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Chapter 1
General Introduction
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With the rapid increase in the human population and food demands, there is a societal
challenge to increase agricultural productivity. One approach to address this challenge
is to breed new crop varieties that yield more even under unfavourable conditions like
drought or extreme pathogen challenges. However, designing a breeding program is
a laborious and time consuming effort that often lacks the capacity to generate new
cultivars quickly in response to the required traits. Recent advances in biotechnology and
genomics data science have the potential to accelerate and precise breeding programs [1].

The availability of annotated reference genome assemblies, for many crop species
(including tomato [2], potato [3], rice [4], wheat [5], maize [6], brassica [7], and cucumber
[8]) has enabled researchers and plant breeders to elucidate traits linkage at the level of
genome annotations. Focusing more-and-more on mining genome annotations can help in
identifying candidate genes that positively / negatively affect a trait that breeders aim to
improve. Traditionally, plant breeders are introgressing chromosomal regions containing
genes, positively affecting a trait of interest, after detection of so-called quantitative
trait loci (QTL) into their elite breeding lines. However, a QTL region can easily contain
1000s of genes, encompassing genes that negatively influence the trait of interest or
other pivotal traits. Breeding using the actual causative gene is, therefore, a much better
approach.

One way to pursue this challenge is via analysis of gene expression or gene expression
networks [9]. A second strategy used is comparative genomics approaches between crop
species to infer candidate genes [10]. A third strategy utilizes the integration of large-
scale genomic information stored in the scientific literature and molecular databases.
These outlined “big data” strategies can be applied if data is made interoperable with the
usage of semantic web technologies and text-mining. Thereby, providing an innovative
eScience solution, which can speed-up the design of new cultivars in the future and
provide novel insights into biological systems.

Scientific data: unstructured and structured data

Science relies only on data, whether it is to generate and test a hypothesis, or whether
it is to verify a prediction through an experiment. After the revelation of the first map
of a human genome, the fields of molecular biology and bioinformatics have generated
an enormous amount of genomic data at an accelerating pace. [11]. This scientific data
can occur in two major forms, unstructured data, available as text in scientific literature
and patents, or structured data, available in molecular databases [12]. To obtain a
complete overview of the relevant knowledge, scientists rely on these two major sources
of information to conduct further research. Generic workflows of today’s genome sciences
research are composed by the use of analytical tools and bioinformatic pipelines which
combines data/text mining technologies in a synergistic fashion [13].

However, to improve the usage of available data, there is a need to semantically
collect, organize and integrate information from these two kinds of information resources.
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However, both of them, have a significant difference in the structure and distribution of
information. On the one hand, information which is published in biological databases is
distributed over a multitude of independent databases, that may not be able to commu-
nicate with one another. On the other hand, information which is published as text in
scientific literature is distributed over a multitude of independent text documents having
varying representations. With the use of big data infrastructures, text mining and data
mining techniques, an organized knowledge infrastructure can be formed that combines
information from both these resources.

Unstructured data: Scientific literature

Scientific literature is a form of unstructured data, that accumulates up-to-date knowledge
in any field of research. It plays a vital role in manually understanding the state-of-the-
art in any area of interest. Despite the availability of various data repositories for plant
research, a wealth of information is currently available only as (free) text in scientific
publications. One of the most important tasks in a researcher’s work and career is keeping
up to date with the ever-increasing scientific literature, placing new outputs into context,
and investigating the implications in their field. However, as the number of scientific
publications is growing at an exponential rate, there is a need for using the power of
machines, to automatically extract novel results and discoveries from literature. This
section highlights the various resources where biomedical text corpora are made to be
freely available.

MEDLINE and PubMed

MEDLINE (Medical Literature Analysis and Retrieval System Online) is a premier
bibliographic database of life sciences and biomedical information. This database is
developed and maintained by the United States National Library of Medicine (NLM). Cur-
rently, it includes citations from over 5600 selected scholarly journals, which contribute
to over 24 million references of articles published since 1966 till present [14]. These
include bibliographic information for articles from academic journals that cover medicine,
nursing, pharmacy, dentistry, veterinary medicine, plant sciences, genetics, genomics,
metabolomics, proteomics, biotechnology, bioinformatics, and health care [15]. To make
MEDLINE content more accessible for researchers, and the general public through the
internet, NLM developed a searching system called PubMed. PubMed search service
provides access to both MEDLINE and PreMEDLINE (new records that are in the process
of being added to MEDLINE) records. The PubMed search service not only simplifies
searching but it also links MEDLINE users to publisher’s websites to retrieve the full
text for the journal articles identified in the search.

The user interface (UI) with which users interact with PubMed is displayed in Figure
1.1. In general, a user queries PubMed or other similar systems whenever scientific
articles in regards to particular information are in need. Offered a set of retrieved
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Figure 1.1: PubMed homepage

documents, the user can browse the result set and subsequently click to view abstracts or
full-text articles, issue a new query, or abandon the current search. Particularly from a
search perspective, PubMed takes as input natural language or free-text keywords and
returns a list of citations that match input keywords ignoring the stop-words. Its search
strategy has two major characteristics: first, by default, it adds boolean operators into
user queries and uses automatic term mapping (ATM). Specifically, the boolean operator
AND is inserted between multi-term user queries to require retrieved documents to
contain all the user keywords. For example, if a user issued the query “Semantic search”,
the boolean operator AND would be automatically inserted between the two words as
“Semantic AND search”. Secondly, to increase the specificity of its searching techniques,
PubMed automatically compares and maps keywords to pre-indexed MeSH terms (MeSH
is a controlled vocabulary thesaurus of NLM) through its ATM process. Therefore, with
the help of MeSH terms, PubMed does a precise subject related search, as these MeSH
terminologies provide a consistent way to retrieve information that may use different
terminology for the same concepts [16].

Other scientific text resources

Europe PubMed Central (Europe PMC) is a document repository providing full-text open
access to scientific articles. Europe PMC does contain over 3 million full-text articles [17].
This repository also provides full text articles in PDF files as well as in XML format that
complies with the Journal Article Tag Suite (JATS) schema. JATS is commonly used by
publishers and archives to exchange journal meta-data content.

Google Scholar is also used frequently as a scientific text resource. Google Scholars can
not only recover peer-reviewed articles, but also other scholarly texts, such as MSc/PhD
theses, books, and pre-print repositories. A comparative study [18] suggests that Google
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Scholar often returns larger retrieval sets, but a substantial number are link-outs to
PubMed records. Google Scholar allows sorting of the articles according to the time of
their release but does not provide other advanced search functions offered by PubMed
and many other specialized biomedical systems [19].

Patents

The scientific text also exists in the form of patents. A patent is a set of exclusive official
rights given to an inventor/inventors to protect and claim their inventory knowledge.
Patents contain protected knowledge of a specific domain in condensed information
related to the claimed knowledge. Therefore, patents are a valuable resource for text
mining [20]. Patents in life sciences encompass innovation in gene sequencing, candidate
gene discovery, diagnostic tests, or therapeutic delivery systems. For example, many
pharmaceutical and seed companies have patented a group of genes, proteins, and
metabolites that are of commercial importance [21]. Many patent offices provide web
based patent retrieval systems. The Open Patent Services (OPS) are web based patent
retrieval web services of the European Patent Office (EPO) [22]. OPS web services were
firstly published in 2006 and have been revised several times since then. OPS services
are available on the EPO website. Google has also created search functionalities for about
7 million patents from the United States Patent and Trademark Office (USPTO). Google
Patents provides the search over patents in PDF format [23]. A search can be taken out
by providing keywords for a full text search, giving the patent number, entering keywords
for a title, inventor, assignee, U.S. classification, international classification, selecting the
document status being an issued patent or an application, selecting the patent type, or by
restricting to a period of time. FreePatentOnline is also a famous IR system for patents
[24].

Natural Language Processing

Natural Language Processing (NLP) or text mining is a field of artificial intelligence that
focuses on enabling the machine to understand and analyze (unstructured) data in the
form of text [25]. This technology helps researchers to analyze, explore and manage free
text in large text repositories as well as gain new insights from it.

There are three fundamental aspects to NLP: information retrieval (IR), information
processing, and information extraction (IE). IR refers to the recovery of documents from
a text repository based on a search system that takes the user’s query as an input.
Information processing is the major aspect of text mining, in which text is tokenized,
classified and semantically annotated (based on ontologies and controlled vocabularies)
for identification. This way it is easier for a computer to make sense out of the text.
Finally, IE is the extraction of ideas and concepts from a text. Table 1.1 highlights the
major basic components for processing textual information with a generic NLP workflow.
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Table 1.1: A list of major components in a NLP workflow

NLP
Components Description

Tokenization Tokenization is the process of chopping words
into pieces, called tokens. The tokens are usually
words in a sentence.

Part of Speech Tag-
ging

Labelling of words as subject-predicate-object
based on the role a word plays in the sentence.
It reduces ambiguities.

Noun phrase chunk-
ing

Focuses on the identification of basic structural
relations between groups of words.

Named Entity Recog-
nition

Identification and classification of entities in the
text with the help a defined dictionary.

Syntactic analysis Analyse the component of a sentence i.e. estab-
lishes the connection between different parts of
each sentence. This is done in the simplest case
through co-occurrence and statistical analysis or
with different syntactic parsing methods.

Named Entity Recognition

Named Entity Recognition (NER) is the methodology to identify named entities in the
text. NER is a prerequisite for most of NLP based applications [26]. NER consists of three
different problems, firstly the recognition of an entity in text, secondly the assignment
of a class to this entity (gene, protein, metabolites, traits, etc), and finally the selection
of a preferred term for naming the object in case their synonyms exist. The latter is
especially important if the recognized entities are to be combined with information from
other resources, such as databases.

There are different ways of identifying NER such as:

• Ontology/Controlled vocabulary based NER: In information science, a controlled
vocabulary (CV) is a list of terms that have been enumerated explicitly. Each term
in a CV has an unambiguous, non-redundant definition and is not connected to
each other. On the other hand, an ontology is a controlled vocabulary expressed
in an ontology representation language. This language has a grammar for using
vocabulary terms to express relationships, similarities & differences in between
terms.

Overall, domain-specific ontologies and CV represent current knowledge of a do-
main and therefore, can be used to annotate entities in text. Ontologies and CV
provides a definite mapping and identity to the named entities.

• Rule-based NER: Regular expressions and logical interactions are used to identify
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entities. This allows the identification of more complex variants of terms than in
dictionary-based NER. Rule-based NER increases the intricacy of the mapping of
the terms.

• Supervised Machine learning methods like conditional random fields (CRF) can
also be used for finding NER in a given data set [27]. A set of text with identified
entities is taken as ‘training set’ to train an algorithm which is further applied onto
a larger data set.

Information Extraction

It is well quoted in [28] that “information extraction (IE) forms the basis for text mining
the same way as NER forms the basis for information extraction”. IE is used in the
identification of explicit entities in a given text and further to extract information related
to these entities in the same text [29]. In biological literature, IE generally concentrates
on finding information about genes, proteins, metabolites, traits, diseases and drugs, and
relationships between these entities.

Structured data: Databases in plant genomics

Massive amount of plant genomics research data is modeled in databases, as structured
data. The popular databases in this field can be classified into two main categories,
large-scale public repositories or community-specific / project-specific databases [30].
Large-scale public repositories are usually developed and maintained by government
agencies or international consortia. Most of the large-scale public repository contains
data from all life sciences and is not limited to plant-sciences. On the other hand
community-specific or project-specific databases focus on a particular model organism
for example Arabidopsis thaliana, rice (Oryza sativa), tomato (Solanum lycopersicum),
potato (Solanum tuberosum) or maize (Zea mays)). Table 1.2 enlist the most popular
databases in both categories.

Semantic Web Technologies

Due to the advancement in sequence technologies, the amount of omics data in public
data repositories is growing exponentially [32]. Moreover, this data is heterogeneous
and distributed in multiple resources that may not allow interoperability. Semantic
web technologies allow harmonized aggregation of heterogeneous data with a common
framework that allows data to be shared and reused across application, enterprise, and
community boundaries.[42] The Semantic Web is therefore regarded as an integrator
across different content, information applications and systems. With the usage of seman-
tic web technologies, we can integrate and query, the exponential volume of available
omics data with a top-down approach, for gaining insights into the molecular mechanism.
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Table 1.2: A list of popular databases in plant sciences

Large-scale public repositories

Database Name Description Reference

GenBank
An international nucleotide sequence repository developed and maintained by the Na-
tional Center for Biotechnology Institute (NCBI).

[31]

The European Nucleotide
Archive (ENA)

An international nucleotide sequence repository developed and maintained by EMBL-
EBI Europe.

[32]

Genomic Expression Archive
(GEA)

A genomic expression data archive containing functional genomics data, developed and
maintained by DDBJ Japan.

[33]

The Universal Protein Re-
source (UniProt)

A collection of protein sequences, protein annotation and proteomes of various species
(including plants). IS maintained by EMBL-EBI Europe SIB Switzerland, and the
Protein Information Resource (PIR).

[34]

Ensembl Plants
An integrated repository containing plants genomics data i.e genome sequences, gene
models, functional annotation, and polymorphic loci.

[35]

Plant Genome DataBase
Japan (PGDBj)

An intergrative repository containing information of plant genomic data from numer-
ous databases and literature.

[36]

ELIXIR Core Data Resources
The European data resources (including ENA, Ensembl Plants, UniProt, PRIDE, and
PDB).

[37]

Community-specific / project-specific databases

Database Name Description Reference

Sol GenomicsNetwork (SGN)
A central repository genomic, genetic, phenotypic and taxonomic information for mem-
bers of the Solanaceae family

[38]

The Arabidopsis Information
Resource (TAIR)

A resource containing molecular, biological and genetical data of Arbidopsis thaliana.

[39]

Maize Genetics and Genomics
Database (MaizeGDB)

A central repository for maize sequence, stock, phenotype, genotypic and karyotypic
variation, and chromosomal mapping data.

[40]

Rice (Oryza sativa) genome
annotation database (Osa1)

Contains structural and functional annotation of the model species rice(Oryza sativa) [41]
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Sir Tim Berners-Lee, the creator of the most successful means to global information
sharing i.e. the World Wide Web (WWW) network, first mentioned about semantic web
technologies in the year 2001 [43]. The idea behind semantic web technologies aimed at
transforming the internet from a network of human-readable web pages into a semantic
web of interlinked data which is machine-readable. Similar to the internet, semantic web
information space is characterized by Uniform Resource Identifiers (URIs), resources,
protocols (HTTP, SMTP, FTP, etc.), and data formats (RDF). Here, a Uniform Resource
Identifier (URI) is a sequence of characters used to identify an entity or physical resource.
HTTP, SMTP, FTP is a protocol (request/response) standard to transfer information over
a computer network.

RDF: The Resource Description Framework (RDF) is a default framework to represent
semantic web data [44]. Building blocks of RDF frameworks our knowledge triples,
which form a graph of linked data. Each RDF triple consists of a subject, linked with an
object, via a predicate. A subject and a predicate are always uniquely identifiable with
a definitive URI, while an object can be another subject with a URI or a literal. Every
subject represents an entity such as a person, a place, a data file, biological entities like
genes/proteins/drugs/. A literal is a data value that can either be numerical, text or a
timestamp.

The collection of RDF statements describing data is called the RDF graph. The
collection of RDF graphs is called the RDF dataset. RDF graphs can be defined in several
formats: for example Extensible Markup Language for RDF (RDF/XML), Terse RDF
Triple Language (TURTLE), Notation 3 (N3), JSON-LD, etc.

SPARQL: Simple Protocol and RDF Query Language (SPARQL) is a programming
language used to extract data from RDF graphs. SPARQL queries are sent from a client to
a service known as a SPARQL endpoint, using the data access protocols (HTTP protocol).

Ontologies: One of the key elements of modeling data in RDF graphs is the use of
identifiers to define terms and relationships between them. For semantic web technolo-
gies, ontologies were idealized to specify not only the definition of a controlled set of
terms but also their relations with each other in a single domain. In the field of life
sciences, a major advance in data interoperability has occurred with the growing use of
ontologies to unambiguously identify and describe biological concepts. Ontology terms
are used to annotate entities such as genes, proteins, metabolites, drugs, traits, QTLs,
experiments, etc. in a consistent way. An ontology often contains vocabulary of terms,
their definitions, associated synonyms, and a set of semantic relationships between terms.
These relationships provide interoperability and the ability to combine annotations that
have been applied at different levels of specificity (in heterogeneous data). Ontologies are
used in semantic web for both, annotate data entities under consideration, and define the
metadata of the data.
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Metadata: Metadata is information that describes the data, i.e. provenance of data,
the measurements/methods used to retrieve this data, etc. Meta-data is used to make the
correct interpretation of data.

FAIR Data Principles

In the domain of life sciences, scientists recognize that the findability, accessibility,
interoperability, and reusability of data by interlinking different datasets from various
resources is important to give a complete view of biological activities. To achieve this
efficiently, data needs to be organized according to be FAIR data principles [45]. Briefly,
according to these principles every data element should have a unique persistent identifier,
with a searchable metadata (“Findable”); these identifiers should resolve to (meta)data
using an open standard protocol (“Accessible”); the (meta)data should use a representation
language that utilizes widely accepted domain-specific ontologies (“Interoperable”); and
finally, the data should be well described with cross-references and with available license
information (“Reusable”). FAIR data principles can be used to facilitate development of a
global landscape for integrating genomics datasets for better predictions and reproducible
analysis [46].

Research objective
The main objective of this PhD project was to improve the integration of genomic data
for knowledge discovery in Solanacae Species, using genome annotations available in
molecular databases and scientific literature. This genomic data integration can be used
in the identification of candidate gene(s) for (crop) QTL regions, via utilizing available
knowledge of genome annotations from literature and molecular databases. Hence, this
research is an asset for those (plant) breeding companies that aim to effectively improve
their current cultivars, because breeding can be more precise (e.g. the gene candidate
for the trait, or the regulator of the gene) of interest. Although the primary target of our
research is for improving plant breeding, our research can also be relevant to breeding
in general, as well as more fundamental research fields, where genetics is utilized to
uncover the mechanisms of traits of interest.

