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Abstract

Environmental differences between the breeding (B) and commercial production (C) environments may
lead to genotype-by-environment interactions (GxE) i.e. re-ranking of breeding values of animals in the
two environments. A substantial re-ranking implies genetic progress achieved in breeding programs is not
realized in performance of production animals. The issues of GXE are not new and several solutions exist,
however, there has not been much focus on solutions for breeding programs for poultry. This PhD-project
investigated GxE interactions in breeding programs for poultry and solutions to improve genetic progress

in these breeding programs.

A strong GxE interaction for body weight (BW) traits was found in broilers that were raised in B and C
environments. Indications of GXE were significant re-ranking of breeding values, heterogeneous variances
and different heritability for BW under B and C conditions. The genetic correlations between BW traits
measured in B and C environments were in the range 0.48-0.54. Genetic variances of C traits were more
than 2 times higher than those of B traits. Heritability of C traits (0.31-0.37) were higher than those of B
traits (0.27-0.30).

In this thesis, several approaches to improve genetic gains of the poultry breeding programs in the
presence of GXE have been investigated: phenotyping strategies, optimal modelling of traits, use of group
records, and the use of genomic information. Different phenotyping strategies were compared in a
breeding program for broilers that used genomic selection. It was found that when the genetic
correlations between traits measured in B and C were 0.5 and 0.7, allocation of 70% and 30% hatched
birds to B and C environments, respectively, for phenotype testing led to the highest genetic gains among
the compared phenotyping strategies. When the genetic correlation was 0.9, moving birds to C did not
improve genetic gains of the breeding scheme due to reduced selection intensity. Increasing proportion

of birds moved to C (from 15 to 45%) could reduce rate of inbreeding of the breeding program.

Optimal modelling of traits was explored in a genetic analysis that was carried out for BW in broilers at
different ages raised in a commercial environment. A statistical model was developed with the aim to
increase predictive ability of the model for the traits affected by maternal effects. A criterion for the
development of the statistical model was based on correlation between EBVs and corrected phenotypes

of half-sib individuals. The statistical model also accounted for heterogeneous variances between sexes.

In breeding programs for village chicken, where strong GxE interactions are expected, the use of group

records was a good option to increase genetic gain of the breeding programs. The use of group records



from villages significantly improved genetic gains compared to the scheme without birds tested in the

village although group records led to a slightly lower genetic gain compared to individual records.

In addition, the use of genomic information was exploited to improve genetic gain of poultry breeding
programs in the presence of GXE. Compared to pedigree, genomic information increased accuracy of the
prediction from individual records. The use of combined pedigree and genomic information in the
ssGBLUP prediction from individual records substantially increased accuracy of EBVs of C traits by 31-37%,
and reduced bias of prediction for genotyped selection candidates. Genomic information was also utilized
to form groups, so that accuracy of the prediction from group records increased compared to the use of

pedigree information.

Overall, differences between the breeding and production environments can lead to substantial GxE
interactions. In the presence of GxE interactions, a breeding program for poultry should establish
recording systems under the production environments in either individual or group records in order to
ensure maximum genetic gains and provide customers with genotypes well adapted to the production
environments. In addition, an optimal cross-validation procedure for the choice of statistical models is
needed for genetic evaluations in poultry breeding programs as better modelling of traits is a low-cost

approach to improve accuracy of selection.
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General Introduction






1 General introduction

Poultry species play a key role in animal industry. The world production in 2017 was 116 million tons of
poultry meat (chicken, duck, goose and guinea fowl) and 87 million tons of eggs (hen and other birds),
compared to 120 million tons of pig meat and 66 million tons of beef meat (FAO, 2017). Of the world
production, chicken accounted for 94% of the poultry meat and 92% of the poultry eggs. Poultry products
including meat and eggs have little religious or cultural constrains associated with human consumption.
Per capita consumption has increased greatly across both developed and underdeveloped nations (FAO,
2017). Global prices of poultry products are relatively lower than other animal protein products like pork,
beef and dairy products (Tavarez and Solis de los Santos, 2016). The relatively lower price is credited to
remarkable productivity and efficiency of poultry production. This has been achieved through
improvements in genetics, nutrition and management, of which genetics and breeding account for

approximately 80-90% within the last 50 years (Havenstein et al., 2003).

In major parts of the world, commercial breeds of broiler chicken are used widely in commercial intensive
systems. The organizational structure of poultry production chains follows a pyramidal structure. A
relatively small breeding population of pure lines is on the top of the pyramid. The end-products of
commercial chicken, often 4-way crossbred, are at the base of the pyramid with very large populations. It
has been reported that the progress of genetic merit of the end-product chicken is not equivalent to the
progress of genetic gain of the pure lines. Several possible explanations exist, including the genetic lag
time from pure lines to end-products, crossbreeding, correlation between purebred and crossbreed
performance and genotype-by-environment interaction (GxE) effects. Differences between breeding and

production environments may lead to GxE interactions.

In some parts of the world, indigenous breeds of poultry are preferred in low-input village production
systems. Village smallholders are reluctant to the introduction of exotic breeds or high-yielding hybrids
because the application of exotic breeds requires high input and it brings in relatively lower economic
returns than indigenous poultry under low input production systems (FAO, 2010; Okeno et al., 2013). To
improve livelihood of the poor people in the rural and peri-urban regions of Sub-Saharan Africa, there are
breeding programs for indigenous chicken such as the breeding program initiated in 2008 at Debre Zeit
Agricultural Research Centre, Ethiopia, for the dual-purpose Horro chicken (Dana et al., 2011). For ease of
implementation, the programs are often carried out at research stations to improve productivity of
indigenous chicken. Smallholders in villages are targeted users of the improved indigenous breeds.
However, rearing conditions are different between station and village environments, i.e. GxE interactions

can be expected.
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1 General introduction

1.1. Breeding environments versus production environments

Majority of commercial broiler chicken raised worldwide are derived from broiler breeding stocks of large
breeding companies such as Aviagen, Cobb-Vantress, and Hubbard (commercial breeding companies in
alphabetical order) (Hiemstra and ten Napel, 2013). In these breeding companies, performance testing
and selection are carried out in purebred lines, and major genetic gain are achieved in the breeding
environment. A major difference between this breeding environment (B) and commercial production
environment (C) is due to differences in hygienic conditions. To avoid the risk of losing the lines and to
prevent a worldwide spread of diseases, a very strict bio-security are applied to the B environment, e.g.
isolated farms, decontaminated feeds with regular bacteriological tests, stringent in-out policies, health
monitoring of birds, strict logistic policies and systematical tests on a range of diseases with large
government-certified laboratories (Hiemstra and ten Napel, 2013). In contrast, broilers are raised in less
hygienic conditions of the C environment. With highly bio-secure procedures, purebred birds in the
Aviagen commercial breeding company are completely disease-free from Salmonellae, Mycoplasma,
Leucosis, Avian Influenza and Newcastle disease (Hiemstra and ten Napel, 2013). Meanwhile, these
diseases remain chronic problems in many commercial poultry flocks (De Boeck et al., 2015; EFSA, 2017,
Shamim et al., 2015). Kapell et al. (2012) shows that the incidence of food-pad dermatitis in birds of C
environment was up to 3.5 times more than birds in B environment. The environmental difference
between B and C may be also related to litter management. Litter, commonly wood shavings are used, is
loose, dry, free-flowing in B environment (Hiemstra and ten Napel, 2013). At the end of each cycle, the
litter is removed completely, housing was disinfected and floor is filled with fresh wood shavings (Kapell
et al., 2012). In some C conditions, at the end of each cycle, half of the litter was retained, mechanically
conditioned, and then topped up with fresh wood shavings (Kapell et al., 2012). In addition, feed
compositions used in B environment may have higher level of proteins and metabolizable energy than the
feed used in C environment (Kapell et al., 2012). Another key factor is stress due to post-hatch handling
of a-day-old chicks, particularly transportation procedures from hatchery to the commercial production
farms. In B environment, a-day-old chicks are directly placed to the on-site rearing facility without
transportation procedures, thus the stress on the chicks is minimum. In contrast, the chicks transferred
to on-farm facilities are subjected to suboptimal conditions during transportation that may cause stress
to a-day-old chicks in C. For example, Jacobs et al. (2017) found that a-day-old chicks transported for 1.5h
showed a significantly lower level of stress than the chicks transported for 11h. Bergoug et al. (2013)

showed that birds received no transportation had higher body weight (BW) and lower incidence of severe
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1 General introduction

foot-pad dermatitis than birds received 4h and 10h of transportation from hatchery to farms. Such

differences between B and C environments may lead to GxE interaction.

In breeding programs for indigenous chicken for low-input village production systems, the B environment
is at the research station where the birds have ad libitum access to nutritionally adequate feed and water,
semi-controlled environments for light and ventilation, well-protected housing, deep litter floor and
proper vaccination (Dana, 2011; Wondmeneh, 2015). In contrast, the C environment for the indigenous
chicken in village is typically a low input system. In the village conditions, the birds are subjected to a
combination of low food availability, sub-optimal diet, prevalence of diseases, predators and other social
interaction factors. A high proportion of feed is from scavenging activities, and supplementary feed have
poor quality (Dana, 2011). The birds are exposed to different diseases with limited or no vaccination
provided (Dana, 2011). The flock size of chicken is only 7-20 from a household, and the birds are raised
together with other livestock species as well (Dana, 2011). The differences between B and C
environments, in the situation for indigenous chicken, are more severe than those for commercial broiler

breeds, and thus a high level of GxE interaction is expected.

1.2. GxE interaction and its consequences on breeding programs

As variability is a rule of nature, different expression of genotypes over altered environments, known as
GxE interactions, is expected (Mathur, 2003). However, the GXE interactions concern breeding programs
only when re-ranking of genotypes in different environments occurs. Figure 1.1 shows different types of
GxE interactions. There are changes in trait expression of genotypes in different environments for types
[, but the changes do not result in genetic re-ranking of genotypes in the two environments. For types
IV, V and VI, the difference in environments affects expression of traits and change the genetic ranking of
animals. In a breeding program, the change in genetic ranking of animals means that the best animals
selected based on performance in one environment are not the best in the target environment. If the re-
ranking is substantially large between B and C environments, the breeding program carried out in B

environment is not efficient or beneficial.
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1 General introduction
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Figure 1.1. Types of GxE interactions: No GxE interactions (Type | and Il); GxE interactions without re-

ranking (Types Ill); GXE interactions with re-ranking (Types IV, V and VI). G1 and G2 are genotypes; B and

C are two environments.

To model GxE, traits expressed in two environments can be defined as two correlated traits. Indications
of GxE can be different performances, genetic correlation lower than 1, heterogeneous variances and
different heritability between the traits measured in the two environments. Of these indications, the
genetic correlation between traits measured in two environments represents the magnitude of GxE
interaction as it indicates the level of re-rankings between animals. Indications of GxE in poultry have been
found for breeding programs due to the differences between breeding and commercial production
environments for commercial breeds (Kapell et al., 2012; Long et al., 2008; N'Dri et al., 2007; Ye et al.,
2006) and between on-station and on-farm environments for indigenous breeds (Bekele et al., 2009;
Lwelamira, 2012). GxE interactions for different traits were found: bodyweight (ry of 0.46-0.82), foot-pad
dermatitis (r, of 0.78-0.82) and meat quality (r, of 0.84-0.93) (Kapell et al., 2012; Lwelamira, 2012; N'Dri
et al., 2007).
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1 General introduction

1.3. GXE interaction and selection

Selection that is carried out under conditions which is most favourable for the expression of the genotype
has been adopted widely in breeding programs because of ease of implementation. However, when GxE
interactions are substantial, this approach is not efficient. In addition, to expand the market widely and
internationally, breeding companies need to provide their customers with genotypes well adapted to the
C environment on specific markets. Long-term selection of animals in the favourable environment may
increase environmental sensitivity of the animals (Falconer and Mackay, 1996; van der Waaij, 2004).
Increased environmental sensitivity could result in poor performance, leg problems and health issues
when the animals are placed in unfavourable environments (Deeb and Cahaner, 2002; Deeb et al., 2002;
Falconer and Mackay, 1996; Kapell et al., 2012; Kolmodin et al., 2003; van der Waaij, 2004). The poor

performance and health issues can have negative effects on economic returns and animal welfare.

To deal with GxE interactions, one can adjust the production conditions to make them similar to the
conditions where animals are selected, or one can phenotype testing all test selection candidates under
the production environments. Both are difficult from an economically and logically point of view. A
compromise between these two options is to keep selection candidates under the selection environment
and record phenotypes of relatives of the candidates in the production environment. The relatives can be
sibs, progeny, or descendants of the selection candidates. This approach is being carried out in breeding
programs for purebred broilers where full-sibs and half-sibs of the selection candidates are reared in farms

replicating a range of commercial-like conditions (Kapell et al., 2012).

Because the end-product of commercial animals is often 3 or 4-way crossbred in the pyramidal structure,
the other approach is to record phenotypes of the crossbred in C environments. This approach is used in
pig breeding programs that account for GXE interactions and genotype by genotype interactions (Dekkers,
2007; Wientjes and Calus, 2017). This approach accounts for the difference in genetic backgrounds
between purebred and crossbred animals. However, this approach may be difficult for poultry breeding
programs because recording of pedigree for crossbred birds in C environments is challenging. In addition,
when selection of purebred is based on crossbred performance, accuracy of selection may be low because

the relationship coefficients between candidates and crossbred animals are often low.

1.4. Methods to design breeding programs

Simulation is a good tool for designing and evaluating different breeding schemes. Compared to large-

scale field-testing of a breeding scheme, simulation is a comparatively fast and inexpensive approach.
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1 General introduction

Simulation can be used to test numerous strategies for genotyping, phenotyping, breeding structure and
criteria for selection, which are “too luxury” for a field test. To deal with GxE, we need to adjust the
conventional breeding program doing phenotype-testing under B conditions only. Simulation has been
used to design breeding programs in the presence of GxE interaction by others (Dekkers, 2007; Mulder
and Bijma, 2005; van Grevenhof and van der Werf, 2015). From a methodological point of view, simulation
can be carried out stochastically and deterministically to quantify the expected genetic gain and the

expected rate of inbreeding for breeding programs (Dekkers, 2003).

In a stochastic simulation, an entire population of “real” animals is simulated. Stochastic simulation
models of breeding programs generally follow the scheme as shown in Figure 1.2. However, polygenic and
genomic models are different in how the base population is created and how breeding values are
simulated and inherited. With a polygenic model, breeding values and phenotypes of each individual in
the base population are generated by random sampling from pre-defined distributions. Breeding values
of progeny are generated based on parents’ breeding values and the Mendelian sampling contribution.
With a genomic model, the genome (QTL and markers) of each individual in the base population is created
through number of historical generations to establish linkage equilibrium for QTL and markers.
Inheritance and recombination of QTL and markers from parents to descendants follows the standard
principles of Mendelian inheritance. Breeding values of each individual are generated based on QTL
effects. The QTL effects are sampled from distributions, and then scaled to achieve the pre-defined

distributions of breeding values of individuals in the base population.
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1 General introduction

Figure 1.2. General schematic of a stochastic simulation of a breeding program with t time steps of m

replicates (adapted from Dekkers (2003)).

Step 1. Generate a base population of parents

v

Step 2. Generate progeny of defined family structure

|

Step 3. Perform genetic evaluation to obtain selection criteria

A

v

Step 4. Rank animals on selection criteria

A
Step 5. Select animals, following defined rules

v If time step <t
Step 6. Mate parents and generate individual progeny

If time step =t

Step 7. Output or store result if replicate <m

—> next replicate

If replicate = m

v
Step 8. Output mean and variances of results over m replicates

An important advantage of stochastic simulation is that stochastic simulation can mimic a complex
breeding program in specific desired details because the individual animal is simulated (Dekkers, 2003).
Therefore, stochastic simulation can be very flexible and precise, and it can be used to validate results
from deterministic simulation (Dekkers, 2003). Because stochastic simulation is based on random
sampling, many replicates are required to obtain the mean expected response. This replication process
may be time-consuming and computation-expensive, but it is also an advantage because the variance of
the response can be estimated. Compared to deterministic simulation, the main disadvantage of
stochastic simulation is time-consuming and computation-expensive procedures, particularly for the

genomic simulation models. There are several software programs and packages available for stochastic
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1 General introduction

simulation of animal breeding programs such as ADAM (Pedersen et al., 2009), DCBSP (Medrano et al.,
2010) and AlphaSim (Faux et al., 2016). Among these, ADAM, which has been intensively developed for
more than 10 years, is a relatively comprehensive software for simulation of animal and plant breeding
programs. Compared to other simulation programs, ADAM enables us to simulate numerous features for
very complex breeding programs: polygenic (infinitesimal) model, genomic (finite locus) model,
overlapping breeding cycles, different statistical models, storages of sperm and embryos, and different
strategies for phenotyping, genotyping, selection, mating and family structures (Liu et al., 2019; Pedersen
et al., 2009). With the infinitesimal simulation models, stochastic simulation of a complex breeding

program is relatively fast with ADAM (Liu et al., 2019; Pedersen et al., 2009).

Deterministic simulation is a quick method to quantify the expected response (genetic gain and
inbreeding) from alternative breeding schemes. The advantage of the deterministic simulation is much
less computation. The deterministic method does not simulate the breeding program on the individual
animal level, but derive (deterministic) equations to predict the expected response. However, the
disadvantage of the deterministic method is that the method cannot precisely model very complex
breeding programs (Dekkers, 2003). It is relatively difficult to write or code for deterministic simulation of
breeding programs. There are only a few software programs available for deterministic simulation
compared to stochastic simulation programs because each breeding program requires a different set of
equations to predict the expected response. Software SelAction is a deterministic simulation tool for

designing breeding programs (Rutten et al., 2002).

1.5. Genomic information

In dealing with GxE in a broiler breeding program, the classical method is to test sibs in B and C
environments and use pedigree-based BLUP for selection. However, given a breeding program with
limited testing capacity and bio-security restriction, selection based on the classical method has low
accuracy because sib-testing using pedigree-based BLUP has low prediction accuracy of the Mendelian
sampling term. In the era of genomic selection, it is expected that high density of markers can help to
improve the low accuracy, thus improve genetic gains of breeding programs in the presence of GxE.
Compared to the use of pedigree information only, genomic information has shown its benefits for
increased accuracy of selection in simulations (Andonov et al., 2017; Christensen and Lund, 2010; Hayes
et al., 2009; Lourenco et al., 2013; Meuwissen et al., 2001; Putz et al., 2018) and empirical studies of

chicken (Alemu et al., 2016; Chen et al., 2011a; Chen et al., 2011b; Momen et al., 2017; Wolc et al., 2011),
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1 General introduction

cattle (Gao et al., 2018; Lee et al., 2017; Li et al., 2016; Lourenco et al., 2015) and pig (Christensen et al.,

2012; Guo et al., 2015; Putz et al., 2018; Xiang et al., 2016) breeding programs.

However, to my knowledge, the benefits of genomic information in a breeding program for broiler chicken
with GxE sib-testing designs has not been reported in empirical studies. Such a breeding program typically
uses a selective genotyping strategy and has no phenotypes measured in C for selection candidates in B.
Economically important traits in broilers such as BW and feed efficiency can be obtained before the birds
are sexually mature. When resources for genotyping are limited, genotyping is applied to only potential
parents with best performances for the traits. Compared to the random genotyping strategy, the selective
genotyping strategy leads to higher genetic gain (Boligon et al., 2012). However, the selective genotyping
leads to an overestimation of genetic variances with single step GBLUP (ssGBLUP) (Cesarani et al., 2019).
With GxE sib-testing designs of the breeding program for broiler, selection candidates have no
performances in C environment. The cross-validation of evaluation models that is based on the correlation

between corrected phenotypes and EBVs cannot be used to compute accuracy of EBVs.

1.6. Traits affected by maternal effects

Body weight of chicken at the age that selection is carried out may be affected by the dam. Dams can
affect chicken through several ways such as egg weight, nutrient contents of egg and levels of maternal
antibodies transferred to chicken. For example, age of dam had significant effects on egg weight, egg
quality and chick quality (Lapao et al., 1999; Tona et al., 2004). Genotypes of dams and/or exposures of
dams to different specific diseases can result in different levels of maternal antibodies transferred from
the dam to eggs and chicks (De Boeck et al., 2015; Hamal et al., 2006; Ismiraj et al., 2019). Other studies
(Tahir et al., 2011; Tona et al., 2004; Wolanski et al., 2007) showed that dam could have effects on BW
performance of broilers. To model BW of chicken in genetic analysis, different maternal factors have been
included in the statistical models: age of dam, specific environmental herd of the dam, maternal additive
genetic effect, covariance between maternal additive genetic effect and direct additive genetic effect, and
permanent environmental maternal effect (Jasouri et al., 2017; Koerhuis and Thompson, 1997; Maniatis

et al., 2013).

Failing to account for the maternal factors in the statistical model can lead to reduced accuracy of
selection and increased bias of EBV prediction. For instance, when the permanent environmental
maternal effect was present, but ignored in the prediction model, direct additive genetic variance was

overestimated, accuracy of prediction was reduced and bias of prediction was increased (Su et al., 2018).
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Ignoring the maternal additive genetic effect and/or the permanent environmental maternal effect can
lead to an overestimation of the direct additive genetic variance (Jasouri et al., 2017). Failing to account
for the covariance in the model can lead to a possible underestimation of the direct genetic and maternal
genetic variances if the covariance is negative, or overestimation of the variances if the covariance is

positive (Chapuis et al., 1996).

Ignoring effects in modelling of a trait of interests can have negative consequence on the predictive ability
of the model. However, the true model for field data is usually unknown in practice, thus the question is
how we can find an optimal model for the trait of interest, particularly for the trait affected by maternal
effects. For the development of a statistical model, animal breeders usually use cross-validation
procedures to assess predictive ability or accuracy of EBV between competing models. The common
approach of cross-validation is based on the correlation between corrected phenotypes and EBV of
selection candidates as used in Christensen et al. (2012). For the trait affected by maternal effect, this
approach may lead to a wrong conclusion on model comparisons. Information for the prediction of EBVs
of selection candidates is largely from their full-sibs in the genetic evaluation of a breeding program for
chicken. If the maternal effects are not accounted for appropriately in the model, the effects shared
among full-sibs may influence the EBVs of the selection candidates. The correlation between corrected
phenotypes and EBV would be overestimated for the statistical model that ignores the presence of
maternal effects. Therefore, for optimal modelling of chicken BW, we may need a different cross-

validation approach to assess competing models.

1.7. Group records

Prediction of EBVs from group records was shown to be feasible with pedigree-based BLUP in simulation
studies (Olson et al., 2006; Peeters et al., 2013; Su et al., 2018). However, to our knowledge, the use of
group records has been limited in breeding programs. This may be because the additional accuracy of
selection from the use of group records may be relatively small for the breeding programs where data
recording on individual basis is typically the norm for all selection candidates. This view may change when
strong GxE interactions due to environmental differences between B and C exist. A large number of
records measured in C environment are required to improve genetic gain of the breeding programs in the
presence of strong GxE interactions (Mulder and Bijma, 2005). However, in C environment, particularly
village production systems, parts or all of the data is often recorded on groups of animals (e.g. egg

production). Therefore, the question is how to use data recorded on groups to improve the breeding
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1 General introduction

programs in the presence of GxE. Prediction from group records has only been done with pedigree-based

BLUP models, thus this thesis extents the use of group records with genomic information.

1.8. Objectives

This study focuses on GxE interactions due to differences between breeding and production
environments, and propose solutions to improve accuracy of selection for poultry breeding programs that
are carried out for commercial intensive systems and low-input village production systems. Five specific

objectives were investigated and the results are presented in five corresponding papers:

1. Identify GXE interactions due to environmental differences between breeding and commercial
production environments for broilers, and exploit the use of genomic information to increase

accuracy of predicted breeding values in the presence of GxE.

2. Design genomic selection breeding schemes for commercial broiler chicken in the presence of

GxE.

3. Develop statistical models to improve predictive ability of predicted breeding values for broiler

breeding programs.
4. Design and compare breeding schemes for village poultry production.

5. Optimize grouping methods based on genomic information to improve accuracy of prediction

from group records.
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2 Genomic information to exploit GxXE

Abstract

Background

The increase in accuracy of prediction by using genomic information has been well-documented.
However, benefits of genomic information and methodology for evaluation are missing when genotype
by environment interactions (GxE) exist between bio-secure breeding (B) environments and commercial
production (C) environments. This study explored (1) GxE interactions for broiler body weight (BW) at
week 5 and 6, and (2) benefits of using genomic information for prediction of BW traits when selection
candidates were raised and tested in B environment and close relatives were tested in C environment.
Methods

A pedigree-based BLUP multivariate model was used to estimate variance components and predict
breeding values (EBV) of BW traits at week 5 and 6 measured in B and C environments. A ssGBLUP model
that combined pedigree and genomic information was used to predict EBV. Cross-validations were based
on statistics of correlation, mean difference and regression slope for EBV that were estimated from full
and reduced datasets. Those statistics were indicators of population accuracy, bias and dispersion of EBV
prediction for EBV of B and C traits. Validation animals were genotyped and non-genotyped birds in B
environment only.

Results

Several indications of GxE interactions due to environmental differences were found for BW traits
including significant re-ranking, heterogeneous variances and different heritability for BW measured in B
and C environments. The genetic correlations between BW traits measured in B and C environments were
in the range 0.48-0.54. The use of combined pedigree and genomic information increased population
accuracy of EBV, and reduced bias of EBV prediction for genotyped birds compared to the use of pedigree
information only. A slight increase in accuracy of EBV also occurred for non-genotyped birds, but bias of
EBV prediction increased for non-genotyped birds.

Conclusions

A strong GxE interaction is found for BW traits of broilers measured in B and C environments. The use of
combined pedigree and genomic information substantially increases population accuracy of EBV for
genotyped birds in B compared to the use of pedigree only.

Keywords: GXE; genomic selection; body weight; broiler.

2.1. Introduction

37



2 Genomic information to exploit GXE

The difference in production conditions between highly bio-secure breeding (B) and commercial
production environments (C) can lead to genotype by environment interaction (GxE) in broiler chicken.
Indications of GXE may include heterogeneous variances, different heritability and correlation of less than
unity between the same trait expressed under B and C conditions. To model GxE, the same trait expressed
in the two environments can be defined as two correlated traits. Identification of the presence of GxE,
especially genetic correlation between the B and C traits, is important in optimizing breeding programs.
For example, Chu et al. (2018) showed that the genetic correlation between traits measured in B and C
can change the optimal proportion of birds to be tested in B versus C environments. For body weight (BW)
of broiler chicken, GxE interactions have been found with genetic correlations of 0.46-0.69 (Kapell et al.,
2012), 0.74-0.76 (N'Dri et al., 2007) and 0.75-0.76 (Lwelamira, 2012) between traits measured in B and C.
The ultimate goal of a breeding program for broilers is genetic gains of birds’ performance in C
environment only. To improve the genetic gains, sib-testing of purebred birds in B and C environments is
an option (Kapell et al., 2012). Due to bio-security restrictions, only birds in B are selection candidates,
and birds in C provide information on C performance only. Because of limited reproductive capacity of
broiler dams, a restricted number of birds can be moved to C for phenotype testing, and thus accuracy of
prediction for performance in C might be relatively low with pedigree-based BLUP prediction (PBLUP) (Chu
et al., 2018). In this situation, genomic information can be of interest to improve accuracy of prediction.

Genomic selection has captured growing interests in poultry breeding programs because of the higher
accuracy of prediction compared to pedigree-based evaluation. The increase in accuracy of prediction
from using dense genotypes is due to better measuring the relationships between animals and a better
prediction of the Mendelian sampling terms (Hayes et al., 2009). The better explanation of relationships
may improve the movement of information from birds in C to selection candidates in B. The benefit of
genomic selection over pedigree-based selection has been well documented in simulations (Andonov et
al., 2017; Christensen and Lund, 2010; Hayes et al., 2009; Lourenco et al., 2013; Meuwissen et al., 2001;
Putz et al., 2018) and empirical studies of chicken (Alemu et al., 2016; Chen et al., 2011a; Chen et al.,
2011b; Momen et al., 2017; Wolc et al., 2011), cattle (Gao et al., 2018; Lee et al., 2017; Li et al., 2016;
Lourenco et al., 2015) and pig (Christensen et al., 2012; Guo et al., 2015; Putz et al., 2018; Xiang et al.,
2016) breeding schemes. However, none of the empirical studies has reported the benefit of genomic
information in a breeding program with GxE sib-testing designs. In such a program, a multivariate joint
model is required to model traits measured in commercial and breeding environments. When the number
of genotyped individuals and SNPs are numerous, the use of a multi-trait model can be computationally

challenging, and estimation of variance components from the model that uses a realized genomic
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relationship matrix could be tedious. Model-based accuracy or individual accuracy of EBV cannot be
computed because obtaining prediction error variances by direct inversion of the left hand side of mixed
model equations is infeasible. Cross-validation strategies for accuracy of EBV based on correlation
between estimated breeding values (EBV) and corrected phenotypes cannot be applied. In GxE sib-testing
breeding program, validation animals are birds in B, and these birds do not have corrected phenotypes of
C traits. Legarra and Reverter (2018) proposed cross-validation measures that can compare competing
prediction models in situations of breeding programs where traits are influenced by GxE. These validation
measures (Legarra and Reverter, 2018) are based on statistics of EBV estimated from full and reduced
datasets.

In addition, a typical breeding program utilizing genomic selection in broiler chicken often applies a
selective genotyping strategy. In broilers, important traits like BW and feed efficiency can be obtained
before sexual maturity. In situations of limited resources for genotyping, only a proportion of birds that
are potential parents with best performances will be genotyped. The selective genotyping strategy can
increase accuracy of selection and genetic gain compared to random genotyping strategies (Boligon et al.,
2012). However, the selective genotyping can create bias and lead to overestimation of genetic variances
when ssGBLUP is employed to estimate variance components (Cesarani et al., 2019). To utilize genomic
information, as well as pedigree and phenotypes of non-genotyped birds in genetic evaluation, ssGBLUP
models (Christensen et al., 2012) can be used. However, accurate prediction of breeding values requires
accurate estimates of variance components. An animal model using the pedigree relationship matrix is
currently recommended for estimation of variance components in the situation of selective genotyping
(Cesarani et al., 2019).

Two main objectives of our study were: (1) to explore genotype by environment interaction for body
weight (BW) in broilers raised in breeding bio-secure (B) and commercial production (C) environments,
and (2) to use genomic information to increase accuracy of predicted breeding values of birds in B for BW

traits measured in C environment.

2.2. Methods

Data

Data obtained from the poultry breeding company, Cobb-Vantress, included body-weight (BW)
performances of purebred broiler chicken tested in breeding bio-secure (B) and standard commercial
production (C) environments. The data had BW records from 16 time steps (TS) of selection that covered

roughly 2.5 generations. Birds hatched at each TS were transferred to either B or C environment for
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phenotype testing. Each full sib group was split between B and C so that each bird would have full and
half sibs in both environments. Parents were selected from birds tested in B only. In other words, parents
did not have any phenotypic records in C environments. In each TS, all offspring birds in C were hatched
at the same time while offspring birds in B were hatched at several successive time points. Sires and dams
of offspring birds in each TS were from several previous TS.

The BW of the broilers tested in B were recorded once, at 6 weeks of age (BW6.B), for TS 1-10 and
recorded once or twice, at 5 and 6 weeks of age (BW5.B and BW6.B), for TS 11-16. All birds in B at TS 11-
16 had BWS5 records, but only 33% of those birds had BW6 records. The BW of the broilers tested in C
were recorded at 5 and 6 weeks of age (BW5.C and BW6.C) for TS 5-10 and only at 5 weeks of age (BW5.C)
for TS 11-16. The same data editing as in Chu et al. (2019) was carried out with removal of records for
birds with unidentified sex, missing factors or duplicated records. Records of BW that were beyond four
standard deviation units from the mean were also removed for each of the four BW record types. In total,
0.04% of all BW records were removed. After data editing, the number of birds in B and C were 54,757
and 15,412, respectively, with total of 61,589 and 23,569 BW records, respectively. The birds with BW
records were from 319 sires and 1,528 dams. The pedigree covered roughly 3.5 generations back from
the youngest birds and comprised 70,174 birds.

A medium density SNP chip with 55,792 markers was used for genotyping (lllumina, San Diego, CA, USA).
Quality control was carried out that set missing rate for SNPs at <0.05 and call rate for birds at >0.95. Also,
SNP markers with minor allele frequency of <0.01 were removed. After quality control, 39,767 genotyped
birds with 50,562 SNPs remained for constructing the genomic relationship matrix. All parents had
genotype information. Although all birds in C were genotyped, after quality control, genotyping
information of a few birds in C was not used in constructing genomic relationship matrix. Only a proportion
of the birds in B were genotyped.

Statistical models

From preliminary results, male and female BW had different variances, but high correlations that reflects
scaling effects (Chu et al., 2019). Modelling male and female BW as two traits led to convergence problems
because of parameters at the edge of the parameter space. To model heterogeneous variances between
male and female BW, standardization was applied to male and female BW separately (Chu et al., 2019).
Male and female phenotypic records of the four BW traits were standardized to their corresponding
phenotypic standard deviations that were estimated in the following univariate model:

y=Xb + Za + Wc +e (2.1)
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where y is a vector of male or female phenotypic records of BW at normal scale; b is a vector of fixed
factors of hatch TS of the bird, TS of the parents and dam age in classes of one week. Matrices of X, Z, and
W are incidence matrices. Vectors a, ¢ and e are the direct additive genetic effect, permanent
environmental maternal effect and residual, respectively. These random effects were assumed to be
N[0,Ac?], c~N[0,I402] and e~ N[O,

normally distributed: a~ Io2], where A is the pedigree

relationship matrix; lq is the identity matrix for dams; I is the identity matrix for individual birds; 2, 2
and o2 are variances at normal scale of BW.

Standardization was applied, so that each phenotypic record was divided by the corresponding phenotypic
standard deviation estimated from model (2.1). A multi-trait PBLUP model was used to estimate variance

components and predict EBV from the standardized phenotypic records of BW in B and C environments.

The four-trait PBLUP model (2.2) with heterogeneous residual variance for sexes was as follows:

YSB 0 |[bsE] [Zgp 0 | (Wgg 0 ] eSh
xE | [t + o 7zt |3sB + 0 wi.|CsB +| f
Yss 58] [Ps5B | 5B. ] 5B €58
Y6B 0 6B Zgg O Wek 0 €6p
XEs | [bEs Tlo zt |28 T| o wr|%87 et
Y6B 6Bl L | 6B | 6B
xm 0 ][b%:] VAS 0 ] W™ 0 ] e (2.2)
Ysc 5C 5C 5C 5C 5C
[ ] [ o xt ||t FTlo zE [?¢ | o we|[®cT et ]
YSc 5cl [Psc | 5C. | 5] [€5¢
[Yec] [Xrenc 0 6C 4 Zgc O a 4 Wge O - erenc]
6C 6C
Yec 0 ch_ _bgc | 0 ch_ | 0 Wef.c _egc

where ym0, ym0 vy and yMO are the vectors of standardized phenotypic records of BW5.B, BW6.B,

BW5.C, and BW6.C, respectively, for males; ySB, v, y5c and y£2 are the vectors of standardized
phenotypic records of BW5.B, BW6.B, BWS5.C, and BW6.C, respectively, for females; bT, by, b, biy,

e bsc: bg and be.c are the vectors of fixed factors as in model (2.1) above; X, Z and W are incidence
matrices. The vectors of asg, ass, asc and asc are direct additive genetic effects that were reduced ranks for
male and female traits: asg, ass, asc and asc ~ MVN[0,A ® V2], where V is the 4x4 covariance matrix;
and A is the pedigree relationship matrix. The vectors of csg, Ces, Csc and csc are permanent environmental
maternal effects that were reduced ranks for male and female traits: csg, Css, Csc and cec~ MVN[O g @
V2], where V2 is the 4x4 covariance matrix; and lq is the identity matrix for dams. The vectors of el
ely el el elt, el, et and el are residuals ~ MVN[0,1 ® V?], where V2 is the 8x8 covariance
matrix because heterogeneous variances between sexes was applied to residual in the model (2.2); I is

the identity matrix for individual birds. In matrix Vg, covariances between male and female traits, and

between B and C traits were zero. Covariance matrices V?, VO and V9 are at standardized scale.
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Variance components were estimated using the PBLUP multivariate model (2.2) for two reasons. One
reason is selective genotyping applied to birds in B that might lead to overestimation and bias of variance
components estimates with a ssGBLUP model (Cesarani et al., 2019). Another reason is that the
complexity of the models and large amount of genotyped animals and non-genotyped animals in the
pedigree would make ssGBLUP computationally demanding. The estimation of variance components and
EBV prediction with the PBLUP models was carried out using the REML module in the DMUAI procedure
of the DMU package (Madsen and Jensen, 2013). Criteria for the convergence of the model were set for
the Frobenius norm of the update vector being less than 10° (Madsen and Jensen, 2013). In addition,
estimation of variance components with the PBLUP models were re-run several times using different
starting values to check for having reached the global maximum likelihood of the model. The model was
converged, and no change in estimates was observed for different starting values.

