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Abstract: Potato blackleg is a tuber-borne bacterial disease caused by species within the
genera Dickeya and Pectobacterium that can cause decay of plant tissue and wilting through
the action of cell wall degrading enzymes released by the pathogen. In case of serious infections,
tubers may rot before emergence. Management is largely based on the use of pathogen-free seed
potato tubers. For this, fields are visually monitored both for certification and also to take out
diseased plants to avoid spread to neighboring plants. Imaging potentially offers a quick and
non-destructive way to inspect the health of potato plants in a field. Early detection of blackleg
diseased plants with modern vision techniques can significantly reduce costs. In this paper,
we studied the use of deep learning for detecting blackleg diseased potato plants. Two deep
convolutional neural networks were trained on RGB images with healthy and diseased plants.
One of these networks (ResNet18) was experimentally found to produce a precision of 95 % and
recall of 91 % for the disease class. These results show that convolutional neural networks can
be used to detect blackleg diseased potato plants.
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1. INTRODUCTION

Softrot and blackleg are bacterial diseases in seed potatoes,
which can harm the potato tuber during the storage and
in the field, respectively (Chang et al., 2017). When tubers
infected with the causative agents, i.e. bacteria belonging
to Dickeya and Pectobacterium species, are planted in the
field, there is a risk that blackleg will develop and that the
pathogen will be spread. At high densities, the pathogen
produce cell wall degrading enzymes, which macerate plant
tissues. This causes growth stagnation, plant wilting, stem
rot or even plant destruction. Thus, this disease lowers
both the quantity and quality of the potato yield, leading
to an economic loss to the grower (Czajkowski et al.,
2015). Disease management is primarily based on the
use of pathogen-free, certified seed. Seed certification is
based on field inspections for which qualified inspectors
are required. An additional way to manage the disease is
by roguing symptomic plants, in order to lower disease
pressure in the field. To find diseased plants the grower
needs to recognize diseased plants, preferably already in
an early stage of disease development.

Methods for detecting the bacteria in the tubers use vari-
ous techniques such as Polymerase Chain Reaction (Smid
et al., 1995), bio-electric conductance (Fraaije et al., 1997),
and bionic electronic noise that reflects change in volatile
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substances (Chang et al., 2017). These technologies can
only be applied post-harvest. In this work, we investigated
the use of image analysis for detecting blackleg in the
field, since imaging with cameras is a relatively quick, non-
invasive, and non-destructive way of measurement.

Recently, convolutional neural networks (CNNs) (LeCun
et al., 2015) has emerged as the state-of-the-art technique
for image analysis, from image classification (Krizhevsky
et al., 2012) to pixel-wise or semantic segmentation (Long
et al., 2015), and object detection (Ren et al., 2015; He
et al., 2017). These methods are being used increasingly in
agriculture for applications such as automatic harvesting,
yield estimation, phenotyping, disease and pest detection
(Kamilaris and Prenafeta-Boldú, 2018). The advantage of
training CNNs over traditional machine vision methods is
their ability to discern discriminative features that would
be difficult to hand-craft with data with a lot of variability
(LeCun et al., 2015).

Most recent works using CNNs for plant disease detection,
work at the level of images of leaves. CNN-based classi-
fiers have been recently applied for classifying images of
individual plant leaves into healthy or diseased (Mohanty
et al., 2016). These researchers used classifiers trained on
the fully convolutional layers of the AlexNet (Krizhevsky
et al., 2012) and LeNet (LeCun et al., 1998) architectures,
and used the Plant Village Leaf Disease Classification 1

dataset. The leaves in this dataset were separated from the
plant and were easy to segment from the background using

1 https://www.crowdai.org/challenges/1



Fig. 1. Blackleg diseased plants were geometrically stored
with a RTK-GNSS rover.

image processing. Image classification using the LeNet
architecture was also used in Wallelign et al. (2018) to
detect three possible soybean leaf diseases from the Plant
Village dataset. A recent work (Fuentes et al., 2017) used
FasterRCNN (Ren et al., 2015) with the VGG (Simonyan
and Zisserman, 2014) and ResNet (He et al., 2016) convo-
lutional architectures to detect leaves affected by diseases
such as mold and powdery mildew. In analogous research,
a CNN was used to detect the Y-virus in potato plants
using hyperspectral imaging (Polder et al., 2019).

In this work, we aim to classify healthy or blackleg dis-
eased potato plants at individual plant level, rather than
detecting at the level of leaves. Our scope is therefore a
binary image classification problem, with an image of a
plant being classified as either healthy or blackleg diseased.
We train a binary classifier on the fully convolutional layer
of the ResNet architecture (He et al., 2016).