Solanaceae Species
Solanaceae are members of flowering plants (Eudicots) that have high economic impor-
tance. Members of the family are cultivated for their edible fruits and tubers, for example,
tomatoes ( Solanum lycopersicum ), pepper ( Capsicum spp ), eggplant ( Solanum mel-
ongena ), and potato ( Solanum tuberosum ); remedial properties, for example tobacco (
Nicotiana tabacum ) and mandrake ( Mandragora officinarum ); or ornamental flowers
such as petunia ( Petunia x hybrida ).
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Figure 1.2: Prototype architecture for the integration of genomic data to assist
knowledge discovery using genome annotations. [47]

Potato (Solanum tuberosum L.) is one of the most important staple crops for human
nutrition. Underground stems called stolons under suitable environmental conditions
form potatoes in the form of tubers. In addition to its culinary versatility, potato is a
cost-effective product and plays a major role in meeting the ever-increasing food demands
of the world. Its tubers are a good source of starch, proteins, vitamin C, folate, and
carotenoids [48]. Different potato genotypes produce tubers of different properties, like
shape, size, color, starch content, and nutritional value.

Tomato ( Solanum lycopersicum ) is one of the most consumed fruits in the world, as
well as the second most consumed edible products of the Solanaceae species. Tomatoes
are a globally important dietary source of lycopene, beta-carotene, vitamin C, and fiber. In
addition to its agricultural value and due to its diploid genetics and inbreeding potential,
tomato is a widely used model species for fundamental research on subjects including
fruit development and pathogen response. [49].

Road Map

This thesis is compiled of 6 chapters. Chapter 2 introduces a supervised Natural language
processing (NLP) model, developed using IBM Watson, to extract knowledge networks
containing genotypic-phenotypic associations of potato tuber flesh color from the scientific
literature. Chapter 3 illustrates QTLTableMiner++ (QTM), a table mining tool that
extracts and semantically annotates QTL information buried in (heterogeneous) tables
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of plant science literature. QTM was further used to extract QTL information from
QTL studies of tomatoes and potatoes. Chapter 4 presents the development of a linked-
data platform called Solanace linked data platform (pbg-ld), which provides semantically
integrated genotypic and phenotypic data on Solanaceous species. This platform combines
both unstructured data from scientific literature and structured data from publicly
available biological databases using the Linked Data approach. Chapter 5 describes
a seamlessly integrative workflow for the prediction of candidate genes within QTL
regions using our linked-data platform pbg-ld, data about functional annotations and
evolutionary analysis. Finally, Chapter 6 highlights the general discussion and future
prospects of this research.
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Abstract

Introduction

A wealth of scientific information is available only as (free) text in scientific publica-
tions. As opposed to biological databases, text in literature is a source of unstructured
information. Hence, textual information remains difficult for machines to process and
analyze information from it. Natural language processing (NLP) or text mining, is a
field of artificial intelligence that focuses on the power of a machine to understand and
analyze text. NLP can render textual information to be computationally accessible; as
well as support information extraction and lead to knowledge network construction.

Methodology

In this pilot study, we have developed a supervised NLP model using IBM Watson, to
extract knowledge networks containing genotypic-phenotypic associations of potato
tuber flesh color from the scientific literature. Initially, we used Watson Knowledge
Studio (WKS) to develop a domain-specific NLP model for finding biological entities
(genes, proteins, metabolites, and traits) that relate to tuber flesh color and relation-
ships among them. We manually annotated a training corpus of 34 full-text scientific
papers, indicating all instances of such biological entities and their relationships in each
sentence. WKS uses the manual annotations, related dictionaries, and a model type
system to generate a supervised NLP model capable of extracting knowledge networks
for tuber flesh color. Subsequently, we assessed our NLP model by deploying it on a
larger test corpus, containing about 4000 PubMed abstracts related to the Solanaceae
taxon, published from the years 2000 to 2016.

Results

The resulting knowledge networks contained both previously known as well as contem-
poraneously unknown leads to subsequently discovered biological phenomena relating
to the flesh color trait. Such leads included the link between potato tuber flesh color and
the zeaxanthin epoxidase (ZEP) enzyme/gene that already became a 2nd order relation
in 2007 and a 1st order relation to tuber flesh color in 2010. However, the relation
between tuber flesh color and ZEP was experimentally substantiated later in the year
2011. The results illustrate that, indeed, supervised NLP shows a lot of promise to
speed up knowledge discovery, data integration and hypothesis generation in scientific
research.

Keywords: NLP, plant science literature, IBM Watson, text mining, relationship
extraction, knowledge networks
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Introduction
Scientific publications accumulate knowledge and developments in any field of research.
One of the most important tasks in a researcher’s work and career is keeping up to
date with the ever-increasing scientific literature, placing new outputs into context,
and investigating the implications in their field. However, as the number of scientific
publications are growing at an exponential rate, there is a need for using the power of
machines, to automatically extract novel results and discoveries from literature.

Potato (Solanum tuberosum L.) is one of the most important staple crops for human
nutrition. In addition to its culinary versatility, potato is a cost-effective product and
plays a major role in meeting the ever-increasing food demands of the world. Its tubers
are a good source of starch, proteins, vitamin C, folate, and carotenoids [48]. Different
potato genotypes produce tubers of different properties, like shape, size, color, starch
content, and nutritional value.

One of the most extensively studied traits in potato is tuber flesh color. Carotenoids
are considered to be the primary determinant of tuber flesh color [50]. Carotenoids play
essential roles in photosynthesis, while in non-photosynthetic tissues, they exert a broad
range of functions acting as pigments, antioxidants, and precursors of signaling molecules,
including volatiles [51]. Previous studies have shown that β-carotene and zeaxanthin
are the prominent components that determine potato tuber flesh color. In recent years,
several candidate genes like BCH / CHY2 and ZEP have been found to relate to the tuber
flesh color. BCH / CHY2 are the genes related to the production of β-carotene while ZEP
is considered responsible for the accumulation of zeaxanthin [52]. Scientific evidence for
the association of tuber flesh color with genetic and molecular entities is mentioned in
the scientific literature or biological databases. For example Acharjee et al. previously
published networks of experimentally found biological entities that related to tuber flesh
color in the years 2011 and 2016 [52], [53]. In this research, we try to automate the
process of extracting knowledge of molecular entities (genes/proteins/metabolites) that
are influencing changes in tuber flesh color from scientific publications.

Compared to structured information (as in databases), textual information is huge,
noisy, and redundant. Therefore, to understand and analyze textual information in
a meaningful way, there is a need to use artificial intelligence to establish a machine
read, extracting and analysis knowledge in the form of textual information. Natural
Language Processing (NLP) is a field of artificial intelligence that focuses on enabling
the machine to understand and analyze (unstructured) data in the form of text [25].
Despite the availability of various data repositories for plant research, a wealth of
information currently remains hidden within the scientific literature. Hence, there
is continuous growth, in scope and importance, of information extraction via NLP for
scientific literature. NLP can render these texts to be computationally accessible; as well
as support information extraction, knowledge network (KN) construction, and hypothesis
generation.

In the past years, many NLP based research studies have been conducted on molecular
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biological literature [54], [55]. On the one hand, NLP studies focused majorly on rule-
based named entity recognition (NER) i.e. identifying and annotating biological entities
such as genes or proteins [56], [57], metabolites [58], [59], traits [60], QTLs [61], diseases
[62], and drugs [63] in literature. On the other hand, a few NLP studies pay attention
to extracting associations (relationships and event) between these biological entities,
while using NER systems under the hood [57], [64]. Automated approaches to mining
knowledge concerning the association of an entity to its phenotypes are required to further
advance in the field of precision breeding [65]. Rule-based NLP is more widely used in
mining knowledge from biological context than machine learning based NLP [66], [67].
However, construction and regularization of rules is a complex task in rule-based NLP.
Often the rule-based NLP user tends to do overfitting of the rules in the training set,
which affects performance in the test set. Dictionaries and ontologies are used as building
blocks in rule-based NLP. In comparison to rule-based NLP, supervised NLP methodology
can also be used. In supervised NLP, a domain specialist annotates the training set of
documents manually. These manually annotated documents supported by dictionaries
and ontologies are used by the algorithm to produce context-specific rules. Finally, these
rules are used to perform NLP on the unannotated test set.

IBM Watson is a trailblazer in applying NLP and machine learning solutions to mine
knowledge from huge corpora of texts available online [68], [69]. Watson Knowledge
Studio is a cloud-based application to train an NLP model based on the context and
linguistic nuances of a specific literature domain. In addition to annotating entities
of interest in a given text (named entity recognition), Watson is also able to perform
relationship extraction; that is, to label the connections between the detected entities of
interest.

In this research, we used the Watson platform to develop a model based on domain-
relevant literature to find biological entities (genes, proteins, metabolites, and traits) and
relationships that relate to tuber flesh color, an agronomically important trait. Later, we
tested our model by deploying it on a larger testing corpus, containing selected PubMed
abstracts that are related to the Solanaceae family, published from the years 2000 to
2016. We shaped the Watson outputs into knowledge networks (KNs) and, over this year
range, tracked the closeness of our trait of interest to relevant entities, marking the time
points where significant developments were made.

This proof of concept (although limited in size) is an example of how literature mining,
enabled by tools like Watson, could help plant scientists obtain a clearer “big picture”
about specific (narrow) areas in their field of expertise. Facts easily missable in the
expanding sea of literature could come to light, be automatically organized into KNs, and
ultimately accelerate research in a process with little human intervention.
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Methodology

Experimental corpora
To make a supervised NLP model, we assembled the scientific articles into 2 corpora
of the training set and the test set. The training set consisted of open source full-text
articles, while the test set was built from PubMed abstracts.

The training corpus is a collection of 34 full-text scientific articles (see supplementary
table 6.1) which focus on tuber flesh color and known biological entities like metabolites
and proteins involved in the carotenoid pathway, for example, beta-carotene hydroxylase
and zeaxanthin epoxidase [53]. The training set was manually annotated with Watson
Knowledge Studio (WKS). WKS uses these manual annotations to generate a supervised
NLP model that can capture phenotypic tuber traits and the associating genes, proteins,
and metabolites. Later, we assessed the capabilities of this supervised NLP model to
make KN on this training set as well as on a larger test set.

The test set consists of 4023 abstracts from PubMed from the years 2000 to 2016.
These abstracts are plant genetics-based articles that focus on 4 major Solanaceous crops
(tomato, potato, eggplant, and capsicum). To limit the scope of the NLP model to find
direct genomic associations related to tuber flesh color, no pathogen related articles were
included in the test set. Our developed NLP model is capable of extracting KN for the
tuber flesh color trait. However, the articles in the test sets talk about a variety of
different topics in plant genetics and do not limit their scope to only the tuber flesh color
trait. This test set challenges the NLP model to a more real world application, as opposed
to a restricted use case in our training set.

Additionally, to assess the information content per section from articles we divided
the training set into subsets based on the section they were coming from. The test set of
abstracts have also been divided into subsets based on their year of publication. This was
done to study the evolution of knowledge over time.

Watson Knowledge Studio and Watson Explorer
IBM’s Watson™Knowledge Studio (WKS) is a proprietary text mining solution that makes
machine learning models to interpret linguistic nuances, meaning, and relationships
specific to a domain. It provides a platform of user-friendly tools for the manual annotation
of domain-specific literature. Further, it uses manual annotations to create an annotator,
which is a custom machine learning model that understands the language of the domain.

WKS was used to create a supervised NLP based model tailored to annotate of
potato-specific scientific literature [70]. The annotator received input from a human (i.e.
domain expert), about what type of content should be captured from the text. Based
on the requirements, a type system is formulated to guide both humans and machines.
WKS’s type system is a prime component that defines rules of annotation and identifies
the subjects of interest to the domain-specific user. The type system establishes how
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content can be captured by defining the types of entities that can be labeled, and how
relationships between different pairs of entities can be marked. Figure 2.1 illustrates
the type system used by us to capture a set of traits, associated genes, proteins, and
metabolites in potato-specific literature.

An entity is a blueprint of a set of objects that belong to a specific type, serving as
a class or category. For our type system, which is used specifically to identify genomic
relationships in potato-specific literature, three types of entities have been defined i.e.
firstly Gene/Protein, secondly Trait, and thirdly Metabolite. Here, genes and proteins are
clubbed as a single entity in our model. This is due to the fact that generally, no added
insight is provided by knowing whether the text refers to the gene or the protein/enzyme
that it encodes.

If there is a relationship between entities present in the text, it is also possible to
define and capture this relationship in the type system of a model annotator. Relationships
are directional in WKS (so a relation from A to B is not the same as a relation from B to
A). There were 7 kinds of relationships defined in our type system. Remaining consistent
with the above entities and the reasons for their selection, the relations are similarly
simple and all-encompassing in nature, which is why many of the relations have the
“related to” label. The exceptions (“encodes”, “part of”) were included because the high
number of these relation mentions in the corpus allowed for WKS to produce models that
could also identify them in the text.

In WKS, each entity is supported by an entity-specific dictionary. Dictionaries are
used to do a pre-annotation step of, automatic entity recognition, before the actual
textual corpus is manually annotated by a human. Therefore, in order to not capture
a lot of noise, all dictionaries are made small and are limited to the scope of molecular
entities previously known to be associated with tuber flesh color or carotenoid pathway.
Preferred names in these dictionaries are selected from a known molecular database or
ontology. To elaborate, the Gene/Protein dictionary contains 183 genes/proteins from the
carotenoid biosynthesis pathways. Similarly, the Metabolites dictionary is made by using
85 metabolites from the same pathway. While terms in the Trait dictionary consist of 56
potato-related trait terms taken from the Solanaceae Phenotype Ontology [71].

The Watson Explorer is an analytical software platform that uses an NLP model
generated from manually annotated scientific articles (by WKS) as an input. Watson
Explorer’s outputs are text documents in XML/CAS files, containing annotations of the
entities and their relationships that have been extracted, as well as their documents (and
document position) of origin. We use these XML/CAS files to build KN.

Modeling decisions
To train our NLP model to capture KN of only genotypic-phenotypic entities and their
relationships, the type system underwent a number of major changes and revisions
in an iterative process. With trial-and-error optimization, entities and relationships
were introduced as well as discarded, based on how well the knowledge is captured and
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a. Entities

b. Relationships

1. Gene / Protein encodes Gene / Protein
2. Gene / Protein (is) related to Gene / Protein
3. Gene / Protein (is) related to Metabolite
4. Gene / Protein (is) related to Trait
5. Metabolite (is) part of Metabolite
6. Metabolite (is) related to Metabolite
7. Metabolite (is) related to Trait

Gene / 
Protein Trait

Metabolite

Figure 2.1: Watson Knowledge Studio (WKS) configurations of the type system for
a customized NLP annotator. a) 3 types of entities in the type system. b) 7 types of
relationships defined in the type system of an annotator.

presented in the KN.
Some modeling decisions important to be mentioned are presented below.

• Biological entities that were tested but not included in the final model:

– biochemical processes

– metabolic pathways

– trait values

– organism names, species names, and genotypes

While these biological entities occur in the text and contain sources of knowledge
to understand the biological mechanisms involved in the phenotypes, the number
of mentions in the text were insufficient for WKS to adequately train a model.
We therefore choose not to include these entities in the type system of our NLP
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model. Further, including these entities in our model shifts the focus away from
the research question of mining genotypic-phenotypic relationships in text.

• Combination of genes and proteins to a single entity:

Initially, we kept genes and proteins as two separate entities. However, during
manual annotation difficulties were encountered in distinguishing between the two,
as they are frequently used interchangeably in the text. Furthermore, for subject
matter experts, there is little information to be lost by combining them. Hence, in
our type system, genes and proteins are a single entity.

• Annotation rule for metabolites (specific metabolite mentions vs generic mentions )

Metabolites are included in scientific literature in different forms. Their mentions
may consist of specific composite terms (e.g. petunidin-3-p-coumaroyl-rutinoside-5-
glucoside) to more generic ones (e.g. carotenoids). According to our type system,
we annotated all forms of metabolite mentions as in this way we can capture both
knowledge triples with specific entities as well as knowledge triples with generic
entities. In our analysis, a knowledge triple is defined as a data structure consisting
of two entities and a label for their underlying relationship.

• Annotation rules for genes

As is the case with metabolites, genes may be introduced in different formats. To
name a few, sometimes the full name is present (zeaxanthin epoxidase), sometimes
the short form of it (ZEP), and other times there is a species indicator as a prefix
(LeZEP). We chose to annotate all these cases to train the model.

Building and visualization of knowledge networks (KNs)
For the construction of a KN only entities with relationships were used. The mention
of an entity by itself, with no connections, was not included in the KN. With the help of
a Python script, we filtered out data of entities and relationships data from XML/CAS
files. This script captured relationships as knowledge triples in easily parsable CSV
files containing the relationship ID, relationship type, original mention of each entity,
entity label, entity type, document in which this sentence occurred, sentence position and
position of the source and target nodes.

As various entities appear with a variety of spellings in the corpus (e.g. β-carotene, b-
carotene, beta-carotene), we also included a normalization step, attributing an additional
preferred label to each entity. This was done manually on the list of individual entities that
had been extracted. In the normalization process we first converted all spellings of entities
and relationships to American English uppercase characters. Additionally, Prefixes
relating to species were removed from gene names, for example, the StAN1 referring to
anthocyanin 1 in Solanum tuberosum (potato), was converted to AN1. Similarly, suffixes
indicating individual members of gene families were also removed, for example BCH1
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and BCH2 (both referring to forms of beta-carotene hydroxylase), were converted to
beta-carotene hydroxylase.

For metabolites, EC number references were converted to the full name of an enzyme.
Further, apostrophes and # notations were also removed, e.g. flavonoid-3’,5’-hydroxylase
becomes flavonoid-3,5-hydroxylase, 9#-cis-neoxanthin becomes 9-cis-neoxanthin. Lastly,
all abbreviations were expanded to the long form, for example, NCED2 into 9-cis-
epoxycarotenoid dioxygenase. While the above steps reduce the specificity a particu-
lar entity (for example we labeled BCH1 and BCH2 as BCH), as is always the case
with tokenization, this simplification boosts network connectivity, despite the loss of
information.

Finally, Cytoscape [72] version 3.7.1 was used to visualize these KNs. Cytoscape can
plot KNs using CSV files as input.

Results
To confirm that our domain-specific NLP model performed as intended, and extracted KN
with the focus on tuber flesh color from scientific literature, we deployed this tool on 2
different corpora, i.e. the training set with full-text articles and the test set with PubMed
abstracts only.

Case 1: Analysis of training corpus (Full-text articles)
Watson retrieved a KN with a total of 293 nodes with 551 unique edges from the training
set of 34 articles. Out of these 293 nodes, there are a total of 159 genes/proteins, 112
metabolites and 22 traits (Figure 2.2). Carotenoids (entity of the type metabolites)
was the primary centroid of this network having 76 first-order neighbors. In order to
evaluate the nodes and connections of this KN, we analyzed the overall structure based
on the currently known experimental knowledge of tuber flesh color. Our KN contains
nodes and edges, which show scientifically credible links between nodes and the trait of
interest; tuber flesh color. Most genes/proteins and metabolite entries in this network are
part of the carotenoid biosynthesis pathway, which includes beta-carotene biosynthesis,
xanthophyll cycle, abscisic acid biosynthesis, lutein biosynthesis, etc.

