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Chapter 1 

Introduction: inequality is complex 

“Inequality is widespread and to some extent inevitable...”, are the sombre and 
somewhat tentative words, in which the latest 2018 report on World Inequality 
begins1. While we all harbour strong opinions about rising inequality today, there is 
little agreement on its nature and drivers. The study of inequality explores a very 
fundamental and ancient question about the functioning of our societies – why are 
some individuals or countries rich and others poor? From a normative perspective, 
inequality can be termed unfair as it violates the basic principles of justice, such as 
equality of opportunity, but at the same time, neuronal evidence suggests that our 
brains deem some types of inequality as being fair2. Moreover, recent work also 
suggests that people might actually prefer unequal societies3 and in some cases, 
inequality could even promote beneficial cooperation4. On the other hand, there is 
similarly plenty of evidence on inequality being associated with environmental 
degradation5, social conflict6 and loss of economic growth7. Moreover, as 
inequality by its very nature skews the distribution of income, it has negative 
implications for inclusive growth and the wellbeing of those at the bottom end of 
the distribution. Inclusive growth here refers to equality of opportunity in the 
growth process, whereas inequality favours the rich and in the unequal growth 
process makes them even richer. Malice or opportunity, good or bad, there are still 
many open questions about how inequality unfolds in the long-run, that we need to 
understand. How does inequality interact with other economic, social and natural 
processes in our complex and interconnected world? Do we have the data and 
empirical evidence to ground our investigation? Do we have a system-wide 
understanding of inequality and its dynamics in the long run?  

Since Kuznets (1955)8, we have come a long way in understanding the 
consequences of inequality. A key turning point, in research methods, was the use 
of tax data in early 2000s9, allowing us to capture the elusive top incomes, and shed 
light into the structural nature of inequality, such as differentiated income growth 
rates (capital income, labour income etc.) within a heterogeneous population, with 
the presence of high (entrepreneurs, experienced managers etc.) and low 
(landowner, farmer etc.) growth types in the population mix10. Heterogeneity or a 
heterogeneous population here is defined as the differentiation based on an 
individual’s capacity, skills, education or access to technology. Armed with this 
broad-based data, we find large variations in inequality, both across time and 
between countries, revealing path-dependence on a range of historical and region-
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specific factors. For example, regions such as the Scandinavian countries have 
historically been equal while Brazil or the Gulf countries have long stayed 
relatively unequal.  

There is no single set of rules which defines the dynamics of inequality. Instead, 
inequality is complex governed by highly interconnected processes such as 
technology, globalization, trade and migration. Complexity, of a system or process, 
is defined as the behaviour that emerges from the interactions, feedbacks and 
learning of its many heterogeneous sub-elements11. These interactions and 
feedbacks can be highly nonlinear behaviour, causing cyclical dynamics12 and/or 
critical transitions such as tipping points13. Similarly, inequality also emerges from 
the socio-economic interactions of many heterogeneous agents. Inequality as a 
metric of variation of income might be simple to understand, but how it emerges 
from the numerous interactions in a society is what makes it complex. For 
example, high incomes can dominate growth, while restricting gains for the bottom 
low incomes and/or income growth can be socially determined by interactions with 
high-income individuals and one’s aspirations to match them.   

Traditional wisdom, based on the Kuznets curve14, hypothesized the relationship 
between inequality and the stage of development, as measured by economic 
growth. Here inequality was expected to drop, on average, in the developed world 
because the countries stabilize after going through the transitionary stages of 
development, while it was expected to grow in the emerging or developing world, 
because of initial transitionary growth period. This expected decline in inequality, 
was consistent with data till the 1980s, after which the sudden rise in incomes of 
the top 1%, came as a reality check (Fig 1).  
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Figure 1: Change in income inequality dynamics post-1980s. Source: WID.world15  

Post-1980s, top incomes didn’t just rise in parts of the developed world, in-fact the 
trend was global1. A look at income growth rates per percentile group shows that 
the top 1% is growing much faster than the rest (Fig 2a), capturing more than half 
of total income over the 1980–2016 period1. However this global rise occurs is at 
very different rates, if we parse by country/region (Fig 2b). Inequality is highest in 
the Middle Eastern region and Brazil, while Europe houses the most equal 
countries. This variation reveals the structural nature of inequality, which is driven 
by a convolution of complex processes, both global and local, particular to 
individual countries. 

Studies post 198016–20, that documented and investigated this worldwide rise of 
inequality, focused mainly on its micro-foundations. Mostly questioning, what 
processes at the individual level led to or sustained the unequal distribution of 
wealth and income. Lobbying power of the rich16, credit constraints17, skewed 
education access18, distribution of factors of production19 and wage differentials20 
were some of the key highlighted processes. However, a macro perspective into 
how inequality relates to the aggregate dynamics of the economy was largely 
missing. These include questions on redistribution mechanisms to make economic 
growth more inclusive and policy initiatives focusing on intergenerational income 
mobility so that the wellbeing of those most severely affected by inequality can be 
preserved. Post-2000 studies by Piketty, Saez, Zucman, Milanovic and others, 
brought studying distributions back into mainstream macroeconomics12,21–23. This 
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so-called revolution9 in the study of inequality to incorporate a system-wide macro 
lens was the key motivation behind this thesis, and is what sparked my interest in 
exploring the ‘complexity in inequality’. 

 

Figure 2: Variation of (a) income growth across income groups and (b) top 
incomes across countries. Source: WID.world15     

The current thesis is not a review of all key topics related to inequality (see 
Atkinson & Bourguignon (Eds.). (2014)24 for a comprehensive review), but rather 
is motivated by current, novel and policy-relevant avenues in inequality research. 
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Understanding the dynamics of inequality in a complex environment, characterized 
by multifaceted economic, social, technological and ecological dimensions, is at 
the core of my research interests. Examples include modelling how wealth-
technology feedback allows inequality to emerge and analysing how the 
interactions between high and low-income growth individuals can reveal the 
structure of inequality. Work done under this thesis can be classified into two broad 
categories, theoretic modelling (Chapters 2 and 4) and empirical analysis (Chapters 
3 and 5). In modelling inequality, the dynamics are shaped by the interactions of 
many heterogeneous individuals, as defined by their capacity, skills, access to 
technology etc. In the data-driven analysis, I use available data to ask whether 
patterns in income inequality be captured by independent data sources like night 
lights and how these patterns of inequality interact with environmental variables 
like biodiversity. Night lights present an interesting avenue to detect inequality as it 
is remotely sensed and uniform across the globe, as opposed to household survey-
based methods of measuring inequality which has problems of comparability and 
consistency across regions.           

This thesis makes three key contributions to current literature. First, it reveals 
feedbacks and nonlinear interactions, in key variables such as technology and 
institutions that drive the complex dynamics of inequality. Technology can be 
thought of as anything that enhances the capacity of individuals to generate 
income. By institutions, I mean governance effectiveness and rule of law. The idea 
here is to see how formal rules and regulations limit or control inequality and 
concentration of economic power. Nonlinearities in the interactions between 
inequality, technology and institutions help us understand the structural nature of 
inequality. Second, it uses a non-traditional approach with spatial data on night-
time lights to remotely sense economic inequality and presents the first high-
resolution global map of light-based inequality and its trends over recent years. 
Third, it predicts long-term inequality at the country level, using income growth 
data and a model of the relationship between high and low-income groups. Results 
for the US, France, China and India are reported. Changes to long-term inequality 
are also studied with respect to variation in high-income growth rates.              

Chapter 2 of this thesis explores how technology-driven income inequality leads to 
poverty and resource depletion in a developing society. The rapid rise in inequality 
is often seen to go in-hand with resource overuse. Examples include water 
extraction in Pakistan, land degradation in Bangladesh, forest harvesting in Sub-
Saharan Africa and industrial fishing in Lake Victoria. Using a coupled dynamic 
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economic-ecological model, the aim is to understand feedbacks between system 
components and key mechanisms that fuel these feedbacks. 

Chapter 3 investigates empirically how the strength of national institutions and 
economic inequality mediates the environmental toll of economic growth. 
Evidence suggests that biodiversity loss could make ecosystems more vulnerable to 
the effects of climate change and other stressors. While economic growth has been 
identified as a key driver of these biosphere impacts, the size of the impacts 
depends largely on how society organizes economic activity and distributes its 
benefits. We find both direct and indirect pathways via which economic growth 
can affect biodiversity loss. Furthermore, the effectiveness of institutions is 
conditional on the level of inequality in society, such that biodiversity loss is 
ameliorated when institutions are strong and inequality low, but in regions with 
high inequality, institutions tend to lose their efficacy. For example, a country with 
better institutions and low inequality may be able to effectively enforce 
conservation regulations such as environmental protected areas or sustainable 
resource use. However, this might not be the case when inequality is high, as the 
concentration of power may circumvent the institutional setup. The analysis also 
uncovers pronounced nonlinearities in inequality-institutions-biodiversity 
interactions, which are important to investigate further and consider for policy 
purposes. 

Chapter 4 studies the long term structural nature of inequality through modelling 
the dependence between high- and low-income growths and their respective 
population sizes. Using income data for the US, France, China and India as case 
studies, we show that variation in long-run inequality can be explained by the 
variation in low and high-income growth rates, and the sensitivity of these growth 
rates to the population size of low incomes. The main contributions of this paper 
are twofold. First, using dynamic inequality model and income data since 1960, we 
estimate the long-term stable distribution of income for the US, France, China and 
India. Our results suggest that inequality is expected to stay around the same level 
in the US, decline in China and India but increase in France, converging to their 
respective long-run estimated value. Second, we explore the parameter space with 
respect to the variation in high and low-income growths for these countries, to 
understand the long term structure of inequality. 

Chapter 5 focuses on the data problem in inequality research. The motivation 
stemmed from the fact that, though economic inequality is one of the key indicators 
of social functioning of societies, yet reliable data on income distributions are 
mostly limited to Northern America and Europe. We aim to address this gap by 
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scientifically estimating an independent globally comparable and consistent proxy 
for economic inequality using remotely sensed geospatial dataset of night-time 
lights (NTL). The focus here is on light-consumption behaviour, broadly defined, 
related to residential housing. This includes immediate consumption goods like 
electricity, house rent etc, and also fixed investments like buying a house. As 
income rises, a household’s light footprint increases in general like more electricity 
usage, a bigger house, a better neighbourhood with street light etc25. Using the 
consistent tendency for spatial segregation of residential groups to poverty and 
affluence, we analyse the spatial distribution of light per person as a proxy for 
variance in economic thriving. The resulting light-based Gini coefficients relate 
well to existing Gini estimates of net income inequality at the scale of countries 
globally but also for states within the USA.          

Lastly, chapter 6 synthesizes the work done in this thesis, by putting it in the 
context of existing literature, and also presents a perspective for future research.     
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Chapter 2 

Technology driven inequality leads to poverty and resource 
depletion 

M Usman Mirza1,2, Andries Richter2, Egbert H. van Nes1, Marten Scheffer1 
1Environmental Sciences, Wageningen University, Netherlands 

2Environmental Economics and Natural Resources Group, Sub-department of 
Economics, Wageningen University, Netherlands 

Published as: 
Mirza, M. U., Richter, A., van Nes, E. H., & Scheffer, M. (2019). Technology 
driven inequality leads to poverty and resource depletion. Ecological Economics, 
160, 215–226. http://doi.org/10.1016/J.ECOLECON.2019.02.015  

Abstract  

The rapid rise in inequality is often seen to go in-hand with resource overuse. 
Examples include water extraction in Pakistan, land degradation in Bangladesh, 
forest harvesting in Sub-Saharan Africa and industrial fishing in Lake Victoria. 
While access to ecosystem services provided by common pool resources mitigates 
poverty, exclusive access to technology by wealthy individuals may fuel excessive 
resource extraction and deplete the resource, thus widening the wealth gap. We use 
a stylised social-ecological model, to illustrate how a positive feedback between 
wealth and technology may fuel local inequality. The resulting rise in local 
inequality can lead to resource degradation and critical transitions such as 
ecological resource collapse and an unexpected increase in poverty. Further, we 
find that societies may evolve towards a stable state of few wealthy and many poor 
individuals, where the distribution of wealth depends on how access to technology 
is distributed. Overall, our results illustrate how access to technology may be a 
mechanism that fuels resource degradation and consequently pushes most 
vulnerable members of society into a poverty trap.  

Keywords: Inequality, Technology, Social-ecological systems, Poverty trap  
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Introduction 

In growing societies, long-term poverty can be explained by the concept of a 
“poverty trap” 1. Here, poverty acts as an attractor where individual wealth 
dynamics can be trapped in poverty’s “basin of attraction”. The nature of poverty 
can be persistent, as individuals trapped in its basin of attraction cannot get out on 
their own accord 2–6. At the micro-level, poverty can be conceptualized as a self-
reinforcing phenomenon limiting the growth of an individual’s wealth 7,8. Self-
reinforcing phenomena emerge from a range of wealth-technology positive 
feedbacks or frictions causing wealth dynamics to be highly non-linear with local 
thresholds and increasing returns 9–12. These include financial factors such as access 
to low return assets, the set-up cost of high-tech equipment or political economy 
aspects such as imperfect markets, credit constraints to better technology adaption, 
differentiated opportunities 8,13,14. The problem with the persistence of poverty is 
that it is not only devastating for individuals but can also, over time, lead to 
persistent inequality within an otherwise growing society. 

Different theories attempt to explain the long-run behaviour of inequality. Kuznets 
in 1955 introduced the hypothesis that inequality rises at first and then drops as 
gains are distributed more evenly in developing economies, giving rise to an 
inverted U shaped curve 15. Recently, Piketty16 proposed that in modern capitalistic 
societies inequality will rise in the absence of government interventions or 
catastrophic events, such as world wars and the great depression. Milanovic17 
builds upon both Kuznets and Piketty to propose that inequality moves in cycles – 
the so-called Kuznets waves. Most of existing research on inequality dynamics has 
focused on macro-level analysis, with little or no focus on local level pathways 
connecting social-ecological interactions to inequality18. Addressing the need to 
focus on local level interactions, we develop a stylised dynamic model illustrating 
how key feedbacks and mechanisms can lead to rising inequality in developing 
societies relying on an ecological resource for livelihood. In studying this stylized 
model, our contribution to the literature is twofold. First, we unpack complex 
inequality dynamics by showing how a simple wealth-technology feedback can 
explain rising local inequality, and second, what pathways allow rising inequality 
to trigger poverty and resource degradation, considering dynamic socio-ecological 
interactions.  

Indications of a wealth-technology feedback, as a driver of inequality, can be found 
in both modern and ancient societies. Kohler et al.’s 19 reconstruction of wealth 
inequality dynamics in post-Neolithic societies reveals the marked difference 
between continents. Wealth disparities long remained limited in North America 
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and Mesoamerica while in Eurasia inequality rose much more. Evidence suggests 
that this contrast is due to the availability of large mammals in Eurasia that were 
domesticated, which is an ancient equivalent to better technology, allowing 
agricultural extensification 19. Most likely, only richer households could maintain 
draft animals allowing them to profit from higher production. Meanwhile in North 
America and Mesoamerica, such amplification of wealth differences by exclusive 
access of an elite few to superior productivity was absent.  

Similarly, in modern times, numerous case studies illustrate how resource use with 
technological access to a few can aggravate both inequality and poverty. For 
example, in Pakistan structural inequality in access to water across regions and 
between social classes has placed unprecedented stress on water resources 20,21. The 
roots of inequality can be traced back to colonial times when land rights were 
based on patronage exclusive for a few chosen groups of elites 22,23. Preferential 
land rights gave birth to big landowners who accumulated wealth and controlled 
the resource 24. With modern technology, wealth accumulation took the form of 
commercial agriculture, where tube wells assisted water overuse 25, and other 
lucrative but water-intensive production options like textiles, cement, leather, 
fertilizers and sugarcane. As a result, small and tenant farmers are pushed-off the 
resource and forced to migrate 26. 

This and other examples from Amazon rainforest27, Bangladesh28 and Lake 
Victoria29, show a recurring pattern of increased resource exploitation that goes 
hand in hand with growing local inequality. Wealth accumulation by elites is 
achieved by extracting and controlling natural resources, on which the poor 
population typically also relies, such as commercial agriculture via groundwater 
exploitation, overfishing for exports and depletion of forests for timber or 
alternative land use 25,27–31. As a result, in unequal societies, fast wealth 
accumulation by the elites may put excessive pressure on key natural resources 
thus affecting the dependent poor population. Excessive resource use affects 
dependent livelihoods 32–34, especially in developing societies where the poor have 
a primary dependence on ecological or natural resources 35–38. Thus local inequality 
can be disastrous for social-ecological resilience and social justice, as wealth 
accumulation of elites may fuel overexploitation, disregarding sustainable resource 
use limits 39 and at the same time disproportionately affecting the poor and most 
vulnerable members of society. 

While equity in distribution is an important aspect of social justice 40, the ability to 
access resources is also important for the resilience of the poor 41. If access to 
capital, technology and resources are restricted to the elites, wealth accumulation 
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and resource extraction for this elite becomes a self-reinforcing phenomenon 42–44. 
Wealth wields power to extract resources which in turn generates more wealth, 
thus mounting pressure on the common natural resource. Left unchecked, this 
pressure can lead to overexploitation causing environmental degradation or even 
resource collapse, upon passing certain thresholds 45,46. Such critical transitions in 
underlying resources can be sudden, unexpected and in some cases irreversible 47, 
with disastrous implications for the dependent population 48.  

There is a need to understand inherent inequality dynamics to determine whether 
observed patterns described above can be generalized to a much broader set of 
conditions. In this paper, based on a simple model of local social-ecological 
interactions in a developing society setting, we argue that resource extraction with 
a technological advantage exclusive to a few is an important driver of inequality. In 
particular, we investigate whether rising local inequality leads to reduced resilience 
of the interdependent social and ecological systems causing critical transitions such 
as resource collapse and/or poverty traps.  

Methods 

We develop a simple coupled social-ecological model to analyse and understand 
the influence of rising local level inequality on poverty and resource use in an 
unregulated regime. We begin by outlining key model mechanisms through a 
conceptual diagram (Fig 1), which is meant to illustrate and aid the actual model 
description. In the diagram, we see interactions and feedbacks between the social 
and ecological components of the model through resource extraction and access to 
technology. Access to technology may give rise to local thresholds (positive 
wealth-technology feedback) if an increase in the productivity of assets is highly 
non-linear with respect to increasing assets. For example, a poor farmer may be 
relatively unproductive because he only owns an ox to plough the fields. A 
fisherman in a large lake may be limited to smaller radius only due to a small-sized 
boat. As individuals get richer, they may gain access to technologically better 
assets with higher productivity. A farmer investing in a tractor may experience a 
local increase in total and marginal productivity, and the same may be true for a 
fisher buying a bigger boat. Technology-driven enhanced resource extraction, 
while stimulating growth of wealth, also negatively affects the growth of resources, 
which in turn limits the amount of resource available for future extraction 
(resource-wealth feedback).  



Chapter 2 

14 
 

These two feedbacks (wealth-technology and resource-wealth) combined can 
potentially put exploitative pressure on the resource, which can become depleted or 
collapse below a certain sustainable threshold. 

  
Figure 1: Conceptual sketch of the model structure and interactions showing two 
feedbacks – wealth-technology and resource-wealth. Boxes and thick arrows and 
represent state variables and flows between them. Ovals and thinner arrows 
represent parameters and processes.    

Ecological component (resources) 

Resource users have access to a common pool resource (𝑋𝑋) that provides services 
used for earning an income. Resource availability is determined by the dynamics of 
the ecological resource type in question. We use two examples for ecological 
resources, portraying a simple abiotic resource (e.g. water) and a more complex 
biotic resource (e.g. a forest or fish population), building upon earlier approaches 
48–50 in specifying the functional form of those resources. These two types of 
resources are chosen as two examples of qualitatively different resource dynamics. 
The simple abiotic resource is assumed to increase with a constant rate (for 
instance due to precipitation) and to lose as a first-order process (for instance due 
to transpiration). This results in growth towards an equilibrium with exponential 
growth limitation51: 
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴:        
𝑑𝑑𝑋𝑋
𝑑𝑑𝐴𝐴

=   𝐴𝐴 �1 −  
𝑋𝑋

𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚
�  −  � 𝑒𝑒𝑖𝑖(𝜎𝜎𝑖𝑖 ,𝑎𝑎𝑖𝑖 ,𝑋𝑋)

𝑁𝑁

1
                              (1) 

𝑋𝑋 is the total available resource stock, 𝐴𝐴 is the resource inflow, 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 is the 
maximum resource level, and ∑ 𝑒𝑒𝑖𝑖  𝑁𝑁

1 is individual resource extraction summed over 
all individuals, which in turn is a function of technology 𝜎𝜎𝑖𝑖, capital assets 𝑎𝑎𝑖𝑖 and 
the resource stock itself 𝑋𝑋. The functional form of 𝑒𝑒𝑖𝑖 is provided later in the 
section. 

The biotic resource is motivated by population dynamics examples where a living 
resource (e.g. fish population) grows logistically but can also collapse if the 
population is below a critical size, for instance, due to group behaviour or difficulty 
in finding partners. This well-studied ecological positive feedback is called the 
Allee effect 52–54, and the following functional form is widely used for a range of 
biotic population dynamics55–57: 

𝐵𝐵𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴:         
𝑑𝑑𝑋𝑋
𝑑𝑑𝐴𝐴

=   𝜖𝜖 𝑋𝑋 [𝑋𝑋 − 𝑋𝑋𝑐𝑐] �1 −  
𝑋𝑋

𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚
�

−  � 𝑒𝑒𝑖𝑖(𝜎𝜎𝑖𝑖,𝑎𝑎𝑖𝑖 ,𝑋𝑋)
𝑁𝑁

1
                             (2) 

where 𝜖𝜖 is the maximum growth rate of the resource and  𝑋𝑋𝑐𝑐 is the critical 
sustainable resource level.  

