linear relation-
ship with the simulated variable. This results in a log-likelihood function with the form
described by Equation 3.5 and the following covariance matrix:

ΣZ _het = (σ1 +Q ·σ2)2 · I (3.7)

where I ∈Rnxn is the identity matrix, Q ∈R1xn is the computed variable vector, mean-
whileσ1 andσ2 are the standard deviation hyperparameters of the error generating pro-
cess.

Also, the inference of dynamic models often leads to autocorrelated residual struc-
tures. This is often taken into account by the use of a discrete autoregressive model of
order p (Bates and Campbell, 2001), or as formulated by Schoups and Vrugt (2010):

Φp (B) · zt ∼ N (0,σ1) (3.8)

beingΦB (B) = 1−∑p
i=1 pi ·zt−i an autoregressive polynomial of order p for the resid-

ual zt , with Gaussian updates.

An equivalent formulation to account for a correlation structure was discussed by
Honti et al. (2013), with the use of a bias stochastic process along with the error gener-
ating model (Z ). If assuming a stationary continuous constant bias and heteroscedastic
residuals, Equation 3.5 defines the log-likelihood function, with a covariance matrix de-
fined as:

Σ(Z _het+B)i j = (σ1 +Q(ti ) ·σ2)2 ·δi j +σ2
3 ·e−|di , j |·τ−1

(3.9)

which are the i and j elements of the covariance matrix ΣZ _het+B ∈ Rnxn , with δi j ,
the Kronecker’s delta, Q(ti ) the expected flow (at time ti ), di , j the distance in hours be-
tween i and j elements, σ3 the standard deviation of the stationary bias, and τ an extra
hyperparameter which drives a correlation exponential decay. Del Giudice et al. (2013)
discusses, that in practice the model effect and the bias descriptors can have a poor
identifiability, thus inferring both, model parameters and bias hyperparameters, often
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requires assigning strong priors to the latter. Table 3.3 presents the prior distribution for
the hyperparameters of the different likelihood distribution structures.

Table 3.3: Error model hyperparameters for the different hypotheses

Hyperparameter Units Description Prior distribution

Flow i.i.d Gaussian
σ1 m3/s Std1, stationary standard deviation error ∼U(0, 10)

Flow independent heteroscedastic Gaussian
σ1 m3/s Std1, stationary standard deviation error ∼U(0, 10)
σ2 m3/s Std2, stationary standard deviation error ∼U(0, 10)

Flow AR(3) Gaussian updating
σ1 m3/s Std1, stationary standard deviation error ∼U(0, 10)

p1,2,3 - Autocorrelation coefficients p1, p2, p3 ∼U(0, 1)

Flow Heteroscedastic normal error and exponentially correlated bias
σ1 m3/s Std1, linear intercept standard deviation error ∼U(0, 10)
σ2 m3/s Std2, linear slope standard deviation error ∼U(0, 10)
σ3 m3/s Std3, bias standard deviation ∼U(0, 10)
τ h Tau, bias correlation exponential decay ∼U(10, 80)

Dissolved oxygen i.i.d Gaussian
σ1 mgO2/l Std1, stationary error standard deviation ∼U(0, 10)

Posterior samples were created using a Metropolis-Hasting algorithm (Hastings, 1970;
Metropolis et al., 1953). The joint prior-probability distributions for the flow and dis-
solved oxygen river parameters were updated by drawing 50,000 samples from their pos-
terior distribution by means of a Markov-chain Monte-Carlo sampling scheme (25,000
burn-in, 5 thinning). The Bayesian inference implementation was performed using the
python probabilistic programming package pymc version 2.3.6 (Patil et al., 2010).

Evaluating the likelihood distribution when using the full bias-description term in-
volves inverting a covariance matrix of size n. In this case this was prohibitively expen-
sive when using the original measurement layout (n=4892). Thus, a shorter period was
used to test the inference of the bias description (26-Jul-2012 – 14-Sep-2012). In this
case, only 4,000 accepted samples were used (2,000 burn-in, 2 thinning).

3.2.3. RESULTS AND DISCUSSION

3.2.3.1. DYNAMIC EMULATION OF FLOW AND DISSOLVED OXYGEN CONCENTRATION

The performance of the trained emulator to represent the integrated catchment model
outputs (at new parameter combinations) was tested using an independent dataset. Fig-
ure 3.1 shows the Nash-Sutcliffe efficiency (NSE) at 100 samples of the parametric space
for the flow quantity simulation, which were used for validation of the emulator per-
formance. Figure 3.2 shows the same test performed at 50 samples drawn from the
dissolved oxygen concentration emulation scheme. The performance of both emula-
tor implementations is consistent across the parameter ranges and varies between 0,99-
1 NSE. The observed performance during validation was considered sufficient for the
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application of the inference scheme in this example. Figure 3.3 and Figure 3.4 provide
a graphical comparison of the emulator and simulator responses for different random
combination of the parametric space (independent form the training dataset).
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Figure 3.1: Nash-Sutcliffe efficiency at the flow emulator vs simulation for a four-dimensional parameter
space under validation conditions.

When increasing the dimensionality of the parametric space in the emulation scheme,
the number of required training samples grows rapidly (Xiu and Karniadakis, 2002). This
causes that for some parametric space dimension, training the emulator becomes im-
practical, or to be a similar burden as directly sampling from the simulator. Table 3.4
presents the computational effort required to sample from the original simulator, train-
ing and operation of the emulator. In this case, those are the computed average timings
when using a 2.2 GHz Intel Core i7 from mid 2014.

Table 3.4: Emulation vs. Model computational effort for one-year series (in seconds).

Sample Flow DO
Simulator sample 3300 s 3300 s
Training database (x200 simulator samples) 660x103 s 660x103 s
Training the emulator 14 s 61 s
Emulator sample 0.06 s 0.07 s

3.2.3.2. GLOBAL SENSITIVITY ANALYSIS OF PROCESS PARAMETERS

The emulator structure was used to estimate the sensitivity of the integrated catchment
model outputs to variations of the river physical and biochemical parameters. Sam-
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Figure 3.2: Nash-Sutcliffe Efficiency of dissolved oxygen emulator vs simulator for an eight-dimensional
parameter space under validation conditions.

ples from the emulator were used to compute the Sobol global sensitive indexes (Sobol,
1993). Figure 3.5 and Figure 3.6 depict the first order indexes from the prior distribu-
tion of parameters at the river flow and DO dynamics. Figure 3.5 shows that the simu-
lated flow level is highly sensitive to the parameter ksur f ace during dry-weather periods,
whereas the Manning’s roughness (n) becomes relevant during the rising limb of the
hydrographs. kW (multiplier for the river bed width) shows a reduced influence to the
overall dynamics, meanwhile kz (a multiplier for the slope of the embankment) has a
similar, yet less pronounced effect when compared to hydraulic roughness.

The results of the study of the sensitivity for the DO concentration simulation is
shown in Figure 3.6. The parameter controlling the reaeration rate (VKL) dominates
the dry-weather DO variability during summer times. This influence decreases during
winter, where the temperature coefficient for the sediment oxygen demand (TSOD) be-
comes increasingly relevant. This has to do with the temperature inhibition model struc-
ture, which influences the oxidation rate of organic matter for temperatures differing
from 20 degree Celsius. During oxygen recovery patterns, TSOD is also relatively rele-
vant, since the main oxygen sink is the sediment layer. Sensitivity indexes do not show a
consistent behaviour during acute oxygen depletion processes. Some depletion events,
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Figure 3.3: Emulator vs. Simulator river discharge graphical comparison for different test parameter
combinations.

as the three occurring during July and September (also seen at Figure 3.6.b) present as
dominant parameters kd1 and kd2 which are the oxidation rates for the two fractions
of suspended BOD in the system. However, the events occurred in June and the three
in October showed to be more sensitive to a different parameter combination as TKL or
TSOD, which are related to temperature driven reaeration or oxygen consumption (also
slightly to kd1). This is a good example of the complexity of the underlying process, in
which interactions are highly dependent on the dynamic state of the system. For in-
stance, if a storm event activates predominantly northern CSOs, which are closer to the
outlet of the catchment, there is less time for the degradation of suspended matter to oc-
cur, thus variations in the consumption rate might have a higher influence the process.
Also, events in which the WWTP is the main source of discharge (and not the CSOs), the
settling facilities of the WWTP might lead to a lower sediment build-up in the river and
thus increasing the relevance of suspended organic matter degradation.
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Figure 3.4: Emulator vs. Simulator dissolved oxygen time-series graphical comparison for different test
parameter combinations.

3.2.3.3. PARAMETRIC INFERENCE

A data series of river flow and dissolved oxygen concentration (15-Jan-2012 until 05-Aug-
2012) at M0121 station (the outlet of the catchment) was used to update prior knowledge
(encoded as a probability distribution, Table 3.1 and Table 3.2). Figure 3.7 displays the
comparison of measured flow (in black dashed line) and the posterior mean simulation
(solid blue) plus its 95% uncertainty range. Also, a validation period (05-Aug-2012 un-
til 31-Dec-2012) shows that the dynamics of the system are consistent. Flow series are
reasonably well represented, although extremely dry periods induce a systematic over-
estimation of the flow as seen in July and in the beginning of September, this however
is expected to have little influence in the water quality dynamics. The same comparison
(measurement vs inferred and validation series) can be found in Figure 3.8 for the sim-
ulation of dissolved oxygen. The general dynamics of DO are captured, especially the
depletion processes, daily and seasonal variation. Yet the uncertainty of the estimation
is significantly large compared with the variable itself. This has certain implications for
the applicability of the DO series in environmental studies. The use of DO determinis-
tic estimations can lead to overconfidence on modelling results. During the 19th and the
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Figure 3.5: Sobol sensitivity indexes (first order) for the flow dynamics. Above, mean flow simulation and the
95% interval for the propagation of the parametric ranges. Below, sensitivity indexes for the four parameters.

In the right (b) detail of the sensitivity during a medium-high intensity storm event.

Figure 3.6: Sobol sensitivity indexes (first order) for the dissolved oxygen dynamics. Above, mean DO
simulation and the 95% interval for the propagation of the parametric ranges. Below, sensitivity indexes for

the eight parameters. In the right (b) detail of the sensitivity during a high intensity storm event.

29th of November 2012, Figure 3.8 shows a systematic mismatch of three acute depletion
events, which are not captured by the model. This indicates that the model structure is
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apparently lacking some fundamental process, which has not been identified yet. The
validated measuring data quality in this period is considered as good. This kind of deple-
tion processes for the Dommel system should be further investigated in order to update
the structure of the integrated catchment model in the future.
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Figure 3.7: Posterior sample for the inferred flow dynamics between 15-Jan-2012 and 05-Aug-2012. In orange,
the posterior distribution under validation conditions 05-Aug-2012 until 31-Dec-2012, in black observed flow

at the station M0121.
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Figure 3.8: Posterior sample for the inferred dissolved oxygen dynamics between 15-Jan-2012 and
05-Aug-2012. In orange, the posterior distribution under validation conditions 05-Aug-2012 until

31-Dec-2012, in black observed flow at the station M0121.

The posterior probability density functions of the parameters for the water quantity
and quality of the river section can be found at Figure 3.9 and Figure 3.10 respectively.
The river parameter kW is poorly identified, which is denoted by the wide range of the
posterior distribution (Figure 3.9, kW diagonal). This is also supported by the very low
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sensitivity of this parameter to the overall flow dynamics (Figure 3.5). The rest of the pa-
rameters are appropriately identified, and they appear to be mostly mutually indepen-
dent with the exception of a strong negative correlation between kz and n. This implies
that both parameters interact in opposite directions, thus partly compensating each
other. The joint inference/calibration of both elements is therefore not recommended,
since there is not enough information content in the objective variable to identify them
independently. Further use of this model should therefore prioritize fitting n, since this
parameter has a much larger sensitivity than kz . Water quality variables show a mostly
independent joint posterior distribution with the exception of kd1 and kd2, which show
a mild negative correlation. This is explained by the fact that both parameters influence
the same process at two fractions of BOD for which DO measurements are probably in-
sufficient to discriminate.
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Figure 3.9: Posterior joint parametric distribution for the inference of the flow model parameters. σ1 and
si g ma2 are hyperparameters of the selected error generation process (heteroscedastic, independent

Gaussian). The Spearman’s correlation coefficient (ρs ) is also shown at each parameter couple. The black
dashed lines in the diagonal histogram plots represent the 95% data range.
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Figure 3.10: Posterior joint-parametric distribution for the inference of the water quality model parameters.
σ1 is the hyperparameter of the selected error generation process (independent, identically distributed

Gaussian). The Spearman’s correlation coefficient (ρs ) is also shown at each parameter couple. The black
dashed lines in the diagonal histogram plots represent the 95% data range.

3.2.3.4. ERROR GENERATING PROCESS AND LIKELIHOOD DESCRIPTION

Bayesian inference relies on the a priori definition of an error generating process (Equa-
tion 3.4), which constitutes the likelihood structure used to define the probability of a
parameter sample being supported by the observations. The error generating process
is selected based on a series of hypotheses, which can be encoded by expert guesses on
the behaviour of the system. Yet those assumptions are still a subjective exercise and its
validity should be checked once sampled from the posterior distribution. In this case,
the initial error generation process for both flow and DO series was conceptualised as
an independent, identically distributed Gaussian distribution. Once the first posterior
samples for the flow inference are available it becomes apparent that the residual struc-
ture shows a mild heteroscedastic structure. This implies in this context that the resid-
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uals are positively correlated with the flow. This is well described in the hydrological
literature (Sorooshian and Dracup, 1980) and is corrected by using a linear dependent
variance structure in the error generating process for the flow inference. Figure 3.11 rep-
resents three relevant characteristics of the residual structure at the posterior samples
of river flow, comparing the assumed error generating process (in black) and the sam-
pled one (in blue). Figure 3.11.a shows the heteroscedasticity structure of the residuals,
Figure 3.11.b shows the comparison of probability density functions and Figure 3.11.c
shows the time-autocorrelation structure of the assumed and computed residuals. It is
apparent that the residual independency assumption is violated, since computed resid-
uals present a strong time autocorrelation structure. Figure 3.12 shows the comparison
of the computed residuals and the assumed error generating process (independent, ho-
moscedastic and Gaussian) for the dissolved oxygen in the river. The variance of the
residuals is largely independent from the DO value. The proposed and computed prob-
ability densities have a reasonable match. Also, residuals present a clear autocorrelation
structure, albeit shorter than that of the flow inference.
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Figure 3.11: Residual structure at the flow posterior mean sample, a) scatter plot variable-residual showing
the dependency of the variance, b) the residual probability density and c) the autocorrelation plot at different
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Figure 3.12: Residual structure at the dissolved oxygen posterior mean sample, a) scatter plot
variable-residual showing the dependency of the variance, b) the residual probability density and c) the

autocorrelation plot at different time-lag.

The time autocorrelation structure in hydrological inference has been discussed in
several studies. For instance, Kuczera (1983) applied an ARMA (autoregressive moving-
average) model to represent an autocorrelated likelihood structure in a hydrological model.
Bates and Campbell (2001) argued that ARMA structures lead to local minima, and AR
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(autoregressive) models of order p are to be preferred. Schoups and Vrugt (2010) pre-
sented the use of an alternative likelihood structure, which addresses several common
issues; like the non-normality of residuals (which was not relevant in our study), the vari-
ance non-stationarity (corrected by the use of a linear standard deviation dependency)
and the temporal correlation of the residuals approached with an AR(p) model. Yet all
these three studies simulated catchment hydrological flows at daily scales. In the ex-
amples presented in this thesis, the measurement layout has an hourly time-step, since
relevant processes occur at those scales. It is expected that the autocorrelation structure
becomes stronger when dealing with shorter time-scales. As seen in Figure 3.11 and Fig-
ure 3.12 the correlation is still around 0.5 in the order of 50-100 hours lag time. Honti
et al. (2013) and Del Giudice et al. (2013) presented the direct encoding of a Bias descrip-
tion process within the error model. This was applied to urban drainage hydrodynamic
simulation with time-steps of 1-2 minutes, which present strong autocorrelation struc-
tures. The Bias description can be conceptualised as function of different variables or
inputs, yet in its basic form it constitutes a Gaussian multivariate distribution with an
exponential covariance structure as in Equation 3.9.