The trait under study, tuber flesh color, has 38 first-order neighbors, comprising 11
genes/proteins and 27 metabolites. These genes/proteins and metabolites are also enlisted
in Table 2.1. Previously conducted research studies have found that ZEP, BCH/CHY
are associated with white, yellow and orange flesh color. AN1, a gene responsible for
production of anthocyanin, is associated to purple flesh color. All these genes occur as
direct neighbors of tuber flesh color in our network.
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Figure 2.2: A KN representing knowledge triples found in the training set of 34 full articles.
Yellow nodes refer to a trait entity, red nodes refer to gene/protein entities, and green nodes represent
the metabolite entities. The centroid of this network is tuber flesh color. Nodes with bold outlines
indicate that these entities have an experimentally proved association with tuber flesh color (trait of
interest). This experimental evidence of these entities with tuber flesh color is reported in the articles
[52], [53].
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Watson’s NLP model retrieved the total number of entities in the training set with a
precision of 97.65%, a recall of 88.91% and an F1 score of 93.07% against the manually
annotated training corpus. Supplementary table 6.2 represents a confusion matrix
showing the total number of entities per document, number of true positives (TP), number
of false negatives (FN) and number of false positives (FP). Precision and recall were
calculated as TP / (TP + FP) and TP / (TP + FN) respectively.

Additionally, to compare the difference in volume and quality of information extracted
from abstracts vs full-text representation of an article, our NLP model was applied
separately on only the abstracts of the training corpus.

The comparison between abstract vs full-text representation of an article highlights a
quantitative difference between 2 representations of a scientific article (abstract-only vs
full text). We hypothesized that the abstract would concretely and concisely present the
core outputs of a publication, whereas the introduction section would mainly recapitulate
established theories and relevant biological connections but without contributing new
knowledge. Finally, the results and discussion sections would combine, in greater detail,
the significant contributions of the article, and at the same time make further sugges-
tions for future experimentation. We found supporting evidence for this hypothesis, as
the abstract-only network still includes the entities experimentally shown to be most
important for tuber flesh color. In sets A and B, Table 2.1 lists the direct neighbors of
tuber flesh color node in the KNs of full text representation (Figure 2.2) and abstracts
only (Figure 2.3).

The difference between these two sets (Table 2.1; SET A - SET B) is also shown.
These 20 entities occur as direct neighbors of flesh color in full-text KN, but do not
occur as direct neighbors in the abstract-only KN. Of these 20 entities, 6 entities (AN1,
lutein, lutein-5,6-epoxide, polyphenol, phytoene synthase, violaxanthin) are still present
in the KN of abstracts (Figure 2.1), even though they are not direct neighbors of the
tuber flesh color node. These entities are second-order neighbors of tuber flesh color and
first-order neighbors of carotenoids, BCH, CHY or ZEP. Furthermore, recessive ZEP is
also represented in the abstract-only KN. Since the recessive allelic variant of ZEP is
similar to dominant ZEP form, these nodes are not represented as separate entities or
indeed other details of gene/protein characteristics, such as chemical isomers and trait
measures. The remaining 12 entities (nonepoxide, peonidin, anthocyanidin, petunidin,
pelargonidin, cyanidin, pf, malvidin, epoxides, glycosides) are not represented in the
abstract-only KN. These entities are associated with key metabolites causing changes in
flesh color, however, they do not influence the trait directly. Hence, our results illustrate
that the most important nodes in the full-text network are still present in the reduced
network from the abstracts.
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Figure 2.3: A KN representing knowledge triples found in the training set of 34
articles, abstracts only. Yellow nodes refer to a trait entity, red nodes refer to gene/protein
entities, and green nodes represent the metabolite entities. The centroid of this network is
tuber flesh color. Nodes with bold outlines indicate that these entities have an experimentally
proved association with tuber flesh color (trait of interest). This experimental evidence of
these entities with tuber flesh color is reported in the articles [52], [53].

28



Table 2.1: Sets representing first order (direct) neighbors of flesh color nodes. Set A represents first-
order neighbors of tuber flesh color nodes found in full-text articles. Set B represents first-order neighbors
of tuber flesh color nodes found in abstracts of articles of the training set. The difference between these
sets (SET A - SET B) represents all entities that are first-order neighbors of tuber flesh color in full-text
articles, but they not in abstracts alone. Certain entities are bold to indicate that these nodes have an
experimentally proved association with tuber flesh color (trait of interest). Metabolites are marked in green,
and genes/proteins in red. This experimental evidence of these entities with tuber flesh color is reported in
the articles [52], [53].

Set A Set B Set A - Set B

AN1 anthocyanin AN1
anthocyanidin ascorbic acid anthocyanidin
anthocyanin b-carotene carotene hydroxylase
ascorbic acid b-carotene hydroxylase cyanidin
b-carotene bHLH epoxides
b-carotene hydroxylase caffeic acid essential amino acids
bHLH carotenoid glycosides
caffeic acid CCD lutein
carotene hydroxylase chlorogenic acid lutein-5,6-epoxide
carotenoid CHY malvidin
CCD Or nonepoxide
chlorogenic acid phenolic pelargonidin
CHY TP peonidin
cyanidin tuberigen activation complex petunidin
epoxides xanthophyll Pf
essential amino acids zeaxanthin phenolic acid
glycosides zeaxanthin epoxidase phytoene synthase
lutein polyphenol
lutein-5,6-epoxide recessiveZEP
malvidin violaxanthin
nonepoxide violaxanthin-like carotenoid
Or
pelargonidin
peonidin
petunidin
Pf
phenolic
phenolic acid
phytoene synthase
polyphenol
recessiveZEP
TP
tuberigen activation complex
violaxanthin
violaxanthin-like carotenoid
xanthophyll
zeaxanthin
zeaxanthin epoxidase 29



Case 2: Analysis of testing corpus (PubMed abstracts)

To assess how the NLP model performed over an unknown corpus, we deployed this
model on a testing corpus of 4023 abstracts from PubMed articles. From this testing
corpus, Watson retrieved a KN with a total of 681 nodes and 976 unique edges (Figure
2.4a). Carotenoid (entity of the type metabolites) was again the primary centroid of this
network, with 107 first-order neighbors. Our trait under study, tuber flesh color, has 21
first-order neighbors, comprising 9 genes / proteins and 12 metabolites.

While our model is tailored toward potato tuber flesh color (range between white
to orange), additional traits and their respective biological associations were detected
as well. For example, the KN from the test set also detected those genes/proteins and
metabolites which influence other traits such as enzymatic discoloration, tuber initiation,
tuber development, tuber maturation, cooking types, stolon swelling, flower development,
etc (Figure 2.4b). This illustrates that the information content extends beyond the specific
use case. Moreover, Watson uses our NLP model to extract information influencing tuber
flesh color in a wider context than the use case only, without the requiring further specific
training.

Identifying emerging candidate with time analysis

To assess the accumulation of knowledge over time, the abstracts of the test set were
organized in subsets ordered chronologically (i.e. by the date of their publication). Start-
ing from the year 2000 and incrementing yearly (i.e. all publications up to 2000, all
publications up to 2001, . . . , all publications up to 2016), subsets were formed. Each of
these subsets was used to construct a separate KN. A network of a given year is always a
subset of a KN from the following years and a superset of the previous years.

To study the development of entity connections with regard to our trait of interest
(tuber flesh color), we worked backwards. The most recent collection was the most
complete, so the nodes widely concerning tuber flesh color were chosen (color, flesh, flesh
color, flesh trait, orange flesh color, tuber color, tuber flesh, tuber flesh color, white flesh
color, yellow-orange flesh color) and are henceforth referred to as flesh color nodes. We
focused our attention on the nodes that eventually ended up directly connected to a flesh
color node. Then, we tracked the distance of these selected nodes to each individual flesh
color node, and the changes over time. Supplementary table 6.3 shows an example of
such a table for changes occurring between 2009 and 2010. Scripts were finally written to
parse the collections for all years in the corpus. Based on these year-by-year summaries,
a master summary table was made (Table 2.2).

Table 2.2 shows that the literature already contained significant indications as to
the relevance of specific genes that were found to be important for potato flesh color [52].
Most prominently, both beta-carotene hydroxylase (BCH) and zeaxanthin epoxidase (ZEP)
were in close proximity (2nd order neighbors) from 2007 and made the transition to direct
neighbors of flesh color nodes in 2010, before experimental evidence was published in
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Figure 2.4: A KN representing knowledge triples found in the test set of 4023 PubMed
articles Yellow nodes refer to a trait entity, red nodes refer to gene entities, and green nodes
represent the metabolite entities. a) complete zoomed-out knowledge network b) zoomed-in
snapshot of the knowledge network focusing on tuber flesh color and additional traits with their
respective biological associations.
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2011. We conclude that having such information available, can provide key indications of
scientifically relevant links prior to such links having experimentally been substantiated
or published.

Equally, false positives such as lycopene, a metabolite not found in potato tubers,
arises in the KN as a first-order neighbor. While for most domain experts it is clear
that lycopene is the compound responsible for flesh color in tomato, and therefore trivial
to eliminate from the knowledge network as a significant player, it does reinforce the
requirement for domain specialists to apply their knowledge to these results.
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Based on the above, particular attention has been given to BCH and ZEP, and their
transitions between 2006-2007 and 2009-2010.

Discussion

This work served as a pilot to study the benefits of using NLP platforms like Watson,
for performing knowledge discovery over plant science literature. With the exponential
increase in the amount of scholarly publications and the sheer volume of available bio-
logical literature, researchers are finding it increasingly difficult to keep up-to-date with
all information relevant to their field. Assembling knowledge from available literature
in a single network could be used to generate new hypotheses, or aid researchers in
assembling a better overall picture about the components surrounding their area of
interest. However, unlike a human research expert, it is more challenging for a machine
to comprehend biological insights from complicated sentences and text structures of
scientific literature. Every NLP model has a limited scope of research questions it can
address. The developed type system of our NLP model cannot capture and reflect all
biological complexities in KNs. However, our developed NLP model is intended to only
mine genotypic-phenotypic information from scientific literature into KNs, so that this
knowledge can be structured-data, easily readable by both machines and humans.

Further, only generic relationships (“is related to”) of association between these
entities were captured, the degree of association between 2 entities (positive, negative,
inexplicit) was ignored in our model. The performance of our model, nevertheless, is
satisfactory for the pilot study and addresses the above stated research objective. In
order to optimize the efficiency for the process of manual annotation of the training set,
we restricted ourselves to a limited training corpus of 34 full-text articles. Although the
training we provided to Watson was limited, it was still sufficient to enable our model to
extract similar knowledge from the test set, which was a collection of documents referring
to different crops, traits and processes.

While making the testing corpus for our NLP model, we including literature from
other Solanaceae crop species (tomatoes, capsicum, eggplant ) as well. Mining and
assembling information from all of these different literature resources into a single KN
was a controversial decision too. Many genes and metabolites are involved in a similar
bio-mechanism across these crops species. However, in some cases that may introduce
noise, whereas in others it may be a source of ideas. There is a certain tradeoff to be
observed here: the wider the scope of the processed documents, the higher the margin
for noise, but also the potential. The premise for this trial, after all, was that newly
published research in a broad domain of science would indiscriminately be funneled into
an NLP model, to produce networks that can assist humans.

A similar balance exists, when it comes to the parts of documents that are used for
text analysis. Abstracts are an easily accessible and summarized form of significant
information from an article. However, it is important to note that different journals
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prescribe different formats for their abstracts and other sections of scientific articles they
publish. Therefore, the quality of minable information mentioned in an abstract also
depends on the journal as well as type of article. Abstracts of articles such as reviews,
scientific methods, or articles that cover wide scope of certain topic, might not provide
comprehensive minable scientific leads. For example, Nature contributions may not
always formally describe all scientific leads in their abstract, results are more frequently
mentioned in the main text. It is worth mentioning that there were instances where
the NLP approach failed to meet expectations. In cases where biological entities were
abbreviated, or associations between 2 entities was mentioned in more than 1 sentence,
our Watson’s NLP model could not predict these entities and relationships. Watson type-
system includes facilities to co-refer abbreviated entries or pronoun to its original form,
however, due to less number of instances in our training corpus, Watson’s NLP model was
not able to capture these entities and relations. However, Watson is not unique in this
respect. In fact, most NLP tools used in biological text capable of recognizing relations in
text suffer from the same flaw. Biological abbreviations are haphazard. Many times two
biological concepts have a same abbreviation. For example. an abbreviation MIC might
mean minimal inhibitory concentration or MIC gene which is a Major histocompatibility
complex (MHC) class I chain related (MIC) gene. Training on a bigger corpus might
increase accuracy to predict the right entity mentions.

Overall, Watson produced a model that powered the construction and time analysis
of meaningful KNs under restricted-effort conditions. Therefore we believe that a more
intensive effort would yield excellent results, and could play an important role in bringing
together diverse information from large literature corpora and hypothesis generation.
Presently our resulting KN contain unweighted edges. In the future, we would like to
enhance this by having an edge network. Edges can have a weighted-score which is based
on experimental knowledge from databases and number of times a particular relationship
occurred in text and how biological relevant a relationship is. This way, text mining can
be used to compare established knowledge and emerging knowledge.

Conclusions
The results of our analysis strongly indicate that NLP methods, such as those provided
by IBM Watson, can be deployed on plant science literature as a powerful tool for the
construction of networks that distill and integrate knowledge to facilitate future research.

35





Chapter 3
QTLTableMiner++: semantic
mining of QTLtables in scientific
articles

Gurnoor Singh 1, Arnold Kuzniar 2, Erik van Mulligen 3, Anand Gavai 2, Christian W. B.
Bachem 1, Richard G.F. Visser1 1, and Richard Finkers 1

1 Plant Breeding, Wageningen University and Research, Wageningen, the Netherlands
2 Netherlands eScience Center (NLeSC), Amsterdam, the Netherlands
3 Department of Medical Informatics, Erasmus Medical Center, Rotterdam, the Nether-
lands

Published: 25 May 2018 in BMC Bioinformatics
DOI: 10.1186/s12859-018-2165-7

37

https://doi.org/10.1186/s12859-018-2165-7


Abstract

Introduction

A quantitative trait locus (QTL) is a genomic region that correlates with a phenotype.
Most of the experimental information about QTL mapping studies is described in tables
of scientific publications. Traditional text mining techniques aim to extract information
from unstructured text rather than from tables. We present QTLTableMiner++ (QTM),
a table mining tool that extracts and semantically annotates QTL information buried in
(heterogeneous) tables of plant science literature.

Methodology

QTM is a command line tool written in the Java programming language. This tool takes
scientific articles from the Europe PMC repository as input, extracts QTL tables using
keyword matching and ontology-based concept identification. The tables are further
normalized using rules derived from table properties such as captions, column headers
and table footers. Furthermore, table columns are classified into three categories namely
column descriptors, properties and values based on column headers and data types of
cell entries. Abbreviations found in the tables are expanded using the Schwartz and
Hearst algorithm. Finally, the content of QTL tables is semantically enriched with
domain-specific ontologies (e.g. Crop Ontology, Plant Ontology and Trait Ontology) using
the Apache Solr search platform and the results are stored in a relational database and
a text file.

Results

The performance of the QTM tool was assessed by precision and recall based on the infor-
mation retrieved from two manually annotated corpora of open access articles, i.e. QTL
mapping studies in tomato (Solanum lycopersicum) and in potato (S. tuberosum). In
summary, QTM detected QTL statements in tomato with 74.53% precision and 92.56%
recall and in potato with 82.82% precision and 98.94% recall. Hence, QTM is a unique
tool that aids in providing QTL information in machine-readable and semantically
interoperable formats.

Keywords: Quantitative trait locus, QTL, Plant breeding, Table mining, Ontologies,
Semantic interoperability
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Background
Modern genetic analysis in crop plants aims to understand the contribution of individual
genes and loci in the development of agronomic traits. Quantitative variation results
from the combined action of multiple genes and environmental factors. With the help of
molecular marker studies, it is possible to detect genomic regions that are statistically
associated with variation in non-Mendelian phenotypic traits, also termed as quantitative
trait loci (QTL) [73].

Detecting QTLs can help in the development of precision breeding programs. However,
elucidating QTL regions for genes that are causative to a trait of interest is a tedious
and time-consuming process because a single QTL region commonly entails hundreds of
genes, including those that might negatively influence the trait [74]. Leveraging upon
knowledge available in both scientific literature and molecular biology databases can help
in narrowing down the QTL regions to candidate genes associated with traits of interest.

QTL studies have widely been published in scientific articles, in particular in tables or
supplementary materials. However, there is no established repository where experimental
data on plant-specific QTL studies can be submitted. In the past, there have been several
attempts to create manually curated databases with QTL information; for example,
AnimalQTLdb [75], MaizeGDB [76], Gramene QTL database [77] and SGN/solQTL [78].
Manual curation of such database systems is a laborious task. There is a need to retrieve
QTL data from publications efficiently, which can further reduce the cost of QTL database
curation and QTL knowledge discovery process.

Using tables is the most common way to represent (semi-)structured data (e.g. results
of QTL mapping experiments) on the web or in the scientific literature [79]. As QTL infor-
mation is mostly published in tables rather than in the main text of articles, traditional
text-mining techniques are not suited for this task [80]. There are several challenges
associated with table-mining. The information in a table can be easily interpreted by
human but not by a machine. For example, when parsing an article in text, HTML or
PDF formats, it is difficult for a machine to determine which cells are part of a header
and which cells contain data. Moreover, tables can have different orientations (hori-
zontal versus vertical layout). Furthermore, tables can have nested structure including
rows/columns with multiple headers.

Several commercial and open source table-mining tools have been developed including
Tabula [81], Google Tables [82] [83], TableMiner+ [84] and the domain-specific QTLMiner
[80]. While Tabula and QTLMiner extract tables from PDF documents, Google Tables and
TableMiner+ process web pages. TableMiner+ makes use of contextual information, for
example, in table captions, footers and column headers, to improve the identification of
relevant tables in web pages. In contrast, the Google’s system does not use author-defined
table properties, such as column headers, captions and footers, but rather assigns class-
labels to columns using a machine-learning approach combined with maximum likelihood
estimation over web-derived knowledgebase. QTLMiner [80] was the first tool focused
on mining QTLs from tables of plant science literature. Briefly, QTLMiner first converts
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articles in PDF to HTML documents, identifies trait-related tables, extracts relevant data
and finally stores the results in a relational database. QTLMiner lacks wider applicability
as its performance to extract information from tables of a literature, depends mainly on
the conversion of articles from PDF to HTML file, which is done by commercially available
web service from BCL [85]. Secondly, QTLMiner could only extract QTL statements only
when a table in literature occur in a particular format and lacks the capability to mine
this information from heterogeneous tables.