The abiotic resource model has only one stable equilibrium (Fig. 2a), while the 
biotic resource model can have three equilibria of which two are stable (Fig. 2b). 
Resources are used as input in a production process through which individuals 
generate income and accumulate wealth over time.  
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Figure 2: Two models of resources with a constant harvesting pressure: abiotic (a) 
and biotic resource (b). A shift from a black to red line represents an increase in 
losses due to resource extraction or harvesting. Note in (b) the distance between the 
stable (high resource) and unstable equilibrium decreases indicating loss of 
resilience of the sustainable equilibrium.  

Social component (wealth) 

In the model, income 𝑦𝑦𝑖𝑖 of individual i is generated using a simplified Cobb–
Douglas production function which uses a combination of natural resources and 
assets [Eq.(3)]. The function has two inputs – capital assets 𝑎𝑎𝑖𝑖 and resource 
extraction 𝑒𝑒𝑖𝑖  – and is given as:  

𝑦𝑦𝑖𝑖 =    𝑎𝑎𝑖𝑖𝛼𝛼 𝜎𝜎𝑖𝑖(𝑎𝑎𝑖𝑖) 𝑒𝑒𝑖𝑖(𝜎𝜎𝑖𝑖,𝑎𝑎𝑖𝑖 ,𝑋𝑋)                     (3) 

where 𝜎𝜎𝑖𝑖(𝑎𝑎𝑖𝑖)   is the technology function, mapping inputs into output and 𝛼𝛼 is the 
partial output elasticity of assets. 𝛼𝛼 < 1 is assumed for marginally decreasing 
returns on assets. 

2.2.1 Technology 

We assume that above a certain level of assets, individuals get access to advanced 
technology (Fig. 3). In our model, the parameter 𝜌𝜌 determines the strength of this 
non-linear effect. Thus, an individual’s asset level may generate non-convexities 
with locally increasing marginal returns. In the model, non-convexity is introduced 
through the technology function 𝜎𝜎𝑖𝑖   as follows:  

𝜎𝜎𝑖𝑖  = 𝑘𝑘𝑖𝑖  �(1− 𝜌𝜌) +
𝜌𝜌 𝑎𝑎𝑖𝑖𝜆𝜆

𝑎𝑎𝑖𝑖𝜆𝜆 + 𝜃𝜃𝜆𝜆
�                              (4) 
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𝜎𝜎𝑖𝑖 is specified to range from 0 to maximum 𝑘𝑘, which is a measure of maximum 
productivity given available access to technology and scaled to 1.  𝜆𝜆 controls the 
enhanced wealth generation capacity gained by access to better technology while 𝜃𝜃 
is the asset level where increasing returns start to set in, determining the presence 
of these locally increasing returns due to investment in better technology for 
individuals in a continuum between uniform (𝜌𝜌 = 0) to differentiated (𝜌𝜌 > 0) 
access to technology. When 𝜌𝜌 = 0 everyone in the society has access to the same 
basic technology, giving a standard concave production function with decreasing 
marginal returns as conventionally assumed in economic models [Fig 3(a) & (c)]. 
However, if 𝜌𝜌 > 0, the production function will be non-convex and marginal 
returns of assets may be locally increasing or decreasing, depending on the asset 
level [Fig 3(b) & (d)]. Thus in effect, 𝜌𝜌 is actually a control parameter allowing us 
to switch between a basic null model (diminishing returns when 𝜌𝜌 = 0) and a model 
that includes differentiated access to resources (locally increasing returns when 𝜌𝜌 > 
0). 

  

Figure 3: Effect of technology access (ρ) on total and marginal returns to assets. 
Dark grey region denotes increasing returns while light grey denotes decreasing 
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returns. (a) & (c) presents the case with uniform access to technology (ρ = 0) where 
resource productivity diminishes as we deploy more of the same type of assets, 
while (b) & (d) represent differentiated technology access options (ρ > 0) where 
resource productivity increases locally when a technological superior asset is 
deployed. Blue dotted lines delimit areas of decreasing or increasing returns.  

Resource extraction 

Individuals as optimizing agents choose resource extraction to maximize profits. 
Profits 𝜋𝜋𝑖𝑖 depend on income minus costs of production and are given as: 

𝜋𝜋𝑖𝑖 = 𝑦𝑦𝑖𝑖(𝜎𝜎𝑖𝑖 ,𝑎𝑎𝑖𝑖 ,𝑒𝑒𝑖𝑖)  −  𝐶𝐶𝑖𝑖(𝑒𝑒𝑖𝑖 ,𝑎𝑎𝑖𝑖 ,𝑋𝑋)                                 (5) 

The cost function depends on the assets owned, amount extracted and resource 
availability. Marginal costs are assumed to depend positively on the extraction 
level and negatively on both resource abundance and assets owned. The more one 
extracts, the higher the costs to extract an additional unit of water. Having better 
assets and abundant water availability makes it cheaper to extract an additional unit 
of water. With these properties, the cost function for an individual 𝐴𝐴 is specified as 
follows: 

𝐶𝐶𝑖𝑖  =  
𝑒𝑒𝑖𝑖(𝜎𝜎𝑖𝑖 ,𝑎𝑎𝑖𝑖 ,𝑋𝑋)2

2 𝑋𝑋𝛾𝛾  𝑎𝑎𝑖𝑖𝜏𝜏
                                (6) 

Parameters 𝛾𝛾  and  𝜏𝜏 determine the cost-output elasticity of resource abundance and 
assets respectively where 𝛾𝛾, 𝜏𝜏 < 1. Substituting income and cost functions gives an 
expression for the profit function: 

𝜋𝜋𝑖𝑖 =  𝑎𝑎𝑖𝑖𝛼𝛼 𝜎𝜎𝑖𝑖( 𝑎𝑎𝑖𝑖) 𝑒𝑒𝑖𝑖  −   
𝑒𝑒𝑖𝑖2

2 𝑋𝑋𝛾𝛾  𝑎𝑎𝑖𝑖𝜏𝜏
                              

The institutional regime is described as open access, and therefore discounted long-
term profits from the resource cannot be secured. Hence, agents maximize 
instantaneous profits by setting 𝜕𝜕𝜋𝜋𝑖𝑖

𝜕𝜕𝜕𝜕
= 0 provided our cost function is concave 

�𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝜕𝜕

> 0, 𝜕𝜕
2𝐶𝐶𝑖𝑖
𝜕𝜕𝜕𝜕2

> 0, 𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝜕𝜕

< 0, 𝜕𝜕
2𝐶𝐶𝑖𝑖
𝜕𝜕𝜕𝜕2

> 0, 𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝑚𝑚

< 0, 𝜕𝜕
2𝐶𝐶𝑖𝑖
𝜕𝜕𝑚𝑚2

> 0�, which gives us the optimal 
short-term resource use function as follows:  

𝑒𝑒𝑖𝑖 = 𝜎𝜎𝑖𝑖(𝑎𝑎𝑖𝑖) 𝑋𝑋𝛾𝛾  𝑎𝑎𝑖𝑖
𝛽𝛽                               (7)   
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where 𝛽𝛽 =  𝜏𝜏 + 𝛼𝛼. Resource use 𝑒𝑒𝑖𝑖 depends on the amount of resource available 𝑋𝑋, 
on an individual’s level of assets owned 𝑎𝑎𝑖𝑖, as well as a technology function 𝜎𝜎𝑖𝑖.   

Assets generate wealth, thus endowing the individual’s ability to intensify use of 
resources. Long-term wealth dynamics for each individual 𝐴𝐴 are given by:  

𝑑𝑑𝑎𝑎𝑖𝑖
𝑑𝑑𝐴𝐴

=  𝑠𝑠𝑖𝑖  𝑦𝑦𝑖𝑖(𝜎𝜎𝑖𝑖 ,𝑎𝑎𝑖𝑖 ,𝑒𝑒𝑖𝑖 ,𝑋𝑋)  −  𝜇𝜇𝑖𝑖  𝑎𝑎𝑖𝑖                      (8) 

Here savings rate 𝑠𝑠𝑖𝑖 with income 𝑦𝑦𝑖𝑖 gives assets inflow while a depreciation loss 
term 𝜇𝜇𝑖𝑖 gives assets outflow, thus signalling an individual’s wealth accumulation or 
loss respectively in the long run. From here on, assets and wealth will be used 
interchangeably based on the similarity of usage and broader meaning. The savings 
rate is assumed to be constant over time for the sake of simplicity. Note that the 
amount of wealth accumulated depends critically on the individual’s savings rate 
(𝑠𝑠), access to technology (𝜌𝜌) and maximum productivity (𝑘𝑘).  

This study was conceived as a theoretical exercise and hence chosen parameters are 
not motivated by any empirical case(s) but selected to show qualitative changes 
and different stability regimes in the model. Following Ayres, 1988; Juster, 
Lupton, Smith, & Stafford, 2006 and Modigliani, 1986 58–60, we focus on 
technology (𝜌𝜌), productivity (𝑘𝑘) and savings (𝑠𝑠) as key parameters in our model, 
being the most important determinants of wealth creation, analysed systematically 
to see how the model results change qualitatively. A discussion on other key 
parameters is provided in the Appendix. 

In our analysis, we begin with simulating social-ecological dynamics in the 
homogeneous case i.e. parameters are the same across individuals. The state space 
is explored for stable and unstable equilibrium points. While preserving 
homogeneity, we also vary key parameters – savings rate (𝑠𝑠) and access of 
technology (𝜌𝜌) – for all individuals in a bifurcation analysis to study the sensitivity 
and stability of system’s equilibrium states. Bifurcation refers to qualitative 
changes in a dynamic system’s behaviour as we change a control parameter to 
cross a critical value. The critical value or bifurcation point at which this 
qualitative change occurs is more popularly known as a tipping point and this 
behaviour more generally as a critical transition. Later we relax the homogeneity 
assumption to simulate social-ecological dynamics with heterogeneous individuals. 
Different technology distributions are investigated to study qualitative changes in 
inequality dynamics.      
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Results 

Homogenous society case 

We begin with simulating a society comprising 𝑛𝑛=100 homogenous individuals 
with both resource types – abiotic and biotic.  We analyse the role of differentiated 
access to technology. If individuals have uniform access to technology (𝜌𝜌 = 0), 
there is no opportunity to increase productivity through wealth. This implies that 
rich and poor individuals would use the same technology, e.g. a hand pump to 
access water. With differentiated access to technology (𝜌𝜌 > 0), individuals enjoy 
higher productivity as they possess more assets. For example, individuals with low 
wealth levels can only afford the hand-pump or small boat while those better-off 
invest in electric pumps and motorboats. 

In our analysis, stable states are defined in a dynamic systems context as points 
where the state variables stabilize or do not change. These can also be interpreted 
as equilibrium points in the long run. Phase plane analysis shows four qualitatively 
different scenarios for the system, based on resource type and access to technology 
[Fig 4]. For the abiotic resource case with uniform technology access, we get a 
single stable state (𝑆𝑆W) [Fig 4(a)]. Since everyone has access to the same 
technology, all individuals reach the same level of wealth and resource access in 
the long run. In the case of a biotic resource with uniform technology, we see more 
complex dynamics [Fig 4(b)]. The potential for the resource to go extinct results in 
a folded curve with three internal equilibrium points – two stable (𝑆𝑆C and 𝑆𝑆W) and 
one saddle point (𝑆𝑆𝑇𝑇), indicating the threshold between the two stable fixed points. 
𝑆𝑆W in Fig 4(b) is the positive wealth and resource access level, which is similar to 
the Fig 4(a)’s 𝑆𝑆W for the abiotic case. 𝑆𝑆C is the new state we see at the origin 
depicting social-ecological collapse with the disappearance of the resource and 
wealth. Such collapse may be triggered by overexploitation, eroding the foundation 
of resource viability and corresponding economic activity.  
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Figure 4: Phase plane for the coupled system for uniform access to technology (𝜌𝜌 = 
0) and differentiated access to technology (𝜌𝜌 > 0) for the both biotic and abiotic 
case. Blue lines indicate wealth nullclines (da/dt = 0) while red lines indicate 
resource nullclines (dX/dt = 0). The intersection of nullclines gives equilibrium 
points of the system. Solid black points are stable equilibriums while hollow points 
are unstable equilibriums. Dashed black lines are the separatrix delineating the 
basin of attraction of stable equilibrium points.   

With 𝜌𝜌 > 0 individual’s access to technology is now differentiated depending on 
wealth levels [Fig 4(c) & (d)]. For an abiotic resource case, the system now is bi-
stable with two stable (𝑆𝑆P and 𝑆𝑆W) equilibrium solutions [Fig 4(c)]. The two stable 
equilibria correspond to the poor (𝑆𝑆P) and wealthy (𝑆𝑆W) states respectively. The 
dashed line represents the separatrix, separating the set of individuals whose wealth 
would evolve to one of the stable equilibria in the long run. Depending on one’s 
wealth level, an individual can either accumulate wealth and grow to 𝑆𝑆W or get 
stuck in poverty at 𝑆𝑆P, also termed as a “poverty trap”. Thus both poverty and 
wealth are stable states, in line with our earlier discussion on poverty traps. For the 
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last scenario of a biotic resource, the system now has three stable points (𝑆𝑆C, 𝑆𝑆P and 
𝑆𝑆W) [Fig 4(d)]. 𝑆𝑆W and 𝑆𝑆P depict the rich and poor states respectively as before, 
while SC at the origin represents a case of social-ecological collapse with no 
resource stock and no assets.     

Bifurcation analysis 

Savings rates and access to technology are our key control parameters. We argue 
that both parameters play a key role when societies move through various 
development phases and are important drivers for both inequality and resource 
exploitation. We first analyse the role of savings (Fig.5), where the grey shade 
signifies region of alternative stable states (bi-stability). Higher savings lead to 
greater wealth accumulation which in turn allows the individual to invest in 
enhancing their resource extraction capacity, e.g. using electric pumps. We analyse 
whether this feedback plays a role in breaking the poverty trap and how this affects 
the resource at hand. 

For the abiotic resource case, we first consider the wealth dynamics [Fig 5(a)]. 
With low savings (𝑠𝑠 < 0.14) individuals stay poor (branch P). As savings increase, 
individuals get richer which allows them to use superior technology and after a 
certain threshold (𝑠𝑠 = 0.3) they have earned enough to break the poverty trap. At 
higher savings (𝑠𝑠 > 0.3), individuals stay wealthy (branch W) and wealth keeps 
rising. For 0.14 < 𝑠𝑠 < 0.3, the system is bi-stable (grey shaded region), which 
means that here individuals depending on their initial wealth levels can converge 
either to the wealthy or the poor state. This is due to the differentiated access to 
technology which allows higher wealth accumulation to those who are initially 
wealthy and benefit from access to better technology. For the resource [Fig 5(b)], 
similar dynamics are seen but in the reverse direction. As rising savings spur 
wealth accumulation, the resulting resource use puts increasing stress on resource 
availability. As a result, resource decreases with increasing 𝑠𝑠.     

For the biotic resource case, starting with the wealth dynamics [Fig. 5 (c)], 
individuals stay in the poverty trap for 𝑠𝑠 < 0.13 (branch P), moving on to 
alternative stable states for 0.13 < 𝑠𝑠 < 0.43 (grey shaded region) and then finally 
jumping to the wealthy state at 𝑠𝑠 = 0.43 (branch W). However, in contrast to the 
abiotic case, the wealthy state suddenly becomes unstable again at 𝑠𝑠 = 0.65, 
forming a cliff-like figure. With higher savings, as individuals accumulate more 
wealth and use more resources, the biotic resource collapses below a certain point 
due to the exploitative pressure. For the resource [Fig. 5 (d)], as the pressure builds 
up with higher savings, it eventually collapses in this rather catastrophic shift, 
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resulting in social-ecological collapse where individuals metaphorically ‘fall off 
the cliff’ as the resource disappeared which formed the foundation of society’s 
wealth. The two lower bifurcations in Fig. 5(d) are the fold bifurcations of the two 
saddle nodes with unstable fixed points. They are not important for dynamics past 
the tipping point as resource collapses after the stable branch W, irrespective of the 
two lower bifurcations. 

 

Figure 5: Bifurcation analysis for wealth and resource dynamics with respect to 
savings rate, in the abiotic resource and biotic resource case. Solid blue lines 
represent stable branch of the system while dotted red lines represent the unstable 
branch. Grey shaded region denotes the area of alternative stable states. W and P 
refer to wealthy and poor stable state respectively.     

We now turn to analyse the role of access to technology (𝜌𝜌) on wealth and the 
resource stock (Fig 6). While savings allow an individual to increase the rate of 
wealth generation irrespective of the initial endowment, the effects of access to 
technology (𝜌𝜌) depend on individual’s current wealth level. So in a differentiated 



Chapter 2 

24 
 

technology regime (𝜌𝜌 > 0), rich individuals have higher productivity and can 
increase their wealth accumulation compared to poor individuals.  

At low levels of 𝜌𝜌 technology is relatively uniform, so initial wealth conditions do 
not matter, thus there is only one stable state. As we increase technological 
differentiation, alternative stable states emerge for both 𝜌𝜌 > 0.45 (abiotic resource) 
and 𝜌𝜌 > 0.26 (biotic resource) respectively. Beginning from a poor state (branch P) 
and moving from right to left, as we decrease 𝜌𝜌 (i.e. making access to technology 
more uniform for everyone), a saddle-node bifurcation occurs at 𝜌𝜌 = 0.45 for the 
abiotic resource [Fig 6(a) & (b)] and  𝜌𝜌 = 0.26 for the biotic resource [Fig 6(c) & 
(d)], where the system jumps to the unique stable equilibrium (branch W where 
everyone is equally wealthy). As before, the grey shaded area depicts a region of 
alternative stable states. Interestingly, we find that the more differentiated the 
technology is (larger 𝜌𝜌), the lower the wealth levels in the poverty state. 
Intuitively, this happens because, with an increasing 𝜌𝜌, productivity of the poor is 
lower, reinforcing the poor state, and also affecting the absolute poverty level 
within that state. Consequently, we see that the resource increases as 𝜌𝜌 increases in 
the poor state, simply because of lacking capacity to extract the resource. 
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Figure 6: Bifurcation analysis for wealth and resource dynamics with respect to 
access to technology in the abiotic resource and biotic resource case. Solid blue 
lines represent stable branch of the system while dotted red lines represent the 
unstable branch. Grey shaded region denotes the area of alternative stable states. W 
and P refer to wealthy and poor stable state respectively.     

To analyse how savings rate and access to technology act in concert, we now 
project bifurcation results in a two-parameter (𝑠𝑠 and 𝜌𝜌) space and identify critical 
transitions [Fig 7]. For the abiotic resource [Fig 7(a)], with low savings (𝑠𝑠), the 
system stays in an exclusive poor state, regardless of access to technology. As 
savings rate increase, the system transitions from an exclusively poor state to either 
a region with alternative stable states or a region with the exclusively wealthy state, 
depending on access to technology (𝜌𝜌). This V-shaped area of alternative stable 
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states, which decreases with increasing savings rate, marks a risky region where the 
system can potentially flip between poor or wealthy states.  

For the biotic resource case [Fig 7(b)], the situation is similar to the abiotic case, 
except that the system may undergo another transition into a state of social-
ecological collapse. At high savings rates, the excessive pressure erodes the 
regenerative capacity of the resource and paving the way to resource extinction. 
The case where the ecological resource collapses is particular to the biotic resource 
and the key qualitative difference between the two resource dynamics. However, in 
both cases, access to technology (𝜌𝜌) regulates this potentially risky region with 
alternative stable states, such that at high values of 𝜌𝜌, the region expands, while at 
low values of 𝜌𝜌, it vanishes in what is called a cusp point.    

                             

Figure 7: Two-parameter bifurcation analysis with respect to savings rate and 
access to technology for the abiotic and biotic resource case. ASS, W and P refers 
to alternative stable states, wealthy state and poor state respectively.  

Heterogeneous society case 

We now relax the homogeneity assumption by simulating a society with 
heterogeneous individuals in a differentiated technology setting i.e. individuals 
having access to both small and motorized boats with different savings rates and 
initial wealth endowments. We assume that each individual has an equal chance to 
receive some initial wealth in some set interval, giving rise to a uniform 
distribution.  Thus, randomly distributed wealth levels drawn from a uniform 
U(min = 0, max = 100) distribution for 𝑛𝑛 = 100 individuals. For simplicity, 
savings are assumed to be normally distributed with mean 0.2 and standard 
deviation 0.01.  Qualitatively, the model results do not depend on whether we use 
uniform or normal distributions. 
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Simulating the system over time we see clusters emerge in the long run as 
individuals’ wealth distributions transform from an initial uniform to a final bi-
modal distribution with high and low wealth levels [Fig 8(a)]. The rich and poor 
clusters go hand in hand with the evolution of local inequality in our model society. 
A positive upward trend is seen between inequality and growth in wealth [Fig. 
8(b)], approaching a moderately long-run value of around 0.5 Gini. This positive 
trend is independent of the type of underlying resource – abiotic or biotic, thus 
aligning well with our earlier discussion on observed rising inequalities in growing 
societies.    

   

Figure 8: Individuals with fixed technology, and heterogeneous savings rates and 
initial wealth levels. (a) Distribution of final (bimodal) wealth by initial (uniform) 
wealth in society. (b) Rise in inequality with societal growth in average wealth.  

Having modelled local inequality dynamics with a heterogeneous population we 
can now use the model to see how in a capitalistic society, rapid technological 
changes and emergence of highly productive sectors will affect the dynamics of 
inequality and poverty at the local societal level. By a capitalistic society, we mean 
enhanced overall productivity and technology due to capital growth. In our model, 
this is captured by the combination of access to advanced technology and overall 
productivity. To simulate variation in total productive capacity, we have modified 
the parameter 𝑘𝑘 in the technology function [Eq.(4)], which was so far assumed to 
be 𝑘𝑘 = 1 constant for all individuals. Contrasting with the homogeneous case (𝑘𝑘 =
1), two more realistic but distinct scenarios are constructed where an individual’s 
productivity 𝑘𝑘 is heterogeneous. First, we assume a society of relatively equal 
opportunities, where everyone has the same probability of benefiting from better 
technology and k is following a uniform distribution with 𝑈𝑈(min = 0, max = 2). 
Second, we look at the case where a few elite individuals benefit significantly more 
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from the enhanced technology and productivity than the rest of society. Thus, k 
follows a heavy tail gamma 𝐺𝐺(𝑠𝑠𝐴𝐴𝑎𝑎𝑠𝑠𝑒𝑒 = 1, 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑒𝑒 = 1) distribution.  Distribution 
parameters are chosen to keep average 𝑘𝑘 equal to 1 similar to the fixed k scenario, 
facilitating comparison.  