The standardized variance components of the PBLUP model estimated from the REML module were used
to calculate EBV for ssGBLUP multivariate models using the DMUS5 procedure of the DMU package
(Madsen and Jensen, 2013). Because the use of genomic information led to a relatively dense relationship
matrix, calculation of the sparse inverse of LHS was not possible. Therefore, the DMU5 procedure was
used to iteratively solve the mixed model equations with the preconditioned conjugate gradient method
(Madsen and Jensen, 2013). This procedure, however, does not provide prediction error variance of
breeding values. The ssGBLUP models were identical to the PBLUP model (2.2), except that the pedigree
relationship matrix A was replaced by a combined relationship matrix H. The matrix H was constructed
from the pedigree relationship matrix A and genomic relationship matrix G with weight value w = 0.01
(Aguilar et al., 2011; Christensen and Lund, 2010) on the pedigree relationships. The genomic relationship
matrix G was constructed based on SNP marker data, using method 1 from VanRaden (2008).
Cross-validation

Cross-validation was carried out to evaluate accuracy, bias and dispersion of EBV for genotyped and non-
genotyped validation birds in B environment. Validation was based on EBV estimated from full and
reduced datasets. The full dataset contained all phenotypic records from TS 1-16 while the reduced
dataset contained only phenotypic records from TS 1-12. The reduced dataset was a subset of the full
dataset, in which records of 14,187 birds in B and 5,988 birds in Cat TS 13-16 were removed. The validation
birds were individuals in B environment at TS 13-16. This design was to avoid having two or more
generations of validation birds. The validation individuals might be genotyped birds or non-genotyped
birds. Cross-validation measures were statistics of EBV of validation birds estimated from the full and

reduced datasets (Legarra and Reverter, 2018): correlation (o) between EBVs and EBV,, difference (dj,)
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in means of EBV¢ and EBV, and regression slope (bs,) of EBV; on EBV,, where EBVs and EBV, were vectors
of EBV of validation birds estimated from the full and reduced datasets, respectively. Statistics of p¢,, dg,

and bg, were indicators of population accuracy, bias and dispersion of EBV, respectively (Legarra and

Reverter, 2018). Expectation of pg, is (Legarra and Reverter, 2018), where acc, is the population

acc,
accy
accuracy of EBV defined as the correlation between the true breeding values and EBV,; accy is the
population accuracy of EBV defined as the correlation between the true breeding values and EBV;.
Expectations of dg, and by are 0 and 1, respectively (Legarra and Reverter, 2018).

The two validation models were PBLUP and ssGBLUP models. Standardized covariance components that
were estimated from the PBLUP model using the full dataset were used to predict EBV in PBLUP and
ssGBLUP models using the full dataset or reduced dataset. Vectors of EBVf and EBV, were at the
standardized scale. Scaling does not influence p¢r and bg,. However, scaling applied differently to records
of each sex means dr- would have two values for males and females at the normal scale. For comparison
between models, dgr was computed at standardized scale. Standard errors of the statistics pg,, drr and by,
were calculated using formula in the appendix.

Rescaling of parameters

Parameters estimated from the PBLUP model (2.2) were on the standardized scale for all BW traits. The
estimates were re-scaled back to the normal scale for male and female BW traits. Rescaling of (co)variance

matrices and the asymptotic covariance matrices used formula (2.3-2.6):

Vo, =T, (T VOT)) Ty (2.3)
Vo =T, (T VT Ty (2.4)
V, =T, V0T, (2.5)
Vi =Ty, (Ty, V¥ Ty,) Ty, (2.6)

where matrices of direct additive genetic, permanent environmental maternal, residual and asymptotic
covariances were V,, V¢, Ve and V|, respectively, at normal scale, and v;.’, V‘?, Vg and VIO, respectively, at
standardized scale. The asymptotic covariance matrix VIO is the inverse of the average of observed and
expected information in the REML likelihood (Jensen, 1997) from DMUAI procedures (Madsen and Jensen,

2013). Transforming matrices for formula (2.3-2.6) were:

43



2 Genomic information to exploit GXE

1 0 0 0
1 0 0 0
0100
01 00 T ®T 0 0
T, = » Ty 0 T, ® Ty 0 ’
0 010 1 0 0 Lol
0 010 e=e
0 0 0 1
o 0 0 1
T, ®T, 0 0
TVIZ:I 0 T2®T2 0
0 0 T, ® T,

where matrix le is an 8x8 identity matrix. The matrix I, @ I, was adjusted to accounted for non-existent
covariances in Vg. Matrix T2 is an 8x8 matrix, of which off-diagonal elements are zero, the diagonal is
vector of phenotypic standard deviations with trait orders: male BW5.B, female BW5.B, male BW6.B,
female BW6.B, male BW5.C, female BW5.C, male BW6.C and female BW6.C. The phenotypic standard
deviations of diagonals from matrices T, were computed from univariate model (2.1) for corresponding
traits. The asymptotic covariance matrix V; was used to compute approximate standard errors for
(co)variance component estimates using Taylor series approximation to the asymptotic normal

distribution of model parameters.

2.3. Results

Number of records, means, and standard deviations of BW records for broiler chicken raised in B and C
environments are shown in Table 2.1. Mean of BW in B was higher than in C for the same week and sex.
However, the standard deviation of BW in B was lower than that of BW in C, and thus the coefficient of
variation of BW in B was lower. For example, coefficients of variation were 0.098 and 0.174 for male BW5

measured in B and C environments, respectively.

44



2 Genomic information to exploit GxXE

Table 2.1. Descriptive statistics for body weight (BW) records of broiler chicken at 5 and 6 weeks of age
for each sex raised in breeding (B) and commercial production (C) environments. Unit of BW was

measured in gram.

BW at B environment C environment
week Sex  Number of Standard Number of Standard
Mean o Mean .
records deviation records deviation
5 Male 10117 2183 713 7455 1735 302
5 Female 10801 1882 180 7922 1550 248
6 Male 18651 2758 269 3975 2231 364
6 Female 22020 2329 217 4217 1940 290

Standard deviation of BW records increased from 5 to 6 weeks of age. Mean of BW increased by 500-600
grams between week 5 and 6. As a result, the change in coefficients of variation was relatively small. For
example, the coefficient of variation for BW records of male birds in B were 0.098 in both weeks 5 and 6.
The coefficients of variation for BW records of male broilers in C were 0.174 and 0.163 at week 5 and 6,
respectively.

Mean BW in males was higher than in females at corresponding age. The standard deviation in males was
also higher than in females, and thus the difference in coefficients of variation between sexes was
relatively small. The relative difference in means between males and females was higher for records in B
than records in C. The relative difference in standard deviations between males and females was lower
for records in B than records in C.

Table 2.1 does not show separated statistics for genotyped and non-genotyped birds in B. However, it was
found that genotyped birds in B had higher means and lower standard deviations of BW records than the
non-genotyped birds at corresponding weeks of age. For example, mean and standard deviation of BW6
of males were 2814 and 248 for genotyped birds, respectively, and 2707 and 278 for non-genotyped birds,

respectively.
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Table 2.2. Estimates of direct additive genetic variance (02), heritability (h?) and permanent
environmental maternal effect (c?) estimated from male and female body weight (BW) at week 5 and 6 in

breeding (B) and commercial production (C) environments.

BW at B environment C environment

week e ol h? N F h? c
5 Male 10454 0.274 0.033 24984 0.358 0.037
5 Female 7614 0.278 0.033 17469 0.366 0.038
6 Male 17301 0.301 0.034 39544 0.312 0.028
6 Female 11651 0.298 0.034 23831 0.305 0.027

Standard errors in

range 0.022-0.024 0.007-0.008 0.033-0.037 0.011-0.013

Additive genetic variances, heritability and permanent environmental maternal effects of B and C traits
for male and female BW5-6 were estimated from PBLUP model (2.2) and shown in Table 2.2. Genetic
variances of C traits were considerably higher than that of corresponding B traits. The relative differences
in variances between B and C traits for male BW5, female BW5, male BW6 and female BW6 were 2.39,
2.29, 2.29 and 2.04, respectively.

Estimates of heritability of C traits tended to be higher than of corresponding B traits. For example,
heritability of BW5-6 was 0.27-0.30 and 0.31-0.37 for the same traits measured in B and C environments,
respectively. Increasing age from 5 to 6 weeks reduced heritability of C but heritability of B traits tended
to increase. Ratio of the permanent environmental maternal variance to the total phenotypic variance for
C reduced as week of age increased. Meanwhile, the ratio for B traits tended to increase from week 5 to
week 6.

Genetic variances was considerably higher for male BW than female BW when traits in the same
environment and at the same week of age were considered. The absolute and relative differences in
variances between male and female traits were higher for C traits than B traits. However, the differences
in heritability and permanent environmental maternal effect were mostly negligible between male and

female traits measured in the same environment and week of age.
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Table 2.3. Genetic correlations (above diagonal), permanent environmental maternal correlations (below
diagonal)-of body weight (BW) of broiler chicken reared in the breeding environment (B) and in the

commercial production environment (C) at 5 and 6 weeks of age.

Environment B c
BW atweek 5 6 5 6

B 5 1 0.956 0.535 0.490
6 0.953 1 0.497 0.479

C 5 0.690 0.589 1 0.989
6 0.723 0.628 0.999 1

Standard errors: genetic correlations +0.010-0.064; permanent environmental maternal correlations +0.027-0.155

Estimates of variances, heritability and permanent environmental maternal effects were different for
male and female traits because the PBLUP model used heterogeneous residual variances and different
scaling for sexes. However, genetic correlations and permanent environmental maternal correlations
between sexes were assumed to be unity for the same traits. Therefore, a single correlation estimate was
obtained for the different sexes combined. Table 2.3 shows genetic correlations and permanent
environmental maternal correlations between B and C traits of BW at week 5 and 6 estimated from the
PBLUP model.

The genetic correlations between BW traits measured in B and C were 0.48-0.54. The genetic correlation
of BW between B and C environments had a reducing tendency as week of age increased from 5-6. The
genetic correlations were 0.54 between BW5.B and BW5.C and 0.48 between male BW6.B and BW6.C.
Genetic variances in each environment were higher for BW6 traits than BWS5 traits. The correlation
between BW5 and BW6 tended to be higher in C (0.99) than in B (0.96).

The permanent environmental maternal correlations between B and C traits were 0.59-0.72. The
permanent environmental maternal correlations between BW at 5 and 6 weeks, and BW in B and C had
similar trend to the genetic correlations. For example, the environmental correlations between B and C
were lower for BW6 than for BW5. Permanent environmental maternal correlations between BW5 and

BW6 in the same environment were very high but still a bit higher in C than in B.
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Table 2.4: Indicators of population accuracy (pf/), dispersion (bg,) and bias (dy,) of EBV for genotyped and
non-genotyped validation birds in B using pedigree-based BLUP (PBLUP) and single step GBLUP (ssGBLUP)
models. Traits for validation were body weights (BW) at 5 and 6 weeks of age in the breeding (B) and

commercial production (C) environments.

Validated Genotyped validation birds Non-genotyped validation birds
Mode! traits Prr by dsr Prr by, dgr
PBLUP BW5.B 0.509 0.898 0.106 0.588 0.874 -0.081
BW6.B 0.457 0.858 0.129 0.570 0.849 -0.083
BWS5.C 0.616 1.055 0.088 0.678 1.026 -0.052
BW6.C 0.591 1.024 0.084 0.670 1.014 -0.048
Standard errors in range 0.013-0.015 0.023-0.028 0.004-0.006 0.007-0.008 0.011-0.012 0.002-0.003
ssGBLUP BW5.B 0.767 0.913 0.026 0.625 0.841 -0.095
BW6.B 0.791 0.946 0.043 0.653 0.867 -0.091
BWS5.C 0.811 0.937 -0.001 0.758 0.951 -0.076
BW6.C 0.813 0.939 0.000 0.770 0.965 -0.069
Standard errors in range 0.010-0.011 0.011-0.013 0.003-0.004  0.006-0.008 0.008-0.010  0.002-0.003

Note: ps, is correlation between EBV; and EBV;; by, is regression slope of EBV¢ on EBV,; and dy is mean of EBVs- EBV,; vectors of

EBVs and EBV, are breeding values of validation birds in B estimated from full dataset and reduced dataset, respectively.

Statistics of ps, bsr and d, for the PBLUP and ssGBLUP models was calculated based on EBVs estimated
from the full and reduced datasets (Table 2.4). These cross-validation measures were computed
separately for genotyped and non-genotyped validation birds for EBVs of all BW traits. The use of ssGBLUP
increased py, for all validation birds, and reduced dg, for genotyped birds compared to PBLUP.

With the PBLUP model, ps, of genotyped birds was lower and d¢, was higher than non-genotyped birds.
For BW traits in B, bs, of genotyped birds was closer to 1 than that of non-genotyped birds. In contrast,
for BW traits in C, by, of non-genotyped birds was closer to 1. With the PBLUP model, EBV of BW traits in
B were deflated, but EBV of BW traits in C were inflated.

With the ssGBLUP model, psr of genotyped birds was higher than for non-genotyped birds. When the
model was changed from PBLUP to ssGBLUP, pg, increased for both genotyped birds and non-genotyped
birds. However, the increase in ps was much larger for genotyped birds than non-genotyped birds. For
example, the relative increase in pgr was from 31.7-73.1% for genotyped birds and from 6.3-14.9% for
non-genotyped birds. Statistic dg, of genotyped birds was lower with ssGBLUP than PBLUP model whereas
dgr of non-genotyped birds was higher with ssGBLUP. When the model was changed from PBLUP to

ssGBLUP, by of genotyped birds increased for B traits and decreased for C traits, but b, of non-genotyped
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birds decreased for B traits and increased for C traits. With ssGBLUP model, EBVs were deflated for all
traits.

Regardless of model used, ps of traits in B was lower and d¢r was higher than in C. For example, with
PBLUP, p;r of non-genotyped birds was 0.59 for BW5.B and 0.68 for BW5.C, and d;, of non-genotyped
birds was -0.081 for BW5.B and -0.052 for BW5.C.

2.4. Discussion

Genetic parameters for male and female BW at 5 and 6 week of age raised in bio-secure breeding (B) or
commercial production (C) environments were estimated using a PBLUP multivariate model. A
multivariate ssGBLUP model was used to predict EBV of BW traits in B and C. Cross-validations were
carried out to assess population accuracy, bias and dispersion of EBV predictions of C traits for genotyped
and non-genotyped birds in B when the PBLUP and ssGBLUP models were used.
Genotype-by-environment interaction

The difference between B and C environments is mainly determined by hygienic conditions. The strict bio-
secure conditions of B environment are regulated to prevent worldwide spread of diseases to production
farms and to avoid the risk of losing the purebred lines [1]. In contrast, the less strict hygienic conditions
of C can result in higher incidence of diseases. For example, purebred birds in large commercial breeding
companies are typically disease-free from Salmonellae, Mycoplasma, Leucosis, Avian Influenza and
Newcastle disease (Hiemstra and ten Napel, 2013). However, these diseases remains chronic problems in
many commercial poultry flocks (De Boeck et al., 2015; EFSA, 2017; Shamim et al., 2015). The difference
between B and C may be also related to diet and litter management. Commonly wood shavings are used
that are loose, dry, free-flowing in B environment (Hiemstra and ten Napel, 2013). The better litter
management lead to substantially lower incidence of food-pad dermatitis in birds of B environment
compared to C environment (Kapell et al., 2012). Several indications of GXE due to the difference between
B and C environments can be seen in our study such as changed average of performance, re-rankings,
heterogeneous variances and different heritability of traits recorded in B and C environments. At the same
age, the mean BW in B was higher than the mean BW in C, but the standard deviation of BW in B was
lower than for BW in C. This finding is in agreement with Kapell et al. (2012) where higher means and
lower standard deviations were found for BW in B than in C for four different purebred lines of broiler
chicken raised in B and C environments. In N'Dri et al. (2007), slow growing broiler chicken raised in B also

had significantly higher BW performance than birds raised in C.
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In our study, estimates of genetic correlation between BW measured in B and C environments were 0.479-
0.535. Statistically, re-ranking refers to genetic correlation different from 1, but in practice, re-ranking is
commonly considered important in breeding programs when the correlation is less than 0.8 (Robertson,
1959). The genetic correlation in our study refers to a significant re-ranking of birds in B and C
environments. The significant re-ranking was also found in Kapell et al. (2012) with the genetic
correlations between B and C of 0.46, 0.54, 0.56 and 0.69 for their four studied lines. In N'Dri et al. (2007),
the genetic correlations were 0.74-0.76. In Lwelamira (2012), the genetic correlation between BW traits
of indigenous chicken measured in breeding station and village environments was 0.75-0.76. However,
the estimates in Lwelamira (2012) and N'Dri et al. (2007) might be slightly overestimated because
permanent environmental maternal effect was not included in the model and the datasets had small
number of records in only one generation.

With the more challenging environment of C, the higher variances of C traits than B traits were expected,
but in our study, the heritability of C traits was also higher than that of the corresponding B traits. Kapell
et al. (2012) found that in three studied lines, the heritability of C trait (0.32-0.34) was lower than B trait
(0.36-0.40) for BWS5, while in the remaining line, the heritability of the trait in C (0.36) was higher than the
trait in the B environment (0.32). N'Dri et al. (2007) found heritability of C traits was 0.54-0.56, and
heritability of B traits was 0.56. In addition, as week of age increased from 5 to 6, heritability of B traits
tended to increase, but heritability of C traits decreased. There is no clear explanation to the opposite
trend of the two traits. As age increased from 5 to 6 weeks, the traits measured in B and C environments
had lower genetic correlation. To our knowledge, there are no prior studies on poultry having reported a
trend in the genetic correlation between B and C environments with increasing age.

The production environment also had effects on the maternal environmental effects. Permanent
environmental maternal correlations between BW measured in B and C environments were significantly
below unity. Permanent environmental maternal effect of C traits became smaller with increasing age
from 5 to 6 weeks. In contrast, permanent environmental maternal effect of B traits tended to increase
as age increased from 5 to 6 weeks. With increasing age of poultry, the reduction of the permanent
environment maternal effect on BW can be found in several studies (Barbieri et al., 2015; Dana et al.,
2011; Jasouri et al., 2017; Maniatis et al., 2013). However, some studies (Begli et al., 2016; Mebratie et
al., 2017) also show increasing trends around the age of 5-6 week. Begli et al. (2016) showed that the ratio
of the permanent environmental maternal variance to the total phenotypic variance for BW increased

slightly from 0.10 at week 2 t0 0.12 at week 6, and then reduced to 0.07 at week 10. Mebratie et al. (2017)
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showed that the maternal effect on BW of broiler chicken raised in B had an increasing trend as birds aged
from t-7, t-4 to t days.

Effects of the production environment on age-by-genotype interactions were not clear, but the genetic
correlation between BW5 and BW6 tended to be lower for B traits than C traits. Effects of the production
environment on sex-by-genotype interaction related mainly to the relative difference in variances
between male and female BW traits because the genetic correlation between male and female BW within
each environment was assumed to be 1 in the multivariate model (2.2). This assumption came from the
preliminary results that sex-by-genotype interaction only led to the scaling effect between male and
female BW.

With a strong GxE interaction found in this study, selection for performance under commercial conditions
will greatly increase response to selection for BW in broiler breeding programs when birds are phenotype-
tested in both B and C environments (Chu et al., 2018; Mulder and Bijma, 2005). In contrast to the
breeding programs that test birds in B environment only, the breeding programs that test birds in both
the two environments can exploit the re-ranking of birds in B and C, the larger genetic variances of C traits
(than B traits) and the higher heritability of C traits (than B traits). Chu et al. (2018) shows that with the
genetic correlation between B and C traits of 0.5, the scheme that had 70% and 30% birds placed to B and
C environments, respectively, for phenotype testing had substantially larger genetic gains than the
scheme that had all birds tested in B environment.

Benefits of genomic information to prediction of breeding values

The increase in population accuracy of EBV for genotyped birds has been shown in number of studies
(Aguilar et al., 2010; Aguilar et al., 2011; Andonov et al., 2017; Chen et al., 2011a; Chen et al., 2011b;
Christensen and Lund, 2010; Christensen et al., 2012; Legarra et al., 2009; Lourenco et al., 2013; Misztal
et al., 2009), in which the population accuracy was reflected by correlation between EBV and corrected
phenotypes. Simulation studies also showed that correlations between true breeding values and genomic
EBV of genotyped individuals were significantly higher with ssGBLUP than PBLUP models (Andonov et al.,
2017; Christensen and Lund, 2010; Lourenco et al., 2013; Putz et al., 2018). Applications of ssGBLUP to
improve accuracy of selection have been well-documented in studies on chicken (Alemu et al., 2016; Chen
et al., 2011a; Chen et al., 2011b; Momen et al., 2017; Wolc et al., 2011), cattle (Gao et al., 2018; Lee et
al., 2017; Li et al., 2016; Lourenco et al., 2015) and pig (Christensen et al., 2012; Guo et al., 2015; Putz et
al., 2018; Xiang et al., 2016). However, the extent of benefits from genomic information for the accuracy
of prediction has not been reported for breeding programs where sib-testing is used due to GxE

interactions. In these breeding programs, the ultimate goal is to increase genetic gains of performance in
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Cfor selection candidates resided in B, thus only accuracy of EBVs of BW traits in C matters. Our discussion
focus primarily on accuracy of EBVs of C traits for the selection candidate birds in B that do not have own
record of the C traits.

The statistics of pgr, dir and bg, were indicators of population accuracy, bias and dispersion of EBV,
respectively (Legarra and Reverter, 2018). Statistic ps, is in ratio of accuracies. Prediction of EBV is
expected to be more accurate when ps- was higher. Statistic ps is expected to be always lower than 1.
Prediction of EBV is more biased when the value of df, deviates further from 0. The EBV would be more
inflated or deflated when the value of b, deviates further from 1. The use of combined pedigree and
genomic information in ssGBLUP increased substantially the population accuracy of EBV for genotyped
validation birds compared to the use of only pedigree in PBLUP. Genomic information explains better
relationships between individuals compared to pedigree information. Thus genomic information can be
beneficial for an efficient “flow” of information from C to validation birds in B in several ways. With
pedigree information, only up to 50% of the total genetic variance of the C traits is exploited for the
prediction of EBV of the candidates in a GxE sib-test. With genomic information, the percentage can be
higher because the realized genomic relationships between full-sib individuals can range from 0.27 t0 0.70
for broilers (Hawken et al., 2015). The prediction of PBLUP for validation birds typically treats phenotypic
performances of their full-sibs in C as an average information whereas phenotypic performances of the
full-sibs in C are treated individually in genomic prediction of EBV. In addition, information from related,
more distantly related and even unrelated animals can be exploited in genomic prediction when genomic
markers are in linkage disequilibrium with genotypes at casual loci (Daetwyler et al., 2013). The Mendelian
sampling terms are exploited better with genomic information than pedigree information (Daetwyler et
al., 2013; Daetwyler et al., 2007; Hayes et al., 2009), and thus accuracy of prediction from genomic
information increases compared to the accuracy from pedigree information.

Most studies (Aguilar et al., 2010; Aguilar et al., 2011; Andonov et al., 2017; Chen et al., 2011a; Chen et
al., 2011b; Christensen and Lund, 2010; Christensen et al., 2012; Legarra et al., 2009; Lourenco et al.,
2013; Misztal et al., 2009) reported regression slope of corrected phenotypes on EBV as bias, and they
showed an improvement in bias with genotyped animals. However, methodology of cross-validation from
those studies is different from our study on e.g. validation animals and definition of bias. In our study,
when the model was changed from PBLUP to ssGBLUP, dispersion or regression slope of EBV¢ on EBV, for
genotyped birds was improved with B traits, but not C traits, and bias or difference in mean between EBV;
on EBV, for genotyped birds was improved with both B and C traits. In literature, when the model was

changed from PBLUP to ssGBLUP, an additional accuracy of EBV was also reported for non-genotyped
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individuals (Christensen et al., 2012; Gao et al., 2018; Guo et al., 2015; Xiang et al., 2016), but bias of
prediction of these birds increased (Gao et al., 2018; Guo et al., 2015; Xiang et al., 2016). The cross-
validation in these studies was based on corrected phenotypes and EBV. Nonetheless, the results are in
agreement with our study, showing that accuracy of EBV of non-genotyped birds increased, but bias of
the prediction also increased.

Validation groups of genotyped and non-genotyped birds had different population accuracy of EBV even
with the PBLUP model, which might be related to non-random division of validation birds into the groups.
In our dataset, mean of BW records in B was higher for genotyped birds than non-genotyped ones, but
the standard deviation of B records was lower for genotyped birds than non-genotyped ones. All parents
had genotyping information. This indicated that a selective genotyping strategy was applied for birds in B.
Within validation birds, the genotyped ones that are from the top of the distribution have higher
relationships between individuals than the non-genotyped birds. From the numerator relationship matrix
that was calculated from all animals in the pedigree, the average additive genetic relationship was 0.024
between validation genotyped birds and 0.019 between validation non-genotyped birds. The higher
average relationships between genotyped animals lead to less variation in EBV estimated from PBLUP,
and thus lower population accuracy for genotyped birds.

Methodology

When genomic information was utilized and evaluated in a GxE sib-testing breeding program for broilers,
several challenges were faced in our study. Estimation of variance components was challenging with a
high number of genotyped birds, computation-demanding multi-trait models, and selective genotyping.
Cross-validation strategies were also not clear for the situation where selection candidates reside in B and
do not have C performance. Cross-validation is commonly based on correlation between phenotypes that
are corrected for fixed effects from PBLUP model using the full dataset and EBV that are estimated from
PBLUP or ssGBLUP model using the reduced dataset (Christensen et al., 2012). However, corrected
phenotypes for C traits were not available for validation birds in B. To deal with those challenges, our
study used PBLUP model for estimation of variance components. Statistics of EBV that were estimated
from full and reduced data for validation birds in B were used for validation measures e.g. indicators of
population accuracy, bias and dispersion of EBV following the derivation of Legarra and Reverter (2018).

Strictly, the statistic ps-is not population accuracy, but a direct indicator of population accuracy in ratio of
accuracies (Legarra and Reverter, 2018). The statistic psr describes the increase in population accuracy of
EBV from reduced data to full data. We observed higher values of p¢, for B traits than C traits, but these

values are not comparable for different traits. Without realizing the ratio form of statistic ps,, Putz et al.
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(2018) reported a poor performance of this statistic pgr in estimating accuracy of EBV. To estimate
population accuracy from the statistic ps,, we need prediction error variances and covariances, and
genetic variance at equilibrium in a population under selection (Legarra and Reverter, 2018). However,
instead of transforming to population accuracy, the statistic pg, can be used directly for comparisons of
accuracy between competing statistical models or between subsets of animals in a population. Analytical
properties of p¢,, di- and by were presented in Legarra and Reverter (2018). Using data of a simulated
population and empirical data of a Brahman beef cattle population, the authors showed very good
agreement between the common cross-validation that is based on corrected phenotypes and EBV
estimated from reduced dataset and the new cross-validation that is based on EBV estimated from
reduced and full datasets.

The statistic pg is an indicator of population accuracy, not an indicator of individual accuracy (Legarra and
Reverter, 2018). Individual accuracy or model-based accuracy that could be obtained from prediction
error variances was not used for model comparisons in our study, because obtaining prediction error
variances was not possible for the ssGBLUP model. In addition, individual accuracy reflects “the credibility
of anindividual EBV” or “a measure of the standard error of prediction of an individual EBV” (Bijma, 2012).
Population accuracy reflects “the correlation between true breeding values and EBV among the
candidates for selection, which is a property of a population, not of an individual” (Bijma, 2012). For
example, when only parent average is known, individual accuracy of full-sibs is up to 0.71. However, the
predicted differences between full sibs have zero accuracy, or population accuracy among full-sibs is zero
because full-sibs have the same parent average. Individual accuracy should be used for individual
decisions, but population accuracy should be used for the choice of model and the assessment of genetic
gain (Legarra and Reverter, 2018).

Sex-by-genotype interaction has been investigated for different traits in broiler chicken (Mebratie et al.,
2017; Mignon-Grasteau et al., 2000; van der Heide et al., 2016), other poultry (Chapuis et al., 1996;
Mignon-Grasteau et al., 1998), pig and cattle (Retallick et al., 2015; van der Heide et al., 2016). These
studies showed that variances between sexes differed by a factor of 2 or more, but very little re-ranking
between sexes was found with genetic correlations between male and female traits above 0.85. With high
genetic correlation, the implementation of bivariate model treating sexes as different traits could
encounter convergence problems in variance component estimation. However, when the existence of
heterogeneous variance for sexes were not accounted for in the model, a serious re-ranking could occur
and thus lead to reduced response to selection (Cardoso et al., 2007). Failure to account for different

variances between sexes could also lead to bias in variance components and predicted breeding values
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(Thompson, 2008). Therefore, a relatively simple standardization was applied to male and female records
to model heterogeneous variances between sexes without affecting convergence of the model. This
standardization also has been applied in Chu et al. (2019).

Data on BW5-6 of birds in C for our study is the same data as for Chu et al. (2019), but the models used
were different. Permanent environmental maternal effects in our study were higher than those reported
in Chu et al. (2019). The six-trait model in Chu et al. (2019) used BW1-2 and weekly weight gains from
week 2-6 to model BW1-6, and this linear transformation led to the same inferences, but have much
better convergence properties. However, because of the trade-off between the complexity of the six-trait
model and convergence challenge, permanent environmental maternal effects were not included into the
model for weekly weight gain from 5 to 6. Therefore, Chu et al. (2019) might overestimate direct additive
genetic effects and underestimate the maternal effects. The model used in our study was less complex
with four-trait model. In addition, to facilitate convergence, our study had slightly lower convergence
criteria from the recommended value of 10 (Madsen and Jensen, 2013) to 107 for the Frobenius norms
of the update vector and the gradient vector. Therefore, to ensure the global maximum likelihood of the
model were reached, estimation of variance components with the PBLUP models were re-run several

times with different starting values.

2.5. Conclusions

Genetic parameters were estimated for male and female body weight (BW) at 5 and 6 week of age raised
in breeding bio-secure (B) and production commercial environments (C). Several indications of interaction
between genotype and testing environment (B and C) were found including different average
performance, correlations significantly lower than 1, heterogeneous variances and different heritability
for B and C traits. In addition, genomic information on birds in both B and C was used for prediction of
EBV of birds in B for BW traits measured in B and C environments. To evaluate the prediction, cross-
validation statistics of EBV were estimated, namely population accuracy, bias and dispersion of EBV from
reduced and full datasets. It was found that the use of combined pedigree and genomic information in
ssGBLUP substantially increased population accuracy of EBV for genotyped birds compared to the use of
only pedigree in PBLUP. The increase in accuracy of EBV also occurred for non-genotyped birds, but bias
of EBV prediction increased for non-genotyped birds. In summary, the difference between B and C
environments leads to a strong GxE interaction with genetic correlation of 0.479-0.535 between BW traits
of broilers measured in B and C environments. In order to ensure maximum genetic gain under

commercial conditions, breeding programs should establish recording systems under commercial
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circumstances to provide their customers with genotypes well adapted to the commercial environment.
Compared to the use of pedigree only, the use of combined pedigree and genomic information increases

substantially population accuracy of EBV for genotyped birds that resides in B.

Appendix:

Standard errors of the statistics psr, der and bg, were calculated. Linear model for vector EBV¢ (called ﬁfi in
scalar notation) on explanatory variable of vector EBV; (called i,; in scalar notation) was assumed:
ﬁfi =a+ bf,rﬁrl. + ¢;, where j =1, 2, ... n; n is the length of vector EBV; or EBV,; a is the constant

intercept; by, is the regression slope; and ¢; is the residual term.

The standard error of the estimated regression slope (b}}) is:
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e DN APRH

?:1(ari - ﬁr)z
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The standard error of the estimated correlation (g5 ,-) between ﬁfi and i, is:

SE(f7) =

The standard error of the difference (d/f}) between ﬁ'fi and i, ;:
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3 Breeding for broilers under commercial production environment

Abstract

Background: A breeding program for commercial broiler chicken that is carried out under strict biosecure
conditions can show reduced genetic gain due to genotype by environment interactions (GxE) between
bio-secure (B) and commercial production (C) environments. Accuracy of phenotype-based best linear
unbiased prediction (BLUP) of breeding values of selection candidates using sib-testing in C is low.
Genomic prediction based on dense genetic markers may improve accuracy of selection. Stochastic
simulation was used to explore the benefits of genomic selection in breeding schemes for broiler chicken
that include birds in both B and C for assessment of phenotype.

Results: When genetic correlations (ry) between traits measured in B and C were equal to 0.5 and 0.7,
breeding schemes with 15, 30 and 45% of birds assessed in C resulted in higher genetic gain for
performance in C compared to those without birds in C. The optimal proportion of birds phenotyped in C
for genetic gain was 30%. When the proportion of birds in C was optimal and genotyping effort was
limited, allocating 30% of the genotyping effort to birds in C was also the optimal genotyping strategy for
genetic gain. When r, was equal to 0.9, genetic gain for performance in C was not improved with birds in
C compared to schemes without birds in C. Increasing the heritability of traits assessed in C increased
genetic gain significantly. Rates of inbreeding decreased when the proportion of birds in C increased
because of a lower selection intensity among birds retained in B and a reduction in the probability of co-
selecting close relatives.

Conclusions: If GxE interactions (ry of 0.5 and 0.7) are strong, a genomic selection scheme in which 30%
of the birds hatched are phenotyped in C has larger genetic gain for performance in C compared to
phenotyping all birds in B. Rates of inbreeding decreased as the proportion of birds moved to C increased
from 15 to 45%.

Keywords: GXE; breeding program; genomic selection; commercial broiler chicken; stochastic simulation

3.1. Introduction

In commercial broiler chicken breeding companies, purebred lines are kept under strict bio-secure
environmental conditions (B) to avoid the risk of losing the lines and to prevent worldwide spread of
diseases (Hiemstra and ten Napel, 2013). In contrast, birds in the commercial production environment (C)
are living under less strict hygienic conditions where diseases might cause poor performance, death or
dysfunction of birds. For example, diseases caused by pathogenic mycoplasma are still chronical problems

in many commercial poultry flocks (Michiels et al., 2016) whereas these pathogens are completely
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eradicated in giant commercial breeding companies like Aviagen and Cobb-Vantress (Hiemstra and ten
Napel, 2013). The differences between B and C environments can affect phenotypic expression of traits,
which might change genetic ranking of breeding birds in the way that the best individual in B might not
be the best in C, i.e. genotype by environment interaction (GxE) is expected in this situation. Genotype by
environment interactions due to differences between B and C has been found for a number of traits
(Kapell et al., 2012; Long et al., 2008; N'Dri et al., 2007; Ye et al., 2006). Kapell et al. (2012) reported
substantial GxE for bodyweight and foot-pad dermatitis when phenotypes of purebred broiler chicken
were recorded in both B and C. They found that genetic correlations (rg) between traits measured in B and
C were 0.46-0.69 for body weight and 0.78-0.82 for foot-pad dermatitis. N'Dri et al. (2007) found that r,
were 0.74-0.82 for body weight and 0.84-0.93 for meat quality traits. Long et al. (2008) and Ye et al. (2006)
also found significant GxE interaction for body weight, mortality and other performance traits measured
in B and C environments. Therefore, a breeding program carried out under disease-free condition of B
might show reduced genetic gain due to GxE, since only gains obtained in C have substantial economic
value.

To improve the performance of commercial animals in the presence of GxE, classical method uses sib-
testing for phenotypes in both B and C environments and pedigree-based BLUP for prediction of breeding
values. This method has been demonstrated in pig and cattle breeding programs (Bijma and Arendonk,
1998; Jiang and Groen, 1999; Mulder and Bijma, 2005). These studies assumed a fixed number of animals
in B, but did not limit the number of animals in C. They found that a higher genetic gain can be achieved
with phenotypes from both B and C environments. However, when r; was 0.9, the extra genetic gain was
small and large amounts of information from C were needed in order to significantly increase genetic
gains. These studies did not investigate the situations where number of animals available for phenotype
testing is limited. In broiler chicken breeding programs, the number of hens mated to a rooster is limited,
and practical facilities only allow for a limited number of offspring per hen to be hatched at the same time.
In addition, in such program, birds in C cannot be brought back to B environment due to bio-security
restrictions, and thus cannot be selection candidates but only be used as sources of information for
relatives (sibs) in B. In the classical method of sib testing using pedigree, the prediction of breeding values
for selection candidate birds in B has low accuracy due to lack of information on Mendelian sampling
terms.