Current tools that extract tabulated information from PDF or HTML documents have
difficulty with parsing tables correctly because table structures are (semantically) not
described using these formats. Although, scientific articles are distributed in PDF format,
it is inconvenient to use these PDF documents for automated information extraction as
they lack machine readability and a logical structure specifying which content constitutes
a paragraph, table, figure, header or footer etc. Therefore, even if massive amounts
of unstructured data are held in the form of PDF documents, automated extraction of
tables, figures or other structured information can be very difficult. Similarly, HTML
file represents a layout of a web page and is not focused on describing data. Therefore,
our tool uses XML files as they represent information in a logical structure that is
machine-readable.

QTLTableMiner++ (QTM) is a Java-based command-line tool that extracts and seman-
tically annotates QTL information from tables of scientific articles. QTM takes articles in
a syntactically interoperable format, XML, as an input. The Europe PMC [17] repository
provides full-text open access articles in the XML format that complies to the Journal
Article Tag Suite (JATS) schema. JATS is commonly used by publishers and archives to
exchange journal content.

QTM filters (candidate) trait tables (i.e. those with phenotypic information) out of all
tables in an article. In these tables, a QTL statement refers to a relationship between
pheno- and genotypic entities. QTM extracts QTL statements and semantically annotates
the biological entities in these statements with domain-specific ontologies using the
Apache Solr search platform [86]. Finally, QTM outputs the results both in a relational
database and in a text file (CSV). In summary, QTM is a unique tool that aids in providing
QTL information in machine-readable and semantically interoperable formats.

Implementation

Table mining workflow

Figure 3.1 illustrates the overall workflow implemented by the QTM tool. This workflow
consists of three parts, which are described in more details below.
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Filter trait tables

Table extraction and normalisation

Trait Table (Example 1)

Trait Table (Example 2)

Table Properties

Table Headings
Table Captions
Table Orientation
Rows-Headings
Column datatypes
Abbreviations

Table Subject

Table Headings
Table Captions
Table Footer

Normalize table 
structure

Classification of table columns based on datatypes and ontology-based concept identification 

Results generation and semantic interoperability

Columns: Trait Value
Numerical datatype

Columns: Trait Properties
String datatype

Column: Trait Descriptors
(Only 1 column)
String datatype

STATOGO SO ChEBIPATO SPTO PO TO SGN Dictionary

Database

List of QTLs

Semi-automated

Figure 3.1: QTLTableMiner++ workflow including semantic transformation using Open-
Refine.

Table extraction and normalization

First, the QTM tool retrieves open access articles in XML format from the Europe PMC
repository [17] using the programmatic web interface (RESTful API). Then it detects
tables in the articles using the <table-wrap> .. </table-wrap> XML tags and
filters trait-related tables using keyword matching against table subjects derived from
captions, headings and footers.

Tables are usually heterogeneous in structure (Fig. 3.2a). For example, they can
have horizontal/vertical orientation, nested structure or headings that refer to more
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than one row or column. Although the XML output includes tables in (semi-)structured
forms, further normalization of the tables is required to query over them. Therefore, we
developed normalization rules based on table properties (e.g. captions, footers, column
headers, data types and abbreviations). We use the Schwartz and Hearst abbreviation-
expansion (S & H) algorithm to identify and expand all abbreviations found in table
headings and cell entries [87].

After the normalization step, each table has a single row of headings including
expanded abbreviations and each cell is identified by a pair of row/column indices.

Ontology-based concept identification and classification of table columns

QTM uses the Apache Solr search platform (version 6.2.1, [86]) to semantically annotate
biological entities and statistical concepts found in tables using domain-specific dictio-
naries or ontologies. In particular, the Solanaceae Phenotype Ontology (SPTO) [88] [89],
Plant Ontology (PO) [90] [91], Phenotypic Quality Ontology (PATO) [92] [93] and Trait
Ontology (TO) [94] were used to identify plant-specific phenotypic information whereas
Gene Ontology (GO) [95] and Sequence Ontology (SO) [96] were used to identify genotypic
information. Further, small chemical compounds were annotated using the Chemical
Entities of Biological Interest database/ontology (ChEBI) [97] [98]. Plant-specific genetic
markers and gene or transcript IDs were obtained from the Sol Genomics Network (SGN)
[99] [100]. STATistics Ontology (STATO) [101] was used to annotate the quantitative
(statistical) results of QTL mapping experiments.

Table columns were classified according to the column properties into three categories:
i) trait descriptors refer to a trait, phenotype or QTL in the column headings with
alphanumeric data type (using SPTO, PO, PATO and TO); ii) trait properties refer to
chemical compounds, genes, transcripts or genetic markers in all other columns with
alphanumeric data type (using ChEBI, GO and SO); and iii) trait values are columns that
contain exclusively numerical data types (using STATO).

Results generation and semantic interoperability

The last steps of the workflow involve extracting QTL statements from the trait tables
and writing the annotated results into a relational database (SQLite v3.11.0) [102]. The
database schema consists of six tables: ARTICLE, TRAIT_TABLE, ABBREVIATION,
QTL, COLUMN_ENTRY and CELL_ENTRY (see 6.1 in Supplementary Materials). In
addition, the results stored in the QTL table are written into a text file (CSV).

Furthermore, the extracted QTL data were transformed into semantically interopera-
ble RDF-based formats using the OpenRefine software [103]. The resulting RDF graphs
including the SQLite database and CSV files were deposited at the Zenodo repository
according to the FAIR (Findable, Accessible, Interoperable and Re-usable) Data guiding
principles [45] (doi:10.5281/zenodo.1215044, [104]).
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Performance evaluation and validation

Experimental design

We assessed the performance of the QTM tool using two manually annotated corpora
of 30 open access articles each. The first set contains QTL mapping studies of tomato
(Solanum lycopersicum) whereas the second set is focused on potato (Solanum tuberosum).
Although the presented version of the tool uses a tomato-specific dictionary to annotate
genes, transcripts and genetic markers, it can be adopted for use on other crop species.
QTM is expected to detect and semantically annotate biological entities such as genes
and markers in the set ‘tomato’. However, QTM can also perform well on other species.
For this, we use the second set of articles, i.e. set ‘potato’, for which QTM is expected to
detect QTL statements without annotating biological entities such as genes and markers.

By our manual curation, the set ‘tomato’ included 66 trait tables with 2326 rows, 292
abbreviations, 757 biological entities and 405 QTL statements whereas the set ‘potato’
included 71 trait tables with 1292 rows, 207 abbreviations, 200 biological entities and 196
QTL statements. Specifically, precision and recall measures were obtained at four distinct
levels of i) trait table, ii) abbreviation, iii) biological entities, and iv) QTL statement. Each
result set was classified into four disjoint classes of the confusion matrix (i.e. true positives
(TP), false positives (FP), true negatives (TN) and false negatives (FN)). Precision and
recall were calculated as TP / (TP + FP) and TP / (TP + FN), respectively.

Runtime and memory usage

The runtime and memory usage of the QTM tool were collected using three sets of articles
(N=10, 20 or 30) derived from the tomato-specific corpus.

Results

Workflow demonstration on exemplary articles

QTM takes one or more PubMed Central identifiers (PMCIDs) as input and returns a
list of QTL statements, further exemplified by an article (PMC4266912) in Fig. 3.2. In
this article, there are three trait tables (i.e. Table 1, Table 2 and Table 3) with a total 35
rows out of which only 8 were QTL statements (Table 3). The tool detected 7 out of 8 QTL
statements.

In each QTL statement, biological entities such as traits, genes and markers were
annotated using ontological terms. In the 7 QTL statements detected, there were 7 unique
traits linked to 7 genes and 7 SNP-based markers. In particular, QTM annotated a subset
of traits (3 out of 7) while it detected all genes and markers (7 out of 7).

Importantly, QTL statements from multiple tables can be combined using the ontology-
based annotation and the S & H abbreviation-expansion algorithm. For example, the state-
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Trait Names Trait IDs Trait associated Values Trait associated Properties Pmc ID

Ascorbic Acid CHEBI_22652 Chromosome: 3 

CV%:  17.33 

H2:   0.56

Mean:  33.59

Min:  22.40 

Max:  51.23

Regression Results P-value:  0.170

Regression Results R2: 0.001

Marker Index:  2383

Site bp:  57066578

Gene:Solyc03g112630.2.1

SolCapID:solcap_snp_sl_20936

PMC4266912

β-carotene TO_0002695 Chromosome:1 

CV%: 60.02

H2:  0.75

Marker Index: 2022

Max:  7.79

Mean: 1.99

Min:  0.11

Regression Results P-value:  0.050

Regression Results R2:  0.073

Site bp:  74314683

Gene:  Solyc01g087600.2.1

SolCapID:  solcap_snp_sl_17063

PMC4266912

QTL ID Trait URI Genomic Coordinates

PMC4266912_Table3_01 http://purl.obolibrary.org/obo/CHEBI_22652 SL2.50ch03: 63013333..63015506

PMC4266912_Table3_02 http://purl.obolibrary.org/obo/TO_0002695 SL2.50ch01: 82,552,670..82,557,905

list of trait tables

(b)

(c)

(a)

Figure 3.2: QTLTableMiner++ workflow exemplified on an article. a) Input article (PMC4266912)
with three trait tables (Table 1-3, only the top-two rows per table are shown), b) trait statements
identified in these tables, c) output list of QTL statements.
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ments including terms such as ascorbic acid (CHEBI:22652) and β-carotene (TO:000269)
were combined from the three tables (Fig. 3.2b). Note that both terms were abbreviated as
AsA and β-C in this article (Table 3). Finally, QTM outputs all QTL statements detected
in the article(s) (Fig. 3.2c).

Performance evaluation on both tomato and potato datasets

Detection of trait tables

The QTM tool recovered almost all trait-related tables for both manually curated corpora
(Fig. 3.3). All trait tables were correctly identified except Table 1 of PMC2652058
(in tomato) and Table 1 and Table 2 of PMC3023753 (in potato). In fact, these three
tables eluded detection due to missing words such as trait, QTL or phenotype in their
descriptions and/or bodies.

The detection of trait tables reached 100% precision for both sets whereas the recall
was slightly lower (98.48% for tomato and 97.18% for potato). Confusion matrices for the
detection of trait tables for set ‘tomato’ and set ‘potato’ are provided in supplementary
tables 6.4 and 6.8 respectively.

Detection of trait-specific abbreviations

Detecting abbreviations is a prerequisite for reliable annotation of biological entities (e.g.
traits, genes and markers) using standardized terms from domain-specific dictionaries or
ontologies.

QTM detected abbreviations in the trait tables found in 10 out of 20 articles in set
‘tomato’ and in 12 out of 19 articles in the set ‘potato’ (Fig. 3.4). As the S & H algorithm
is a rule-based approach, QTM performs in all or nothing (binary) manner. This means
that if the statements mentioning abbreviations were written in the algorithm required
formations (long form (abbreviation) or abbreviation (long form)), QTM was able to detect
all the abbreviations and vice versa.

QTM identified 159 out of 292 abbreviations (recall of 54.45%) for tomato and 147 out
of 207 abbreviations (recall of 71.01%) for potato in the trait tables. All abbreviations were
true positives (100% precision). Confusion matrices for the detection of abbreviation for
set ‘tomato’ and set ‘potato’ are available in supplementary tables 6.5 and 6.9 respectively.

Annotation of biological entities

QTM identifies and semantically annotates biological entities such as genes, genetic
markers, proteins, metabolites or traits. In the set ‘tomato’, QTM detected 468 out of 757
biological entities, of which 393 were TP, 82 were FP, and 288 were FN with a recall of
57.71% and a precision of 82.74%. Similarly, in the set ‘potato’ QTM detected 73 biological
entities out of the total 200. There were a total of 62 TP, 3 FP, 127 were FN. Here, the
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Figure 3.3: Bar graphs of the numbers of QTL tables detected per article for the manually curated
set ‘tomato’ (a) and set ‘potato’ (b) using the QTLTableMiner++.
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Figure 3.4: Bar graphs of the numbers of abbreviations detected per article for the manually
curated set ‘tomato’ (a) and set ‘potato’ (b) using the QTLTableMiner++.
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recall was low (35.53%) but the precision was high (95.89%). These results are shown in
the Figure 3.5. Confusion matrices for the detection of biological entities in tables for set
‘tomato’ and set ‘potato’ are provided in supplementary tables 6.6 and 6.10 respectively.

Detection of QTL statements

The main objective of QTM is to find QTL statements in tables. In the set ‘tomato’, QTM
detected 529 QTL statements while the actual number of QTL statements were only
405. There were a total of 398 TP, 136 FP and 32 FN. Here, there is an increase in the
number of FP statements detected due to the fact that QTM has difficulties in dealing
with columns with special characters. For example, in Table 1 of PMC4987366, QTM
reads column Genotype as a column with alphanumeric data type due to the presence
of characters ‘**’, and thereby associates traits with the given genotype. Nevertheless,
QTM performed with a precision of 74.53% and recall of 92.56% in set ‘tomato’. Similarly,
in the set ‘potato’ QTM detected 233 QTL statements while the actual number of QTL
statements were total 196. There were a total of 188 TP, 39 FP and 2 FN, thus QTM
performed with a high precision of 82.82% and a recall of 98.94%. These results are shown
in the Figure 3.6. Confusion matrices for the detection of QTL statements in tables for set
‘tomato’ and set ‘potato’ are provided in supplementary tables 6.7 and 6.11 respectively.

Table 3.1 tabulates the precision and recall obtained for each task described above.

Table 3.1: Benchmark results of the QTLTableMiner++ tool on different tasks.

Detection Precision (%) Recall (%)

Tomato Potato Tomato Potato
QTL tables 100 100 98.55 97.18
Abbreviations 100 100 54.45 71.01
Biological entities 82.74 95.89 57.71 35.53
QTL statements 74.53 82.82 92.56 98.94

Runtime and memory use

Table 3.2 summarizes the runtime and memory use of the QTM tool for three sets of
full-text articles (using a commodity hardware with Intel Core i5 CPU, 4GB RAM, 228GB
SSD, Ubuntu Linux 16.04.3 LTS). The results indicate that both the runtime and memory
use increase approx. linearly with the amount of input.
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Figure 3.5: Bar graphs of the numbers of biological entities detected in trait tables for the
manually curated set ‘tomato’ (a) and set ‘potato’ (b) using the QTLTableMiner++.
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Figure 3.6: Bar graphs of the numbers of QTL statements detected in trait tables for the manually
curated set ‘tomato’ (a) and set ‘potato’ (b) using the QTLTableMiner++.

Table 3.2: Scalability of the QTLTableMiner++ tool in terms of runtime and memory use.

Number of arti-
cles

Number of tables Number of
rows in tables

Runtime
(HH:MM:SS)

Max. memory
(MB)

10 42 1562 00:04:10 19
20 58 2090 00:06:56 23
30 66 2326 00:07:58 30

50



Discussion

QTM extracts QTL statements from tables of scientific articles as well as enables
(re)publishing these statements in machine-readable and semantically interoperable
RDF-based formats. Although it is possible to include review papers as an input for this
tool, more accurate information can be obtained in the primary-data papers. Review
papers frequently contain abbreviated references to the original papers and not the
primary data.

Although, this tool was used to extract trait tables from plant-specific literature, the
approach is also applicable to other domains. For example, a similar approach was used
by Mulwad et al. [105] and Milosevic et al. [106] to retrieve health-related indicators
about patients (e.g. the body mass index or BMI) from clinical literature. An important
component in the QTM workflow is the use of the RESTful API of the Europe PMC, which
provides open access articles in the (semi-)structured XML format. The resulting XML
output complies with the JATS schema, which is a de facto standard for archiving and
interchanging scientific articles. One drawback of using Europe PMC is that it is mainly
focused on the biomedical literature while the plant literature is not covered extensively
in this repository. As a result, we had to restrict our input set of articles (60 in total).
Recently, publishers such as Springer or Elsevier have released Web APIs, which provide
access to articles in JATS-compliant XML format. Therefore, our tool can be extended to
use these APIs in the near future.

In total, QTM detected 529 QTL statements associated with 73 traits in tomato and
233 QTL statements associated with 16 traits in potato. In the set ‘tomato’ the five
most common traits associated with the detected QTL statements were pH (SP:0000170),
fruit shape (SP:0000038), compound leaf (SP:0000177), fruit (SP:00000378), and stem
(SP:0000193). Whereas, in the set ‘potato’ the five most common traits associated
with the detected QTL statements were anthocyanin content (SP:0000016), fruit shape
(SP:0000038), fructose content (SP:0000386), stem strength (TO:0000051), and plant
fresh weight (TO:0000442).

QTM performed better in the detection of biological entities for the set ‘tomato’ in
comparison to the set ‘potato’ because the dictionaries used to annotate genes and genetic
markers were tomato specific. The QTM algorithm has two distinctive features: i) the
classification of table columns according to column properties into trait descriptors, trait
properties and trait values, as well as ii) the ontology-based concept identification and
annotation. We also present an approach to transform the extracted QTL information
into the form of triples (<subject> <predicate> <object>), where <subject> refers to a
trait descriptor, <predicate> is the column heading and <object> refers to the cell value
in that column. QTM outputs a list of QTL statements both in a CSV file and in a
SQLite database. Using the Linked Data approach, the resulting QTL statements can be
integrated with genome-sequencing and annotation data to develop new or improve upon
existing precision breeding programs. Combining the information available in scientific
literature and molecular biology databases will help in narrowing down the QTL regions
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to detect candidate genes associated with traits of interest.

Conclusions
QTM is a tool that aids in extracting QTLs from literature and in sharing these valuable
data assets in machine-readable and semantically interoperable formats, and as such can
help in formulating strategies for breeding crops of interest.
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Abstract

Introduction
Genetics research is focusing more and more on mining fully sequenced genomes
and their annotations to identify the causal genes associated with traits (pheno-
types) of interest. However, a complex trait is typically associated with multiple
quantitative trait loci (QTLs), each comprising of many genes, that can positively
or negatively affect the desired trait of interest. To help breeders in ranking
candidate genes, we developed an analytics platform called pbg-ld that provides
semantically integrated geno- and pheno-typic data on Solanaceae species.