The evolution of wealth distribution and total resource stock for all scenarios can 
be seen from the heat maps and resource dynamics plots respectively (Fig 9). For 
brevity, we only discuss the results for the abiotic resource case. Results for the 
biotic resource case are provided in the Appendix. In the uniform scenario, we see 
that local inequality grows in society and stabilises at a Gini value of around 0.6-
0.7 [Fig 9(c)]. The relationship between inequality and average wealth is similar to 
that in the fixed k scenario, though, in the scenario where k is uniformly 
distributed, the average wealth is higher. Interestingly, this increase in wealth also 
leads to a higher final inequality level than what we saw in the homogeneous 𝑘𝑘 
scenario (compare Fig. 8(b) with Fig 9(c)). So we can see that variation in 
technology may increase wealth in society on average, but this will benefit few 
individuals, giving rise to inequality.  
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Figure 9: Effect of heterogeneous productivity via uniform (a – d) and heavy tail (e 
– h) distributions. For both cases, we see the effect on the evolution of wealth, 
inequality, and resource stock.      

In a heavy tail scenario, we observe amplification of the rise of wealth for the elite 
few. The heavy tail causes local inequality to rise much faster than what we saw 
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with a uniform distribution or homogeneous case, leading to a final long-term 
inequality value of around 0.8-0.9 Gini [Fig 9(g)]. Compared to the uniformly 
distributed technology case, three differences stand out. First, with fast-rising 
inequality, poverty increases are stronger, as indicated by the expanded blue 
section of the heat maps [Fig. 9(b & f)]. Second, while average wealth is similar in 
both cases, we find that inequality is even higher in the case where technology is 
beneficial for very few individuals [Fig. 9(c & g)]. Third, in both cases, we see 
resource depletion, though this effect is much stronger for the heavy-tail case. The 
poor are particularly disadvantaged by these adverse changes as both poverty 
increases and resource degrades in the society at the same time.   

Discussion  

Rising inequality, as seen in our model, is consistent with growth in wealth, in line 
with the positive relationship seen historically 61. Overall rising average wealth 
levels do not lift people out of poverty as we see inequality persisting side by side 
with poverty. This steady persistence of inequality is seen as a standard feature of 
growing societies 17,62, where the wealth-technology positive feedback skews 
growth gains towards the better-off, similar to a preferential attachment process. 
One example where these patterns can be observed comes from Sub-Saharan 
Africa where forest products constitute the main source of livelihood for rural 
households 63,64. While forest income is essential for sustaining livelihoods of the 
poor, the wealthiest in society are the ones with the ability to harvest at a large 
scale and are consequently the heaviest users. The wealthy and powerful capture 
the resource at expense of the poor, due to their better skill set, technology and 
capital 31. As a result, the poor are forced to alter their practices or shift to less 
productive areas with high failure and closure rates 65,66. 

Moreover, from the model results, we see that in the modern capitalized world, 
access to capital further accelerates these growth gains for a small elite, an 
observation consistent with literature 67–69. Here inequality rise due to the 
emergence of new productive sectors and associated increasing returns, as people 
move from traditional ways of wealth accumulations to more productive capital 
assets. While, wealth and technology feed on each other, in a positive feedback, to 
push inequality up, such positive feedbacks may be reinforced by societies having 
access to highly productive capital intensive pathways to wealth generation, which 
may create poverty traps and result in rapidly rising inequality in society 43,44. 
However, we show that capital growth may not, in all scenarios, result in a rapid 
rise in inequality and/or cause sudden changes in social-ecological dynamics. The 
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growth of elites and final distribution in wealth depend largely on how productivity 
gains are distributed. 

In a society with uniformly distributed capital productivity gains, local inequality 
rises slowly and innocuously while poverty remains at the same level. At the same 
time, pressure on the resource remains within the sustainable limits, irrespective of 
the resource type. However, if the same productivity improvement is achieved via a 
heavy-tailed distribution, the type of resource becomes important and inequality 
rises much faster. With few elites harbouring most of the productivity gains, the 
rapid rise in local inequality is seen to correlate with significant changes in wealth 
and resource dynamics. Wealth levels rise fast for the highly productive elites as 
they intensify extraction pressure due to their particularly high productivity. 
Pressure on the resource directly affects income for the poor who do not have the 
assets allowing for high productivity, while facing a depleted resource. Poverty 
levels and resource pressure both rise, where the impact is more severe for the 
biotic resource. This is due to the nature of biotic resources which are prone to 
collapse below a critical threshold abundance level. Nonetheless in both cases, the 
poor are pushed off the resource and into poverty. This is consistent with what is 
seen in intricately connected social-ecological systems, where catastrophic changes 
such as a rapid rise in persistent poverty and resource degradation can coincide 
dynamically in time, forming a tipping point 70,71.  

Current model simulations and results need to be interpreted with caution as this 
was conceived as a theoretical exercise. While our work is theoretical in nature, an 
obvious next step is to test the theoretical predictions with empirical cases and data. 
Furthermore, our model attempts to capture key mechanisms needed to analyse 
inequality dynamics within social-ecological interactions. In this ambition, we 
make a series of simplifying assumptions that make the model tractable and 
analysable while retaining key features. Below we discuss some of our key 
assumptions and give cautionary notes where necessary.  

Wealth in the model is accumulated via income-generating activities, using a 
harvested resource as input. Since we have a single common pool resource, it is 
assumed that all parties whether rich or poor compete in generating income from 
the same source. We realize that in the real world multiple resources exist that may 
interact in ecologically and socially complex ways72.  For instance, rich and poor 
people may not necessarily compete for the same resource, as evidenced in Lake 
Victoria, where poor people harvest a smaller species (dagaa) than big companies 
(Nile perch)29.  A natural extension of our model would be to include 𝑛𝑛 resource 
types (where 𝑛𝑛 is small), thus investigating the effects of different ecological 
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interactions between the resources and the effects of a secondary resource on 
society. Although the outcome of these complex interactions is hard to predict, we 
expect that it is still likely that the wealthy have an advantage in both the capacity 
to harvest and also access to a greater number of resources than available to the 
poor. It would be exciting to compare the relative importance of ecological 
interactions (e.g. predator-prey relationships) and economic interactions (e.g. wage 
or price effects) that could potentially magnify or reduce inequality.   

In our social-ecological model, there is no response from policy or resource users 
as the resource is depleted based on the assumption of open access. A worthwhile 
extension to the model would be to analyse the policy response and effectiveness 
close to the tipping point, in an explicitly dynamic setting. An effective response 
would require decision-makers to anticipate a potential resource collapse, 
potentially in the form of early-warning signals and coordinate on an effective 
policy response. It remains doubtful whether both conditions will be met given that 
the time window to prevent a collapse is limited51,73.  

Our paper paints a rather bleak picture of a developing society based on the 
assumptions that the system is capitalistic 74 and there are no real effective 
redistribution mechanisms 75. Without a government implementing tax mechanisms 
or social safety nets for the poor, we see the stabilization of poverty levels in the 
long run. One could hypothesize that with rising inequality societal mechanisms 
will unfold that will allow for further redistribution of income. In such cases, we 
would expect cyclic behaviour in poverty levels depending on the resource 
pressure and the effectiveness of government interventions. Such an analysis is no 
doubt a worthwhile exercise and a project in itself. We will leave this as a topic for 
future research. In a similar vein, countries that initially leave their resources to 
open access may start implementing private or common property right regimes 
upon technological improvements, potentially safeguarding the sustainability of 
such resources 76. At the micro-level, users may start making cooperative 
agreements or craft rules to move towards a regime of sustainability77. It is an 
entirely open question whether evolving institutions would benefit the whole 
society or would be favouring the ruling elite.       

Conclusion 

Our results present key mechanisms which may explain the emergence of local 
inequality in a society. A positive feedback between wealth and technology will 
allow moderate levels of inequality to emerge in a growing society. Furthermore, if 
the initial distribution of technology and productivity are heterogeneous, as in a 
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capitalistic society, this can potentially lead to a rapid rise in inequality. With a 
heavy-tailed distribution of improved technology in society, fast rise in inequality 
is observed where a small elite group achieves accelerated wealth accumulation 
due to the convolution of better technology, capital income and resource control. 
Left unabated, this fast rise in inequality will have catastrophic effects such as 
overharvesting of resources and throwing those dependent on the resource off the 
resource and into poverty.  

Main results from the paper can be summarized as follows: First, in growing 
societies, inequality rises in our model society due to an inherent positive wealth-
technology feedback. Second, capitalistic development may result in a much faster 
rise in inequality and poverty depending on the distribution of productivity gains in 
society. Third, for uniformly distributed capital productivity gains, results show a 
slow innocuous rise in inequality. Pressure on resource use goes up but stays within 
sustainable levels. Fourth, for heavy-tailed distributed capital productivity gains, 
results show (i) rapid rise in inequality triggering a collapse in wealth and resource 
dynamics at the societal level, and (ii) sharp rise in poverty while resource stocks 
fall below sustainable levels. Finally, if the ecological system is prone to collapse, 
we see that the positive feedback between wealth accumulation and resource 
extraction results in social-ecological collapse with resource extinction.  

From a policy perceptive, the key message here is that a growth-based agenda may 
not only fuel inequality, but also resource depletion. While it is a public policy 
choice, how to rank objectives in importance, our results are a cautionary note on 
an agenda that is purely driven by economic growth, i.e. wealth accumulation, 
without any consideration for equity. We show that ensuring equality in access to 
key resources is not only essential for social justice, but also for improving 
ecological resilience and reduction in poverty. We also show that there is not 
necessarily a trade-off between inequality and total welfare, as inequality may fuel 
overexploitation which erodes the foundation of society’s wealth, making everyone 
worse off in case of a collapse.  
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Appendix 

Model parameters description and further analysis:  

Parameters Description Value Dimension 
𝐴𝐴 Resource inflow abiotic 2000 M t-1 

𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 Maximum resource level Abiotic: 1000 
Biotic: 100 

M 

𝜖𝜖 Resource growth rate 10 t-1 
𝑋𝑋𝑐𝑐 Critical sustainable resource level 30 M 
𝛼𝛼 Partial output elasticity of assets 0.2 DL 
𝑘𝑘𝑖𝑖 Maximum productivity 

(individual) 
Fixed: 1 
Random uniform: 
U(0, 2) 
Random Gamma: 
G(1, 1) 

DL 

𝜌𝜌 State of society in a continuum 
between uniform to differentiated 
access to technology 

Equal access: = 0 
Differentiated 
access: > 0  

DL 

𝜆𝜆 Controls the enhanced wealth 
generation capacity gained by 
access to better technology 

20 DL 

𝜃𝜃 Asset level where increasing 
returns starts to set in 

50 $ 

𝛾𝛾 cost-output elasticity of resource 
abundance 

0.3 DL 

𝜏𝜏 cost-output elasticity of assets 0.2 DL 
𝜇𝜇𝑖𝑖 Assets outflow or depreciation  0.1 t-1 
𝑠𝑠𝑖𝑖 Savings rate Random Normal: 

N(0.2, 0.01) 
t-1 

𝑎𝑎𝑖𝑖 Initial asset level of individuals Random uniform: 
U(0, 100) 

$ 

𝑋𝑋 Initial resource level 100 M 
M = Mass; t = time; $ = Monitory value; DL = Dimensionless  
Table A1: Parameter values and description  

In the paper, particular values of the parameters were chosen to initialize the 
system in a bi-stable regime where individuals can either stay in poverty or get 
wealthy. Following Ayres, 1988; Juster, Lupton, Smith, & Stafford, 2006 and 
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Modigliani, 1986, we focus on technology and savings as key parameters in our 
model being the most important determinants of wealth creation. Thus 𝑠𝑠𝑖𝑖, 𝜌𝜌 and 𝑘𝑘𝑖𝑖 
are analysed in the paper systematically to see how the model results change 
qualitatively.     

It is beyond the scope of this paper to systematically test all other parameters in a 
sensitivity analysis. In part, such an exercise would also be redundant as some 
parameters do not affect the results substantively. For example, 𝛼𝛼, 𝜏𝜏, and 𝛾𝛾 are 
dimensionless elasticity exponents chosen as 𝛼𝛼+𝜏𝜏+𝛾𝛾 < 1 to ensure diminishing 
returns to scale; 𝜃𝜃 is chosen as < 100 (maximum initial asset level) to indicate the 
asset level where locally increasing returns set in; 𝜇𝜇𝑖𝑖 is chosen as <1 to set a 
reasonable asset loss term; 𝐴𝐴, 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚, 𝜖𝜖 and 𝑋𝑋𝑐𝑐 are resource inflow parameters and 
are chosen to allow each of the 100 individuals, at the start of the simulations, 
enough resource to harvest. However, it will aid understanding and interpreting 
model results to see how parameters controlling the flow of wealth or resource, 𝜇𝜇, 𝐴𝐴 
and 𝜖𝜖, would affect the stability of our model’s long-run dynamics (Fig A1).  
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Figure A1: Bifurcation analysis for parameters 𝜇𝜇, 𝐴𝐴 and 𝜖𝜖. Blue and red lines show 
stable and unstable branched respectively    

Since 𝜇𝜇 controls the depreciation of assets, a rise will lower equilibrium wealth 
levels, reduce extraction capacity and lead to higher resource levels [Fig 
A1(a)&(b)]. Starting from a wealthy state, if the assets get obsolete quickly, less 



Chapter 2 

38 
 

wealth will be accumulated. If the depreciation of assets becomes too high, the 
wealth stable (blue) branch becomes unstable (red) causing an individual to fall in 
a poverty trap. For 𝐴𝐴, controlling abiotic resource inflow, the situation is opposite. 
With high inflow, the resource grows faster, allowing for more resource extraction 
and wealth [Fig A1(c)&(d)]. Starting from the poverty trap, at the critical point 
where the stable branch (blue) becomes unstable (red), wealth levels jump as more 
resource becomes available. Here, we see that higher resource availability 
facilitates the accumulated enough wealth to invest in the better technology thus 
accelerating to the wealthier state. For 𝜖𝜖, controlling biotic resource inflow, the 
situation is different since the biotic resource dynamics has an inherent non-
linearity due to the Allee effect. The upper blue line in Fig A1(e) and the inner blue 
line in Fig A1(f) are the wealthy stable branches, while the lower and outer blue 
lines in Fig A1(e) and (f) are the poor stable branches, respectively. Moving from 
right to left in A1(e), as resource inflow decreases, the upper blue branch becomes 
unstable and the society drops to the poor equilibrium. Further decrease in resource 
inflow will cause the poor state to become unstable as well, thus causing the 
society to fall in the collapse state.         

Biotic resource case  

The evolution of wealth distribution in the society and total resource stock for 
uniform [Fig S2(a-d)] and heavy tail gamma [Fig A2(e-h)]  scenarios can be seen 
from the heat maps and resource dynamics plots respectively. In the uniform 
scenario, we see local inequality grow in society but then stabilizing at a Gini value 
of around 0.7 in the long run [Fig A2(c)]. 

With the heavy tail scenario, local inequality rises much faster and hence the 
repercussions on poverty and the ecological system are disastrous. Here, both the 
social and ecological systems go through a simultaneous critical transition. Wealth 
levels drop, as indicated by the expanding blue region in Fig A2(f) and resource 
levels collapse as seen in Fig A2(h). The poor are at the receiving end of these 
abrupt changes as both poverty increases and resource collapses in the society at 
the same time. 
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Figure A2: Effect of heterogeneous technology change via uniform (a – d) and 
heavy tail (e – h) distributions. For both cases, we see the effect on the evolution of 
wealth, inequality, average wealth and resource stock. 



Chapter 2 

40 
 

References 

1. Carter, M. R. & Barrett, C. B. The economics of poverty traps and 
persistent poverty: An asset-based approach. J. Dev. Stud. 42, 178–199 
(2006). 

2. Bowles, S. [Ed], Durlauf, S. N. [Ed] & Hoff, K. [Ed]. Poverty traps. Poverty 
traps. (2006). 

3. Naschold, F. Welfare Dynamics in Pakistan and Ethiopia - Does the 
Estimation Method Matter? J. Dev. Stud. 49, 936–954 (2013). 

4. Barrett, C. B. et al. Welfare dynamics in rural Kenya and Madagascar. J. 
Dev. Stud. 42, 248–277 (2006). 

5. Dutta, S. & Kumar, L. Is Poverty Stochastic or Structural in Nature? 
Evidence from Rural India. Soc. Indic. Res. 128, 957–979 (2016). 

6. Toth, R. Traps and thresholds in pastoralist mobility. Am. J. Agric. Econ. 
97, 315–332 (2015). 

7. Azariadis, C. & Stachurski, J. Chapter 5 Poverty Traps. in Handbook of 
Economic Growth 1, 295–384 (2005). 

8. Barrett, C. B. & Carter, M. R. The Economics of Poverty Traps and 
Persistent Poverty: Empirical and Policy Implications. J. Dev. Stud. 49, 
976–990 (2013). 

9. Ghatak, M. Theories of poverty traps and anti-poverty policies. World Bank 
Econ. Rev. 29, S77–S105 (2015). 

10. Zimmerman, F. J. & Carter, M. R. Asset smoothing, consumption 
smoothing and the reproduction of inequality under risk and subsistence 
constraints. J. Dev. Econ. 71, 233–260 (2003). 

11. Mookherjee, D. & Ray, D. Persistent inequality. Rev. Econ. Stud. 70, 369–
393 (2003). 

12. Mookherjee, D. & Ray, D. Contractual structure and wealth accumulation. 
Am. Econ. Rev. 92, 818–849 (2002). 

13. Barrett, C. B. et al. Well-Being Dynamics and Poverty Traps. Annu. Rev. 
Resour. Econ. 8, (2015). 

14. Banerjee, A. V. & Newman, A. Occupational choice and the process of 
development. The Journal of Political Economy 101, 274–298 (1993). 



Chapter 2 

41 
 

15. Dillehay, D. L., Sander, M., Talkington, D. F., Thacker, W. L. & Brown, D. 
R. Isolation of mycoplasmas from prairie voles (Microtus ochrogaster). 
Laboratory Animal Science 45, 631–634 (1995). 

16. Vinet, L. & Zhedanov, A. A ‘missing’ family of classical orthogonal 
polynomials. J. Phys. A Math. Theor. 44, 696 (2011). 

17. de Miguel, J. M. Global Inequality: A New Approach for the Age of 
Globalization, de Branko Milanovic. Revista Española de Sociología 26, 
(Harvard University Press, 2017). 

18. Hamann, M. et al. Inequality and the Biosphere. Annu. Rev. Environ. 
Resour. 43, 61–83 (2018). 

19. Kohler, T. A. et al. Greater post-Neolithic wealth disparities in Eurasia than 
in North America and Mesoamerica. Nature 24646 (2017). 
doi:10.1038/nature24646 

20. Mustafa, D., Akhter, M. & Nasrallah, N. Understanding Pakistan’s water-
security nexus. (United States Institute of Peace, 2013). 

21. Mustafa, D. Social Construction of Hydropolitics: the Geographical Scales 
of Water and Security in the Indus Basin*. Geogr. Rev. 97, 484–501 (2010). 

22. Farooqi, H. & Wegerich, K. Institutionalizing inequities in land ownership 
and water allocations during colonial times in Punjab, Pakistan. Water Hist. 
7, 131–146 (2015). 

23. Gilmartin, D. Scientific Empire and Imperial Science: Colonialism and 
Irrigation Technology in the Indus Basin. J. Asian Stud. 53, 1127 (1994). 

24. Halsema, G. E. van & Vincent, L. F. Of flumes, modules and barrels: the 
failure of irrigation institutions and technologies to achieve equitable water 
control in the Indus Basin. in A history of water. (eds. Tvedt, T., Jakobsson, 
E., Coopey, R. (Richard) & Oestigaard, T.) 55–91 (I.B. Tauris, 2006). 

25. Shah, T. Taming the Anarchy: Groundwater Governance in South Asia. 
Taming the Anarchy: Groundwater Governance in South Asia 1–310 
(2008). doi:10.4324/9781936331598 

26. Rahman, T. The Class Structure of Pakistan. (Oxford University Press, 
2012). 

27. Godoy, R. et al. The effect of wealth and real income on wildlife 
consumption among native Amazonians in Bolivia: estimates of annual 
trends with longitudinal household data (2002-2006). Anim. Conserv. 13, 
265–274 (2010). 



Chapter 2 

42 
 

28. Alam, S. Environmentally induced migration from Bangladesh to India. 
Strateg. Anal. 27, 422–438 (2003). 

29. Downing, A. S. et al. Coupled human and natural system dynamics as key 
to the sustainability of Lake Victoria’s Ecosystem services. Ecol. Soc. 19, 
(2014). 

30. ISSC, IDS & UNESCO. World social science report 2016: challenging 
inequalities: pathways to a just world (summary)*. International Social 
Science Journal 65, (UNESCO Publishing, 2014). 

31. Arnold, M. & Townson, I. Assessing the potential of forest product 
activities to contribute to rural incomes in Africa. Nat. Resour. Perspect. 37, 
(1998). 

32. Lawton, J. H. Daily, G. C. (Ed.). 1997. Nature’s services. Societal 
dependence on natural ecosystems. Island Press, Washington, DC. 392 pp. 
ISBN 1-55963-475-8 (hbk), 1 55963 476 6 (soft cover). Animal 
Conservation 01, 75–76 (1998). 

33. Cavendish, W. Empirical regularities in the poverty-environment 
relationship of rural households: Evidence from Zimbabwe. World Dev. 28, 
1979–2003 (2000). 

34. Fisher, B. & Christopher, T. Poverty and biodiversity: Measuring the 
overlap of human poverty and the biodiversity hotspots. Ecol. Econ. 62, 93–
101 (2007). 