The use of an AR(3) model in this case, rendered an almost negligible effect of the au-
toregressive parameters of higher order than one (<0.01), thus generating an equivalent
AR(1) model. Measured series vs. inferred comparison and the residual structure can be
seen at Figure 3.13. Although the autocorrelation of residuals is better represented, the
fit of the mean sample did not improve, rather was degraded through accounting for the
autocorrelation term. This was also discussed by Evin et al. (2013b), who showed that
using AR(1) models for hydrological inference on the raw residuals can lead to strong
interactions with the inferred parameters and degraded outcomes.

On the other hand, the use of a Bias description as in Del Giudice et al. (2013) be-
comes prohibitive for long time series. This implementation requires the inversion of a
covariance matrix Σ ∈ Rnxn , being n the size of the measurement layout. In this case,
hourly sampling during 15-Jan-2012 until 05-Aug-2012 has a size of 4892. Expected val-
ues of the decay parameter τ are likely to produce a highly sparse covariance matrix, thus
sparse inversion optimisation could be applied (Betancourt and Alvarado, 1986) yet in-
tensive sampling for populating the posterior is still cumbersome. This large covariance
matrix inversion renders the evaluation of the likelihood function computationally ex-
pensive, thus eliminating the benefits of the use of the dynamic emulator for the simu-
lator response variables. A possible solution is to create a database of likelihood samples
from the dynamic emulator which is used to build a second emulator linking the pa-
rameter space and the response of the likelihood function (Dietzel and Reichert, 2014).
An illustrative example of a Bias description term is shown at Figure 3.14 in which the
inference was performed in a shorter time-series (26-Jul-2012 – 14-Sep-2012).

The description of the autocorrelation structure in the residuals did not allow for a
better description of the process, or a better understanding of the parametric uncer-
tainty. Ammann et al. (2018) recently studied the representation of autocorrelated like-
lihood structures with the conventional error models as shown here. They discussed
that the use of stationary autocorrelation models deteriorates the performance of the
inferred model significantly (degrading even further when increasing the measurement
layout frequency). They propose that the use of non-stationary autocorrelation schemes
may overcome this problem, since hydrological models are expected to lose memory un-
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Figure 3.13: Autoregressive model order 3, comparison of measured and inferred dynamics and residual
structure.

Figure 3.14: Bias description, comparison of measured and inferred dynamics and residual structure.

der storm events (thus dry-weather and wet-weather present different residual correla-
tion patterns). This non-stationarity could not be found in this case, being the correla-
tion structure in dry-weather and wet-weather for short scales (0-80 hours lag) equiva-
lent and the long structures only slightly different (Figure 3.15). Also, this is not expected
to be applicable for DO series, where residuals are even less structured as in hydrological
flow.
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Figure 3.15: Autocorrelation structure for Flow residuals by magnitude.

A strong autocorrelation structure is expected due to the nature of the process and
the measurement layout. Both flow and dissolved oxygen concentration present several
dynamic modes, induced by storm events, daily fluctuation in the WWTP effluent and
variation between dry-wet periods and temperature seasons. This happens well above
the measurement frequency (hourly). Small temporal shifts are expected due to model
structural misfit (e.g. incorrect CSO timing in the urban drainage scheme or misrepre-
sentation errors in rainfall data). The temporal shift will likely render strongly correlated
residuals in time. Yet these time-shifts are of little influence for the model application.
The objective of the model is to represent dynamics of oxygen in a receiving water body
for environmental policy assessment studies. These studies use metrics which lumps the
time-dynamics, as frequency-duration-concentration tables (FWR, 2012), thus the exact
timing of the oxygen depletion is not highly relevant, but rather the correct representa-
tion of the magnitude and duration of the event. Consequently, the stiff likelihood condi-
tions required to construct formal inference schemes (as shown in this study) might not
render the most adequate approach when dealing with the with long-term dissolved oxy-
gen dynamic series (in which the system exhibit multitude of complex dynamic states).
Approximated Bayesian computation (Toni et al., 2009) could be of interest by allowing
defining metrics which attend to the relevant features of the dissolved oxygen output
space (e.g. duration and magnitude of events, slopes of the depletion/recovery patterns,
etc.). The selection of signature based metrics are being increasingly used for the diagno-
sis of hydrological modelling studies (Sadegh and Vrugt, 2014; Kavetski et al., 2018) and
could also facilitate the identification and calibration of urban water quality dynamics.
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3.3. EMULATING DYNAMIC INPUTS, INCORPORATING THE EF-
FECT OF TIME-DEPENDENT RAINFALL IN PHYSICALLY BASED

2D FLOW EMULATION *

3.3.1. INTRODUCTION

T HE simulation of surface water flow dynamics in urban and rural catchment scale is
of great importance in water management. During the past four decades, several dis-

tributed or semi-distributed models, having a physical basis, have been developed, such
as MIKE-SHE, SWAT or TOPKAPI software (Abbott et al., 1986; Mazzetti, 2015; Neitsch
et al., 2002) among others. These conceptualisations simulate several processes (infiltra-
tion, interception, snow melting, overland flow, groundwater flow, etc.) included in the
water cycle using either differential or empirical equations. Usually, the overland flow
propagation is approximated by simplified methods, such as the kinematic or dynamic
wave equations and therefore cannot capture the non-linearities observed, especially in
extreme events such as floods (Costabile et al., 2013; Liang, 2010; Singh et al., 2014).

In the last few years, there is an increasing trend to simulate overland flow dynamics
at catchment scale using the full form of the two-dimensional Shallow Water Equations
(2D-SWE). Fiedler and Ramirez (2000) and Esteves et al. (2000) represent early attempts
to use numerical solvers based on the full form of 2D-SWE to simulate the rainfall-runoff
process in micro-scale catchments. The rapid increase in computational power led to
several examples of application to real catchments (Costabile et al., 2012, 2013; Liang,
2010; Nguyen et al., 2016; Singh et al., 2014).

Although the implementation of this kind of simulators is currently feasible in large-
scale scenarios, the required computational time is a substantial limitation (in the order
of hours-days). Therefore, their use in practice is still hampered (e.g. hydraulic design,
real-time flood warning schemes, uncertainty analysis or parametric calibration). Ac-
celerating the sampling of hydrodynamic models is an area of high interest. Several ap-
proaches focus on exploiting the benefits of high performance computing (Kalyanapu
et al., 2011; Vacondio et al., 2014) or efficient grid definitions (Stelling, 2012). These
strategies reduce the time required for computing events of interest, however the com-
putational burden is still prohibitive for intensive model evaluation as required for un-
certainty propagation of parametric inference.

The use of surrogate modelling is an alternative to approximate the behaviour of dy-
namic simulators at output variables of interest. Several authors have presented meth-
ods in which a large physically based model is substituted by a fast surrogate conceptual
version (Bermúdez et al., 2018; Meert et al., 2018; van Daal-Rombouts, 2017). However,
those simplifications do not respect the original model structure, and thus inference or
calibration parameters do not have transferability. Another strategy focuses on learning
directly the behaviour of the original simulator (building an interpolator between the
parametric and output spaces). For instance, Wang et al. (2015) presented a data-driven
emulator to facilitate uncertainty analysis in hydrologic modelling. A similar applica-
tion for groundwater modelling can be found in Laloy et al. (2013). Carbajal et al. (2017)

*This section is an adapted version of: Moreno-Rodenas, A. M., Bellos, V., Langeveld, J. G., and Clemens, F.
(2018). A dynamic emulator for physically based flow simulators under varying rainfall and parametric condi-
tions. Water Research, 142, 512-527. doi: 10.1016/j.watres.2018.06.011
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described a comparison of surrogate methods (mechanistic vs. data-driven) based on
Gaussian processes to emulate the dynamics of urban drainage routing models. More
applications can be found in urban hydrology (Machac et al., 2016a,b). These methods
have the advantage of representing a mapping between model parameters and the sim-
ulator output space, which allow for a direct use in calibration, inference or uncertainty
analysis schemes. However, they are generally hard-bounded to the rainfall time-series
in which they were trained. This means that the model emulator is only valid for changes
in the parametric space under a particular rainfall event and boundary conditions (out-
side those conditions a new sampling and training would be necessary). This has posed
a strong limitation on the application of data-driven emulators in hydrology.

A potential approach to incorporate the rainfall variability in the data-driven emula-
tor is to encode the rainfall process as a set of discrete parameters (representing rainfall
intensity at each time step), which is added to the model parametric space to be emu-
lated (Mahmood et al., 2018). However, common techniques used for model emulation
as polynomial chaos expansion (PCE) or Gaussian processes (GP) are sensitive to the
dimensionality of the parameter space, allowing only for a reduced number of parame-
ters to be accounted for. This technique is limited to only short rainfall events, or very
coarsely discretised, also time autocorrelation structures could pose further challenges.
Another surrogate approach could be the use of recurrent neural networks (RNN/LSTM,
e.g. long-short term memory configurations (Hochreiter and Schmidhuber, 1997)). These
structures are designed to accommodate time-dependent processes. However, RNN im-
plementations are expected to require a prohibitive number of simulator samples to
guarantee that variations of time-dependent rainfall are sufficiently explored. Sajiku-
mar and Thandeveswara (1999) provided an early example describing a rainfall-runoff
process using a neural network by learning patterns from monitoring data. Although
this could replicate the behaviour of a given status of the system, it did not allow for
representing parameter variations or virtual changes in the system.

A way to cope with the approximation of physically-based flow simulators responses
to new rainfall series is the hybrid combination of the hydrological Unit Hydrograph
(UH) theory with hydrodynamic modelling (Bellos and Tsakiris, 2016). With this tech-
nique, an UH is derived using a physically based 2D hydrodynamic simulator. Then, the
rainfall event is simulated abstracting from the precipitation losses due to infiltration,
sewer drainage, interception etc., and composing the total flow response using propor-
tionality and superposition of the UH. With this scheme a flood event can be readily
evaluated. Nevertheless, the derivation of the UH is parameter dependent, and thus
practical model use is still severely hampered (e.g. quantification of uncertainty, sen-
sitivity analysis, calibration, etc.). Bellos et al. (2017) attempted to solve this issue by
generalising the UH derivation with the use of a surrogate model for a uniform distri-
bution of Manning coefficient values, thus including the parameter dependency. How-
ever, the solution of the 2D-SWE is often highly non-linear, which is strongly manifested
when dealing with small catchments (characterised by fast response). This violates the
assumption of linearity in the UH theory, thus rendering significant errors in the esti-
mated hydrograph. In this work, we present a new methodology to emulate physically
based hydrodynamic simulators. This is based on encoding the rainfall process as uni-
tary responses through a dedicated sampling scheme and the use of a polynomial chaos
expansion surrogate model which compensates for the effect of non-linearities due to
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the superposition and proportionality composition of the UH. The mismatch observed
in the results derived by the hybrid technique and the full implementation of the phys-
ically based model in previous attempts Bellos and Tsakiris (2016); Bellos et al. (2017) is
significantly reduced. This new surrogate technique allows the modeller to capture the
behaviour of the real model to variations of time-dependent rainfall (spatially uniform)
and parameter scenarios at a significant computational time reduction (in the order of
milliseconds-seconds). In order to demonstrate the presented methodology, we com-
pare the results derived by a simulator, the conventional use of UH linear theory and
the new proposed surrogate model, in three case studies: a synthetic catchment which
is represented by a simplified non-linear tank-in-series flow routing structure and two
catchment geometries where the rainfall-runoff process is described by the full form of
2D-SWE.

3.3.2. METHODS AND MATERIALS

3.3.2.1. MODEL BASED UNIT HYDROGRAPH

The Unit Hydrograph (UH) theory (Dooge, 1959) is based on the assumption that there
is a unique runoff response after a unitary rainfall depth, during a specific time interval,
for every catchment. A commonly accepted unitary depth is 10mm (l ·m−2) of rainfall,
whereas the time interval varies and depends on the characteristics of the catchment,
such as the size, time of concentration etc. With a given UH of a catchment, every runoff
can be derived using as input data the rainfall event, based on the principles of the pro-
portionality and superposition. The runoff response for rainfall depth in every time step
is derived assuming that this rainfall depth is proportional to the corresponding unitary
depth and therefore the responses should be proportional as well (principle of propor-
tionality). The individual runoff responses are composed in time to represent the re-
sponse for the given rainfall event (principle of the superposition). The UH theory has
been often used to approximate the behaviour of catchments where limited data is avail-
able (ungauged basins). This is done using synthetic UHs, which are derived based on
the catchment’s characteristics (e.g. Snyder’s US or the Soil Conservation Service UH,
etc.). Alternatively, UHs of several durations can be derived from monitoring data when
available. In this particular case, the objective is to represent the behaviour of a hydro-
dynamic simulator. Thus, a set of tailored simulations can be drawn from the model in
order to capture its unitary reaction by using the principles of UH theory. From this set of
samples, an emulator structure was applied to generate an interpolation map between
new parameter and rainfall scenarios and the approximated response of the hydrody-
namic simulator.

3.3.2.2. POLYNOMIAL CHAOS EXPANSION (PCE)

A weighted sum of orthogonal polynomials can be used to link a vector of random vari-
ables to space-time model outputs (Xiu, 2010; Xiu and Karniadakis, 2002) if the mapping
is smooth. In this case, we denote a deterministic flow model M as:

Q(t ) = M [x0, I (t ),θ] (3.10)

which has a set of initial conditions x0, g time dependent inputs of length m, I (t ) ∈
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Rmxg and a vector of model parameters θ ∈Rd and which solution renders the simulated
flow dynamics at a certain location, Q(t ) ∈Rm . Then, we aim to find a linear combination
of polynomials (only dependent on the parametric space) which approximates a map
between θ and Q(t ,θ) as:

Q(t ,θ) ≈ c(t )T ·Φ(θ) (3.11)

in whichΦ(θ) ∈RN x1 is a series of N orthogonal polynomials constructed as basis of
the joint probability density function of the parameter space θ and c(t ) ∈RN x1 is a vector
of coefficients ci (t ) ∈Rm to be fitted to the particular model response.

The output space Q(t ,θ) is interpolated through a weighted sum of polynomials. The
fitting process is performed by deriving the model output at i = 1, . . . ,K known param-
eter combinations (θ = qi ) as M [x0, I (t )|θ = qi ] = Q(t |qi ). The model samples and the
polynomial approximation can be written as a system of equations:

Q(t |q1)
...

Q(t |qK )

=

Φ1(q1) . . . ΦN (q1)
...

. . .
...

Φ1(qK ) . . . ΦN (qK )

 ·

 c1(t )
...

cN (t )

 (3.12)

in which the only unknown factors are the coefficients ci (t ). This system can be ex-
pressed in matrix form as:

Q(t |q) = P(q) ·c(t ) (3.13)

for which P ∈ RK xN is the matrix of polynomials values corresponding to each pa-
rameter sample. By ensuring that the system is overdetermined (K > N ), this system can
be approximated by a least squares minimisation:

c(t ) = (P(q)T ·P(q))−1 ·P(q)T ·Q(t |q) (3.14)

thus the values of c(t ) are approximated so they map the selected polynomial basis
Φ(θ) and the sampled output series Q(t |q). Then the expression of Equation 3.11 can
be used to interpolate the targeted output series to different values of the parameter
set. This is known as a non-intrusive collocation method, other fitting methods and
sampling strategies are discussed in Hadigol and Doostan (2018).

The orthogonal polynomials should be chosen as basis of the parameter probabilis-
tic space. Xiu and Karniadakis (2002) provided a range of known polynomial basis and
stochastic variable distributions. In this case, training parameter distributions were al-
ways considered independent and uniformly distributed. This has associated the Leg-
endre polynomials. The creation of orthogonal polynomial series was done using the
implementation of Gautschi (1994), which uses a three-term recursion relation for uni-
variate polynomials:

Φn+1(θi ) =Φn(θi )((θi )− An)−Φn−1(θi )Bn

An = E [θiΦ
2
n ]

E [Φ2
n ]

,Bn = E [Φ2
n ]

E [Φ2
n−1]

,Φ−1 = 0,Φ0 = 1
(3.15)
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where Φn(θi ) represents the nth polynomial of the i th parameter. As the parametric
space is considered stochastically independent, the multivariate orthogonal expansion
was obtained by multiplying the univariate ones:

Φn(θ) =Φn(θ1) . . .Φn(θd ) (3.16)

In practice, the polynomial series is truncated at a certain order p, which is selected
such that a desired level of accuracy is achieved. Then, the number of polynomials (and
thus of associated ci (t ) to be approximated) is:

N = (p +d)!

p !d !
(3.17)

which is related to the polynomial truncation order p and to the dimensionality of
the parameter vector d .