Methodology
This platform combines both unstructured data from scientific literature and
structured data from publicly available biological databases using the Linked
Data approach. In particular, QTLs were extracted from tables of full-text articles
from the Europe PMC repository using QTLTableMiner++, while the genomic
annotations were obtained from the Sol Genomics Network (SGN), UniProt,
and Ensembl Plants databases. These datasets were transformed into Linked
Data graphs, which include cross-references to many other relevant databases
such as Gramene, Plant Reactome, InterPro and KEGG Orthology (KO), etc.
Users can query and analyze the integrated data through a web interface or
programmatically via the SPARQL and RESTful services (APIs).

Results
We illustrate the usability of pbg-ld for querying the genome annotations, com-
paring genome graphs, retrieving candidate genes and proteins for a trait of
interest using GO annotations and text-search, and by studying similar traits of
interests in 2 plant species.

Keywords: Prioritization of Candidate Genes, Semantic Web, Linked data,
Plant Breeding, QTLs
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Introduction

The availability of annotated reference genome assemblies for several crop species in-
cluding tomato [2], potato [3], brassica [7], and cucumber [8] has enabled plant breeders
and researchers to elucidate a trait’s linkage to a genomic location(s). Mining genome
annotations can help in identifying candidate genes that positively or negatively affect
a trait of interest, which plant breeders aim to improve. However, genome annotations
are commonly available across multiple databases and file formats (e.g., in the Generic
Feature Format (GFF) ), which hampers integrated data analyses.

Traditionally, plant breeders identified chromosomal regions using genetic markers
that are statistically associated with traits of interest. These genomic regions are called
quantitative trait loci (QTLs). A QTL region can easily contain thousands of genes
including those that negatively influence the trait of interest [107]. Therefore, detecting
the causative gene for breeding is of major importance. There are three major approaches
to address the challenge of candidate gene prediction in crop species: i) the analysis
of gene expression data or co-expression networks [9], ii) comparative genomics [10],
and iii) integrate information stored in scientific literature and in molecular biology
databases such as the ELIXIR Core Data Resources [37] (including ENA [32], Ensembl
Plants [35] and UniProt [34]) and the Sol Genomics Network (SGN) [38]. To address the
need for improved access to integrated plant data, we developed the Solanaceae Linked
Data platform (pbg-ld) [108] that combines QTLs from scientific literature and genome
annotations from public databases using the Linked Data approach [109]. Our approach is
to create a (semantic) web of data rather than that of hypertext (HTML) documents using
Uniform Resource Identifiers (URIs) and Resource Description Framework (RDF) [15]. A
URI is an HTTP-based resource identifier assigned to an entity whereas RDF is a generic
graph-based data model for describing entities and their relationships. In addition,
publishing data according to FAIR Data Principles [45] further increases the degree of
discoverability and (re-)usability of research data. Briefly, according to these principles
every data element should have a unique persistent identifier, with a searchable metadata
(“Findable”); all identifiers should resolve to (meta)data using an open standard protocol
(“Accessible”); the (meta)data should use a representation language that utilizes widely
accepted domain-specific ontologies (“Interoperable”); and finally, the data should be
well described with cross-references and with available license information (“Reusable”).
Further, FAIR Data Point is an exemplary implementation that allows data owners to
expose their data assets in compliance with the FAIR Data Principles via a RESTful API
[110].

In plant sciences, several controlled vocabularies and ontologies have been developed
to standardize domain-specific terms and/or represent the current knowledge of the
domain in a machine-readable form. For example, the Solanaceae Phenotype Ontology
(SPTO) [88], Crop Ontology [89], Plant Ontology (PO) [91], Phenotypic Quality Ontology
(PATO) [93] and Trait Ontology (TO) [94] are used to identify plant-specific phenotypic in-
formation while Gene Ontology (GO) [111], Sequence Ontology (SO) [96] and FALDO [112]
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are used to identify genotypic information. Similarly, the Chemical Entities of Biological
Interest database/ontology (ChEBI) [98] is focused on ‘small’ chemical compounds.

There are several plant-specific databases available that provide geno- and phenotypic
data. For example, Ensembl Plants is a widely used integrated resource on plant genomes.
Similarly, UniProt is a database of protein sequences, function annotations and proteomes
of various species including plants. Both Ensembl Plants and UniProt release their data
in RDF-based format. The Arabidopsis Information Resource (TAIR) [39] is a resource
to analyze and to compare molecular, biological, and genetical data of the model species
Arabidopsis thaliana. Further, the Sol Genomics Network (SGN) [38] provides genomic,
genetic and phenotypic information for members of the Solanaceae family. Plant Genome
DataBase Japan (PGDBj) [36] is an integrated web resource for plant genome-related
information from literature and public databases. However, the TAIR, SGN, and PGDBj
do not distribute their data in a semantically interoperable (RDF) format. The Planteome
[113] database provides gene annotations and phenotypes with the help of reference
ontologies such as PO, TO, GO and ChEBI. Planteome is a user-friendly tool to query
traits of interest, germplasm, and putative candidate genes. However, it lacks QTLs,
genetic markers and links to publicly available databases such as Ensembl Plants.

We present the pbg-ld platform that provides semantically integrated geno-/pheno-
typic data on Solanaceae species such as the (wild) tomato and potato species. The
resulting (linked) datasets are made available through a web interface or programmatic
services (SPARQL and RESTful APIs). The use of these data-access points is illustrated
in the results section. Pbg-ld is a plant-oriented resource that aids breeders in detecting
candidate genes for complex traits using the knowledge available in scientific literature
and public databases.

Data generation and ingestion pipeline

Figure 4.1 illustrates the data generation and ingestion pipeline used by the pbg-ld
platform. Geno- and pheno-typic data from three Solanaceae species: i) reference sequence
tomato (S. lycopersicum), ii) wild tomato (S. pennellii) and iii) the reference sequence
potato (S. tuberosum) is collected and integrated into this pipeline.

Data sources

To facilitate the integration of geno- and pheno-typic data of Solanaceae species, we used
data from, both, semi-structured as well as structured resources. Semi-structured data
resources include scientific articles in XML file format obtained from EuropePMC, or GFF
(General Feature Format) based text files, which consists of one line per genomic feature,
where each line contains about 9 columns of data. Data from these semi-structured
resources were classified as Non-RDF data and were subsequently transformed into a
(structured) RDF-data. On the other hand, structured data resources contained data
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Figure 4.1: Data generation and ingestion pipeline. All data originate from either non-RDF or
RDF sources. Several tools are used to retrieve and transform non-RDF data into RDF graphs:
QTM is used to extract tomato and potato QTLs from Europe PMC articles; OpenRefine is used
to transform the QTLs into RDF according to the specified data model. Similarly, SIGA.py tool
converts the genome annotations, as provided by the Sol Genomics Network (SGN) in GFF files
into RDF graphs with gene models and markers. In addition, the UniProt (proteomes) and
Ensembl Plants (gene models) distribute their data in RDF format. All RDF graphs including
domain-specific ontologies (in OWL) and database cross-references were stored and integrated
with Virtuoso RDF Quad Store. The resulting linked datasets are made available for queries and
analyses through data-access layer: i) Linked data browser, ii) SPARQL endpoint, iii) grlc-based
Web API [114] and iv) FAIR Data Point (FDP) metadata (RESTful) service.
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in the form of RDF structure, for example, genome annotation in Ensemble Plants and
Uniprot, as well as domain ontologies.

QTL

QTL studies have widely been published in scientific articles, particularly in tables or
supplementary materials. However, there is no established repository where experimental
data on plant-specific QTL studies can be submitted. Therefore, QTL information is
classified as non-RDF data and extracted from XML based scientific literature and
processed to RDF graphs using the QTL TableMiner++ (QTM) tool [61] version (v1.1.0)
[115]. QTM extracted 324 QTLs from a total of 21 Solanaceae–specific full-text articles
in the Europe PMC literature repository. 234 of these QTLs (i.e., 93 in tomato and 64
in potato) were associated with exact chromosomal locations based on flanking markers
while the remaining 90 QTLs were associated with peak markers and/or candidate genes.

SGN

SGN provides genome annotations in GFF files for Solanaceae species. The GFF files were
transformed into RDF graphs using the SIGA.py command-line tool (v0.5.1) [116] (sup-
plementary figure 6.2 shows the overall architecture). The gene models and the genetic
markers of (wild) tomato (S. lycopersicum and S. pennellii) and potato (S. tuberosum) were
downloaded from the SGN’s FTP server (ftp://ftp.solgenomics.net/genomes/).
For S. lycopersicum, the genome annotations comprising of Gene models, SGN markers,
SolCAP markers, were taken from GFF files of the ITAG 2.4 released on 23-02-2014
as input files [117]. For S.pennelli, the genome annotations comprising of Gene model
(spenn_v2.0) released on 27-08-14, and SGN markers released on 10-08-14 were taken as
input [118]. Similarly, for S. tuberosum, genome annotations of PGSC_DM (diploid/double
monoploid) version 4.03 released on 04-09-2013 on was taken as input [119].

Ensembl Plants and UniProt

Ensembl Plants is an genome-centeric integrated resource for plant sciences. Genome
annotations of S. lycopersicum (release ITAG2.4 genome annotation based on SL2.50
genome assembly) [120] and S. tuberosum (release PGSC_DM 3.0 genome annotation
based on SolTub3.0 genome assembly) were taken from the Ensembl Plants database
(release 33) [121] in RDF format. Similarly, from Uniprot, the proteomes of S. lycopersicum
[122] and S. tuberosum [123] in the RDF/Turtle format.

Ontologies

In this linked data platform, we integrated the following domain-specific ontologies: GO
[111], SPTO [88], Crop ontology [89], SO [96], FALDO [112], TO [94], UniProt Core [124],
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Semanticscience Integrated Ontology (SIO) [125], Relation Ontology (RO) [126], PO [91],
PATO [93].

Linked data deployment

OpenLink’s Virtuoso Universal Server (version 7.20.3217, open-source edition) was used
to store and connect the data graphs in the RDF Quad Store. The pbg-ld platform
including the associated RESTful web services, namely the grlc-based API for data and
the FAIR Data Point API for metadata, were deployed on the academic HPC Cloud
operated by SURFsara (using a virtual machine preinstalled with Ubuntu 18.04.1 LTS).
Pbg-ld pipeline is made as a modular and re-usable pipeline with the help of Docker [127]
and Ansible [128].

Data access & analysis

Pbg-ld provides access to the (meta)data through a web-based user interface (Virtuoso
Faceted Browser [129]) and programmatic interfaces such as SPARQL [130] and RESTful
APIs. Using the web-based user interface, a user can query the RDF triples in three
different ways through i) a free-text search box, ii) an entity label search box or iii) an
entity URI search box. There is a SPARQL endpoint provided for a user to write and
execute SPARQL queries on the RDF graphs available in the pbg-ld platform. Further,
with the help of grlc tool [114], we published customized RESTful APIs, built on the top
of pbg-ld’s datasets to provide easy to use programmatic access to our SPARQL endpoint.
Data consumers who do not know the SPARQL query language can use these APIs
to query the platform. This way grlc helps us hides the complexities or intricacies of
SPARQL. Supplementary Table 6.12 provides a list of RESTful APIs available in pbg-ld.
Lastly, a FAIR Data Point service is provided to expose machine-readable descriptions
(metadata) about datasets in the pbg-ld platform. To show a valuable use-case of the
pbg-ld platform we have developed exemplary Jupyter (IPython) Notebooks.

Results

Genome annotations on the faceted web browser

Pbg-ld allows the user to access and analyze data with the help of a facets browser. Figure
4.2 exemplifies a query for trait-gene associations using “fruit shape” as a search term.
Here, this term (partially) matches several standardized trait names in the SPTO and TO
ontologies (e.g., SP:0000038 [131] and TO:0002628 [132]). By selecting either one, pbg-ld
returns seven QTLs associated with the trait of interest ( i.e. “fruit shape” ). In Figure
4.2, one such a QTL is selected for further analysis, i.e. QTL:4321030_4_14 [133]. QTM
extracted this QTL from table 4 of a Europe PMC article PMC4321030 [134]. This QTL
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occurs on chromosome 11 is marker by flanking markers C2_At2g14260 and TG400 on
chromosome 11, therefore pbg-ld finds out the list of all the gene inside this QTL region.
In Figure 4.2, one such gene (Solyc11g038340.1) in QTL:4321030_4_14 is selected. Pbg-ld
web interfaces contain direct links to allow the user to further browse the annotation,
properties, and sequence of this gene at the SGN database, Ensembl Plants database,
UniProt. For example Figure 4.2, shows the sequence of this selected gene in the SGN’s
genome browser (JBrowser).
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Figure 4.2: Browsing trait-gene associations for the trait “fruit shape”, using the pbg-ld faceted
browser.
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Exemplary data queries via SPARQL and API
(I) SPARQL query to list QTLs, associated gene IDs and GO annotations re-

lated to an example trait “fruit shape” (SP:0000038).

Figure 4.3: Input and output of a sparql query to list QTL, associated gene IDs, and GO annotations
related to a trait (example fruit shape (SP:0000038).

Similar to the manually browsed query in Figure 4.2 with a user interface, Figure
chap4:Fig3 exemplifies a way to write the query of trait-gene associations. This
query yields the QTLs, and candidate genes with their GO annotations for the trait
fruit shape (i.e. represented in the SPTO ontology with the id SP:0000038). Here
GO annotations of a molecular function, or biological process are only retrieved.

(II) Input and output of a SPARQL query to list genes/proteins annotated
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with Gene Ontology (GO) terms that relate to both, “fruit” and “ripening”.
Searching for text matches (regular expressions) in the SPARQL query
has been done with the help of virtuoso’s bif:contains predicate.

Figure 4.4: Input and Output of a sparql query to count number of proteins in cultivated tomato
(S.lycopersicum) and its wild relative (S.pennellii) according to the SGN database.

SPARQL query in Figure 4.4 highlights a way to do textual search over the annota-
tions of genes/proteins. With the help of bag-of-words based regular expressions,
we query genes and proteins containing GO annotation with the words “fruit”
and “ripening”. The resulting output is the list of genes/proteins involved in the
biological process called fruit ripening ( i.e. represented in the GO ontology with
the id GO:0009835).

(III) An APIs based Comparison among tomato genome graphs
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Pbg-ld can be used to check data features, data consistency and data quality
across various biological databases. This can be done either by manually writing a
SPARQL query on the SPARQL endpoint of pbg-ld or accessing the countfeatures
API of pbg-ld, with the genomic graph as a parameter. For example, these cited URI
counts the genomic features annotated in the S. lycopersicum genome according
to Ensembl Plants [135] and SGN [136], and in the S. pennelli genome in SGN
[137]. We compare the differences between the genomic features of the tomato
graphs in a column chart in Figure 3. While studying the genomic features a.) S.
lycopersicum according to Ensembl Plants and SGN, it’s evident that there are a
total of 33785 protein_coding_genes in Ensemble Plants, whereas there are 34725
protein_coding_genes in SGN graph. There are about 940 unique genes in the
SGN database that have still not been mentioned in the Ensembl Plants database.
Furthermore, the results also highlight that genetic marker are included in SGN
but not in Ensembl Plants while the latter database contains RNAs. On the one
hand, where pbg-ld can be used to compare databases, pbg-ld can also be used to
compare genomic data of different species in the same family. S. pennellii is a wild
tomato species that is relatively distant from the domesticated S. lycopersicum.
Because of S. pennelli’s extreme stress tolerance, unusual morphology, and a
genome sequence 119 Mb more than S. lycopersicum, it is an important donor of
germplasm for the cultivated tomato. While comparing the genomic features b.) S.
lycopersicum in SGN vs c.) S. pennelli in SGN on Figure 3, it is depicted that the
number of genomic features in S.pennellii are averagely 1.5 times the number of
genomic features of than S.lycopersicum.

Comparitive genomics use-case: Using Pbg-ld to study tomato
fruit shape and tuber-shape

In this section, we exemplify the use of the pbg-ld endpoints (APIs) with a Jupyter
Notebook [51] to study the difference in the genetic mechanism underlying fruit shape in
tomatoes and tuber shape in potatoes.

Tomato fruits have a round shape while potato tubers can have both a round shape
as well as an elongated shape. The candidate gene Solyc10g076180 ( SlOFP20, a member
of the OVATE Family Protein (OFP) ) on chromosome 10 of the reference tomato genome
(Heinz 1706) is responsible for round fruits. However, this gene does not have an ortholog
in the reference potato genome (DM), which has very elongated tubers [138]. In this use-
case, first, we query and compare the QTL regions on chromosome 10 in tomato and potato.
This QTL region is associated with round shape in tomato fruits and predominantly
elongated shape in potatoes. We classify these genes in 3 tables a) genes that are unique
in tomato b) genes that are unique in potato c) genes that are common in both tomato
and potato (see Table 4.1). Further, we check the GO annotations as well as orthologs in
all these genes. 3 genes (Solyc10g076170.1, Solyc10g076190.1, Solyc10g076180.1) are
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present in class a) which indicates that they are unique in tomato. Out of these 3 genes;
Solyc10g076170.1 is an obsolete entry in and has been removed from UniProt and other
databases. Solyc10g076190.1 is a peroxidase gene (that is also common in class b) and
class c)) in our table and Solyc10g076180.1 is the only unique ovate family gene member
in this pool. Genes in class b) are all peroxidase genes and class c) contains both some
peroxidases and a lipid transport gene.

It is clear from our analysis that the candidate gene Solyc10g076180.1 does not
have any database entry, of an ortholog in the potato DM reference genome in the same
QTL region on Chromosome 10. However, with the help of our tool we tried to explore
this further, and retrieve a homolog based knowledge network for our candidate gene.
This homolog network is retrieved with a nested query, in which we first locate all
paralogs of Solyc10g076180.1 gene in the tomato genome and then find orthologs of
these genes in the potato genome (see Figure 4.6). With the help of this nested query
analysis, we were able to find 10 ovate OFP genes in potato, which were not mentioned
as orthologs to Solyc10g076180.1 in any database. Out of these 10 OFP genes in potato,
PGSC0003DMG400028155 is located on chromosome 10 in the region 56030393-56031156.
However, this region is 6.7Mb away from the studied QTL region and thus seems unlikely
to harbor the determinant candidate gene.
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Table 4.1: Table comparing genes in QTLs of (Tomato) fruit shape and (Potato) tuber
shape. Three classes represent (a) Genes unique in Tomato; (b) Genes unique in Potato (c) Genes
mapped in both tomato and potato. Each row contains a geneID, GO annotations, orthologs inside
QTL region, and orthologs outside the QTL regions. The query clearly depicts that only 3 genes are
unique in tomato i.e Solyc10g076190.1, Solyc10g076170.1, Solyc10g076180.1. Solyc10g076190.1
is a peroxidase genes, Solyc10g076170.1 is an obsolete gene entry according to UniProt database
and Solyc10g076180.1 is the ovate gene responsible for roundness in tomatoes.