35. McNally, C. G., Uchida, E. & Gold, A. J. The effect of a protected area on 
the tradeoffs between short-run and long-run benefits from mangrove 
ecosystems. Proc. Natl. Acad. Sci. U. S. A. 108, 13945–13950 (2011). 

36. Coomes, O. T., Takasaki, Y. & Rhemtulla, J. M. Land-use poverty traps 
identified in shifting cultivation systems shape long-term tropical forest 
cover. Proc. Natl. Acad. Sci. U. S. A. 108, 13925–13930 (2011). 

37. Naughton-Trevesa, L., Alix-Garcia, J. & Chapman, C. A. Lessons about 
parks and poverty from a decade of forest loss and economic growth around 
Kibale National Park, Uganda. Proc. Natl. Acad. Sci. U. S. A. 108, 13919–
13924 (2011). 

38. Lybbert, T. J., Aboudrare, A., Chaloud, D., Magnan, N. & Nash, M. 
Booming markets for Moroccan argan oil appear to benefit some rural 
households while threatening the endemic argan forest. Proc. Natl. Acad. 
Sci. U. S. A. 108, 13963–13968 (2011). 

39. Farley, J. & Voinov, A. Economics, socio-ecological resilience and 



Chapter 2 

43 
 

ecosystem services. J. Environ. Manage. 183, 389–398 (2016). 

40. Lawler, R. D. The Idea of Justice. New Scholasticism 44, (Belknap Press of 
Harvard University Press, 1970). 

41. Mirza, M. U. & Mustafa, D. Access, Equity and Hazards: Highlighting a 
Socially Just and Ecologically Resilient Perspective on Water Resources. in 
Sustainable Development and Disaster Risk Reduction: Methods, 
Approaches and Practices 143–159 (2016). doi:10.1007/978-4-431-55078-
5_9 

42. Saez, E. & Zucman, G. What comes to mind. Q. J. Econ. 131, 519–578 
(2016). 

43. Gabaix, X. et al. The Dynamics of Inequality. Econometrica 84, 2071–2111 
(2016). 

44. Rosen, S. The Economics of Superstars. Am. Econ. Rev. 71, 845–58 (1981). 

45. Carpenter, S. R. & Brock, W. A. Adaptive capacity and traps. Ecol. Soc. 13, 
(2008). 

46. Scheffer, M. & Westley, F. R. The evolutionary basis of rigidity: Locks in 
cells, minds, and society. Ecol. Soc. 12, (2007). 

47. Scheffer, M., Carpenter, S., Foley, J. a, Folke, C. & Walker, B. Catastrophic 
shifts in ecosystems. Nature 413, 591–6 (2001). 

48. Lade, S. J., Tavoni, A., Levin, S. A. & Schlüter, M. Regime shifts in a 
social-ecological system. Theor. Ecol. 6, 359–372 (2013). 

49. Ibáñez, J., Martínez, S. & Martínez, J. Competitive and optimal control 
strategies for groundwater pumping by agricultural production units. Water 
Resour. Res. 40, n/a-n/a (2004). 

50. Tavoni, A., Schlüter, M. & Levin, S. The survival of the conformist: Social 
pressure and renewable resource management. J. Theor. Biol. 299, 152–161 
(2012). 

51. Richter, A. & Dakos, V. Profit fluctuations signal eroding resilience of 
natural resources. Ecol. Econ. 117, 12–21 (2015). 

52. Kuparinen, A., Keith, D. M. & Hutchings, J. A. Allee effect and the 
uncertainty of population recovery. Conserv. Biol. 28, 790–798 (2014). 

53. Allee, W. C. Animal aggregations, a study in general sociology. / by W. C. 
Allee. Animal aggregations, a study in general sociology. / by W. C. Allee. 



Chapter 2 

44 
 

(2011). doi:10.5962/bhl.title.7313 

54. Dennis, B. Allee Effects: Population Growth, Critical Density, and the 
Chance of Extinction. Nat. Resour. Model. 3, 481–538 (1989). 

55. Kramer, A. M., Dennis, B., Liebhold, A. M. & Drake, J. M. The evidence 
for Allee effects. Population Ecology 51, 341–354 (2009). 

56. Berec, L., Angulo, E. & Courchamp, F. Multiple Allee effects and 
population management. Trends Ecol. Evol. 22, 185–191 (2007). 

57. Courchamp, F., Clutton-Brock, T. & Grenfell, B. Inverse density 
dependence and the Allee effect. Trends in Ecology and Evolution 14, 405–
410 (1999). 

58. Modigliani, F. Life cycle, individual thrift, and the wealth of nations. 
Science (80-. ). 234, 704–712 (1986). 

59. Juster, F. T., Lupton, J. P., Smith, J. P. & Stafford, F. The Decline in 
Household Saving and the Wealth Effect. Rev. Econ. Stat. 88, 20–27 
(2006). 

60. Ayres, R. U. Technology: The wealth of nations. Technol. Forecast. Soc. 
Change 33, 189–201 (1988). 

61. Milanovic, B., Lindert, P. H. & Williamson, J. G. Pre-Industrial Inequality. 
Econ. J. 121, 255–272 (2011). 

62. Ravallion, M. Income inequality in the developing world. Science (80-. ). 
344, 851–855 (2014). 

63. Mead, D. C. The contribution of small enterprises to employment growth in 
southern and eastern Africa. World Dev. 22, 1881–1894 (1994). 

64. Falconer, J. & Koppell, C. R. S. The Major Significance of ‘Minor’ Forest 
Products: The local use and value of forests in the West African humid 
forest zone. Community Forestry Note 6, UN FAO, Rome (1990). 

65. Mead, D. C. The contribution of small enterprises to employment growth in 
southern and eastern Africa. World Dev. 22, 1881–1894 (1994). 

66. Townson, I. M. Incomes from non-timber forest products: patterns of 
enterprise activity in the forest zone of Southern Ghana. Draft Rep. to ODA 
For. Res. Program. (1995). 

67. Atkinson, A. B., Piketty, T. & Saez, E. Top incomes in the long run of 
history. J. Econ. Lit. 49, 3–71 (2011). 



Chapter 2 

45 
 

68. Alvaredo, F., Atkinson, A. B., Piketty, T. & Saez, E. The top 1 percent in 
international and historical perspective. J. Econ. Perspect. 27, 3–20 (2013). 

69. Piketty, T. Piketty - 2015 - About Capital in the Twenty-First Century. Am. 
Econ. Rev. 105, 48–53 (2015). 

70. Barrett, C. B., Travis, A. J. & Dasgupta, P. On biodiversity conservation 
and poverty traps. Proc. Natl. Acad. Sci. U. S. A. 108, 13907–13912 (2011). 

71. Scheidel, A. Flows, funds and the complexity of deprivation: Using 
concepts from ecological economics for the study of poverty. Ecol. Econ. 
86, 28–36 (2013). 

72. Barrett, C. B. Poverty Traps and Resource Dynamics in Smallholder 
Agrarian Systems. in Economics of poverty, environment and natural-
resource use 31, 17–40 (Springer, 2008). 

73. Biggs, R., Carpenter, S. R. & Brock, W. A. Turning back from the brink: 
Detecting an impending regime shift in time to avert it. Proc. Natl. Acad. 
Sci. (2009). doi:10.1073/pnas.0811729106 

74. Piketty, T. & Zucman, G. Capital is back: Wealth-income ratios in rich 
countries 1700–2010. Q. J. Econ. 129, 1255–1310 (2014). 

75. Besley, T. & Persson, T. Why do developing countries tax so little? J. Econ. 
Perspect. 28, 99–120 (2014). 

76. Copeland, B. R. & Taylor, M. S. Trade, tragedy, and the commons. Am. 
Econ. Rev. 99, 725–749 (2009). 

77. Richter, A., van Soest, D. & Grasman, J. Contagious cooperation, 
temptation, and ecosystem collapse. J. Environ. Econ. Manage. 66, 141–
158 (2013). 

 



Chapter 3 

46 
 

Chapter 3 

Institutions-inequality interplay shapes the impact of  
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Abstract 

The latest global assessment of the Intergovernmental Science-Policy Platform on 
Biodiversity and Ecosystem Services (IPBES) warns that biodiversity loss can 
make ecosystems more vulnerable to the effects of climate change and other 
stressors. Economic growth has been identified as one of the key drivers of these 
losses, however, the impact pathway may depend on how society organizes 
economic activity and distributes its benefits. Here we use a global country-level 
dataset to show, how the strength of national institutions and economic inequality 
in society can mediate the loss of biodiversity worldwide. We find that the 
interplay of institutions and inequality fully mediates the impact of economic 
growth on plants biodiversity, but only partially mediates the impact on animals 
biodiversity. Furthermore, in sustaining biodiversity, the effectiveness of 
institutions depends on inequality in society, such that biodiversity loss is 
ameliorated when institutions are strong and inequality low, but in regions with 
high inequality, institutions tend to lose their efficacy. Our analysis also uncovers 
nonlinearities in inequality, institutions and biodiversity interactions, which are 
important to investigate further and consider for policy purposes.        

Keywords: Inequality, Biodiversity, Nonlinearity, Economic growth  
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Introduction 

Anthropogenic drivers put unprecedented pressures on our planet, resulting in 
biodiversity loss and exploitation of renewable resources beyond sustainable 
limits1,2. Biosphere impacts of societies are inherently socio-ecological in nature 
with complex interactions and feedbacks3,4. Earlier work has shown the detrimental 
effect of economic drivers, in particular economic growth, on the biosphere5–10. At 
the same time, economic growth creates wealth which may give societies the 
means to mitigate biosphere impacts11 and ultimately foster earth stewardship12.  

The exact impacts of economic growth are therefore ambiguous, as the biosphere 
impacts are mediated through societal mechanisms, such as quality of 
institutions13,14 and incidence of economic inequality15,16. Especially less developed 
nations are often plagued with weak institutional structures and skewed economic 
returns to the wealthy, making collective action for biodiversity restoration 
difficult, and causing exploitative growth at the expense of the environment2.  

It is widely known now that economic development does not translate into 
biosphere stewardship, without sound institutional mechanisms steering economic 
activity17. Indeed, economic growth does not ensure environmental quality18,19, as 
there are multiple mediating factors, such as the strength of institutions and how 
uniformly the benefits of growth are distributed, that determine how economic 
growth impacts the environment. Evidence suggests that these mediating factors 
influence each other, such that high inequality undermines institutional quality or 
conversely poor institutions allow inequality to flourish, potentially creating a 
positive feedback that multiplies detrimental effects on the biosphere20,21. Most of 
the existing work focus on direct single variable effects, with little or no insights on 
interactions and indirect paths 22,23, while literature suggests that inequality and 
institutions move together in a bidirectional cause-effect relationship 24–26, and 
there are pronounced nonlinearities between inequality and environmental 
linkages6,7.  

In this paper, we use a global country level panel dataset to analyse the role of 
inequality and institutions, in explaining the biosphere impacts of economic 
growth. Considering its social and ecological significance27, we use biodiversity 
loss as the key biosphere impact variable for this study. Diversity of animals and 
plants in the biosphere are changing slowly, but have high impact on the 
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functioning of our ecosystem and its ability to provide society means to 
prosperity28. Drivers of biodiversity loss are multivariate and nonlinear, with both 
direct and indirect pathways from human economic activity and our social 
structures.  

Our starting point is a conceptual model (Fig 1a), hypothesizing key relationships. 
Economic growth spurs output (GDP per capita), which can have both direct and 
indirect effects based on the impact pathway. While economic growth may affect 
biodiversity directly, there are also indirect affects mediated through pollution and 
resource use that can build strain on a much slower variable like biodiversity. In 
parallel, there can be more indirect routes via the evolution of societal variables 
like inequality and institutions, which affects pollution and resource use, in turn 
affecting biodiversity. We use a combination of generalized additive (GAM) and 
structural equations models (SEM) to investigate these and other impact pathways 
systematically. Within the SEM framework, additional covariates and generalized 
method of moments (GMM)29 estimators are used to control for confounding 
variables and reverse causation; see methods for details.       
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Figure 1: Direct and indirect effect pathways from economic growth to biodiversity 
loss (a) A conceptual model illustrating the structural relationship (b) The 
relationship between inequality–institutional interaction in the data across countries 
resembles an inverted U. 

Results 

A simple inspection of the data, pooled on the level of countries, reveal a nonlinear 
inverted-U shaped relationship between institutional strength and inequality (Fig 
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1b). As we move from areas of low to high institutional strength, inequality first 
rises but then drops. The turning point where inequality is highest is seen for 
countries where institutions are at intermediate strength, while both low and high 
institutional strength areas have low inequality.  

Exploring the nonlinearity further, we model inequality-institutions interactions 
against biodiversity loss, using generalized additive models, allowing us to 
investigate the underlying relationship. At the margins, we see an inverted-U 
shaped relationship for institutions and a positive relationship for inequality, with 
respect to animals biodiversity loss (Fig 2a). Biodiversity loss worsens as 
inequality rises, and this effect is strongest if institutions are in an intermediate 
development phase. When inequality is low, institutions are effective in improving 
biodiversity. Hence, biodiversity loss is lowest when institutions are strong and 
inequality is low.    

A similar pattern emerges for plants biodiversity loss (Fig 2b). An inverted U-
shaped relationship is apparent along the institutions axis, where low or high levels 
of institutional quality lead to less biodiversity loss. Higher inequality tends to be 
associated with greater biodiversity loss. A common feature in both plant and 
animal biodiversity figures is that we see a consistent pattern of institutional 
efficacy waning in the face of high inequality, while the combination of strong 
institutions and low inequality being the most effective way to curb biodiversity 
loss. Also, in general, biodiversity loss worsens, as inequality rises, irrespective of 
institutional strength.    
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Figure 2: Trends in biodiversity loss due to inherent nonlinearities in inequality-
institutions space. Red to blue region show high to low biodiversity loss 
respectively. Biodiversity loss values predicted using a generalized additive model 
(GAM) with inequality-institutions interactions. 

Having analysed the general relationship of how institutions and inequality interact 
with biodiversity loss, we now explore specific impact pathways in the economic 
growth – biodiversity loss relationship, using the SEM meta model as introduced in 
Fig 1a. Direct and indirect effect pathways for animal and plant biodiversity loss 
are summarized graphically in Fig 3 and model estimates respectively in Table 1 
and Table 2. By direct effect, we refers to a significant relationship in the model 
explaining animals and plants biodiversity loss (Model 1 in Table 1 and 2), after 
controlling for confounding factors. A direct effect is illustrated by an 
uninterrupted link between two variables (Fig 3). Indirect effects are significant 
relationships mediated by intermediate variables, such as those explained by 
models 2-5 in Table 1 and 2. An indirect effect is illustrated by a link through the 
respective mediated variable (Fig 3).   

GDP per capita is significant across specified models that explain animals 
biodiversity loss and has a significant positive direct effect (Table 1). An increase 
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in GDP per capita (economic growth) leads to increase in biodiversity loss. At the 
same time, for animals we find that indirect effects of GDP per capita are mediated 
through all intermediary variables. For plants, however we don’t find any direct 
effects. Plants biodiversity loss is only affected indirectly by GDP per capita, and 
mediated through specified intermediary variables (Fig 3 and Table 2). Indirect 
effects of economic growth are via institutions, inequality, natural resource 
depletion and pollution for both animal and plant biodiversity loss.     
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Figure 3: Effect pathway analysis revealing the nature of direct and indirect routes 
by which economic growth affects animal and plant biodiversity loss. Singe sign 
denotes a linear relation, while a combination of two signs represent nonlinear 
quadratic behaviour. See table 1 and 2 for coefficient values.  

Next, we look closer into the role of intermediary variables. For institutions, the 
results confirm the inverted U-shaped relationship on biodiversity loss, evidenced 
by the highly significant negative quadratic coefficients. In addition, our results 
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suggests that institutions have a further indirect effect, on biodiversity mediated 
through inequality. The relationship between institutions and inequality is an 
inverted U, so that the net effect on biodiversity loss is ambiguous and depends on 
both the strength of institutions and level of inequality in society.  

For inequality, the inverted U-shaped effect on biodiversity is also present, 
however the nonlinearity is more significant for plant than animal biodiversity loss. 
As we saw earlier from the GAM results, the nonlinear component in inequality is 
weaker, implying that biodiversity loss increases with inequality and the turning 
point is located only at very high inequality levels. In addition to the direct effect, 
inequality also affects biodiversity loss indirectly via pollution for animals and 
natural resource depletion for plants. Inequality aggravates both resource depletion 
and pollution, which in turn increases biodiversity loss.  
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 Direct 
effects 

Indirect effects 

 Model 1  
Panel 

(Within)  
Ani. 

biodiv. 
loss (log) 

Model 2  
Panel  

(GMM)  
Institutional 

Strength 

Model 3  
Panel 

(GMM)  
Inequality 

Model 4  
Panel 

(GMM)  
Natural 

Res. Dep. 
(log) 

Model 5  
Panel 

(GMM)  
Pollution 

(log) 

Inequality 0.04*   0.09* 0.02* 
 (0.02)   (0.05) (0.01) 
Inequality2 -0.0005*     
 (0.0002)     
Institutional 
Strength 

0.03***  0.67***   

 (0.00)  (0.14)   
Institutional 
Strength2 

-0.0003***  -0.00***   

 (0.00003)  (0.00)   
Surface area 
(log) 

-0.06***     

 (0.02)     
Population (log) 0.16*** -3.52***    
 (0.02) (0.85)    
Pollution (log) -0.21***     
 (0.05)     
Natural Res. 
Dep. (log) 

-0.00     

 (0.01)     
GDP/capita (log) 0.09*** 17.70*** -5.87*** -0.77* -0.18* 
 (0.03) (1.73) (0.93) (0.38) (0.08) 
Num. obs. 472 472 472 472 472 
Sargan Test:  
p-value 

 0.50 0.34 0.56 0.14 

Autocorrelation 
test:  
p-value 

 0.35 0.12 0.18 0.24 

Wald Test 
Coefficients:  
p-value 

 0.00 0.00 0.00 0.00 

Wald Test Time 
Dummies:  
p-value 

 0.00 0.00 0.00 0.00 

***p < 0.001, **p < 0.01, *p < 0.1 
Table 1: Model results for Animal biodiversity loss (direct and indirect effects) 



Chapter 3 

56 
 

 Direct 
effects 

Indirect effects 

 Model 1  
Panel 

(Within)  
Pla. 

biodiv. 
loss (log) 

Model 2  
Panel  

(GMM)  
Institutional 

Strength 

Model 3  
Panel 

(GMM)  
Inequality 

Model 4  
Panel  

(GMM)  
Natural 

Res. Dep. 
(log) 

Model 5  
Panel 

(GMM)  
Pollution 

(log) 

Inequality 0.44***   0.09* 0.01* 
 (0.04)   (0.04) (0.01) 
Inequality2 -0.004***     
 (0.00)     
Institutional 
Strength 

0.04***  0.62**   

 (0.01)  (0.22)   
Institutional 
Strength2 

-0.0004***  -0.004*   

 (0.00)  (0.00)   
Surface area 
(log) 

-0.15***     

 (0.05)     
Population (log) 0.29*** -2.60*    
 (0.05) (1.09)    
Pollution (log) -0.71***     
 (0.12)     
Natural Res. 
Dep. (log) 

0.06*  1.25***   

 (0.02)  (0.34)   
GDP/capita (log)  18.94*** -4.64** -0.75* -0.19* 
  (1.61) (1.54) (0.33) (0.07) 
Num. obs. 464 464 464 464 464 
Sargan Test:  
p-value 

 0.33 0.21 0.59 0.18 

Autocorrelation 
test:  
p-value 

 0.31 0.16 0.10 0.26 

Wald Test 
Coefficients: p-
value 

 0.00 0.00 0.00 0.00 

Wald Test Time 
Dummies:  
p-value 

 0.00 0.00 0.00 0.00 

***p < 0.001, **p < 0.01, *p < 0.1 
Table 2: Model results for Plant biodiversity loss (direct and indirect effects) 
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Discussion 

The effects of economic inequality on institutional strength and vice versa, are well 
studied 24,30,31. Income concentrated in the hands of the few grants access to power 
and political influence that can inhibit institutional evolution32, while a transparent 
society with effective institutions, promotes equality and justice in the distribution 
of economic gains33. Our work probes the mutually counteracting relationship24 
between inequality and institutions further, asking how this interaction might play a 
role in the explaining the effects of economic growth on the biodiversity loss.  

We find an inverted U-shaped relationship between institutional strength and 
inequality, a result consistent with the literature34. One interpretation of the 
causality behind this relationship is that institutional changes may initially favour 
the rich, due to the persistence of their power, but that subsequent improvements 
would lead to a level playing field for all35. Our results suggest that this core 
mechanisms drive further nonlinearities with respect to biosphere impact variables. 
With stronger institutions, biodiversity loss in both animal and plants seems to 
worsen first, before improving, depending on both the quality of institutions and 
level of inequality.  

Additionally, in regions of high inequality, the potency of institutions withers away 
to protect biodiversity loss. This idea is supported by assertions in literature 
pointing out that, while governance is important, it can be overshadowed by 
economic variables7, and institutions may be less likely to regulate biosphere 
indicators, like biodiversity loss, in poor countries which are often unequal as 
well36.  

Nonlinear relationships involving inequality are now commonly reported in the 
literature. The root of much of this work is in the ideas put forward by Kuznets 
(1955)37. Boyce (1994)16 was the first to hypothesize environmental degradation as 
a function of inequality, but later work showed that the effect of inequality and 
economic development can be highly complex and nonlinear38,39. Our results 
suggest that, both animal and plants biodiversity loss variables, first deteriorate but 
then improve, in the institutions-inequality domain. The improvements correlate 
with better institutions, this does not necessarily imply a causal relationship. 
Societal choices to mitigate biosphere impacts differ across regions and income 
levels38, so a comparison between countries may not necessarily reflect 
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developments within countries over time. We mitigate this concern to use country-
fixed effects in the GMM and time-invariant covariates, such as land surface area 
in all other specifications. Even with strong institutions, highly unequal societies 
with concentrated power may be more likely to preclude an effective and 
enforceable consensus on environmental quality and conservation, thus reinforcing 
the status-quo of elites40.  