3.3.2.3. EMULATOR STRUCTURE

A polynomial chaos emulator can be used to represent an interpolation map between
model parameters and the model unitary hydrograph response (Bellos et al., 2017). This
is done by propagating a unitary rainfall event of 10mm at combinations of model pa-
rameter θ = qi and fitting a PCE (as described previously) to the output unitary response,
U H10mm(t ,θ):

U H10mm(t ,θ) ≈ c10mm(t )T ·Φ10mm(θ) (3.18)

The total hydrograph shape is then reconstructed for any given rainfall event and
combination of parameters. This relies on the proportionality and superposition as-
sumptions of the U H theory, which has proven insufficient to capture the real model
dynamics in previous attempts (Bellos et al., 2017). The observed error in the compari-
son between the hydrodynamic simulator and the composition of the UH was separated
in two sources: a) error due to the proportionality assumption; b) error due to the super-
position assumption. According to the proportionality principle, the U H relates linearly
to rainfall intensity. This assumption is not valid when dealing with a non-linear model
structure. In order to correct for this error source, the behaviour of the unitary hydro-
graph to rainfall intensity was transferred to the PCE emulator. This was achieved by
training the emulator through variations of the model parametric space and of the uni-
tary rainfall intensity (R) (instead of using a fixed 10mm event to derivate the U H):

U HP (t ,θ,R) ≈ cP (t )T ·ΦP (θ,R) (3.19)

With this approach, the emulator U HP included the proportional non-linear effect.
This corrected for the proportionality error of the classical UH theory, which was tested
by reproducing the behaviour of a non-linear tank-in-series model to variations of uni-
tary rainfall intensity.

On the other hand, the superposition error is linked to the model dynamic state. Ac-
cording to UH theory, the flow response is unitary and independent in previous states
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and therefore fails to capture non-linear processes. In order to transfer the information
of the system state to the emulator structure, we propose a new method to sample the
real simulator and to build a unitary rainfall emulator (U HPS ). Figure 3.16 depicts the
emulator development process. This structure was based on two simplification phases.
First, a PCE emulator scheme was built following these steps: 1) a series of samples
were drawn from the model parametric space θ = qi and from two extra parameters
R and RP (which represented two consecutive unitary rainfall steps with duration Dt ,
selected following the UH theory). 2) Two samples were drawn from the original sim-
ulator using the same parameter sample (qi ) but using a rainfall time-series input of
RT(t ) = [Rp ,R,0,0, . . . ]Dt and Rp(t ) = [Rp ,0,0,0, . . . ]Dt respectively (which are vectors of
input rainfall intensity at a given Dt time step). The difference between the two output
hydrographs was computed as M(θ = qi ,RT(t ))− M(θ = qi ,RP(t )), which provided an
approximation of the state response of the model equations when a rainfall intensity Rp

preceded a rainfall intensity R. This response contains the proportionality non-linear er-
ror information along with the superposition error (at one rainfall lag). The set of unitary
responses was stored in a database. 3) The model unitary responses from the database
were used to train a PCE emulator as:

U HPS (t ,θ,R,Rp ) ≈ cPS (t )T ·ΦPS (θ,R,Rp ) (3.20)

4) The performance of the unitary emulator was tested on several samples, which
were not used to train the model. Once fitted the interpolator (PCE), a second simplifica-
tion phase is performed; 5) the unitary responses from UHPS are used to reconstruct new
rainfall-parametric scenarios; 6) Effective rainfall is computed (if required) and 7) super-
posing all unitary model responses obtained from Equation 3.20, which corresponds to
the unitary response of the model under the parameter set θ and the given rainfall event.
Additionally, initial boundary conditions can also be included in the emulation phase by
conceptualising them as extra model parameters.

3.3.2.4. HYDROLOGICAL (CONCEPTUAL) FLOW MODEL

In order to illustrate the impact of non-linearities in the basic assumptions of the unit
hydrograph theory (superposition and proportionality) a basic synthetic model was used
(Figure 3.17). In this model the strength of the non-linear component can be varied
allowing to test multiple conditions (at a reduced computational burden). This simple
rainfall-runoff model structure was conceptualised as a chain of non-linear tanks:

dVi
d t =Qi n −Qout

Qout = a ·V b
i

(3.21)

where Vi represents the volume stored at the i th tank, Qi n the flow entering in the
tank from the previous structure and Qout represents the outflow, which follows a non-
linear relationship with the current tank storage (Equation 3.21). The discharge is driven
by a proportional coefficient a and an exponential parameter b. The runoff was calcu-
lated as Qi n_t anks = A ·R from a certain area (A), and was separated in two lines of five
and three tanks, which converged at the outflow (Figure 3.17).
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errors (U HPS ).
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Figure 3.17: Scheme for a simplified/lumped non-linear flow model.

Both tank lines shared the exponential parameter b but had different proportional
coefficients, namely a and ar . Infiltration was set to 0. Thus the model was composed
by a set of Ordinary Differential Equations (ODEs):

Qout f low = Msi mpl i f i ed (a, ar ,b, A,R(t )) (3.22)

represented by Msi mpl i f i ed which depends on the set of tank-parameters, the catch-
ment’s area A and in a rainfall input R(t ). The parameters were manually selected (a =
1.4, ar = 2.2,b = 1.2and A = 5) in order to force a non-linear dynamic behaviour. Rainfall
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time-series were supplied with a frequency of 10 minutes. The effect of non-linearities
and its correction through the use of the proposed emulator were computed on the sim-
plified model at the fixed set of parameters.

Additionally an example is provided in which the full parameter space was used as
an input for the emulator. The surrogate structure was trained using 3000 samples drawn
from a Latin hypercube sampling (LHS) scheme of the full parametric space (a, ar ,b, A,R,Rp ),
where the first four elements referred to model parameters, and the last two encoded the
rainfall process. Distribution and ranges used at the training dataset are described in Ta-
ble 3.5.

Table 3.5: Parameter probability distributions used for training the simplified model emulator.

Parameter a (-) ar (-) b (-) A (km2) R (mm) Rp (mm)
Pdf Uniform Uniform Uniform Uniform Uniform Uniform
Range [1, 1.6] [1.8, 2.5] [1.1, 1.2] [4.5, 5.5] [0.2, 20] [0, 20]

An uncertainty analysis scheme was also implemented using the emulated structure
from an elicited parameter probability distribution (Table 3.6). A total of 1000 samples
were drawn from a Monte-Carlo sampling scheme assuming independency of param-
eters. This contained the four model parameters (a, ar , A,b) and a rainfall multiplier
(Kr ai n f al l ), which modified the rainfall input.

Table 3.6: Parameter marginal distributions (simplified model uncertainty propagation).

Parameter a (-) ar (-) A(km2) b (-) Kr ai n f al l (-)
Pdf truncNorm truncNorm truncNorm Uniform Uniform

Parameters
µ = 1.4
σ = 0.014

µ = 2.2
σ = 0.088

µ = 5
σ = 0.2

- -

Range [1.2, 1.5] [1.8, 2.5] [4.5, 5.5] [1.18, 1.95] [0.95, 1.05]

3.3.2.5. PHYSICALLY BASED FLOW MODEL (2D SWE)

The applicability of the proposed emulation technique in physically based real scale
models was tested by representing the dynamic response of the full solution of the 2D-
SWE in two synthetic studies. A computational domain was created using a parabolic
shape to represent a surface elevation model (Figure 3.18). The surface elevation model
z(x, y) (in meters) adopted the following form:

z(x, y) = (α−α0 · x) · (y − y0)2 −β · x + c (3.23)

where α = 10−4, α0 = 1.5x10−7, y0 = 250, β = 5x10−3 and c = 10. The computa-
tional domain was discretised in square-shaped cells of 10x10 meters, whereas a gate of
100 meters width was located at the outlet of the catchment where runoff was measured.
The system had a surface of 0.26 km2, which is representative of a small catchment char-
acterised by fast response (Model SWE_parabola). Additionally, a set of five obstacles
(square reflective boundaries) was located near the centre of the computational domain
(Model SWE_urban).
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Figure 3.18: Surface elevation and boundary conditions of the two 2D-SWE simulators.

In its conservative form, the two dimensional shallow water equations can be written
as:

∂h
∂t + ∂

∂x (uh)+ ∂
∂y (vh) = 0

∂(uh)
∂t + ∂

∂x (u2h +0.5 · g h2)+ ∂
∂y (uvh) = g hSx

0 − g RH Sx
f

∂(vh)
∂t + ∂

∂x (uvh)+ ∂
∂y (v2h +0.5 · g h2) = g hS y

0 − g RH S y
f

(3.24)

where the energy slopes are determined as:

Sx
f = n2u(

p
u2 + v2)R−4/3

H

Sx
f = n2v(

p
u2 + v2)R−4/3

H

(3.25)

for which h represents the free-surface depth, u and v the velocity components in
the x and y axis respectively, RH the hydraulic radius (which is approximated by h for
unconstrained locations). The Manning’s roughness coefficient is represented by n, Sx

0
and S y

0 denote the bottom surface slope in each direction.

The numerical solver used for the flow dynamics simulation was the FLOW-R2D
model, which solves the full form of 2D-SWE. The implementation consisted on the Fi-
nite Difference Method and a modified version of McCormack numerical scheme (Bel-
los and Tsakiris, 2014). The time step was ∆t = 0.01s, whereas for the diffusion factor
a typical value of ω = 0.999 was selected. The Manning equation was used to repre-
sent friction. The threshold which distinguishes wet and dry cells was selected equal to
hdr y = 10−4m. For numerical reasons, an initial thin film of water equal to 1.1x10−5m
was set up in the catchment. This film was infiltrated in the first 15 min through the sink
term of the mass equation of the 2D-SWE in a constant rate, in order to preserve mass
balance between rainfall and runoff volumes. The boundaries of the catchment were set
as walls through the reflection boundary technique in order to preserve mass balance
as well, whereas the outlet of the catchment was set as open boundaries (Tsakiris and
Bellos, 2014). A rainfall input series was used with a time step of 15 minutes.
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The emulator scheme was implemented using variations of the surface Manning’s
roughness (n) as a model parameter (constant in the spatial domain). Table 3.7 presents
the parametric distributions at training.

Table 3.7: Parameter probability distributions used for training the 2D-SWE model emulator.

Parameter n (s ·m−1/3) R (mm) Rp (mm)
Pdf Uniform Uniform Uniform
Range [0.03, 0.05] [0.01, 20] [0, 20]

A total of 300 samples were performed on the two simulators (drawn from a LHS).
The 2D-SWE simulator generated numerical instabilities at very low rainfall intensities.
Thus the sampling scheme was reduced to Rp > 0.2 mm and R > 0.2 mm. From the
remaining dataset, 264 samples were used for training and 30 for validation of the PCE
accuracy. A 5th order Legendre polynomial set was used in both cases. Additionally, a
validation set of rainfall and parametric scenarios (Table D.1, Appendix D) was used to
compare the fit between the original simulators and the proposed surrogate models.

3.3.2.6. PERFORMANCE INDICATORS

The fit between model and emulator derived flow time series was assessed by the Nash-
Sutcliffe Efficiency (NSE, Nash and Sutcliffe (1970)):

N SE = 1−
∑T

t=0(Et −St )2∑T
t=0(St − Ŝ)2

(3.26)

where Et denoted the emulated and St the simulated values at time t , and Ŝ the
mean value of the simulated series. This metric is normalised, thus allowing to compare
between storm events of varying dynamics.

Besides, a Peak relative error (PRE) index was used in order to assess the accuracy of
the flow maximum peak emulation, which follows:

PRE = Speak −Epeak

Speak
(3.27)

where Speak and Epeak are the simulated and emulated values associated with the
peak flow of the hydrograph.

3.3.3. RESULTS AND DISCUSSION

3.3.3.1. CORRECTING UNIT HYDROGRAPH ERRORS DUE TO NON-LINEARITIES

The simplified tank-in-series model was used to test the effect of superposition and pro-
portionality assumptions in the reconstruction of hydrographs based in the UH linear
theory. The model parameters were defined as described in the materials section to force
a non-linear routing process (b = 1.2). Figure 3.19 shows the mismatch between a UH
linear derived hydrograph reconstruction (from a 10 mm/10 minutes rainfall) and the
original simulator. In the x-axis, a set of unitary (10 minutes) rainfall events is supplied
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with a ramping intensity (between 1-50 mm). The color-map represents hydrograph re-
sponse. The normalised residuals at each time-step are shown below, which were com-
puted as:

ε̃t = St −Et

St
(3.28)

where St is the flow simulated at time t and Et the corresponding emulated values.
In the right (Figure 3.19) the simulated, approximated (by the UH theory) and resid-
ual values are shown for a 30 mm unitary rainfall. The residual structure indicates that
for rainfall intensities above or below 10 mm the performance of the UH reconstruc-
tion rapidly decreases. This is due to the non-linear behaviour of the flow propagation,
which explains why higher intensities are heavily underestimated and lower intensities
overestimated through the linear representation of the UH.

Figure 3.20 shows the effect of proportionality when using the U HP emulator. In
this case the rainfall intensity is included in the surrogate structure, and thus the unitary
response derivation represents the effect of non-linearities due to proportionality. The
residual structure indicates a high similarity between the emulator-simulator outputs,
when using only unitary rainfall at varying intensities.

Figure 3.19: Effect of non-linearities in the proportionality assumption of the unit hydrograph theory at the
simplified model.

Figure 3.21 depicts the errors due to the superposition of the unit hydrograph. In the
x-axis a set of 100 rainfall events with varying duration and intensity were used as input
for the simulator and for the U HP emulator. The rainfall events had a random duration
of between 10-50 minutes and a rainfall intensity ranging from 2-18 mm/10min. The
x-axis was sorted by rainfall volume. In the right, the effect of a constant rainfall inten-
sity of 12 mm/10min during 30 minutes is shown. The effect of non-linearities is still
present in this case, although the proportional factor was corrected as shown in Figure
3.20. This indicates that the system state influences the response, and thus, should be
accounted for in non-linear systems. Figure 3.22 shows the correction done by the use
of the proposed emulator structure (U HPS ). This structure partially compensates for the
proportional and the superposition effects. The residual plot in Figure 3.22 shows that
these errors are significantly reduced in comparison with the previous scheme (U HP ).

The effect of the linear assumptions of the UH theory in hydrograph approximation
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Figure 3.20: Correction of the proportionality error at the simplified model (U HP ).

have been reported in the literature for rural and urban catchments (Ding, 2011; Min-
shall, 1960; Musy, 1998). The example presented shows the separated effect of the su-
perposition and proportionality simplifications of a unit hydrograph and a strategy to
correct them in the emulator structure. With the use of the tank-in-series model it was
possible to modify the level of non-linearity by changing the tank exponent (b). The
reader is directed to the additional material (Figure C.1 and Figure C.2 in the Appendix
C) where the same effect was computed for the case b = 1, which shows the applicability
of the UH theory in linear cases. Nevertheless, flow propagation processes are seldom
linear, and thus this effect is expected to be relevant in most applications.

Figure 3.21: Superposition error after correction of the proportional error (U HP ).

3.3.3.2. EMULATION OF THE SIMPLIFIED FLOW MODEL

Once trained, the behaviour of the U HPS emulator was compared with the simplified
model response for combinations of rainfall and parametric scenarios. To that effect,
1000 samples were drawn from a Monte-Carlo sampling scheme of an elicited parame-
ter distribution (Table 3.6). This contained the four model parameters (a, ar , A,b) and a
rainfall multiplier (Kr ai n f al l ). Figure 3.23 displays the distribution of the performance
indicators PRE and NSE between U HPS and the original simulator. NSE is close to one
indicating an accurate fit between simulated-emulated time-series. PRE reports the rel-
ative error in the peak reproduction, which is around 1.2% of the maximum flow.
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Figure 3.22: Superposition error after correction of the proportional and superposition error (U HP S).
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Figure 3.23: Performance indicators for the comparison simulator-U HPS (1000 samples). Peak relative error
(PRE) and Nash-Sutcliffe Efficiency (NSE) probability distributions

Figure 3.24 shows the graphical comparison of the U HPS emulator and the simulator
for the initial parameter sample at a particular rainfall series, along with the mean and
95% interval of the 1000 parameter samples performed on the emulator.