Tomoto Genes GO annotations
Potato orthologs inside QTL 

region

Potato Orthologs outside 

the QTL region

Solyc10g076180.1 GO:0003677 [DNA binding];

GO:0045892 [negative regulation of transcription DNA-templated]; none none

Solyc10g076190.1

GO:0004601 [peroxidase activity];

GO:0005576 [extracellular region];

GO:0006979 [response to oxidative stress];

GO:0020037 [heme binding];

GO:0042744 [hydrogen peroxide catabolic process];

GO:0046872 [metal ion binding]; none

PGSC0003DMG400011948 

Solyc10g076170.1 none none none

Potato Genes GO annotations
Tomato orthologs inside 

QTL region

Tomato Orthologs outside 

the QTL Region

PGSC0003DMG400006679

GO:0004601 [peroxidase activity];

GO:0005576 [extracellular region];

GO:0006979 [response to oxidative stress];

GO:0020037 [heme binding];

GO:0042744 [hydrogen peroxide catabolic process];

GO:0046872 [metal ion binding]; none none

PGSC0003DMG400006680

GO:0004601 [peroxidase activity];

GO:0006979 [response to oxidative stress];

GO:0020037 [heme binding]; none none

PGSC0003DMG400006681

GO:0004601 [peroxidase activity];

GO:0006979 [response to oxidative stress];

GO:0020037 [heme binding]; none none

PGSC0003DMG400020795

GO:0004601 [peroxidase activity];

GO:0006979 [response to oxidative stress];

GO:0020037 [heme binding]; none none

Tomato Genes GO annotations
Potato orthologs inside QTL 

region

Potato Orthologs outside 

the QTL Region

Solyc10g076200.1

GO:0006869 [lipid transport];

GO:0008289 [lipid binding];

GO:0016020 [membrane];

PGSC0003DMG400040954 PGSC0003DMG400011955 

Solyc10g076210.1

GO:0004601 [peroxidase activity];

GO:0005576 [extracellular region];

GO:0006979 [response to oxidative stress];

GO:0020037 [heme binding];

GO:0042744 [hydrogen peroxide catabolic process];

GO:0046872 [metal ion binding]

PGSC0003DMG400020799;

PGSC0003DMG400020800

none

Solyc10g076220.1 

GO:0004601 [peroxidase activity];

GO:0005576 [extracellular region];

GO:0006979 [response to oxidative stress];

GO:0020037 [heme binding];

GO:0042744 [hydrogen peroxide catabolic process];

GO:0046872 [metal ion binding];

PGSC0003DMG400020799;

PGSC0003DMG400020800

none

Solyc10g076230.1

GO:0004601 [peroxidase activity];

GO:0006979 [response to oxidative stress];

GO:0020037 [heme binding]; PGSC0003DMG400020798 none

a) Genes uniquie in tomato 

 b) Genes unique in potato

c) Genes mapped in both tomato and potato
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Figure 4.6: A knowledge network to represent all homologs of Solyc10g076180.1 in tomato and potato.
Here tomato genes are in red color, while potato genes are in green color. Solid edges represent
paralogous relation, and dotted edges represent orthologous relation.
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Discussion
The main objective of developing the pbg-ld platform was to improve the FAIRness of
candidate gene identification in Solanaceae species by providing (semantically) integrated
genomics and QTL datasets available in public resources (i.e., UniProt, Ensembl Plants,
SGN and Europe PMC) from a central endpoint.

After selecting various datasets and information relevant to candidate gene discovery,
a critical step in the knowledge discovery process is the transformation of data into
a suitable data infrastructure. Biological data is complex and highly connected, for
example e.g. there is huge ambiguity in the names of genes, proteins, and transcripts,
hence semantic model with correct identifiers is required to differentiate them. Pbg-
ld addresses the challenges of providing a semantic layer over most used datasets for
candidate gene discovery in tomato and potato. A critical step in our approach was the
transformation of (semi-)structured or non-RDF data sources to inter-linked RDF graphs
using existing and newly developed tools such as the QTM and SIGA.py. Further, FDP
provides meta-data explanation, which makes the user aware of the originating graph(s)
to perform queries and interpret the result. Lastly, different data access points provide
flexibility for users who wish to analyze and/or visualize data on this platform.

Data sets are not static and constantly emerging over time. Pbg-ld combines open
data from different third party resources, like EuropePMC, SGN, UniProt and Ensemble
Plants. However, as these data sets are not static a significant improvement in Pbg-ld
could be to automate the process of regular updates of the data sets. Another improvement
in Pbg-ld could be to provide visualization of our interoperable data graphs as knowledge
graphs. Currently, Pbg-ld uses Openlinks virtuoso universal server’s faceted browser
to browse RDFgraphs from the RDF store. A data graph visualization that includes,
all relevant information available from the literature and databases, about a particular
entity, can be a nice user friendly tool to browse the information of interest.

To conclude, Pbg-ld is an integrated resource for Solanaceae species that provides
access to available knowledge about genome annotations in public databases and scientific
literature in a more robust way. This resource aids in the identification of candidate genes
for complex traits using available knowledge in the databases and literature.
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Abstract

Introduction
Predicting candidate genes for QTL regions is a key objective in plant genetics
and breeding. However, a single QTL region can contain many genes. Mining
candidate genes from such a QTL region could be done using existing knowledge
of structural and functional gene annotations. Here we present a seamlessly
integrative workflow for predicting candidate genes for metabolic traits of tomato
within QTL regions using our linked-data platform Pbg-ld, gene prediction
algorithms that use functional annotations and evolutionary analysis.

Results
We test this workflow on 5 QTLs related to metabolic traits in tomatoes. The
workflow was able to correctly predict candidate genes for 4 out of the 5 selected
QTLs. Hence, this use-case is an exemplary proof of concept study for using
such linked-data workflows for predicting candidate genes in QTL regions using
available knowledge.

Source code and Data: https://github.com/PBR/QTL-prioritisation
Keywords: Prioritization of Candidate Genes, Linked data, Plant Breeding,
QTLs
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Introduction

Tomato is one of the most consumed fruits in the world. The metabolic composition
of a tomato is directly associated with its nutritional value, taste, aromas, and quality
[49]. Metabolomic research studies in the past, have been able to predict functional
characteristics of metabolites in the life-cycle of a plant. For example, volatiles are known
to play an important role in the defense mechanism of plants against pathogens, where
they serve as airborne signaling molecules to induce a defense response in other plant
parts or neighboring plants [139]. Similarly, other metabolites like soluble solids (glucose,
fructose, and sucrose) contribute to the sweetness of a fruit [140]. Lycopene is a carotenoid
compound found in tomatoes which contributes to the nutritional value of a tomato and
the red pigment in tomatoes responsible for fruit-color [141]. Similarly, terpenoids play a
role in attracting pollinators [142].

While functional genomics research studies have tried to assess the structure and
function of genes and proteins that relate to the expression and concentration of metabo-
lites in plants, QTL-mapping research studies try to identify the genomic locations which
associate with the changes in the expression or concentration of a metabolite (the trait
of interest). However, it is still challenging to predict a causal or candidate gene which
is directly associated with the trait of interest. The size of a QTL region can vary enor-
mously depending on the number of markers used and the genome size of the plant under
investigation but easily can range from hundreds of kb to several Mb [143] and a single
QTL region can contain very many genes [107]. One way to mine candidate genes from
a QTL region could be done using the existing knowledge of structural and functional
annotations of genes. These genome annotations are mostly available across multiple
databases and file formats (e.g., in the Generic Feature Format or GFF), which hampers
integrated data analyses. Linked data approaches and semantic web technologies should
be used to integrate heterogeneous knowledge [144].

Big-data utilities like Solanaceae-centric Linked Data platform (Pbg-ld) provides an
interface to query genotypic and phenotypic data using available knowledge for tomatoes
and potatoes [145]. Pbg-ld contains knowledge from both unstructured data of scientific
literature and structured data of publicly available biological databases. Pbg-ld data
types include QTL data from EuropePMC [17], genomic annotations (i.e., gene models,
genetic markers and proteins) from the Solanaces Genomic Network [146], Ensembl
Plants [35] and UniProt [34], and domain specific ontologies like Gene Ontology, Trait
Ontology, Sequence Ontology and Solanace Phenotypic Ontology. Further, pbg-ld allows
easy data access by faceted browser (user friendly interface), SPARQL queries and restful
API. Data in pbg-ld is published according to FAIR Data Principles [45] to increase the
degree of discoverability and (re-)usability of the data. Therefore, pbg-ld supports genomic
analysis to predict candidate genes for complex traits in Solanaceous species.

Finding candidate genes within QTL regions for the trait of interest, using computa-
tional approaches is a major challenge in plant bioinformatics. Several tools have been
developed in the past that tried to prioritize candidate genes based on existing knowledge.
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QTLSearch is a software tool that searches for candidate causal genes in QTL studies by
combining Gene Ontology annotations across many species and leveraging hierarchical
orthologous groups [147]. QTG-Finder is a recently published article that uses a machine
learning model to prioritize candidate genes in using function annotation, co-function
network, and paralog copy number [148]. However, both these tools have been developed
in Arabidopsis thaliana and rice (Oryza sativa) and it is difficult to use and test these
tools in other species like tomato and potato. QTLSearch uses the HOGProp algorithm
that requires access to hierarchical orthologous groups available in OMA browser [149],
to score candidate genes based on trait-related GO terms. As the OMA browser data
graph is cross-referenced in Uniprot, which is part of pbg-ld, the QTLSearch algorithm
can be tested for tomato/potato data with the help of pbg-ld.

This study aimed to develop, illustrate, and analyze a seamlessly integrative workflow
that uses linked genomic-data and prioritization pipelines to predict candidate genes
within QTL regions for metabolic traits of tomato.

Workflow

Figure 5.1 illustrates a prediction to candidate genes workflow within a QTL region for
the trait of interest, using function annotations and evolutionary genomics data. Input to
this workflow is either a QTL region (containing physical location or a genetic location)
or a trait of interest. If the input parameter is a trait of interest, the Pbg-ld database
retrieves all QTL locations for that trait in tomato. This QTL information occurs in tables
of scientific literature and is compiled in Pbg-ld using the QTLTableMiner++ (QTM) tool
[61].

After receiving the QTL inputs, this workflow queries the set of all genes occurring
within this QTL region. For every gene, this workflow retrieves a set of all GO terms as
well as all orthologs and paralogs of these genes. These genome annotations are served as
input to the QTLSearch pipeline which uses the Hogprop algorithm. HogProp algorithm
assigns scores to every Gene within a QTL region. It uses GO terms which relate to the
trait of interest and GO terms which relate to the genes within a QTL region to assess the
distance of these functional annotations along gene phylogenies. This workflow has been
developed in a (IPython) Notebook. It is a modular framework in which data is fetched
from multiple data sources and can also accommodate new analysis modules as they are
being developed by our group or the scientific community.

Test-case for QTLs related to metabolic traits

To test the usability of our workflow in predicting candidate genes for metabolic traits, we
selected 5 QTLs for different metabolic traits (See Table 5.1). Out of the selected 5 QTLs
for metabolic traits, 3 QTLs which relate to the following traits, soluble solids, lycopene
beta-cyclase activity and phenolic compounds (2-phenylethanol, phenylacetaldehyde),
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Trait of Interest

Pbg-ld

Get QTLS

Get all genes in a QTL region

QTLSearch

Get Orthologs and 
Paralogs 

Get GO annotations

Ranking of all Genes within QTL region

Input

Data access

Prioritization 
Pipeline

Output

QTL region

Figure 5.1: A workflow to predict candidate genes in a QTL region for the traits of interest

have known candidates. Further, these candidate genes are already annotated with
related GO terms in publically available databases like UniProt. While, for one of the
QTL regions which relates to terpenoids, Terpene synthase is a known candidate gene,
however, Terpene synthase is not annotated with GO terms which show an association
with the trait of interest (i.e. terpenoids). The 2 GO terms related to this gene are DNA
binding and DNA methylation. Lastly, for the QTL region selected for volatile compounds
( i.e. 3-methylbuthanal, 3-methylbuthanol) there no well-known candidate genes in the
QTLs that had experimentally proven significance.
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Table 5.1: A selected set of 5 QTLs for metabolic traits in tomatoes. These 5 QTLs are used
as test-cases to analyse the prediction power of the underlying workflow

Traits of interest GO annotations Chromosome Location Candidate Genes References

Total soluble solids
(Brix)

GO:0006094,
GO:0046370,
GO:0046369,
GO:0005985,
GO:0015770

9 3474710 Lin5 [150]

Carotenoid compounds
(Lycopene beta-cyclase
activity)

GO:0045436,
GO:0016117 6 Solyc06g073470 Solyc06g083850.3 Soly06g074240.1 [151]

Polyphenolic
compounds (2-
phenylethanol &
phenylacetaldehyde)

GO:0016747,
GO:0102387,
GO:0018449,
GO:0004029,
GO:0008957,
GO:1990055,
GO:0050177,
GO:0018814

8 55068565-63267130 LePAR [152]

Terpenoid compounds
GO:0003677,
GO:0045893 1 86142248-86467672 Terpense synthase [142]

Volatile compounds
(3-methylbuthanal,
3-methylbuthanol)

GO:0046568,
GO:0018455,
GO:0052676

3 69685329-71362039 ? ?

Results & Discussion
This section summarizes the results and discusses the usability of our approach in
detecting candidate genes with QTLs regions for the following traits of interest.

Total Soluble solids
One of the most extensively studied metabolic traits in tomato is the total soluble solids
content in fruits (i.e. TSS or Brix) [150]. Brix is mainly made of Glucose, Fructose, and
Sucrose and therefore, we selected 5 GO terms related to these metabolites and Brix
trait (see Table 1) and fed it to the QTLSearch pipeline in our workflow. Previously
known studies have identified multiple QTLs that are associated with the Brix trait in
tomatoes [134]. Out of the many know QTL locations, the most significant QTL is located
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of chromosome 9, containing Lin5 as the popularly known candidate gene for Brix trait
[150]. Table 5.2 highlights the top 10 genes predicted from our workflow for the Brix QTL
region from 3374710 to 3574710 on Chromosome 9. Lin7 and Lin5 were the top predicted
genes related to this trait. Both these genes are from a homologous family and are known
to be associated with Brix. In the list of top 10 genes, these 2 genes score significantly
higher than all other genes. We conclude that our pipeline performed well to predict the
candidate genes for this QTL.
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Carotenoid compounds

Carotenoids compounds are the primary determinants of tomato fruit color [153]. Carotenoids
exert a broad range of functions which associate to photosynthesis, the formation of pig-
ments, antioxidant activities, and being precursors to signaling molecules, including
volatiles [51]. Lycopene is a major carotenoid in tomato [154]. Lycopene occurrence with
a matrix of many bioactive components, like vitamin C, vitamin E, other carotenoids
(a-carotene, beta-carotene, gamma-carotene, lutein), and flavonoids are associated with
the color of a tomato. Lycopene beta-cyclase is a key enzyme occurring at the branch
point of the carotenoid biosynthesis pathway and responsible for converting lycopene
to beta-carotene. Lycopene beta-cyclase activity is also related to the total carotenoid
content accumulated in the tomato fruit. The major QTL region which is related to
Lycopene beta-cyclase activity is found to be located on Chromosome 6 between the
region 45280179-49150528 [155]. Here we analyzed the prediction of candidate genes
for Lycopene beta-cyclase activity with the help of our developed workflow. 2 GO terms
that relate to lycopene beta-cyclase activity were selected for inclusion in our workflow.
Previous known studies suggest that lycopene cyclase (LCY) is a known candidate gene
related to this trait. In some databases, lycopene cyclase (LCY) is also annotated as
neoxanthin synthase (NSY) as these are genes that are closely related carotenogenic
enzymes belonging to the same family. Table 5.3 shows the results from the workflow,
containing the top 10 genes predicted for this QTL region on Chromosome 6. NSY was
ranked at the top of the list and has a score significantly higher than all other genes.
Here also, we can conclude that our workflow performed as expected.

2-phenylethanol & phenylacetaldehyde

Phenolic derivative compounds like 2-phenylethanol, phenylacetaldehyde have a great
impact on the aroma of a tomato [152]. Several QTL locations related to phenolic com-
pounds have been identified in the past out of which, a major QTL region on chromosome
8 mapped by the markers, TG330-CT77 and TG330-CT148 is associated with the accumu-
lation of 2-phenylethanol and phenylacetaldehyde (having genomic coordinated 55068565-
63267130) [156]. Additionally, two putative proteins, 2-phenylacetaldehyde reductases
proteins (LePAR1 and LePAR2) are known candidates, which catalyze the conversion of
2-phenylacetaldehyde to 2-phenylethanol [157]. Both these proteins are members of a
reductase/dehydrogenase family. Table 5.4 illustrates the top 10 genes predicted from
our pipeline for these phenolic compounds on Chromosome 8. Solyc08g068190.2 was the
top predicted gene related to this trait. Although we are not sure if this gene is the same
as LePAR1 and LePAR2, this gene belongs to the same aldehyde dehydrogenase family.
Therefore our workflow could detect the causal gene within this QTL region.
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Terpenoids

A major QTL related to Terpenoids has been mapped on chromosome 1 with the genomic
coordinates of 86142248-86467672 [158]. Proteins of the Terpene synthase (TPS) family
and TPS gene are the expected candidate genes associated with Terpenoids. 5 of the
TPS-a subclade genes (TPS31, TPS32, TPS33, and TPS35) occur in close proximity within
this QTL. Table 5.5 highlights the top 10 genes predicted from our pipeline for this QTL.
Our results suggest that the gene Solyc01g095030.2, which is a MYB transcription factor,
is the causal gene for this QTL region. This is possibly the wrong prediction. The reason
for our pipeline to give a wrong prediction here could be that there is no term present in
the GO ontology that directly related to Terpenoids. Further, because of this missing GO
annotation terms, Terpene synthase is not been well annotated with its function, which
makes it difficult for our workflow to detect it as a high ranking gene for the Terpenoids
trait.

Volatile compounds (3-methylbuthanal, 3-methylbuthanol)

Volatile compounds like 3-methylbuthanal, 3-methylbuthanol influence the flavor, sensory
changes, and defense mechanism of tomato fruits [159]. A major QTL related to the
volatile compounds (3-methylbuthanal, 3-methylbuthanol) has been mapped on chromo-
some 3 with the genomic coordinates of 69685329-71362039 [160]. However, it is not
known which candidate gene in this QTL is responsible for changes in the concentration
of these volatile compounds. Our results suggest that the lactate dehydrogenase (LDH)
gene is possibly a candidate gene in this trait.