Our results suggest that inequality and institutions play a central role in mediating 
the effects from economic growth on biodiversity loss. After taking into account 
the effects of inequality and institutions, we don’t see a significant direct effect of 
economic growth on plant biodiversity loss and a dual direct and indirect effect on 
animal biodiversity loss. Furthermore, strong institutions can be fruitless in the face 
of rising inequality, where a highly unequal society can circumvent the system and 
choose to benefit at the expense of biodiversity.  

Discussion of structural relationships, explored in this paper, merits a note about 
causality, which is also very central in the literature on the Environmental Kuznets 
Curve41. Defining causal interpretation when variables can be independently varied 
is easy, however in the real world, where causes are often interrelated and 
confounding unobserved variables are omnipresent, recovering causal effects by 
mere statistics is impractical. Statistical techniques like SEMs, ‘assume’ causal 
relations between the variables of interest42, which does not in any way mean SEM 
establishes causal relations from associations alone43. Here, our aim is to use the 
SEM framework to marshal support for our assumed structural relationships, not 
proving it. Significance of effects presented, does not prove causality, however 
using a dynamic instrument variables approach with country fixed effects like 
GMM and controlling for observed covariates within the SEM framework, does 
make it more plausible. Further research, with recourse to natural experiments with 
randomized controls are needed to establish causal link based on the effects 
identified in this paper.    

Our results highlights the complex and nonlinear nature of inequality-institutions 
interaction that can mediate impacts on the biosphere. Focusing on institutions and 
inequality, as two key handles for policy, is of paramount importance, without 
which following a biosphere protection agenda can be wasteful and 
counterproductive.          
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Methods 

Analysis presented in the paper, is based on a longitudinal panel dataset, compiled 
from various sources including IUCN’s Red List of Threatened Species, World 
Bank’s Development Indicators, The Standardized World Income Inequality 
Database, World Bank’s Governance Indicators and UEA CRU. See 
supplementary material for a detailed description of all variables with units.  

Biodiversity loss is calculated as the ratio of threatened species (as defined by 
IUCN) to total number of species identified, thus taking country specific species 
richness into account. Biodiversity loss variables are log transformed to standardize 
and aid comparison.  

Income inequality is quantified by the widely used standardized index of Gini 
coefficients44. No similar widely accepted estimate exists for institutional strength. 
To construct a standardized indicator we use principal component analysis (PCA) 
on set of six national level World Bank’s governance indicators, reflecting 
institutional effectiveness. While highly correlated these indicators all measure 
different dimensions such as Voice and Accountability, Political Stability and 
Absence of Violence, Government Effectiveness, Regulatory Quality, Rule of Law 
and Control of Corruption. For our purposes, we standardized these six dimensions 
into a single measure of institutional quality by using principal component analysis 
(PCA). PCA parses data into orthogonal components thus capturing most of the 
variation in one component. The resulting estimate, which we term as institutional 
strength, captures 84.7% of the variance over country’s regulatory quality, control 
of corruption, governance effectiveness and rule of law (see supplementary 
material).          

In addition to the effects via inequality and institutions, more direct impacts of 
economic growth included in the model are measured by air pollution and natural 
resource depletion. A number of covariates are also used to control for other 
observable factors affecting biodiversity loss. These include temperature, 
precipitation, country surface area and country population and income.        

With the data set up, we first explore nonlinearities in the institutions-inequality 
space using a generalized additive model (GAM). Separate models were fitted for 
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biodiversity loss (plants), and biodiversity loss (animals) as response variables. The 
general GAM structure used is as follows: 

𝐵𝐵𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝑓𝑓1�𝑄𝑄𝑖𝑖𝑖𝑖,𝑆𝑆𝑖𝑖𝑖𝑖� ∗ 𝑌𝑌 + 𝑓𝑓𝑛𝑛(𝑋𝑋) + 𝜀𝜀𝑖𝑖𝑖𝑖 − (1) 

𝑓𝑓𝑛𝑛(𝑋𝑋) = 𝑓𝑓2�𝐼𝐼𝑖𝑖𝑖𝑖� + 𝑓𝑓4�𝑂𝑂𝑖𝑖𝑖𝑖� + 𝑓𝑓5�𝑈𝑈𝑖𝑖𝑖𝑖� + 𝑓𝑓7�𝑇𝑇𝑖𝑖𝑖𝑖� + 𝑓𝑓8�𝑃𝑃𝑖𝑖𝑖𝑖�+ 𝑓𝑓9�𝐷𝐷𝑖𝑖𝑖𝑖� + 𝑓𝑓10(𝐴𝐴𝑖𝑖) + 𝑌𝑌 

𝜀𝜀𝑖𝑖𝑖𝑖  ~ 𝑁𝑁(0,𝜎𝜎2) 

Subscript 𝑖𝑖𝑖𝑖 refers to observations of country 𝑖𝑖 in year 𝑖𝑖. Here 𝐵𝐵 is the chosen log 
biodiversity loss (animals or plants) response variable and 𝑄𝑄 and 𝑆𝑆 are key 
explanatory variables of interest denoting inequality and institutional quality 
respectively. 𝐼𝐼 is log income, 𝑂𝑂 is log population, 𝑈𝑈 is log pollution, 𝑇𝑇 is 
temperature, 𝑃𝑃 is log precipitation, 𝐷𝐷 is log natural resource depletion, 𝐴𝐴 is log 
country surface area and 𝑌𝑌 is years. 𝑓𝑓(𝑄𝑄, 𝑆𝑆) is a smoothing function using tensor 
product smooths. Tensor product smooths are used for smooth interaction of two or 
more variables especially when they are measured in different units. The basic idea 
is to start with ‘smooths’ in one variable with any basis functions and then 
construct products by varying in the other dimension to get45:      

𝑓𝑓1(𝑄𝑄, 𝑆𝑆) = � � 𝛼𝛼𝑙𝑙𝑙𝑙𝑏𝑏𝑙𝑙(𝑄𝑄)𝑐𝑐𝑙𝑙(𝑆𝑆)
𝑀𝑀

𝑙𝑙=1

𝐿𝐿

𝑙𝑙=1

 

𝐿𝐿 and 𝑀𝑀 are the dimensions or degrees of freedom of 𝑏𝑏𝑖𝑖 and 𝑐𝑐𝑖𝑖, the smoothing basis 
functions. 𝛼𝛼𝑖𝑖𝑖𝑖 is the vector of unknown regression coefficients. For the rest we 
have the following standard smoothing structure: 

𝑓𝑓𝑛𝑛(𝑋𝑋) = �𝛽𝛽𝑘𝑘𝑛𝑛𝑑𝑑𝑘𝑘𝑛𝑛(𝑋𝑋)
𝐾𝐾

𝑘𝑘=1

 

Basis dimensions (𝐿𝐿,𝑀𝑀,𝐾𝐾) are restricted to 3 to limit over-smoothing. 

Moving on from studying the general structure, we now statistically test specific 
interactions in the conceptual model using a structural equation model (SEM) 
framework. SEM are, simply put, multiple simultaneously estimated regression 
models in which the response variable in one regression equation can appear as an 
explanatory variable in another equation46. Global or simultaneous estimation of 



Chapter 3 

61 
 

SEMs assumes a number of restriction on the underlying data structure such as 
linearity, normality and one-way effects. A more powerful and flexible approach is 
piecewise estimate47, where each model is fitted separately, such that the 
complexity of each relation can be addressed individually.  

Utilizing the piecewise SEM framework, we use a combination of panel 
regressions and GMM (generalized method of moments) estimators, to control for 
unobserved heterogeneity across countries, and suspected endogeneity within some 
of our modelled relations. Our estimated equations, for direct and indirect effects, 
are as follows: 

For animal biodiversity loss: 

Direct effects 

𝐵𝐵𝑖𝑖𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝑄𝑄𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑄𝑄𝑖𝑖𝑖𝑖2 + 𝛽𝛽3𝑆𝑆𝑖𝑖𝑖𝑖 + 𝛽𝛽4𝑆𝑆𝑖𝑖𝑖𝑖2 + 𝛽𝛽5𝐼𝐼𝑖𝑖𝑖𝑖 + 𝛽𝛽6𝑂𝑂𝑖𝑖𝑖𝑖 + 𝛽𝛽7𝑈𝑈𝑖𝑖𝑖𝑖 + 𝛽𝛽8𝐴𝐴𝑖𝑖 + 𝛽𝛽9𝐷𝐷𝑖𝑖 + 𝜇𝜇𝑖𝑖
+ 𝜀𝜀𝑖𝑖𝑖𝑖 − (2𝑎𝑎) 

Indirect effects 

𝑆𝑆𝑖𝑖𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝐼𝐼𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑂𝑂𝑖𝑖𝑖𝑖 + 𝜐𝜐𝑖𝑖 + 𝜇𝜇𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 − (2𝑏𝑏) 

𝑄𝑄𝑖𝑖𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝐼𝐼𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑆𝑆𝑖𝑖𝑖𝑖 + 𝛽𝛽3𝑂𝑂𝑖𝑖𝑖𝑖 + 𝛽𝛽4𝑈𝑈𝑖𝑖𝑖𝑖 + 𝛽𝛽5𝐷𝐷𝑖𝑖𝑖𝑖 + 𝜐𝜐𝑖𝑖 + 𝜇𝜇𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 − (2𝑐𝑐) 

𝐷𝐷𝑖𝑖𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝐼𝐼𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑄𝑄𝑖𝑖𝑖𝑖 + 𝜐𝜐𝑖𝑖 + 𝜇𝜇𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 − (2𝑑𝑑) 

𝑈𝑈𝑖𝑖𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝐼𝐼𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑄𝑄𝑖𝑖𝑖𝑖 + 𝜐𝜐𝑖𝑖 + 𝜇𝜇𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 − (2𝑒𝑒) 

For plant biodiversity loss 

Direct effects 

𝐵𝐵𝑖𝑖𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝑄𝑄𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑄𝑄𝑖𝑖𝑖𝑖2 + 𝛽𝛽3𝑆𝑆𝑖𝑖𝑖𝑖 + 𝛽𝛽4𝑆𝑆𝑖𝑖𝑖𝑖2 + 𝛽𝛽5𝐼𝐼𝑖𝑖𝑖𝑖 + 𝛽𝛽6𝑂𝑂𝑖𝑖𝑖𝑖 + 𝛽𝛽7𝑃𝑃𝑖𝑖𝑖𝑖 + 𝛽𝛽8𝐴𝐴𝑖𝑖 + 𝛽𝛽9𝐷𝐷𝑖𝑖
+ 𝜇𝜇𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 − (3𝑎𝑎) 

Indirect effects 

 

𝑆𝑆𝑖𝑖𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝐼𝐼𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑂𝑂𝑖𝑖𝑖𝑖 + 𝜐𝜐𝑖𝑖 + 𝜇𝜇𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 − (3𝑏𝑏) 
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𝑄𝑄𝑖𝑖𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝐼𝐼𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑆𝑆𝑖𝑖𝑖𝑖 + 𝛽𝛽3𝑂𝑂𝑖𝑖𝑖𝑖 + 𝛽𝛽4𝑈𝑈𝑖𝑖𝑖𝑖 + 𝛽𝛽5𝐷𝐷𝑖𝑖𝑖𝑖 + 𝜐𝜐𝑖𝑖 + 𝜇𝜇𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 − (3𝑐𝑐) 

𝐷𝐷𝑖𝑖𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝐼𝐼𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑄𝑄𝑖𝑖𝑖𝑖 + 𝜐𝜐𝑖𝑖 + 𝜇𝜇𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 − (3𝑑𝑑) 

𝑈𝑈𝑖𝑖𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝐼𝐼𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑄𝑄𝑖𝑖𝑖𝑖 + 𝜐𝜐𝑖𝑖 + 𝜇𝜇𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 − (3𝑒𝑒) 

As before, subscript 𝑖𝑖𝑖𝑖 refers to the individual (country) and time (years) 
dimensions respectively. Since biodiversity loss is a slow variable, we estimated 
eq. 2(𝑎𝑎) and 3(𝑎𝑎) using time fixed effects panel estimates, to control for any 
unobserved heterogeneity across time. Time invariant covariate such as country 
surface area was included to absorb individual country level heterogeneity.  

Equations 2(𝑏𝑏 − 𝑒𝑒) & 3(𝑏𝑏 − 𝑒𝑒), contain variables potentially posing an 
endogeneity problem due to simultaneity bias, such as between inequality and 
institutions in Eq. 2 − 3(𝑏𝑏) and 2 − 3(𝑐𝑐), between inequality and natural resource 
depletion in Eq. 2 − 3(𝑑𝑑) and between inequality and pollution in Eq. 2− 3(𝑒𝑒). 
To deal with endogeneity, we use lagged transformations of the endogenous 
variables as instruments in a two-step Blundell and Bond29 type system GMM 
estimator with robust standard errors48. Within the GMM estimator, a two-way 
individual and time fixed effects model was applied, taking into account both 
heterogeneity across countries and time in our analysis. Fixed as opposed to a 
random model specification was chosen based on the Hausman test which rejected 
the null hypothesis of random effects with a p-value < 0.001.   
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Data, software and code 

Data and code used for the analysis and generating figures, are available and can be 
requested from the corresponding author. The analysis was carried out in R 
(https://www.r-project.org) using the packages plm, PiecewiseSEM and mgcv.   
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Supplementary information for  
‘Institutions-inequality interplay shapes the impact of 

economic growth on biodiversity loss’ 

Data 

Dataset used in the analysis is built based on multiple sources including IUCN’s 
Red List of Threatened Species, World Bank’s Development Indicators, The 
Standardized World Income Inequality Database, World Bank’s Governance 
Indicators and UEA CRU. Detailed description of individual variables are given in 
Table S1.    

Variables Units Description Source 
Inequality  Unit-less Gini coefficient  Standardized 

World 
Income 
Inequality 
Database 

Institutions Unit-less World governance indicators World 
Bank’s 
Governance 
Indicators 

Economic 
growth  

Rate GDP per capita growth (annual %) World 
Bank’s 
Development 
Indicators 

Animal 
biodiversity 
loss 

Ratio Ratio of threatened species to total 
number of species identified 

IUCN’s Red 
List  

Plant 
biodiversity 
loss 

Ratio Ratio of threatened species to total 
number of species identified 

IUCN’s Red 
List  

Temperature  Celsius Mean temperature for the country Climatic 
Research 
Unit, UEA 

Precipitation Volume 
(Millimetre) 

Total precipitation for the country  Climatic 
Research 
Unit, UEA 

Surface area Area 
(kilometre2) 

Surface area is a country's total 
area, including areas under inland 

World 
Bank’s 
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bodies of water and some coastal 
waterways. 

Development 
Indicators 

Population Count (sum) Total population counting all 
residents regardless of legal status 
or citizenship 

World 
Bank’s 
Development 
Indicators 

Pollution PM2.5 air 
pollution, 

mean annual 
exposure 

(micrograms 
per cubic 

meter) 

Population-weighted exposure to 
ambient PM2.5 pollution is 
defined as the average level of 
exposure of a nation's population 
to concentrations of suspended 
particles measuring less than 2.5 
microns in aerodynamic diameter.  

World 
Bank’s 
Development 
Indicators 

Resource 
depletion 

natural 
resources 
depletion 

(% of GNI) 

Natural resource depletion is the 
sum of net forest depletion, 
energy depletion, and mineral 
depletion.  

World 
Bank’s 
Development 
Indicators 

Table S1: Data set description of variables  

Principal component analysis  

Principal component analysis (PCA) is used to analyse variation across a set of 
correlated variables to get a corresponding uncorrelated but reduced set. The six 
indicators of governance, collected by the World Bank, reflecting institutional 
effectiveness, are highly correlated and we need a combined measure to reflect 
most of the variation. A matrix showing the correlations and results of the PCA is 
shown in figure S1.  
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Figure S1: Principal component analysis (a) and correlation plot (b)  for 
institutional quality variables. 
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Chapter 4 

Income growth and the structure of inequality 
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Abstract 

Income inequality has risen globally after 1980. Documenting this rise, improved 
data coverage show that income growth rates differ considerably between income 
groups. While most of the income growth is attributed to the top or high incomes, 
the dependence between high and low incomes is much less explored. We first 
explain the structure of inequality through incorporating the dependence of low and 
high-income group growths to the size of the low-income group. Second, using 
income data, we predict the long-run income inequality levels for the US, France, 
China and India in the time periods, 1960-1989 and 1990-2015.  

Keywords: Long-run inequality, Income groups, Income growth, US, France, 
China, India   
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Introduction 

Explaining the nature of income inequality and its variation across countries 
remains a central question in economics. Inequality evolves slowly over time, 
while it varies widely over countries 1. For instance incomes in the Scandinavian 
region are relatively equal and have stayed that way for a long time, while regions 
such as Latin America and Asia, incomes have remained highly unequal. During 
the 1980s income inequality rose sharply in particular regions of the developed 
world, especially English speaking countries, which had seen falling inequality 
over most of the 20th century 2. The US, UK and Canada, all experienced rising 
inequality in the latter part of the twentieth century, fuelled by top income growth 
(Piketty and Saez (2003); Atkinson (2005); Atkinson, Piketty, and Saez (2011)). A 
trend reversal like this motivates us to study the structure of inequality in details, 
with respect to income growth rates and the size of income groups.     

Evolution of inequality depends on income growth rates that differ by income 
groups, as illustrated by the empirical elephant curve of inequality and income 
growth 6. These differentiated growth rates, within groups in the income 
distribution, can be explained at the micro-level by differentiated access to 
opportunities, technology and capital, which can lead to heterogeneous income 
growth rates over the population income groups 7. We will not delve into the 
micro-foundations here (see Piketty; (2014); Guvenen (2007); and Mirza et al. 
(2019)) but will take the heterogeneity of growth rates as given. Country-level US 
data show us that this heterogeneity in income growth rates can be split into two 
broad groups, low and high incomes (see the section on Data below). 

Income groups do not evolve independently, but their growth depends on structural 
relations within a society. For example, high incomes can dominate growth, while 
restricting gains for the bottom low incomes 11,12. Moreover, income growth can be 
socially determined by interactions with high-income individuals and one’s 
aspirations to match them 13.  

The central theme of this paper is to study how heterogeneous income growth rates 
and the dependence structure of income growth rates on the size of income groups 
drive long term inequality. The main contributions of this paper are twofold. First, 
we analyse income data from the period 1960-2015 to estimate the long term stable 
distribution of income for the US, France, China and India. Our results suggest that 
inequality is expected to stay around the same level in the US, to decline in China 
and India, and to increase in France, as they converge to their respective estimated 



Chapter 4 

73 
 

long-run value. Recent trends in inequality data are in line with our results, though 
the convergence in France and China is slow.  

Second, we examine the sensitivity of our long-run income inequality predictions 
with respect to variations in the rate of high-income growth and the sensitivity of 
high-income growth to the size of low incomes, for the US, France, China and 
India. In the US and France, reducing long-term inequality would require positive 
sensitivity of high-income growth to the size of low incomes, implying that as 
more people get out of low incomes, high incomes growth should decline. In China 
and India, the effect is reversed, indicating that reducing inequality would require a 
negative sensitivity of high-income growth to the size of low incomes. Here 
inequality reduction is most likely in the scenario when high incomes growth rises 
together with people getting out of low incomes.      

Data: Income groups and growth rates  

Since the 21st century, a significant effort has gone into systematically compiling 
data on income distribution, grouped by income percentiles, by the World 
Inequality Database 14. A key insight from the data is that “income inequality has 
increased in nearly all world regions in recent decades but at different speeds” 1. 
From a policy perspective, this variation in speed suggests that country-specific 
structural factors such as institutions, demographics, and technology matter. It is 
however in no way obvious on which aspects policy should focus. Atkinson, 
Piketty, and Saez (2011) highlight the importance of top incomes as a key driver of 
inequality. Data suggests that the growth of top incomes is considerably different 
from the rest, making them, using Rosen (1981)’s term, economic superstars, 
dominating any activity they engage in.  

Documenting the evolution of income inequality, the World Inequality Database 
records country-wise time series of individual’s average income for each income 
percentile of the distribution. Using average incomes, we compute income growth 
rates for each income percentile in our dataset, for the US, France, China and India. 
Income growth rates change gradually over time. To incorporate this change, we 
calculate income growth rates per decade for the time period between 1960 and 
2015. Decadal income growth rates are then de-trended using the average long-
term (1960-2015) income growth to get the stationary income growth rates per 
decade. This panel of country-level decadal income growth per income percentiles 
is then used to estimate the thresholds defining high and low-income groups. 
Piecewise linear regression with ordinary least squares (OLS) fit is iteratively fitted 
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over the data to get the best fit value of the threshold using Akaike information 
criterion (AIC).  

Best fit threshold values for the US highlight a clear split in the structure of income 
growth rates (Fig 1a). Note that except for the period 1960-69, where low incomes 
experienced higher growth rates, all succeeding decades showed higher growth 
rates for the high incomes. It fact, the 60s saw significant poverty reduction in the 
US 16. Post-1960, the estimated income threshold (𝑇𝑇) for US incomes, separating 
low and high incomes, first decreases and then increases in a U-shaped pattern over 
time (Fig 1b). From 1960-1980, the threshold decreased, denoting reduction in low 
incomes. However the turning point was 1980s, when the population size of low 
incomes started to expand while high incomes began to grow faster, thus fuelling 
both poverty and inequality. This observation is in line with the what Piketty and 
Saez (2014) found for US inequality in the long run. 
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Figure 1: (a) Decade-wise income growth data, for the US from 1960 to 2015, 
differentiated by low and high-income groups. (b) Evolution of the split threshold 
(𝑇𝑇) between low and high-income groups for the US in the long-run 1960-2015. 

The change in inequality dynamics in the 1980s is a global phenomenon. 
Globalization of the world economy and technological changes in the late 1970s 
not only caused wage differentials for highly skilled workers to shift upwards 18 but 
also caused capital income shares to push top incomes even higher 19. To capture 
this change in top income dynamics we consider two different data periods for 
modelling inequality and subsequent analysis. The first period covers 1960 to 
1989, while the second spans the period 1990 to 2015.       