3.3.3.3. EMULATION OF THE 2-D SHALLOW WATER EQUATIONS

The dynamics of the 2D-SWE were emulated following the same process as in the simpli-
fied example. Figure 3.25 shows the NSE values for the emulated-simulated unitary re-
sponses at 30 combinations of parameters contained in the testing dataset. This served
to validate the emulator of the unitary responses.

All methods were compared; the emulator U HPS (which takes into account the error
due to proportionality and superposition), the emulator U HP (only the proportional-
ity error), the conventional composition of the UH linear (using 10 mm unitary rainfall)
and the results derived from the 2D-SWE hydrodynamic simulators (SWE_parabola and
SWE_urban) in a set of 8 validation scenarios (Appendix D, Table D.1), for varying rainfall
time series and roughness coefficient values. Table 3.8 presents the NSE and PRE values
for all cases comparing with the hydrodynamic simulator. There is a clear increase in
performance by the use of the proposed emulator structure (U HPS ) when approximat-
ing the flow dynamics. This increase is denoted by the high NSE values and a PRE one
order of magnitude lower than the other emulator structures. In general, the use of the
proportional correction (U HP ) is not sufficient, and although it reproduces the hydro-
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Figure 3.25: NSE and parameter values for the U HPS emulator unitary responses at the test database
(SWE_parabola).

graph peak better than the simple use of the linear U H structure, denoted by the lower
PRE values (specially in rainfall events where the maximum intensity differs from 10 mm
as in Validation events 0 to 3), it is heavily affected by the superposition error as seen in
the Validation events 4 to 7.

The use of U HPS improves the reconstruction of the simulated hydrograph and it
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Table 3.8: Nash-Sutcliffe Efficiency and Peak relative error between simulated vs emulated (in the left,
SWE_parabola, and in the right, shaded, SWE_urban).

NSE PRE
U Hl i near U HP U HPS U Hl i near U HP U HPS

a b a b a b a b a b a b

Validation_0 (n=0.035) 0.64 0.53 0.74 0.65 0.988 0.987 0.46 0.51 0.18 0.23 -0.04 -0.03
Validation_1 (n=0.042) 0.53 0.36 0.65 0.54 0.989 0.983 0.48 0.53 0.24 0.27 -0.043 -0.01
Validation_2 (n=0.037) 0.46 0.48 0.59 0.61 0.985 0.988 0.51 0.52 0.28 0.24 0.055 -0.02
Validation_3 (n=0.043) 0.39 0.34 0.52 0.53 0.987 0.981 0.52 0.54 0.3 0.28 0.032 0.007
Validation_4 (n=0.036) 0.62 0.6 0.48 0.37 0.996 0.988 0.42 0.44 0.43 0.49 0.026 -0.049
Validation_5 (n=0.040) 0.6 0.55 0.41 0.25 0.996 0.986 0.42 0.45 0.45 0.51 0.012 -0.03
Validation_6 (n=0.038) 0.57 0.52 0.49 0.38 0.996 0.996 0.46 0.45 0.45 0.45 0.02 -0.04
Validation_7 (n=0.041) 0.53 0.45 0.43 0.28 0.997 0.996 0.48 0.47 0.47 0.48 0.016 -0.03

captures the timing of the flow peak in all tested cases for both geometrical scenarios.
Figure 3.26 shows a graphical comparison between the emulated and simulated values
for the Validation_0 and Validation_1 scenarios for the simulator SWE_urban. U HPS

has a close fit to the simulator dynamics, with an error in the peak estimation of 1-5%.
The comparison of SWE_parabola and SWE_urban are also shown in Figure 40 were the
effect of geometrical obstacles of the second scheme generates a slightly delayed and
attenuated flow response, which led to a decrease in performance of U HLI N E AR and
U HP . The reader is directed to the additional material for the graphical comparison at
the 8 validation scenarios for the two simulators (Figure D.1 and Figure D.2, Appendix
D).
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Figure 3.26: Validation of the SWE_urban emulator. Graphical comparison of the response of the real model
under a rainfall event and two Manning values (0.035 and 0.042 respectively) against; use of the classical unit
hydrograph theory from a 10 mm rainfall (U Hl i near ), the correction of the proportionality error only (U HP )

and the proposed emulator structure (U HPS ).
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One of the advantages of the proposed methodology (U HPS structure) is that the
emulation errors can be decomposed directly in two sources: a) errors in the emula-
tion of the unitary responses through a PCE and b) errors in the reconstruction of the
hydrograph by composition of the unitary responses. The errors in phase a) can be de-
scribed by comparing the PCE emulator and the simulator in a set of test parameter
scenarios. This source is dependent on the capability of the emulation technique used
to represent the link between the unitary response and the parameter space, which can
be reduced in two ways: 1) by carefully selecting the emulator structure, which should
be capable of representing a dynamic output, such as a PCE (Xiu and Karniadakis, 2002),
by using a Gaussian Process as in Carbajal et al. (2017), Bayesian networks (Conti and
O’Hagan, 2010) or recurrent neural networks (Gers et al., 2002). 2) By increasing the
training dataset size (sampling from the simulator). Phase b) involves reconstructing the
hydrograph from the unitary responses. The effect of the proportionality simplification
is well represented by including the rainfall intensity in the emulator structure. However,
the superposition composition has a dependency on the system dynamics and the uni-
tary rainfall length. For highly dynamic systems, high-frequency rainfall data could be
necessary, and thus, accounting for only one temporal step in the superposition scheme
might not be sufficient.

A limitation of the proposed methodology is that its applicability is restricted to rain-
fall spatial homogeneity. The generalisation to spatio-temporal rainfall variability poses
a challenge since it will increase significantly the degrees of freedom of the unitary re-
sponse, which should be captured by the emulator phase, thus requiring a much larger
number of samples from the real simulator.

Also, in practice the number of accounted parameters is limited in this approach.
When using the PCE emulator, the number of polynomials follows Equation 3.17, which
depends on the dimension of the parameter space (d) and the grade of the polynomial
series (p). This relationship grows rapidly, forcing to increase the number of samples
from the original model. Thus, for large dimensional spaces the number of required
model samples could render the training impractical.

Table 3.9: Computational time of training vs. operation.

Simulator (time) Emulator (time)

# training
samples

sample
Validation
scenario

Validation
scenario

SWE_parabola 260 ∼ 14,400 s ∼ 22,000 s ∼ 0.040 s
SWE_urban 260 ∼ 29,000 s ∼ 40,000 s ∼ 0.040 s

For instance, the training of the SWE_parabola and SWE_urban emulators was done
through 260 unitary responses requiring a total of 1040/2080 computation-hours (train-
ing was performed in the HPC platform of the Computational Centre of the National
Technical University of Athens), details are provided in Table 3.9. The emulator sampling
at the validation tests took ∼40 ms per iteration (in a 2.2 GHz Intel Core i7) which repre-
sents a significant time reduction. The benefit of proposing an emulator is strongly case
dependent and is linked to the number of required parameters and shape of the simula-
tor response. Figure 3.27 provides a measure for the increase in performance (measured
by the decrease in L2 norm) with the training data set size for the three tested emulators.
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Figure 3.27: Emulator performance (mean and 95% quantile for L2 norm in logarithmic scale) and number of
training samples. Number of parameters and polynomial degree in each case: a) 6-6, b) 3-5 and c) 3-5.

The stabilization of performance can be used to design a sequential sampling scheme,
which can reduce the number of simulator samples.
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3.4. CONCLUSIONS

3.4.1. PARAMETRIC INFERENCE AND EMULATION IN LARGE-SCALE INTE-
GRATED CATCHMENT MODELLING STUDIES

This chapter presents the example of an integrated catchment modelling study for eval-
uating water quality dynamics in a large-scale urbanised system in a formal Bayesian
inference scheme. The model should capture the interaction between urban drainage
processes, wastewater treatment plant and receiving water dynamics. This renders com-
plex and slow modelling platforms. Using expert-literature elicited parametric ranges
for river dynamics leads to highly uncertain dissolved oxygen simulations. Thus, as a
means to reduce the output variability, a local data set could be used to update prior
receiving water parametric knowledge using inference schemes. This inference requires
large numbers of samples. However, the computationally expensive nature of integrated
catchment simulators hampers the use of sensitivity analysis or formal inference.

Two dynamic emulators (polynomial orthogonal expansions) were fitted to represent
flow and dissolved oxygen depletion for a one-year long time series under four and eight
global parameters respectively. Only 200 model realisations sufficed to generate an ac-
ceptable interpolation in both cases. The emulators were validated using independent
data, rendering a high quality mapping between the parametric space and the dynamic
response. This technique still exhibits some severe limitations, like the impossibility to
include large-parametric spaces, dynamic inputs (which are not parameterised) or para-
metric to output non-smooth relationships (e.g. bifurcation solution points). Neverthe-
less, these limitations did not apply to the present study. Both emulator schemes were
used to compute the first order Sobol sensitivity indexes. Sobol indexes render a met-
ric to assess the global sensitivity of model parameters to the output variability. This
allowed increasing the understanding on the relevant processes involving flow propaga-
tion and dissolved oxygen depletion processes in the river Dommel. The sensitivity of
oxygen depletion showed a non-stationary dependency across storm processes. Thus,
the system does not always behave in the same manner depending on the dynamic state,
the storm event and the season. In general terms, the reaeration rate showed to be the
most relevant parameter under dry-weather flow. Depletion of fast-slow biodegradable
matter is often the responsible for the sensitivity in the intensity of the oxygen dip (at-
tending only to the river process parameters). Meanwhile oxygen recovery sensitivity is
shared between the sediment oxygen demand and reaeration processes, with a strong
curve dominated by seasonality (temperature driven). Several hypotheses were used to
construct an inference error generating process. The use of an i.i.d Normally distributed
error was sufficient to represent dissolved oxygen residuals. A heteroscedastic residual
structure had to be fitted to the flow propagation process. However, both inferred resid-
ual series rendered a highly temporally correlated structure, which violates the assump-
tion of independence. The residual autocorrelation is related to the measurement layout
frequency (hourly) and the nature of the simulated processes such as; a strong memory
effect, model structure-induced time shifts and input estimation-measurement errors.
Various formulations to deal with the residual autocorrelation or structural bias were
tested. However, the inferred dynamics either deteriorated or did not improve. Detailed
investigation on the effects of neglecting the correlation structure in the dissolved oxy-
gen residual structure is still missing. The use of alternative metrics for the inference of
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dissolved oxygen dynamics should be further studied.

The use of a dynamic emulation scheme allows gaining insights on the underly-
ing mechanistic relationships of the integrated urban water quality system. This can
be easily extended to similar environmental modelling studies, facilitating the appli-
cation of sensitivity analysis, inference or calibration under long-time series and low-
dimensionality parametric spaces.

3.4.2. EMULATION OF RAINFALL INPUTS AND PARAMETER SETS FOR PHYSICALLY-
BASED FLOW DYNAMIC SIMULATIONS

In this section, a novel methodology to perform emulation of flow derived from hydrody-
namic simulators is presented. This method allows approximating hydrographs gener-
ated by physically based hydrodynamic modelling under variations of model parameter
values and rainfall series. This method is based on the combined use of the unit hydro-
graph theory (UH) and a polynomial chaos expansion (PCE) emulator. The use of the
unit hydrograph theory is based upon the assumption that the underlying process is lin-
ear. This assumption is seldom met in physically based hydrodynamic simulators since
the driving equations are fundamentally non-linear. In this new approach, information
of the non-linear reaction of the model is encoded in the PCE structure by means of a
dedicated sampling scheme.

The performance of the emulator was tested in three case studies; a) a simplified flow
routing model based on a non-linear tank cascade, b-c) two synthetic computational do-
mains simulated through the full form of the 2D Shallow Water Equations. In the three
simulators the proposed emulator structure could approximate an output hydrograph
under various combinations of rainfall time-series and model parameters. A compari-
son between the performance of the proposed emulator structure (U HPS ) and the use
of the classical UH theory is also provided. This demonstrated that errors induced by
the linear assumption of the UH theory can be significant when dealing with simula-
tors based on the solution of the 2D-SWE. The method still has several limitations. For
instance, the emulator can only accept spatially uniform rainfall time series. This can
pose a severe constrain when dealing with large-scale catchments. Also, rainfall series
inputs should have a constant sampling frequency. Errors in the emulator-simulator
structure are expected to increase if the selected rainfall step-duration is much smaller
than the catchment’s concentration time for highly non-linear models, since the unit
hydrograph superposition error will become dominant. The number of independent
parameters is also limited in practice. This is a limitation of the emulator structure used
(PCE) since the number of required model samples increases rapidly with the dimen-
sionality of the parametric space. Nonetheless other data-driven surrogate strategies
can be easily implemented. Further research should be conducted in these areas. The
proposed methodology has the potential to significantly increase the range of applica-
tions of physically based flow propagation schemes, which is currently hampered by the
computational burden.
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UNCERTAINTY ANALYSIS IN

LARGE-SCALE INTEGRATED

CATCHMENT MODELLING STUDIES *

4.1. INTRODUCTION

M EETING the established environmental regulations (e.g. The Water Framework Di-
rective of the European Union EC (2000)) is still a challenge in many densely ur-

banised catchments, as it often requires the implementation of intensive investment and
regulatory plans (i.e. infrastructure construction, control systems or user limitations).
Model-based decision-making is applied more frequently to explore and optimise the
effect of different alternatives, aiming towards an efficient resource allocation. Therefore
Integrated Catchment Modelling (ICM) has become an essential tool in the water quality
management process over the last decades (Andrés-Doménech et al., 2010; Langeveld
et al., 2013b; Willems and Berlamont, 2002). ICMs are, by definition, abstractions of
highly complex water systems, usually constituted by the joint modelling of two or more
subsystems of the urban water system (Keupers and Willems, 2017; Rauch et al., 2002).
This often involves the joint simulation of sewer hydrodynamics, wastewater treatment
processes, rural hydrology and river physical-biochemical dynamics (Benedetti et al.,
2013a).

ICMs, like every other modelling process, contain various sources of uncertainty, due
to the inherent system characteristics. Complex processes are represented with limited
knowledge, relationships are calibrated with reduced data sets (which may lead to poorly
identifiable parameterisations) and linked simulations are carried out over a wide range
of spatiotemporal scales. Also, the stepwise process of abstraction from reality to model
representation with its necessary simplifications and idealisations of the real systems
includes the unavoidable occurrence of uncertainties (Muschalla et al., 2009).

These uncertainties encompass the errors introduced by model parameterisation,
model-forcing data (e.g. precipitation), model input data (e.g. digital elevation model,

*This chapter is an adapted version of: Moreno-Rodenas, A. M., Tscheickner-Gratl, F., Langeveld, J., and
Clemens, F.H.L.R. (2019). Uncertainty analysis in a large-scale water quality integrated catchment modelling
study. Water Research, 158, 46-60 doi: 10.1016/j.watres.2019.04.016
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soil or sewer conduit maps), model validation data (e.g. use of incorrect water level rat-
ing curves) and model structures (e.g. different mathematical representations).

The definition, recognition and consideration of these uncertainties is therefore of
the utmost importance for the application of such models and for the interpretation of
the hereby obtained results (Pappenberger and Beven, 2006; Schellart et al., 2010). At
present however, a comprehensive uncertainty analysis is mainly applied in science and
less in planning practice (Kleidorfer, 2010; Vanrolleghem et al., 2011).