Out of the total 5 QTLs, our workflow performed significantly well in detecting
candidate genes for the QTLs of soluble solids, lycopene beta-cyclase activity, and phenolic
compounds. Our workflow did not perform well in the detection of candidate genes within
the QTL for terpenoids on chromosome 1. This is most probably due to the fact that
this QTL region is not well annotated, and there are no GO terms related to Terpenoids.
Lastly, our workflow predicts a candidate gene called LDH, for the previously unknown
QTL region associated with volatile compounds.

QTLSearch, a prediction pipeline for candidate genes in QTL regions is based on
existing knowledge and evolutionary data (orthologs and paralogs). While the perfor-
mance of QTLSearch is high with well-annotated data, it fails to perform well in detecting
candidate genes for QTL regions where little is known. Hence, it’s still very challenging
to infer about candidate genes with a less annotated QTL region.

Conclusions

Linked-data platforms like Pbg-ld can help in accessing, querying and analyzing genomic
data for Solanaceous species. This platform provides access to available knowledge about
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genome annotations in public databases and scientific literature. This tool can robustly
be used with other candidate-gene prediction pipelines.
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Chapter 6
General discussion and future
prospects
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To feed the several billion people living on this planet, efficiency and precision in
breeding, of new crop varieties having more yield, disease resistance, and stress tolerance
is important [161]. Food demands are expected to increase by 50% in 2030 [162]. Tradi-
tional crop breeding activities are still based on phenotype selection, which is a laborious
and time consuming effort cannot often generate new cultivars quickly in response to the
required traits [163]. Recent advances in biotechnology and genomics data science have
the potential to accelerate and precise breeding programs greatly. However, molecular
and genomic data sets of a crop species are often distributed over multiple independent
data sources and scientific literature, and thus there is a need to semantically collect,
organize and integrate information from these different kinds of information resources.
This research focuses on the objectives of integrating heterogeneous genomic data of
Solanaceae species for knowledge discovery. To objectively prioritize the selection of can-
didate genes for the traits of interest, this research can help in formulating data-driven
algorithms that search published evidence from the wealth of available data. Thereby,
it addresses the needs of scientists to efficiently explore and compare the wealth of ge-
netic, genomic, and phenotypic information available in the literature, and the biological
databases. Combining this information narrows down the genomics regions (QTL regions
or the list of candidate genes) which are associated with traits of interest. This study can
be of great value in developing or improving future precision breeding programs.

Genomic knowledge discovery is often confronted by the challenges of data integra-
tion from a multitude of independent databases and research articles. For discovering
candidate genes with the help of large scale data integration, there is a need to organize
candidate data resources according to the FAIR data principals. The core development
in this research provides a linked data platform that semantically organizes and inte-
grates genotypic and phenotypic data on Solanaceae species according to these principals.
This progress in digital science helps genomic datasets to be more findable, accessible,
interoperable and reusable.

Complimentary to our developments, some similar plant-specific software and databases
provide genotypic and phenotypic data sets in a semantically integrated way. KNET-
Miner is an open source software that integrates plant-specific biological data sets into a
knowledge graph[164]. These biological data sets contain information related to genes,
biological pathways, phenotypes and publications for many important crop species like
wheat, barley, potato, tomato, maize, poplar, and brassica. Additionally, KNETMiner
has an evidence-based gene ranking algorithm that ranks and visualizes this integrated
data based on gene annotations. Although, KNETMiner provides integrated data sets
for many important crops, the quality of data related to genome annotations for some
crops like tomato, is not at par with the data published in legacy databases. Similarly,
Planteome database [113] provides gene annotations and phenotypes with the help of
reference ontologies such as PO, TO, GO and ChEBI. Planteome is a user-friendly tool
to query traits of interest, germplasm, and putative candidate genes. However, it lacks
QTLs, genetic markers and links to publicly available databases such as Ensembl Plants.
Therefore, our linked data platform is a unique resource for Solanaceae species that
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provides access to available knowledge about genome annotations in public databases
and scientific literature.

Knowledge discovery from scientific articles is often hampered by the unstructured,
human-readable form of textual information. Textual information is not machine-
readable, hence, difficult for machines to process and analyze information from it. Natural
language processing(NLP) or text mining, renders textual information to be computation-
ally accessible. In this research, we focused on two key challenges of knowledge discovery
from scientific articles. Firstly, we developed a supervised NLP model, to extract a knowl-
edge network of genotypic-phenotypic associations from sentences of scientific articles.
Secondly, we developed QTLTableMiner++(QTM), a table mining tool that extracts and
semantically annotates QTL information from tables of these articles. A huge amount
of scientific information is available only in scientific literature, this study is helpful to
process and analysis information from scientific literature [165].

Another major achievement of this research is the mining and construction of,
genotype-phenotype based knowledge networks from scientific literature with the help
of IBM Watson. A knowledge network here is defined as a data structure of three data
nodes, consisting of two biological entities and a relationship between them. With the
help of these knowledge networks, we are able to capture heterogeneous, complex and in-
terconnected biological information represented in scientific literature as structured data,
which is easily readable by both humans and machines. Hence, the developed supervised
NLP model to capture knowledge from scientific literature into knowledge networks can
be used by the scientific community to convert unstructured data to structured data.

Lastly, data integration and data reusability are two different yet strongly interlinked
concepts. Data integration is the concept to connect modular data nodes with each other
for a particular study. Reusability is the quality of those modules, for being redeployable
and reusable building blocks for other studies [166]. Pbg-ld, the linked data platform
developed by us, provides data for seamless integration with other data sets and analytical
pipelines. This is well illustrated in Chapter 5 of this thesis, where we use data from the
Pbg-ld and the OMA browser to prioritize candidate genes within QTL regions. Hence,
both the above mentioned concepts of data integration and data reusability, are addressed
in this research study.

Future Prospects
Some directions in which future research developments can be focused upon are presented
below.

Precision Agriculture and Farm data train:
The ultimate goal of this research and other similar researches in the agricultural

section is to produce more crops using fewer resources while reducing any negative
effects on the environment and society. Improvement in data handling and upcoming
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technologies are resulting in the emergence of precision agriculture. Just like precision
medicine, where doctors choose an optimal treatment for patients based on a combination
of data sources (e.g., a DNA test and clinical data). In precision agriculture, a farmer
would be able to choose an optimal strategy based on a concoction of various data studies
(e.g., omics data, environmental conditions, weather conditions) or a breeder would be
able to make better phenotypic calculations, with the help of additional data collection
from the farm. For example, estimating yield stability from larger data sets of numerous
fields is better than, estimating from a single controlled field experiment.

The biggest challenge towards this objective is that of data integration. FAIR data
principles lay the foundation in which each data node should be published. However,
an important step for making data FAIR is to define a set of metadata elements that
formulate a set of minimal information checkpoints that a data provider should add to
his or her data to be FAIR, for example, BrAPI defines minimum standards for plant
breeding applications [167]. Meta-data should be rich, standardized and collected from
the source in lines with FAIR principles. Once the meta-data is defined, collecting various
forms of agriculture data becomes more feasible with a standardised and usable way.
Farm Data Train is a research project that has a wider scope of establishing a shared
infrastructure for connecting various information nodes of agricultural data, by making
every data node FAIR. Decision making for managing a farm usually depends on data
from various independent resources. This data is not reusable as it is produced and
managed by either the manufacturing company of various farm machines or farmers
itself. By making every data node FAIR, this research project establishes a distributed
and federated infrastructure that could enable the use and the reuse of FARM data for
the benefit of farmers and crop breeders. In the prototype architecture of this project,
every data node is called a farm-station, which publishes data with FAIR data principles.
The data-access rules in between two stations are called a farm-track, while farm-trains
are the analytical pipelines that communicate between 2 farm-stations. In this way, the
designed digital infrastructure ensures every data governing body to manage, safeguard,
and share their data with other stakeholders.

Using k-mers for better prediction of candidate genes for traits:
Prediction of correct candidate genes or genetic loci that are associated with the traits

of interest is an important issue for both plant breeders and researchers. Most meth-
ods which use read mapping, rely on the availability of a reference genome. However,
using other data-sets like using Whole Genome Sequence (WGS) reads directly without
alignment can also have several advantages. Many non-model crop species or complex
polyploid species do not have a reference genome available yet. Additionally, even if a
reference genome is available, the assembly quality, experimental conditions, or complete-
ness of the reference could be sub-optimal and effect read mappings and genetic analysis
in further experiments. Hence, reference genome based approaches for genetic analysis
and crop improvement can cause limited and incomplete results [168]. Working directly
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with WGS reads, for example use of subsequences (k-mers) instead of the full reads
allows to bypass sequencing errors in the reads and allows unambiguous comparisons
between samples thanks to their invariable length. This has been well illustrated in the
prediction of Sen3 markers for wart disease resistance in potatoes [169], with the help
of Comparative Subsequence Sets Analysis (CoSSA) workflows. Having WGS data from
an experiment as linked-data graphs in Pbg-ld can make CoSSA workflows more robust,
efficient and combinable with other knowledge base data sets.

Machine-readable scientific articles prepared for NLP:
An important step to improve NLP based knowledge discovery from scientific articles,

is to use machine readable input file formats for these articles. This step provides data
clean from the source and ready to be processed for NLP. Although scientific articles are
distributed in PDF, it is inconvenient to use this file format for automated information
extraction as they lack machine readability and a logical structure specifying which
content constitutes a paragraph, table, figure, header, footer, etc. Therefore, even if
massive amounts of unstructured data are held in the form of PDF documents, automated
extraction of sentences, tables or figures is very challenging. Similarly, HTML web pages
are also used for the distribution of scientific articles. However, HTML files only represent
a layout of a web page and are not focused on describing data or the meta-data provided
in this resource. QTM uses XML files as input as they represent information in a logical
structure that is machine-readable. The Europe PMC repository provides full-text open
access articles in the XML format. One drawback of using Europe PMC is that it is mainly
focused on the biomedical literature while the plant literature is not covered extensively
in this repository. However, publishers such as Springer Nature or Elsevier have released
web based APIs, which provide access to their articles in XML format. Currently, these
XML files only make the meta-data of a scientific article machine readable. A significant
improvement in this could be to have biological entities pre-annotated in the text of these
articles itself. This would facilitate knowledge mining over scientific literature, with
the need of doing Named Entity Recognition over it. The more the input data is clean,
semantic and machine readable from the source, the easier it is to work with it.

A key challenge in today’s research is also the accessibility and sharing of supporting
data for a research article [170]. In the future, scientific articles and their supporting
data should be more machine-readable and FAIR. This will allow users of that article to
analyze, test and query the results of an article in a better way.

Scaling up NLP based genotypic-phenotypic knowledge extraction:
In this research, IBM Watson was used in the development of a supervised NLP model

which can extract knowledge networks containing genotypic-phenotypic associations
related to potato tuber flesh color, from the scientific literature. However, due to limited
time availability, only 1 supervised NLP model was trained with articles related to tuber-
flesh color. Hence, this model is capable of hunting genotypic-phenotypic associations
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related to tuber flesh color, but will not perform well in other plant species or traits.
However, further training of these supervised NLP models should for sure overcome this
problem and should enable the establishment of a system that can search for genotypic-
phenotypic association for any trait across public databases, patents, and scientific
literature. This system can be complementary to the Watson for drug discovery system,
which mines drugs related associations with the help of many NLP models that search
through vast amounts of textual data in the form of laboratory data, clinical reports,
patents and scientific publications [171].

Using QTM algorithm over supplementary data of an article:
QTM tool works only on the tables from the main-text of an article. However, data

related to QTL studies are also published in supplementary materials of an article.
Therefore, it is important to extract data from QTL studies from supplementary materials
as well. If supplementary tables of an article are also available in XML formats, QTM
can easily address this challenge.

Including data from other reference genomes species in pbg-ld:
Pbg-ld currently contains the gene models and the genetic markers based GFF files of

reference tomato genome (S. lycopersicum), wild tomato ( S. pennellii ), and the reference
sequence potato ( S. tuberosum ). However, other than these genomes, the SGN database,
for instance also includes GFF files from other Solanaceae and closely related genomes,
such as reference genome of Pepper (Capsicum annuum) [172], Eggplant (Solanum
melongena L.) [173] etc. Converting these GFF files to RDF graphs and adding then
to the infrastructure of Pbg-ld improves its power to do more comparative genomics.
Nevertheless, a big challenge in doing this type of comparative genomics using linked-
data knowledge graphs is to have the mapping of entity (genes, proteins, etc) identifiers
among these various species. There is a chance of having different identifiers in two
related species, for example, genomes of the reference sequence potato S.tuberosum and
wild type species M6 have both been sequenced, however, both use different sets of
identifiers and the mapping of genes between these species is not available. However,
having the data about cross references in these genes for both the genomes can give us
better insights into underpinning certain gene functions with comparative studies.

Automatic data production and updates in Pbg-ld:
Currently Pbg-ld combines open data from different third party resources, like Eu-

ropePMC, SGN, UniProt and Ensemble. A significant improvement in Pbg-ld could be to
automate the data production and have regular updates. For example, QTL information
in Pbg-ld, is extracted from tables of scientific articles in EuropePMC via the QTM tool.
However, QTL data graphs are static and require manual updates. Ideally, the QTL
data graph should be updated automatically, whenever a new article of QTL studies is
published in EuropePMC. A researcher is always interested in retrieving the most newly

90



published scientific articles in the domain of his/her research interests. Further, introduc-
ing Pbg-ld user profiles and notifying users about new data sets with alert functionality
to provide information about the most recently updated data sets can enhance usability
substantially.

Plugin for visualization of semantic knowledge networks:
Pbg-ld uses Openlinks virtuoso universal server’s faceted browser to browse RDF

graphs from the RDF store. This faceted browser displays all semantic triple related to
an entity on multiple webpages. However, genome biologists prefer to visualize existing
knowledge extracted from published literature and databases, in the form of knowledge
networks [174]. A Cytoscape [72] based plugin or a BioJS component [175] for having
an interactive visualization of biological knowledge networks can be a big asset with the
pbg-ld’s faceted browser.

Conclusions

To conclude, this research provides knowledge discovery tools and an in-silico genomic
data infrastructure, which integrates data from molecular databases and scientific liter-
ature. This research facilitates the prediction and prioritization of candidate genes for
the traits of interests as well as contributes towards designing a precise and improved
breeding program.
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Supplementary results

Figures

Chapter 3: QTLTableMiner++: semantic mining of QTLtables in
scientific articles

Figure 6.1: ER diagram of the QTM database
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Chapter 4: Solanaceae Linked Data platform

Figure 6.2: SIGA.py software architecture
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Tables

Chapter 2: Extracting knowledge networks from plant scientific
literature: Potato tuber flesh color as an exemplary trait

Table 6.1: List of 34 articles used in training set for IBM Watson

Index article title year Reference

1
Genes driving potato tuber initiation and growth: identification
based on transcriptional changes using the POCI array.

2008 [176]

2
From QTL to candidate gene: Genetical genomics of simple and
complex traits in potato using a pooling strategy.

2010 [177]

3
Visualization of differential gene expression using a novel method
of RNA fingerprinting based on AFLP: Analysis of gene expression
during potato tuber development.

1996 [178]

4
Temporal dynamics of tuber formation and related processes in a
crossing population of potato (Solanum tuberosum).

2003 [179]

5
Segregation of total carotenoid in high level potato germplasm and
its relationship to beta-carotene hydroxylase polymorphism.

2006 [50]

6
Unravelling enzymatic discoloration in potato through a combined
approach of candidate genes, QTL, and expression analysis.

2007 [180]

7
The Metabolic and Developmental Roles of Carotenoid Cleavage
Dioxygenase4 from Potato.

2010 [181]

8
RFLP maps based on a common set of clones reveal modes of
chromosomal evolution in potato and tomato.

1988 [182]

9
Flavonoid profiling and transcriptome analysis reveals new
gene–metabolite correlations in tubers of Solanum tuberosum L.

2010 [183]

10
Silencing of beta-carotene hydroxylase increases total carotenoid
and beta-carotene levels in potato tubers.

2007 [184]

11
Metabolic Engineering of Potato Carotenoid Content through
Tuber-Specific Overexpression of a Bacterial Mini-Pathway.

2007 [185]

12
Metabolic engineering of high carotenoid potato tubers containing
enhanced levels of beta-carotene and lutein

2005 [186]

13
Genetic Engineering of a Zeaxanthin-rich Potato by Antisense
Inactivation and Co-suppression of Carotenoid Epoxidation.

2002 [187]

14
Overexpression of zeaxanthin epoxidase gene enhances the sen-
sitivity of tomato PSII photoinhibition to high light and chilling
stress.

2008 [188]

15 Carotenogenesis during tuber development and storage in potato. 2004 [189]

16
Regulatory control of high levels of carotenoid accumulation in
potato tubers.

2011 [190]

Continued on next page
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Table 6.1 – continued from previous page
Index article title year Reference

17
Inheritance of Carotenoid Content in Tetraploid × Diploid Potato
Crosses.

2011 [191]

18
Effect of cultivar, location and method of cultivation on the content
of chlorogenic acid in potatoes with different flesh colour.

2013 [192]

19
Degradation kinetics and colour of anthocyanins in aqueous ex-
tracts of purple- and red-flesh potatoes (Solanum tuberosum L.).

2007 [193]

20
Effect of peeling and three cooking methods on the content of
selected phytochemicals in potato tubers with various colour of
flesh.

2013 [194]

21
Differences in anthocyanin content and antioxidant activity of
potato tubers with different flesh colour.

2011 [195]

22
Effects of postharvest curing treatment on flesh colour and phenolic
metabolism in fresh-cut potato products.

2015 [196]

23
Influence of flesh colour, year and growing area on carotenoid and
anthocyanin content in potato tubers.

2013 [197]

24
Effect of natural and growing conditions on the contentof phenolics
in potatoes with different flesh colour.

2010 [198]

25 Orange Flesh Trait in Potato: Inheritance and Carotenoid Content. 1993 [199]

26
Tagging quantitative trait loci for dormancy, tuber shape, regu-
larity of tuber shape, eye depth and flesh colour in diploid potato
originated from six Solanum species.

2008 [200]

27 Genetic analysis of pigmented tuber flesh in potato. 2009 [201]

28
Inheritance of anthocyanin pigmentation in the cultivated potato:
A critical review.

1991 [202]

29
Antioxidant activities, phenolic and β-carotene contents of sweet
potato genotypes with varying flesh colours.

2007 [203]

30 Carotenoid Content and Color in Diploid Potatoes. 2001 [204]

31
Metabolic engineering of potato tuber carotenoids through tuber-
specific silencing of lycopene epsilon cyclase

2006 [205]

32
Enhancing beta-carotene content in potato by rnai-mediated silenc-
ing of the beta-carotene hydroxylase gene.

2007 [206]

33
Genome-wide QTL and bulked transcriptomic analysis reveals new
candidate genes for the control of tuber carotenoid content in potato
(Solanum tuberosum L.).