Model of structural long-run inequality  
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Our starting point is an inequality dynamic model introduced by Gabaix et al. 
(2016), in continuous time (Eq. 1).  

𝑑𝑑𝑥𝑥𝑖𝑖𝑖𝑖 = 𝜇𝜇(𝑥𝑥)𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖    (1) 

Here 𝑥𝑥 is 𝑙𝑙𝑙𝑙𝑙𝑙 of income, 𝜇𝜇 is income growth, 𝑑𝑑 is standard white noise process 
and 𝜎𝜎 is its standard deviation. The dynamics are indexed by time (𝑑𝑑) and 
individuals (𝑖𝑖). The evolution of the income distribution (𝑃𝑃) generated by Eq. 1 is 
given by the associated Fokker-Planck equation:  

𝑃𝑃𝑖𝑖 = −𝜇𝜇(𝑥𝑥)𝑃𝑃𝑥𝑥 +
𝜎𝜎2

2
𝑃𝑃𝑥𝑥𝑥𝑥    (2) 

We modify the model by introducing forces that would stabilize the distribution in 
the long run 20. First, workers leave the workforce at a rate 𝛾𝛾 and are subsequently 
replaced by new workers with income drawn from a random distribution with 
density 𝛽𝛽(𝑥𝑥). For simplicity and the ease of later interpreting proportions of 𝑃𝑃 as 
ratios we assume ∫ 𝛽𝛽(𝑥𝑥)∞

0 = 1. Second, we impose a lower bound on income in 
the form of a reflecting boundary. As with the original model, the lower bound is 
specified as 𝑥𝑥 = 0. This gives us the modified Fokker-Planck equation. 

𝑃𝑃𝑖𝑖 = −𝜇𝜇(𝑥𝑥)𝑃𝑃𝑥𝑥 +
𝜎𝜎2

2
𝑃𝑃𝑥𝑥𝑥𝑥 − 𝛾𝛾𝑃𝑃 + 𝛾𝛾𝛽𝛽(𝑥𝑥)   (3) 

Note that Eq. 3 describes the evolution of the income distribution in the population, 
that Gabaix et al. (2016) shows has a stationary distribution with a Pareto tail. With 
∫ 𝛽𝛽(𝑥𝑥)∞
0 = 1, we can normalize the steady state distribution ∫ 𝑃𝑃 𝑑𝑑𝑥𝑥∞

0 = 1, so that 
the proportions of low and high incomes add up to 1. 

With the basic setup defined, we now model the dependence of income growth 
rates on the income levels and the size of income groups. The structural difference 
between how low and high-income growth rates depending on income levels is 
specified using a simple stepwise linear relationship: 

𝜇𝜇(𝑥𝑥) = �
𝜇𝜇0− + 𝜇𝜇1−𝑥𝑥, 𝑥𝑥 < 𝑇𝑇
𝜇𝜇0+ + 𝜇𝜇1+𝑥𝑥, 𝑥𝑥 > 𝑇𝑇    (4) 

Where 𝑇𝑇 is the income threshold separating the two income groups, while 𝜇𝜇0 and 
𝜇𝜇1 are respectively the base growth rate and sensitivity of the growth rate on 
income. The superscripts (−) and (+) are respectively denoting low and high-
income groups.    
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Next, to incorporate the dependence of income growth rates on the size of low 
incomes, we proceed in two steps. First, we introduce a helper constant �̅�𝜃 defined 
within 𝑃𝑃(𝑥𝑥, �̅�𝜃), such that: 

𝑓𝑓(�̅�𝜃) = � 𝑃𝑃(𝑥𝑥, �̅�𝜃) 𝑑𝑑𝑥𝑥
𝑇𝑇

0
   (5) 

With �̅�𝜃 we still have a closed-form stationary solution for Eq. (3). However, if 𝜃𝜃 is 
defined as the fraction of low-income group in the population, then 𝜃𝜃 also depends 
on 𝑃𝑃 and we have an integro-differential equation with no closed-form solution. To 
solve, in the second step, we use the definition of 𝜃𝜃 to construct a fixed point 
equation: 

𝜃𝜃 = 𝑓𝑓(𝜃𝜃) = � 𝑃𝑃(𝑥𝑥,𝜃𝜃) 𝑑𝑑𝑥𝑥
𝑇𝑇

0
  (6) 

Since the integral is a function of 𝜃𝜃 itself, we have a map to work with to derive the 
fixed value of 𝜃𝜃. With this setup, the stationary solutions of Eq. (3) are defined 
where the map in Eq. (6) have a fixed point(s), which is also the asymptotic value 
of the size of the low income group.  

Additionally, we have the following boundary conditions on Eq. (3): 

Reflection 0 = −μ−𝑃𝑃 + 𝜎𝜎2

2
𝑃𝑃𝑥𝑥 at 𝑥𝑥 = 0  

Continuity 𝑃𝑃− = 𝑃𝑃+  at 𝑥𝑥 = 𝑇𝑇  

Natural  lim
𝑥𝑥→ ∞

𝑃𝑃 = 0  

With 𝜃𝜃 defined, we extend Eq. (4), to include the dependence of income growth 
rates on the size of low incomes, such that if  𝜕𝜕𝜇𝜇

−(𝑥𝑥,𝜃𝜃)
𝜕𝜕𝜃𝜃

< 0,  for all 𝑥𝑥, then the larger 
the proportion of low incomes, the lower their growth prospects. The full 
dependence is specified as follows: 

𝜇𝜇−(𝑥𝑥,𝜃𝜃) = 𝜇𝜇00− + 𝜇𝜇01− 𝜃𝜃 + (𝜇𝜇10− + 𝜇𝜇11− 𝜃𝜃)𝑥𝑥   (7)  
𝜇𝜇+(𝑥𝑥,𝜃𝜃) = 𝜇𝜇00+ + 𝜇𝜇01+ 𝜃𝜃 + (𝜇𝜇10+ + 𝜇𝜇11+ 𝜃𝜃)𝑥𝑥   (8) 

Here, 𝜇𝜇00 is the base growth rate, 𝜇𝜇01 is the base rate sensitivity on the size of low 
incomes, 𝜇𝜇10 is the base rate sensitivity on income and 𝜇𝜇11 is the cross-sensitivity 
(sensitivity of income sensitivity). 𝜇𝜇(𝑥𝑥,𝜃𝜃) evolves slowly over time, as it models 
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the structural relations within a society. We, therefore, model 𝜇𝜇(𝑥𝑥,𝜃𝜃) for two time 
period – first 1960-1989 and second 1990-2015.  

Results 

Estimating the sensitivity of income growth rates 

A piecewise linear OLS fitted on the country income growth data gives us the 
threshold splitting low and high incomes, and models how income growth rates 
relate to the average income for each of the ten percentiles (Fig 1). We obtain 
estimates for 𝜇𝜇0− ,𝜇𝜇1−, 𝜇𝜇0+ , and 𝜇𝜇1+ per decade that parameterize our growth rate 
dependence on income, as specified in Eq. 4. Using the variation in decades, we 
project these estimated parameters along with income population percentiles, for 
our two model time periods – 1960-1989 and 1990-2015  (Fig 2). A linear fit gives 
us estimates for the relationship of income growth rates to the size of the low-
income population (𝜃𝜃), as specified in Eq. 6 and 7.      

 

Figure 2: Sensitivity of low and high-income growths to the size of low incomes in 
the US for (a) 1960-1989 and (b) 1990-2015  
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For the US, the base growth rate of high incomes (𝜇𝜇0+) increases as the proportion 
of low incomes increases for both periods 1960-1989 and 1990-2015 (Fig 2). The 
story, however, is different for low incomes. The base growth rate low incomes 
(𝜇𝜇0−) is positively related to the proportion of low incomes in 1960-1989 but the 
relationship weakens in 1990-2015. The sensitivity of incomes growth rates is 
largely independent of the size of low incomes. There is a slight negative trend 
between the sensitivity of high (𝜇𝜇1+) and low (𝜇𝜇1−) income growth rates and the size 
of low incomes (𝜃𝜃) in 1960-1989, but otherwise no significant relationship can be 
seen for 1990-2015. This lack of variation in 𝜇𝜇1+ and 𝜇𝜇1− means that the cross-
sensitivity terms 𝜇𝜇11−  and 𝜇𝜇11+  in Eq. 6 & 7 are negligible, and thus any further 
higher-order terms are not needed to model this relationship.     

The effect on the inequality of the relationship between low and high-income 
growths can be seen by comparing Fig 2 with empirical inequality data for the US 
(Fig 3a). Depending on the gap between the low and high-income growth rates, 
inequality can respectively rise or fall, as more individuals slide into low incomes. 
For example, in 1960-1989 (Fig 2a), low-income growth rates were greater than 
high incomes, thus resulting in low inequality in the US. But when high incomes 
started to grow faster than low incomes, as in 1990-2015 (Fig 2b), inequality starts 
to rise in the US (Fig 3a).    

Predicting long-run income distribution         

With information on low and high-income growth relationships, we can now 
predict the long-run income distribution using the model and estimated parameters 
from the data on the US, France, China and India (Fig 3 and Table 1). Accounting 
for the changes in inequality pre and post 1990, we model long-run inequality for 
two time periods – 1960-1989 and 1990-2015.  
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Figure 3: US, France, China and India inequality data (share of top 10%) for 1960-
2015 and model long-run values for 1960-1989 and 1990-2015. 

Our best fits are obtained for the US, which can be due to the quality of available 
US data. From 1960 to 1989, our model captures accurately the empirical 
inequality level for the US (Fig 3a). For 1990-2015 our predicted inequality level is 
higher than that in 1960-1989. Here again, empirical US inequality values 
converge fast to our predicted 1990-2015 level, giving us a correct prediction. 
Based on the recent work 7,21 on the rapid inequality dynamics in the US, this fast 
convergence is expected. For the future, our model predicts inequality in the US to 
slow down and stay close to the current level.     

For France, the model correctly forecasts the trajectory of inequality decline 
between 1960-1989 towards the predicted level (Fig 3b). This decline reverses in 
the 1980s, after which inequality rises, but gradually. Post-1990, our model rightly 
predicts a higher inequality level in France, but the convergence is slower, as 
compared to the US. For the future, inequality in France is expected to rise further 
towards the long-run predicted value. 

For China, the model’s inequality prediction levels are reversed. The 1960-1989 
level is higher than in 1990-2015. In 1960-1989, inequality in China is rising fast, 
which our model captures correctly with a higher level, consistent with inequality’s 
upward trajectory. For 1990-2015, the model predicts a lower long-run inequality 
value, which empirical values seem to corroborate, considering the downturn in 
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inequality after 2000. For the future, the model predicts inequality in China to 
decline.          

For India, the model predicts accurately the 1960-1989 level of inequality. Post-
1990 inequality rises dramatically in India. Though our model predicts a higher 
inequality level based on 1990-2015 data, the empirical values approach but then 
overshoot our predictions. This can be a transitionary phase before inequality 
settles to the expected long-run value, as inequality shows signs of slowing down 
post-2010 for India. For the future, the model predicts inequality in India to 
decline.     

Summarizing, based on model long-run values, we expect inequality to stay stable 
in the US, to go down in China and India, but to rise in France. The expected 
change in inequality is lowest for the US, as the difference between its current 
empirical value and long-run modelled state is the smallest among all, while China 
and India both expect major improvements, as inequality heads downwards for 
China and seems to level-off for India as well. France presents the contrasting case, 
where modelled long-run inequality is higher than the current empirical level.  
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Parameters United 
States 

France China India 

Period 1960-1989 
𝝁𝝁𝟎𝟎𝟎𝟎+  -0.28 -0.25 -0.0004 -0.31 
𝝁𝝁𝟎𝟎𝟎𝟎+  0.06 0.09 -0.003 0.06 
𝝁𝝁𝟎𝟎𝟎𝟎+  0.03 0.02 0.0002 0.03 
𝝁𝝁𝟎𝟎𝟎𝟎+  -0.005 -0.006 0.001 -0.005 
𝝁𝝁𝟎𝟎𝟎𝟎−  -0.73 0.24 -0.001 0.14 
𝝁𝝁𝟎𝟎𝟎𝟎−  0.18 -0.02 -0.008 -0.02 
𝝁𝝁𝟎𝟎𝟎𝟎−  0.07 -0.03 0.0002 -0.01 
𝝁𝝁𝟎𝟎𝟎𝟎−  -0.02 0.005 0.002 0.002 

Long-run 
Share of Top 
10% incomes 

35.10 26.66 43.5 33.36 

Period 1990-2015 
𝝁𝝁𝟎𝟎𝟎𝟎+  -0.20 0.002 0.002 -0.006 
𝝁𝝁𝟎𝟎𝟎𝟎+  0.03 0.006 0.007 -0.04 
𝝁𝝁𝟎𝟎𝟎𝟎+  0.02 -0.0001 0.0006 0.0005 
𝝁𝝁𝟎𝟎𝟎𝟎+  -0.003 -0.0004 0.002 0.004 
𝝁𝝁𝟎𝟎𝟎𝟎−  -0.05 -0.02 0.01 0.0006 
𝝁𝝁𝟎𝟎𝟎𝟎−  -0.001 -0.05 0.03 0.004 
𝝁𝝁𝟎𝟎𝟎𝟎−  0.003 0.002 -0.0002 0.00002 
𝝁𝝁𝟎𝟎𝟎𝟎−  0.001 0.006 -0.0007 -0.0002 

Long-run 
Share of Top 
10% incomes 

45.10 50.11 30.10 43.54 

Table 1: Model parameter values for the US, France, China and India.  

Robustness analysis: Understanding the structure of inequality  

To understand the structure of long-run modelled inequality, we explore the 
parameter space around the predicted inequality values. Since most of the variation 
in growth rates were seen in the high incomes base rate (𝜇𝜇00+ ) and the high incomes 
base rate sensitivity to the size of low incomes (𝜇𝜇01+ ), we focus on them to explore 
the parameter space around long-run modelled inequality levels for the US (Fig 4). 
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Model long-run inequality values, as earlier, are calculated based on two time 
periods – 1960-1989 and 1990-2015.  

 
Figure 4: Variation in long-run inequality for the US, with respect to changes in 
base rate high-income growth (𝜇𝜇00+) and its sensitivity to the size of low incomes 
(𝜇𝜇01+). Red dots denote empirical estimates based on the specified period. 

For the US, long-run inequality responds in a nonlinear fashion to 𝜇𝜇00+  and 𝜇𝜇01+ , in 
both 1960-1989 and 1990-2015 (Fig 4). Inequality is low in both far-right and far-
left of Fig 4a, which means that in the period 1960-1989, inequality decreased only 
when high incomes were highly sensitive to the size of low incomes, either positive 
or negative. When 𝜇𝜇01+  was close to zero, inequality increased. This is 
understandable, because if high-income growth is independent to the size of low 
incomes then there won’t be any ‘trickle-down’ effect. Economic growth would 
benefit only high incomes, with no effect on low incomes, thus fuelling inequality.       

On the other hand, in period 1990-2015, inequality is low only in the right half of 
Fig 4b, where high-income growth is positively sensitive to the size of low 
incomes. Going from right to left (Fig 4b), as 𝜇𝜇01+  moves from high positive to low 
values, high-income growth becomes less sensitive to 𝜃𝜃 and, as before inequality 
rises. A further decrease in 𝜇𝜇01+ , into the negative region (Fig 4b), will again lead to 
a reduction in inequality, albeit not to the 1960-1989 level. As high-income growth 
now becomes negatively sensitive to the size of low incomes, increase in low 
incomes will now decrease high-income growth rate, thus pulling everyone down. 
This wavelike response to 𝜇𝜇01+  suggests that long-run inequality depends greatly on 
the sensitivity of high-income growth to the size of low incomes.    
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Empirical estimates (Fig 4) for the US are close to the region where inequality is 
high. From a policy perspective, our results suggest that inequality in the US would 
decline if high-income growth is positively sensitive to the size of low incomes. A 
positive sensitivity here means that any redistribution policy by the government, 
while decreasing poverty should also decrease the growth of high incomes, to have 
an inequality reducing effect.       

Comparing countries in the recent time period (1990-2015), France, China and 
India exhibit a similar nonlinear relationship between growth rates and long-run 
inequality, like the US, but the scales are different (Fig 5). France is closest to the 
US in scale, although with a slightly higher inequality spread. For France, the low 
inequality region is located where both the base rate of high-income growth (𝜇𝜇00+ ) 
and sensitivity of high-income growth to the size of low incomes (𝜇𝜇01+ ) are high 
and positive. Empirical estimates (1990-2015 period) for France lie in the high 
inequality region but note that while 𝜇𝜇01+  is similar to that of the US, the base of 
high incomes growth (𝜇𝜇00+ ) is markedly higher. This means that not only is long-
run inequality high for France, but it is also the only country of the four where the 
model predicts an increase in inequality from the current level.  
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Figure 5: Comparison of variations in long-run inequality between the US, France, 
China and India, for the recent time period 1990-2015. 

For China, the scale of long-run inequality is closer to India, than to either the US 
or France. Contrary to the US and France, the low inequality region for China is 
where high incomes are negatively sensitive to the size of low incomes (𝜇𝜇01+ ). This 
can be a feature of growing economies, where low inequality can most likely be 
achieved when high incomes grow with lessening the size of low incomes. 
Empirical estimates (1990-2015 period) for China lie close to the high inequality 
region. India closely follows China in long-run inequality variation. The low 
inequality region for India is also where high incomes are negatively sensitive to 
the size of low incomes (𝜇𝜇01+ ), corroborating this as a feature of growing 
economies. The key difference from China is that for India the empirical income 
growth estimates (1990-2015 period) lie squarely in the high inequality region. 
This translates into a much higher long-run inequality level than China.  

Discussion 
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An extensive existing literature has informed our understanding of the various 
drivers of income inequality. These not only include exogenous factors such as 
high wages, bonuses and rents available for high-end professionals (e.g. finance 
executives, start athletes and CEOs) 22–24, but also endogenous income growth 
mechanisms, for instance, human capital, innovations and firm technology 
adoption 25,26. While acknowledging and appreciating the multiple drivers of 
inequality, we took a different approach to explain income inequality, by focusing 
on the observed dependence structure between income growth rates and income 
group sizes. Through not limiting ourselves to one or a particular set of drivers, we 
present a general framework to model long-run inequality and its robustness to 
changes in income growth sensitivities.   

Among the countries we have studied, France presents a curious case, as the 
modelled long-run inequality level is substantially above empirical values. Though 
current inequality is rising slowly, Garbinti, Goupille-Lebret, and Piketty (2018) 
find that not only high incomes are growing much faster in the period 1983-2015, 
but also that the low incomes are slowing down compared with either 1900-1950 or 
1950-1983. Thus recent trends in income growth support that inequality will 
accelerate in France. In contrast, rising inequality in the US is expected to slow 
down, though the growth in high incomes is similar to France. No doubt, the recent 
fast rise of inequality in the US has been spectacular with a large number of papers 
exploring underlying causes, such as rent-seeking 28, labour incomes 29 and 
globalization 30. Much less attention is given to forces that counteract high growth 
individuals, thus leading to a stabilization or decline in inequality. Recently, Jones 
and Kim (2018) use a simple inequality model and micro-data to describe forces 
such as creative destruction and competition that can potentially slow down the rise 
of inequality in the US. 

The rising inequality trend in China is in part attributed to the “opening-up” in the 
late 1970s, which started a gradual transition from communism to capitalism. 
Propagation of private property rights and rapid capital accumulation triggered 
inequality in China from as low as 27% income share of the top 10% incomes to 
close to US levels by 2010 31. Despite the dramatic rise, inequality in China 
declined post-2000, which is in line with our long-run inequality result. This 
decline can be attributed to higher savings in China which, unlike a similarly 
transitioning from communism to capitalism Russia, are used to finance domestic 
investments and capital investments, thus ensuring broad-based growth 32. India is 
comparable to China, in showing signs of slowing down in inequality after a steep 
increase between 1990-2010. This is striking, provided high incomes growth in 
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India outpaces China and the difference between high and low-income growth is 
the highest among all the US, France and China (Chancel & Piketty (2017)). While 
inequality rose with opening up of the Indian economy, Datt, Ravallion, and 
Murgai (2016) find that concurrent growth and urbanization, especially post 2000 
had a poverty reduction effect. With such signs of broad-based growth, expecting 
an inequality downturn in the future is not unusual for India.   

Conclusion  

Using a parsimonious model, we attempt to understand if differentiated income 
growths and their sensitivity to the size of low incomes can explain the long-run 
level of inequality. Our approach is more in line with Gabaix et al. (2016) and 
more recently Jones and Kim (2018), in focusing explicitly on heterogeneous 
income to understand recent patterns in inequality data. Our results, in estimating 
long-run inequality level and explaining the structural relation of inequality with 
differentiated income growths, have considerable policy implications with respect 
to identifying income groups to focus on to spur or contain growth and manage the 
long-run level of inequality. We hope future work can build on our contribution by 
incorporating trade and/or financial links between countries that can have 
significant but different impacts on high and low income growths, depending on 
base inequality levels and degree of openness.        
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Abstract 

Inequality is increasingly being recognized as a key characteristic of societies. Yet, 
reliable data on income distributions are mostly limited to Northern America and 
Europe. Here we show that this gap may be filled using a remotely sensed proxy 
for income inequality based on night-time light data. Using the tendency of 
residential households to spatially segregate, we analyse the spatial distribution of 
light per person as a proxy for variance in economic prosperity. The resulting light-
based Gini coefficients relate well to existing estimates of net income inequality at 
the scale of countries globally but also for states within the USA. Building on this 
association, we present the first high-resolution global maps of light-based 
inequality and its change from 1990 to 2010. Our estimates suggest that in this 
period inequality increased markedly in China and Brazil, but also in the western 
US, parts of Africa, Pakistan, Myanmar and the Philippines. In Europe, inequality 
increased in the UK, Portugal and Greece. The new light-based inequality patterns 
can be used to investigate interactions with key spatial variables, including political 
change, trade, biodiversity loss, resource use and resilience to natural disasters.  