Several frameworks have been proposed to facilitate the quantification and handling
of these uncertainties in integrated urban water systems Deletic et al. (2012); Tscheikner-
Gratl et al. (2017) or environmental modelling (Refsgaard et al., 2007). The quantifica-
tion of modelling statistical uncertainties is often carried out by encoding system knowl-
edge through a probabilistic description (Reichert et al., 2015) and sampling forward (i.e.
Monte-Carlo sampling) to describe the variability at the targeted output variables. Addi-
tionally, the identification of the contribution of each uncertainty source is essential in
the system analysis process, since it directs the modeller towards a rational reduction of
epistemic uncertainties. For instance, Willems (2012) presented a variance decomposi-
tion methodology to quantify the partial contribution of uncertainty by source. Reichert
and Mieleitner (2009) described the use of time-dependent parameters as a proxy to
detect temporal windows of structural mismatch, pointing therefore at examining par-
ticular physical processes. Yang et al. (2018) used GLUE to extract the sensitivity from
process-driven parameter structures. Inline with this, Gupta et al. (2008) discussed the
need of diagnosis tools to guide in the model conceptualisation process.

Examples of uncertainty analysis applications in integrated catchment modelling for
water quality estimation are still scarce (Tscheikner-Gratl et al., 2019). This is partially
due to the significant amount of effort to monitor and set up large-scale modelling stud-
ies. Also, computational constraints have severely limited the applicability of proposed
formal uncertainty analysis methodologies (see Schellart et al. (2010)). Therefore, only
few examples are available in literature which deal with relatively small systems (Freni
and Mannina, 2010a) or with individual sub-systems (Dotto et al., 2012; Radwan et al.,
2004b).

Consequently, this chapter describes the application of a formal uncertainty analysis
scheme to quantify dissolved oxygen modelling uncertainties in a large-scale (4400 ha of
draining urban areas, a 750,000 p.e. WWTP and a sensitive receiving water body) water
quality ICM study. The estimation of the relative contribution of different relevant un-
certainty sources is also shown, which served towards directing further modelling and
monitoring efforts in the system.

Initially, the forward propagation of all sources of uncertainty was proposed using
the best available literature-expert-measurement derived parametric-input probability
ranges. This will be therein referred as prior propagation. Upon analysis of the uncer-
tainty contribution by source, river water quality and quantity parameters captured most
of the variability of yearly dissolved oxygen (DO) dynamics. Thus, a dedicated inference
scheme was proposed to update the river parametric distributions using local flow and
DO measurements. The propagation of all parameter-input uncertainties and the up-
dated parameter set for the river submodel is here presented (referred as posterior prop-
agation). Comparison of the forward propagation from both prior-posterior uncertainty
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distributions with system observations, along with the current prioritisation of uncer-
tainty sources is presented in this study. Complementarily, the impact of modelling un-
certainties in the concentration-duration-frequency environmental assessment metrics
is discussed, highlighting the possible implications of using such metrics in the selection
of mitigation alternatives in environmental systems.

The discussion arising from this experience also serves to put into context the appli-
cability of proposed uncertainty analysis techniques in real-world scale ICM studies.

4.2. MATERIALS AND METHODS

T HE Dommel water system was used to describe the quantification and decompo-
sition of uncertainty sources in the simulation of dissolved oxygen (described in

Chapter 1). The model structure was revisited sequentially, identifying and analysing
the major uncertainty sources for each submodel independently. This is reported in
Tscheikner-Gratl et al. (2017), where the application of the Quantifying Uncertainty in
Integrated Catchment Studies (QUICS) uncertainty framework was described for the
Dommel case-study. The selection of the uncertainty sources was described in detail
by subsystem attending to the modelling objectives.

4.2.1. PARAMETRIC UNCERTAINTY

Table 4.1 provides the characterised parameter probability distribution for the urban
drainage water flow submodel. The most influential catchments were selected based
on connected area and discharged volume contribution (Moreno-Rodenas et al., 2017b).
Uncertainties in wetting losses (volume and availability), total connected area, in-sewer
maximum storage, wastewater generation per inhabitant and reservoir constants (of the
lumped sewer system conceptualisation) were considered. Those uncertainties were de-
rived from expert knowledge in physical plausible constrained ranges.

Table 4.1: Urban drainage submodel water quantity parameters (∼U uniform distribution (minimum, maxi-
mum), ∼N normal distribution (mean, standard deviation))

Parameter name Units Description Uncertainty distribution
MaxDepressionStoragec_24 mm Wetting Losses storage (Eindhoven) ∼U(1,5)
MaxDepressionStoragec_119 mm Wetting Losses storage (Valkenswaard) ∼U(1,5)
MaxDepressionStoragec_128 mm Wetting Losses storage (Geldrop) ∼U(1,5)
TotalArea_factc_24 - Connected area multiplier (Eindhoven) ∼U(0.9,1.1)
TotalArea_factc_119 - Connected area multiplier (Valkenswaard) ∼U(0.9,1.1)
TotalArea_factc_128 - Connected area multiplier (Geldrop) ∼U(0.9,1.1)
kc_24 min Linear reservoir constant (Eindhoven) ∼N(175,0.05x175)
kc_119 min Linear reservoir constant (Valkenswaard) ∼N(80,0.05x80)
kc_128 min Linear reservoir constant (Geldrop) ∼N(64,0.05x64)
V_Maxpipe_ES m3 Max in-sewer Storage volume (Eindhoven main) ∼N(165,000,0.07x165,000)
V_MaxBT_119_1 m3 Max in-sewer Storage volume (Valkenswaard_1) ∼N(7,000, 0.07x7,000)
V_MaxBT_119_2 m3 Max in-sewer Storage volume (Valkenswaard_2) ∼N(5,000, 0.07x5,000)
V_MaxGB_119_3 m3 Max in-sewer Storage volume (Valkenswaard_3) ∼N(14,000, 0.07x14,000)
V_MaxGB_128 m3 Max in-sewer Storage volume (Geldrop) ∼N(27,800, 0.07x27,800)
V_MaxGB_127 m3 Max in-sewer Storage volume (Mierlo) ∼N(9,000, 0.07x9,000)
WastewaterPerIE m3d−1pe−1 Waste-water production (All urban systems) ∼N(0.19, 0.1x0.19)
YearlyEvaporation mm · y−1 Average potential evaporation ∼N(657, 0.2x657)

Table 4.2 presents the parameter distributions considered at the CSO water quality
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generator. This contains four fractionation parameters, which were identified as a trun-
cated Gaussian distribution (range [0, 1]) with a mean value provided by a non-formal
expert elicitation and a standard deviation of 10% the mean value.

Table 4.2: Urban drainage submodel water quality parameters.

Parameter name Units Description Uncertainty distribution
BOD_CSO g ·m−3 BOD concentration in CSO storm water ∼Copula Model
COD_CSO g ·m−3 COD concentration in CSO storm water ∼Copula Model
NH4_CSO g ·m−3 NH4 concentration in CSO storm water ∼Copula Model
O2_CSO g ·m−3 O2 concentration in CSO storm water ∼U(3,6)
fBOD1_BOD - fast BOD in total BOD (fraction) ∼N(0.85,0.1x0.85)
fBOD1p_BODf - particulate BOD in fast BOD (fraction) ∼N(0.3,0.1x0.3)
fBOD2_CODmBOD - slow BOD in COD-BOD (fraction) ∼N(0.4,0.1x0.4)
fBOD2p_BODs - BOD particulate in the slow BOD (fraction) ∼N(0.5,0.1x0.5)

Modelling in-sewer water quality dynamics is still a challenge (Willems, 2006) and
sufficient data was not available for a reliable submodel calibration. The sewer transport
system is characterised by long conduits (up to 20 km mixing gravity and pressurised sec-
tions) and it is heavily controlled, thus the measured water quality at the WWTP influent
is expected to render a low representativity of the conditions at the CSOs, thus limiting
the use of data-driven generators (Keupers and Willems, 2015). Thus a mean pollutant
vector multiplier was used to approximate CSO loads from modelled flow dynamics. A
monitoring campaign in the Dommel system reported concentration measurements for
various water quality pollutants relevant for the integrated model (BOD, COD and NH4)
at several CSO events (Moens et al., 2009). This allowed estimating pollutant probabil-
ity distributions and correlation structures (Figure 4.1). A Gaussian copula stochastic
model was proposed to generate random pollutant event concentrations (which respect
the non-Gaussian marginal distributions and its correlation structure, Moreno-Rodenas
et al. (2017c)). The stochastic model was based on the following hypotheses; a) Pollutant
mean concentration remains fairly constant over the CSO event duration in the system
of the Dommel (reported by van Daal-Rombouts (2017)), b) The studied CSO locations
have comparable pollution dynamics over time (van Daal-Rombouts, 2017) and c) the
instantaneous pollution concentration was assumed to be spatially independent since
we could not establish a clear pattern from the available data. These assumptions are
case study dependent. Also, the inclusion of a by-location correlation could be readily
accounted for by the copula joint probability distribution, provided additional system
measurements would prove its existence. A comparison of the measured and copula
sampled pollutant concentrations can be seen in Chapter 2.

CSO dissolved oxygen concentrations were sampled from a uniform distribution U(3,6)
gO2/m3. Since no onsite measurements were available, literature values were applied
(Boomen and Icke, 2004; Diaz-Fierros et al., 2002).

Table E.3 and Table E.1 (Appendix E) show the uncertainty distributions associated
with the WWTP submodel. Parameter distributions for the WWTP influent model (Table
E1) were taken from Langeveld et al. (2017) which used several observed time-series to
estimate the parameters of a WWTP empirical influent model using a Bayesian inference
scheme. These parameters were described using a normally distributed density function
(truncated between 0-1) with mean, the average of each posterior sample chain of the
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Figure 4.1: Measured distribution and spearman’s correlation matrix of CSO pollutant concentrations at the
Dommel system.

MCMC and standard deviation of 5% from the mean value.

Table 4.3 shows the prior parameter probability distributions assigned to the hydro-
logic flow and biochemical process models of the river. Prior distributions were defined
from expert knowledge and literature. Sediment oxygen demand (SOD) was measured
in the system by the water board De Dommel. The river model parameters were later in-
ferred using a Bayesian inference scheme from flow and DO measurements at the closing
section of the catchment (between 15-Jan-2012 until 04-Aug-2012) and validated with
additional observations (05-Aug-2012 until 31-Dec-2012). A polynomial chaos expan-
sion emulator was used to accelerate the sampling of the computationally expensive
model during the inference process (Moreno-Rodenas et al., 2018a). This rendered an
updated joint-parameter distribution set, which was later propagated through the full
ICM by drawing correlated samples from the posterior parameter chains. The emulator
construction and inference is described in detail at Chapter 3, Section 3.2 of this thesis.

Table 4.3: River hydrology and biochemical parameters prior distributions (∗updated in the inference scheme).

Parameter name Units Description Parameter prior
Kd1 d−1 Decay rate for BOD fast ∼U(0.5, 0.8)∗
Kd2 d−1 Decay rate for BOD slow ∼U(0.2, 0.4)∗
Vs1 m ·d−1 Sedimentation rate for BOD fast ∼U(0.2, 20)∗
Vs2 m ·d−1 Sedimentation rate for BOD slow ∼U(15, 50)∗
Knit d−1 Nitrification Rate ∼U(0.15, 0.4)
TKd - Temperature coefficient for BOD oxidation ∼U(1.03, 1.09)∗
TKL - Temperature coefficient for reaeration ∼U(1.01, 1.03)∗
TSOD - Temperature coefficient for SOD ∼U(1.045, 1.09)∗
SOD g ·m−2d−1 Sediment oxygen demand ∼U(2.5, 3.5)
VKL - Velocity reaeration coefficient ∼U(2, 3.5)∗
MB g ·m−2 Macrophyte biomass ∼U(40, 80)
n s ·m−1/3 Manning’s roughness ∼U(0.02, 0.12)∗
K_z - Embankment slope multiplier ∼U(0.7, 1.3)∗
K_W_b - River estimated width multiplier ∼U(0.7, 1.3)∗
K_h - Rural flow input multiplier ∼U(0.7, 1.3)∗

Table 4.4 presents the parameter distributions used for the rural-to-river baseflow in-
flow pollutant loads. Values were estimated by expert elicitation since no measurements
were available.
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Table 4.4: Rural hydrology water quality inflow parameters.

Parameter name Units Description Parameter distribution
NH4_in g ·m−3 NH4 inflow from rural ∼U(0.05, 1.5)
BOD1_in g ·m−3 BOD1_in inflow from rural ∼U(2, 4)
BOD1p_in g ·m−3 BOD1p_in inflow from rural ∼U(0.01, 0.5)
BOD2_in g ·m−3 BOD2_in inflow from rural ∼U(0.5, 1.5)
BOD2p_in g ·m−3 BOD2p_in inflow from rural ∼U(0.01, 0.5)
BODs_in g ·m−3 BODs_in inflow from rural ∼U(0.01, 0.5)
O2_in g ·m−3 O2_in inflow from rural ∼U(5, 9)

4.2.2. DYNAMIC INPUT UNCERTAINTY

Errors in measured or estimated time-dependent inputs were represented as stochas-
tic processes. Random sampling was applied to generate input realisation ensembles.
Table E.3 presents the selected most relevant input processes in the system (indentified
by Tscheikner-Gratl et al. (2017)). Rainfall uncertain realisations were sampled at the 9
largest catchment areas (which covered 3,930 ha of a total connected area of 4,400 ha,
approx. 90%). Rainfall intensity at the spatial block-support of each individual catch-
ment was extracted from the KNMI corrected radar measurements (1 km2, 5 min) using
hourly accumulation (Moreno-Rodenas et al., 2017b). An additive error model (depen-
dent on rainfall intensity) was applied as proposed by Freni and Mannina (2010b).

Ri (t ) =
{

RR AD,i (t ) · (1+ε ·RR AD,i (t )a) if
∫

12h |(RR AD,i (t )−RRG ,i )|d t
∼U (0.9 ·mi n(RR AD,i (t ),RRG ,i (t )),1.1 ·max(RR AD,i (t ),RRG ,i (t ))) else

(4.1)

in which the instantaneous estimated rainfall intensity, RR AD,i (t ) at each location
was corrected by a random normally-distributed error ε ∼ N (µ = 0,σ = 0.12), for a =
0.2323. This error model approximates a normal dispersion around the measured value,
which parameters were fitted by comparing radar and rain gauge estimated rainfall se-
ries at the 13 locations in the system. The comparison between estimated rainfall from
rain gauges and Radar sources showed large differences (especially during heavy con-
vective storm processes, see bottom-left event at Figure 4.2). This measured difference
could not be captured by the additive error structure alone. Thus a misdetection error
structure was also applied. CSOs in the area are usually activated after rainfall volumes
larger than 8-10 mm, and pumping capacities are designed to empty in-sewer storage in
10-12 hours. Therefore rainfall estimation differences were considered large when data
sources (Radar and rain gauge inverse distance weighted interpolated values) had a cu-
mulative difference larger than 10 mm within 12 hours. In such cases, the rainfall input
ensemble is updated by sampling from a uniform distribution covering both estimations
(interpolated rain gauge network – Radar, Equation 4.1). Figures 4.2 and Figure 4.3 show
the rainfall input ensemble generated at four characteristic rainfall periods for the mu-
nicipalities of Eindhoven (2000 ha) and Bergeijk (110 ha).

Biochemical processes at the river stretch are highly influenced by water temper-
ature, which results in daily and seasonal variation. There were five temperature sta-
tions along the river section of interest with hourly measurements. A spatially homo-
geneous Gaussian Process (GP) was used to characterize the water temperature input
uncertainty:
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Figure 4.2: Example of the rainfall error model at four different periods. Estimated rainfall input mean (1000

samples) and 95% range (blue), KNMI radar estimate (dashed black) and interpolated
(inverse-weighted-distance) value from the rain gauge network (black solid) at the urban system of

Eindhoven.
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Figure 4.3: Example of the rainfall error model at four different periods. Estimated rainfall input mean (1000
samples) and 95% range (blue), KNMI radar estimate (dashed black) and interpolated

(inverse-weighted-distance) value from the rain gauge network (black solid) at the urban system of Bergeijk.

T (t ) ∼GP (T (t ),ΣT ) (4.2)

with the average temperature between the five sensors T (t ) as the mean of the pro-
cess and covariance matrix described by a squared exponential structure:

ΣT,i , j =σt i ·σt j ·e−0.5·( td
24 )2

(4.3)

where σt i is the measured by-location temperature standard deviation at time i and
j and td the time-lag.