In section 2, we describe our experimental trial, imaging
hardware, dataset, and details of our CNN setup. We
present the results of our CNN classification in section 3,
and conclude with some recommendations to future work
in section 4.

2. MATERIALS AND METHODS

2.1 Experimental field

The images were acquired in 2018 on an experimental
field that was located in Tollebeek (The Netherlands).
The experimental trial involved two rows that contained
1052 potato plants that were grown 0.50 m apart inside
the row. To enhance enough examples of both classes, the
potato tubers were inoculated with suspensions of Pecto-
bacterium carotovorum subsp. brasiliense before planting
(using 107 cells/ml). A crop expert had to visually inspect
all 1052 plants on a weekly basis, as some of the inoculated
tubers did not develop to a blackleg diseased plant, but
remained healthy. Plants that showed disease symptoms
were geometrically stored with a RTK-GNSS rover (Hiper
Pro, Topcon). A VRS signal (06-GPS, Sliedrecht, Nether-
lands) was used to guarantee a 0.02 m accuracy on the
position estimate. The crop expert obtained the position
of a diseased plant by placing the rover at the center point
of the plant (figure 1).

(a)

(b)

Fig. 2. Imaging setup: (a) agricultural vehicle with imaging
system, (b) camera.

2.2 Image acquisition

To acquire the color images, we used an industrial RGB
camera (IDS UI-5240FA-C-HQ). The camera was mounted
inside an enclosed box in front of the tractor (figure
2). The camera acquired top-view images of the potato
plants in one row in the field. Inside the box, LED
strips (OSRAM VFP2400S-G3-865-03) were installed that
provided uniform illumination conditions. Black rubber
strips formed an apron around the region being imaged,
to prevent ambient light from entering.

During image acquisition, the real-world positions of the
images were obtained by a RTK-GNSS receiver (Viper 4,
Raven) that was installed on the cabin of the tractor.
The tractor was stopped in case the RTK-fix signal of
the GNSS receiver was lost. In this way the exact world
location of all images could be determined with a precision
of 0.02 m. The RGB images and the GNSS coordinates
were automatically stored on an embedded PC (Nexcom
NISE3500) for offline processing.

2.3 Dataset

The imaging setup was used to acquire images of the
two rows in our experimental trial. This was done on a
weekly basis for six weeks in total. The ground truth of the
acquired images was determined by matching the RTK-
GNSS coordinates of the rover and the images. From the
images, a subset of 532 images was selected across the six
different dates. The following criteria were used to select
the images:



(1) The potato plant must be isolated from other neigh-
boring plants without overlap or contact.

(2) The selected images should be realistic representa-
tions of each class (healthy or blackleg diseased). As
such, we avoided trivial classification, for instance
healthy detections with large sized plants and black-
leg symptoms with smaller sized plants.

Afterwards, the selected images were resized to 224 x
224 pixels using aspect ratio retention to prevent image
distortion. The resolution of 224 x 224 pixels corresponds
to the preprocessing transformation in the CNN software.
The subset of images was randomly split into a training
and testing set, with a train-test ratio of 80:20, leading to
a training set of 426 images (218 healthy, 208 blackleg
diseased) and a test set of 106 images (60 healthy, 46
blackleg diseased). The test set was used for independent
benchmarking of the CNN classifier.

2.4 Software and Setup

The PyTorch framework was used to code the CNN
classifier in Python, on a workstation with one NVIDIA
GeForce GTX 1080 Ti 11GB GPU, 12 core Intel Xenon
E5-1650 processor and 64GB DDR4 RAM running Linux
Mint 18.2 and CUDA 9.0.

We trained two Residual Network (ResNet) architectures
(He et al., 2016), one with 18 layers (ResNet18) and
one with 50 layers (ResNet50). We chose for a residual
architecture, because this network alleviates the vanishing
gradient problem. The fully connected (FC) layer was
redefined by a classifier that linearly combined the output
of the FC layer into a vector with size, over which a
rectified linear unit (RELU) activation was applied. The
last network layer consisted of a two class linear classifier
using logarithmic soft max activation to enable our binary
classification (healthy versus blackleg).

For network weight initialization, we applied transfer-
learning using a model that was pretrained on the Im-
ageNet dataset (Russakovsky et al., 2015). For weight
optimization, we used the Adam optimizer with a learning
rate of 1e-4 for ResNet18 and 5e-5 for ResNet50. Both
networks were trained for 100 epochs, using a mini-batch
size of 12. To prevent model over-fitting, we applied two
forms of explicit regularization. The first was random
neuron disconnection (drop-out) and the second was net-
work weight decaying (L2-regularization). For ResNet18,
we used a drop-out with 1 % probability (0.01) and for
ResNet50 a drop-out with 20 % probability (0.2). The L2-
regularization parameter was 0.05 for both networks. Each
network was trained for 5 times on random splits of the
training set.