Keywords: Inequality, Night-time lights, remote sensing, Spatial segregation   
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Introduction  

Over the past decades, there has been a slow transition from theoretical to data-
driven inequality research 1. However, progress is limited by a lack of data on 
economic prosperity at the household level 2 as well as the absence of consensus on 
ways of measuring economic inequality 3,4. Practical constraints include limited 
coverage, incomparability at population subscales, dependence on misreported 
income surveys and low-quality data collection in developing economies 5–7. 
Furthermore, since traditional inequality measures are not georeferenced at 
different geographic scales, they cannot be used in sub-regional studies. Thus, 
despite broad interest in inequality, empirical approaches remain contentious 8.   

Since the late 20th-century promising initiatives like the World Income Inequality 
Database, Luxembourg Income Study Database and World Wealth and Income 
Database have partly filled this lacuna. However, these datasets still suffer from 
large regional variations in coverage, data quality and lack of compatibility with 
respect to collection methodologies 9,10. As a result, inequality research is 
dominated by data limited to Northern America and Western Europe which 
account for over 80% of all publications 11. Indeed, while inequality in the 
developed world is relatively well documented 12–14, our knowledge about 
inequality in the developing world is limited by paucity, poor quality, uncertainty 
and incomparability of data 15,16. Thus, we know the least about areas where 
inequality presents the most serious developmental policy challenge.  

Here we propose the use of remotely sensed night-time light (NTL) to fill this gap. 
Remotely sensed data source like NTL is independent of locally collected 
information such as tax records or surveys, where variation in measurement 
methodology and reporting accuracy inevitably leads to inconsistencies across 
regions. Essentially, NTL is a globally uniform metric reflecting the nocturnal 
anthropogenic use of lights 17,18. Almost all economic activities occurring in post 
daylight hours, be it consumption or production, require the use of artificial lights, 
an assertion corroborated by studies showing NTL to be highly related with 
indicators of economic activity 19–21. 

Approach 

In general, as income rises, the per person light detected grows due to increased 
consumption leading to conspicuously visible outcomes such as bigger brighter-lit 
houses and well-illuminated neighbourhoods in richer areas 22. While the link 
between NTL and economic thriving is well established, the idea to use NTL for 
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detecting economic inequality is new. Our reasoning is that assuming households 
with different incomes live more-or-less segregated across landscapes 23, spatial 
variation in per capita NTL should to a certain extent reflect variance in per capita 
income.  

The approach is straightforward. We calculate average light intensity per person 
(i.e. LPP) for each grid cell, dividing available NTL data by population density 
estimates (see methods). We then infer economic inequality from the distribution 
of LPP across sets of grid cells by computing Gini coefficients. This way we 
compute Gini coefficients for nations as well for a finer sub-national level. As we 
focus on consumption activities we exclude areas that have no residential 
population (such as industries, highways) or no detectable night lights (deserts, 
forests). 

Our approach is fundamentally different from the traditional way of characterizing 
economic inequality, as we estimate inequality between spatial units rather than 
between households. Since remote sensing is to course to detect individual 
households our approach can only work if households of different wealth are not 
homogeneously distributed across neighbourhoods and regions. While indeed there 
is a well-established tendency for spatial segregation in residential housing 24, it 
raises the a-priory question of when spatial variation in lights may reasonably be 
expected to reflect household variation in economic prosperity. To explore how 
segregation and sampling resolution should theoretically be expected to affect our 
remotely sensed indicators, we used an adapted version of the well-studied 
Schelling segregation model 25 to generate different levels of spatial segregation in 
income and subsequently sampled at different resolutions to mimic remote sensing 
(See supplementary material). The results illustrate how depending on the scale of 
remote sensing, the Gini coefficient across spatial units converges to the Gini 
coefficients on household basis (Supplementary Fig 1). Although the level of 
residential segregation varies across the globe, it tends to co-vary with economic 
inequality 26–28. Thus, it seems reasonable a priori to expect a relationship between 
spatial variance of LPP and economic inequality. Although georeferenced income 
census data is not available globally to test the fine-grained relationship to NTL, 
some existing empirical work using data at the household level does supports 
detection of income by night lights at the finer scale 29.  

Validation of light-based inequality estimates 

To see if we remotely sensed light-based Gini relate in a meaningful way to income 
Gini, we examined patterns at global as well as more detailed scales. It turns out 
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that our light-based proxy is closely related to available estimates of national net 
income inequalities across the globe (Fig 1c), with the linear model explaining 
74% of the variation. Variation in population denseness and production activities 
that might influence country-level brightness are controlled for by using covariates 
– population count and gross output (GDP). The average global light-based Gini of 
58.3 is higher than the average net income-based Gini of 38.1, however, trends in 
both estimates are comparable. For instance, comparing light and income-based 
estimates, broadly speaking, high inequality hotspots like Russia, China, Southeast 
Asia and most of Africa and South America come out as prominent by both light 
and income Gini estimates, while Western Europe and Canada feature consistently 
as regions of lower inequality (Fig 1a, b).  

 

Figure 1: Comparison and model fit of global national estimates of light and 
income-based inequality. Light-based Gini can explain a large proportion of 74% 
(indicated by the R2 of the ordinary least square model, P<0.01) variance in income 
Gini. 
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In addition to being globally comparable and consistent, another useful feature of 
using a remotely sensed measure of economic inequality is that it can easily be 
computed at much finer scales. This is unlike existing economic inequality data 
which is available mostly at courser scales (national, state) and that too with 
varying accuracy. This also implies that we cannot systematically validate our 
light-based measure at finer scales globally. However, within the US we could 
zoom in to finer scales using state-level income Gini data from the American 
Community Survey (ACS)  (https://www.census.gov/programs-surveys/acs/) 30. 
Here we find a significant correlation (0.50, p-value < 0.01) between income and 
light Gini (Fig 2b). Both indicators corroborate among other things, that the 
western and southern areas of the US are more unequal than northern and central 
states (Fig 2 a, c, d). One would expect that the accuracy here is limited, because 
nationwide factors such as spatial segregation patterns, housing policies, light 
usage practices etc., would make sub-national regions, such as US states, too 
similar. Nonetheless, in view of the robust associations found at the national and 
state levels, it seems reasonable to expect a meaningful signal of economic 
inequality in our light-based proxy at higher resolutions as well.  

 

Figure 2: Sub-national state-level comparison for the US between light and 
income-based estimates of inequality. Light-based Gini can explain a large 
proportion of 50% (indicated by the R2 of the ordinary least square model, P<0.01) 
variance in income Gini. 

https://www.census.gov/programs-surveys/acs/
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A global map of light-based inequality 

To explore global patterns at the sub-national level, we calculated high-resolution 
maps of global light-based inequality (Fig 3). These indicate the potential of our 
approach to making progress over existing datasets and inequality studies. The 
global light-based inequality map suggests hot-spots of inequality in areas within 
Eastern China, Southern Africa, Central Brazil, Northwest Egypt, Portugal and 
close to coastal areas of the United States (Fig 3a, b). An interesting pattern 
appears when we calculate the change from 1990 to 2010 (Fig 3 c, d). Most of the 
world shows little or no change in light-based inequality at the fine-scale. 
However, light-based inequality increased in areas within the US, Brazil and 
Uruguay in the Americas; Tanzania, Kenya, Namibia and Ethiopia in Africa; UK, 
Portugal and Greece in Europe; China, Pakistan, Myanmar and Philippines in Asia 
and some parts of Australia. Light-based inequality went down only in areas within 
a few countries including Canada, the Scandinavian countries, Japan and 
Indonesia.  
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Figure 3: Global high-resolution map for 2010 and change map for 1990-2010 of 
light-based estimates of inequality 

Grouping income and light-based inequality and seeing them by income groups 
(using World Bank classification of the world's economies) and regions 
(continents) globally confirm the image that the light-based inequality estimators 
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relate in meaningful ways to patterns of income inequality. Light-based Gini is 
significantly lesser (p-value < 0.01, Welch Two Sample t-test) for high-income 
countries than for both lower and middle-income countries (Fig 4a), consistent with 
the pattern for income Gini (Fig 4b). Looking at regions, the light-based Gini of 
Europe is the lowest (p-value < 0.01, Welch Two Sample t-test) among all 
continents followed by Asia, the Americas, Oceania and Africa (Fig 4c). This is in 
line with the pattern for income Gini, although here the Americas emerged as the 
most unequal continent (Fig 4d). 

 

Figure 4: Comparing light and income-based estimates of inequality by region and 
income groups 

Discussion 

In view of the methodological differences, the strong association between our light-
based proxy and available data on income Gini is remarkable. Clearly, there is no 
gold-standard, as uncertainty in estimates of income inequality is notoriously large. 
Therefore it is not possible to infer how well our light-based proxy might indicate 
‘true’ income inequality. The good association with existing income inequality 
estimates we find is encouraging. However, our exploratory exercise is only a 
starting point and more empirical work is needed to further the preliminary results 
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presented here. Nonetheless, it is worthwhile reflecting on some of the patterns we 
find.    

First, we find that our light-based proxy is not associated with gross income-based 
Gini estimates, evident by a low correlation (0.094, p-value = 0.01). This suggests 
that the night time lights reflect consumption but not production. 

Second, our light-based inequality proxy critically depends on spatial segregation. 
The fact that we do find strong relationships to income inequality estimates, is in 
line with the observation that spatial residential segregation is a near omnipresent 
phenomenon 23,24, and also with findings that spatial residential segregation 
increases with income inequality 27,28,31. Nonetheless, it is likely that higher spatial 
correlation within a country, due to nationwide patterns in spatial segregation or 
some other factor like culture or demographic, can make sub-national regions too 
alike, thus possibly confounding our remotely sensed light-based inequality proxy, 
especially at sub-national levels. A recent alternate method 32, independent of 
spatial segregation requirement, first predicts income by night-lights at the sub-
national regional level and then uses predicted income to calculate an estimate of 
income Gini. Though not affected by segregation, their method is heavily 
influenced by sub-regional heterogeneity, such as geographic, political or climatic 
differences. Be it sub-regional heterogeneity (for them) or national patterns in 
spatial segregation (in our case), unravelling such issues will require more detailed 
follow-up studies in regions where geo-coded income data at different spatial 
scales or other estimators allow deeper analyses of localized patterns. 

Third, our light-based Gini estimate is, on average, higher than the income-based 
Gini, whereas our theoretical segregation model illustrates that one should expect 
an underestimation if LPP would be a faithful estimate of income. Theoretically, 
the model does not allow for segregation being sharper than income disparities 
would suggest. Thus our model approaches the true value of income Gini from 
below, as segregation better matches the true distribution of income. However, 
empirically one possible explanation for this discrepancy is observed evidence that 
rich people are less likely to report all of their income, thus making top incomes 
elusive in survey-based estimates like income Gini 5,33. Underreporting top incomes 
will make income Gini of inequality underestimate and hence lower than 
comparative survey independent measures like light Gini. Furthermore, very poor 
areas which do not have enough light emission, and very rich areas which are ‘top-
coded’ in the NTL data, are both undetected in our analysis, due to their 
undistinguishable nature. Hence, we expect some nonlinearity in the true light-
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income relationship. Exploring the effects of such nonlinearities is beyond the 
scope of this paper, but would be an interesting avenue for further research.  

In spite of the obvious limitations, it is promising that our results suggest that 
remotely sensed night-time light may be used, not only to estimate economic 
prosperity 19–21 but also to reveal patterns of economic inequality. Although it is 
widely acknowledged that inequality has profound effects on the functioning of 
societies, data remain frustratingly scarce. The prospect of monitoring economic 
inequality using remotely sensed data opens exciting perspectives for exploring its 
drivers and consequences at finer and also across spatial scales. Furthermore, being 
a geo-coded estimate, the global light-based inequality map can also be used to 
investigate interactions with spatially-explicit social and ecological variables, such 
as social mobility 34, trade 35, bio-diversity 36, resilience to natural disasters 37 and 
resource use 38, which are hypothesized to be closely associated with economic 
inequality. Such studies would have significant potential to guide development 
policy. 

Materials and Methods  

We estimate a proxy for economic inequality using a combination of night-time 
lights and population data. For light, we use annual average visible, stable lights, 
and cloud-free coverages of NTS composites data from DMSP-OLS version 4 at a 
spatial resolution of 0.01 decimal degree (~ 1 km). Data is publicly available at 
https://ngdc.noaa.gov/eog/39. For the population, we use the UN-Adjusted 
Population Count GPWv4 and GPWv3 datasets by SEDAC at 0.01 decimal degree, 
publicly available at http://sedac.ciesin.columbia.edu/40. Combining NTL and 
population datasets from 1990-2010, we analysed five-yearly time points from 
1990 to 2010 globally. For country-level net income Gini estimates, we use The 
Standardized World Income Inequality Database (SWIID) version 6.1 41 available 
at http://fsolt.org/swiid/.     

The close relationship between NTL and a range of economic indicators, as alluded 
to in the main text, makes light intensity a suitable measure to assign economic 
prosperity or income spatially. However, areas like cities are brighter not only 
because they are more economically active but also because they are more densely 
populated. To take spatial population into account we calculated average light 
intensity per person (i.e. LPP) globally at five-yearly time points between 1990-
2010. At these five-year time points, we resampled both light and population raster 
data to a resolution of 0.01 decimal degree and then derived LPP by dividing NTL 
by the population count. For calculating LPP we only included those grid cells 

https://ngdc.noaa.gov/eog/
http://sedac.ciesin.columbia.edu/
http://fsolt.org/swiid/
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which had an NTL value greater than 0 and a population count of greater than 1. In 
this way, places with too few houses and/or places without detectable 
anthropogenic lights were discarded (e.g. industries, highways, deserts, water 
bodies, forests and the like). Assuming NTL captures the economic prosperity 
spatially20,22, inequality is then inferred from the distribution of LPP, over a 
specified spatial scale. Since inequality is an aggregate quantity, calculations for 
Gini coefficients based on LPP were done mainly at two levels – first a coarser 
national level and second a finer sub-national 1-degree grid level.   

National and state-level light-based inequality maps were generated to validate 
light derived Gini coefficients with corresponding available estimates of income-
based Gini estimates for the globe and US, respectively using a mixed model 
approach. To achieve this, light-based Gini coefficients were calculated using LPP 
values within the administrative boundary of each country and each state of the US, 
respectively. For most developing countries, income inequality estimates are prone 
to data comparability and quality issues, as already explained in the main text, and 
hence we set a cut-off of <= 1 as per Solt’s 41 SWIID standard errors to exclude 
estimates with large confidence intervals. For US states although the data is of 
good quality, our light-based estimate is prone to insufficient sensitivity of the 
satellite sensor for detecting very low or very high light intensities (the saturation 
problem) in some areas42.  Thus 30 US states with sufficient lights, as measured by 
summed annual average visible stable light values > 1.1 x 106 were included in the 
correlation analysis (fig 4b).  

Grouping observations by available years for the same set of countries, we use a 
mixed model approach to study the relationship between light and income Gini, 
taking into account the randomness of available years. Available years would have 
been different if e.g. the satellite was launched at a different time or kept for a 
longer duration. In the mixed model, years and light Gini are included as random 
effects intercept and slope respectively. Furthermore, a parsimonious set of 
covariates are included to control for country-specific features such as economic 
output and population. 

𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝐿𝐿𝐼𝐼𝑖𝑖𝑖𝑖 + 𝛽𝛽2 ln(𝐼𝐼𝐺𝐺𝐺𝐺)𝑖𝑖𝑖𝑖 + 𝛽𝛽3 ln(𝐺𝐺𝑃𝑃𝐺𝐺)𝑖𝑖𝑖𝑖 + 𝑏𝑏0𝑖𝑖 + 𝑏𝑏1𝑖𝑖𝐿𝐿𝐼𝐼𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖  

𝜀𝜀𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝜎𝜎2), 𝒃𝒃𝒋𝒋~𝑁𝑁(0,𝐵𝐵)   

Subscript 𝑖𝑖𝑖𝑖 refers to the respective estimate of country 𝑖𝑖 in year 𝑖𝑖. Here 𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 refers 
to income Gini, 𝐿𝐿𝐼𝐼𝑖𝑖𝑖𝑖 is light Gini, 𝐼𝐼𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖 is the country’s GDP (constant 2010 
US$), 𝐺𝐺𝑃𝑃𝐺𝐺𝑖𝑖𝑖𝑖 is country’s population count, 𝑏𝑏0𝑖𝑖 is year random intercept, 𝑏𝑏1𝑖𝑖𝐿𝐿𝐼𝐼𝑖𝑖𝑖𝑖 is 
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the year random slope, 𝜀𝜀𝑖𝑖𝑖𝑖 are the error terms, 𝜎𝜎2 is the variance of the error terms 
and 𝐵𝐵 is the variance-covariance matrix of the random effects. Here the fixed part 
captures the overall relationship between light and income Gini while the random 
part informs how that relationship varies across years. Table 1 reports model 
comparison and results. The reported generalized linear mixed model version of the 
R2 is interpreted as the variance explained by the entire model, including both fixed 
and random effects and is calculated using Nakagawa et al. (2014) method 43. AIC, 
AICc and BIC model comparison criterion is used to select model 3. Here, AICc is 
approximately equivalent to carrying out a leave-one-out cross-validation (see 
Fang, 2011)44.  

  For fine-grain quantification of light-based inequality globally we calculated Gini 
coefficients of LPP within 1-degree grid cells. To use all data points, a moving 
window approach was used to calculate focal values of light Gini for every 0.01 
decimal degree grid centred within a 1-degree moving window. The resulting 
global maps for years 1990, 1995, 2000, 2005, 2010 and change maps for 1990-95, 
1995-00, 2000-05, 2005-10 were used to analyse trends in light-based inequality 
over time and space. We fitted a mixture normal distribution using the expectation-
maximization (EM) algorithm to characterize the global distribution of light Gini. 
The mixing proportions are 𝜆𝜆1 = 0.06 for the red and 𝜆𝜆2 = 0.94 for the green 
normal mode. Mean and standard deviations are 𝜇𝜇1 = 0.05,  𝜎𝜎1 = 0.04 and 𝜇𝜇2 =
0.45, 𝜎𝜎2 = 0.16 respectively for the red and green mode. For the change map, the 
distribution is unimodal and close to normal with mean 0.06 and standard deviation 
0.2. 
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Significance codes: p-value < ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05.   
Table 1: Columns (1), (2) and (3) show results for mixed models fitted using 
REML (restricted maximum likelihood estimation), while column (4) is only fitted 
with fixed effects. Best fit model is column (3) based on R2, AIC and AICc. 

  

Independent 
variables 

Dependent variable: Income Gini 

 (1) (2) (3) (4) 
Fixed effects Estimate  

(standard error) 
Light Gini 0.35** 

(0.073) 
0.31** 
(0.064) 

0.22*** 
(0.03) 

0.17*** 
(0.028) 

Log(POP)  1.49*** 
(0.36) 

6.66*** 
(0.39) 

6.89*** 
(0.42) 

Log(GDP)   -5.68*** 
(0.35) 

-5.90*** 
(0.38) 

Intercept 14.98** 
(3.11545) 

-7.55 
(6.01) 

61.46*** 
(5.76) 

66.12*** 
(6.14) 

random effects Standard deviation 
year (intercept) 4.49 3.16 0.85 - 
year:light gini (slope) 0.13 0.11 0.03 - 
Observations 188 188 188 188 
Countries 57 57 57 57 
Years 5 5 5 5 
R2 0.37 0.41 0.74 0.69 
AIC 1323.216 1318.690 1149.070 1156.53 
AICC 1323.681 1319.313 1149.874 1156.86 
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Data, software and code 

Data on light-based estimates of light-based inequality are available at the pubic 
server Zenodo (http://...TBD) and can be downloaded with open access. The code 
used for the analysis and generating figures, are available and can be requested 
from the corresponding author. The analysis was carried out in R (https://www.r-
project.org) using the packages raster, rasterVis, sp, rgdal, ggplot2 and mixtools 
and Python (https://www.python.org/) using numpy, matplotlib, scipy and 
statsmodels.  
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Linking spatial information to household inequality, a theoretical analysis 

To explore how segregation and sampling resolution may affect our remotely 
sensed indicators, we use an adapted version of the well-studied Schelling 
segregation model 25. We generate different levels of spatial segregation in income 
and subsequently sample at different resolutions to mimic remote sensing.  

To begin, 𝑛𝑛 individuals 𝑖𝑖 ∈ {1 …𝑛𝑛}, where 𝑛𝑛 = 1000 were randomly placed 
uniformly to reside on a unit square. Each individual has a certain income 𝑦𝑦𝑖𝑖 drawn 
from a heavy tail Gamma distribution with parameters 𝐼𝐼(𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = 2, 𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑎𝑎 =
100), thus initializing a random set of individuals with a Gini coefficient of 0.38. 
Gamma is one of the most used distributions to model income 45,46. In each 
simulation cycle, local individual dynamics are governed by the following set of 
simple rules.  

1. An individual compares own income 𝑦𝑦𝑖𝑖 with the average of 𝑚𝑚 immediate 
neighbours  𝑖𝑖 ∈ {1 …𝑚𝑚}, where 𝑚𝑚 = 10. 

2. If the individual’s own income 𝑦𝑦𝑖𝑖 is beyond an income interval defined by one 
standard deviation (𝜎𝜎𝑦𝑦𝑗𝑗) above or below the average (𝜇𝜇𝑦𝑦𝑗𝑗) income of 
immediate neighbours, the individual feels misplaced and will decide to move 
to a new random location, else the individual will not move: 
 

𝑖𝑖𝑓𝑓 𝑦𝑦𝑖𝑖 > 𝜇𝜇𝑦𝑦𝑗𝑗 + 𝜎𝜎𝑦𝑦𝑗𝑗 → 𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎 𝑛𝑛𝑎𝑎𝑛𝑛 𝑠𝑠𝑚𝑚𝑠𝑠𝑎𝑎𝑙𝑙𝑖𝑖𝑚𝑚𝑛𝑛 
𝑖𝑖𝑓𝑓 𝑦𝑦𝑖𝑖 < 𝜇𝜇𝑦𝑦𝑗𝑗 −  𝜎𝜎𝑦𝑦𝑗𝑗 → 𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎 𝑛𝑛𝑎𝑎𝑛𝑛 𝑠𝑠𝑚𝑚𝑠𝑠𝑎𝑎𝑙𝑙𝑖𝑖𝑚𝑚𝑛𝑛 

𝑎𝑎𝑠𝑠𝑠𝑠𝑎𝑎 → 𝑠𝑠𝑎𝑎𝑙𝑙𝑙𝑙𝑠𝑠𝑎𝑎 𝑑𝑑𝑚𝑚𝑛𝑛𝑛𝑛 

This simple rule determining local interactions results in segregation based on 
income at the aggregate spatial level (Fig 1b). 
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Subsequently, we mimic remote sensing of income inequality by superimposing a 
regular square grid over the square and averaging the income of all individuals 
within each cell (Fig 1c). The accuracy of remotely sensed light-based inequality to 
capture actual income inequality is simulated by varying both the levels of spatial 
segregation and grid resolution at which lights are sensed.  