The river solar radiation input (I omeasur ed ) was measured at the KNMI meteorolog-
ical station at the city of Eindhoven. This measured data were used as a spatially homo-
geneous time-dependent input for the entire river domain. An error model consisting in
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a normally distributed multiplier was used:

I o ∼ I omeasur ed ·Nd (µ= 1,Σ=σ2
I o · I) (4.4)

Water temperature at the wastewater treatment works was measured and used as
input in the treatment process model. A multiplicative independent Gaussian error was
implemented as:

TempW W T P ∼ TempW W T Pmeasur ed ·Nd (µ= 1,Σ=σ2
TempW W T P · I) (4.5)

where 1 ∈Rd is a vector of ones and I ∈Rd xd the identity matrix, being d the number
of time-steps in the estimated series. The parameters σI o = 0.15 and σT empW W T P =
0.05 were assigned based on expected sensor representativity.

4.2.3. FORWARD UNCERTAINTY PROPAGATION

A Monte-Carlo (MC) based forward uncertainty propagation was performed using mea-
sured and expert-elicited parametric-input uncertainty probability distributions for the
full year of 2012. Parametric samples were generated from a Latin hypercube sampler
(LHS) to generate a low-discrepancy set. Dynamic inputs were sampled independently
from the proposed stochastic processes. A first set of 600 samples was drawn from the
full-integrated model (in parallel model instances) to characterize modelled river flow
and dissolved oxygen concentration uncertainties at the closing section of the catch-
ment (M_0121, Figure 1.4) using the best-available prior knowledge on the system. A
Bayesian inference scheme was used to update the parametric distribution of several
hydraulic and biochemical river model parameters (Table 4.3) given local observations
in the system (Moreno-Rodenas et al., 2018a). The updated river submodel parame-
ters were used to generate 600 additional samples from the model by drawing correlated
samples from the inferred MCMC chains (Chapter 3, Section 3.2 of this thesis) and us-
ing LHS for the rest of the parameters. Both prior and posterior parameter distributions
were compared with monitoring data available in the system.

4.2.4. UNCERTAINTY ANALYSIS BY VARIANCE DECOMPOSITION

A variance decomposition scheme was proposed following Willems (2012). This is based
on defining independent groups of submodels or parameter-input clusters and analysing
its contribution to the total residual error variance. Seven contributing groups were de-
fined by selecting each submodel most relevant parameters-input sources (Table E.2,
Appendix E). A period of ∼ 2 months (05-Aug-2012 – 07-Oct-2012) was simulated which
captured several summer oxygen depletion processes representative of the dynamics of
interest. 15 time-points, which were temporally independent, and represented relevant
dynamics, were selected to perform the decomposition of variance as:

σ2
EY −EY0

=σ2
EY |r est_var +σ2

EY0
+

7∑
i=1

σ2
EY |clusteri

(4.6)
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for which σ2
EY −EY0

represent the variance of the model-observation residuals (which

were computed during the forward propagation of all considered stochastic input and
parametric uncertainty sources). The total residual variance is assumed to be composed
of σ2

EY0
(variance of the measurement error), σ2

EY |clusteri
the partial variance of each se-

lected parameter-input group (propagating the effect of the group meanwhile fixing the
rest to their average value) and a term σ2

EY |r est_var which represents the remaining vari-

ance not explained by measurement or input-parameters errors. σ2
EY |r est_var was com-

puted by estimating all other terms.

All variances should be homoscedastic (a Box-Cox transformation is often applied
when data shows variance dependency). A very mild heteroscedasticity was found in
the DO simulated residuals, which was corrected using a λ= 0.9 (Box-Cox). A dedicated
data quality validation was performed to the DO measurement series in this period and
the quality was expected to be high. Tolerances between 3-10% are often accepted in DO
concentration measurements. Thus, a multiplicative random Gaussian error (σDOt =
DOt ·0.05) was applied to estimate σ2

EY0
. Samples were drawn from a LHS (250 samples)

varying every parameter-input cluster to characterize the partial variance (σ2
EY |clusteri

).
The reader is directed to Willems (2012) or Freni and Mannina (2010b) for further detail
in the variance decomposition approach.

4.3. RESULTS AND DISCUSSION

4.3.1. FORWARD UNCERTAINTY QUANTIFICATION

U NCERTAINTY ranges for all relevant parameters and input sources were propagated
through the full integrated model structure. Figure 4.4 presents the observed se-

ries of flow and DO at the final section of the system (M_0121, Figure 1.4) along with
the mean of the simulated series and the 95% uncertainty range steming from the input-
parametric variability when using all available prior knowledge in the system. The pro-
posed model structure captures the flow dynamics in the river submodel, which are
mainly driven by the baseflow inputs from the rural hydrology and the discharges from
the WWTP (c.a. 40-50% of baseflow during summer) reasonably well (Nash-Sutcliffe ef-
ficiency of 0.82-0.86 at the inferred and validation river flow series respectively). The
prior forward propagation of DO dynamics resulted in a relatively large dispersion; the
95% interval distance between model samples had a yearly average range of 3.7 gO2/m3

(σ = 0.76gO2/m3). The 95% range was 3 gO2/m3 for DO concentration lower than 2.5
gO2/m3. Using the inferred water quality parameters the 95% range was reduced to 1.8
g DO/m3 (σ= 0.42g DO/m3). Figure 4.5 provides the comparison of measured and mod-
elled DO using the posterior forward propagation for a period of summer between July
and October. Figure 4.6 and Figure 4.7 present the simulated rainfall, DO (measured-
modelled) and the BOD dynamics at two sections of the river. Discharged BOD can reach
high concentrations (up to 10-60 g BOD/m3) at the receiving water body. Local measure-
ments of BOD were not available at this period, but a monitoring campaign carried out
during 2007-2008 (Moens et al. 2009) reported peaks of the same order of magnitude
(up to 60-80 g BOD/m3). Consumption of high BOD loads is the dominant process in
the acute DO depletion. A fraction of the BOD load settles and degrades in the river bed,
which dominates the speed of the DO recovery process (which can take between hours
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to days).

The depth and recovery pattern of most DO depletion processes are captured by the
simulated and measured series (root-mean squared error of 1.25-1.6 gO2/m3 during the
inferred and validation time-periods respectively), yet a few events show insufficient de-
pletion in the model. This can suggest that a certain process might still be missing in the
model structure; i.e. insufficient WWTP loads under certain conditions or a stronger ru-
ral contribution. However, not enough system data was still available to further validate
those hypotheses.

For instance, during the timespan between the 19th and the 29th of November 2012
three acute oxygen depletion processes occurred which were not captured by the model
response (Figure 4.4). CSO discharges were not reported during this time. The same de-
pletion process was captured by an upstream DO sensor located between the WWTP and
the M_0121 sensor, but not by other sensors distributed throughout the system. During
this period only minor inflow (approximately 12,000 m3/h) was recorded at the influent
of the WWTP (with 35,000 m3/h maximum capacity). Thus, this oxygen depletion events
could only be explained either by a major disturbance in the WWTP operations (which is
not supported by effluent WWTP measurements of TSS, NH4 or COD) or a disturbance
in the sediment bed of the river (i.e. dredging or mowing, which has been confirmed to
have occurred by the waterboard De Dommel). Those processes were not described in
the model structure and hence could not be captured by the simulation response. This
type of events were not reported in monitoring data for previous years thus were ne-
glected in this study. Yet this can become a relevant source of structural uncertainty and
should be further investigated.
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Figure 4.4: Full forward propagation of prior parameter-input distributions for flow, rainfall and dissolved
oxygen at the closing section (M_0121) of the system, full 2012. Measured (black), simulated mean (solid) and

95% interval (band).

Figure 4.8 presents the cumulative probability density function of the yearly mea-
sured and modelled DO/flow series, along with the 95% ranges. As discussed previously
the prior forward propagation rendered a large uncertainty range for the DO occurrence



4.3. RESULTS AND DISCUSSION

4

103

10

20

Fl
ow

 m
3 /s

21-07 04-08 18-08 01-09 15-09 29-09 13-10
0

2

4

6

8

DO
 g

/m
3

0

10

20

30

40

Ra
in

fa
ll 

m
m

/h

Figure 4.5: Full forward propagation of posterior parameter-input distributions for flow, rainfall and dissolved
oxygen at the closing section (M_0121) of the system (21-Jul-2012 - 13-Oct-2012). Measured (black),

simulated mean (solid) and 95% interval (band).

probability. When performing the posterior propagation (after inferring the parameter
distributions for the river quantity and quality submodel parameters) the uncertainty
band was significantly reduced; the average 95% uncertainty range was reduced from
3.7 gO2/m3 to 1.8 gO2/m3 and the two sample Kolmogorov-Smirnov (KS) test rendered
that for 99.5% of the time-steps the null-hypothesis (both forward propagations render
the same probability distribution) is rejected with p-value < 0.001 and mean K-S value of
0.27. This can be explained by the fact that the ranges attributed to the river parameters
prior knowledge where narrowed down by the information provided in river DO-flow
measurements. The mean simulated series for flow in both cases represented reason-
ably well the occurrence probability of high and medium hydrographs. Yet there was a
systematic overestimation of low flows (river flow below 3-4 m3/s), which is likely caused
by an overestimation of the rural dry weather contribution. Yet, this is expected to have
a limited influence in DO depletion dynamics which occur mainly during wet weather
conditions.

The model exhibited a systematic underestimation of high dissolved oxygen con-
centration. This is seen during winter months (Figure 4.4). The seasonal DO variation
in the model structure was captured by several factors; i.e. a constant sediment oxygen
demand (SOD, see Table B.1, process number 5 Appendix B) and temperature driven
inhibition coefficients for oxidation rates and reaeration patterns. SOD dynamics were
estimated from system observations and we tried to respect the reported values. The
inferred probability distributions for the biochemical river parameters could still not
match well high DO concentration (Figure 4.8.b). This suggests that either the base DO
inflows are underestimated in the current version of the model (e.g. too low WWTP DO
effluent/Rural DO for which there were not reliable measurements) or that there is a
structural process missing in the river conceptualisation (e.g. a stronger winter-summer
sediment oxygen demand variability), a model structure improvement would require
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Figure 4.6: System dynamics detail comparing rainfall variability (KNMI rain gauge 370, KNMI Radar at the
same location and the estimated intensity at the city of Eindhoven, c_24), measured-modelled dissolved

oxygen, BOD_T (the sum of four fractions of BOD), BOD_sed (sediment BOD concentration) at two locations
of the river M_0121, and M_0002 (Figure 1.4).
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a) Prior forward propagation b) Posterior forward propagation

Figure 4.8: Cumulative probability density of Flow-DO measured (black dashed), simulated mean (black solid)
and 2.5-97.5% percentiles (grey solid). a) Forward uncertainty propagation of all prior inputs-parameters. b)

The resultant parametric-input uncertainty using the updated river water quality-quantity parameters.

further system observations. Nonetheless, the accurate simulation of high DO concen-
tration is of little interest for the model application. On the other hand, low DO level
yearly probability was better matched as can be seen in Figure 4.4.

The information from modelled-observed time-series in river water quality assess-
ment studies is often compressed for system evaluation down to a low number of perfor-
mance indicators. A common reporting method for river water quality status within the
EU water framework directive compliance is the use of concentration-duration-frequency
(CDF) tables (FWR, 2012). Limit levels are commonly extracted from an ecological as-
sessment study, which defines survival conditions for critical species. Table A.1 (Ap-
pendix A) presents the environmental CDF tables for three levels of water quality com-
pliance (Basic, Critical and Salmonid) in the river Dommel. Exceedance frequencies are
computed and contrasted with the tolerated ones from which five status classes are de-
rived:

1. Class 1: less than 0.5 times the tolerated frequency

2. Class 2: less than 1 time

3. Class 3: more than 1 time

4. Class 4: more than 1.2 times

5. Class 5: more than 2 times the tolerated frequency

Measured and modelled water quality status classes for three DO CDF tables are
shown in Figure 4.9, where the black dot refers to the estimated class in the measure-
ment dataset and the histogram shows the modelled status occurrence probability den-
sity. Low frequency (i.e. 0.1 and 1 times/year) would require a longer time series to
be estimated reliably (3-10 years). Yet the current status of the river presents a fairly
low quality status for low frequency-high magnitude oxygen depletion processes, which
was captured in both measured-modelled series. Low magnitude-high frequency events
with short duration had a higher degree of uncertainty. This is inline with the hypoth-
esis that large DO events have often a lower degree uncertainty associated, since the
system is oversaturated and despite the uncertainty sources, the model reproduces the
strong DO depletion event. Yet low-medium events are often more sensitive to variabil-
ity. Also, the information compression in the status classes for CDF metrics creates a
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Figure 4.9: Water quality status assessments for the forward posterior propagation (histogram density) and
measured data status (black circle). Basic, critical and salmonid tolerated dissolved oxygen depletion

duration and yearly frequency (2012, excluded 19th-29th of November). The tolerated magnitude, duration
and frequency of events in the system refer to the limits depicted in Table A.1 at Appendix A.

differential sensitivity. Class 5 captures a large range of system responses (>2 times the
allowed frequency), meanwhile the occurrence of Class 1 to Class 4 has a sorter range
(0-1.2 times the allowed frequency). Therefore systems with a poor environmental water
quality status are easier to identify than those falling between good and medium status.
This implies that CDF tables might not be the most appropriate metric to discriminate
between the effects of different correction strategies (i.e. when selecting between a new
real time control strategy or infrastructure investment to reduce DO depletion events).
A modeller can discuss that the model performs well on the current system water qual-
ity status (poor environmental conditions, Class 5) but stochastic predictions of system
improvements (Class 1-4) have the potential to result in a wider uncertainty range (prob-
ably beyond the marginal gain between alternatives).

4.3.2. UNCERTAINTY SOURCE ANALYSIS BY VARIANCE DECOMPOSITION

A variance decomposition scheme was applied to estimate the uncertainty contribution
of different sources to the DO simulated series. The variance decomposition method
provides a picture of the uncertainty contribution by source. However, it has certain
limitations, which should be acknowledged and carefully addressed; first, it provides a
lumped variance contribution, and thus identification of contribution at characteris-
tic dynamic points proves difficult (limiting its diagnostic power). Secondly, it relies on
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certain hypotheses that might not be always met, as independence of error sources or
homoscedasticity, which have the potential to distort the outcome, thus checking their
influence is recommended. The design of this study tried to minimize the effect of these
characteristics (following the recommendations of Willems (2012)).

Figure 4.10 provides the relationship between the estimated variance at DO and flow
series in three representative points and the number of simulation samples. This shows
that the number of samples selected in the uncertainty decomposition scheme (250 per
cluster) was sufficient to provide a robust variance estimation. The decomposition of
the prior parameters and input uncertainty (Figure 4.11) shows that the river flow and
water quality parameters are the contributors of roughly 70% of the total uncertainty.
Meanwhile rainfall uncertainty and CSO pollution parameters accounted for about 10%
each. On the other hand, WWTP parameters and river inputs had a negligible effect on
the global DO uncertainty. This shows that water quality and quantity river parameters
captured most of the variability, which is caused by a high sensitivity of DO dynamics to
the in-river biological processes and the relative poor knowledge on the actual param-
eter distributions. Therefore we proposed a parametric inference process for the river
parameters, updating the prior assigned pdf’s using local DO and flow measurements in
the river. The inference process narrowed down the prior distribution of water quantity
and quality parameters in the river, thus reducing the contribution of the parametric un-
certainty in the river section to 16%. This reduction of parametric uncertainty was also
transferred to the selected model-measurement error model in the likelihood formula-
tion, which was captured in the variance decomposition scheme by the increase in the
remaining uncertainty term ( 18%).

In the posterior variance decomposition, the contribution of rainfall uncertainty and
the CSO pollution modules increased to 20-30% respectively. This shows that the DO
dynamics are overall heavily influenced by rainfall driven discharges (WWTP and CSO)
and especially by the water quality characteristics of the discharged volumes. Modelling
CSO pollution concentrations is a challenge in urban drainage modelling and render
highly uncertain results (Sandoval et al. 2018). Thus further monitoring and modelling
efforts are still required in this area. Rainfall data uncertainties are shown to be relatively
influential in the DO dynamics. The selected rainfall input error model (Equation 4.1)
was motivated by the deviations found at rainfall estimations from the radar and the
interpolated rain gauge network. Nevertheless, additional efforts should be directed to
improve the quality of estimated rainfall inputs in the system.