Alternatively, genomic prediction based on dense marker genotypes can be an interesting option due to
better modeling of relationships between individuals, and a better prediction of the Mendelian sampling

terms (Daetwyler et al., 2007; Hayes et al., 2009). It has been illustrated that accuracy of selection can be
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improved considerably by genomic selection using high density markers (Daetwyler et al., 2007,
Meuwissen et al., 2001). Genomic selection applied in a pig breeding scheme combining information of
performances from purebreds and crossbreds can significantly increase genetic gain and lower rate of
inbreeding compared to the scheme using only performance from purebreds only (Dekkers, 2007). The
modeling of traits expressed in purebreds and crossbreds is similar to the GXE modeling of a trait
expressed in B and C environments. In another deterministic simulation study by van Grevenhof and van
der Werf (2015), genomic selection was used to investigate genetic gain of breeding programs using
purebred and crossbred records. The variables investigated were proportion of purebred versus crossbred
animals in the reference population, rg between purebred and crossbred traits and economic weight on
performance of purebreds and crossbreds. The study showed that with rg of 0.5 and 0.7, increasing
proportion of crossbreds from 0-100% in the reference population increased genetic gain of the breeding
program, but with an rg of 0.9, inclusion of crossbred animals in the reference population reduced genetic
gain. However, to our knowledge, no studies have explored genomic selection breeding program for sib
testing of broiler chicken.

Proportion of birds phenotyped in B and C and the level of GxE interactions are important factors to
consider in designing broiler chicken breeding schemes (Bijma and Arendonk, 1998; Jiang and Groen,
1999; Mulder and Bijma, 2005). Birds in C provide information on animal performance in C, but given a
limited number of birds hatched in a selection round, a high proportion of birds in C would reduce
selection intensity among selection candidates remaining in B. Therefore, the key to improve genetic gain
of the breeding schemes is to find the best compromise between selection intensity among selection
candidates and phenotypes for the target environment. GxE also has direct effects on the optimum design
of the breeding schemes. The genetic correlation between B and C traits represents the magnitude of GxE
interaction, but different heritability of the traits in B and C can be also an indication of GxE.

The objective of this stochastic simulation study was to compare genomic selection broiler chicken
breeding schemes when all selection candidates are kept in B environment and a proportion of birds
hatched are phenotyped in C environment. Three factors were investigated: 1) proportion of birds in B
versus C, 2) different genetic correlations between traits measured in B and C (GxE) and 3) different
heritability of the trait assessed in C. In addition, sensitivity simulations were carried out to investigate

the effects of genotyping strategy and breeding population structure.

3.2. Methods

Breeding schemes
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The breeding schemes were simulated in 3 stages comprising 1) generating a historical base population;
2) emulating previous breeding programs that used pedigree BLUP for selection; and 3) applying genomic
selection in the breeding schemes with birds in B and C environments for phenotype testing. The historical
population was simulated using QMSim (Sargolzaei and Schenkel, 2009) and breeding schemes for the
second and third stages were simulated using the stochastic simulation program ADAM (Pedersen et al.,
2009).

All the breeding scenarios simulated were derived from a common base population that was created
through 2 steps as described in Alemu et al. (2018). The first step was to create a historical population.
The simulated genome consisted of 26 chromosomes which had chromosome length ranging from 5 to
195 cM with a total length of 916 cM, closely emulating the major chromosomes in chicken (Alemu et al.,
2018). In the first historical generation, the number of alleles for all markers and QTL was 2 with equal
frequency of 0.5. The population was simulated for 950 historical generations in order to establish
mutation-drift equilibrium (Meuwissen et al., 2001). Over the 950 generations, the population was
gradually expanded in size from 1100 to 2400 animals with equal number of individuals from both sexes.
A recurrent mutation rate of 2 x 10° was simulated for both markers and QTL. In descendants, markers
and QTL were inherited from their parents following standard principles of Mendelian inheritance
allowing for recombination (Mendel, 1866). Recombination per 100 cM was sampled from a Poisson
distribution with scale parameter A =1. The position of recombinations along a chromosome were drawn
from a uniform distribution. From the historical population, a base population was created, in which each
individual had 40k neutral marker loci and 2k QTLs. The marker and QTL were randomly drawn from
segregating loci with a minor allele frequency of at least 0.05; and they were randomly distributed along
the genome. From the common base population, birds were randomly chosen to be parents of the time
steps 1-5. A time step is a selection round, in which offspring is born and tested for phenotypes, and
selection is carried out. In time steps 6-8, the selected birds from time steps 1-3 were mature enough to
be parents, but the remaining number of parents was from the base population to make up the parental
group of 16 roosters and 160 hens in a time step. From time step 9 and onwards, the parents were no
longer from the base population, but they were selected birds from previous time steps. Different genetic
parameters were used to simulate traits for birds at the base population.

The simulated breeding schemes had overlapping generations, and in each generation, selection was
carried out at several time steps. A generation was equivalent to 6.5 time steps. At each time step, a

parental group of 16 roosters and 160 hens were randomly mated to produce 1280 offspring birds with 8
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offspring per hen. Parents produced offspring for several consecutive time steps. Sex ratio among the
offspring was 1:1 between males and females. The breeding schemes were simulated for 40 time steps.
In the first 20 time steps, all 1280 birds hatched in each time step were phenotyped in the B environment
only, and all the birds were selection candidates. Selection during this stage was based on pedigree-based
BLUP EBVs estimated from records in B only. This stage was to mimic the situation of breeding programs
in which broiler chicken have been selected for a certain period using records in B. All simulated breeding
schemes had the same designs in the first 20 time steps.

From time step 21- 40, the 1280 birds hatched in each time step were all genotyped and allocated to
either B or C environment for phenotype testing. The birds, therefore, had performance records in either
B or C, and the birds in C were siblings of birds in B. The number of birds in B or C depended on the scenario
of the breeding schemes. After genotyping and assessment of phenotype, single step GBLUP (ssGBLUP)
models (Aguilar et al., 2011; Christensen and Lund, 2010) were used in each time step to estimate GEBVs
of all birds. Instead of GBLUP, ssGBLUP was used to utilize all pedigree and phenotype information of birds
from the previous time steps 1-20 when genomic information was not available. Based on GEBV rankings,
breeding parents were always selected from birds in B. Due to bio-security restriction, the C birds can’t
be used as candidates for selection.

Factors investigated

The factors investigated in this study were the genetic correlation (rg) between trait records obtained in
B and C, heritability of C trait and proportions of birds in B versus C (Table 3.1). The genetic factors of r
and heritability were used for trait simulation of birds at the base population. Birds hatched at each time
step 21-40 were either in B or transferred to C at different proportions for phenotype assessment. On
average, selection intensity for breeding schemes with 0, 15, 30 and 45% birds transferred to C was 2.82,
2.77, 2.70 and 2.62, respectively, for males, and selection intensity was 1.97, 1.90, 1.81 and 1.69,
respectively, for females.

Table 3.1: Variation of factors in the breeding programs simulated

Investigated factors Levels
Proportion of birds transferred to C (%) 0; 15; 30; 45
Heritability of B trait (trait expressed in B environment) 0.28
Heritability of C trait (trait expressed in C environment) 0.15; 0.25; 0.35
Genetic correlation (rg) between traits measured in B and C 0.5; 0.7; 0.9

In a broiler-breeding program, the overall breeding goal includes a number of traits with different

economic weights. However, in this study, to simplify, only a growth performance-like trait was
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considered, as it is the primary trait in the breeding goal for all broiler-breeding companies (Hiemstra and
ten Napel, 2013). The simulated trait expressed in B and C environments was similar to growth
performance in the two environments, and thus its genetic parameters were simulated based on
parameters for growth performance in B and C from studies on broiler chicken (Kapell et al., 2012; Kause
et al., 2012; Momen et al., 2017; N'Dri et al., 2007). The trait expressed in B environment was defined as
B trait, and the trait expressed in C environment was defined as C trait.

Combination of the three factors: proportions of birds in C (4 levels), heritability of C trait (3 levels) and r,
between B and C traits (3 levels) yielded a total of 36 different scenarios to be simulated. Of the three
investigated factors, rg and heritability of C trait are properties of a population, which only to a limited
extent can be manipulated by breeders. On the other hand, proportion of birds in C can be altered,
resulting in different breeding schemes. Schemes without birds phenotyped in Cincluded 9 scenarios, and
the remaining 27 scenarios had a proportion of the birds transferred to the C environment.

Trait simulation

The traits expressed in B or C had equal means of 0 and equal genetic variances of 1 in the base population.
Theoretically, GXE due to differences between B and C can result in different ranking of breeding values
of birds in B and C, different heritability in the two environments, and different genetic variance in the
two environments (Lynch and Walsh, 1998). In this simulation, the two first effects were accounted
because GxE was modelled through rg and heritability of C trait. However, different genetic variation was
not modelled, but was assumed to be identical in B and C. This is because heterogeneity of genetic
variance does not change rankings between selection candidates when the candidates are located in a
single environment, their sibs are in another environment, and performances in the two environments
are treated as two correlated traits (Sae-Lim et al., 2013). Non-additive genetic effects were not included
in simulation of the studied traits.

The phenotype of the trait expressed in B or C for the i bird in the base population, y;, was calculated as
yi = gi + e, where g; is the true breeding value (TBV) of the /" bird in the base population for a phenotypic

record in B or C, and e is the environmental term for a phenotypic record in B or C. Each animal had TBVs

a
for both B and C traits. Calculation of the TBVs were from 2000 QTLs. The effects of QTL [ai] were scaled

1 r
to achieve an initial genetic covariance matrix of [r f] in the base population. All additive genetic
g

variance and covariance were explained by the additive QTL variance and covariance. During simulation
of breeding scenarios, effects of each QTL was kept constant, but allele frequency of each QTL might

change due to selection and drift.
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The environmental term for both B trait and C trait was drawn from a random normal distribution N/0,(1-
h?)/h?], where h? is heritability of B and C traits, respectively. Environmental variance was kept constant
through the simulations, regardless of the changes in additive genetic variance. Environmental covariance
between B and C traits was 0 as each bird could have phenotypic records measured in only one
environment, either B or C.
Selection criteria
It was assumed that the breeding goal had an economic value of 1 for performance of birds in C and an
economic value of 0 for performance of birds in B. The breeding goal was applied for selection from time
step 21-40 and for assessing genetic merit of all breeding schemes. However, during the period of time
steps 1-20, to emulate previous breeding program, the selection index had economic value of 1 for
performance of birds in B and 0 for performance of birds in C.
Selection was based on bivariate model:

e
el =[5 sl loel [zl + [ e
where yg and yc are the vectors of phenotypic records of birds in B and C; bg and bc are vectors of fixed
effects of time step for the records in B and C; gs and gc are vectors of breeding values of the B and C
traits; Xg and Zg and Xc and Z¢ are incidence matrices associating the fixed effects and the breeding values
to the phenotypic records in B and C; eg and ec are vectors of random residuals in B and in C, respectively.

0 (13%23 0

e
The model (3.1) assumed [e]z]~MVN[0, 0 L.o2
cOec

>], where Iz and Ic are identity matrices

corresponding to birds in B and C environments; 62 and 2. are environmental variances of B and C
traits, respectively.

For time steps 1-20, selection was based on EBVs estimated from the bivariate model (3.1) using the
pedigree-based BLUP approach (Henderson, 1975) although there were no phenotypic records for C trait.
In the BLUP model, the breeding values were assumed to follow a multivariate normal distribution
MVN[O,A ® Vg], where A is the matrix of additive genetic relationships based on the pedigree; Vg is a
genetic covariance matrix of B and C traits as a 2x2 matrix; & is the Kronecker product. The pedigree
relationship matrix was constructed from pedigree traced back to the base population.

For time steps 21-40, selection was based on GEBVs estimated from the bivariate model (3.1) using the

ssGBLUP approach (Aguilar et al., 2011; Christensen and Lund, 2010) for all scenarios. In the ssGBLUP
model, it was assumed [gi] ~ MVN[O, HR Vg], where H is a combined matrix of pedigree relationship

matrix A and genomic relationship matrix with weight value w = 0.25 (Aguilar et al., 2011; Christensen and
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Lund, 2010) on the pedigree relationships. The genomic relationship matrix was constructed based on
marker data (VanRaden, 2008).

In each time step, EBVs or GEBVs were predicted for all individuals after all records in that time step were
obtained using the model above. Computations were carried out using the DMUS5 module of DMU package
(Madsen and Jensen, 2013). The prediction in each time step, for example time step 40, used all
information (phenotypes, genomic data and pedigree) of all individuals from time step 1 till time step 40.
Therefore, although all birds were genotyped in each of the time step 21-40, ssGBLUP was performed for
genetic evaluation in order to utilize the phenotypic records from time step 1-20. Selection of birds to
become parents were carried out right after genetic evaluation even though birds were not yet sexually
mature at the time of selection.

Sensitivity analysis

A sensitivity analysis was carried out to compare genetic gain of breeding schemes that used different
genotyping strategies and number offspring per hen. In the main simulation study, we assumed that all
birds were genotyped when genomic selection was introduced in the breeding program. To ensure the
general validity of our results, extra simulations were carried out to investigate sensitivity when not all
birds were genotyped and/or the number of offspring per hen was increased.

The breeding programs used in sensitivity analysis was similar as described in the main simulation study
above, but with a few modifications (Table 3.2). For all cases investigated, in the sensitivity analysis, the
level of GXE were limited to only one case where rg was 0.7 and heritability of C trait was 0.15. In each
time step, only 50% of the total number of birds hatched in each time step was genotyped. Birds were
selected randomly for genotyping. In sensitivity analysis simulation 1 (SS1), only 50% of birds in B and C
were genotyped, and number of offspring per hen was changed. Number of offspring was 8 or 10 birds
hatched from each hen in each time step. Therefore, in total, SS1 had 8 scenarios that had 1200 or 1600
birds with 0, 15, 30 and 45% birds in C. In sensitivity analysis simulation 2 (SS2), different genotyping
strategies were designed for the breeding schemes with 15 and 30% birds in C. The strategies included
different proportions of genotyping allocated to the birds in B versus C. Number of offspring per hen was

8 in each time step.
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Table 3.2: Sensitivity analysis 1 and 2 (SS1 and SS2) simulating breeding schemes with varied proportion
of birds in C using different genotyping strategies and total number of birds hatched for phenotype testing

in each time step.

Variables investigated ss1 §S2
Total number of birds

hatched for 1280 | 1600 1280
phenotyping

Total number of 640 | 800 640

genotyped birds

Scenario PO P15 - P30 - P45 - PO . P15 . P30 . P45 | GC15 - GC30 : GC15 - GC30 - GC45 - GC60
Number of birds moved 0 . 192 . 384 . 576 . O . 240 . 480 . 720 | 192 . 192 . 384 . 384 . 384 . 384
to C (proportion of birds | oo = (15%) * (30%)  (45%) © (0%) © (15%) © (30%) © (45%) | (15%)  (15%) © (30%) ° (30%)  (30%) ° (30%)
hatched) : : : : : : : : : : : :

Number of birds in C 0 © 96 - 192 - 288 ° 0 - 120 - 240 - 360 | 96 - 192 - 96 - 192 - 288 - 384

genotyped (proportion | o) - (155 - (30) © (a5%) © (0%) © (15%)  (30%) © (45%) | (15%) © (30%) ° (15%) * (30%) ° (45%) ° (60%)
of genotyping) : : : : : : : : : : : :

Simulation outputs

For each scenario, 50 replicates were simulated. For each replicate, genetic merit (G;) at time step t was
the average of TBVs of the C trait of all birds hatched in time step t. The difference between genetic merits
at time step 31 (Gs;z) and 40 (G4o) was used to compute rate of genetic gain per time step (4G):

AG = (Gao - G31)/(40 - 31) (3.2)

The inbreeding coefficient of each individual was the proportion of homozygous identical-by-descent
markers for the individual (Pedersen et al., 2010). The average inbreeding coefficient F; at time step t was
the average of the inbreeding coefficients of the 1280 individual birds hatched at time step t. To be
comparable to other studies, rate of inbreeding per generation was used for data analysis instead of the
rate of inbreeding per time step. Therefore, in calculating inbreeding coefficient, time step t was
translated to its corresponding generation. For each replicate, rate of inbreeding per generation (AF) (Liu
et al., 2016):

AF (%) = (1- €%)*100 (3.3)

where 8 is slope of the linear regression of In(1-F;) on generation corresponding to time step 31-40.

In addition, accuracy of ssGBLUP prediction was computed as the correlation between predicted breeding
values and TBVs of the C trait from all B birds hatched at time step 36 after the ssGBLUP evaluation was
done for the time step. Accuracy was evaluated at time step 36 because birds selected at this time step

were the last selected parents that produced offspring at time step 40.
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Data analysis

The variables AG and AF for each replicate were used for comparisons among scenarios in the main
simulation study while only variable of AG was used for assessing differences among scenarios in the
sensitivity analysis. Descriptive statistics and standard ANOVA was used. Comparison tests for significance
using Tukey’s HSD (honest significant difference, P <0.05) were used. For accuracy of ssGBLUP prediction,
only means were reported.

In the main study, three factors were involved in the ANOVA model including proportion of birds in C, rg
and heritability of C trait. Their main effects as well as all two and three-factor interactions were assessed.
In the sensitivity simulations, each of SS1 and SS2 had 4 scenarios while SS3 had 6 scenarios. Rate of
genetic gain of 8 SS1 scenarios and 4 corresponding scenarios of the main study that had the same rgand
heritability was combined for analysis of a two-way ANOVA model. One factor included in the ANOVA was
number of birds genotyped and number of offspring per hen (3 levels). The other factor was proportion

of birds in C (4 levels). For SS3, one-way ANOVA model was applied comparing 6 scenarios.

3.3. Results

Rate of genetic gain

Three-factor interaction between proportion of birds in C, rg and heritability of C trait on AG was not
significant (P=0.099). Significant interactions on AG were found between proportion of birds in C and rg (P
<0.001) and between the proportion and heritability (P <0.001). The interaction between rg; and
heritability did not have a significant effect on AG (P =0.562). Figure 3.1 shows genetic gain of breeding
schemes at different rg between B and C traits and different heritability of trait recorded in C.

The two-way interaction between proportion of birds in C and rg on AG was significant. With rg of 0.5 and
0.7, AG of the breeding schemes without birds in C was significantly lower than schemes with birds in C.
On average, the schemes without birds in C had AG of 0.116 per time step with rg of 0.5 and 0.164 with r,
of 0.7 while the schemes with birds in C had comparable AG of 0.199 and 0.200 with rg of 0.5 and 0.7,
respectively. With rg of 0.5 and 0.7, among the schemes with birds in C, AG of the schemes with 30% and
45% birds in C were significantly higher than AG of the scheme with 15% birds in C (P<0.05). With r; 0of 0.9,
AG of the schemes with 0, 15 and 30% birds in C were not significantly different between each other
(P>0.05), but they were significantly higher than AG of the schemes with 45% birds in C (P<0.05).

The change of AG differed with increasing ry when the proportion of birds in C varied. Increasing rg
significantly enlarged AG of the schemes without birds in C. The increase in AG was also observed in the

scheme with 15% birds in C when rg increased. However, AG of the scheme with 30% birds in C did not
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show significant difference as rg increased. Meanwhile, there was a decreasing trend of AG for the scheme
with 45% birds in C when rg increased. In other words, among the breeding schemes, AG of the schemes
with 30% birds in C were similar at different rg.

The interaction between proportion of birds in C and heritability was significant for AG. With heritability
of 0.15 and 0.25, changing the proportion of birds in C led to significant differences in AG between
schemes with birds in C. With a heritability of 0.35, the differences in AG due to proportion of birds in C
were not significant between the schemes with birds in C. More importantly, as heritability increased, an
increase in AG was observed in the schemes with birds in C. However, AG in the scheme without birds in
C, as expected, was not affected by heritability. On average, AG of scenarios with heritability of 0.15, 0.25
and 0.35 were 0.161, 0.163 and 0.161, respectively, for the schemes without birds in C, AG were 0.191,
0,200 and 0.210, respectively, for the schemes with birds in C.

In addition, two-factor interaction between effects of proportion of birds in C and heritability on AG
suggested that the schemes with birds in C had significantly higher AG than the schemes without birds in
C at all levels of heritability of 0.15, 0.25 and 0.35. However, without consideration of rg, this might give a
misleading interpretation of the results. For example with rg of 0.9, effect of heritability was not enough
to cause the differences in AG among breeding schemes with 0, 15 and 30% birds in C although with
heritability of 0.25 and 0.35, the schemes with 15% and 30% birds in C tended to have higher AG than the
schemes without birds in C (P>0.05). The differences in AG among breeding schemes depended on both
parameters of rg and heritability. In addition, the p-value for the three-factor interaction was relatively
low (P=0.099). Therefore, results of AG were presented in three-factor interaction between proportion of

birds in C, rg, and heritability of C trait (Figure 3.1).
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Figure 3.1: Means of rate of genetic gain per time step (AG) (+Standard errors) of scenarios with different
proportion of birds in C (P%) when genetic correlation (rg) between B and C traits and heritability (h?) of C
trait was varied.

Rate of inbreeding

The three-factor interaction on AF was not significant between proportion of birds in C, rg and heritability
of C trait (P=0.445). Significant interactions on AF were found between proportion of birds in C and rg (P
=0.005) and between rg and heritability (P =0.043). The interaction on AF between proportion of birds in
C and heritability was not significant (P =0.085).

The proportion of birds in C affected AF of the breeding scheme differently as factors of rg changed (Figure
3.2). With increasing rg, AF of the schemes without birds in C did not change. On the other hand, AF of the
schemes with birds in C decreased with increasing rg. On average, AF of the schemes with rg of 0.5, 0.7
and 0.9 were 3.27, 2.99 and 2.62%, respectively. As proportion of birds in C increased, the AF reduced.
With rg of 0.5, AF of the schemes with 0 and 45% birds in C were lowest, and AF of the scheme with 15%
birds in C was highest. With rg of 0.7, AF among schemes was not significantly different. With rg of 0.9, the
schemes without birds in C had the highest AF, followed by the schemes with 15, 30 and 45% birds in C.
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Figure 3.2: Means of rate of inbreeding per generation (AF%) (+ Standard error of means) of breeding
schemes with different proportion of birds in C at different genetic correlation (rg) between B and C traits.
Significant interaction on AF was found between the effects of rg and heritability of C trait. With ry of 0.7,
AF showed no significant differences for all levels of heritability. With rg of 0.5, AF had decreasing tendency
with increasing heritability. With rg of 0.9, the trend was opposite that AF was increasing when heritability

increased.
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Figure 3.3: Means of rate of inbreeding per generation (AF %) (+ Standard error of means) of at different

genetic correlation (rg) between B and C traits and heritability (h?) of C trait.
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Sensitivity analysis

In SS1, breeding schemes with 8 and 10 offspring per hen in each time step had 0, 15, 30 and 45% birds in
C when only 50% of birds in B and C were genotyped. It was found that the schemes of SS1 had lower AG
than the corresponding schemes in the main study. In SS1, the schemes with 8 offspring per hen per time
step had lower AG than the schemes with 10 offspring per hen. However, similar to the main study, the
schemes without birds in C had the lowest AG among breeding schemes investigated in SS1 (Figure 3.4).
Also, AG of the scheme with 30% birds in C was highest followed by the schemes with 15 and 45% birds
in C when number of offspring per hen was 8. Meanwhile, AG had increasing tendency as the proportion
of birds in Cincreased from 0 to 45% when number of offspring per hen was 10. However, the rate of the
increase in AG reduced with increasing proportion of C birds. The difference in AG between the schemes
with 30 and 45% birds in C was relatively little.
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Figure 3.4: Means of rate of genetic gain per time step (AG) (xStandard errors) of sensitivity simulation 1
-SS1 for breeding schemes with 8 (H8) or 10 (H10) offspring per hen per time step and different proportion
of birds in C (P%).

In SS2, genetic gain of breeding schemes with 15 and 30% birds in C that used different genotyping
strategies was examined when number of genotyped birds was kept constant (Figure 3.5). For the
breeding schemes with 15% birds in C, the scheme with 30% genotyping allocated to the birds in C gave
higher AG than the scheme with 15% of genotyping allocated to the birds in C. For the breeding scheme
with 30% birds in C, the strategy with 30% of genotyping allocated to the birds in C gave the highest AG
compared to other strategies. Given a constant number of genotyped birds, there was decreasing

tendency of AG as the proportion of genotyping allocated to the birds in C increased from 30% to 60%.
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Among the six schemes of SS3, AG was highest in the scheme with 30% birds in C and 30% genotyping

allocation to the birds in C.
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Figure 3.5: Means of rate of genetic gain per time step (AG) (xStandard errors) of sensitivity simulation 3
— SS2 for the breeding schemes with 15 and 30% (P15 and P30) birds in C using different genotyping
strategies that were 15, 30, 45 and 60% of genotyping proportion allocated to the birds in C (GC15, GC30,
GC45 and GC60)

3.4. Discussion

In this study, we have investigated genetic gain (AG) and rate of inbreeding (AF) in different genomic
breeding schemes for broiler chicken with varying amounts of GxE between bio-secure breeding
environment (B) and commercial environment (C). Schemes investigated had 0%, 15%, 30% and 45% birds
in C. Effects of GXE were modelled by varying the genetic correlation (rg) between B and C traits (0.5, 0.7
and 0.9), and heritability of C trait (0.15, 0.25 and 0.35). Sensitivity analysis was also carried out to further
investigate effects of genotyping strategy and increased number of offspring per hen.

Rate of genetic gain

Genetic gain in the main study was influenced by proportion of birds in B versus C, rg between B and C
traits, and heritability of C trait. The proportion of birds in B versus C has effects on accuracy of selection
and selection intensity. Since only performance in C has economic value, a higher proportion of birds in C

results in higher accuracy of GEBV prediction. For example, when rg was 0.5 and heritability was 0.25,
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accuracy of GEBV prediction was 0.369, 0.718, 0.777 and 0.804 for 0, 15, 30 and 45 % birds in C,
respectively. When rg was 0.9 and heritability was 0.25, accuracy of GEBV prediction was 0.745, 0.809,
0.819 and 0.837 for 0, 15, 30 and 45 % birds in C, respectively. Even with rg of 0.9, an increasing proportion
of birds in C leads to increasing accuracy of GEBV prediction. As a consequence, genetic gain of a breeding
program can be improved by introducing records in the C environment if there is significant genotype by
environment interactions present in the population. This was illustrated in Bijma and Arendonk (1998)
and Mulder and Bijma (2005), who found that genetic gain was improved with extra information from C
when rg was less than 1. However, given a limited hatching and reproductive capacity, increasing number
of birds in C reduces selection intensity in B due to fewer selection candidates. In other words, there is a
trade-off for additional accuracy of selection from records in C and a reduction in selection intensity. In
our main study, 30% birds in C were the balance point between the accuracy of selection and selection
intensity.

The optimum choice of a breeding scheme depends on the extent of GxE. Transferring birds to C did not
improve AG in all situations. The level of r; changed accuracy of selection in the scenarios investigated.
For example, when proportion of C birds was 0, and heritability was 0.25, accuracy of GEBV prediction
was 0.369, 0.534 and 0.745 for r; of 0.5, 0.7 and 0.9, respectively. The contribution of records in B to
accuracy of selection increased as rg between the two environments increased. In other word, the
contribution of records in C relative to the contribution of records in B to accuracy of GEBV prediction
decreases as rg increases. This explained the increase in AG of the schemes without C birds with increasing
rg. The difference in AG between the schemes with and without C birds was also smaller when rg increased
or there was less GxE. Dekkers (2007) concluded that when rg was 0.7, genomic selection could improve
genetic gain if information from records in B and C was combined. However, van Grevenhof and van der
Werf (2015) implied that with rg of 0.9, transferring animals from B to C environment did not increase the
genetic gain. Therefore, when the level of GxE is low (rg =0.9), transferring birds from B to C environment
is not necessary. Nonetheless, with the low level of GxE, a possible benefit of birds tested in Cis to enable
selection for disease resistance traits in the C environment, especially diseases that persist in C
environment, but do not exist in B environment (Morton et al., 2010).

Apart from rg, heritability of C trait had significant effect on AG of breeding schemes with birds in the C
environment. Different levels of rg relates to the contribution of records in B to the accuracy of GEBV
prediction while different heritability of C trait relates to the contribution of records in C to the accuracy.
As heritability of records in Cincreases, the relative information content of the records to predict additive

genetic merit increases, and thus the contribution of the records to accuracy of GEBV prediction increases.
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For example, when rg was 0.7 and proportion of birds in C was 30%, accuracy of GEBV prediction was
0.756, 0.793 and 0.827 for heritability of 0.15, 0.25 and 0.35, respectively. However, in the schemes
without C birds, heritability of C trait is not important. Response of these schemes depends on amount of
genetic variation and rg. In our simulation, the unit of AG is in genetic standard deviations, and genetic
standard deviation is kept constant as heritability of C trait changes. Therefore, no change on AG is
observed in the schemes without birds in C as heritability of C trait increases.

In designing breeding programs, effects of GxE are often modelled by including r; while heterogeneous
heritability of traits across environments is often not taken into account (Bijma and Arendonk, 1998;
Dekkers, 2007; Mulder and Bijma, 2005; van Grevenhof and van der Werf, 2015). The value of rg expresses
the magnitude of GxE interaction, but different heritability of B and C traits can be also a consequence of
the GxE interaction. Heritability of C trait can be lower or higher than heritability of B trait. In the study
by Kapell et al. (2012), in three out of four studied pure broiler lines, the heritability of C trait was lower
than B trait for body weight at 5 weeks of age. The higher and lower heritability of C trait than B trait was
also found in the study by N'Dri et al. (2007). In addition, different heritability of B trait can have significant
effect on designing GxE breeding program, but this is not included in our study. The contribution of records
in B would increase with increasing heritability of B trait.

In addition to proportion of birds in C, rg and heritability of C trait, the sensitivity analysis showed that
amount of genotyping, number of offspring per hen and genotyping strategies can influence genetic gain
of a genomic selection program for broilers. In the sensitivity analysis, only 50% of all birds hatched were
genotyped, r; was 0.7, and heritability of C trait was 0.15. Genetic gain of the corresponding scenarios in
the main study was higher than in the SS1 scenarios. The higher genetic gain was found even when SS1
scenarios had 10 offspring per hen and the scenarios in the main study had 8 offspring per hen hatched
in each time step. This is primarily due to the higher number of birds genotyped in the main study than in
the SS1 scenarios. The main study has 1280 birds genotyped in each time step while SS1 has 640 and 800
birds genotyped for the schemes with 8 and 10 offspring per hen, respectively.

When number of offspring per hen was 8, the relative differences between the SS1 schemes with 0, 15,
30 and 45% birds in C had a similar tendency to those of the main study. The schemes with 30% birds in C
had the highest AG. In this case, selection intensity was not changed, and proportions of birds in B versus
C among the schemes were the same as the proportions of birds in B versus C genotyped. When the
number of offspring per hen increased from 8 to 10 per time step, the schemes with 45% birds in C had

the highest AG. However, the difference between the schemes with 30 and 45% was very small. This
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implies that the 30% birds in C is close to the optimum proportion when number of offspring per hen is 8
and 10 per time step.

In SS2, AG of the scheme with 15% birds in C tended to increase as number of genotyped birds in C
increased. This result suggests that when proportion of birds in C is lower than the optimum proportion,
higher proportion of birds in C should be genotyped. Therefore, the scheme that 15% of birds were tested
in C for phenotyping and 100% of these birds were genotyped was expected to have higher AG than the
scheme that 30% of birds were tested in C and 50% of these birds were genotyped. However, the lower
AG of the scheme with 15% birds in C than the scheme with 30% birds in C could not be offset by increasing
number of genotyped birds in C and increased selection intensity. The scheme with 30% of birds in C and
30% genotyping allocation to the birds in C has the highest AG in SS2. Increasing number of genotyped
birds in C increases amount of information from C environment. However, when genotyping resources
are limited, the increase in number of C birds genotyped reduces number of B birds genotyped.
Information “brought” from C to B environment is less efficient with fewer number of B birds genotyped.
This may be an explanation for the decreasing tendency of AG as the proportion of genotyping allocated
to the birds in C increased from 30% to 60%. The result of SS2 implies that to maximize genetic gain of a
breeding program for commercial broiler chicken with limited genotyping effort, the optimum proportion
of birds allocated to B and C environment should be the optimum proportion of genotyping allocated to
B and C birds, respectively.

A genotyping strategy, which was not tested in sensitivity analysis, was selective genotyping. Boligon et
al. (2012) found that the selective genotyping strategy improves predictive ability of breeding values, and
that animals with best performance are the most informative. This is possible in broilers where important
traits like body weight and feed efficiency can be obtained before sexual maturity. Alemu et al. (2018)
also illustrated an increase in genetic gain with selective genotyping in genomic selection programs for
broilers. In applying this strategy, it should be considered whether selective genotyping should be applied
for birds in B, C or both of the environments. Selective genotyping especially in B can be advantageous in
order to increase genetic gain for a given investment in genotyping.

Rate of inbreeding

Along with genetic gain, inbreeding of the schemes in the main study was investigated. It was shown that
the proportion of birds in C, rg and the heritability of C trait all affected AF. Among the schemes utilizing
records from C, AF decreased as rg increased or proportion of birds in C increased. Heritability of C trait

had different effects on AF when rg varied.
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Transferring birds from B to C environment reduces selection intensity and increases the amount of
information from C. Reducing selection intensity reduces AF because decreasing the number of selection
candidates decreases probability of co-selecting birds from the same family. Increasing the amount of
information from C has two opposite consequences on AF. One consequence leads to an increased
probability of co-selecting close relatives due to utilizing information from C, thus increasing AF. Utilization
of information from C causes inbreeding. For example, a group of close relatives receives similar
information from C, and therefore probability of co-selecting the close relatives increases. In addition,
increasing proportion of birds in C increases weight or the contribution of C information to prediction of
GEBVs of birds in B, which increases AF. At the same time, another consequence of increased the amount
of information from C is an increase in accuracy of prediction, especially when genomic information
describes relationships between full-sibs better than pedigree information. As amount of information
from Cincreases, accuracy of GEBVs of birds in B increases, and therefore probability of co-selecting close
relatives due to utilizing information from C decreases.

An extra simulation was carried out to test the consequences of AF when information from C increased
and selection intensity remained constant. Heritability of C trait was 0.15, and r; was 0.5 and 0.9. The
breeding scheme for this simulation was same as in main simulation, except that number of offspring per
hen was varied and number of birds in B was kept constant. Number of offspring per hen was 4, 5, 6, 7
and 8 equivalent to 640, 800, 960, 1120 and 1280 birds hatched in each time step. In each time step, 640
birds were in B as selection candidates, the remaining was transferred to C. With r; of 0.9, AF was 2.18,
2.37,2.49, 2.52 and 2.65 for the schemes with 4, 5, 6, 7 and 8 offspring per hen, respectively. With rg of
0.5, AF was 2.48, 3.29, 3.15, 2.99 and 2.82 for the schemes with 4, 5, 6, 7 and 8 offspring per hen,
respectively. These results confirm that increasing information from C have two opposite consequences
on AF as explained above.

When rg is 0.5, the effect of the co-selection due to utilizing information from C is substantial on AF for
the scheme with 15 and 30% birds in C. This leads to the higher AF of the schemes with 15 and 30% birds
in C than the schemes without birds in C although the schemes without birds in C, indeed, has the highest
selection intensity. When rg increases, information from B environment has higher weight for the GEBV
prediction and consequently reducing the co-selection due to utilizing C information. Therefore, the
change of r; relates to the change of the co-selection due to utilizing C information. This explains the
reduction in AF of the schemes with birds in C as rg increases. Meanwhile, AF of the schemes without birds

in C is unaffected by the change of r,.
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When heritability of C trait increased, the changing pattern of AF were changed at different r,. This is
because the change of heritability of C trait has two opposite consequences on AF. One consequence
relates to the BLUP attributes that increase in heritability decreases weight of information from relatives,
thus reduces co-selection of relatives (Bijma and Woolliams, 2000; Verrier et al., 1993). This reduces AF.
At the same time, another consequence relates to the utilization of information from C. Increasing
heritability increases weight of C information in the ssGBLUP prediction, and thus AF increases. With low
rgof 0.5, the increase in the weight of C information does not clearly show its effect while with high rg of

0.9, it increases AF.

3.5. Conclusion

Genetic gain and rate of inbreeding of different genomic breeding schemes for broiler chicken were
compared in situations with different degree of GxE between breeding (B) and commercial (C)
environments. It is shown that the proportion of birds in B versus C for a breeding program depends on
the genetic correlation between the trait assessed in B and in C (rg), heritability of the trait measured in
C, number of offspring per hen, amount of genotyping, and genotyping strategy. When ry was 0.5 and 0.7,
transferring birds to C environment increased genetic gain for the breeding program and 30% birds
assessed in C was the optimum proportion. When proportion of birds in C was at the optimum proportion
(30%) and genotyping efforts was limited, 30% of the genotyping effort allocated to C birds was also the
optimum genotyping strategy. When proportion of birds in C was lower than the optimum proportion,
genotyping more birds in C increased genetic gain in the breeding program. For rate of inbreeding,
increasing the proportion of birds in C lowered inbreeding. Rate of inbreeding of the schemes with birds
in C increased when rg increased. The rate of inbreeding in schemes without birds in C did not change as
rgincreased. In summary, if there is a strong GxE interaction (rg of 0.5 and 0.7), a genomic selection scheme
that uses a considerable proportion (30%) of birds to be transferred to C for phenotype testing has larger
genetic gain than if all birds are tested in B environment only. In addition, rate of inbreeding is reduced as

proportion of birds transferred to C increases from 15 to 45%.
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4 Broiler body weight at different ages

Abstract

A multivariate model was developed and used to estimate genetic parameters of body weight (BW) at 1-
6 week of age of broilers raised in a commercial environment. The development of model was based on
the predictive ability of breeding values evaluated from a cross-validation procedure that relied on half-
sib correlation. The multivariate model accounted for heterogeneous variances between sexes through
standardization applied to male and female BW differently. It was found that the direct additive genetic,
permanent environmental maternal and residual variances for BW increased drastically as broilers aged.
The drastic increase in variances over weeks of age were mainly due to scaling effects. Ratio of the
permanent environmental maternal variance to phenotypic variance decreased gradually with increasing
age. Heritability of BW traits ranged from 0.28 to 0.33 at different weeks of age. The direct genetic effects
on consecutive weekly BWs had high genetic correlations (0.85-0.99), but the genetic correlations
between early and late BWs were low (0.32-0.57). The difference in variance components between sexes
increased with increasing age. In conclusion, the permanent environmental maternal effect on broiler
chicken BW decreased with increasing age from week 1-6. Potential bias of the model that considered
identical variances for sexes could be reduced when heterogeneous variances between sexes are

accounted for in the model.

