Nutrients Waterproof

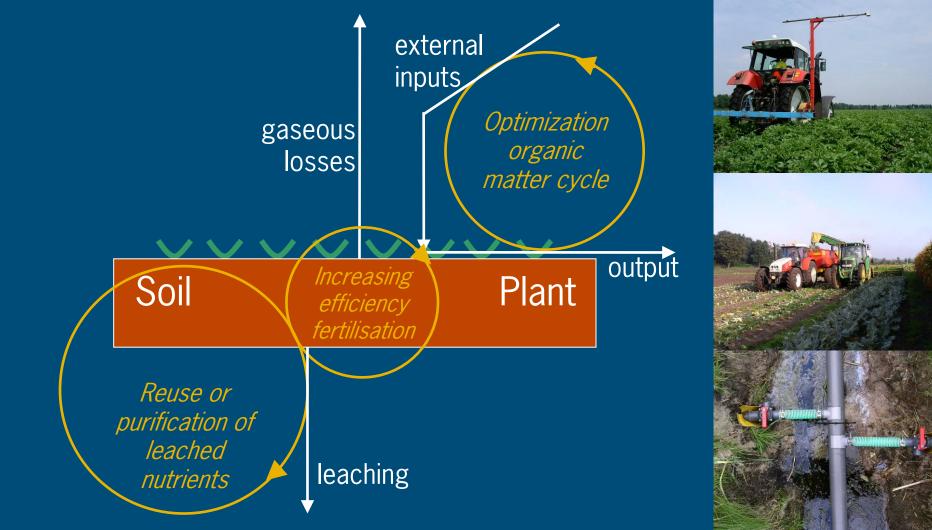
Systems research on reducing nitrate leaching in intensive arable farming on sandy soils in SE-NL

J.J. de Haan, K.B. Zwart, A.L. Smit, W.C.A. van Geel

Situation agriculture in Southeast Netherlands

- Sandy soils: vulnerable for nitrate leaching
 - Poor reclaimed peat soils
 - Rich, man-made "enkeerd" soils
- Large manure surplus
 - High manure use in past
 - Maximum use of manure within borders legislation
- Intensive arable farming and horticulture
 - Less grain crops, more silage maize, more horticulture
 - Many crops are inefficient in nitrogen use
- Nitrate leaching far above limits nitrate directive
 - Arable farming in region has to comply with nitrate directive

Objective and time span


 Developing intensive arable farming systems on sandy soils with minimal nitrogen losses to ground and surface water

- Nitrate Directive Water Framework Directive
- Keeping economic perspectives
- Developing innovative measures in a system context
- Arable and horticultural crops
- Integrated/conventional and organic farming
- 2004
 2005-2008
 2009

 design
 experiment
 report

Vision

Systems

Integrated

- 1. Potato
- 2. Triticale
- 3. Lily
- 4. Fresh peas leek
- 5. Silage maize
- 6. Sugar beet

Organic

- 1. Potato
- 2. Grass clover
- 3. Leek
- 4. Grain maize
- 5. Broccoli
- 6. Summer barley(Tree nursery crops)

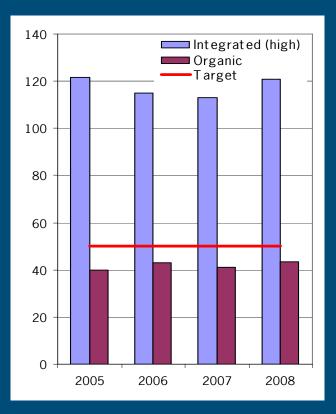
2 variants fertilization

- High: pig slurry, compost and chemical fertilizer
- Low: chemical fertilizer only

Fertilization

• Farm yard manure, cow slurry and vinasse

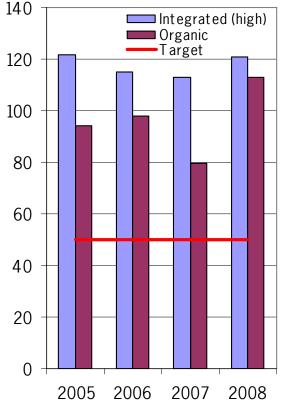
Experimental farm Vredepeel



Conclusion 1.

Nitrate leaching to groundwater in the intensive arable system is far above limits Nitrate directive

- Integrated system
 - >120 mg/l: potato, lily
 - <60 mg/l: sugar beet</p>
 - Nitrogen fertilization ≈ usage standards manure policy
- Organic system
 - >60 mg/l: grain maize
 - <30 mg/l: alfalfa, tree nursery crops
- Nitrogen efficiency is 62%



Conclusion 2.

No use of organic manure reduces nitrate leaching with 21 mg/l but crop yields on the longer term as well.

- Reduction leaching (21 mg/l)
- Lower total nitrogen input and surplus (40 kg/ha)
- Equal nitrogen uptake by crop
- Light colored crops from 2006
 Lower crop yields in 2007 and 2008 (av. 5%)
 Lower flower quality Lilly cropping 2006

Conclusion 3.

Post harvest measures and effect oriented measures can reduce leaching more than reduction of fertilization.

- Removal of crop residues
 - 5-60% reduction of leaching depending crop
 - Need for processing of residues
- Green manure crops
 - Reduction of leaching of maximally 30 mg/l
 - Risk of propagation of nematodes
- Removal of nitrogen in constructed wetlands
 - Surface and drainage water only
 - Nitrogen removal in systems with water storage 60%
 - Cost effective but large claim on land

Constructed wetlands with water storage

4. Alternative cropping systems
Integrated soil management
Comparable soils give different yields
High production with low fertilization is possible
Soil is key point and a black box: more knowledge
Development of new measures

The End

Acknowledgements: Ministry of Agriculture Nature and Food Quality Colleagues at the experimental farm in Vredepeel

© Wageningen UR