The influence of the River submodel parameters is still not negligible ( 16%), which
is mostly due to the river sediment oxygen demand parameter (SOD), for which sys-
tem measurements show a temporal and spatial variabily (yet was here modelled as a
global parameter). Urban drainage parameters had a comparatively low contribution to
the DO variance ( 7%). This might be explained by the fact that UD parameters largely
influence CSO discharge timing and shape, yet have relatively low effect on total dis-
charged volume during large storm events. DO dynamics in the receiving water body are
known to be intensively time-buffered by the nature of the process (Moreno-Rodenas
et al., 2017b), thus pollutograph timing-shape errors are less dominant than errors in
volume/mass estimation. The WWTP parameter set rendered a low contribution to the
total variance ( 0.5%). WWTP is however a highly relevant process in the system dynam-
ics and its proper conceptualisation and calibration is of foremost importance. Also, un-
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certainties associated with changes in regulations (Dominguez and Gujer, 2006) or op-
erational changes can become dominant in certain scenarios and were here neglected.
This study only focused on the effect of WWTP influent and fractionation parameters,
which are reported to be some of the most relevant uncertainty sources (Belia et al.,
2009) in WWTP outputs. Yet WWTP influent-fractionation parameters showed little in-
fluence in the modelling uncertainty for receiving water body DO concentration in the
river Dommel.
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Figure 4.10: Flow and DO variance vs. number of model samples at three representative dynamic points.

Figure 4.11: Variance decomposition. Mean relative contribution [%] to the total model residual variance in
DO at the receiving water body (location M_0121).

Few other studies exist that deal with uncertainty analysis of DO dynamic modelling
in urbanised river catchments. For instance, Radwan et al. (2004b) presented a vari-
ance decomposition scheme for the modelling of DO in a river catchment in Belgium.
Only the receiving water quality was modelled and CSO and rural pollution sources were
considered as model inputs. They showed that roughly 30% of the variance of the pro-
cess could be attributed to the river water quality parameters; whereas the input pollu-
tion loads explained 60% of it. Also, Freni and Mannina (2010b) and Freni and Man-
nina (2012) performed an uncertainty analysis of a small integrated system containing



4.4. CONCLUSIONS

4

109

two urban drainage systems (∼ 115 ha, 9,000 inhabitants), a WWTP and a river section
in Sicily, Italy. The variance decomposition results showed that WWTP BOD discharge
uncertainties were dominated by upstream submodels (e.g. sewer system or rainfall),
whereas WWTP parameters had a lower influence. On the other hand, they reported
that uncertainties in the water quality-quantity river parameters and the rest of the up-
stream submodels contributed 40% and 60% respectively to DO uncertainty at the re-
ceiving water body. Willems (2008) also presented a small-scale integrated catchment
model (simulating urban drainage and WWTP but not receiving water) in which an un-
certainty analysis scheme was proposed for several water quality variables (TSS, SS, BOD
and NH4) reporting that rainfall uncertainty contribution represents 10-20% of the vari-
ance in all variables simulated at the outlet of the WWTP. Although uncertainty contri-
bution is largely a case-dependent process, our results showed a similar structure as in
previously reported studies; combined sewer overflow water quality characteristics and
rainfall variability are the most relevant sources of uncertainty in DO simulation for the
river Dommel in the studied period, provided that a detailed study is directed to identify
and calibrate the river water quality dynamic processes.

The applicability of many uncertainty analysis techniques (Deletic et al., 2012; Jake-
man and Jakeman, 2017) is limited when dealing with large-scale modelling applica-
tions. This is mainly due to insufficient observational data and the computational effort
required. The example here provided shows that forward MC and variance decomposi-
tion schemes can be readily applied even for a computationally expensive systems (i.e.
using code parallelisation and efficient sampling schemes). Performing Bayesian pa-
rameter inference is however prohibitive in most real-world cases, yet if carefully select-
ing a reduced number of parameters, model emulation can be used to accelerate the
inference sampling (see emulators for hydrology; Machac et al. (2016a), Machac et al.
(2018) hydrodynamic modelling; Moreno-Rodenas et al. (2018b), or for urban drainage
inference; Wani et al. (2017)). In this study, the effect of updating prior knowledge in a
set of highly influential parameters using the full ICM structure on the uncertainty con-
tribution analysis was also shown.

Nevertheless, emulation strategies can only deal with low-dimensional parameter
sets, thus inferring the full ICM parametric space falls beyond current data and compu-
tational capabilities for most real-world scale cases. In this line, Muschalla et al. (2009)
discussed the process of abstracting ICM studies, reflecting about the need of partially
calibrating (or inferring) sections of the full model based on intermediate measured state
variables. Also, available datasets render many processes unidentifiable (e.g. in-sewer
water quality processes), which should be accounted for during the uncertainty analysis
scheme, yet identifiability still represent a major obstacle in the deployment of func-
tional ICMs for environmental decision-making support.

4.4. CONCLUSIONS

T HIS chapter presents an uncertainty analysis scheme of a large-scale integrated catch-
ment model. The selected ICM accounts for urban drainage, WWTP and receiv-

ing water processes in an intensively urbanised catchment in the south of the Nether-
lands with the aim to simulate dissolved oxygen dynamics for ecological assessment.
Stochastic error models were proposed for all relevant dynamic input sources, based ei-
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ther on measurement or process characteristics. Uncertainty probability distributions
were assigned to the relevant parameters using all available knowledge on each process
by means of expert elicitation or literature-measured ranges.

An uncertainty decomposition scheme showed that the river water quality and quan-
tity parameters are responsible for∼70% of the uncertainty in DO river simulations when
using expert elicited-literature based river parameter ranges. A first reduction of the un-
certainty was achieved through inferring the river parametric vector using local mea-
surement data (which reduced its contribution to ∼16%). CSO water quality parameters
were the most relevant source of uncertainty (∼30%), indicating that monitoring and
modelling efforts should be directed in that direction. Rainfall uncertainty accounted
for roughly 20% of the variance in DO simulations, which was resultant of the relative
disagreement of local rain gauge and radar rainfall estimations for the area. Our results
showed similarities with previous reported studies for DO uncertainty analysis in inte-
grated catchment systems. However, the generalisation of these results to other cases
should be performed carefully since the structure and mechanistic relationship of sys-
tem components may vary significantly and this has the potential to influence the un-
certainty distribution by source.

The forward uncertainty propagation showed that the model structure lacks flexi-
bility to accommodate seasonal winter DO levels. A suggested approach is to propose
a time-dependent sediment oxygen demand process, yet this requires additional sys-
tem observations. Also, the study of uncertainty propagation in concentration-duration-
frequency ecological status tables showed that low water quality status systems are eas-
ier to identify (lower uncertainty associated) than good-moderate status. However, good
and moderate water quality status are more sensitive to low DO variability and thus
the uncertainty tends to be larger, limiting the identifiability of correction effects. This
should be acknowledged when reporting modelling results and should be accounted for
by decision-makers when dealing with simulation-based pollution mitigation measure
selection.
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CONCLUSIONS AND

RECOMMENDATIONS

T HIS thesis aims to enhance current knowledge on the practical applicability of un-
certainty analysis frameworks in real-scale integrated catchment studies for the as-

sessment of water quality impacts. In previous chapters the identification of individ-
ual sources of uncertainty when modelling dissolved oxygen dynamics in an urbanised
catchment study was discussed. Additionally, examples are given to facilitate the ap-
plication of uncertainty analysis methodologies when dealing with computationally ex-
pensive simulators. The decomposition of uncertainty contribution by source and the
propagation of statistical uncertainties are presented for a large-scale integrated catch-
ment simulator.

This chapter condenses the conclusions obtained through this work. Also recom-
mendations for modellers, end users and further research in urban integrated catchment
studies are provided.

5.1. CONCLUSIONS

T HERE are still a limited number of examples of real-scale uncertainty analysis in the
literature, which can be seen in Chapter 1 literature review. This hampers drawing

general conclusions in a field, which is characterised by highly heterogeneous system
configurations. Some of the reasons for this lack of studies are computational limita-
tions for the applicability of formal methodologies to large-scale systems (discussed in
Chapter 1 and developed in Chapter 3), the lack of incentives for practitioners to com-
municate uncertainties in their modelling endeavours, and the data and labour intensive
process of setting up this type of simulators. Monitoring data availability is currently one
of the most relevant limitations for the applicability of integrated catchment modelling
in practice. Additionally, the following general conclusions can be drawn from the work
presented in this thesis:

1 - Efforts in the description of rainfall inputs should focus on the spatial resolution
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rather than the temporal one when simulating dissolved oxygen impacts in large-
scale lowland systems. Chapter 4 shows that rainfall uncertainties contribute signifi-
cantly to the variability of dissolved oxygen impact simulations in the river Dommel.
Chapter 2 evaluates the relative influence of spatial and temporal scales contained in
rainfall inputs from different data sources (i.e. different rain gauge networks and weather
radar estimations). This showed that dissolved oxygen dynamics are eminently influ-
enced by the total loading of the system, rather than the peaks in rainfall or flow. Lowland
sewer systems are characterised by high in-sewer storage, and water quality impacts in
the receiving water body present significant temporal smoothing processes. Therefore,
errors in the rainfall total volume due to the spatial misrepresentation of the rainfall in-
put dominate over time resolution (between 10-60 minutes).

2 - Data-driven model emulation can effectively facilitate the application of sampling
intensive uncertainty analysis schemes in large-scale integrated catchment studies.
As discussed in Chapter 1, formal application of uncertainty analysis schemes requires
drawing a large number of samples to propagate uncertainties contained in the mod-
elling process. However, real-world operational studies often render highly computa-
tionally expensive simulators, to which proposing sampling schemes fall beyond the
computational budget of most practitioners and scientists. State of the art data-driven
model emulation methods allow generating interpolation maps from a selected para-
metric space to the dynamic output space of the simulator. Chapter 3, section 3.2, shows
a practical example in which year-long time series simulated outputs for flow and dis-
solved oxygen dynamics are emulated for a four and eight parametric dimensional space
respectively. This allows proposing formal parametric inversion schemes, which facili-
tate the assimilation of observational data to update prior knowledge in river parametric
uncertainties. These techniques have a direct transferability to many problems in inte-
grated urban water quality modelling studies and its popularisation can stimulate the
application of uncertainty propagation schemes in large-scale systems.

3 - The hybrid use of an orthogonal polynomial expansion and unit hydrograph the-
ory can facilitate the assimilation of non-linearities present in flow propagation simu-
lations to generate emulators which integrate parametric and rainfall temporal vari-
ability. One of the most relevant limitations in the application of data-driven model em-
ulation is the dimensionality curse, which limits the dimensionality of the input space
in emulation schemes. This forces generating interpolation maps, which deal with only
a reduced number of global parameters, and yet under a fixed time-window. Thus, the
emulation scheme is only valid under a given dynamic realisation, and its extrapolation
in time is mostly hampered. In Chapter 3, section 3.3, a novel approach is presented for
the assimilation of arbitrarily long (spatially homogeneous) rainfall series and param-
eter vectors in the emulation of 2D flow propagation schemes. The emulator strategy
presented is shown to approximate closely the behaviour of purely physically based-
simulations, yet at a fraction of the computational cost, which can facilitate the inte-
gration of physically based schemes in uncertainty analysis, early warning applications
or fast simulation of overland flow in urban/rural areas.
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4 - River water quality and quantity parametric uncertainty when using prior knowl-
edge (extracted from literature-experts elicitation) dominates uncertainties in dis-
solved oxygen simulations. Provided inversion of river parameters, urban pollution
loads (CSO water quality routine) and rainfall variability are the dominant sources
of uncertainty. Chapter 4 deals with the decomposition of uncertainty by sources in a
large-scale integrated catchment modelling study. River parametric uncertainty cap-
tured practically all output variability when using uncalibrated parameter ranges ex-
tracted from similar studies by expert elicitation and literature reported values. Thus, in-
ferring or calibrating receiving water quality submodel parameters is highly relevant for
a meaningful use of the modelling platform. Chapter 3, section 3.2 shows how to facil-
itate the inversion of parameter knowledge in river water quality and quality processes.
After reducing the receiving water submodel parametric uncertainty, water quality load
from combined sewer overflow discharges (CSOs) become dominant, and thus, mod-
elling and monitoring efforts should be directed towards gaining further knowledge on
in-sewer water quality processes. Rainfall spatial uncertainty also appeared as a relevant
uncertainty source, thus appropriate description of this spatial process should receive
detailed attention.

5 - Uncertainty quantification in concentration-duration-frequency environmental
assessment metrics shows overconfidence in simulation results when deterministi-
cally validating systems under deteriorated status. Environmental metrics used to eval-
uate acute impact in water quality variables (e.g. dissolved oxygen, ammonia) are often
based on Concentration-Duration-Frequency (CDF) tables, which assess the frequency
of events and their magnitude. Tolerated values are extracted from ecological studies,
which evaluate the viability of such conditions to sustain indigenous animal species
populations. Often, integrated catchment studies are proposed when systems are de-
teriorated and corrective measures must be undertaken. Chapter 4 discusses the effect
of statistical uncertainties in the status of the system based on CDF metrics for dissolved
oxygen dynamics. The sensitivity of the metric to uncertainties in the modelling out-
comes is expected to increase as the environmental status of the system improves. Im-
plying that deterministically validating a poorly performing system based on CDF met-
rics alone can be relatively easy (since uncertainties are relatively low), yet the uncer-
tainty in CDF metrics when the system is corrected, is expected to increase. Thus poten-
tially precluding model-assisted decision-making based in CDF type metrics alone.

5.2. RECOMMENDATIONS AND FURTHER RESEARCH

T HE current major bottleneck in integrated catchment modelling is the scarcity of
monitoring data. Setting up extensive monitoring campaigns for long periods of

time is costly in terms of material and labour costs. Yet integrated catchment modelling
is severely hampered by the scarcity of observations in system dynamics. New tech-
niques for distributed sensor networks are emerging in the field and the cost for data
acquisition is expected to drop in the following years. Additional efforts to monitor ur-
ban drainage and river systems should be undertaken.

Further attention should be directed to combined sewer overflow water quality mod-
els. After detailed calibration of river water quality processes, pollutant loads from CSOs
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remain the largest source of uncertainty for the simulation of dissolved oxygen dynam-
ics in the river Dommel, which is consistent with other literature examples. Current
in-sewer modelling state-of-the-art is insufficient for a deterministic description of the
pollutant loads during storm conditions. Further efforts should be undertaken to reduce
epistemic uncertainties in water quality modelling for the sewer-to-river linkage. Espe-
cially needed are extensive datasets which allow exploring the link between easily mea-
sured variables (e.g. turbidity or conductivity) and costly but relevant ones (e.g. COD,
BOD or NH4).

Additional work to accommodate input dynamics in data-driven emulator schemes
is recommended. Data-driven emulation can facilitate the integration of uncertainty
analysis schemes in large-scale computationally expensive simulators. However, this
implementation is hampered by limitations in the dimensionality of the parameter vec-
tor under consideration. Further development is still needed to accommodate dynamic
processes in the emulation scheme, thus increasing the horizon of applicability of such
techniques.

Critical model evaluation should be encouraged in graduate (and post-graduate) pro-
grams for civil engineering. The culture of blindly relying in deterministic realisations
of modelling endeavours should be changed. Especially relevant is to encourage such
critical thinking within regulatory bodies as a mean to incentivise the consideration of
model uncertainties in commissioned projects. Uncertainty analysis concepts should be
transferred to future generations of civil engineers, which eventually will constitute the
practitioner community for ICMs.

Additional examples of uncertainty analysis in real practical applications for inte-
grated catchment modelling are still needed. The generalisation of results is hampered
by the lack of studies in the field. Therefore complementing available knowledge would
be beneficial to characterise the heterogeneity of water systems.

Alternative diagnostic methodologies to identify epistemic uncertainties in complex
modelling applications have the potential to result in better directions towards improv-
ing model structures. The use of multi-metric techniques (e.g. approximate Bayesian
computation) to diagnose and identify structural errors in water quality modelling plat-
forms is promising. Adequate metrics directed to identify model structure failure mech-
anisms (e.g. missing CSO events, errors in WWTP effluents, mismatch in the recovery
pattern of dissolved oxygen) should be defined and tested.