4.1. Introduction

Optimal modelling plays a key role in improving accuracy of predicted breeding values for traits of interest,
and thereby increasing genetic gain in breeding programs. Apart from direct additive genetic effects, other
factors including maternal effects, sex by genotype interaction, and heterogeneous residual variances
have been accounted for when modelling body weight (BW) in poultry, (Barbieri et al., 2015; Begli et al.,
2016; Grosso et al., 2010; Maniatis et al., 2013; Mebratie et al., 2017). However, the method used for
including those factors in BW modelling varies across studies. In addition, when analyzing longitudinal
data for BW in chicken, it was found that the effects of maternal factors and sex by genotype interaction
change with age of the birds (Begli et al., 2016; Mebratie et al., 2017; Norris and Ngambi, 2006; Rovadoscki
et al., 2016).

Maternal effects are often ignored for egg production traits that are expressed relatively late in life, but
the effects are considered to be important for growth traits in broiler chicken, especially at juvenile stage
that broilers are usually selected in breeding programs (Besbes and Ducrocqg, 2003). Two commonly

modelled maternal effects for BW traits are additive genetic and permanent environmental effects of the
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dam (Barbieri et al., 2015; Maniatis et al., 2013; Norris and Ngambi, 2006). The maternal effects reduce
as chicken are older (Barbieri et al., 2015; Maniatis et al., 2013; Norris and Ngambi, 2006). Another
maternal effect, age of hen, may also affect BW because strong correlations between hen age and egg
weight and strong correlations between egg weight and broiler BW especially at an early age were found
(Di Masso et al., 1998; Tahir et al., 2011; Whiting and Pesti, 1984). Failing to account for maternal effects
results in reduced accuracy of selection, overestimated direct additive genetic effect and thus loss of
selection response (Roehe and Kennedy, 1993).

Sex by genotype interaction for BW in commercial broiler chicken has been reported (Mebratie et al.,
2017). The authors suggested that modelling BW of males and females as two separate, but correlated
traits could improve accuracy of selection compared to the model that assumed an average heritability
and a genetic correlation of unity between BW expressed in different sexes. Moreover, the residual
variance in males was larger than the variance among females for BW. The authors also found an
increasing magnitude of sex by genotype interaction with increasing age. In addition, a drastic increase in
residual variances was found for BW traits as chicken aged. The increasing residual variances over
different ages of birds were also found in other studies (Begli et al., 2016; Dana et al., 2011; Mebratie et
al., 2017).

Different models including univariate, multivariate, and univariate random regression models have been
used to analyze longitudinal data to model the development of BW in chicken over ages (Begli et al., 2016;
Dana et al., 2011; Niknafs et al., 2012; Rovadoscki et al., 2016). However, in the longitudinal data of these
studies, there were relatively low number of birds or few age points recorded for BW. For example, Begli
etal. (2016) had weekly BW recorded at week 2-10, but there were only 450 birds in the experiment. With
such low number of birds, some effects may not be detected by the model. Meanwhile, Mebratie et al.
(2017) had about 646,000 birds, but BW records were at only 3 different ages of t-7, t-4 and t days for
three different groups of birds. With a low number of age points, the development of BW cannot be
accurately modelled.

In addition, the production environment where birds are tested may influence BW and thus how it should
be modelled. Few studies (Kapell et al., 2012) present genetic parameters for broiler BW in a commercial
environment. Most of the studies report the parameter for poultry BW in the breeding environment
(Grosso et al., 2010; Koerhuis and Thompson, 1997; Maniatis et al., 2013; Niknafs et al., 2012) or in
controlled experimental environment (Begli et al., 2016; Norris and Ngambi, 2006; Rovadoscki et al.,
2016). Sib-testing in both the breeding and the commercial environment is a common approach in broiler

breeding programs when genotype-by-environment interactions are important. Growth performances of
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birds in the commercial environment are often found to be lower than the performances of birds in the
breeding environment, whereas standard deviation of BW was higher in the commercial environment
(Kapell et al., 2012; N'Dri et al., 2007). In addition, both the absolute and the relative differences in BW
between sexes are smaller in the commercial environment compared to the breeding environment (Kapell
et al., 2012; N'Dri et al., 2007). Heritability estimates of BW in the commercial environment can be both
higher or lower than the heritability of BW in the breeding environment (Kapell et al., 2012; N'Dri et al.,
2007). Furthermore, an important difference between modelling BW traits for the breeding and
commercial environments is that birds in the commercial environment provide information for selection,
but they are not selection candidates because of bio-security restrictions, and thereby dams and sires of
those birds do not have BW performances in this commercial environment. Proper account of selection
of parents may necessitate the use of multivariate joint modeling of both commercial and breeding
environments. Development of a multivariate model for BW of broiler in the commercial environment is
one of the steps in building the joint model.

The current study investigated genetic parameters of BW in broilers at different ages raised in a
commercial environment. The specific objectives were to (i) develop statistical models to improve
accuracy of predicting breeding values, and (ii) estimate parameters for male and female BW at different

ages when broilers were reared under commercial conditions.

4.2. Materials and methods

Data

Longitudinal data on BW were obtained from Cobb-Vantress who reared broiler chicken in a standard
commercial production environment and recorded BW weekly. The broilers were from a purebred line
primarily selected for BW in the breeding environment with very stringent regulations for bio-security.
The data included 12 broiler flocks sourced from around two generations of breeder flocks. Birds in broiler
flocks 1-6 had weekly records of BW from 1-6 weeks of age. Birds in broiler flocks 7-12 has weekly records
of BW from 1-5 weeks of age only. Birds with unidentified sex and missing information were removed
from the data. Duplicated records on the same week and BW records of 0 were also removed. Only records
of BW at each week that were within four standard deviations of the mean were kept. As a result, 2.58%
of birds and 0.71% of BW records were removed from the original data.

After data trimming, the number of birds was 17,967 with a total of 91,846 BW records. Birds were
offspring from 253 sires and 1,187 dams. The sires and dams did not have phenotypic records in this

commercial environment. In each broiler flock, all birds were hatched at the same time, sourced from
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multiple breeder flocks in which dams had different ages. The mating system was hierarchical with each
sire mated with multiple dams, but each dam mated with a single sire only. The pedigree covered around
three generations back from the youngest birds and comprised 20,509 birds.

Development of statistical models for body weights in broilers

To develop a statistical model for BW at weeks 1-6, initially univariate models were developed to identify
fixed and random factors affecting BW at different weeks of age and different sexes. The longitudinal data
were divided by weeks of age and sexes into 12 subsets. For each of the twelve datasets, a univariate
model was developed through removal of factors in a hierarchical fashion. A factor or interaction was
removed by comparing the model with and without the effect based on criteria of model convergence,
log-likelihood ratio test and predictive ability of breeding values from cross-validation as described below.
The starting model included fixed effects (flock of birds, source of flocks, hatch of dam within source of
flock, and age of dam when offspring were hatched) and all their possible interactions including a fourth
order interaction. The random factors of the starting model were the direct additive genetic effect,
maternal additive genetic effect and permanent environmental maternal effect. The final model was
selected when the removal of a factor from the model significantly reduced the fit of the model or
predictive ability of the model in the cross-validation. For the 12 datasets, 7 different models were
selected as results of model development process based on sets of model selection criteria:
Convergence of model: The REML module (DMUAI) from the DMU software package (Madsen and Jensen,
2013) was used to estimate variance components in all models. Strict criteria for the convergence of a
model were set, in which the Frobenius norms of both the update vector and the gradient vector must be
lower than 10 (Madsen and Jensen, 2013).

Log-likelihood ratio test: Log-likelihood ratio tests were carried out to identify the significance of a random
effect in a model by comparing models with or without the effect (significant difference, P<0.05).

Cross validation: Predictive ability of the univariate models was compared using cross validation. The full
dataset of BW records at each week for each sex was divided into training and validation datasets based
on flocks and full-sib relationships. The training dataset included all bird records from the first half of all
flocks and about half of the records from the latter half of all flocks. The validation dataset included
records of the other half from the latter half of all flocks. The approximately equal division of records into
the training and validation datasets in the latter half of all flocks was carried out within full-sib groups.
The full dataset was used to estimate variance components of the model and to compute phenotypes
corrected for fixed effects in the validation datasets using the DMUAI procedure of the DMU package. In

other words, the corrected phenotype (y.) was equal to the sum of breeding values (EBVs), random
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maternal effects and residuals estimated from the full dataset. The training dataset was used to predict
breeding values of birds (EBV,) in the validation datasets using the variance components estimated from
the full dataset.

In the conventional method as used by Christensen et al. (2012), validation was based on correlation
between y. and EBV, of the same individuals in the validation dataset. However, in the presence of
maternal effects, this correlation might be overestimated because information from full-sibs influences
EBV,, and thus maternal effects are confounded into EBV,. Our validation used the correlation between
yc and EBV, of two different birds that were half-sibs because half-sibs did not share the maternal effects.
Random pairs of two half-sibs were sampled for each sire, and all the pairs were used to calculate the
correlation between y. and EBV, of two half-sibs. From the validation dataset, 6000 replicates of the
pairing sampling were carried out. The number of replicates of the pairing sampling was to ensure a high
probability of all birds in the validation dataset contributed to the calculation of the half-sib correlation.
Predictive ability of breeding values for a model was based on the average of correlations between y. and

EBV, (Cor(EBV.; y)) of two half-sib birds i and j in the validation dataset:

Cor(EBVy;,Ycj)

hz*ri,j

Where h? is heritability calculated from variance components estimated from the full dataset, r;; is the is

Predictive ability =

the additive genetic relationship between half-sibs that is equal to 0.25.

There were seven different univariate models selected from the model development process, and the
maternal additive genetic effect was included in the model only for male BW1. However, for simplification
and convergence ease, consistent fixed effects across BW at different weeks of age were chosen, namely
flock of birds, source of flocks and age of dam when offspring were hatched. The random effects were
direct additive genetic effect, permanent environmental maternal effect and a residual.

Statistical models

For BW at each week of age, sex by genotype interaction was tested using bivariate models that treated
male and female BWs as two different traits. However, it was found that the bivariate models lead to
convergence failure because genetic correlations converges towards the edges of the parameter space of
1.0. Male and female BW tended to might have different variances, particularly at the later ages that
selection occurs, but their correlations were not significantly different from unity. This refers to scaling
effects between male and female BW. If the difference in variances between sexes was not accounted in
the model, bias of prediction would increase (Thompson, 2008) and re-ranking of EBVs could occur (van

der Heide et al., 2016). It was found that correlations between BW at two consecutive weeks were high,
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and multivariate models that used BW1-6 as phenotypic records failed to converge. In preliminary
analysis, when Legendre polynomial functions with order of two or more were fitted, the models failed to
converge. With the results from univariate models for BW traits, the linear function may not describe well
the change of the direct additive genetic effect over weeks of age. In addition, between two model
approaches, we preferred the multivariate model to the random regression model because with more
parameters, a multivariate model describes better the covariance matrix of the direct additive genetic
effect.

To model male and female BW1-6, we used a multivariate model that used BW1-2 and weekly weight
gains as phenotypic records, and standardized phenotypic records differently within sex and week.
Weekly weight gains were calculated as the difference of BW between week 2 and 3 (WG3), week 3 and
4 (WG4), week 4 and 5 (WG5) and week 5 and 6 (WG6). The use of BW1-2 and WG3-6 in replacement for
BW1-6 as phenotypic records aimed to improve the convergence of the multivariate model. The choice of
these BW and weight gains was to minimize missing records due to the use of weight gains. Male and
female phenotypic records were standardized separately using corresponding phenotypic standard
deviations that were estimated from univariate model (4.1) for BW1-2 and WG3-5, and univariate model
(4.2) for WG6:

y=Xb + Za + Wc +e (4.1)

y=Xb+Za+e (4.2)

where y is vector of male or female phenotypic records of BW1-2 and WG3-6 at normal scale; b is vectors
of fixed effects of flock of birds, source of flocks and age of dam. Matrices of X, Z, and W are incidence
matrices. Vectors a, ¢ and e are the direct additive genetic effect, permanent environmental maternal
effect and residual, respectively. These random effects were assumed to be normally distributed:
a~ N[0,Ac?], c~N[0,I402] and e~ N[0, IcZ], where A is the pedigree relationship matrix; l4 is the
identity matrix for dams; I is the identity matrix for individual birds; crg, O'CZ and 032 are variances at normal
scale.

Phenotypic records of males and females at each week were standardized by dividing the phenotypic
records to the corresponding phenotypic standard deviations that were estimated from models (4.1) and
(4.2). In the multivariate model, reduced ranks were applied to male and female traits for additive genetic
effects and permanent environmental maternal effects. The standardization of phenotypic records and
reduced ranks between sexes were to model the differences in variances between male and female traits

and their unity correlation. The permanent environmental maternal effect of WG6 was removed due to
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its insignificance. In matrix notation, the multivariate model (4.3) using standardized phenotypic records
of BW1-2 and WG3-6 was:

vt [Xits O 15 s O Wits 0 el s
[y{?s] ) [ 0 X{_s] [b{_s] ’ [ 0 Z{_s] fos [ 0 WI_S] st [e{_s]

yrol  [xe 0] [b¥] [z 0 e
A I I B ] e

Yo 0 X by 0 Z €6
where y1.5™ and y1.5" are the vectors of male and female standardized phenotypic records, respectively,
for BW1-2 and WG3-5; bys™ and by.s are vectors of fixed effects of bird flock, source of flocks and age of
dam for males and females, respectively, of BW1-2 and WG3-5. Similarly, ys™ and ys™ are the vectors of
male and female standardized phenotypic records, respectively, for WG6; bs™ and bef are vectors of fixed
effects for male and female birds, respectively. Matrices of X1s™, X1, Z15™, Z1.5', W1s™, Was', X6™, Xef, Zs™
and Z¢f are incidence matrices. Vectors a1.s and as are direct additive genetic effects of the bird for BW1-
2, WG3-6, respectively; ci5 are vectors of the permanent environmental maternal effect for BW1-2 and
WG3-5. Direct additive genetic and permanent environmental maternal effects were reduced ranks
between sexes. Vectors e1s™, e1s, es™ and egf are random residuals of male BW1-2 and WG3-5, female
BW1-2 and WG3-5, male WG6 and female WG6, respectively. The random vectors of the direct additive
genetic effect and permanent environmental maternal effect were assumed to be normally distributed:
aq_g~ N[O AR Vg], Ci_5~ N[O I Vg], where A is the pedigree relationship matrix; I is the identity
matrix for dams; Vg is the 6x6 covariance matrix of the direct additive genetic effects; V? is the 5x5
covariance matrix of the permanent environmental maternal effects. The residuals were also assumed to
be normally distributed: e1s™, e1s’, es™ and egf ~ N[O IR Vg], where | is the identity matrix for individual
birds; the covariance matrix Vg is an 12x12 matrix, in which the residual covariances between male and
female records for BW1-2 and WG3-5 traits are zero. Covariance matrices V9, V? and VQ are at
standardized scale.
Transformation of parameters to body weight scale
Parameters estimated from the model (4.3) were in standardized scale of BW and weight gains. However,
results of parameters were presented in BW at different weeks of age by re-transforming (co)variances of
standardized BW1-2 and WG3-6 back to the scale of BW1-6. Transformations from standardized BW1-2
and WG3-6 to normal scale of male and female BW1-6 were carried out for (co)variance matrices and the
asymptotic covariance matrix. The asymptotic covariance matrix, which is the inverse of the average of

observed and expected information in the REML likelihood (Jensen, 1997) from DMUAI procedures
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(Madsen and Jensen, 2013), was used to compute approximate standard errors for estimates using the

approach by Fischer et al. (2004). The transformation formula can be found in Appendix 4.1.

4.3. Results

Table 4.1 shows the means, coefficient of variation, standard deviation, and minimum and maximum
values for BW at different weeks of age from male and female broilers reared in a commercial
environment. The results show that BW of the birds increased drastically with increasing weeks of age.
The increase was more than 2.5 times from BW1 to BW2. Similarly, the standard deviation of BW
increased quickly at the early ages of birds, but the rate of the increase was lower at the later ages. The
CV remained relatively stable over different ages of birds. The results also showed that both the absolute
and the relative differences in BW between males and females increased with age. The relative differences
between male and female BW was 1.01, 1.03, 1.06, 1.10, 1.12 and 1.15 at week 1-6, respectively.

Table 4.1: Descriptive statistics for body weight (BW) records (unit in gram) of males and females from

commercial broiler chicken at 1-6 weeks of age.

Male Female
Week

n I cv SD  Min. Max. n I cv SD Min. Max.

8039 155 0.14 22 68 236 | 8388 154 014 21 72 224
8631 403 0.16 63 152 582 | 9010 393 0.16 61 150 580
8425 810 0.16 131 278 1226 | 8870 762 0.15 116 302 1102

1

2

3

4 8225 1243 0.18 218 350 1930 | 8689 1131 0.17 189 336 1732
5 7455 1735 0.17 302 480 2796 | 7922 1550 0.16 248 506 2274
6

3975 2231 0.16 364 658 3225 | 4217 1940 0.15 290 685 2752

Note: n is number of records; p is mean; CV is coefficient of variation; SD is standard deviation.

Table 4.2 shows the estimated variance components and their relative weekly increase. All variances
increased sharply with increasing weeks of age. The relative increase in variances was larger at early age
than later. For example, the relative increase in direct additive genetic variance from BW1 to BW2 was
1028 and 976% for males and females, respectively, whereas the relative increase in the variance from
BWS5 to BW6 was 51 and 41% for males and females. In addition, the increase of the direct genetic and
residual variances was steeper than the increase of the maternal variance. The relative increase in
variance of the permanent environmental maternal effect was lower than variances of the direct additive
genetic effect at week 1-6. There was no increase in the permanent environmental maternal variance

from week 5-6 as the effect was not significant for the weight gain from week 5-6.
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The direct additive genetic, permanent environmental maternal and phenotypic variances were higher for
male than female BW at all weeks of age. The relative increases in variances were also higher for male
BW. The difference in variances between male and female BW increased with increasing weeks of age.

Table 4.2: Estimated variance components and relative increase in variance for body weight (BW) of
broiler chicken over 1-6 weeks. Variance components were direct additive genetic effect (a), permanent
environmental maternal effect (c), and phenotypic effect for male ([effect].M) and female BW ([effect].F).
Relative increase in variances at week t (2-6) is the difference between variances at week t and week t-1

divided by the variance at week t-1.

Variance Relative increase in variance (%)
Week a.M a.F cM c.F p.M p.F a.M a.F cM c.F p.M p.F
1 86 83 33 32 306 300

970 893 234 215 3089 2830 | 1028 976 609 572 909 843
3538 2821 786 636 12435 9712 265 216 236 196 303 243
10724 7936 1599 1231 34219 24668 203 181 103 94 175 154
23904 16733 2591 1911 74742 50852 123 111 62 55 118 106

o b~ W N

36122 23621 2591 1911 130640 82065 51 41 0 0 75 61

Table 4.3 shows additive genetic, permanent environmental maternal and phenotypic coefficients of
variation for male and female BW at different weeks of age. The direct additive genetic coefficients of
variation fluctuated around 0.060-0.089 for male BW between week 1-6 and 0.059-0.083 for female BW
between week 1-6. The permanent environmental maternal coefficients of variation had a decreasing
tendency for both male and female BW as weeks of age increased from 1 to 6. In contrast, the
environmental residual and phenotypic coefficients of variation had increasing tendency for male and
female BW. The difference between phenotypic coefficients of variation of male and female BW increased

with increasing weeks of age.
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Table 4.3: Direct additive genetic (a), permanent environmental maternal (c) and phenotypic (p)

coefficients of variation (CV) for male and female BW of broiler chicken over 1-6 weeks of age

BW at Male Female

week CV_ a CV_c CV op CV_ a CV_c CV p
1 0.060 0.037 0.113 0.059 0.037 0.113
2 0.077 0.038 0.138 0.076 0.037 0.135
3 0.073 0.035 0.138 0.070 0.033 0.129
4 0.083 0.032 0.149 0.079 0.031 0.139
5 0.089 0.029 0.158 0.083 0.028 0.146
6 0.085 0.023 0.162 0.079 0.023 0.148

Figure 4.1 shows estimates of heritability and ratio of the permanent environmental maternal variance to
the total phenotypic variance for BW over different weeks of age. With increasing weeks of age, the
heritability had increasing tendency although there were two drops at week 3 and 6 when compared with
heritability of BW in the previous week. Heritability of BW at week 1 and 6 were lowest at 0.276-0.288.
Heritability of BW at week 5 was highest at 0.320 and 0.329 for male and female BW, respectively. The
difference in heritability between male and female BW was negligible at all weeks of age, but the
difference tended to increase with increasing weeks of age.

For BW, the ratio of the permanent environmental maternal variance to the total phenotypic variance
reduced gradually from week 1-6. The ratio was 0.108 for male and 0.106 for female of BW at week 1, and
it declined to 0.020 for male and 0.023 for female of BW at week 6. The difference in the permanent
environmental maternal effect between male and female BW was negligible at all weeks of age. The
permanent environmental maternal effect for WG6 was not included in the multivariate model because
inclusion of the effect in the model led to convergence problems and the effect was not significant.
However, the permanent environmental maternal effect of BW6 still existed because BW6 was the sum

of BW2 and WG3-6.
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Figure 4.1: Heritability (h?) (+SE) and ratio of the permanent environmental maternal variance to the total
phenotypic variance (c?) (+SE) for male (M) and female (F) BW over 1-6 weeks of age.
Table 4.4: Estimated genetic correlations of the direct additive genetic effect for male (above diagonal)

and female BW (below diagonal) between BWs at different weeks of age.

Week 1 2 3 4 5 6
1 1 0.846 0.717 0.528 0.402 0.320
2 0.846 1 0.922 0.706 0.547 0.435
3 0.730 0.933 1 0.898 0.769 0.664
4 0.548 0.727 0.901 1 0.963 0.901
5 0.424 0.572 0.776 0.964 1 0.983
6 0.351 0.472 0.683 0.911 0.986 1

Note: Standard errors for the correlations ranged from 0.003-0.079.

Table 4.4 show the estimated genetic correlations of direct additive genetic effects between BWs at
different weeks of age. Positive correlations between BWs at different weeks of age were found for the
direct additive genetic effects. The direct additive genetic effects on two consecutive weekly BWs were
highly correlated with genetic correlations ranging from 0.846-0.986 with standard error of 0.003-0.029.
The correlations between two consecutive weekly BWs were lower in the early ages than in the late ages.
The correlations between early and late BWs were weaker for the direct additive genetic effect. The
genetic correlation between BW1 and BW6 was only 0.320 for male BW and 0.351 for female BW.

Table 4.5 show the phenotypic correlations between BWs at different weeks of age for male and female

records. Similar to the genetic correlations between different weeks of age, the phenotypic correlations
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were higher between two consecutive weekly BWs than the correlations between early and late BWs. The
phenotypic correlations between two consecutive weekly BWs were 0.752-0.925 for male records and
0.763-0.941 for female records. The correlations between BWSs at week 1-2 and week 5-6 were 0.307-
0.546 for male records and 0.350-0.566 for female records. The correlations between BWs at different
weeks of age for female BW were slightly higher than the corresponding correlations for male BW.

Table 4.5: Estimated phenotypic correlations between BWs at different weeks of age for males (above

diagonal) and females (below diagonal)..

Week 1 2 3 4 5 6
1 1 0.752 0.635 0.502 0.395 0.307
2 0.763 1 0.869 0.688 0.546 0.431
3 0.664 0.885 1 0.863 0.724 0.595
4 0.521 0.697 0.864 1 0.915 0.797
5 0.421 0.566 0.732 0.921 1 0.925
6 0.350 0.468 0.625 0.831 0.941 1

Note: Standard errors for the correlations ranged from 0.002-0.013.

4.4. Discussion

A multivariate model was developed and used to estimate variance components for male and female BW
at different weeks of age of broiler chicken tested in a commercial production environment. A criterion
used in the development of the model was cross-validation procedure that was based on half-sib
correlation in order to avoid biases due to maternal effects. The model used BW and weight gains as
phenotypic records to overcome convergence problems, and male and female BW were standardized
differently to model the heterogeneous variances between sexes.

Statistical model and methodology

A criterion for the development of statistical models was the predictive ability of breeding values in cross-
validation tests that were based on the half-sib correlation (results not shown). Methods of estimating
this predictability is different from the conventional method of cross-validation. The conventional method
is based on correlation between corrected phenotypes (y.) and EBVs of the same animals in the validation
dataset (Christensen et al., 2012). This conventional method can lead to an overestimation of the model
predictive ability when maternal effects are present. The estimation of EBVs of birds in the validation
dataset is from information of their full-sibs, half-sibs, dam, sire, and other relatives in the pedigree, of

which full-sibs provide most information to the prediction. If the maternal effects are not accounted for
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appropriately in the model, the effects shared among full-sibs may influence the EBVs of birds in the
validation dataset, and the predictability of breeding values for the model would be overestimated.

To avoid this overestimation, we use a different approach to calculate the predictive ability in the cross
validation including the division of training and validation datasets and half-sib correlation. The division is
to ensure that birds in the validation dataset always have their full-sibs and half-sibs in the training
dataset. If the maternal effects are not properly accounted for in the model, the effects will confound into
EBVs. The correlation of EBV, and y. is between birds that are paternal half-sibs in the validation dataset,
and due to the mating structure such half sibs will not share potential bias from maternal effects.
However, the interference of the maternal additive genetic effect is reduced but not completely removed
because the different dams of two half-sib birds might be related in the pedigree. Another limitation of
our method is that the cross validation relies on correlation between EBV, and y. of half-sibs which may
have higher standard error than the conventional method using correlation between EBVs and y. of the
same birds.

It is common that sex by genotype interaction is ignored in genetic evaluations of breeding programs
because re-ranking due to sex by genotype interaction is small (van der Heide et al., 2016), and because
treating male and female traits as two traits can easily lead to convergence problems in the models.
Heterogeneous variance between sexes, therefore, are often also ignored. However, when the
heterogeneous variance exists and is not accounted in the model, a serious re-ranking may occur and
lead to reduced response to selection (Cardoso et al., 2007). Failure to account for different variances
between sexes could also lead bias to variance components and estimated breeding values (Thompson,
2008). A distinct feature of the multivariate model (4.3) was the standardization applied differently to
male and female records based on phenotypic standard deviations that were calculated from univariate
models (1-2). This relatively simple standardization approach can model the heterogeneous variances
between sexes and their unity correlations. This approach can reduce potential bias compared to the
model that considered identical variances for sexes. In addition, the use of heterogeneous variances can
be very good for multi-trait selection indexes for different sexes. Compared to the bivariate model that
treats male and female records as two different traits, our model requires less computation and it is less
likely to encounter convergence problems. Another feature of the multivariate model (4.3) was different
residual variance for male and female traits. When the standardization of male and female records were
not efficient, this would show in the model as a heterogeneous residual variance.

In addition, our model utilized all performances of BW1-6 simultaneously in the multivariate model.

Because there were repeated measurement for BW, repeatability and random regression models were
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considered. However, repeatability model would have low accuracy because correlations between early
and late BW were low. Random regression models would require high order of fitting functions due to the
fluctuation of heritability at different weeks of age, particularly at week 2-3. When convergence of the
multivariate model was not an issue, the multivariate model had more parameters, and described better
the covariance matrix of the direct additive genetic effect over weeks of age than the random regression
model. In addition, the covariance matrices from a multivariate model can be fitted with functions, thus
the change of an effect over week of ages can be described just like in a random regression model. A
Legendre polynomial covariance function that were used to model the covariance of the additive genetic
effect can be found in Appendix 4.2. Multivariate model is typically regarded as better prediction to
breeding values than univariate model because the multi-trait model capitalize information from
correlated traits (Henderson and Quaas, 1976).

Our model used BW1-2 and weight gains to model BW1-6. This is a linear transformation that leads to the
same inferences but have much better convergence properties. However, after transformations, variance
components of the model (4.3) were not as expected. Although correlations between sexes were assumed
to be one, genetic correlations between BWs at different weeks were not identical for males and as
females. For examples, correlation between BW1 and BW2 was 0.846 for both male and female, but
correlation between male BW1 and male BW6 was different compared to the correlation between female
BW1 and female BW6. Although the difference in heritability between sexes is negligible for BW3-6, there
was an increasing difference in heritability between male and female with increasing weeks of age.
Variance components

With increasing age, the direct additive genetic, permanent environmental maternal and residual
variances of BW increased sharply. However, the direct additive genetic, permanent environmental
maternal and residual coefficients of variation changed relatively little with increasing weeks of ages. The
small change in the coefficients of variation, despite of the sharp increase in variances, indicates that the
change in variance components over week 1-6 is mainly due to scaling effect as the mean BW also
increased considerably with increasing ages. The sharp increase in variances and relatively little changes
in coefficients of variation were also found in BW of indigenous chicken from week 0-16 (Dana et al.,
2011), BW of crossbred chicken from week 2-10 (Begli et al., 2016) and BW of broiler chicken from day t-
7 to t (Mebratie et al., 2017).

However, the scaling effect was not the only factor responsible for the change of variance components
over ages of broilers because the rates of the change were different between weeks of age and for

different random effects in the model. The rate of the change in variance components from BW1 to BW2
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is much more substantial than the change between later consecutive weeks of age. In addition, the rates
of the change are different between different random effects. The permanent environmental maternal
variance increased considerably but its proportion of the total phenotypic variance reduced gradually. The
phenotypic variances also increased rapidly for both male and female BW, but the increase was at a slower
rate for female BW due to the lower growth rate of females.

Maternal effects

The permanent environmental maternal effect on BW reduced gradually from week 1-6. The effect was
still significant on BW at week 6, but the effect was not significant for WG6. Jasouri et al. (2017) also found
a diminishing trend of the effect on BW in dual-purpose chicken when they aged. They found that the
permanent environmental maternal effect was still significant at week 12. Dana et al. (2011) found the
environmental maternal effect on BW at week 8, but not BW at week 12 in indigenous chicken. Begli et
al. (2016) showed that the ratio of the permanent environmental maternal variance to the total
phenotypic variance for BW of F2 chicken crossed between commercial broilers and native fowls
increased slightly from 0.10 at week 2 to 0.12 at week 6, and then reduced to 0.07 at week 10. Maniatis
et al. (2013) showed that the ratio of the permanent environmental maternal variance to the total
phenotypic variance was 0.12 for BW at week 1 and 0.05 for BW at week 5 of commercial broiler chicken.
The decrease in the permanent environmental maternal effect with increasing age was also found for
meat quail (Barbieri et al., 2015) and local Venda chicken (Norris and Ngambi, 2006). In comparisons, the
permanent environmental maternal effect at the corresponding age in our study is lower than other
studies (Begli et al., 2016; Dana et al., 2011; Jasouri et al., 2017; Maniatis et al., 2013; Zonuz et al., 2013).
This may be due to the raising environment. Birds in our study are raised in commercial production
environment while those studies have birds from breeding units (Dana et al., 2011; Jasouri et al., 2017,
Maniatis et al., 2013; Zonuz et al., 2013) or controlled experimental environments (Begli et al., 2016;
Norris and Ngambi, 2006).

The maternal effect, age of dam, was also included into the multivariate model (4.3), as it was in the study
by Koerhuis and Thompson (1997) on juvenile BW of broilers. The influence of dam age on broiler BW
may be related to egg weight. Significant effects of dam age and egg weight on broiler BW has been
reported (Lapao et al., 1999; Tahir et al., 2011; Tona et al., 2004; Wolanski et al., 2007). The effect of egg
weight was significant on BW of broilers at hatching and at 50 days of age, and a linear function of egg
weight on hatching BW was found in Tahir et al. (2011). Tona et al. (2004) found that BWs of broilers at

week 0-2 from younger dams were significantly lower than the BWs from older dams.
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In our studies, the maternal additive genetic effect was not included in the multivariate model (4.3) as the
effect was not significant for all BW traits except male BW1 (Appendix 4.3). Meanwhile, many studies
show that the presence of the maternal effects including both additive genetic and permanent
environmental effects can increase the fit of the models (Chapuis et al., 1996; Jasouri et al., 2017; Koerhuis
and Thompson, 1997; Maniatis et al., 2013; Zonuz et al., 2013). Inclusion of both the maternal effects in
the model improved considerably the fit of models for BW traits at week 0, 8 and 12 in dual-purpose
chicken compared to the models without or with only one of the maternal effects (Jasouri et al., 2017). A
similar conclusion on the inclusion of both the maternal effects in the model was for BW at week 0 and 5
in broilers (Maniatis et al., 2013), BW at week 8 in Iranian native chicken (Zonuz et al., 2013), BW at week
12 and 16 in turkeys (Chapuis et al., 1996), and juvenile BW in broilers (Koerhuis and Thompson, 1997).
These five studies used REML for estimation of variance components, and comparison criteria between
models was based on log-likelihood, Akaike Information Criterion (AIC) and Bayesian Information Criterion
(BIC). Jasouri et al. (2017) found that breeding values estimated for BW at week 0 and 8 were substantially
affected by the maternal effects included in the model whereas breeding values estimated for BW at week
12 were similar for models with and without the maternal effects included.

Heritability

Heritability estimates in our study were moderate and ranged from 0.276 to 0.320 for male BW and from
0.276 to 0.329 for female BW at week 1-6. Kapell et al. (2012), in which broiler chicken were also raised
in commercial production environment, obtained a heritability for BW5 of 0.32-0.36. In the same study
(Kapell et al., 2012), heritability of BW5 were 0.32-0.40 for broiler chicken that were raised in the breeding
environment. Other studies on broiler chicken raised in a breeding environment report heritability of 0.21-
0.42 for juvenile male BW, 0.30-0.53 for juvenile female BW (Mebratie et al., 2017), 0.26-0.33 for juvenile
male BW, 0.30-0.36 juvenile female BW (Koerhuis and Thompson, 1997) and 0.22 for BW at week 5
(Maniatis et al., 2013). Also raised in the breeding environment, heritability were 0.19-0.23 for BW of
Horro indigenous chicken at weeks 2-16 (Dana et al., 2011), 0.31-0.32 for BW of dual-purpose chicken at
weeks 8 and 12 (Jasouri et al., 2017), and 0.24 for BW of Iranian native chicken at week 8 (Zonuz et al.,
2013). In Begli et al. (2016) crossbred chicken were raised in a controlled experimental environment, and
heritability estimates varied from 0.32 to 0.34 for BW at week 2-6, and it dropped linearly from 0.34 for
BW at week 6 to 0.19 for BW at week 10. In Norris and Ngambi (2006), heritability was 0.36 for BW of
local Venda chicken at week 0 and 0.25 at week 4.

Heritability for BW at week 2-3 does not seem to follow the overall change of heritability over ages. It

might be due to the change of maternal additive genetic effect at week 2-3 that is not accounted in the
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multivariate model (4.3). Even if the maternal additive genetic effect was not significant, failing to account
for this effect might cause an overestimation of the direct additive genetic effect. Other possible
explanation to the change of heritability for BW at week 2-3 could be diseases. Birds around this age are
prone to coccidiosis and other diseases of the digestive tract (Shamim et al., 2015) that affect BW of
broilers. Respiratory diseases caused by infectious bronchitis virus, avian metapneumovirus and
mycoplasma species may also affect BW of broilers at this age, when level of maternal antibodies declines
substantially and birds start to croak (De Boeck et al., 2015). In addition, feed change from starter to
growing diets may affect BW of broilers at this age.