2.5 Evaluation procedure

The evaluation was performed on the test set. For each
test image, the decision healthy or blackleg diseased was
decided through majority voting over the 5 trained models
of each network. We evaluated the classifier using confu-
sion matrices. A confusion matrix shows the breakdown of
true healthy and true blackleg diseased images, and how
many of them were correctly classified. From the confusion
matrices we calculated the recall and the precision. The

recall is number of true positives divided by the sum of
true positives and false negatives. The precision is number
of true positives divided by the sum of true positives and
false positives. The overall accuracy was calculated as the
number of correct classifications divided by the sum of
correct and incorrect classifications.

3. RESULTS

The binary classification results for each Resnet architec-
ture are presented in the confusion matrices in tables 1
and 2. The recall values for each class is presented in
parentheses in the right most column and the precisions
are shown in the parentheses in the bottom row. The
accuracy is indicated in parenthesis in the right-bottom
corner of the matrices.

Table 1. Confusion matrix for potato plant
classification using ResNet18

Predicted class
Ground truth Healthy Blackleg Total

Healthy 58 2 60 (97)
Blackleg 4 42 46 (91)

Total 62 (94) 44 (95) 106 (94)

Table 2. Confusion matrix for potato plant
classification using ResNet50

Predicted class
Ground truth Healthy Blackleg Total

Healthy 50 10 60 (83)
Blackleg 9 37 46 (80)

Total 59 (85) 47 (79) 106 (82)

From the confusion matrix of ResNet18 in table 1, we
see that 94% of the images were classified correctly. For
the class healthy, the precision was 94% and the recall
was 97%. For the class blackleg diseased, these metrics
were 95% and 91%. Figure 3 shows some examples of
correct classification using ResNet18, and figures 4 and
5 respectively show the four blackleg diseased plants
being misclassified as healthy, and the two healthy plants
misclassified as diseased. It can be seen from these visual
examples that ResNet18 classification can robustly classify
healthy or diseased plants, and that the few misclassified
instances were very hard examples that visually offer no
clue to their true class.

For ResNet50, it can be seen from the confusion matrix in
table 2 that the number of misclassifications is higher and
the values of the accuracy, precision and recall per class
are lower than ResNet18. It must be noted that ResNet50
has many more layers and weights than ResNet18 and
therefore requires further optimization of deep learning
hyperparameters, which will be addressed in future work.
It can be seen from table 3 that the average image
analysis time is fast enough for practical applications. The
classifier can process 133 frames per second when using
ResNet50, while 217 frames per second can be analyzed
with ResNet18. These results show that ResNet18 is the
preferred classifier for blackleg detection in the field.

4. CONCLUSIONS AND FUTURE WORK

The results from this research show that a CNN, and
specifically ResNet18, can work as a robust detector for



Table 3. Computation times for training and
testing

Network ResNet18 ResNet50

Training (minutes) 3 9
(100 epochs, 426 images)
Testing per image (ms) 4.6 7.5

blackleg diseased potatoes in the field. In this work, we
have used images of individual potato plants that were
isolated from neighboring plants. We acknowledge that
this situation is only practice during the first weeks after
plant emergence. In future research, we will extend our
CNN with an object detector, such as FasterRCNN (Ren
et al., 2015) or Mask-RCNN (He et al., 2017), to be able
to deal with overlapping plants. This classifier is expected
to improve the practicability in the field.

In a follow-up research, we also plan to investigate CNN
classification using additional image channels other than
RGB, such as the hyperspectral channels and depth (RGB-
D). Increasing the dataset size and using data augmen-
tation can also be expected to improve the detection
performance. Yet another direction for future research
would be another transfer learning strategy. Due to the
lack of a publicly available dataset with images of potato
plants, we used initial models pretrained on the ImageNet
dataset (Russakovsky et al., 2015), but an improvement in
detection may be possible by transfer learning on a dataset
with images of plants similar to potato. We also aim
to understand what features a CNN is actually learning
(Toda et al., 2019).
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Fig. 3. Examples of correct classification using ResNet18: (a)-(d) blackleg diseased; (e)-(h) healthy.



(a)

(b)

(c)

(d)

Fig. 4. Blackleg diseased plants misclassified as healthy, by
ResNet18.
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Fig. 5. Healthy plants misclassified as blackleg diseased,
by ResNet18.