More robust environmental assessment metrics should be used in the model-based
decision making process. Concentration-duration-frequency tables should be comple-
mented with additional metrics to validate the performance of water quality simulation
platforms and assist in a robust decision-making process.

The examples depicted in this thesis show efforts towards understanding and quan-
tifying uncertainty sources when modelling dissolved oxygen dynamics. The simulation
of DO is rather complex, since it is a non-conservative variable that depends on poorly
understood processes expressed across highly heterogeneous scales. For instance, river
water depth, turbulence or air velocity dominate the reaeration potential of flowing river
bodies. The consumption of DO is driven by nitrification and oxidation processes. Or-
ganic and inorganic compounds which lead to oxygen consumption are present in dis-
solved and suspended form. Thus, they exhibit different mechanistic processes across
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the system (e.g changes in the availability of in-sewer stocks, river sediment dynamics
etc.). The techniques here presented are nevertheless applicable to other variables of
interest in the waste-water cycle process. Heavy metals, pharmaceutical compounds,
ammonium or nitrate-phosphates are examples which present different physical and
chemical process characteristics. Uncertainty analysis can help further describing the
reliability of model predictions and direct efforts towards the improvement of model
mathematical structures.





A
ENVIRONMENTAL ASSESSMENT

METRICS, CONCENTRATION-
DURATION-FREQUENCY

TABLES

Concentration-duration-frequency tables for water quality environmental variables are
estimated from ecological assessment studies. These studies assess the capability of se-
lected fish and micro-invertebrate species to tolerate intermittent pollution conditions
along all their life stages. Therefore a set of tolerated frequency is established in which
the variable maintains a harmful concentration during a given time-period. Table A.1
and Table A.2 present the calculated tolerated concentrations for dissolved oxygen and
ammonium in the river Dommel.

Table A.1: Environmental assessment concentration-duration-frequency (CDF) tables for dissolved oxygen
concentration in the river Dommel (DO concentration in mg/l)

DO critical Event duration DO basic Event duration DO salmon Event duration
1-5 h 6-24 h >24h 1-5 h 6-24 h >24h 1-5 h 6-24 h >24h

Tolerated
yearly
frequency

12 5.5 6 7
Tolerated
yearly
frequency

12 3 3.5 4
Tolerated
yearly
frequency

12 5 5.5 6
4 4 5.5 6 4 2.5 3 3.5 4 4.5 5 5.5
1 3 4.5 5.5 1 2 2.5 3 1 4 4.5 5
0.2 1.5 2 3 0.2 1 1.5 2

Table A.2: Environmental assessment concentration-duration-frequency (CDF) tables for ammonium (NH4)
concentration in the river Dommel (NH4 concentration in mg/l)

NH4 critical Event duration
1-5 h 6-24 h >24h

Tolerated
yearly
frequency

12 1.5 0.7 0.3
4 2 1.2 0.5
1 2.5 1.5 0.7
0.2 4.5 3 1.5

Measured pollutant time series are converted to system failure events (following the
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CDF conditions) and their yearly frequency is computed. By comparing the tolerated
and measured-modelled failure frequencies a system status between 1-5 is given:

1. Class 1: less than 0.5 times the tolerated frequency

2. Class 2: less than 1 time

3. Class 3: more than 1 time

4. Class 4: more than 1.2 times

5. Class 5: more than 2 times the tolerated frequency



B
PROCESS EQUATIONS FOR THE

RIVER MODEL

Table A.1 presents the process matrix for the dissolved oxygen process routine at the river
section. The model accounts for the transport and conversion rates of seven concentra-
tion state variables; BOD1 (Biological oxygen demand of fast biodegradable suspended
fraction), BOD2 (Biological oxygen demand of slow biodegradable suspended fraction),
BOD1p (Biological oxygen demand of fast biodegradable particulate fraction), BOD2p
(Biological oxygen demand of slow biodegradable particulate fraction), BODs (Biological
oxygen demand at the sediment section), NH4 (Ammonium) and DO (dissolved oxygen
concentration).

Table B.1: Process matrix for the river water quality model structure

State Variable BOD1 BOD1p BOD2 BOD2p BODs NH4 DO rate
gO2/m3 gO2/m3 gO2/m3 gO2/m3 gO2/m3 g N /m3 gO2/m3

1a.Oxidation of fast-suspended fraction (BOD1) -1 -1 T K d Tw at−20 ·K d1 ·BOD1 · DO
KO2+DO

1b.Oxidation of fast-particulate fraction (BOD1p) -1 -1 T K d Tw at−20 ·K d1 ·BOD1p · DO
KO2+DO

2a.Oxidation of slow-suspended fraction (BOD2) -1 -1 T K d Tw at−20 ·K d2 ·BOD2 · DO
KO2+DO

2b.Oxidation of slow-particulate fraction (BOD2p) -1 -1 T K d Tw at−20 ·K d2 ·BOD2p · DO
KO2+DO

3a.Sedimentation of BOD1p -1 +1 V s1 ·BOD1p
3b.Sedimentation of BOD2p -1 +1 V s2 ·BOD2p
4.Oxidation of organic matter in the sediment -1 -1 T SODTw at−20 · SOD

d
DO

K SO+DO
5. Constant sediment oxygen demand -1 T SODTw at−20 ·SOD · BODs

d
DO

K SO+DO
6. Nitrification -1 -4.57 T K ni t Tw at−20 ·K ni t ·N H4 · DO

K NO2+DO
7.Photosynthesis macrophyte +1 T K pTw at−20 ·kpr od M · I o · MB

d
8.Macrophyte oxygen consumption -1 T K pTw at−20 ·kpcons · MB

d
9.Reaeration +1 T K LTw at−20 ·V K L · (C S −DO)

The simplified river flow submodel was conceptualised as a tank in series lumped
scheme, in which each tank is a well-stirred reactor in which the biochemical processes
take place (Figure B.1). The mass balance equation is computed at each node:

dVi

d t
=Qi ni −Qouti (B.1)

where Vi is the volume at tank i and Qi ni the sum of inflows from CSOs, upstream
sections or rural hydrology. Qouti is the outflow from the tank at each instance and is
computed as a free-surface flow following the Gauckler-Manning equation:

Qouti = A ·R2/3
H · sl p1/2 ·n−1 (B.2)

119



B

120 B. PROCESS EQUATIONS FOR THE RIVER MODEL

being A and RH the area and hydraulic radius for a trapezoidal section with a given
slope (sl p) and bed Manning’s roughness (n).

SL

d(t)

W_b

Z
d(t)

SL

slp

L

n

Q_in(t)i

Q_out(t)i

SLQ_out(t)i-2

V(di-1)

Q_lat(t)i-1

SL

Q_out(t)i-1
Q_out(t)i

V(di)

Q_lat(t)i

SL

Q_out(t)i+1
V(di+1)

Q_lat(t)i+1

Figure B.1: Tank in series river flow scheme.



C
UNIT HYDROGRAPH

SIMPLIFICATION UNDER LINEAR

MODEL STRUCTURES

When using a linear flow propagation model the assumptions of proportionality and
superposition of the unit hydrograph are congruent with the underlying dynamics. Fig-
ure C.1 shows the comparison between the simplified model described in the simplified
routing scheme (Section 3.3.2.4, using b = 1, thus a set of linear tanks) and the use of
a unit hydrograph derived from the response at 10 mm rainfall for an increasing uni-
tary rainfall intensity from 1-50 mm/10min. Figure C.2 shows the same comparison for
the joint proportionality and superposition assumptions for rainfall inputs of varying
length (10-50 min) and intensity (1-20 mm/10min). In those cases the classical Unit Hy-
drograph theory can describe the model behaviour correctly, which is denoted by the
almost null residual map
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Figure C.1: Comparison of model vs linear unit hydrograph proportionality composition for a simplified
linear model (b = 1).

Figure C.2: Comparison of model vs linear unit hydrograph superposition and proportionality composition
for a simplified linear model (b = 1).



D
RAINFALL VALIDATION SCENARIOS

FOR THE 2D-SWE EMULATOR

Table D.1: Events (rainfall in mm and manning roughness) used to validate the 2D-SWE emulators.

Val_0 Val_1 Val_2 Val_3 Val_4 Val_5 Val_6 Val_7
Parameter n=0.035 n=0.042 n=0.037 n=0.043 n=0.036 n=0.040 n=0.038 n=0.041
time
00:00:00 0.5 0.5 0.5 0.5 2 2 3 3
00:15:00 2 2 2 2 5 5 10 10
00:30:00 5 5 5 5 12 12 11 11
00:45:00 10 10 10 10 3 3 5 5
01:00:00 4 4 4 4 0 0 0 0
01:15:00 0 0 0 0 0 0 0 0
01:30:00 0 0 0 0 0 0 0 0
01:45:00 0 0 0 0 0 0 0 0
02:00:00 0 0 0 0 0 0 0 0
02:15:00 2 2 2 2 0 0 0 0
02:30:00 3 3 3 3 0 0 0 0
02:45:00 18 18 18 18 0 0 0 0
03:00:00 5 5 5 5 0 0 0 0
03:15:00 1 1 1 1 0 0 0 0
03:30:00 0 0 0 0 0 0 0 0
03:45:00 0 0 0 0 0 0 0 0
04:00:00 0 0 0 0 0 0 0 0
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Figure D.1: Validation comparisons emulator vs SWE_parabola simulator.
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Figure D.2: Validation comparisons emulator vs SWE_urban simulator.





E
PARAMETRIC DISTRIBUTIONS FOR

THE STATISTICAL UNCERTAINTY

ANALYSIS OF THE DOMMEL ICM
STUDY

This appendix contains additional information about the elicited distribution and in-
put models used in the forward uncertainty propagation scheme depicted in Chapter 4.
Table E.3 provides the parameter distributions for the empirical sewer-WWTP influent
model extracted from Langeveld et al. (2017). Table E.1 shows the WWTP fractionation
parametric distributions. Table E.2 shows the dynamic input groups and error models
and Table E.4 presents the uncertainty sources clusters used in the variance decomposi-
tion scheme.

Table E.1: Uncertainty WWTP effluent fractionation model.

Name Units Description Model
fBOD1p_BODf@WWTP2river - WWTP to river fractionation parameter ∼U(0.05, 0.15)
fBOD2_BOD20@WWTP2river - WWTP to river fractionation parameter ∼U(0.35, 0.45)
fBOD2p_BODs@WWTP2river - WWTP to river fractionation parameter ∼U(0.25, 0.35)
f_S_F_w@fractionation - Fraction of fermentable readily biodegradable products in COD ∼U(0.55, 0.65)
f_X_S_w@fractionation - Fraction of slowly biodegradable substrate products in COD ∼U(0.4, 0.5)
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Table E.2: Dynamic Input error models.

Name Units Description Model
Rain_in_13 mm ·h−1 Bergeik rainfall input Equation 4.1
Rain_in_20 mm ·h−1 Valkenswaard rainfall input Equation 4.1
Rain_in_26 mm ·h−1 Gestelse rainfall input Equation 4.1
Rain_in_27 mm ·h−1 Veldhoven rainfall input Equation 4.1
Rain_in_33 mm ·h−1 Geldrop rainfall input Equation 4.1
Rain_in_34 mm ·h−1 Mierlo rainfall input Equation 4.1
Rain_in_36 mm ·h−1 Eindhoven rainfall input Equation 4.1
Rain_in_37 mm ·h−1 Son and Breugel rainfall input Equation 4.1
Rain_in_40 mm ·h−1 Neunen rainfall input Equation 4.1
Temp_WWTP C o Water temperature at the WWTP_bio lines Multiplicative ∼N(1,0.03) [Equation 4.5]
I0_river W ·m−2 Solar radiation in the river surface Multiplicative ∼N(1,0.05) [Equation 4.4]
T_river C o Water temperature in the river ∼GP (T ,ΣT ) [Equation 4.2]

Table E.3: Parametric Uncertainty WWTP influent model.

Name Units Description Model
alpha_COD_av@ES_out - Influent water quality generator parameter* ∼tN(0.63, 0.05x0.63)**

alpha_CODs_av@ES_out - Influent water quality generator parameter ∼tN(0.95, 0.05x0.95)
alpha_NH4_av@ES_out - Influent water quality generator parameter ∼tN(0.95, 0.05x0.95)
alpha_PO4_av@ES_out - Influent water quality generator parameter ∼tN(0.63, 0.05x0.63)
alpha_TSS_av@ES_out - Influent water quality generator parameter ∼tN(0.63, 0.05x0.63)
beta_COD_av@ES_out - Influent water quality generator parameter ∼tN(0.47, 0.05x0.47)
beta_CODs_av@ES_out - Influent water quality generator parameter ∼tN(0.82, 0.05x0.82)
beta_NH4_av@ES_out - Influent water quality generator parameter ∼tN(0.82, 0.05x0.82)
beta_PO4_av@ES_out - Influent water quality generator parameter ∼tN(0.47, 0.05x0.47)
beta_TSS_av@ES_out - Influent water quality generator parameter ∼tN(0.47, 0.05x0.47)
alpha_COD_av@NS_out - Influent water quality generator parameter ∼tN(0.63, 0.05x0.63)
alpha_CODs_av@NS_out - Influent water quality generator parameter ∼tN(0.95, 0.05x0.95)
alpha_NH4_av@NS_out - Influent water quality generator parameter ∼tN(0.95, 0.05x0.95)
alpha_PO4_av@NS_out - Influent water quality generator parameter ∼tN(0.63, 0.05x0.63)
alpha_TSS_av@NS_out - Influent water quality generator parameter ∼tN(0.63, 0.05x0.63)
beta_COD_av@NS_out - Influent water quality generator parameter ∼tN(0.47, 0.05x0.47)
beta_CODs_av@NS_out - Influent water quality generator parameter ∼tN(0.82, 0.05x0.82)
beta_NH4_av@NS_out - Influent water quality generator parameter ∼tN(0.82, 0.05x0.82)
beta_PO4_av@NS_out - Influent water quality generator parameter ∼tN(0.47, 0.05x0.47)
beta_TSS_av@NS_out - Influent water quality generator parameter ∼tN(0.47, 0.05x0.47)
alpha_COD_av@RZ_out - Influent water quality generator parameter ∼tN(0.49, 0.05x0.49)
alpha_CODs_av@RZ_out - Influent water quality generator parameter ∼tN(0.95, 0.05x0.95)
alpha_NH4_av@RZ_out - Influent water quality generator parameter ∼tN(0.95, 0.05x0.95)
alpha_PO4_av@RZ_out - Influent water quality generator parameter ∼tN(0.49, 0.05x0.49)
alpha_TSS_av@RZ_out - Influent water quality generator parameter ∼tN(0.49, 0.05x0.49)
beta_COD_av@RZ_out - Influent water quality generator parameter ∼tN(0.47, 0.05x0.47)
beta_CODs_av@RZ_out - Influent water quality generator parameter ∼tN(0.98, 0.05x0.98)
beta_NH4_av@RZ_out - Influent water quality generator parameter ∼tN(0.98, 0.05x0.98)
beta_PO4_av@RZ_out - Influent water quality generator parameter ∼tN(0.49, 0.05x0.49)
beta_TSS_av@RZ_out - Influent water quality generator parameter ∼tN(0.49, 0.05x0.49)

*The influent parameters are equivalent to the proposed by Langeveld et al. (2017).
**∼tN truncated ([0-1]) normal probability distribution.
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Table E.4: Variance decomposition parameter-input groups.

Parameter-Input group Elements
Rainfall uncertainty Rain_in (all rainfall dynamic inputs in Table E.2)
River baseflow input K_h (Rural input multiplier, Table 4.3)
River Temperature and luminosity I0_river and T_river (Table E.2)
Urban drainage parameters Table 4.1
CSO pollution module BOD, NH4, COD and DO (x30 CSO locations, Table 4.2)
WWTP parameters Table E.3 and Table E.1

River flow and water quality parameters
n, k_W_b, k_z, kd1, kd2, Vs1, Vs2, SOD, VKL, Knit,
TKd and TKL (Table 4.3)
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