Genetic correlations

The genetic correlation between BWs at consecutive weeks was high, particularly for BWs at weeks 2-6,
in which the correlations between BWs at two consecutive weeks were above 0.898. The correlations
between BWs at week 4 and 6 were also high at 0.901 for male records and 0.911 for female records.
These findings are in agreement with Barbieri et al. (2015), Begli et al. (2016) and Niknafs et al. (2012),
which estimated the genetic correlations between BWs at two consecutive weeks ranging from 0.90 to
0.99 for BWs from week 2 onwards. Begli et al. (2016) found high correlations (>0.91) between BWs at
week 4-7. In Mebratie et al. (2017), the genetic correlation between juvenile BWs at t and t+4 days of age
were 0.94 for male records and 0.92 for female records. The genetic correlations were 0.97 between BWs
at week 6 and 8, 0.86 between BWs at week 8 and 12, and 0.99 between BWs at week 12 and 16 in Dana
etal. (2011). These high correlations imply that the age of selection for broilers can be reduced compared
to the age of target BW in breeding program with relatively low loss in accuracy of selection. In our study,
the correlations between early and late BWs were relatively low, ranging from 0.320 to 0.572 for BWs
between week 1-2 and 5-6. Maniatis et al. (2013) found a genetic correlation of 0.17 between BWs at
week 1 and 5. The genetic correlations for BWs were 0.66 between week 2 and 6, 0.46 between week 2
and 8, and 0.26 between week 2 and 10 (Begli et al., 2016). Other studies found genetic correlations of
BW to be 0.36-0.37 between week 1 and 8-12 (Niknafs et al., 2012), 0.25-0.46 between week 0 and 6-16
(Dana et al., 2011), and 0.20-0.38 between week 1 and 5-6 (Barbieri et al., 2015). These findings suggest
that early BW has a relatively low influence on target BW of selection.

Sex by genotype interaction

Sex by genotype interaction refers to the same genotype expressed differently in male and female BWs.
This can be modelled by regarding BW in males and females as two different traits. Each bird, either male
or female, would have two breeding values for male BW and for female BW. Indications of sex by genotype

interaction can be heterogeneous variances, different heritability and correlation of less than one
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between male and female BWs. Sex by genotype interaction for BW has been demonstrated in broilers
(Mebratie et al., 2017; van der Heide et al., 2016) and other poultry species (Chapuis et al., 1996; Mignon-
Grasteau et al., 1998). These studies show that variances between sexes could differ by a factor of 2 or
more. These studies also found different heritability between sexes and correlations of 0.83-0.94 between
male and female BW. However, these high correlations imply relatively small re-ranking between sexes.
In addition, van der Heide et al. (2016) shows that correlations between estimated breeding values from
sex-joined (univariate) and sex-specific (bivariate) models were 0.94-0.97 for broiler chicken BW at week
6.

In our study, the genetic variances for male and female BWs tended to be different, but the genetic
correlation was not significantly different from one. Treating male and female BWs as two different traits
led to convergence problems in the model, due to parameters at the edge of the parameter space. The
unity correlation between sexes implies no re-ranking between male and female performances. The
difference in heritability between sexes was also negligible even when different residuals for sexes were
assumed in the multivariate model (4.3). Despite of unity correlation and similar heritability, the

difference in genetic variances between male and female BW increased with increasing weeks of age.

4.5. Conclusion

A model was developed and used to estimate genetic parameters of BW at 1-6 weeks of age of broilers
raised in a commercial environment. To improve accuracy of predicting EBVs, we have used several
different approaches including model cross-validation based on half-sib correlation, scaling applied
separately to male and female records and the use of weight gains to model BW. Half-sib correlation was
used to reduce the interference of maternal effects on the cross-validation when maternal effects might
be present. Scaling was to account for heterogeneous variance between sexes to reduce potential bias of
the model that considered identical variances for sexes. All performances of BW1-6 were utilized
simultaneously in a multivariate model using weight gains. Parameter estimates from the multivariate
model show that the direct additive genetic, permanent environmental maternal and residual variances
for BW increased sharply as age of broilers increased. The sharp increase in variances over weeks of age
were mainly due to scaling effect. However, rate of the increase was also different e.g. ratio of the
permanent environmental maternal variance to phenotypic variance reduced gradually with increasing

age.
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Appendix 4.1:

Transformations from standardized BW1-2 and WG3-6 to normal scale of male and female BW1-6 were

carried out for (co)variance matrices and the asymptotic covariance matrices using formula (4.4-4.7):

Vo = T3 [T, (Ty VO Ty) T3] T (4.4)
Ve = Tez [Tez (Tea VO Téy) Téy| Tés (4.5)
Ve =T [T, (Ty VO Ty) T5] T4 (4.6)
Vi = Tviz [Tviz (Tvia V0 Tont) Torz] Tois (4.7)

where matrices of direct additive genetic, permanent environmental maternal, residual and asymptotic
covariances were Va, V¢, Ve and VI, respectively, at normal BW scale, and Vf, VCO, Vg and VIO, respectively,

at standardized weight gain scale. Transforming matrices for formula (4-7) were:

10 0 0 0 O 1000 000 O0O0O0 0 O
10 0 0 0 0 0100 00O0O0O0UOTU OO0
010 0 0 0 001 00O0UO0UO0O0UO0TU 0O
010 0 0 0 000 100UO0O0O0OUO0TU OO
001 0 00 001 010U0TU0TO0UO0TU 0O

T1=001000T3:ooo101000000
000 1 0 0| 001 010100UO0TUO0U0
000 1 00 000 1010T10U0TUO00
000 0 10 001 0101071000
000 0 10 0001010710100
000 0 0 1 001 010101010
0 0 0 0 0 1. 0 0 01 01 010 10 1

1 0 00 00O O 0O
1 0 0 0 O 0100 00O0UO0TU 0O
10 0 0 0 001 00O0UO0TUO0TU 0O
010 0 0 0001 0O0UO0TUO0TU 0O
010 0 0 001 0100TU0TU0O0

7.0 01 00, 0001010000

710 01 0 0f* 0o 01 0101000
000 1 0 0001010100
000 1 0 001 0101010
000 0 1 000101010 1
o 0 0 0 14 0010101010

0 0 01 01 0 10 1
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_Tl ® T1 0 0
Ty = 0 Te1 @ Teq 0
0 0 T; ® T4l
(T, @ T, 0 0 7 T; @ Ts 0 0
Ty, = 0 Te2 X Te2 0 , Tyiz = 0 Te3 X Te3 0
0 0 T, ® T, 0 0 T; ® T3

Matrix Tz is a 12x12 matrix, of which off-diagonal elements are zero, the diagonal is vector of phenotypic
standard deviations with trait orders: male BW1, female BW1, male BW2, female BW2, male WG3, female
WG3, male WG4, female WG4, male WG5, female WG5, male WG6 and female WG6. Matrix Tc2 is a 10x10
matrix that is sub-matrix of T, for traits of male and female BW1-2 and WG3-5. The phenotypic standard
deviations of diagonals from matrices T. and T, were computed from variance estimates of univariate

models (4.1) and (4.2).
Appendix 4.2:

The covariance of a Legendre polynomial function that was fitted to model the additive genetic variances

and covariances of BW traits over 1-6 week of ages was computed:
Vi=¢ Vo7 (48

where \/I} is the covariance matrix of the Legendre polynomial coefficients for the additive genetic effect
of BW traits over weeks of age; ¢ is a matrix of the Legendre polynomial coefficients with order of five
that were computed using standardized weeks of age; ¢p~1 is the inverse of ¢; ¢~ is the transpose of
the inverse of ¢; and \7; is the covariance matrix of the additive genetic effect for BW1-6 estimated from

the multivariate model (4.3).

Variances and covariances of the Legendre polynomial coefficients on weeks were computed separately

for male and female BW (Table 4.6).
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Table 4.6: Variances and covariances of Legendre polynomial coefficients on weeks for additive genetic

effects of male and female body weights

Male Female

do di1 d> as da ds do di d2 das da ds
Ao 14143 10369
a1 9677 7630 6664 5063
a2 945 1347 639 464 790 394
as -1008 -815 -112 145 -726 -595 -87 109
as -284 -286 -106 26 25 -215 -207 -71 21 18
as 147 140 29 -42 -5 21 124 110 19 -32 -4 15

Notes: ag is a coefficient on intercept; ai, a,, as, a4 and as are a coefficient on weeks to the first, second, third, fourth and fifth

power, respectively.

Appendix 4.3:

Log-likelihood ratio tests (significant difference, P<0.05) were carried out to identify the significance of
maternal additive genetic effect for BW traits by week and sex. Three univariate models (4.9-4.11) were

used for the log-likelihood ratio tests:

y=Xb + Za +Mm+ Wc +e (4.9)
y=Xb + Za +Mm + Wc +e (4.10)
y=Xb + Za + Wc +e (4.11)

where y is vector of male or female phenotypic records of BW1-6 at normal scale; b is vectors of fixed
effects of flock of birds, source of flocks and age of dam. Matrices of X, Z, M, and W are incidence matrices.
Vectors a, m, c and e are the direct additive genetic effect, maternal additive genetic effect, permanent
environmental maternal effect and residual, respectively. In model (4.9), these random effects were

d? o
assumed to be normally distributed: [;] ~N[0,A®[ ¢ agn], c~ N[0,I402] and e~ N[0,Ic?],
O-am O-m

where A is the pedigree relationship matrix; lq is the identity matrix for dams; I is the identity matrix for
individual birds; 02, 04, 04m, 02 and oZ are the direct additive genetic variance, maternal additive
genetic variance, direct and maternal additive genetic covariance, permanent environmental maternal
variance, and residual variance, respectively. The random effects in model (4.10) were assumed to be

2.0
normally distributed as in model (4.9), except that [:1] ~N[0,A ® [061 2]- The random effects in
o,

m
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model (4.11) were assumed to be normally distributed as in model (9), except that the maternal additive

genetic effect is not present.

Table 4.7: Estimates (+SE) of variance components® from model (4.9) and the significance of maternal
additive genetic effects from log-likelihood ratio tests for male (M) and female (F) body weight of broiler

chicken over 1-6 weeks of age.

Significance?  Significance®
2 2 2 2
Week Sex lop Oam Om o¢ A Of O of 62
+14 +10 +10 +6 +8
1 F 64 0 12 24 198 NS NS
+14 +8 +7 +5 +8
2 M 816 13 65 208 1905 NS NS
+154 +80 +58 +48 +86
2 F 789 39 46 155 1737 NS NS
+141 +66 +47 +43 +79
3 M 3035 -53 225 773 7707 NS NS
+578 +298 +224 +186 +329
3 F 2890 -83 181 395 5800 NS NS
+491 +231 +165 +133 +274
10622 -713 695 1585 19284
4 M +1793 1872 +618 1472 1993 NS NS
4 F 7786 -220 442 892 14147 NS NS
+1279 +596 +414 +339 +709
5 M 20665 52 836 1986 44490 NS NS
+3567 +1628 +1077 +978 +2042
5 F 15786 358 536 1817 29082 NS NS
+2654 +1207 +782 +746 +1484
4 25558 1014 2530 87633
6 M +6187 +2510 +2399 +3968 NS NS
6 F 23450 0 802 46161 NS NS
+4667 +1606 +1413 +2718
Notes:

1Variance components estimated from model (4.9) were direct additive genetic variance (g2), maternal additive genetic variance
(62), covariance between direct and maternal additive genetic effects (04,m), permanent environmental maternal variance (ad),
and residual variance (c2).

2 Log-likelihood ratio tests (significant difference, P<0.05) were used to test the significance of g, ,, by comparing log-likelihoods
of models (4.9) and (4.10).

3 |og-likelihood ratio tests (significant difference, P<0.05) were used to test the significance of ;% by comparing log-likelihoods
of models (4.9) and (4.11).

NS: no significant difference (P >0.05); ***: significant difference with P<0.001.

“ Because model (4.9) did not converge, variance estimates for BW6 were from model (4.10). There was no estimate for g, ,, in
model (4.10).
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5 Breeding for village poultry production

Abstract

To improve genetic gain of breeding programs for village poultry production, breeding schemes with
observations obtained in village production systems using individual (VIO) and group recording (VGO)
were examined under different levels of genotype-by-environment-interactions (GXE). GXE was modelled
by varying the correlation between traits measured in the breeding station and village environments for
bodyweight (rg sw) and egg production (rg_ep). Relative and absolute genetic gains obtained from VIO and
VGO were used for comparison between the schemes. Results showed that village observations
significantly improved genetic gains compared to the scheme without birds tested in the village. The
improvement was only slightly larger with individual observations than with group observations. Higher
re sw and rgep led to lower relative genetic gain, but higher absolute gain of VIO and VGO. It is
recommended to apply a breeding scheme using group recording of village performance when strong GxE
in breeding for village poultry is expected.

Key words: breeding scheme; GxE; group recording; stochastic simulation; village poultry

5.1. Introduction

Introduction of exotic breeds or high yielding hybrids has failed to upgrade the genetic level of the current
chicken populations in Ethiopia due to various reasons, such as farmer preference, lack of required input
and chicken adaptability (Dana et al., 2010; Wondmeneh et al., 2015). In addition, the application of exotic
breeds in an intensive or semi-intensive production system for smallholder villagers brings in lower
economic returns than the use of indigenous chicken under a scavenging production system (FAO, 2010;
Okeno et al.,, 2013). Moreover, one of the biggest advantages of indigenous chicken is their disease
resistance and adaptability to harsh conditions (Dessie et al., 2000). Therefore, a key approach for
delivering a productive and adapted chicken suitable for the production system and acceptable to the
farmers, is to improve the indigenous chicken through breeding programs.

A selective breeding program was initiated in 2008 at the Debre Zeit Agricultural Research Centre in
Ethiopia (Dana et al., 2011). The ultimate objective of the breeding program is an improved dual-purpose
chicken (Horro) for growth and egg production, which also is well-adapted to the semi-scavenging
environment of village poultry production. However, the breeding scheme of the program has revealed
to be suboptimal as it has shown slow genetic progress and signs of losing adaptability of indigenous
chicken after 7 generations of selection (Wondmeneh, 2015). The differences between the conditions at

the research station and villages might cause genotype by environment interaction (GxE). At the research
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station, birds are selected under hygienic conditions, nutritionally adequate diets and well-protected
cages, whereas at the villages, birds are subjected to a combination of low food availability, sub-optimal
diet, prevalence of diseases and other social interaction factors.

Significant GXE in poultry has been reported in a number of studies (Bekele et al., 2009; Chen et al., 2009;
Horst, 1985; Kapell et al., 2012; Mathur & Horst, 1994; N'Dri et al., 2007) and reviews (FAO, 2010; Mathur,
2003). GxE could reduce potential genetic gains of a breeding program. There are, however, only a few
studies (Bijma & Arendonk, 1998; Mulder & Bijma, 2005) on design or evaluation of breeding schemes in
the presence of GxE, and they are mainly designed for other species than poultry and for commercial
production instead of village production. A big challenge for implementing breeding schemes for village
poultry is the need for routine collection of observations on individual animals. Group mean of full-sibs
and half-sibs can be a possible alternative for village phenotype recording. Studies on pooled data has
illustrated that selection based on estimated breeding values (EBV) from pooled observations can be
effective, particularly when group members have close relationships (Biscarini et al.,, 2008;
Nurgiartiningsih et al., 2004; Olson et al., 2006; Peeters et al.,, 2013). However, the use of pooled
observations in breeding programs where GxE is present, and where animals with the pooled observations
are not candidates of selection, has not been demonstrated.

This paper proposes breeding schemes for village dual-purpose poultry production in the presence of GxE.
Stochastic simulation is applied to compare breeding schemes on genetic gain considering group and
individual recording and to optimize the data recording effort in villages versus stations. GXE was modelled

by varying the correlation between traits measured in station and village environments.

5.2. Materials and methods

Breeding schemes

The stochastic simulation program ADAM (Pedersen et al., 2009) was used to simulate 100 replicates for
each scenario. The simulation mimicked the situation of the Horro chicken breeding population at the
Debre Zeit Agricultural Research Centre, Ethiopia (Dana et al., 2011). The schemes were designed for dual-
purpose village poultry production, by including body weight (BW) and egg production (EP) in the breeding
goal (Figure 5.1). The breeding structure consisted of 30 roosters and 300 hens. In each generation, a hen
had 4 offspring that were candidates for selection and an additional number of offspring for testing. Sex
was randomly assigned to offspring at a 50:50 ratio. The candidates for selection were reared in a research
station. Under the station conditions, the birds had phenotypes defined as “station” traits. Birds for testing

were transferred to village small holders for recording of phenotypes, which were defined as “village”
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traits. The village tested birds were not considered as selection candidates, but only gave information for

evaluating station selection candidates.

Station Village

30 | x 300 ¢

l

[ 1200candidates’ | | Tested birds (600- 1800)" _ |

szllrecorded _..Bw? ('ecorded

| SeIectTon round 1 ]‘-

'

| 1504 | No selection for &

EP? :recorded __ EP*recorded

| se[ect\;ron round 2 l“f"'“'"”

v

Figure 5.1: Breeding cycle of a generation. ! Sex ratio of 15:19; 2 Bodyweight observed in both & and @; 3

Egg production observed in @; —> Birds reproduced/ selected, --- Observations realized, ===
Information for selection

In each generation, selection candidates went through two selection rounds. In the first selection round,
150 of all male candidates were selected after phenotypes for BW were measured both in station and in
village. No selection was applied in the females. This round was to ensure a high selection response and
to reduce costs of keeping all male candidates until EP was recorded. In the second round, 30 males were
selected out of the remaining 150 candidates and 300 females were selected out of all female candidates.
Selection round 2 was performed after phenotypes for EP were realized. BLUP selection was applied for
both the selection rounds, so information about relatives both in station and in village was used. Selection
was simulated for 20 discrete generations.

Trait simulation

Phenotypes of BW and EP were simulated and BW was observed for both male and female birds while EP
was observed in females only. In the station environment, BW and EP were denoted as BW; and EPs,
respectively, whereas in the village environment, the phenotypes were denoted as BW, and EP,,
respectively. Observations on BW; and EPs were realized individually, while BW, and EP, were recorded as
either group mean or individually. Group records were the average of the simulated phenotypes of 10
paternal-sibs, which were randomly selected from the 40 offspring of a sire. Therefore, members of a

group could have both full-sib and half-sib relationship.
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The genetic parameters assumed for all traits are shown in Table 5.1. The parameters of (co)variances,
correlation and heritabilities of BW; and EP; were based on literature for indigenous chicken in Africa
(Dana et al., 2011; Lwelamira et al., 2009; Niknafs et al., 2012; Oleforuh-Okoleh, 2011). We assumed that
the village scavenging system would result in a larger environmental variance and a lower heritability
compared to the conditions on station. The heritabilities for village traits was set to half the values for the
station traits. Additive genetic variances of BW, and EP; were assumed equal to those of BW, and EP,,
respectively. Genetic correlation between BW; and EPs was also equal to that of BW, and EP,. Genetic
correlations between the village and station environments for BW (rg sw) and EP (rg er) were varied to
reflect different extent of GXE. To ensure a positive-definite matrix of genetic covariance, the genetic
correlation between BW; and EP, was approximated by multiplying the average of rg sw and rg e by
correlation between BW; and EP, (Table 5.1). This approximation came from assuming that the link
between BW; and EP, might be through either one of two paths. One path was through correlation
between BW; and EPs and correlation between EPs and EP,, and another path was through correlation
between BW; and BW, and correlation between BW, and EP,. The genetic correlation between BW, and
EPs was approximated in the same way. Environmental correlation between BW, and EP, was assumed to
be equal to that between BW; and EPs. Other environmental correlations between traits were set to 0
because birds only had records either on the station or in the village environment.

Table 5.1: Genetic parameters assumed for simulating body weight (BW) and egg number (EP) in station
(s) and village (v) environments: phenotypic variance, heritability (along the diagonal), genetic

correlations (above diagonal), and environmental correlations (below diagonal)

of BW; EPs BW, EP,
BW; 291751 0.41 -0.12 Fg BwW -0.12 (rg_sw + rg ep)/2
EPs 130.65 0.02 0.28 -0.12 (rg w + rg ep)/2 Fo ep
BW, 569610 0 0 0.21 -0.12
EP, 261.29 0 0 0.02 0.14

Note: rg_sw and rg_gp, genetic correlation between traits of station and village environments, are variable factors.

True breeding values of BW,, EP, BW, and EP, traits of a bird i at generation O were scaled to achieve an
initial genetic covariance matrix by following equation: thv; = L' X r, where tbv; is a vector of true
breeding values of bird i; L' is the Cholesky decomposition of the initial genetic covariance matrix; and r
is a vector of random numbers from a standardized normal distribution. Means of the traits were O.

Simulation of environmental values of the traits was similar to simulation of true breeding values, with a
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Cholesky decomposition of the environmental covariance matrix. Phenotypic observation of a trait for an
individual was the sum of true breeding value and environmental value. Environmental (co)variances were
kept constant through the simulations whereas genetic (co)variance and heritability decreased due to
Bulmer effect of selection and inbreeding. True breeding value of the descendants was half of true
breeding values of their parents plus Mendelian sampling terms. Mendelian sampling variance of the
offspring was determined based on the inbreeding of the parents.

Simulation of group mean observations was done in two steps. The first step was simulation of individual
phenotypic observations as described above. The second step was to compute group mean observations.
All offspring birds of a sire in a village were randomly assigned into groups of 10 birds. Individual
phenotypic observations of those offspring birds were used to calculate group means. Subsequently, the
individual phenotypic observations were replaced by group means. For BW,, 10 paternal-sib of a group
had the same group mean observation. For EP,, phenotypic observations of females of the 10 paternal-
sib group were used to calculate the group mean, and phenotypic observations of these females were
replaced by the mean.

Simulated scenarios

A reference breeding scheme and 2 alternative breeding schemes were simulated (Table 5.2). The
reference breeding scheme had 1200 candidates for selection and 600, 1200 or 1800 tested birds. Both
the selection candidates and tested birds provided information of station phenotypes. For the two
alternative schemes, the tested birds did not provide information of station phenotypes but were
transferred to village environment to get village phenotypes. In one of the alternatives (breeding scheme
VI0), the village birds had individual observations. In the other (breeding scheme VGO), the birds had
group mean observation of 10 paternal-sibs. As suggested in Cahaner et al. (1993), Kapell et al. (2012),
Mathur and Horst (1994), Mathur (2003) and Chen et al. (2009), a stronger GxE interaction was simulated
for EP than for BW, and therefore a lower genetic correlation between station and village measures. The
lower correlation for EP than BW came from assumption that traits of reproduction have stronger GxE
interaction than traits of production, and traits with lower heritability generally display higher GxE

(Mathur, 2003). The values of rg sw were set at 0.5, 0.7 and 0.9 and r, g were 0.1, 0.3 and 0.5.
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Table 5.2: Breeding schemes and parameters of genetic correlations between station and village traits

Alternative breeding scheme

Reference
Individual Group observation
Variables breeding scheme
observation (VIO) (VGO)

Number of tested birds 600, 1200, 1800 600, 1200, 1800 600, 1200, 1800
Type of observations on tested birds Station Village Village
Recording method Individual Individual Group
Genetic correlation between station

0.5,0.7,0.9 0.5,0.7,0.9 0.5,0.7,0.9
and village bodyweight (rg_sw)
Genetic correlation between station

0.1,0.3,0.5 0.1,0.3,0.5 0.1,0.3,0.5

and village egg production (rg_ep)

As a consequence, there were 4 factors investigated: type of breeding schemes, number of tested birds,
rg_sw and rg_gp. All three breeding schemes were simulated with all three numbers of tested birds and all 9
combinations of rg_sw and rg_gp resulting in a total of 81 simulated scenarios.

Selection criteria

Breeding was done to optimize production in the village environment and therefore the breeding goal
was as follows:

H=0* BW; + 0* EP; + 0.078* BW, + 9.080* EP, (5.1)

An economic value of 0 was assigned to the station traits of BW; and EP, with the assumption that only
village performance mattered. Economic values given to BW, and EP, were from Okeno et al. (2012). Unit
of BW was measured in grammes, and EP was cumulative number of eggs produced until 40 weeks of age.
Breeding values were estimated based on data from VIO and VGO using multivariate best linear unbiased
prediction (BLUP) models. For individual phenotypic observation, the model was:

v=Xb+Za+e (5.2)

where y is a vector of individual phenotypic records of traits of BWs, EPs, BW, and EP,; b is a vector of fixed
year effects; a is a vector of animal breeding values of the traits to be estimated assumed a ~
MVNI[O0, A @ G], where MVN is the multivariate normal distribution, A is the additive genetic relationship
matrix among individuals and G is the additive genetic (co)variance matrix among the traits as a 4x4

matrix; X and Z are incidence matrices relating fixed effects and breeding values to phenotypic

0I5 ® Eq

0
observations of birds; and e is a vector of residuals of the traits assumed e ~ MVN| _, ],
0 0 I, E,
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where I and Iy are identity matrices of station and village observations, respectively, Es and E, are the
environmental covariance matrices (2x2) of the station traits (BW; and EP;) and the village traits (BW, and
EP,), respectively.

For group observations, the same model as (5.2) was used, except that group averages of the 10 paternal-
sibs were treated as if they were individual phenotypic records of each of the ten birds. This is an
approximate approach described in Olson et al. (2006).

Selection for the reference breeding scheme was also based on breeding values estimated using model
(5.2), except that the model was a bivariate model applied for 2 traits of BW; and EP only. Selection for
the reference scheme was indirect selection, in which selection index was:

/=0.078* BW; + 9.080* EP; (5.3)

However, (5.1) was still used as true breeding goal to assess genetic gain of all scenarios.

A combined measure of GxE, which represents the correlation between performances in the two
environments, were based on the values of rg_gw and rg_gp with their economicindexes. Genetic correlation

between (5.1) and (5.3) (rg_ni) was calculated as:
Cov(H;I)

T HI = Forihxvard

Where Cov(H; I) is genetic covariance between H and /; Var(H) is genetic variance of H; Var(l) is genetic

(5.4)

variance of /.

Data analysis

For all scenarios, simulated output of total index genetic merit and the inbreeding coefficient from
generation 5 to 20 were used for analyses. The index genetic merit of a scenario was the sum of true
breeding values indexed with their economic values as in (5.1). The genetic merit of generation t, G;, was
the average of index true breeding values of all new-born individuals at generation t. Similarly, the
inbreeding coefficient at generation t, F;, was the average of inbreeding coefficients of individuals
calculated by pedigree information.

For each replicate, genetic gain per generation (AG) was computed as the difference between G, and Gs.
The relative genetic gain per generation (RG) of VIO and VGO scenarios was calculated as the differences
between their genetic gains and the mean of genetic gain of the corresponding reference scenarios
divided by the mean of genetic gain of the reference scenarios.

_ AGgiternative scenario — Average AGreference scenario

RG = X 100%
Average AGreference scenario

Where RG is relative genetic gain per generation of VIO or VGO scenario over the reference scenario; AG

alternative scenario 1S §enetic gain per generation of a replicate of VIO or VGO scenario; Average AG reference scenario
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is the mean of genetic gain of 100 replicates of the reference scenario corresponding to the VIO or VGO
scheme that had the same number of tested animals, and same rg_sw and rg_gp.

Rate of inbreeding per generation were computed as the negative of the slope of the regression of In(1-
F:) on t for Fs-F2 (Nirea et al., 2012).

Summary statistics for RG of VIO and VGO scenarios were based on 100 replicates. ANOVA were used to
test direct and interaction effects of various factors on RG. The differences between scenarios were tested
for significance using Tukey’s HSD (honest significant difference, P <0.05). Summary statistics for rate of

inbreeding of scenarios of VIO, VGO and reference schemes were also computed.

5.3. Results

The 4-way interaction of breeding scheme, rg sw, rg_er and number of tested animals were significant on
RG with p <0.0001. As can be seen in Figure 5.2, all scenarios of VIO and VGO breeding schemes had
genetic gain greater than the scenarios of the corresponding reference scheme. Relative genetic gains

ranged from 21 to 268%.
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Figure 5.2: Means of relative genetic gains (%) (+ SEM of 2%) of breeding scenarios with different
genetic correlations between station and village bodyweight traits (rg_sw) and egg production traits (rg_gp)
using either individual (VIO) or group recording (VGO) of 600, 1200 and 1800 village tested birds.

The addition of birds tested in the village condition increased RG. When number of village tested birds
was 600, 1200 and 1800, on average, RG was 84, 98 and 112%, respectively.

The VIO breeding scheme had higher RG than VGO breeding scheme. On average, RG of VIO was 102%
while it was 94% for VGO. With 600, 1200 and 1800 tested birds, RG of VGO were 81, 94 and 107%,
respectively, and RG of VIO were 87, 102 and 117%, respectively. In all cases with the same number of
village tested birds and the same correlations of rg_sw and rg ep, RG of VGO was lower than that of VIO.
Lower genetic correlations between traits measured on station and village environments, lead to higher

RG. With the maximum values for rg_gp of 0.5 and rg sw of 0.9, on average, RG was 28% whereas RG was
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225% for scenarios with the minimum values for rg_gp of 0.1 and rg_sw of 0.5. It seems that the magnitude
of increase in RG was higher with a reduction in rg_gr than with the reduction in rg gw. To have a better
explanation of the trend of RG, rg i can be used as an assessment of indirect selection of selection index
| to the true breeding goal. RG decreased with increasing rg_n (Table 5.3).

Table 5.3: Mean of relative genetic gain (RG %) of breeding scenarios with different genetic correlations
between station and village bodyweight traits (rg_sw) and egg production traits (rg_ep) corresponding to

genetic correlations between breeding goal H and index I (rg_1). S.E.M. was 1%.

lg_w lg_Ep lg_HI Mean of RG
0.5 0.1 0.16 222
0.7 0.1 0.20 170
0.9 0.1 0.23 138
0.5 0.3 0.33 91
0.7 0.3 0.36 78
0.9 0.3 0.40 67
0.5 0.5 0.50 47
0.7 0.5 0.53 37
0.9 0.5 0.56 31

Genetic gains per generation of VIO and VGO breeding scenarios can be seen in Table 5.4. Similar to RG,
AG of VIO and VGO scenarios increased with increasing number of village tested animals. Genetic gains of
VIO scenarios were also higher than that of VGO scenarios. However, unlike RG, lower genetic correlations
between traits measured in station and village environments (rg gr and rg sw) resulted in lower AG.
Meanwhile, AG increases with a higher genetic correlation between environments (rg 1), but at a lower

relative increase as can be seen in Table 5.4.
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Table 5.4: Mean of genetic gains per generation (AG) (+ SD) of breeding scenarios with different genetic
correlations between station and village bodyweight traits (rg sw) and egg production traits (rg_gp) using

either individual (VIO) or group recording (VGO) of village observations of 600, 1200 and 1800 birds.

600 1200 1800
rg_BW rg_Ep Fg_HI
VIO VGO VIO VGO VIO VGO

0.5 0.1 0.16 20.4 124 20.1:27 23.7 521 22.2 435 259:13 24.5 120
0.7 0.1 0.20 21.9 421 21.2 45 251453 23.7 121 26.6 120 25.2 422
0.9 0.1 0.23 23.7 123 23.0:21 26.5421 25.3 120 28.0 120 26.9 423
0.5 0.3 0.33 21.1 422 20.5:22 24.0 521 23.4 123 259422 24.7 123
0.7 0.3 0.36 22.8 123 21.5:23 253122 24.6 122 27.3 121 259420
0.9 0.3 0.40 24.7 123 24.0 123 26.6 2.0 26.2 ;116 28.2 ;13 271419
0.5 0.5 0.50 23.0:21 22.0:24 25.7 122 24.7 135 27.4 131 26.0:21
0.7 0.5 0.53 24.0 124 234 :23 26.7 +22 25.7 121 281425 26.6 121
0.9 0.5 0.56 25.8 :21 251422 27.7 20 26.5:17 28.9:19 28.0 421

The rates of inbreeding decreased as number of tested animals increased. They, on average, were 2.00,
1.99 and 1.97% for scenarios with 600, 900 and 1800 tested animals, respectively. Higher rates of
inbreeding were found in the VGO scenarios than in the VIO scenarios. The rates of inbreeding, on
average, were 1.70% for the reference scenarios, 2.10% for VIO scenarios and 2.15% for VGO scenarios.

The rates of inbreeding had a reducing tendency as rg_gp and rg_gw increased.

5.4. Discussion

In this study, breeding schemes for village dual-purpose poultry using group and individual recordings of
village and station performances at different levels of GxE interaction were compared. Results showed
that village observations significantly improved genetic gains of VIO and VGO compared to the reference
breeding scheme. The improvement was larger in VIO than in VGO. Increasing number of village tested
birds also increased genetic gain. Higher genetic correlations between traits measured in station and
village environments lead to lower relative genetic gain, but higher absolute genetic gain.

Effects of village observation on genetic gain

Increasing the number of animals tested in village improved accuracy of selection, and thus genetic gains
of VIO and VGO schemes compared to the reference schemes. The main difference between the reference

breeding scheme and its alternatives was the type of tested information. Village observations were direct
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phenotypes while station observations were correlated phenotypes. The reference scheme had only
station performance while its alternatives had both station and village performances. Selection in the
reference scheme is an indirect selection approach, and therefore, it results in the lowest accuracy of
selection compared to its alternatives.

The value of village observations increased when the genetic correlation between station and village traits
was lower. The scenarios with rg_sw of 0.9 and rg_gp of 0.5 gave lower relative genetic gain than those with
re sw of 0.5 and rg gp Of 0.1. Nonetheless, the absolute genetic gain was larger in scenarios with higher
genetic correlations as contribution of both station and village observations to accuracy of selection
increased.

It has been suggested that if the genetic correlation between performance in the selection and production
environments is less than 0.8, breeding program with information from the production environment
would be worthwhile to improve genetic gain (Robertson, 1959). Other studies have also shown that a
significantly higher genetic gain can be achieved with performance information from the production
environment (Bijma & Arendonk, 1998; Mulder & Bijma, 2005). However, when genetic correlation
between the performance in selection and production environments is high, for example 0.9, a large
number of animals need to be tested in the production environment for a significant improvement in
genetic gain.

In our study, relative genetic gains were positive in all scenarios of VIO and VGO with any number of birds
tested in village, rg_sw or rg_ep. In other studies, to model GxE, a single trait in two environments is often
used (Bijma & Arendonk, 1998; Mulder & Bijma, 2005). To be comparable to other studies, instead of rg_gw
and rg ep, rg i should be used as a representative of genetic correlation between station and village
environments. It takes into account the variances and covariances of BW and EP traits measured in the
two environments with their economic indexes. The value of rg n reflects the magnitude of indirect
selection on the selection index | to the true breeding goal. It describes the extent of GXE when more than
one trait is measured in two environments. In the simulation, rg 1 was 0.16-0.56, which might explain the
high relative genetic gains of all VIO and VGO scenarios.

It was expected that both the increases of relative genetic gain and decreases in absolute genetic gain
would correspond to increases of rg . However, an increasing tendency of absolute genetic gain did not
correspond to the increase of rg ui (Table 5.4). Possible explanations may include the two-stage selection
for BW in males and that EP is a sex limited trait (50% fewer records for EP than for BW), thus a change of

re_er has a different impact on absolute genetic gain than a change of rg sw.
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Group versus individual observation

VGO breeding scheme was similar to VIO, except that recordings of village performance were in groups
of 10 paternal-sibs. Our findings showed that VGO had lower RG than VIO, which is due to a lower accuracy
of prediction of breeding values using group recording. Pooling birds in groups reduced the amount of
information that was provided for each individual. Nonetheless, VGO had substantially increased genetic
gains compared to the reference breeding scheme and reduction of the absolute genetic gain in
comparison to the corresponding VIO scenario was at most 6% (Table 5.4.).

Other studies have analysed pooled data, in which pooled observations were groups of random animals,
full-sibs, half-sibs and descendants of maternal grand sire (Biscarini et al., 2008; Nurgiartiningsih et al.,
2004; Olson et al., 2006; Peeters et al., 2013). From these studies, it can be concluded that estimation of
breeding values from pooled data is theoretically and practically feasible for selection, particularly when
the pooled observations are groups of closely related animals.

Biscarini et al. (2008) illustrated that correlations between EBV based on individual observation and the
pooled observation of 4 half-sib animals were 0.703-0.748 for EBV of the own animals, 0.814-0.891 for
EBV of their sires with more than 10 offspring and 0.847-0.880 for EBV of their dams with more than 4
offspring. Nurgiartiningsih et al. (2004) also demonstrated high correlations between EBV based on
individual and group observations which were, on average, 0.844 for EBV of the animals and 0.943 for EBV
of their sires. Olson et al. (2006) studied accuracies of predicting breeding values from individual and
group observation using simulation. They found that in the absence of pen effects, accuracies of EBV of
animals themselves or their sires would be improved when animals allocated in a group were more related
and when size of each group was smaller given the same total number of animals.

In our study, to estimate EBV, selection candidates of VGO scenarios could have indirect information from
individual observations of the correlated traits (BWs and EP;) of their own and parents’ performance and
direct information from pooled observations of the desired village traits (BW, and EP,) of their sibs. The
pooled observations were groups of birds that had half-sib and full-sib relationship to the selection
candidates. By averaging observations of the sib mixture, effects of dams mated to a sire on their offspring
cannot be distinguished. The pooled observations can be only approximated as average of half-sibs.
Meanwhile, effects of dams, full-sib and half-sib relationships can be taken into account in predicting EBV
of selection candidates in VIO scenarios, which resulted in a higher genetic gain in VIO than in VGO
scenarios.