2014 [207]

34
The Incidence and Effect on Total Tuber Carotenoids of a Recessive
Zeaxanthin Epoxidase Allele (Zep1) in Yellow-fleshed Potatoes.

2012 [208]
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Table 6.2: Confusion matrix for displaying the entity detection per article for the full
training set of 34 articles. Here precision was 0.9765, recall was 0.8891 and F1 score
was 0.9307

Document ID Total entity per article TP FP TN FN
10.1007/s10142-008-0083-x 188 182 1 0 5
10.1186/1471-2164-11-158 280 248 5 0 27
10.1046/j.1365-313X.1996.9050745.x 126 113 0 0 13
10.1111/j.1744-7348.2003.tb00284.x 289 275 2 0 12
10.1007/BF02872013 148 140 5 0 3
10.1007/s00122-007-0560-y 221 220 0 0 1
10.1104/pp.110.158733 303 294 5 0 4
ISBN: 0016-6731 38 32 0 0 6
10.1093/jxb/erp394 298 278 9 0 11
10.1186/1471-2229-7-11 200 179 2 0 19
10.1371/journal.pone.0000350 230 225 1 0 4
10.1093/jxb/eri016 293 288 3 0 2
10.1006/mben.2002.0234 253 249 1 0 3
10.1111/j.1399-3054.2007.01016.x 257 187 44 0 26
10.1093/jxb/erh121 292 283 6 0 3
10.1111/j.1365-3040.2011.02301.x 375 355 14 0 6
10.21273/JASHS.136.4.265 275 244 19 0 12
10.17221/460/2013-PSE 128 122 1 0 5
10.1016/j.foodchem.2005.11.002 143 99 0 0 44
10.1016/j.foodchem.2012.11.114 359 232 3 0 124
10.17221/265/2011-PSE 222 144 5 0 73
10.1016/j.foodchem.2014.08.011 257 206 10 0 41
10.1016/j.jfca.2013.07.001 271 247 2 0 22
10.17221/49/2010-PSE 168 126 3 0 39
10.21273/JASHS.118.1.145 195 142 3 0 50
10.1111/j.1439-0523.2008.01420.x 139 134 0 0 5
10.1007/s00122-009-1024-3 99 66 6 0 27
10.1007/BF02853712 23 20 0 0 3
10.1016/j.foodchem.2006.09.033 220 132 3 0 85
10.21273/JASHS.126.6.722 222 181 2 0 39
10.1186/1471-2229-6-13 272 218 0 0 54
10.1007/BF02986245 274 266 1 0 7
10.1007/s00122-014-2349-0 340 309 1 0 30
10.1007/s12230-012-9250-7 152 136 1 0 15
Total 7550 6572 158 0 820
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Table 6.3: Summary table of the single-year difference in connections between flesh
color and its eventual neighbors.

Additional file 5 – Summary table of the single-year difference in connections between flesh color and its 

eventual neighbors 

 

2009→2010 

flesh color-like nodes 
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CCD 3→1 x→3 6→3 x→3 x→1 x→2 3→1 

CHY 2 x→1 5→3 x→2 x→3 x→3 2→1 

DXS 1 x→3 5→3 x→3 x→3 x→3 1 

PSY 1 x→3 5→3 x→3 x→3 x→2 1 

TP 3 x→5 7→4 x→5 x→4 x→4 3 

abscisic acid 1 x→3 5→2 x→3 x→2 x→3 1 

aminocyclopropane-1-
carboxylic acid 

1 x→4 5→4 x→4 x→3 x→3 1 

anthocyanin 3 x→4 1 x→5 x→5 x→5 1 

b-carotene hydroxylase 2 x→1 5→3 x→1 x→3 x→3 2→1 

bHLH 5→4 x→4 1 x→5 x→5 x→5 1 

carotenoid 1 x→2 4→2 x→2 x→3 x→2 1 

chlorophyll 1 x→3 5→3 x→3 x→3 x→3 1 

ethylene 3 x→5 7→5 x→5 x→4 x→1 3→1 

flavonoid 1 x→3 3 x→3 x→3 x→3 1 

flavonol x x x x x x 
 

hydroxycinnamic acid 1 x→4 5→4 x→4 x→3 x→4 1 

lycopene 2 x→3 5→3 x→3 x→2 x→1 2→1 

lycopene e-cyclase 2 x→1 5→2 x→3 x→3 x→3 2→1 

phenolic 2 x→3 4→3 x→3 x→4 x→3 2 

phenylalanine ammonia 
lyase 

x x x x x x 
 

zeaxanthin epoxidase 2 x→2 5→1 x→3 x→3 x→3 2→1 
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Chapter 3: QTLTableMiner++: semantic mining of QTLtables in
scientific articles

Table 6.4: Confusion matrix for number of QTL tables of 30 articles in set ‘tomato’.
Here precision was 1 and recall was 0,985.

pmc_id number of
actual QTL Tables

number of
predicted QTL tables TP FP TN FN

4321030 6 6 6 0 0 0
4948827 5 5 5 0 0 0
2652058 5 4 4 0 0 1
4498769 4 4 4 0 0 0
3852376 4 4 4 0 0 0
3464107 4 4 4 0 0 0
5395597 3 3 3 0 0 0
4266912 3 3 3 0 0 0
5181584 3 3 3 0 0 0
4726135 3 3 3 0 0 0
4987366 2 2 2 0 0 0
4872001 2 2 2 0 0 0
4999453 2 2 2 0 0 0
5281592 2 2 2 0 0 0
5209891 2 2 2 0 0 0
4612157 2 2 2 0 0 0
4969537 1 1 1 0 0 0
3859326 1 1 1 0 0 0
4831840 1 1 1 0 0 0
4661238 1 1 1 0 0 0
4737080 1 1 1 0 0 0
1913174 1 1 1 0 0 0
2246063 1 1 1 0 0 0
2271080 1 1 1 0 0 0
4008630 1 1 1 0 0 0
4579088 1 1 1 0 0 0
4301655 1 1 1 0 0 0
2657798 1 1 1 0 0 0
4034497 1 1 1 0 0 0
5145867 1 1 1 0 0 0
Total 66 65 65 0 0 1
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Table 6.5: Confusion matrix for number of abbreviations in tables of 30 articles in
set ‘tomato’. Here precision was 1 and recall was 0,545.

pmc_id number of
actual QTL Tables

number of
predicted QTL tables TP FP TN FN

4321030 19 0 0 0 0 19
4948827 0 0 0 0 0 0
2652058 18 0 0 0 0 18
4498769 0 0 0 0 0 0
3852376 19 0 0 0 0 19
3464107 3 0 0 0 0 3
5395597 10 10 10 0 0 0
4266912 25 25 25 0 0 0
5181584 12 12 12 0 0 0
4726135 25 0 0 0 0 25
4987366 11 0 0 0 0 11
4872001 4 0 0 0 0 4
4999453 0 0 0 0 0 0
5281592 0 0 0 0 0 0
5209891 28 28 28 0 0 0
4612157 6 0 0 0 0 6
4969537 0 0 0 0 0 0
3859326 3 3 3 0 0 0
4831840 20 20 20 0 0 0
4661238 0 0 0 0 0 0
4737080 32 30 30 0 0 2
1913174 7 7 7 0 0 0
2246063 8 8 8 0 0 0
2271080 8 8 8 0 0 0
4008630 0 0 0 0 0 0
4579088 24 0 0 0 0 24
4301655 8 8 8 0 0 0
2657798 0 0 0 0 0 0
4034497 2 0 0 0 0 2
5145867 0 0 0 0 0 0
Total 292 159 159 0 0 133
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Table 6.6: Confusion matrix for number of biological concepts identified in tables
of 30 articles in set ‘tomato’. Here precision was 0,745 and recall was 0,926.

pmc_id number of
actual QTL Tables

number of
predicted QTL tables TP FP TN FN

4321030 2 19 16 16 0 0 3
3464107 1 6 12 6 6 0 0
5181584 2 15 5 5 0 0 10
4987366 1 17 2 2 0 0 15
2271080 2 3 1 1 0 0 2
3852376 2 19 17 17 0 0 2
2652058 3 5 1 1 0 0 4
2652058 5 8 0 0 0 0 8
4498769 5 9 6 6 0 0 3
4498769 6 7 4 4 0 0 3
2652058 4 8 0 0 0 0 8
4034497 2 12 9 9 0 0 3
4987366 2 8 3 3 0 0 5
5395597 2 14 7 7 7 0 0
5145867 3 16 2 2 0 0 14
5181584 3 11 5 5 0 0 6
4969537 2 11 0 0 0 0 11
4872001 2 8 7 7 0 0 1
4948827 4 6 0 0 0 0 6
3859326 3 19 17 17 0 0 2
4266912 3 14 11 11 0 0 3
4321030 4 34 31 31 0 0 3
4321030 4,1 34 32 32 0 0 2
3464107 4 42 42 42 0 0 0
3464107 4,1 42 42 42 0 0 0
4948827 3 9 4 4 0 0 5
3852376 4 70 66 49 17 0 4
5181584 4 15 9 7 2 0 6
4579088 2 90 19 19 0 0 71
5209891 3 54 50 0 50 0 4
4948827 6 20 0 0 0 0 20
4948827 5 22 0 0 0 0 22
5281592 3 90 48 48 0 0 42
Total 757 468 393 82 0 288
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Table 6.7: Confusion matrix for number of QTLs identified in tables of 30 articles
in set ‘tomato’. Here precision was 0,827 and recall was 0,577.

pmc_id number of
actual QTL Tables

number of
predicted QTL tables TP FP TN FN

4321030 2 0 19 0 19 0 0
3464107 1 0 32 0 32 0 0
5181584 2 0 14 0 14 0 0
4987366 1 0 19 0 19 0 0
2271080 2 0 3 0 3 0 0
3852376 2 0 19 0 19 0 0
2652058 3 4 4 4 0 0 0
2652058 5 4 4 4 0 0 0
4498769 5 5 5 5 0 0 0
4498769 6 6 6 6 0 0 0
2652058 4 6 6 6 3 0 1
4034497 2 6 6 6 0 0 2
4987366 2 6 6 6 0 0 0
5395597 2 7 7 7 0 0
5145867 3 7 7 7 0 0 0
5181584 3 7 8 7 1 0 0
4969537 2 8 8 8 0 0 0
4872001 2 8 8 8 0 0 0
4948827 4 9 9 9 0 0 0
3859326 3 11 4 4 0 0 7
4266912 3 16 19 16 3 0 0
4321030 4 17 17 17 0 0 0
4321030 4 17 17 17 0 0 0
3464107 4 17 35 17 18 0 17
3464107 4 18 18 18 0 0 0
4948827 3 20 20 20 0 0 0
3852376 4 21 21 21 0 0 0
5181584 4 21 21 21 0 0 0
4579088 2 22 22 22 0 0 0
5209891 3 27 27 27 0 0 0
4948827 6 36 36 36 2 0 5
4948827 5 37 37 37 0 0 0
5281592 3 42 45 42 3 0 0
Total 405 529 398 136 0 32
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Table 6.8: Confusion matrix for number of QTL tables identified for 30 articles in
set ‘potato’. Here precision was 1 and recall was 0,972.

pmc_id number of
actual QTL Tables

number of
predicted QTL tables TP FP TN FN

3607734 7 7 7 0 0 0
5526565 6 6 6 0 0 0
3023753 5 3 3 0 0 2
4551535 4 4 4 0 0 0
4773602 4 4 4 0 0 0
4799268 4 4 4 0 0 0
3037844 4 4 4 0 0 0
3460171 3 3 3 0 0 0
2358939 2 2 2 0 0 0
3546430 2 2 2 0 0 0
3660524 2 2 2 0 0 0
4199688 2 2 2 0 0 0
4374564 2 2 2 0 0 0
4448561 2 2 2 0 0 0
4480903 2 2 2 0 0 0
4632055 2 2 2 0 0 0
4648990 2 2 2 0 0 0
4703618 2 2 2 0 0 0
5567664 2 2 2 0 0 0
2676307 2 2 2 0 0 0
2639024 1 1 1 0 0 0
4354307 1 1 1 0 0 0
4404978 1 1 1 0 0 0
4510777 1 1 1 0 0 0
4777548 1 1 1 0 0 0
4855764 1 1 1 0 0 0
4900573 1 1 1 0 0 0
4996988 1 1 1 0 0 0
5345157 1 1 1 0 0 0
3347998 1 1 1 0 0 0
Total 71 69 69 0 0 2
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Table 6.9: Confusion matrix for number of abbreviations detected in tables of 30
articles in set ‘potato’. Here precision was 1 and recall was 0,710.

pmc_id number of
actual QTL Tables

number of
predicted QTL tables TP FP TN FN

3607734 2 0 0 0 0 2
5526565 18 9 9 0 0 9
3023753 16 12 12 0 0 4
4551535 0 0 0 0 0 0
4773602 32 32 32 0 0 0
4799268 1 1 1 0 0 0
3037844 7 0 0 0 0 7
3460171 11 0 0 0 0 11
2358939 0 0 0 0 0 0
3546430 12 12 12 0 0 0
3660524 0 0 0 0 0 0
4199688 0 0 0 0 0 0
4374564 0 0 0 0 0 0
4448561 6 6 6 0 0 0
4480903 19 16 16 0 0 3
4632055 4 0 0 0 0 4
4648990 9 9 9 0 0 0
4703618 12 12 12 0 0 0
5567664 9 9 9 0 0 0
2676307 15 0 0 0 0 15
2639024 0 0 0 0 0 0
4354307 0 0 0 0 0 0
4404978 0 0 0 0 0 0
4510777 0 0 0 0 0 0
4777548 0 0 0 0 0 0
4855764 21 21 21 0 0 0
4900573 0 0 0 0 0 0
4996988 5 0 0 0 0 5
5345157 8 8 8 0 0 0
3347998 0 0 0 0 0 0
Total 207 147 147 0 0 60
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Table 6.10: Confusion matrix for number of biological concepts identified in tables
of 30 articles in set ‘potato’. Here precision was 0,959 and recall was 0,355.

pmc_id number of
actual QTL Tables

number of
predicted QTL tables TP FP TN FN

4354307 2 10 0 0 0 0 10
4374564 5 0 0 0 0 0 0
4448561 4 7 4 4 0 0 3
4551535 5 6 5 5 0 0 1
4551535 6 5 2 2 0 0 3
4632055 3 6 2 2 0 0 4
4648990 1 20 8 8 0 0 12
4703618 2 22 0 0 0 0 22
4773602 6 10 0 0 0 0 10
4799268 4 5 0 0 0 0 5
4855764 4 43 25 22 3 0 18
4900573 7 20 13 13 0 0 7
5345157 2 14 6 6 0 0 8
5567664 3 20 8 8 0 0 12
3023753 3 12 0 0 0 0 12
Total 200 73 70 3 0 127
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Table 6.11: Confusion matrix for number of QTLs identified in tables of 30 articles
in set ‘potato’. Here precision was 0,828 and recall was 0,989.

pmc_id number of
actual QTL Tables

number of
predicted QTL tables TP FP TN FN

4354307 2 13 13 13 0 0 0
4374564 5 5 5 5 0 0 0
4448561 4 6 6 6 0 0 0
4480903 3 37 76 37 39 0 0
4551535 6 6 6 0 0 0 0
4632055 3 4 4 4 0 0 0
4648990 1 12 12 12 0 0 0
4703618 2 22 22 22 0 0 0
4773602 6 10 10 10 0 0 0
4799268 4 5 5 5 0 0 0
4855764 4 43 43 43 0 0 0
4900573 7 14 12 12 0 0 2
5345157 2 7 7 7 0 0 0
5567664 3 11 11 11 0 0 0
3023753 3 1 1 1 0 0 0
Total 196 233 188 39 0 2
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Chapter 4: Solanaceae Linked Data platform

Table 6.12: List of RESTful APIs of pbg-ld with the help of grlc

Number Endpoint (path) Description Response fields

1. /countFeatures Count genomic features
given a (input) genome
graph.

feature_id,
feature_uri,
feature

2. /getGeneAnnotations Get annotations from SGN
given a (input) sgn_ and
gene_id.

gene_uri,
gene_annotations

3. /getGenesInQTL Get genes contained in a
QTL, given (input) qtl_id

gene_id, gene_uri

4. /getQTLinArticle Get QTLs in an article,
given (input) pmc_id.

qtl_id,
qtl_uri

5. /getQTLs Get QTLs associated with a
trait, given (input) trait_id.

qtl_id,qtl_uri

6. / getTraitIds Get trait_ids given a (input)
trait name.

trait_id,
trait_term,
trait_uri

7. /summarizeQTLs Summarize QTLs extracted
from articles, given (input)
pmc_id

qtl_id,
associated_trait,
chromosomal_location
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Summary

One of the major global challenges of today is to meet the food demands of an ever-
increasing population (food demand will increase by 50% in 2030). One approach to
address this challenge is to breed new crop varieties that yield more even under unfavor-
able conditions e.g. have improved tolerance to drought and/or resistance to pathogens.
However, designing a breeding program is a laborious and time consuming effort that
often lacks the capacity to generate new cultivars quickly in response to the required
traits. Recent advances in biotechnology and genomics data science have the potential to
accelerate and precise breeding programs greatly. As large-scale genomic data sets for
crop species are available in multiple independent data sources and scientific literature,
this thesis provides innovative technologies that use natural language processing (NLP)
and semantic web technologies to address challenges of integrating genomic data for
improving plant breeding.

Firstly, in this research study, we developed a supervised Natural language processing
(NLP) model with the help of IBM Watson, to extract knowledge networks containing
genotypic-phenotypic associations of potato tuber flesh color from the scientific literature.
Secondly, a table mining tool called QTLTableMiner++ (QTM) was developed which enables
knowledge discovery of novel genomic regions (such as QTL regions), which positively
or negatively affect the traits of interest. The objective of both above mentioned, NLP
techniques was to extract information which is implicitly described in the literature and
is not available in structured resources, like databases. Thirdly, with the help of semantic
web technology, a linked-data platform called Solanaceae linked data platform(pbg-ld) was
developed, to semantically integrates geno- and pheno-typic data of Solanaceae species.
This platform combines both unstructured data from scientific literature and structured
data from publicly available biological databases using the Linked Data approach. Lastly,
analysis workflows for prioritizing candidate genes with QTL regions were tested using
pbg-ld. Hence, this research provides in-silico knowledge discovery tools and genomic
data infrastructure, which aids researchers and breeders in the design of a precise and
improved breeding program.
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