 

Level of segregation increases by each simulation cycle, starting from a randomly 
well mixed spatial distribution to a clustered one, based on model rules. This gives 
us different degrees of segregation to analyse. All those sets are analysed at 
different grid resolutions mimic how remote sensing might pick up inequality from 
spatially aggregated data at different scales.  

For spatial segregation, starting from a random distribution, we see that the 
accuracy of light Gini to capture income Gini is poor when individuals reside 
unsegregated spatially. As spatial segregation increases, light Gini converges to 
actual income Gini (Fig 1d). The convergence indicates that in areas where 
residential patterns are spatially segregated based on income, we would expect a 
better inequality estimate via the distribution of lights.  

Not surprisingly, the spatial resolution of the remote sensing is key. Starting from a 
coarser grid, as the resolution gets finer, our ability to capture the underlying 
income distribution increases. As grid resolution increases, we see convergence of 
light Gini towards actual Gini (Fig 1e). This analysis illustrates that both sensing 
resolution and spatial segregation contribute to allowing remotely sensed estimate 
of inequality to capture actual income inequality.  

Obviously, in an ideal world, with a sensing resolution to remotely detect each 
individual separately, indeed no segregation would be needed. Till then, in the near 
future, with better resolution light data being collected via VIIRS annual products, 
we would expect the light-based inequality estimates to improve. To avoid 
comparison across two very different satellite datasets we used the longer albeit 
coarser NTL time series provided by the older and well used DMSP-OLS products 
for this study.  
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Figure S1: A conceptual visualization of the complex light-income relationship and 
simulating the effect of segregation and sampling resolution in a light-based 
estimate of inequality 
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Chapter 6 

Synthesis: Complex inequality 

(Re)thinking inequality 

Traditionally, economic growth was focused on to strive for the highest aggregate 
welfare, ignoring how these welfare gains are distributed. The saying “a rising tide 
lifts all boats”, is not always true with economic growth. Evidence suggests that 
income gains from growth are shared differently between the poor and rich1. The 
resultant widening of income disparities further constraint the poor in harvesting 
poverty reduction mechanisms, such as credit, investment and access to 
resources2,3. Additionally, inequality also negatively affects key developmental 
mechanism such as institutional development and educational attainment, thus 
acting as a major barrier to economic growth and prosperity4.  

Ensuring inclusive growth, where equal opportunities to grow are available to all, 
and societal wellbeing require understanding the structure and dynamics of 
economic inequality. At its core inequality is a quantification of the variance in an 
individual’s or household’s wellbeing, where wellbeing can be interpreted 
principally in two ways. First, wellbeing in material terms, which can either be 
expressed as income or possessed wealth or second, wellbeing based on access to 
opportunities linked with social status, ethnicity or gender differences5. Both 
interpretations are fundamental to the notions of fairness and justice, as the former 
deals with the current standard of living while the latter with having access to 
potential status or gains. In this thesis, I focus on the first interpretation of 
individual inequality in material terms i.e. how economic gains in society are 
distributed.  

Inequality is shaped by heterogeneous individuals that interact not only inside an 
economic system but also across systems, for instance with natural resources and 
the larger biosphere. For example, the distribution of economic gains depend on 
market interactions between trading individuals but also how they extract resources 
and steward the ecosystem that sustains them. Furthermore, these interactions are 
governed by formal and informal rules, such as institutions, social norms and 
agreements. Mapping those micro-macro interactions with its intricate 
interrelations needs a complexity perspective of thinking6. More specifically, 
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complexity cannot be understood by looking at each interaction in isolation but by 
considering the adaptive and emergent behaviour of the system as a whole. In this 
respect, complexity can be thought of as a holistic approach regarding systems with 
many interacting dimensions, and their emergent and adaptive behaviour7. These 
interactions are usually nonlinear in nature with multiple spatial and/or temporal 
scales, driven by a combination of positive and negative feedbacks8. Positive 
feedbacks, for example, can trigger a runaway reaction, in the underlying system 
dynamics, causing a catastrophic shift in response to a small change9. Such sudden 
behaviours, also known popularly as tipping points, make particularly difficult any 
predictions about interactions involving feedbacks10. 

Complex inequality 

From a complexity perspective, inequality needs to be studied, measured and 
understood from a multidimensional point of view, meaning in its relations with 
other relevant economic, social, technological and ecological systems. Simplifying 
this complexity by ignoring system-wide interconnections and feedbacks, where 
only certain relationships in isolation are studied, would lead to a piecemeal 
understanding of inequality and it’s long term dynamics. On the other hand, 
attempting to model complexity extensively also has its cost in terms of 
compromising simplicity, tractability and ability to communicate to a broader 
audience. While striking a balance between complexity and simplicity would be 
highly valuable, this trade-off is not easy to resolve and is neither the aim of this 
chapter. Here I synthesis some of the key dimensions, central to achieving a 
balanced understanding of inequality that I have explored in this thesis, such as 
resource use, economic growth and institutions.   

Inequality is invariably linked to the distribution of, and access to, natural 
resources, be it biotic or abiotic. Not only is the distribution of resources uneven 
across countries globally, but access to the resource is also unequal among 
individuals locally. Evidence suggests that differences in initial endowments (such 
as wealth, capital and access to resources) lead to significant variation in economic 
prosperity11, though this relationship is anything but straightforward12. Access to 
resource allows income generation, which in turn allows access to better 
technology and the ability to extract more resources, resulting in a positive 
feedback that leads to inequality and uneven growth (chapter 2)3. Likewise, in an 
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open economy, export demand fuels exploitative growth in the resource-abundant 
sector at the price of more widespread sustainable growth13,14.  

Similar to economic growth, inequality is also observed as cyclical15. While it is 
well known that rising inequality is a function of economic growth16,17, high 
inequality can also trigger a crisis or possible collapse18. Eroding stability in both 
modern democratic regimes and ancient civilizations are found to follow episodes 
of high inequality, which triggers turmoil and counteracts any positive impact of 
growth19,20. From ancient Europe, a reconstruction of economic growth, using lead 
emissions from mining and smelting21, and inequality, using archaeological 
evidence of house sizes22, sheds light into the debilitating nature of high inequality. 
Inequality in ancient Europe evolved in long-run cycles, with a generally rising 
trend (Fig 1a). Between -1062 BC and 79 AD, we see a fast rise in inequality, as 
measured by the reconstructed Gini (green shaded region in Fig 1a). Coinciding 
with this rise in inequality, economic growth also went up post -1062 BC, as 
measured with reconstructed data from lead emission (see Fig 1b is a zoom-in of 
the green region in Fig1a). Rising inequality coincides with rising economic 
performance till the maximum sustained level during the Roman empire in 165 
AD, after which the Roman empire collapsed as shown by the red shaded region in 
(b) top panel, from 165 to 193 AD.  
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Figure 1: Reconstructed data on economic growth and inequality in ancient Europe. 
(a) Reconstructed long-run inequality dynamics in ancient Europe. The green 
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shaded region shows the steep rise in inequality after -1062 BC. (b) A zoom-in on 
the green shaded region. Top panel show reconstructed ancient economic growth 
data from lead emissions. Bottom panel shows reconstructed ancient inequality 
data from house sizes. The red shaded region in (b) top panel shows the collapse of 
the Roman empire from 165 to 193 AD, coinciding with the rise in inequality from 
the bottom panel. Source: Reconstructed ancient inequality and economic growth 
data21,22         

Alike in both ancient and modern times, the link between inequality and economic 
growth is crucial for development, but it may not be direct. There is a lively debate 
on the multiple mediating variables shaping the growth-inequality relationship, and 
its effects on our fragile biosphere23. Foremost among these mediators is 
institutional strength. Quality of institutions can determine how sustainable 
economic growth can harness the benefits from natural resources24, however at the 
same time, institutions can lose effectiveness in mitigating the environmental toll 
of economic growth in regions with high inequality (chapter 3). Exploring these 
relationships require multivariate data analysis and study of nonlinear relationships.  

Institutions constitute a wide set of variables such as cooperation, social norms, 
agreements and human behaviour, that shapes how individuals interact, drive 
economic activity and potentially dampen inequality. Each of these has profound 
implications on the allocation of resources, sharing of economic gains and delivery 
of services. It is well understood, both theoretically and from experiments, that 
social groups can rationally choose and sustain an unequal distribution of economic 
payoffs25–27. Some level of inequality is deemed ‘fair’, as individuals differ with 
respect to ability, productivity and effort. However, the real problem actualizes 
when inequality is ‘unfairly’ high. High inequality has adverse consequences for 
society such as mistrust, breakdown in cooperation28 and less interconnectedness 
among individuals29. In such situations, where cooperation fails and the affluent 
group disconnects from the rest of the society, wealth redistribution breaks down, 
thus leading to further inequality.  

Unequal distribution of economic gains can be described at the micro individual 
level through multiple processes. Differentiated access to opportunities, technology 
and capital 3,30,31 leading to heterogeneous income growth rates in the population, 
are some of the most commonly cited factors. Technology-Wealth feedback, for 
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example, is seen in both ancient and modern societies as a key driver of 
inequality22,32. Left unchecked such feedbacks can lead to a rapid rise in inequality 
and can trigger poverty and resource depletion (chapter 2). Such triggers or critical 
transitions are not often seen due to active government policy with respect to 
taxation, redistribution or resource protection that can potentially dampen these 
dynamics.  

Another important avenue to understand recent patterns in inequality data is with 
respect to the dependence between high and low-income groups. Income groups do 
not evolve independently but depend on the numerous individual interactions 
within a society. For example, high incomes can control the growth process, 
effectively casting out low incomes33,34. Moreover, income growth can be socially 
determined by whom you compare yourself with and whether your aspirations 
inspire or frustrate, in comparison35. The dependence relationship between the 
growth rates and size of these income groups can determine the long term stable 
distribution of income in a society (chapter 4). For the US, where inequality data 
per income percentile since 1960 is available, a clear threshold or break exists 
between high and low-income growth rates (Fig 2). This threshold follows a U-
shaped trend over time, with the lowest point at 1980-89 coinciding with the 
minimum of inequality in the US, over the long-run36.      

Central to the study of inequality is the need to integrate  above-mentioned 
dimensions, and more such as trade, education or migration, that are not reviewed 
here. For policy, these multiple dimensions of inequality are not only important to 
identify leverage points to control inequality but also mechanisms to understand 
the causal effects, between these dimensions.  
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Figure 2: (a) Decade-wise income growth data for the US from 1960 to 2019. (b) 
Evolution of 𝑇𝑇 in the long-run 1960-2019. Source: World inequality database 
(WID)37 

Challenge of inequality measurement  

With complexity in understanding inequality, we also face considerable challenges 
in reliably measuring it. Income and wealth are the two most popular estimates of 
economic thriving, but they are fundamentally different. Income is a flow measure, 
meaning it’s a snapshot of your current earning, while wealth is a stock measure 
representing accumulated earnings or fortune. While economists have long argued 
that the distribution of wealth has played an important part in the distribution of 
income38, the data present a mixed picture. Wealth inequality tends to vary more 
and is on average higher than income inequality (see Fig 3a for US and UK case). 
Both wealth and income inequality in the US presents the U-shaped curve over 
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time, with more variation in wealth than income inequality. The post-1980 increase 
in inequality is also much more in wealth than in income. For the UK, the 
difference is more apparent. Wealth inequality kept on decreasing way past the 
point when income inequality bottomed out and started to increase. In recent years, 
income inequality in the UK is increasing but wealth inequality is relatively stable.  

 

Figures 3: (a) Comparison of wealth and income inequality for the US and UK in 
the long run. (b) Evolution of wealth-income ratios since 1970 for multiple 
countries. Source: World inequality report 201839 

Difference between income and wealth dynamics has partly to do with major 
wealth components like inheritance and endowments/gifts that are independent of 
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base income. Though the contribution of these components is expected to decline 
with development, as more wealth is accumulated via human capital and rising 
labour share of income, wealth and income do not seem to move together. This is 
also evident from data on wealth-income ratios which in general depict a rising 
trend, but with abundant short-term fluctuations (Fig 3b). Thus measuring 
economic inequality provides a different picture depending on whether wealth or 
income base is used.  

Assuming we reconcile conceptual differences in wealth and income inequality, 
there exist serious limiting factors in terms of data availability and collection 
quality across regions, especially in the developing world40–42. We know the least 
about areas where inequality might present the most serious developmental policy 
challenge. A possible solution is independently collected data, for example, a 
remotely sensed measure, which is not dependent on the aforementioned 
limitations of household surveys or tax records. Remotely sensed data sources such 
as nigh-time lights (NTL) present us with an exciting and fresh perspective on 
measuring inequality (chapter 5). Studies show NTL to be a highly consistent 
indicator of economic activity43–45. Furthermore, night-time lights are free of 
collection or methodological variation across regions and, most importantly, the 
data is available for high and low developed regions alike. Estimated inequality 
based on night lights allows us, for the first time, to map inequality globally at a 
fine resolution (chapter 5). 

Limitations 

Work completed under this PhD thesis, while being ambitious, has a number of 
limitations that needs to be stated and understood. In modelling feedbacks between 
technology and wealth in chapter 2 or interactions between high and low-income 
growth rates in chapter 4, I take the micro-foundations of the income generation 
process as motivated by relevant literature35,46–50, as a simplifying assumption. The 
aim here is to identify or reveal generalizable patterns at the systems level to gain 
insights into the dynamics and structure of a macro level process like inequality. 
These include, in the case of this thesis, feedbacks between wealth and technology 
to understand the consequences of inequality in a socio-ecological system, and the 
relationship between low and high-income growth individuals to understand how 
this interaction leads to rising inequality.   
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In chapter 3, institutions are taken in a somewhat restricted sense. Broadly 
speaking institutions can be both formal (governance and public services) and 
informal (norms and cooperation). However, restrictions of data availability 
allowed us to only analyse the interactions between inequality and institutions in 
the more formal definition, with respect to governance. More information about 
exactly how the institution's strength data was used is provided in the supplement 
to chapter 3, which needs to be considered when interpreting results.            

In chapter 5, in remote sensing of inequality using night-lights data, it is important 
to note that there is no gold standard measure of income inequality. The popular 
income Gini is also an imperfect estimate, in terms of capturing the income 
distribution5, and thus the strong association we show with income Gini need to be 
interpreted with care. Critical here is also the light-income relationship. The light-
income relationship may not be one-to-one because of many factors such as energy 
savings, lighting habits, more homogenous infrastructural facilities in large urban 
areas, spatial segregation of residential households and the like. So, the actual 
relationship may not only be nonlinear but very region-specific in areas where our 
estimates are relatively weak. However, we do find a reasonable empirical 
relationship in many parts of the world showing the potential of using the 
distribution of lights as a measure of income inequality.  

Conclusion 

To the modern economist, inequality is primarily about the distribution of 
economic gains among individuals, and the intrinsic challenges it poses. Drivers 
and effects of inequality are usually studied in a local disaggregate fashion. Still, 
there is a pervasive demand from interdisciplinary scientists and policymakers for a 
multidimensional systems analysis51, where micro-dynamics are integrated into a 
systems analysis. This chapter synthesizes very briefly a new perspective on 
(re)thinking about inequality, and its multidimensional nature, using a systems 
complexity perspective. 

Complexity science is an established part of the analysis toolbox in many 
disciplines such as physics, engineering, biology, ecology, environmental and 
climate sciences. Integration in mainstream economics is slow but ongoing. 
Nonlinearity and heterogeneity, the two main characteristics of complex systems, 
are copiously found in the study of inequality, and its long-run dynamics. 
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Complexity in inequality, as studied in this thesis sheds light on the existence of 
multiple feedbacks (chapter 2), direct/indirect effects (chapter 3), adaptive 
behaviour from heterogeneous interaction (chapter 4) and problem of measurement 
(chapter 5), that overall may not have even scratched the surface of a potential 
paradigm shift in perception that complexity science offers. As with most PhD 
theses, this is just the beginning and I hope it can contribute to useful policy 
relevant practical insights in understanding the nature of inequality.               
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Chapter 7 

Summary: Complexity in inequality 

This thesis explores three interrelated research streams. First, I am interested in the 
very fundamental and ancient question about the functioning of our societies – why 
are some individuals or countries rich and others poor? Under this broad question, I 
aim to understand the drivers of inequality, that traverse the artificial boundaries 
between economic, social and natural sciences. Second, I study inequality, as being 
complex and governed by highly interconnected processes such as technology, 
globalization, trade and migration. These processes can be highly nonlinear causing 
cyclical behaviour and/or critical transitions such as tipping points. Third, using 
dynamic models and empirical data, I explain the flow of information between 
heterogeneous agents, including individuals, households or countries, and how 
these interactions define the emergent dynamics of inequality. Heterogeneous 
individuals interact not only inside economic systems but also across systems, such 
as with the environment and climate. Furthermore, these interactions are governed 
by formal and informal rules, such as institutions, social norms and agreements. 

In chapter 1, I discuss that there is no single set of rules which defines the 
dynamics of inequality. Instead, inequality is complex and governed by highly 
interconnected processes such as technology, globalization, trade and migration. 
Complex here refers to processes with many interacting dimensions, and their 
emergent and adaptive behaviour. These interactions are usually nonlinear in 
nature with multiple spatial and/or temporal scales. 

The rise in inequality is often seen concurrent with resource overuse. In chapter 2, 
we use a stylised social-ecological model, to illustrate how a positive feedback 
between wealth and technology may fuel local inequality. Our results show that 
societies may evolve towards a stable state of few wealthy and many poor 
individuals, where the distribution of wealth depends on how access to technology 
is distributed. Overall, we illustrate how access to technology may be a mechanism 
that fuels resource degradation and consequently pushes most vulnerable members 
of society into a poverty trap. 

Building on the theoretical links with resource use and poverty, inequality can not 
only be recognized as a key indicator for the welfare of societies but also as a risk 
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to the larger biosphere. Biosphere impacts of inequality are inherently complex in 
nature with intricate interactions and feedbacks. In chapter 3, we use a global 
country-level dataset to explore how the strength of national institutions and 
economic inequality in society can mediate the loss of biodiversity worldwide. Our 
results highlight the complex and nonlinear nature of inequality-institutions 
interaction. We find both direct and indirect pathways via which economic growth 
can affect biodiversity loss. Furthermore, in the indirect route, the effectiveness of 
institutions is conditional on the level of inequality in society, such that 
biodiversity loss is ameliorated when institutions are strong and inequality low, but 
in regions with high inequality, institutions tend to lose their efficacy.   

Understanding inequality requires unpacking its structure, which comprises income 
growth rates differing by income groups. Income groups do not evolve 
independently, but depend on socio-economic relations within a society, between 
high and low incomes. In chapter 4, we study the long term structure of inequality 
through modelling the dependence between high and low-income growths and their 
respective population sizes. First, using dynamic inequality model and income data 
since 1960, we predict the long term stable distribution of income for the US, 
France, China and India. Second, we explore the parameter space with respect to 
the variation in high and low-income growths for these countries, to understand the 
long term structure of inequality.      

Studying inequality from a complexity perspective requires a combination of both 
computational modelling and empirical data, yet reliable data on income 
distributions are mostly limited to Northern America and Europe. In chapter 5, we 
show that this gap may be filled using a remotely sensed proxy for inequality based 
on nighttime light data. Using the tendency of residential households to spatially 
segregate on poverty and affluence, we analyse the spatial distribution of light per 
person as a proxy for variance in economic prosperity. The resulting light-based 
Gini coefficients relate well to existing estimates of net income inequality at the 
scale of countries globally, but also for states within the USA. Building on this 
association, we present the first high-resolution global maps of light-based 
inequality and its trends over recent years. 

From current work, I find nonlinearity, heterogeneity, existence of multiple 
feedbacks, direct/indirect effects and adaptive behaviour, in the long-run dynamics 
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of inequality. Synthesizing this thesis, chapter 6 presents a perspective on thinking 
about inequality from a complexity point of view.    

 



This PhD thesis received funding from the European Union’s Horizon 2020 
research and innovation programme under the Marie Sklodowska-Curie grant 
agreement No 643073. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cover design: Vera van Beek 
Cover photo credits: NASA Earth Observatory 





Complexity in 
     Inequality

M Usman Mirza

C
om

plexity in Inequality
M

 U
sm

an M
irza

 INVITATION

It is my great pleasure to invite 
you to attend the public defence of 

my PhD thesis entitled

Complexity in 
Inequality

Which will be held at 13.30 
on Tuesday 4th February 2020 

in the Aula of 
Wageningen University, 
Generaal Foulkesweg 1, 

Wageningen, The Netherlands.

There will be some delicious 
Pakistani food afterwards in the 

reception, at the same place.

M Usman Mirza
muh.usmanmirza@gmail.com

Paranymphs
Ayesha Hanif

Pablo Rodríguez-Sánchez


	1. Mirza, first four pages
	2. Mirza, chapter 1
	3. Mirza, chapter 2
	4. Mirza, chapter 3
	5. Mirza, chapter 4
	6. Mirza, chapter 5
	7. Mirza, chapter 6
	8. Mirza, chapter 7
	9. Mirza, last pages
	Lege pagina
	Lege pagina