Nonetheless, the differences between accuracy of selection of VIO and VGO were not substantial. With

re_sw of 0.5 and rg_gp of 0.1, accuracy of EBVs of selection candidates was 0.863, 0.892 and 0.917 for VGO
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with 600, 1200 and 1800 village tested birds, respectively, while the accuracy of EBVs was 0.868, 0.908
and 0.925 for VIO with 600, 1200 and 1800 village tested birds, respectively. With rg gw of 0.9 and rg_gp of
0.5, the accuracy of EBVs was 0.917,0.927 and 0.935 for VGO with 600, 1200 and 1800 village tested birds,
respectively; and 0.920, 0.934 and 0.940 for VIO with 600, 1200 and 1800 village tested birds, respectively.
Methodology

In our study, high relative genetic gains were achieved for VIO and VGO scenarios, and none of their
replicates had negative relative genetic gains. This is due to 3 important assumptions including strong GxE,
unchanged number of selection candidates and no common maternal effects.

GxE was modelled for BW at rg gw of 0.5-0.9 and EP at rg gp of 0.1-0.5, which represents quite strong
interactions. Conventional breeding programs are usually carried out under conditions most favourable
for the expression of genotypes. One of the important reasons for this is that GxE is often small, especially
for commercial breeds where production animals are reared in enclosed, highly controlled conditions,
similar to the station situation. However, the differences between village and breeding station are likely
to be more substantial. Therefore, if birds are selected under station conditions of sufficient and balanced
diets, absence of infectious diseases and minimum of stress, strong GxE will be expected.

Number of selection candidates was assumed to be unchanged, even for the reference breeding scheme
in which tested birds were assumed to have station observations. This assumption is not reasonable in
practice, but it was included to quantify benefit of village observations. In theory, as long as genetic
correlation between traits measured in station and village environments is less than 1, village observations
would provide additional genetic gains for VIO and VGO. Alternatively, if the combined number of birds
for selection and village testing was constant, the use of birds for village testing in VIO schemes would not
be beneficial for genetic gain with r; 4 above 0.8 due to reduced selection intensity (Chu et al., 2018;
Mulder & Bijma, 2005; Robertson, 1959). The use of birds for village testing in VGO schemes would only
become beneficial when rg_ 1 was even lower than the rg 1 of VIO schemes.

Common maternal effects were not included in our simulation. The inclusion of the common maternal
effects would have relatively slight effects on genetic gain of VIO if birds from different families are
randomly distributed to smallholders. In contrast, it would reduce considerable genetic gains of VGO as
members of the group with pooled observations were paternal-sibs. However, the common maternal
effects are negligible for the traits of selection in breeding program for village poultry. The traits for
selection are often at relatively old age, for example, BW at 16 or 20 weeks of age and EP at 40 or 44
weeks of age. At these ages, common maternal effects for BW and EP would be insignificant. Common

maternal effects for BW reduce as birds age (Begli et al., 2016; Dana et al., 2011; Prado-Gonzalez et al.,
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2003). The dam effects of BW disappeared at 8 weeks of age (Prado-Gonzalez et al., 2003) and 12 weeks
of age (Dana et al.,, 2011). Common dam effects are usually not included in the model for EP traits as they
are expressed late in bird life.

Application of breeding schemes for village poultry production

Poultry breeding for village production by poor and nutritionally insecure people in the rural and peri-
urban regions of the Sub-Saharan Africa must accept the reality that people prefer dual-purpose chicken
in a scavenging or semi-scavenging system (Dana et al., 2010). High investment for commercial housing
shed, supplementation of feed and expanded flock size can lead to unsteady net returns. Such a risky
investment was one of the main reasons that village farmers were reluctant to spend on the inputs
(Wondmeneh, 2015). It is shown that the use of the scavenging production system for smallholders brings
in higher economic returns than the use of the semi-intensive or intensive system (FAO, 2010). Therefore,
toimprove the livelihood of the targeted people, a proper breeding program for village poultry production
is required.

Using village observations, breeding schemes VIO and VGO would be appropriate for improving genetic
gain of a breeding program and possibly maintaining adaptability traits which are major advantages of
indigenous chicken in village production. However, implementation of VIO requires individual records of
pedigree and measurement of phenotypes under village conditions. Routine recording phenotypes for
individual birds is most likely not possible in village production systems. Measurement of individual
phenotypes by smallholder farmers often has low accuracy (Lwelamira, 2012). Implementation of VGO is
simpler in practice compared to VIO. Although lower genetic gain is predicted for VGO, the increased
accuracy of data recording in VGO may make up for this. Group recording in the VGO breeding scheme
reduces the complexity of tracing and recording process. Therefore, the recommended breeding scheme
for village poultry production is VGO. Testing 600 birds in the village environment results in significant

genetic gain for the program, compared to testing them on station.

5.5. Conclusions

Village observations significantly increased genetic gain compared to station observations. The
improvement was only slightly larger with individual observations (VIO) than with group observations
(VGO). Higher genetic correlations between traits measured in station and village environments led to
higher genetic gain, but lower relative genetic gain in VIO and VGO scenarios. In assessing relative genetic
gains from village observations for a breeding program in presence of GxE, rg i, the genetic correlation

between station and village breeding objective, should be used to model GxE as it explained better the
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magnitude of GxE than rg gw or rg ep alone. Breeding schemes that use village group recording are

applicable for breeding indigenous dual-purpose poultry where a strong GxE is expected.
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6 Optimized grouping with genomic information

Abstract

Background: Accuracy of prediction of breeding values from phenotypic group records depends on group
structure. When genotyping information is available before phenotyping, utilization of this genotyping
information to form groups may improve accuracy of prediction from group records. This study analyzed
two grouping methods based on genomic information: unsupervised clustering implemented in
STRUCTURE software and supervised clustering based on genomic relationships.

Results: Genetic variances estimated with GBLUP models from group records were consistent with
estimates from individual records. Using genomic information to make groups led to higher genomic
relationship between group members than random grouping of paternal half-sibs and random grouping
of full-sibs. Genomic relationships between group members that were formed from the supervised
clustering method depended on group sizes, number of groups, family sizes, genome sizes and number of
surplus genotyped offspring. The grouping methods based on genomic information resulted in higher
accuracy of GEBV prediction (1.2-1.7%) compared to random grouping of full-sibs and (11.1-11-8%)
random grouping of paternal half-sibs.

In addition, grouping methods based on genomic information led to lower coancestry coefficients
between top ranking GEBV animals. Of the two proposed methods, supervised clustering based on
genomic relationships was superior in term of computation requirements, applicability and accuracy of
GEBV prediction. Benefits of the supervised clustering method could be were further elaborated for
accuracy of GEBV estimated from group records when there were surplus offspring that were available
for the grouping procedures. In this situation, the advantage of the supervised clustering method was up
to 4.5% compared to random grouping of full-sibs and 14.7% compared to random grouping of paternal
half-sibs.

Conclusions: The use of genotyping information for grouping gives additional accuracy of selection when
phenotypic group records are used in genomic selection breeding programs.

Keywords: genomic; group records; clustering.
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6.1. Introduction

Obtaining continuous individual records is difficult and expensive for economically important traits such
as feed efficiency and egg production. For breeding programs to improve genetic gain in the presence of
GxE, continuous individual recording for these traits can even be impossible for animals tested in
commercial production environments or in village conditions. In such situations, pooled data on group
records can be an alternative. The use of pooled data was shown to be feasible for predicting variance
components and breeding values of animals with pedigree-based BLUP (Biscarini et al., 2008; Olson et al.,
2006; Peeters et al., 2013; Su et al., 2018). These studies showed that accuracy of prediction depends on
relationship between group members. Predictions became more accurate when group members were
more closely related. In the additive numerator relationship matrix, relationship coefficients between
members of a full-sib group are all the same, 0.5 for unrelated parents or higher for inbred parents.
Genomic information gives a better measure of the relationships between animals than pedigree
information. The realized genomic relationships between specific pairs of full-sibs is known to vary with
the standard deviation depending on genome size and number of chromosomes (VanRaden, 2007).
Empirical values show a range from 0.27-0.70 for chicken (Lourenco et al., 2015b) and 0.35-0.65 for cattle
(Calus et al., 2011). We hypothesized that genomic information could be exploited to improve accuracy
of prediction from group records when genotyping data would be available before animals are grouped
for phenotype testing.

Accuracy of prediction from group records increases with increasing relationships between animals within
groups (Olson et al., 2006; Peeters et al., 2013; Su et al., 2018), thus increase in genomic similarity of
group members may improve the accuracy. Unsupervised clustering of genetically similar individuals into
groups based on genomic data is implemented in a program named STRUCTURE (Pritchard et al., 2000).
This Bayesian, model-based program is used widely in analysis of population structure (Pritchard et al.,
2000). The program integrates over the parameter space, infers population structure and makes cluster
assignments for every individual (Pritchard et al., 2000). The number of subpopulations, or clusters, can
be given or estimated. An output of the program is the membership coefficient or probability that an
individual belongs to a given cluster. Clustering individuals into subpopulations is a similar concept to
clustering animals that have close relationships into the same groups. However, this approach may not be
optimal for designing breeding programs because the number of individuals assigned to each cluster can
vary under unsupervised clustering. For example, the breeding facilities, which are usually fixed system,

can accommodate 4 groups with 4 animals per group, but unsupervised clustering ends up with animals
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clustered into only 3 groups. Besides, the membership coefficient of an animal from STRUCTURE does not
always show a clear distinction of which group the animal belongs to.

In addition to the grouping method based on the STRUCTURE program, we therefore propose a grouping
method that maximizes the relationships between animals within groups, based on the realized genomic
relationship matrix. This grouping method is a supervised clustering approach, in which number of groups
and group sizes are defined as fixed input variables. The method does not use genotyping data directly,
but indirectly through the realized genomic relationship matrix.

The objectives of this study were to (1) compare both grouping methods based on genotyping information
to improve accuracy of selection from group records, (2) use GBLUP models to estimate variance
components from group records, and (3) investigate effects of surplus genotyped offspring, number of

groups, family sizes and genome sizes on breeding schemes that used the proposed grouping method.

6.2. Methods

Simulation of a population of animals was implemented with the following steps: (1) simulation of
individual genotype and trait records using the stochastic simulation program ADAM (Pedersen et al.,
2009), (2) allocation of simulated animals into groups based on pedigree or genomic information using
different grouping methods, and (3) simulating phenotypic group records. Therefore, animals were
simulated to be genotyped, grouped and then phenotyped. After that, variance components and breeding
values were estimated from individual records or from group sum records using genomic BLUP model.
Breeding schemes, genotype and trait simulations

The historical base populations with genomic structure were from Chu et al. (2018) in which the simulated
genome consisted of 26 chromosomes with a total length of 916 cM. Segregating loci of 2k QTL and 40k
neutral markers that were randomly distributed along the genome were used for trait simulations and
genotyping information, respectively. The segregating loci of QTL and markers had a minor allele
frequency of at least 0.05 in the base population. Inheritance of QTL and markers from parents to
descendants followed the standard principles of Mendelian inheritance, and allowed for recombination
as described in Chu et al. (2018). From the base population, 20 sires and 200 dams were used for
hierarchical mating scheme where one sire is mated with ten dams, but each dam mated with a single sire
only. Each dam produced 16 offspring, thus the total number of offspring was 3200. Sex was randomly
assigned to the offspring with ratio 1:1. Only one generation of offspring was simulated. All sires, dams

and offspring had genotyping information.
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True breeding value of each individual was the sum of its QTL effects. Allele substitution effects of QTL
were randomly sampled from a normal distribution N[0, 1], and then rescaled to achieve the initial
additive genetic variance of 0.3 in the base population. Simulated phenotype of individual records was
the sum of the true breeding value and an environmental deviation term: y; = u + tbv; + e; ,where y; is the
individual phenotypic record of animal i; u is mean of the trait equal to O; true breeding value and residual
environmental deviation of animal i are tbv; and e;, respectively. The residual environmental deviations
were drawn from normal distribution N[0, 0.7]. Thus, the phenotypic variance was 1.

Four animals were pooled in a group, making 800 groups. For individual records, each animal had its own
records. For group records, only the sum of simulated individual phenotypes from the four animals in a
group was available.

Estimation of variance components and prediction of breeding values

Individual records and group records were used to estimate variance components and GEBV using the
DMUAI module from the DMU software package (Madsen and Jensen, 2013). The model for individual
records in matrix notations was:

yv=1u+2g+e (GBLUP))

where y is a vector of phenotypic individual records; u is the mean; g and e are vectors of genomic
breeding values (GEBV) and residuals, respectively. These vectors are assumed to be normally distributed:
g~ N[0, G 6%, and e~ N[0, | 0%], where G is genomic relationship matrix constructed from marker data; I
is an identity matrix associating residuals to individual phenotypic records; o%; and o”, are additive genetic
variance and residual variance, respectively. The incidence matrix Z associates g to individual phenotypic
records.

When group records were analyzed, the model for estimation of variance components and prediction of
GEBV was similar to the exact model in Olson et al. (2006) and the model in Su et al. (2018) except that
realized genomic relationship matrix was used instead of additive numerator relationship matrix. The
models applied to equal group sizes was:

y=1u+Z'g+e (GBLUPy,)

where y" is a vector of group records with number of elements equal to number of groups; g is a vector
of GEBV as described above in the models for individual records: g~ N[0, G 0%,]; e" is a vector of residuals:
e~ N[O, R 0%], where R is a diagonal matrix and diagonal elements are equal to group size. Matrix Z is an

incidence matrix associating g to phenotypic group records. Matrices of Z and Z* have equal number of
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columns, but Z and Z* have a number of rows equal to number of individual records and group records,
respectively.
For example, eight animals 3-10 that were offspring of animals 1 and 2 were grouped in two groups of

four animals. Phenotypic records of groups were 2.6 and 3.5. The model for group records is:

[91]
26 =[Hus[e © 2 1 1 1000 o]|§§|+ 28 se;
351 1d# o 000001 111 } $10 e,
910

The realized genomic relationship matrix G was constructed from marker data of all sires, dams and
offspring individuals using VanRaden (2008) method 1:

Go MM

2Ypi(1—-pj)

where M is a matrix which has number of rows equal to number of animals and number of columns equal
to number of markers; matrix M is centered so that elements in column j are 0-2p;, 1-2p; and 2-2p; for
genotypes AjA;, A1A; and A.A,, respectively; p; is allele frequency of A, at locus j computed from the
marker data of all dams, sires and offspring. Division by 2%, p;(1 — p;) scales matrix G to be analogous to
the pedigree-based numerator relationship matrix. The realized genomic relationship matrix G was used
for genetic evaluation models, grouping methods and investigation of relationship distributions.
Grouping methods
For group records, animals were pooled into a group based on either pedigree or genomic information.
Grouping methods based on pedigree information were random grouping of full-sibs and random
grouping of paternal half-sibs. Grouping methods based on genomic information were unsupervised
clustering based on genotypes and supervised clustering based on the genomic relationship matrix.
Random grouping of paternal half-sibs: Animal allocation into groups was based on having a common sire.
Four animals that were paternal half-sibs were randomly pooled into one group.
Random grouping of full-sibs: Animal allocation into groups was based on having a common sire and dam.
Four animals from the same full-sib family were randomly pooled into one group.
Unsupervised clustering based on genotypes: When unsupervised clustering analysis using STRUCTURE
program was applied to all 3200 animals, paternal half-sibs from a sire were always clustered into one
group even if assumed number of clusters was set at 800. When the unsupervised clustering analysis was
applied to a group of paternal half-sibs from a single sire, full-sibs from a family were always clustered

into one group. Therefore, clustering analysis was carried out separately for every full-sib family of 16
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animals. Admixture model in STRUCTURE was used (Pritchard et al., 2000). Number of clusters was set to
be 4, and allele frequencies were assumed to be correlated among clusters (Falush et al., 2003). Cluster
membership coefficients of the 16 animals from the output was used for group allocations. Animals were
pre-allocated to 4 groups based on the highest membership coefficients of these animals. In many cases,
the pre-allocated 4 groups did not all have the expected number of 4 animals. Four animals with the top
ranking of membership coefficients from the biggest group were allocated to the first group. The
remaining 12 animals were then pre-allocated to 3 groups based on the highest membership coefficients
of these animals. Four animals with the top ranking of membership coefficients from the biggest group
were allocated to the second group. Similarly, 4 animals were allocated to the third group and the fourth
group consisted of the remaining 4 animals. These grouping allocation procedures were applied to all 200
full-sib families to make 800 groups in total. By the unsupervised clustering method based on genotypes,
animals within a group were always full-sibs.

Supervised clustering based on genomic relationships: A supervised clustering method scripted in R (R
Core Team, 2018) was developed to pool 4 animals into groups based on realized genomic relationships
between animals. Applying this approach to all 3200 offspring was time-consuming because of the many
possibilities for allocating the offspring into 800 groups. The probability that half-sibs or non-related
animals would be placed in the same group was extremely low. Therefore, grouping was carried out
separately for every full-sib family of 16 animals in an evolutionary algorithm as follows:

- Animals from a full-sib family were randomly assigned to 4 groups with 4 animals in each group.
- An exchange of two randomly chosen animals between two randomly chosen groups was
proposed.

- Group membership was updated if the proposal resulted in an increase of the mean genomic
relationship between members within groups.

- The iteration was considered converged when the exchange of two animals between two groups
did not increase the mean of genomic relationships for a certain number of iterations.

The exchange of two animals between two groups was a random process, but if the exchange did not
increase genomic relationships between group members, these two animals would not be chosen for the

exchange in the next iteration until a new set of groups of animals was formed. Therefore, the number of

. . . . . . . ng—1. .
iterations without the changes in genomic relationships were nZ x Zifl i, where na is number of

animals per group (group size) and ng is number of groups per full-sib family. The numbers of iterations
are the possibilities of forming a new set of groups of animals when two animals are randomly chosen

from two random groups. In addition, the exchange of two animals is a conditional event given that a
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certain set of groups of animals has formed. Therefore, the evolutionary algorithm above was re-run for
300 times that formed up to 300 different sets of groups. The set of groups of animals that gave the
highest genomic relationships between group members was chosen. The number 300 is an empirical
number after different trials to get a set of groups of animals with the highest genomic relationships
between group members.

As a result of this supervised clustering method based on genomic relationships the offspring were
allocated into 800 different groups within each of which animals were always full-sibs.

Sensitivity analysis

To investigate effects of surplus genotyped offspring, number of groups, family sizes and genome sizes on
breeding schemes that used random grouping of paternal half-sib, random grouping of full-sibs and
supervised clustering method based on genomic relationships, four extra simulations were carried out.
Group sizes and number of group per full-sib family in sensitivity analysis simulation 1 (SS1) were the same
as in the main study, but the family sizes were varied at 32 and 48 offspring per full-sib family (Table 6.1).
In SS1, all offspring, which had genotypes, were used in grouping procedures, but after grouping, some
surplus offspring were not assigned to any groups or tested for phenotyping. For comparisons, individual
records of SS1 were obtained from only 16 offspring per dam that were randomly chosen from each full-
sib family. Sensitivity analysis simulation 2 (SS2) had the same breeding structure as in the main study,
but group sizes and number of groups per full-sib family were varied. In sensitivity analysis simulation 3
(SS3), number of groups was constant, but family size (number of offspring per dam) was varied.
Sensitivity analysis simulation 4 (SS4) was the same as in the main study, except that the simulated
genome consisted of 30 chromosomes with the length of 100cM for each. The total length of the genome
was 3000cM.

Table 6.1. Group sizes, number of groups and family sizes for sensitivity simulation (SS) 1-4.

Investigated factors Main SS1 SS2 SS3 SS4
study

Number of groups per full-sib family 4 4 8;2 4 4

Family sizes (offspring per dam) 16 32;48 16 8;32;48 16

Surplus genotyped offspring without 0 16; 32 0 0 0

phenotypes per full-sib family

Group sizes (animals per group) 4 4 2;8 2;8;12 4

Genome size 916 cM 916 cM 916 cM 916 cM 3000 cM

Supervised clustering method based on genomic relationships in SS1-4 was similar as in the main study

with the aim to maximize relationships between animals within groups. With SS1, one extra group was
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added that included all surplus animals. The probability of sampling groups for the exchange between two
random animals was corresponding to number of animals of these groups.

Data analysis

Scenarios were replicated 100 times. Accuracy of GEBV predictions was computed as correlation between
GEBV and true breeding values of all offspring individuals. Bias of GEBV predictions was computed as the
regression coefficient of true breeding values on GEBV. Coancestry coefficients were computed as the
means of realized genomic relationships between top GEBV rankings of 20 males and 200 females.
Pairwise genomic relationships between animals that were half-sibs, full-sibs, paternal half-sibs or
genomic-close full-sibs were used to investigate the distribution of relationships. Half-sibs were offspring
from the same sires, but different dams based on pedigree. Paternal half-sibs were offspring from the
same sire, that could, but not necessarily, be from the same dam. Genomic-close full-sibs were full-sibs
that became members of the same group after applying the unsupervised clustering based on genotyping
or supervised clustering based on genomic relationships. All pairwise genomic relationships of group

members from all 100 replicates were combined and used to calculate means and standard deviations.

6.3. Results

Realized genomic relationships in breeding scheme were calculated for half-sibs, paternal half-sibs, full-
sibs and groups of genomic-close full-sibs that were grouped by either unsupervised clustering based on
genotypes or supervised clustering based on genomic relationships (Table 6.2). As expected, means of
realized genomic relationships were roughly 0.50 for full-sibs and 0.25 for half-sibs (Figure 6.1). Paternal
half-sib relationships were mixture of full-sib and half-sib relationships. Mean of relationships between
genomic-close full-sibs grouped by the supervised clustering method was the highest at 0.55 followed by
genomic-close full-sibs grouped by the unsupervised clustering method at 0.54. Relationships between
genomic-close full-sibs pooled by grouping methods that were based on genomic information had lower

standard deviation than the relationships between full-sibs.
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Figure 6.1. Distribution of realized genomic relationship between half-sibs (blue line and light-blue bars),
full-sibs (green line and light-green bars) and genomic-close full-sibs (full-sibs grouped by the supervised
clustering method based on genomic relationship (red line and pink bars)). Broken vertical lines were
means of the genomic relationships.

Table 6.2: Means and standard deviations of realized genomic relationships between half-sibs, paternal
half-sibs, full-sibs and genomic-close full-sibs that were grouped by unsupervised clustering based on

genotypes or by supervised clustering based on genomic relationships.

Relationships Mean Standard deviation
Half-sibs 0.246 0.055
Paternal half-sibs 0.270 0.093
Full-sibs 0.496 0.070

Genomic-close full-sibs grouped by supervised
clustering based on genomic relationships
Genomic-close full-sibs grouped by unsupervised
clustering based on genotypes

0.553 0.060

0.538 0.067

Variance components estimated from group records were consistent with those estimated from individual

records (Table 6.3), and estimates were not significantly different from simulated values. However,
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variance components estimated from group records had a higher standard deviation than those estimated
from individual records.
Table 6.3: Estimates of additive genetic variance (0%) and residual variance (o%) (mean over 100 replicates

+ standard deviation) estimated from individual records and from group records

Records Model 0% (SD) 0% (SD)
Simulated parameters 0.30 0.70
Individual records GBLUP; 0.300 (0.030) 0.698 (0.022)
Group records from supe.rwsed .cIuste.rlng GBLUP,, 0.302 (0.042) 0.691 (0.048)
method based on genomic relationships
Group records from unsupervised clustering GBLUP,, 0.301 (0.043) 0.693 (0.050)
method based on genotypes
g;:up records from random grouping of full- GBLUP,, 0.298 (0.045) 0.695 (0.052)
Group records from random grouping of

GBLUPg 0.301 (0.062) 0.695 (0.050)

paternal half-sibs
Note: Models GBLUP; and GBLUPg are GBLUP model for individual records and group records,
respectively. SD is standard deviations over 100 replicates.

Accuracy and bias of GEBV of different prediction models from individual and group records are presented
in Table 6.4. As expected, accuracy of GEBV was higher from individual records than from group records.
When group records were used to predict GEBV, accuracy of GEBV depended on grouping methods.
Accuracies of GEBV became smaller when the realized genomic relationships between group members
reduced. Grouping methods based on genomic information led to higher accuracy of GEBV than the
random grouping methods based on pedigree information. Group records from supervised clustering
based on genomic relationship led to the highest accuracy and the lowest standard deviation of the
accuracy compared to group records from other grouping methods. Group records from random grouping
of paternal half-sibs resulted in the lowest accuracy of GEBV prediction and the highest standard deviation

of the accuracy.
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Table 6.4: Accuracy of GEBV, bias of prediction and coancestry coefficients of top ranking animals (mean

over 100 replicates * standard deviation) on GEBV estimated from individual records and from group

records

Coancestry

Records Model Accuracy (SD) Bias (SD) coefficients
(SD)

Individual records GBLUP; 0.825(0.020)  1.011(0.041)  0.036 (0.009)
Group records from supervised
clustering method based on GBLUP, 0.762 (0.028) 1.007 (0.054) 0.041 (0.010)
genomic relationships
Group records from unsupervised
clustering method based on GBLUPg, 0.758 (0.030) 1.009 (0.054) 0.041 (0.009)

genotypes

Group records from random
grouping of full-sibs

Group records from random
grouping of paternal half-sibs

GBLUPg 0.749 (0.032)  1.015(0.060)  0.043 (0.010)

GBLUPg 0.682 (0.040)  1.017(0.092)  0.049 (0.010)

Coancestry coefficients were computed for top GEBV ranking 20 males and 200 females with GEBV
estimated from individual records and from group records (Table 6.4). The use of individual records led to
lower coancestry coefficients between top GEBV ranking animals than group records. Grouping methods
based on genomic information led to lower coancestry coefficients than the random grouping methods
based on pedigree information.

Sensitivity analysis

In SS1-4, variance components estimated from group records were consistent with those estimated from
individual records. Bias of GEBV estimated from individual records and group records did not show a clear
difference, and the values were close to 1. However, standard deviations of variance estimates and bias
of GEBV over 100 replicates were higher for group records than for individual records. Results on variance
estimates and bias of GEBV of SS1-4 were not shown. Genomic relationships between group members,
accuracy of GEBV and coancestry coefficients of top ranking animals were comparable measures between
scenarios in SS1-4. Just like in the main study, the supervised clustering method based on genomic
relationships generally led to a higher genomic relationships between group members, higher accuracy of
GEBV and lower coancestry coefficients of top ranking animals than random grouping of full-sibs and
random grouping of paternal half-sibs.

In SS1, group size and number of groups per full-sib family were the same as in the main study, but family

sizes were varied, and therefore after grouping procedures, there were surplus offspring that did not

143



6 Optimized grouping with genomic information

belong to any groups or get phenotypes. With 0 (main study), 16 (SS1) and 32 (SS1) surplus offspring,
relationships between genomic-close full-sibs that were grouped by supervised clustering were 0.55, 0.60
and 0.62, respectively (Table 6.2 & 6.5). The increase in number of surplus offspring tended to increase
accuracy of GEBV estimated from group records of the genomic-close full-sibs (Table 6.4 & 6.5).
Meanwhile, the change in number of surplus offspring did not affect relationships between group
members or accuracy of GEBV for scenarios with groups that were formed by random grouping of full-
sibs or random grouping of paternal half-sibs. The relative increase in accuracy of GEBV from the use of
random grouping of full-sibs to the use of supervised clustering based on genomic information was 3.9%
and 4.5% when number of surplus offspring were 16 and 32 per full-sib family, respectively.

Table 6.5: Comparable measures between scenarios for sensitivity simulation 1 when group size was
constant at 4 animals per group, number of groups were constant at 4 groups per full-sib family, and

number of surplus genotyped offspring without phenotypes were varied at 16 and 32 per full-sib family.

Variables Individual Group records
records Supervised Random Random
clustering grouping of grouping of
method full-sibs paternal half-
sibs
Surplus offspring: 16 per full-sib
family
Genomic relationships (SD) 0.602 (0.053) 0.496 (0.070) 0.270 (0.093)
Accuracy (SD) 0.824 (0.020)  0.773 (0.028) 0.744 (0.032) 0.678 (0.040)
Coancestry coefficients (SD) 0.036 (0.008) 0.042 (0.010) 0.043 (0.009) 0.049 (0.011)

Surplus offspring: 32 per full-sib
family

Genomic relationships (SD)
Accuracy (SD)

Coancestry coefficients (SD)

0.622 (0.052)
0.776 (0.028)
0.042 (0.008)

0.497 (0.070)
0.743 (0.032)
0.043 (0.009)

0.271 (0.094)
0.677 (0.040)
0.047 (0.010)

0.822 (0.021)
0.035 (0.007)

In SS2, family size was kept constant, and it was the same as family size in the main study, but number of
groups per full-sib family, and thus group sizes, were varied. With group records formed from the
supervised clustering method, random grouping of full-sibs and random grouping of paternal half-sibs,
increasing number of groups per full-sib family all led to an increase in accuracy of GEBV and a decrease
in coancestry coefficients of top ranking animals (Table 6.6). With group records formed from the
supervised clustering method, changing number of groups per full-sib family to 2 or 8 changed the
genomic relationships between group members to 0.522 and 0.589, respectively. However, the benefit in
term of accuracy of GEBV due to the use of supervised clustering grouping method did not show a clear

difference between different number of groups because the relative differences in accuracy of GEBV
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between methods of supervised clustering and random grouping of full-sibs, for example, were 1.01, 1.02
and 1.01 for scenarios with 2, 4 and 8 groups per full-sib family, respectively.

Table 6.6: Comparable measures between scenarios for sensitivity simulation 2 when family size was
constant at 16 offspring per full-sib family, group sizes were varied at 8 and 2 animals per group, and

number of groups were varied at 2 and 8 groups per full-sib family.

Measures Individual Group records
records Supervised Random Random
clustering grouping of grouping of
method full-sibs paternal half-
sibs

Number of groups: 2 groups per
full-sib family

Genomic relationships (SD)
Accuracy (SD)

Coancestry coefficients (SD)
Number of groups: 8 groups per

0.589 (0.053)
0.794 (0.025)
0.038 (0.009)

0.496 (0.070)
0.783 (0.026)
0.039 (0.009)

0.270 (0.093)
0.755 (0.030)
0.041 (0.009)

0.825 (0.020)
0.036 (0.009)

full-sib family
Genomic relationships (SD) 0.522 (0.066) 0.496 (0.070) 0.270 (0.093)
Accuracy (SD) 0.825(0.020)  0.736(0.033) 0.726 (0.035) 0.620 (0.051)

Coancestry coefficients (SD) 0.036 (0.009) 0.044 (0.010) 0.045 (0.010) 0.059 (0.012)

In SS3, number of groups were kept constant at 4 groups per family, but family sizes, and therefore group
sizes, were varied. With group records formed from different grouping methods in SS3, increasing family
sizes led to anincrease in accuracy of GEBV and coancestry coefficients of top ranking animals (Table 6.7).
With group records formed from the supervised clustering method, increasing family sizes led to a
decrease in genomic relationships between group members. The relative differences in accuracy of GEBV
between methods of supervised clustering and random grouping of full-sibs, for example, were 1.01, 1.02,

1.02 and 1.03 for scenarios with family sizes of 8, 16, 32 and 48 offspring per full-sib family, respectively.
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Table 6.7: Comparable measures between scenarios for sensitivity simulation 3 when number of groups
were constant at 4 groups per full-sib family, group sizes were varied at 2, 8 and 12 animals per group,

and family sizes were varied at 8, 32 and 48 offspring per full-sib family.

Variables

Individual
records

Supervised
clustering
method

Group records
Random
grouping of
full-sibs

Random
grouping of
paternal half-
sibs

Family size of 8

Genomic relationships (SD)
Accuracy (SD)

Coancestry coefficients (SD)
Family size of 32

Genomic relationships (SD)
Accuracy (SD)

Coancestry coefficients (SD)
Family size of 48

Genomic relationships (SD)
Accuracy (SD)

Coancestry coefficients (SD)

0.770 (0.028)
0.024 (0.004)

0.870 (0.014)
0.049 (0.016)

0.893 (0.011)
0.053 (0.017)

0.565 (0.057)
0.734 (0.034)
0.026 (0.004)

0.543 (0.063)
0.785 (0.026)
0.060 (0.019)

0.539 (0.064)
0.799 (0.023)
0.068 (0.021)

0.497 (0.070)
0.726 (0.035)
0.027 (0.004)

0.497 (0.070)
0.766 (0.028)
0.063 (0.020)

0.497 (0.070)
0.774 (0.025)
0.072 (0.021)

0.268 (0.091)
0.692 (0.041)
0.028 (0.005)

0.271 (0.093)
0.674 (0.040)
0.078 (0.026)

0.271 (0.094)
0.671 (0.041)
0.091 (0.032)

Breeding structures, group sizes and family sizes of SS4 were the same as those of the main study, but the
genome structure was different, in which the genome size of S54 was longer (3000cM versus 916cM).
Accuracy of GEBV from individual records and group records was higher in the main study than SS4 (Table
6.8). Means of genomic relationships between full-sibs or between paternal half-sibs were similar for the
main study and SS4, but standard deviations of the relationships were lower for SS4. The genomic
relationship between genomic-close full-sibs that were grouped by the supervised clustering method was
higher for the main study than for SS4. The relative differences in accuracy of GEBV between methods of
supervised clustering and random grouping of full-sibs, for example, were 1.02 and 1.01 for scenarios in
the main study and SS4, respectively.

Table 6.8: Comparable measures for sensitivity simulation 4 when the genome of 30 chromosomes with

total length of 3000cM was used.

Variables Individual Group records
records Supervised Random Random
clustering grouping of grouping of
method full-sibs paternal half-
sibs
Genomic relationships (SD) 0.532 (0.036) 0.496 (0.042) 0.269 (0.080)
Accuracy (SD) 0.729 (0.030) 0.671 (0.039) 0.662 (0.040) 0.583 (0.055)

Coancestry coefficients (SD)

0.036 (0.009)

0.042 (0.010)

0.044 (0.010)

0.054 (0.011)
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6.4. Discussion

With GBLUP models, variance components estimated from group records and individual records were
consistent. However, the standard errors of estimates from group records were larger than those from
individual records. Similar conclusions on using group records to estimate variance components were also
drawn in other studies that used pedigree-based BLUP models (Biscarini et al., 2008; Olson et al., 2006;
Su et al., 2018). Compared to these studies (Biscarini et al., 2008; Olson et al., 2006; Su et al., 2018), the
main modification of our model for group records was the use of realized genomic relationship matrix
instead of numerator genetic relationship matrix. With numerator genetic relationship matrix, full-sibs in
the same group have equal EBV whereas with genomic relationship matrix, full-sibs in the same group can
have different EBV. The benefit of genomic information over pedigree information, in term of accuracy of
prediction, has been well documented in simulations (Hayes et al., 2009; Meuwissen et al., 2001; Putz et
al., 2018) and empirical studies of chicken (Alemu et al., 2016; Momen et al., 2017; Wolc et al., 2011),
cattle (Gao et al., 2018; Lourenco et al., 2015a) and pig (Christensen et al., 2012; Guo et al., 2015; Putz et
al., 2018) breeding schemes for individual records. The increase in accuracy of GBLUP prediction from
individual records is attributable to better measuring the relationships between animals and a better
prediction of the Mendelian sampling terms (Hayes et al., 2009). These attributes of genomic information
should also apply to GBLUP models for group records, thus increase accuracy of prediction compared to
the use of pedigree-based models for group records.

For the same number of individuals, accuracy of GEBV based on group records was lower than those based
on individual records. Coancestry coefficients of selected animals based on group records were also higher
than those based on individual records. While results from group records cannot compete with results
from individual records, the number of phenotypes to be recorded are also are unequal between group
and individual record data. At commercial production environment level, group records are sometimes
the only available phenotypes.

When group records were analyzed, accuracy of estimates for GEBV depended on relationships between
group members. The accuracy increased when group members were more close-related. This also has
been shown in Olson et al. (2006), Peeters et al. (2013) and Su et al. (2018). Allocation of animals based
on sires resulted in higher accuracy of EBV than the allocation based on maternal grand sire (Olson et al.,
2006). Prediction of EBV and variance components was more accurate with group records of animals from
the same family than group records of animals from two different families (Peeters et al., 2013; Su et al.,

2018). A possible reason could be that more of the phenotypic variance at the group level is explained by
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additive genetic (co)variance when increasing the level of relationships between individuals within a group
(Suetal., 2018).

In addition to an increase in accuracy of GEBV through the use of the genomic relationship matrix in a
GBLUP model, genomic information gave additional accuracy of GEBV through optimized grouping. Our
proposed grouping methods based on genomic information resulted in higher relationship coefficients
between individuals within groups than random grouping based on pedigree. The higher relationship
coefficients from the proposed grouping methods led to a higher accuracy of GEBV when group records
were used. Compared to random grouping of full-sibs, the improvement in accuracy was 1.2-1.7% with
genomic information. However, while higher accuracies are preferred, the grouping methods based on
genomic information require individual genotyping before animals are transferred to phenotype testing
facilities. The small improvement in accuracy of GEBV may not offset the genotyping cost in a situation
where full-sib groups can be made without obtaining genomic information. For situations where only
paternal half-sib groups could be produced and full-sibs could not be identified, the advantage would be
11.1-11.7%. Our approach could be used when the aim is to obtain feed efficiency records for a
commercial testing environment or egg production from village household chickens e.g. African Chicken
genetic gains program (ACCG, 2014). Another application lies with genomic selection in fish breeding
programs where mating and reproduction is natural and sib information is absent (Joshi et al., 2018).
When genotyping information is available prior to group testing, grouping based on genomic information
could give additional “rewards” in the form of accuracy to genomic selection in such breeding programs.
Coancestry coefficients were also reduced with grouping methods based on genomic information
compared to random grouping based on pedigree. In our study, the coancestry coefficients were defined
as realized genomic relationships between the top GEBV ranking 20 males and 200 females. Therefore,
the coancestry coefficients are indications of future inbreeding when GEBV estimated from group records
are used for selection. The use of more close-related animals to form groups can have two opposite
consequences for the coancestry coefficients. One consequence leads to an increase in coancestry
coefficients. As the more close-related animals in the same group have the same phenotypic group
records, GEBV between those animals are more similar, thus increasing co-selection. The other
consequence leads to a reduction in coancestry coefficients because the use of more close-related animals
to form groups increases accuracy of GEBV prediction from group records, thus reducing co-selection. The
latter benefit is only obtained with the GBLUP model because a reduction in co-selection due to increasing
accuracy of prediction does not occur with pedigree-based BLUP. The EBV predicted from group records

with pedigree-based BLUP are identical for full-sibs in the same group. With the prediction of GBLUP
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model from group records, full-sibs in the same group can have different GEBV, thus selected animals with
top GEBV ranking can come from different groups and different families. The effect of increasing accuracy
of prediction was more pronounced when the more close-related animals were used to form groups.
Therefore, compared to random grouping of full or half-sibs based on pedigree, a reduction in coancestry
coefficients of selected candidates was observed with grouping methods based on genomic information.
Of the two proposed grouping methods based on genotyping information, supervised clustering based on
genomic relationship had higher accuracy, was less computationally demanding and is more applicable in
practice than unsupervised clustering based on genotyping. Unsupervised clustering analysis with the
STRUCTURE program uses genotyping data to infer population structure and assign individuals to clusters,
each of which is characterized by a set of allele frequencies at each locus (Pritchard et al., 2000). Updating
criteria for inferring population structure and assigning individuals are similarity or homogeneity of alleles
between individuals in clusters and Hardy-Weinberg equilibrium of alleles in clusters. With this inferred
population structure, half-sibs from each sire were assigned to one group when unsupervised clustering
analysis of STRUCTURE program was applied to all offspring. Full-sibs from each family would be assigned
to one group when the unsupervised clustering analysis was applied to paternal half-sibs from each sire.
Therefore, unsupervised clustering analysis of STRUCTURE was applied to each of full-sib families. After
that, membership coefficients of individuals that belong to clusters had to be used to arrive at equally
sized groups. Because of this re-arrangement of animals between groups, the advantage of the
unsupervised clustering method to pool animals with genomic similarity into groups was reduced.
Unsupervised clustering based on genotypes is not ideal for assigning animals to groups when testing
facilities often have fixed capacity for group sizes and number of groups. In addition, the unsupervised
clustering analysis of STRUCTURE for each full-sib family is hundreds of times more computation-
expensive than the grouping method of supervised clustering based on genomic relationships. In contrast,
our proposed grouping method of supervised clustering assigns individuals to groups based on genomic
relationship matrix that was calculated from genotyping data. This grouping method uses a relatively
simple evolutionary algorithm to cluster animals into predefined number of groups and desired group
sizes.

Supervised clustering based on genomic relationships was carried out for each full-sib family because the
probability of allocating half-sibs into the same group was very unlikely. The overlap of the distribution of
full-sib and half-sib relationships is very small (Figure 6.1). When supervised clustering was applied to form
groups from the whole population at once, members within a group were always from the same full-sib

family. Grouping from the whole population was time-consuming, thus only few replicates were tested
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(results not shown). However, it is good to realize that when family relationships are not available to apply
grouping within full-sib families, the same benefits of grouping based on genomic relationships can be
obtained with additional computational effort. The same principles for animal grouping based on genomic
relationships can be also applied to paternal half-sibs, half-sibs and all testing candidates when number
of full-sibs per family are smaller than the intended group sizes. Compared to grouping based on pedigree
information, grouping based on genomic relationships does not lead to an increase in genomic
relationships between animals within groups in one specific situation; only when number of full-sibs per
family are equal to group sizes. In that situation grouping based on pedigree and grouping based on
genomic relationships will give the same result.

Benefits of supervised clustering based on genomic information were further elaborated when there were
surplus offspring that were available for grouping procedures, but at the end some were not assigned to
any groups for phenotyping. Compared to random grouping based on pedigree information, surplus
offspring available for supervised clustering based on genomic information increased genomic
relationships between group members, and improved accuracy of GEBV estimated from group records.
The improvement in accuracy of GEBV was up to 4.5% from the use of random grouping of full-sibs or
14.7% from the use of random grouping of paternal half-sibs to the use of supervised clustering based on
genomic relationships. Other factors that affected genomic relationships between group members
formed from the supervised clustering method were family sizes, number of groups, group sizes and
genome structure. However, in term of accuracy of GEBV, benefits of supervised clustering based on
genomic information depended little on those factors.

Genomic relationships between group members that are formed from the supervised clustering method
depended on genome structure that may be related to size of the genome in our simulation. Increasing
genomic size reduces genomic relationship between group members because standard deviation of

genomic relationship between full-sibs and between half-sibs reduces. For example, the standard

Gnpos where n;is number
DO

deviation of genomic relationships between full-sibs is approximately equal to

of independent loci of the genome (VanRaden, 2007). The standard deviation would be zero if number of
loci is enormous. However, the standard deviation does not fall below about 0.035 because the loci are
usually linked rather than independent (VanRaden, 2007). In addition, increasing genome size reduces
accuracy of GEBV from GBLUP models as shown in formula by Daetwyler et al. (2010) that the accuracy is
dependent on the genome length in Morgans. The simulated genome structure in the main study was

constructed based on the genome of chicken.
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6.5. Conclusions

Two grouping methods based on genomic information were proposed to improve accuracy of prediction
from group records. Variance components and GEBV from group records were estimated using GBLUP
models. It was found that estimates of variance components from group records were consistent with
those from individual records and with their true values. Our two proposed grouping methods based on
genomic information led to higher genomic relationship between group members, and prediction from
group records pooled by these two methods had higher accuracy of GEBV prediction compared to random
grouping based on pedigree information. In addition, grouping based on genomic information led to lower
coancestry coefficients of selected candidates than random grouping of paternal half-sibs and random
grouping of full-sibs. Of the two proposed methods, supervised clustering based on genomic relationships
was superior in term of computation requirements, applicability and accuracy of GEBV prediction. Benefits
of supervised clustering based on genomic information were further elaborated for accuracy of GEBV
estimated from group records when there were surplus offspring that were available for grouping
procedures. Genomic relationship between group members that were formed from the supervised
clustering method depended on factors of family sizes, number of groups, group sizes and genome
structure, but these factors had little influence on the benefits of the grouping method in term of accuracy
of GEBV. In summary, genotyping information can be utilized to increase accuracy of prediction from

group records in two ways: genomic-based prediction and optimized grouping.
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7 General discussion

The study presented in Chapter 2 and 3 investigated GXE interactions due to environmental differences
for purebred broiler chicken. Environmental differences between B and C led to significant re-ranking of
EBV of birds. This Chapter 7 will extend the discussions to GxE interactions for crossbred chicken raised in
multiple commercial production environments. GxE interactions due to micro-environmental differences
will also be discussed. Chapter 4 showed the development and comparison of statistical models for
improving accuracy of prediction of BW traits in broilers, and this chapter will discuss other available tools
for the development and comparison of statistical models. The tools are goodness-of-fit of the models,
accuracy of EBVs and cross-validation approaches. Different prediction models for group records in
Chapter 5 and 6 will be compared to the model for individual records and the model that includes the
group effect and permanent environmental maternal effect. Theoretical benefits of genomic information

for breeding programs affected by GxE will be discussed.

7.1. GXE interactions in breeding programs

In Chapter 1 (General Introduction), the concept and definition of GxE interactions due to differences
between two environments (B and C) were presented. However, in practice, the context of GxE
interactions in the breeding programs for poultry is much more complex. For example, it can involve
multiple C environments and the use of cross-bred production birds. This section extends the discussions
on the GxE interactions in these situations.

Selection on crossbred or purebred performances in production environments

Chapter 2-6, which investigates of GxE and solutions to improve accuracy of selection for traits in C,
focused on the use of purebred performances in C environments. However, in poultry and pig industry,
production animals are 3- or 4-way crossbreds. The use of crossbreeding will benefit from heterosis, breed
complementarity and flexibility of creating products for different markets (Wientjes and Calus, 2017).
Therefore, the ultimate breeding goal of breeding programs for poultry and pigs should be to increase
performances of crossbred animals in C environments. In this section, | will discuss about advantages and
disadvantages of selection based on crossbred performances in C environments and purebred
performances in B environments.

The use of performances of purebred in B and crossbred in C for selection has been explored in breeding
programs for pigs (Godinho et al., 2018; Habier et al., 2007; Hidalgo et al., 2015; Nielsen et al., 2016; Xiang
et al., 2016) and for laying egg chicken (Wei and Werf, 1995). Similar to modelling GXE interactions of a
trait measured in B and C environments, a trait measured on purebred animals in B and crossbred animals

in C can be treated as two correlated traits. Wientjes and Calus (2017) summarized genetic parameter
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estimates of traits measured on purebred and crossbred pigs from 27 studies published between 1964
and 2017. The authors shows that on average, genetic correlations between the traits measured on
purebred and crossbred animals were 0.66, 0.69, 0.67, 0.54 and 0.67 for growth, meat amount, meat
quality, fertility, and feed efficiency traits, respectively. The genetic correlation between the traits
measured on purebred and crossbred animals is a combination of three components: genotype by
genotype interactions due to the differences in genetic background of purebred versus crossbred animals,
genotype by environment interactions due to the environmental differences between rearing conditions
of purebred and crossbred animals, and differences in the definitions or measurements between traits
recorded on purebred and crossbred animals (Wientjes and Calus, 2017). Each of these three components
can reduce the genetic correlation between the traits measured on purebred and crossbred animals.
Therefore, it is more logical to carry out selection based on performances of crossbred animals in C than
performances of purebred animals in C because genetic correlations between traits measured on
purebred animals in B and C accounts for only the environmental differences between selection
candidates and production animals.

However, the additive genetic relationship coefficients between selection candidates and crossbred
production animals are often low due to one or more generation of multiplication of selected genotypes,
thus accuracy of selecting purebred animals for crossbred performances can be low. Crossbred animals in
C can be half-sibs, progeny or distant descendants of purebred selection candidates in B (Wientjes and
Calus, 2017). On the contrary, the relationships between selection candidates in B and purebred birds in
C can be full-sibs and half-sibs (Chu et al., 2018; Kapell et al., 2012). To my knowledge, selection based on
performances of crossbred animals in C environments were only carried out in breeding programs for
pigs, but not for broilers. This may be related to complexity of recording pedigree information of crossbred
broilers in C. In addition, compared to selection based on purebred birds in C, the progress of genetic gain
can be slower due to a longer generation interval of selection based on crossbred records from C. Also,
GxE interactions due to environmental differences are relatively lower in pig than in poultry. When the
genetic correlation between the traits measured on purebred and crossbred pigs are decomposed into
three components, Wientjes and Calus (2017) shows that genotype by genotype interactions contribute
large effects on the genetic correlation while GxE interactions contribute relatively small effects on the
genetic correlations. In contrast, GXE interactions due to the environmental differences are substantial
for growth traits of broilers with genetic correlations between traits measured in the breeding and
production environments in range 0.48-0.54 (Chapter 2) and 0.46-0.69 (Kapell et al., 2012). However,

genotype by genotype interactions are relatively low for chicken. Duenk et al. (2019) shows that the
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genetic correlation between purebred and 3-way crossbred performances of broilers measured in the
same environment was high, ranging from 0.90-0.96 for BW at 5 weeks of age. The high correlation implies
low genotype by genotype interactions for broiler BW5.

Selection for multiple production environments

In Chapter 2, 3 and 5, two distinct classes of environments are defined as B and C. Conditions of production
environments in GXE breeding programs are replicated by resembling broad commercial-like conditions
(Kapell et al., 2012) (Chapter 2). However, conditions of the commercial production environments often
vary from farm to farm for hygienic conditions (different levels), diseases (types of specific diseases and
level of pathogen burden), diets (type of feed, protein levels and feeding regimes), management
(management of litter, light and temperature) and stocking density. When production animals are raised
in a broad range of environmental conditions, selection for robustness or resilience of animals might be
more appropriate.

To model GxE interactions in case of multiple environments, multi-trait model and reaction norm model
are commonly used. The models described below are pedigree-based BLUP models. The multi-trait model
treats a trait measured in different environments as different traits:

Yik= 1+ Ej + ajj +eij (7.1)

where yji is phenotypic record k of genotype i in environment j; W is the mean; Ej is environment j; aj is
the additive genetic effect of genotype i for performance in environment j; ej« is the residual. The additive
genetic effects in different environments are assumed to be normally distributed: N[0, A @ V.], where A
is a relationship matrix, Va is a nxn covariance matrix, and n is number of environments. The residual
environmental terms are also normally distributed: N[0, I ®V.], where | is identity matrix for individuals,
and Ve is a nxn covariance matrix with off-diagonal elements equal to zero, as each animal can have
records in one environment due to restriction of move animals between environment.

The reaction norm model as used in Sartori et al. (2018) that uses Legendre polynomials on level of
environmental challenge can be:

Vije =1+ T B+ I¥ojian + e (7.2)

where yij is phenotypic record k of genotype /i in environment j; p is mean; ¢;; is the [ Legendre
polynomial for phenotypic record on environmental parameter j; f; is the I'" fixed regression coefficients;
a;;is the [ random regression for additive genetic effects; nf and nr are the order of polynomials for fixed
regression and additive genetic effects; e is the residual. In case of linear reaction norm model (nr = 1),

the additive genetic effects for the intercept and slope are assumed to follow a bivariate normal

157



7 General discussion

2
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distribution: N[O, A @ Varn], with Vaen = 2 , Where Odint and Oq,, are additive
Aint,Ain Jalin

genetic variances for the intercept and slope, and gy, . 4,,,is additive genetic covariance between the
intercept and slope.

GxE interactions are present when correlations between traits measured in environments are lower than
1 for the multivariate model (7.1), or additive genetic variances for " random regression (/ 21) such as
agh.n are larger than 0 for the reaction norm model (7.2). The multivariate model would have problems
with estimation of variance components and model convergence when number of environments are
large. The model used in Chapter 2, 3 and 5 is similar to the multi-trait model (7.1), except that only two
distinct classes of environments including B and C environments were defined. The reaction norm model
describes the expected reaction of genotypes to a specific environmental parameter or level of
environmental challenge. The reaction norm model have fewer parameters than the multivariate model
when there are more than two environments. In comparisons between the two models, the multivariate
model (7.1) is better than the reaction norm model (7.2) in term of estimation of GxE, flexibility of
variance-covariance structure and genetic interpretation of GxE (Mulder, 2007). However, the reaction
norm model is better in term of predictability of phenotypes, biological interpretation of GXE and selection
for robust animals (Mulder, 2007).

The reaction norm model describes the change in the genetic effect per unit change in an environmental
parameter such as temperatures, level of pathogen burden, level of protein or combination of these
effects. For example, the reaction norm models were used to explore genetic variation of growth traits as
a function of temperatures for pigs (Zumbach et al., 2008), beef cattle (Santana et al., 2016) and rainbow
trout (Janhunen et al., 2016). However, the differences between environments are often not only related
to a single environmental effect, but combinations of different factors such as hygienic conditions, types
of specific diseases, level of pathogen burden, type of feed, feeding regimes, and management of farms.
In addition, records on environmental effects such as pathogen burden are not often available. Therefore,
it is difficult to find an environmental parameter that explains GXE. To combine effects of climate, feed
and management, the estimates of herd-year-season have been used as the environmental parameter for
reaction norm analysis of total born in pigs using genomic approach (Silva et al., 2014). Other studies
(Herrero-Medrano et al., 2015; Mathur et al., 2014) uses the concept of challenge load and herd-year-
week estimates of challenge load as measure of environmental parameters for reaction norm analysis of
GxE. Herrero-Medrano et al. (2015), Mathur et al. (2014) and (Silva et al., 2014) carried out reaction norm

analysis in two steps: (i) estimate the environmental parameter from a non-reaction norm model and (ii)
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use the estimated environmental parameter as covariates for the reaction norm model. However, this
two-step approach may be suboptimal because the reaction norm model treats the environmental
parameter as known covariates. The non-reaction norm model may not be the appropriate model, thus
the estimated environmental parameter from the non-reaction norm model can be inappropriate values
for their use in the reaction norm model. Since a breeding value is defined as a function of the
environmental parameter in the reaction norm model, inappropriate inferences about the environmental
parameter may have negative consequences on accuracy of EBVs from the model. Su et al. (2006)
proposed a Bayesian analysis of the reaction norm model that treats the environmental parameter as
unknown covariates. This approach, which is done in one step, infers the environmental parameter
simultaneously with other parameters of the reaction norm model. Knap and Su (2008) showed
considerable advantage of the one-step Bayesian approach of the reaction norm model in pigs. However,
the approach by Su et al. (2006) is very computationally demanding (Knap and Su, 2008). The use of
reaction norm model for selection of robust animals was shown in studies for pigs (Herrero-Medrano et
al., 2015; Silva et al., 2014; Zumbach et al., 2008) and cattle (Santana et al., 2016), but to date, no studies
on the use of records from multiple environments for selection of robust chicken. This may be due to the
difficulty in tracing pedigree for chicken in the commercial conditions.

GXE interactions due to micro-environmental differences

Environments that differ by hygienic conditions, diets, production systems or farms are known as macro-
environments. GxE due to differences between macro-environments (environments of purebred versus
crossbred animals, and breeding versus production environments) has been discussed. However, within
a single macro-environment, micro-environmental differences may also lead to GxE interactions. Each
animal may have a different environment e.g. some animals have diseases, but others don’t. Different
genotypes react differently to the random perturbations that leads to genetic differences in residual
variance or genetic heterogeneity of residual variance, i.e. the genotypes may control the residual to some
extent.

Genetic heterogeneity of residual variance can be modelled in an additive model, an exponential model
or a reaction norm model reviewed in Mulder (2007). An example of the exponential model (SanCristobal-

Gaudy et al., 1998) is:

In(cd)+ay,;
Vi =t Qg+ exp () y, (7.3)
where y; is phenotypic record of animal i; u is the mean trait value; 62 is the mean micro-environmental

variance; an, is the breeding value of animal i for the mean: a, ~ N(O, Aagm); ay,i is the breeding value of
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animal i for the micro-environmental variance: a, ~ N(0O, Aagv); Ais a relationship matrix; agm and agv are
variances of additive genetic effects of am; and a,; and y; is a standard normal deviate for the micro-
environmental effect, and it is independent and identically distributed as N[O; 1].

The genetic heterogeneity of residual variance can be estimated using two-stage method (Bolet et al.,
2007; Mulder et al., 2009). In stage 1, variance components including additive genetic variance and
residual environmental variance are estimated using phenotypic records of individuals. In stage 2, genetic
variance in the residual variance is estimated using predicted environmental residual effect from stage 1
as phenotypic records. For example, model for stage 1 is a regular animal model:

Vi= U+ 0mi+ e (7.4)

where e; is residual environmental term of animal i with variances of 2.

Model for stage 2 is similar to a regular animal model, but the model uses log-transformed squared
residuals, In(el-z), as phenotypic records. The transformation is to reduce the dependency of eiz on its
variance and non-normality of the distribution of el-2 (Mulder et al., 2009). The model for stage 2 is:
In(el-z) =U+auit e, (7.5)

where a,; is the breeding value of animal / for In(eiz); and e, is the residual effect.

Genetic correlation between the additive genetic effects for the mean and the residual variance can be

estimated using bivariate model:

y Zy 0 an, €y
[ln(ez)] =1us [0 Zincet [ay]+e]] (7.6)
where y, In(e?), am, ay, €, and e, are vectors of y;, In(eiz), dm,i, Qv,, € and e, respectively; Zy and Zln(ez) are

a
incidence matrices for the additive genetic effects of an; and ay,;, respectively; [am] ~MVN(0,AQ®
(4

2
Ga Ga ,a . . .
[ m ™7v]), where 62 and g2 are variance of an, variance of a,; and covariance of an,; and ay,.
m v

Camas 02,
Covariance between e;and e, is assumed uncorrelated because cov(e,e?) =0 when e is normally distributed
(Mulder et al., 2009).

Genetic heterogeneity of residual variance has been estimated for BW of broiler chicken (Mulder et al.,
2009; Wolc et al., 2009), milk yield in dairy cattle (Ronnegard et al., 2013), production traits in beef cattle
(Neves et al., 2012). Generally, these studies found that estimates of heritability of residual variation were
low at 0.023-0.038 (Wolc et al., 2009), 0.029-0.047 (Mulder et al., 2009) and 0.00-0.05 (Neves et al., 2012).
The genetic correlations between the additive genetic effects for the mean and the residual variance were

ranging from -0.45 to -0.41 (Mulder et al., 2009). Although heritability of residual variation was low, the
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genetic coefficients of variation were relatively high ranging at 0.35-0.57 (Mulder et al., 2009) and 0.25-
0.40 (Wolc et al., 2009). This indicates that accounting for genetic heterogeneity of residual variance in
selection can improve uniformity of the traits of interest.

In summary, to improve poultry breeding programs affected by GxE, the use of records from purebred
chicken in C is more reasonable than the use of records from crossbred chicken in C, because the use of
records from purebred in C has higher accuracy of selection, implementation of breeding schemes is less
complicated, and chicken may have relatively low GxG interactions due to crossbreeding. Research on
selection for multiple production environments has not been well-investigated for poultry breeding

programs.

7.2. Development of statistical models for genetic evaluations

A true model that describes the pattern of the data for a trait of interests is usually unknown because of
missing information, incorrect assumptions and computational issues. Since the true model is unknown,
there are controversies on how to develop a statistical model for genetic evaluations of traits. For
example, some studies use statistic measures of model goodness-of-fit such as the deviance information
criterion (DIC), likelihood-ratio test (LRT) and mean square error (MSE) (Grosso et al., 2010; Kheirabadi
and Rashidi, 2019; Posht-e Masari et al., 2019). A common method for development of the model,
particularly used as norm in the development of genomic prediction models, is cross-validation for
assessing predictive ability of EBV prediction from statistical models (Christensen et al., 2012; Gorjanc et
al., 2015; Legarra and Reverter, 2018). Different cross-validation approaches to measure accuracy of EBV
prediction have been used such as population accuracy based on correlation between EBVs and corrected
phenotypes (Christensen et al., 2012), and indicators of population accuracy based on correlation
between EBVs estimated from reduced and full datasets (Legarra and Reverter, 2018). In addition,
appropriate approaches to develop statistical models depend on the traits. For example, predictive ability
based on correlation between EBVs and corrected phenotypes may not be appropriate for the traits that
are affected by maternal effects (Chapter 4). Also, corrected phenotypes of the traits measured in C
environment may not be available for validation animals that are raised in B environment. This section
will list some methods and approaches for the development and comparison of statistical models.
Model goodness-of-fit

Goodness-of-fit of a model indicates how well the model describes a set of data, which is an important
component of model comparison. There are several common criteria to assess the goodness-of-fit of a

model such as Akaike information criterion (AIC), Bayesian information criterion (BIC) and deviance
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information criterion (DIC). Criteria AIC and BIC are based on the likelihood function for frequentist-
oriented approach. The AIC is an unbiased estimator of the Kullback-Leibler divergence of the evaluated
model from the true model (Akaike, 1973). The BIC is closely related to AIC, but BIC was developed by
Schwarz (1978) which used a Bayesian argument for adopting it. The criteria AIC and BIC used the
penalized-likelihood approach that includes measure of the fit of a model and an additional term that
penalizes the complexity of the model:

AIC = -2log(f (v]0)) + 2k (7.7)

BIC = -2log(f (v|0)) + 2k log (n) (7.8)

where y is the data; 8 is the vector of the model parameter estimates at the maximum likelihood of
f(y|9); k is the number of estimated parameters in the model; n is the number of data observations.
The BIC penalizes the complexity of the model further than the AIC. The model with smaller criterion of
AIC or BIC is the better model. The use of AIC and BIC values leads to similar conclusions on the choice of
statistical models for poultry traits (Grosso et al., 2010; Jasouri et al., 2017; Maniatis et al., 2013).

The maximized value of the likelihood function f(y|9), or called L, is also used to compare hierarchically
nested models in a log-likelihood ratio test. The test is based on the Chi-Square test of the ratio of the
likelihood of a relatively more complex model compared to a simpler model: LR = -2logL, + 2logL;, where
logL; is the log-likelihood of the complex model and logL; is the log-likelihood of the simple model. The LR
value is compared with the critical value obtained from the Chi-Square distribution at usually P=0.05 and
degrees of freedom = ny; - nk2, where ng; and ngz; are number of estimated parameters of the complex
model and simpler model, respectively. The complex model and simple model are significantly different
(P=0.05) if LR is greater than the critical value from a Chi-Square distribution. In addition, the likelihood
ratio test is used to test the significance of random factors. To test the significance of random factors, the

Wald test can also be used. The Wald test requires estimates from only one model. For example, in the

(6-60)?
var(9)

test for a single parameter 8 with Ho: 8= 8, and Hi: 8% 8,, the Wald statistic is , where 6, is a

constant. The Wald statistic is compared with a chi-shared distribution at degree of freedom of 1.
Criterion DIC (Spiegelhalter et al., 2002) is a Bayesian analog of AIC defined as:

DIC = -2log(f (y|9)) + 2po (7.9)

where f(y|9_) is the likelihood evaluated at the posterior mean 8 (i.e. mean of the posterior distribution);
and pp is a model complexity measure, known as the effective number of parameters (Myung and Pitt,

2018).
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Formula (7.7) and (7.9) are quite similar except that 8 is replaced by 8, and k is substituted by pp. The
criterion DIC may be sensitive to prior distributions of model parameters.

Other measures of the goodness-of-fit of statistical models are mean square error (MSE) and correlation
between observed and predicted values (Posht-e Masari et al., 2019). These measures can be used for
cov(y.9)

’
2.2
O'yO'j\,

Z?=1(3’i_37i)2
n

both frequentist and Bayesian approaches. The measures are: MSE = and 1y =

where MSE is mean square error; 1y, is the correlation between observed and predicted phenotypic
values; y; is the observed value of phenotypic record i; ¥; is the value of phenotypic record i predicted
from the statistical model; n is number of records; cov(y,¥) is the covariance between observed and
predicted values; aﬁ and cr)% are variances of observed and predicted values, respectively. Models with
MSE closer to 0 and T(y.9) closer to 1 are the better models. The use of DIC, MSE and Ty.9) led to similar
conclusions on the goodness-of-fit between comparable statistical models in a study by Posht-e Masari et
al. (2019).

Accuracy of estimated breeding values

Identification of statistical models that fit data well is important. However, for breeders, accuracy of
prediction of breeding values is more important in the development of statistical models. Genetic gain of
a breeding program depends on accuracy of EBVs: R = ipg,, where R is selection response; p is accuracy
of EBVs or the correlation between true breeding values and EBVs for selection candidates; oa is the
additive genetic standard deviation of the trait of interest. A common method to calculate the accuracy

is from the prediction error variance (PEV) and the additive genetic variance:

PEV
PpEv = /1 Tz (7.10)

where PEV is the prediction error variance derived from the diagonal elements of the inverse left-hand

side matrix of MME; and aj is the additive genetic variance of the trait.

However, in formula (7.10), 1 — % could be negative if there was inbreeding. Therefore, the additive
A

genetic variance should be multiplied with the diagonal element of the additive numerator relationship
matrix (A). The accuracy of EBVs derived from PEV is known as individual accuracy (Bijma, 2012; Legarra
and Reverter, 2018), theoretical accuracy (Mrode and Thompson, 2005; Putz et al., 2018) or model-based
accuracy. The individual accuracy is defined as the correlation (r(a,d)) between the true breeding values
(a) and estimated breeding values (a) for one individual across conceptual repeated sampling (Legarra and
Reverter, 2018; Van Vleck, 1993). The individual accuracy reflects “the credibility of an individual EBV” or

“standard error of prediction of an individual EBV” (Bijma, 2012), and the individual accuracy “relates to
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the risk that this EBV will change over time when more information becomes available” (Bijma, 2012).
However, the individual accuracy calculated from PEV ignores selection while selection reduces the
accuracy (Bijma, 2012). In addition, the individual accuracy might be meaningless to selection. For
example, when only parent average is known, individual accuracy of full-sibs is at most 0.71. However,
the predicted differences between full sibs have zero accuracy with the pedigree-based BLUP model, or
population accuracy among full-sibs is zero because full-sibs have the same parent average. Therefore,
individual accuracy derived from PEV should be used for individual decisions, supplementary information
for customers and marketing purposes, but the individual accuracy might not be appropriate for selection,
genetic gain, and the development of statistical models (Bijma, 2012).

The use of population accuracy of EBVs may be more appropriate for a comparison of competing statistical
models (Legarra and Reverter, 2018). Population accuracy is defined as the correlation (p(a,a)) between

the true breeding values and estimated breeding values across series of individuals in a population or

cov(a,a)

Jvar(a)var(a)

the true breeding values (a) and estimated breeding values a across individuals in a population; var(a) and

across the candidates for selection: p(a,a) = , where cov(a, A) is the covariance between

var(a) are variances of a and &, respectively. The population accuracy of EBVs is the property of a
population, not of an individual (Bijma, 2012; Legarra and Reverter, 2018). In the absence of selection,
individual accuracy can be equal to population accuracy (Bijma, 2012). To estimate the population
accuracy of EBVs, the common method is based on cross-validation, which is a norm in genomic evaluation
studies (Christensen et al., 2012; Legarra and Reverter, 2018). The term, accuracy of EBVs, used in this
thesis generally refers to or being indicators of population accuracy of EBVs unless a specific form of
accuracy is stated.

Cross-validation

Cross-validation is a model validation test to assess the ability of the model to predict future events,
typically based on predicted breeding values. In a cross-validation analysis, the full dataset is split into a
training set (or reduced dataset) and a validation set (or testing dataset). Breeding values of animals in
the validation dataset are predicted from the training set. The predicted breeding values (EBVs) are
compared with target predictands (observed values) that are derived from the prediction based on the
full dataset. Methodologies of cross-validation vary across studies for approaches of dataset splitting,
compared predictands and metrics for the prediction of EBVs. The difference in the methodologies of
cross-validation can be due to characteristics of traits/effects, breeding schemes, statistical models and

target individuals (selection candidates).
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Splitting of the full dataset can be based on a cut-off date (Christensen et al., 2012), random folding (Su
et al., 2010), split folds across families (Legarra et al., 2008) and split folds within families (Chu et al. 2019),
which can lead to very different results of accuracy of EBVs (Daetwyler et al., 2013; Legarra and Reverter,
2017). Forward cross-validation uses a cut-off date to split the full dataset into training and validation
datasets (Mantysaari et al., 2010). The cut-off date is not in any form of randomization or related to
measure of uncertainty in data splitting. The idea of forward cross-validation is to use the “current” data
to forecast the “future” outcome. Random folding k-fold cross-validation splits randomly the full data into
k distinct sets and predict EBVs of animals in a set from the remaining k-1 sets. Random folding cross-
validation is relatively simple for implementation (Legarra and Reverter, 2017), but random folding cross-
validation is not realistic in an animal breeding setting in which we’d like to forecast future outcome of
breeding. Splitting of the full dataset into training and validation sets across families and within families
has been used in Legarra et al. (2008). Chu et al. 2019 split the full dataset based on combined approaches
of forward cross-validation and split folds within families. The split folds within families in Chu et al. 2019
aimed to amplify the overestimation of direct additive genetic effects when maternal effects were not
accounted for in the model. Data splitting methods in cross-validation procedures can be varied across
studies, but the principle of generating training and validation sets should be corresponding to testing
hypothesis and should mimic the relationship of the candidates of selection to the training population
(Daetwyler et al., 2013). The relationship can affect accuracy of EBVs. The accuracy would be higher when
the relationship between animals of the training and validation sets was higher (Daetwyler et al., 2013).

The true breeding values are usually unknown, so is the true accuracy of EBVs, r(a,a). To estimate the
accuracy, EBVs estimated from the training dataset are compared with predictands such as pre-corrected
(or observed) phenotypes (Christensen et al., 2012; Legarra et al., 2008), yield deviations, daughter yield
deviations (Mantysaari et al., 2010), de-regressed proofs (Legarra et al., 2008) and EBVs estimated from
the full dataset (Legarra and Reverter, 2018). Yield deviations, daughter yield deviation and de-regressed
proofs are pseudo-phenotypes commonly used in cattle breeding programs, but these predictands have
not been used in cross-validation studies for chicken breeding programs, in which prediction of EBVs is
primarily based on own performance and performance from siblings. Corrected phenotypes are adjusted
for fixed effects (Legarra et al., 2008) or adjusted for fixed effects and non-genetic random effects
(Christensen et al., 2012). The corrected phenotypes are derived from a model that uses the full dataset.
This means corrected phenotypes are estimated values, and they can be biased due to the use of an
incorrect model or wrongly assumed relationship matrix (Legarra and Reverter, 2017). Cross-validation

approach that is based on the predictands of corrected phenotypes is sensitive to incorrect estimates of
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heritability (Legarra and Reverter, 2018). In addition, corrected phenotypes may not exist in some cases
such as breeding programs affected by GxE. In these cases, predictands of EBVs that are estimated from
the full dataset can be compared with EBVs that are estimated from the training dataset (Legarra and
Reverter, 2018). This cross-validation procedure is relatively simple tool for evaluation of competing
statistical models. Legarra and Reverter (2018) found that the use of predictands of EBVs estimated from
the full dataset led to similar conclusion on the comparison of models as the use of corrected phenotypes.
However, the two models compared in Legarra and Reverter (2018) were pedigree-based and genomic-
based models which have substantial differences in accuracy of EBVs. Therefore, it is uncertain that the
predictands of EBVs estimated from the full dataset can be used for selection of statistical models when
the differences in accuracy of EBVs between competing models are relatively small. In addition, EBVs from
the full dataset are estimates which can be biased due to the use of incorrect models.

Common metrics for the prediction of EBVs from cross-validation procedure are accuracy of EBVs, bias,
dispersion and mean square error. Since true breeding values are unknown, estimation of accuracy of
EBVs is usually based on predictands. Metrics of accuracy of EBVs vary across studies (Christensen et al.,

2012; Legarra and Reverter, 2018; Legarra et al., 2008; Putz et al., 2018):

Py, = cor@, g (7.11)
pyan = I (7.12)
Pa; = cor(ay, ar) (7.13)

where &, is the vector of EBV estimated from the training or reduced dataset; a; and ¥, are vectors of
EBV and corrected phenotype, respectively estimated from the full dataset; cor is the correlation; h? is

heritability estimate; py, py. » and Pa; are metrics of accuracies of EBVs used in different studies. Metric

acc.

accr (Legarra and Reverter, 2018), where acc, is the population accuracy of EBVs
f

Pay has expectation of
defined as the correlation between the true breeding values and EBVs estimated from the training
dataset; accy is the population accuracy of EBVs defined as the correlation between the true breeding
values and EBVs estimated from the full dataset.

A study (Putz et al., 2018) that simulated a population without selection compared accuracies of EBVs
estimated from pedigree based BLUP and single step GBLUP models. Using different approaches to

calculate accuracy of EBVs, Putz et al. (2018) found that the values of py- , and individual accuracy were

close to the correlation p(a, @) between estimated breeding values and true breeding values (Table 7.1).
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Table 7.1: Mean (standard deviation over 10 replicates) of accuracies of breeding values estimated from
pedigree-based BLUP and single step BLUP (ssGBLUP) using the training dataset (Table adapted from Putz
et al. (2018))

Notation from Putzetal. Notation in  this EBVs from pedigree- GEBVsfrom ssGBLUP

(2018) manuscript based BLUP

TBV? p(a, a) 0.34 (0.06) 0.44 (0.06)
PEV® PpEV 0.30 (0.02) 0.46 (0.01)
GEBViu Pa; 0.56 (0.06) 0.82 (0.03)
A Py, 0.11 (0.05) 0.14 (0.03)
Yen® Pyih 0.36 (0.15) 0.45 (0.11)
Yoo Py, 0.14 (0.22) 0.17 (0.22)

Notes: ? Correlation between estimated breeding values and true breeding values; ° Individual accuracy
computed from prediction error variances; ¢ Correlation between estimated breeding values and genomic
breeding values estimated from the full dataset; ¢ Correlation between estimated breeding values and
corrected phenotypes for dams; ¢ Y. divided by the square root of heritability estimates; f Correlation
between estimated breeding values and average corrected phenotypes of daughters for sires with at least
five daughters.

Metrics of py. and Pa; did show that prediction from ssGBLUP was better than pedigree-based BLUP.
However, the correlation, py;, between estimated breeding values and corrected phenotypes was
significantly different from the true accuracy of EBVs. Similarly, the correlation, Pajs between estimated
breeding values estimated from the training dataset and genomic breeding values estimated from the full
dataset was significantly different from the true accuracy of EBVs. This is because py; and pa; are not
accuracy of EBVs, but py and pa; are ratios of accuracies that describes the change in accuracy of EBVs
from the use of the training dataset to the full dataset. Computation of accuracy of EBVs from Pa; requires
prediction error variances and covariances, and genetic variance at equilibrium in a population under
selection (Legarra and Reverter, 2018).

Other metrics for model comparisons are bias, dispersion and mean square error. Bias is defined as the
mean of the difference between true breeding value and EBV: d = @ — @, where d is bias of prediction; @
is the mean of true breeding values, and 4@ is the mean of estimated breeding values. Dispersion is defined
as the regression slope (b) of a on a. Dispersion is defined as bias in some studies (Christensen et al.,

2012), but b actually describes the inflation or deflation of EBV prediction (Legarra and Reverter, 2018).
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Mean square error is defined as the mean of the square of the difference between true breeding value
and EBV: MSE = m. For estimation of bias, dispersion and mean square error from cross-validation
procedures, predictants such as corrected phenotypes and EBVs estimated from the full dataset are used
in replacement for the unknown true breeding values.

Here are three examples of cross-validation procedures used in three different studies:

Christensen et al. (2012) used forward cross-validation procedures and corrected phenotypes as
predictands. The full dataset was split into a training dataset and a validation dataset based on a cut-off
date, and the validation dataset was ensure to have animals with both parents in the training dataset. The
cross-validation in Christensen et al. (2012) aimed to compare accuracy of EBVs between pedigree-based
BLUP and ssGBLUP models. The training dataset was used for estimation of model parameters and
predicting EBVs of animals in the validation dataset for the different models. The metric of accuracy of
EBVs was reflected by the correlation (pj,;) between EBVs and corrected phenotypes of the same animals
in the validation dataset: py. = cor(as,, ¥¢,), where a,, is EBV of animal i estimated from the training
dataset using either pedigree-based BLUP or ssGBLUP model; ¥, is corrected phenotype of animal i
estimated from the full dataset using pedigree-based BLUP model. The corrected phenotypes were
adjusted for fixed effects and non-genetic random effects. The dispersion of prediction was assessed by
the regression slope of y, on a;.,.

Chapter 4 in this thesis, used cross-validation procedures that were based on half-sib correlation. The full
dataset was split into training datasets and validation datasets based on cut-off date and full-sib families.
Animals in the validation datasets was ensured to have full-sibs in the training datasets. Randomization
of data splitting was accounted for as there were many possibilities of allocating full-sibs into training
datasets and validation datasets. The full dataset was used to estimate model parameters and corrected
phenotypes of animals for different models. Competing models in the study of Chapter 4 were pedigree-

based statistical models that included different fixed effects and random effects. The metric of accuracy

of EBVs py , was computed as: py. p, = M, where a;, is EBV of animal j estimated from the training

dataset; y., is the corrected phenotype of animal j estimated from the full dataset; animals i and j in the
validation datasets are half-sibs that are offspring from the same sire, but different dams; 1 is the
additive genetic relationship between half-sibs that is assumed to be equal to 0.25; h? is heritability
estimate from the full dataset. The corrected phenotypes were adjusted for fixed effects. The cross-
validation procedures used in Chapter 4 were designed for traits that might be affected by maternal

effects. When the maternal effects are present, but not accounted for appropriately in the model, the
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prediction of EBVs of animals in the validation dataset may be overestimated due to the maternal effects
shared among full-sibs. To avoid this overestimation, py, , was based on the correlation between different
animals that are half-sibs from different dams, and due to the mating structure such half-sibs will not
share potential bias from maternal effects.

Legarra and Reverter (2018) compared accuracy of EBV prediction for a pedigree-based BLUP model and
a GBLUP model using different statistics that were derived from cross-validation procedures. The full
dataset was randomly split with 50% and 50% of records into training datasets and validation datasets,
respectively. The full dataset in Legarra and Reverter (2018) was from a population of animals that are
not descendants from each other. The full dataset and randomly generated training datasets were used
to estimate model parameters and EBVs of animals for the different models. The corrected phenotypes
were estimated from the full dataset for the different models. Different statistics for accuracy, bias and
dispersion of EBVs was computed based on predictands of corrected phenotypes or EBVs estimated from
the full dataset. Metrics of accuracy of EBVs were the correlation (paAf) between EBVs estimated from the
full dataset and the validation dataset and the correlation (py;) between EBVs estimated from the
validation dataset and corrected phenotypes. Those correlations was between estimates of the same
animals in the validation datasets. Interestingly, Legarra and Reverter (2018) concluded that Pa;
performed better than py- as the metric of accuracy of EBVs Pa; Was more closely related to the changes
in prediction of EBVs. The metric Pa; Was used in Chapter 2 to assess accuracy of EBVs for a pedigree-
based BLUP model and a GBLUP model. The cross-validation method in Legarra and Reverter (2018) is
relatively simple to implement and particularly useful in case of GXE breeding programs in which corrected
phenotypes are unavailable for validation animals or selection candidates.

In summary, there are number of tools and approaches for evaluating statistical models. However, there
are lack of comparisons between model evaluation methods, and it is little known which evaluation

method is best for traits of interests in poultry breeding programs.

7.3. Group records

Itis shown in Chapter 3 and 5 that when GxE interactions between breeding and production environments
are strong, information from the production environment is a key factor to improve genetic gain.
However, for traits like egg production and feed intake, continuous recording of individual phenotypes is
difficult in C environments. For example, records of egg production are only available in groups such as

hen housed egg production in village production systems (Wondmeneh et al., 2016) and group records of
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cages in commercial laying hens. Intake of feed, which typically represents 60-70% of production costs,
are important traits, but difficult or expensive to measure. Since individual recording of feed intake is
expensive, only a selective proportion of selection candidates is tested for feed efficiency traits (Mebratie,
2019). For the genetic progress of feed efficiency, the lack of phenotypic data on the traits can be a barrier.
Group records can be an attractive alternative to individual records. In addition, chicken are typically
caged individually in the recording systems of breeding programs for selection of feed efficiency traits
whereas in the commercial conditions, birds are housed in groups. The difference in housing conditions
between the breeding and production environments may lead to GxE interactions. For example,
Zerehdaran et al. (2005) showed that the genetic correlation of broiler BW between birds housed in
groups and individual cages was 0.80. Therefore, compared to individual records, the advantages of group
records are that group records are easier and cheaper to collect (in some cases, the data is only available
in records of groups), and group records may reflect better the commercial conditions of the production
environment.

For estimation of genetic parameters and prediction of EBVs from group records, there are three model
approaches. The model approach proposed in Olson et al. (2006), Biscarini et al. (2010) and Su et al.
(2018), let’s call Mg exact, Uses the sum of group records and assumes only one residual for each phenotypic
group record. Olson et al. (2006) used model Mgr exact (known the “exact method”) to predict EBVs in case
of equal group sizes (number of animals per group), but variance components were not estimated. Model
Megr_exact for group records used in Su et al. (2018) could estimate variance components of additive genetic
effects, group effects, maternal permanent environmental effects and residuals that were consistent with
the variances estimated from individual records. Model Mg, exact in Biscarini et al. (2010) and Chapter 6 in
this thesis applied for equal group sizes also resulted in variance components of additive genetic effects
and residuals that were consistent with the variances estimated from individual records. The model
approach for group records, termed Mg, average, USeS the average of group records as a replacement for the
phenotypic records of individuals. The Mg, average approach, which is known as the approximate method in
Olson et al. (2006) and Biscarini et al. (2010), has a relatively simpler setting of MME and easier
implementation compared to Mgr exact @approach. When variance components were known and given,
accuracy of EBVs from Mg average approach was only slightly smaller than Mg, exact approach (Olson et al.,
2006). The Pearson correlation and rank correlation between EBVs estimated from Mg average aNd Mgr exact
approaches were high (0.86-0.91) (Biscarini et al., 2010). However, variance components estimated from
Megr average approach were very different from the variances estimated from Mg exact approach (Biscarini et

al., 2010) and different from the variances estimated from individual records (unpublished results from
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my own simulations for Chapter 6 of this thesis). Variance components estimated from Mg average approach
depended on structure of groups (unpublished results from my own simulations). The third approach is,
termed Mg sire, Used in Nurgiartiningsih et al. (2004) that is based on the sire model. The Mg sire approach
can only be applied to group records in which group members are full-sibs and half-sibs. The Mg sire
approach incorporates heterogeneity of error variance and correlated residual effects into the model as
the residual of this sire model consists of the group effect, dam effect and environmental terms.
Nurgiartiningsih et al. (2004) showed that using Mg, sire approach, the additive genetic variance estimated
from group records was, generally, consistent with the additive genetic variance estimated from individual
records. The rank correlation between breeding values of sires predicted from group records and
individual records was 0.79-0.99 (Nurgiartiningsih et al., 2004). However, compared to the prediction from
individual records, the residual variances were largely overestimated, thus heritability estimated from
group records was significantly lower than heritability estimated from individual records (Nurgiartiningsih
et al., 2004). The overestimation of the residual variances might be mainly due to confounding of the
group effect into the residual.

Models of Mg average aNd Mg exact fOr group records, which were used in Chapter 5 and 6, respectively, will
be described and compared with the model for individual records. These models include fixed effects and

random effects of additive genetics, maternal permanent environment and group):

Model for individual records:  y =Xb + Z,a + ZgCgr + ZmCm + € (Ming)
Model Mg average fOr group records: V' = Xb + Zaa + ZgCor + ZmCm + € (Mgr_average)
Model Mg, exact fOr group records: Y =X'b+Zia+ZyCy+ ZiyCm+ e (Megr_exact)

where y is a vector of individual phenotypic records; y! is a vector of individual records, but the individual
records are group means; y' is a vector of group records that are sum records of individual in groups.
Vectors y and y! have the same number of elements that are equal to number of individual phenotypic
records (ning). Vectors y* has number of elements equal to number of groups (ng). Vector b is a vector of
fixed effects; a is a vector of direct additive genetic effects: a~ N(0, AcZ), where A is a relationship matrix
between individuals constructed from pedigree, genomic information or combination of pedigree and
genomic information, o2 is the direct additive genetic variance; cg is a vector of random group effects: cg
~ N(O, Igragzr), where lg is an identity matrix of group effects, agzr is the group variance; cm is a vector of

permanent environment maternal effects: ¢m ~ N(0, Img;2), where I, is an identity matrix of the dam, 62

*

is the permanent environment maternal variance; X, X", Z,, Zz, Zgr, Zgr,

Z,, and Z,, are incidence matrices.
Matrices X and X" have the same number of columns, but X and X* have ni,s and n, number of rows,

respectively. Matrices Z, and Z; have the same number of columns equal to number of animals in the
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relationship matrix, but Z, and Z; have nins and ng- number of rows, respectively. Matrices Zgr and Zg, have
ngr number of columns, but Zgr and Zg, have ning and ng number of rows, respectively. Matrices Zm and Zp,
have the same number of columns equal to number of dams, but Zn, and Zy, have nj,q and ng- number of
rows, respectively. Vector e is the residuals of models Ming and Mg average: € ~ N(O, Ra2), where R is an
identity matrix of individuals, 62 is the residual variance. Vector e” is the residuals of model Mg exact: €
N(0, R’6?2), where R" is a diagonal matrix in which diagonal elements are number of animals in groups.
Pedigree-based relationship and genomic-based relationship have been used for the prediction of EBVs.
When pedigree-based relationship matrix is used for models Mg average aNd Mgr exact (Biscarini et al., 2010;
Olson et al., 2006; Peeters et al., 2013; Su et al., 2018), full-sibs of the same group have identical EBV. On
the contrary, when genomic relationship matrix is used for models Mg average aNd Mgr exact, full-sibs of the
same group can have different genomic EBVs (Chapter 6). For prediction from group records, the use of
genomic information can not only increase accuracy of EBV, but also can reduce inbreeding compared to
the use of pedigree information (Chapter 6).

Simulations in Chapter 5 and 6 did not include the permanent environmental maternal effect in the
simulation of trait observations. However, the maternal effect can be important for some traits in poultry,
particularly for traits that are measured at relatively early age. When the maternal effect is present, but
ignored in the prediction model, the direct additive genetic variance is overestimated. Su et al. (2018)
showed that with the model that ignored the maternal effect, the permanent environmental maternal
variance was “transferred” to the direct additive genetic variance, group variance and residual variance.
This “transfer” reduced slightly accuracy of EBVs and increased considerably bias of prediction (Su et al.,
2018). To be able to estimate the permanent environmental maternal effect from group records, offspring
of a dam must belong to different groups, or offspring of multiple dams must belong to the same group.
When group size is equal to family size in hierarchical mating and offspring of each dam belong to each
group, the permanent environmental maternal effect cannot be estimated from group records.

The variance due to group effects cannot be estimated from group records when group sizes are equal
between groups. When the group effect is present, but ignored in the prediction model, the direct additive
genetic variance is unaffected, but the residual variance is largely overestimated. Ignoring the group effect
reduces slightly accuracy of EBVs, but has no influence on bias of prediction. With the equal group sizes,
the group and residual effects cannot be separated because the covariance matrix for the group effect is

*

. . . . . / . . .
proportional to the covariance matrix of residuals, (matrices ZgZg, = ngR*, where ng is the group size in
model Mg exact). In this case, the residual variance are: og* = ng(ngcér + 02), where og* is the residual

variance in the model that the group effect are ignored; ng is the group size; Gér and o2 are residual and
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group variances, respectively. When model Mg exact Without group effect was used in Biscarini et al.
(2008), residual variances (Gg*) estimated from group records were much higher than the residual

variances (02) estimated from individual records. Biscarini et al. (2008) assumed the residual variances
2
(Gg*) estimated from group records must be divided by group sizes (62 = Z—Z) without realizing that the

group effect was incorporated into the residuals. As a consequence, Biscarini et al. (2008) actually
overestimated o2 for the estimation from group records.
Small variation of group sizes can also lead to convergence issues of the model that includes the group

effect for parameter estimation from group records (Su et al., 2018). Therefore, with equal group sizes or

Cgr

small variation of group sizes, Su et al. (2018) suggested an alternative model (Mgr exact

) that combines
the group effect into residuals, and appropriated weights are put on the residuals:

YV =X'b+Za+Zcn+e (M)

gr_exact

2
o
Residual variance of M;ffSu is: 02+ = ng(nyoZ, + 02) = ng(ngb + 1), whereb = 9" o Thus, V(e*) =

R*0Z, where R is a diagonal matrix with diagonal elements R;; = ng;(ng;b + 1). Model M;g"r_exact is

equivalent to model Mg exact, but M;‘;”r exact has less computation demand (Su et al., 2018). For model

2

c . o . . .
Mgfr exacty the ratio b= gr/cz needs to be inferred from variance components estimated from
- e

individual records of the corresponding traits or other appropriate traits with individual records (Su et al.,
2018) or estimated using likelihood ratio test of the profile likelihood for different values of b.

Apart from the need of an optimal model for group records, accuracy of selection from the use of group
records can increase with grouping strategies or allocation of animals into groups before phenotype
testing. Accuracy of the prediction from group records increases when group members are more closely
related based on pedigree information (Olson et al., 2006; Peeters et al., 2013; Su et al., 2018). When
genomic information is known before phenotype testing, utilization of genomic information can further
increase accuracy of the prediction (Chapter 6). However, if all animals of each family are formed into a
group, effects of direct additive genetics, maternal permanent environment and group cannot be
separated. Here are some example designs of animal grouping to ensure separation of the direct additive
genetic effect from maternal permanent environment and group effects in situations where group sizes
are smaller, equal or greater than family sizes.

Family size > group size: Offspring from each family are used to form more than 1 group. Eg:

- Family size of 8 and group size of 4
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- Design of grouping: Offspring from each family are allocated to two groups of 4 individuals.
Family size = group size: Each group has individuals from 2 different families. Eg:

- Family size of 8 and group size of 8

- Design of grouping: Group 1 consists of 4 individuals from family 1 and 4 individuals from family
2. Group 2 consists of 4 individuals from family 2 and 4 individuals from family 3 ... Group n, consists of 4
individuals from family ng and 4 individuals from family 1.

Family size < group size: Offspring from more than one family of the same sire are used to form a group.
Eg:

- Family size of 8 and group size of 16

- Design of grouping: Offspring from two families of the same sire are allocated to one groups.

In the examples above, hierarchical mating is assumed, meaning that one sire is mated to several dams,
but one dam is mated to a single sire only. With the designs above, group members are closely related,
and the maternal permanent environmental effect can be separated from the direct additive genetic
effect with model Mg exact fOr group records. The use of genomic information for grouping, which was
proposed in Chapter 6, can be applied for these designs to improve accuracy of selection.

The indirect additive genetic effect was attempted to be included in the model for group records (Peeters
et al., 2013). Through social interactions, birds can substantially affect one another’s performance, and
this effect is heritable (Ellen et al., 2008; Peeters et al., 2012). The direct additive genetic effect is the
effect of an individual on its own performance, while the heritable effect of an individual on the
performance of a group mate is known as the indirect additive genetic effect (Moore et al., 1997; Willham,
1963; Wolf et al., 1998). The indirect additive genetic effect can be estimated from individual records
(Ellen et al., 2008; Peeters et al., 2012), but not from group records (Peeters et al., 2013). Peeters et al.
(2013) showed that the direct and indirect additive genetic effects cannot be separated in the model for
group records. The incidence matrices that associate the direct and indirect genetic effects with
phenotypic group records are identical. The covariance matrix for the direct additive genetic effect is
proportional to the covariance matrix for the direct additive genetic effect, and thus only the total additive
genetic effect can be estimated.

In summary, the use of group records is feasible to improve poultry breeding programs affected by GxE,

especially when records from the production environments are only available in groups.
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7.4. Benefits of genomic versus pedigree information for poultry breeding
program in presence of GxE

Compared to the traditional pedigree-based breeding programs for dairy cattle, the main benefits of
genomic information are the increase in accuracy of prediction, reduced generation intervals and reduced
costs of progeny testing bulls (Hayes et al., 2009). The increase in accuracy is due to a better measure of
relationship between animals and better prediction of Mendelian sampling terms with genomic
information whereas ability to predict the Mendelian sampling terms is missing with pedigree information
in some cases. Those advantages may be smaller for poultry, particularly broilers, because poultry has
short generation intervals, birds are usually phenotyped before sexual maturity and/or selection, and
breeding programs for poultry often have a large number of selection candidates and high selection
intensities (Wolc et al., 2016). When candidates have own performances before selection, the Mendelian
sampling terms are, to some extent, explored even with pedigree-based BLUP prediction. In addition,
generation interval of broilers cannot be shortened with genomic information. However, when GxE
interactions are strong, genomic information in GxE sib-testing schemes plays a major role in predicting
the Mendelian sampling terms, and thus increases accuracy of selection. In GxE sib-testing schemes,
selection candidates reside in B environment, and their sibs are tested for phenotypes in C environment.
Because of bio-secure restrictions, those sibs in C environment are not used for selection, but only for
provision of information on the desired performance for the selection candidates. Here are some
theoretical benefits of genomic versus pedigree information for the “flow” of information from C to B
environment:

- In a GxE sib test, the use of pedigree in a BLUP prediction exploits only up to 50% of the total genetic
variance of the C trait. Selection candidates in B and birds in C can be full-sibs and half-sibs, and the highest
relationship coefficient of birds between B and C is 0.5 (unrelated parents) using pedigree-based
relationship matrix. Meanwhile, the use of genomic information in the prediction can exploit more than
50% of the total genetic variance of the C trait because the realized genomic relationships between
specific full-sib pairs in broilers are varied. Observed ranges have been from 0.27 to 0.70 with mean of
0.47 and standard deviation of 0.05 (Lourenco et al., 2015) or from 0.17 to 0.80 with mean of 0.48 and
standard deviation of 0.09 (unreported results from the study of Chapter 2). Interestingly, the mean of
full-sib relationships were less than 0.5 even the two broiler populations of Lourenco et al. (2015) and
Chapter 2 were under intensive selection. Explanations from Lourenco et al. (2015) were genotyping
errors, pedigree errors or loosely imposed quality control procedures. The use of pedigree in prediction

of EBVs of selection candidates treats phenotypic performances of their full-sibs in C as an average
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information. However, the phenotypic performances of their full-sibs in C are treated individually in
genomic prediction of EBVs as the genomic relationships between specific full-sib pairs vary.

- In addition, information from related, more distantly related and even unrelated animals can be
exploited in genomic prediction when genomic markers are in linkage disequilibrium with genotypes at
casual loci (Daetwyler et al., 2013). With pedigree-based prediction, information from unrelated
individuals is not used for the prediction of EBVs of selection candidates. Genomic prediction utilizes
linkage (more related to information from relatives) and linkage disequilibrium (more related to
information from distant relatives and unrelated animals in population) (Daetwyler et al., 2013).
Therefore, accuracy of prediction depends on the density of genomic markers and the characteristics of
the bird population in C (e.g. the size of dataset and the relatedness to selection candidates). Density of
genomic markers regards to coverage of genomes, thus accuracy of prediction. For genomic prediction,
the most common SNP chip panels have medium density (42k-60k) because their costs are relatively low
and accuracy of prediction, as function of SNP density, seems to plateau at several tens of thousands of
SNPs (llska et al., 2014; Wolc et al., 2016).

- Without selection candidates’ own performances in C, Mendelian sampling terms for C traits are
explored very little with pedigree information in a GXE sib-test, but they are explored better with genomic
information. Ability to predict of the Mendelian sampling terms, which account for 50% of total genetic
variance (no inbreeding), can lead to a much better prediction of EBVs with genomic information than
with pedigree information.

When group records are used for selection, the genomic information can be utilized in two ways to
improve accuracy of selection. One way is through the prediction model for group records that uses a
genomic relationship matrix. Genomic information has a better measure of relationships between
individuals, ability to predict Mendelian sampling terms and thus higher prediction accuracy of EBVs than
pedigree information, just like for the prediction model of individual records. Genomic-based prediction
from group records results in different EBVs of full-sibs that are in the same group. In contrast, the use of
pedigree leads to identical EBVs for full-sibs in the same group. Therefore, genomic information can not
only increase accuracy of EBVs, but reduce co-selection of full-sibs, and thus lower inbreeding compared
to the use of pedigree information. The other way to utilize genomic information is animal grouping.
Genotyping information was used to form groups by unsupervised and supervised clustering methods
(Chapter 6). A slight additional accuracy was gained compared to the use of pedigree information for
animal grouping. The clustering methods were particularly advantageous for accuracy of selection and

rate of inbreeding when pedigree or dam information was missing.
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Other benefit of genomic information for breeding programs affected by GxE regards rate of inbreeding.
In Chapter 3, when proportion of birds moved to C increased from 15 to 45%, rate of inbreeding
decreased. The decrease in the rate of inbreeding was due to a reduction in selection intensity and an
increase in accuracy of prediction. The explanation of the increased accuracy was confirmed with an extra
simulation in the discussion section of Chapter 3. The decrease in the rate of inbreeding due to the
increased accuracy of prediction can only occur with genomic information, but not if only pedigree
information is available. Genomic prediction reduces inbreeding by increasing the weight on Mendelian
sampling terms whereas genomic prediction increases inbreeding by increasing the fixation rate of the
favorable QTL allele (Pedersen et al., 2010). The effect of increasing the weight on Mendelian sampling
terms outperformed for inbreeding in the genomic selection breeding program of GxE sib-testing of
Chapter 3.

As discussed in section 7.1, pedigree recording of crossbred chicken is usually missing, and thus
performance records from crossbred birds in C cannot be used for EBV predictions for genetic evaluations
of poultry breeding programs. However, this can be resolved with genotyping. Genomic information not
only facilitates the “flow” of information from C to B environments, but accounts for GxG interactions due

to crossbreeding.

7.5. Conclusions

Genotype-by-environment interactions (GxE) in poultry breeding programs and several approaches to
improve genetic gains of the programs have been investigated. Environmental differences between a bio-
secure breeding environment (B) and commercial production (C) conditions of broilers led to a strong GxE
interaction for body weight (BW) traits: genetic correlations of 0.48-0.54 between BW traits measured in
B and C environments, heterogeneous variances and different heritability for the B and C traits. In this
thesis, investigated approaches to improve genetic gains of poultry breeding programs in the presence of
GxE were: phenotyping strategies, optimal modelling of traits, use of group records, and use of genomic
information. The key of these approaches is requirement of records obtained from C environments. The
use of records in C can explore the re-ranking of EBVs for the two environments and unlock significant
new sources of genetic variations as genetic variances of C traits can be more than 2 times higher than
those of B traits.

Along with research studies carried out in this thesis, general discussion was extended to: GxE interactions
for crossbred chicken raised in multiple commercial production environments, approaches for the

development of statistical models, statistical models for group records, and theoretical benefits of
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genomic information in case of GxE interactions. | believe that to improve poultry breeding programs
affected by GxE, the use of records from purebred chicken in Cis more reasonable than the use of records
from crossbred chicken in C because the use of records from purebred in C has higher accuracy of
selection, implementation of breeding schemes is less complicated, and chicken may have relatively low
GxG interactions due to crossbreeding. It is also discussed that there are number of tools and approaches
for evaluating statistical models. However, there are lack of comparisons between model evaluation
methods, and it is little known which evaluation method is best for traits of interests in poultry breeding
programs. In addition, the use of group records is feasible to improve poultry breeding programs affected
by GxE, especially when records from the production environments are only available in groups. The use
of genomic information can improve accuracy of selection, explore further variances of traits in C, increase
potential benefits from group records, and reduce rate of inbreeding compared to the use of pedigree

only.

7.6. Recommendations for future research

In this PhD thesis, the commercial production conditions included only one single environment. In Chapter
2, the C environment resembled commercial-like conditions. However, conditions of C environment can
vary extensively for hygienic conditions, diseases, diets and management. Therefore, further research is
needed to investigate GXE genetic parameters and breeding schemes for broilers when bird performances
from multi-environments are recorded. Tracing pedigree and recording of birds from multiple commercial
environments is difficult, but genotyping may ease the implementation.

Chapter 4 has proposed a cross-validation approach for the choice of statistical models when the maternal
effects might be significant for the analyzed traits. The approach was based on theoretical assumptions
of quantitative genetics, but the validity of the approach is unconfirmed. In addition, while optimal
modelling of traits plays an important role for increasing accuracy of selection, methodologies to find the

optimal model need extensive comparisons for validity of their use.
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Within production of commercial broilers, differences between the breeding (B) and commercial
production (C) environments may be related to e.g. differences in hygienic conditions, climate and
management. For indigenous chicken, the differences may be also related to availability of feed, sub-
optimal diets, predators and social interactions of birds with other livestock species. These environmental
differences may lead to genotype by environment (GxE) interactions i.e. a re-ranking of genotypes
between B and C environments is expected. A substantial re-ranking implies that genetic progress
achieved in the breeding programs is not fully realized in production animals’ performances. This PhD-
project investigated GxE interactions in breeding programs for poultry and presented solutions to improve
genetic progress of these breeding programs.

In Chapter 2, GxE for body weight (BW) was explored for broilers raised in B and C environments. A strong
GxE interaction was found, as significant re-ranking, heterogeneous variances and different heritability
for B and C traits were found. The genetic correlations between BW traits measured in B and C
environments were in the range 0.48-0.54. Genetic variances of C traits were more than 2 times higher
than those of B traits. Heritability of C traits (0.31-0.37) were higher than those of B traits (0.27-0.30). In
addition, genomic information was used to increase accuracy of prediction in the presence of GxE
interactions. It was found that the correlation between EBVs of C traits estimated from the full dataset
and reduced dataset increased by 31-37% for genotyped validation birds and 6-15% for non-genotyped
validation birds when the use of combined pedigree and genomic information was compared to the use
of pedigree information only. The use of combined pedigree and genomic information reduced bias of
prediction for the genotyped birds, but increased bias of prediction for the non-genotyped birds.

In Chapter 3, breeding schemes with different proportions of birds that were phenotyped in B and C
environments were compared in a genomic selection breeding program for broilers. It was found that
when the genetic correlations between traits measured in B and C were 0.5 and 0.7, allocating 70% and
30% hatched birds to B and C environments, respectively, for phenotype testing led to the highest genetic
gains among the compared phenotyping strategies. When the genetic correlation was 0.9, birds moved
to C did not improve genetic gains of the breeding scheme due to reduced selection intensity. Increasing
proportion of birds moved to C (from 15 to 45%) could reduce rate of inbreeding of the breeding program.
In Chapter 4, a genetic analysis was carried out for BW in broilers at different ages raised in a commercial
environment. A statistical model was developed with the aim to increase predictive ability of the model
for the traits affected by maternal effects. A criterion in the development of the statistical model was
based on correlation between EBVs and corrected phenotypes of half-sib individuals. The statistical model

also accounted for heterogeneous variances between sexes. It was found that variance components for
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BW increased drastically with increasing age of broilers. The drastic increase in variances were mainly due
to scaling effects. The difference in variance components between sexes increased with increasing age.
The permanent environmental maternal effect reduced gradually as broilers aged.

In Chapter 5, the use of group records was investigated in breeding programs for village chicken, of which
strong GxE interactions are expected due to large difference between breeding station and the village
environments. This was modelled for two traits, growth and egg production. It was found that the use of
group records from village significantly improved genetic gains compared to the scheme without birds
tested in the village although group records led to a slightly lower genetic gain compared to individual
records.

In Chapter 6, genomic information was utilized to form groups before phenotyping. Two grouping
methods based on genomic information were proposed: unsupervised clustering implemented in the
STRUCTURE software and supervised clustering based on genomic relationships. Compared to the
grouping methods based on pedigree information only, the grouping methods based on genomic
information resulted in higher relationships between group members, and thus increased accuracy of
GEBV prediction (1.2-11.7%).

Chapter 7 (General discussion) extends the discussions of GxE interactions for crossbred animals, GxE
interactions in multiple commercial production environments and GxE interactions due to micro-
environmental differences. Tools for the development and comparison of statistical models are discussed
including model goodness-of-fit, accuracy of EBVs and cross-validation approaches. In addition, different
prediction models for group records are compared when the group effect and permanent environmental
maternal effect are accounted for in the models. Theoretical benefits of genomic information for breeding
programs affected by GxE are discussed.

To conclude, differences between the breeding and production environments can lead to substantial GxE
interactions. In the presence of GxE interactions, a breeding program for poultry should establish
recording systems under the production environments in either individual or group records in order to
ensure maximum genetic gains and provide customers with genotypes well adapted to the production
environments. In addition, an optimal cross-validation procedure for better choice of statistical models is
needed for genetic evaluations in poultry breeding programs as better modelling of traits is a low-cost

approach to improve accuracy of selection.
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Indenfor kommerciel slagtekyllingproduktion kan forskelle mellem avls- (B) og kommercielle
produktionsmiljger (C) vaere relateret til forskelle i blandt andet hygiejne klima, management. For de
oprindelige racer kan forskellene ogsa relateres til tilgeengelighed af foder, suboptimal foder, rovdyr og
sociale interaktioner med andre husdyrarter. Disse miljgforskelle kan fgre til genotype-miljg (GxE)
interaktioner, dvs. at der forventes en omrangering af genotyper mellem B- og C-miljger. En betydelig
omrangering indebaerer, at genetiske fremskridt opnaet i avisprogrammerne, ikke fuldt ud vil realiseres i
det kommercielle produktionsmiljg. Dette ph.d.-projekt undersggte GxE-interaktioner i avisprogrammer

for fjerkrae samt Igsninger til forbedring af genetisk fremgang for disse avlsprogrammer.

| kapitel 2 blev GxE for kropsvaegt (BW) undersggt for slagtekyllinger opdreettet i B- og C-miljger. Der
blev fundet en staerk GxE-interaktion, med markant omrangering av dyr, heterogen varians og
forskellige arvbarheder for egenskaber malt i B- og C miljget. De genetiske korrelationer mellem BW-
egenskaber malt i B- og C-miljg 1a i omradet 0,48-0,54. Genetisk varians for BW malt i C-miljget var mere
end 2 gange sa hgj som for BW malt i B-miljget. Arvbarheden af egenskaben i C-miljget (0,31-0,37) var
hgjere end for B-miljget (0,27-0,30). Derudover blev genomisk information brugt til at gge sikkerheden
pa de predikerede EBV’er under tilstedeveerelse av GxE-interaktioner. Det blev fundet, at
sammenhangen mellem EBV'er estimeret ut fra det fulde og det reducerede dataszet steg med 31-37%
for genotypede fugle og 6-15% for ikke-genotype fugle, nar brugen af kombineret stamtavle og
genomisk information var sammenlignet med brugen af kun stamtavleinformation. Anvendelsen af
kombineret stamtavle og genomisk information reducerede prediktions bias for de genotypede fugle,

men ggede den for de ikke-genotypede fugle.

| kapitel 3 blev avisplaner med forskellige andele af fugle, der blev faenotypisk testet i B- og C-miljg,
sammenlignet i et avisprogram med genomisk selektion. Det blev fundet, at nar de genetiske
sammenhange mellem egenskaber malt i B og C var 0,5 og 0,7, fgrte allokering af henholdsvis 70% og
30% af feenotyper pa fugle i miljg B- og C, til den hgjeste genetiske fremgang blandt de sammenlignede
fanotype strategier. Nar den genetiske korrelation var 0,9, resulterede en gget fanotypning af fugle i
miljg C ikke til en @gning i genetisk fremgang pa grund af lavere selestionsintensitet. At gge andel af

fugle, der blev faenotyper i C (fra 15 til 45%), kunne reducere indavlisraten af avlsprogrammet.

| kapitel 4 blev der udfgrt en genetisk analyse af BW ved forskellige aldre pa slagtekyllinger opvokset i et
kommercielt miljg. En statistisk model blev udviklet med det formal at gge modelens prediktionsevne
for de egenskaber, der var pavirket af maternale effekter. Modellen var baseret pa korrelation mellem

EBV'er og korrigerede faenotyper af individer med halvsgskende. Den statistiske model tog ogsa hensyn
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til heterogen varians mellem kgnnene. Det blev fundet, at varianskomponenter for BW steg drastisk
med stigende alder pa slagtekyllinger. Dette skyldtes hovedsageligt skaleringseffekter. Forskellen i
varianskomponenter mellem kgnnene steg med stigende alder. Den permanente miljgmaessige effekt af

mgdrene reduceres gradvist, nar slagtekyllinger aldes.

| kapitel 5 undersgges anvendelsen af grupperegistreringer i avlsprogrammer til landsbykylling, hvor der
forventes en staerk GxE-interaktion pga store forskelle i miljget mellem test/avlsstationerne og
landsbyerne. Der blev simuleret egenskaber tilvaekst og aegproduktion, og resultaterne viser, at brugen
af grupperegistreringer fra landsbyen, signifikant forbedrede genetisk fremgang sammenlignet med en
strategi hvor fugle kun blev testet pa teststation. Brug af grupperegistreringer fgrte til en lidt lavere

genetisk fremgang sammenlignet med brug af individuelle registreringer.

| kapitel 6 blev genomisk information brugt til at danne grupper inden registrering af feenotyper pa
gruppeniveau. To grupperingsmetoder baseret pa genomisk information blev anvendt: unsupervised
clustering implementeret i STRUCTURE-programmet og supervised clustering baseret pa genomisk
slaegtskab. Sammenlignet med grupperingsmetoderne, der kun var baseret pa stamtavleinformation,
resulterede grupperingsmetoderne baseret pa genomisk information i gget slaegtskab mellem

gruppemedlemmer og dermed gget sikkerhed pa prediktionen af GEBV (1,2-11.7%).

| kapitel 7 (Generel diskussion) tages diskussionerne om GxE-interaktioner for krydsningsdyr, GxE-
interaktioner i flere kommercielle produktionsmiljger og GxE-interaktioner pa grund af mikro-
miljgforskelle videre. Veerktgjer til udvikling og sammenligning af statistiske modeller diskuteres,
inklusive goodness-of-fit, sikkerhederne af EBV'er og krydsvalideringsmetoder. Derudover sammenlignes
forskellige prediktionsmodeller for grupperegistreringer. De teoretiske fordele ved bruk av genomisk

information i avlsprogrammer med GxE diskuteres.

Det konkluderes, at forskelle mellem avls- og produktionsmiljger kan fgre til betydelige GxE-
interaktioner. Hvis dette er tilfaeldet, bgr det etableres registreringer i produktionsmiljgerne, enten pa
individuelle dyr eller i grupper, sa en maksimal genetisk fremgang og genotyper, der er godt tilpasset
produktionsmiljgerne, sikres. Derudover er der behov for en optimal krydsvalideringsprocedure for at
veelge statistiske modeller til genetisk evaluering i fijerkraeavisprogrammer, da en bedre modellering af

egenskaberne er en kost effektiv made at forbedre sikkerheden pa i selektionen.
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