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A typical geostatistical solution

Predict value of the spatial variable z at
unobserved location x, from observations
Z(x), i=1...n,as follows:

Z(Xo) =N [z(x,)+ A, [z(X,)+...+ A _[z(X,)

Ordinary Kriging: derive weights A. from the
spatial autocorrelation structure
(semivariogram) of z, this yields the Best
Linear Unbiased Predictor




ight look like this
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Problem solved?

we have obtained a map of the spatial variable,
which weighs the observations optimally

however, ordinary kriging 1s entirely based on the
observations and does not make use of any
additional information (which is often available)

nerhaps we can do better
additional information (exp
Kknowledge about physical
the spatial variation)

DYy Incorporating the
anatory data as well as

orocesses that caused

we will discuss three approaches to do so, starting
simple but ending complicated
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B mapping unit dependent deviation from the
z(X) = mean at location x

T mean at x

G J G J
Y Y

(deterministic) trend, (stochastic) residual,
explanatory part unexplanatory part

possibly spatially
autocorrelated
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spatial
variable

map unit A  map unit B map unit A map unit C
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z(x) = flexplanatory variables) + stochastic residual

possibly spatially
autocorrelated

Example:

B, + B,[Elevation(x) + B,Slope angle(x) +
soil depth(x) = B;egetation density(x) + + residual (x)
B,Upstream area(x)
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Regression kriging algorithm
1. select explanatory variables and estimate regression
coefficients using ordinary least squares

compute residuals (by subtracting the fitted trend from
the observations) at observation locations and compute
a semivariogram to quantify spatial correlation of the
residual

apply the regression model at all unobserved locations
(usually a grid)

krige the residuals
add up the results of steps 3 and 4

Better: integrate estimation of coefficients and kriging of
residuals using weighted least squares and universal kriging
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xample trom Hneng al. (Geoaerma 120, pp

75-93): predicting soil depth for a 50 x 50 km
area In Croatia
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observations

soll map only
predictor

regression only
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Kriging

regression
Kriging
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Mean Root mean squared
error [cm] | error [cm]

Sot1l map 1.42 9.1

Ordinary kriging 0.69 8.5

Multiple regression 1.69 8.8

Regression kriging 0.15 0.8
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IS rapidly evolving because modern observation and
GIS techniques yield high-quality explanatory variables
at high resolutions

Incorporates process knowledge because it
(presumably) uses explanatory variables that have a
causal influence on the target variable

IS handicapped In the sense that the way in which
explanatory variables appear in the trend Is highly
empirical, i.e. not reflecting the actual processes

has given a boast to alternative ways of soil mapping,
which has now entered the ‘Digital Soil Mapping’ era
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Download the press release
Download the brochure
GlebalSeilMap. net in the nevs

The project was officially launched
17th February, New York, USA
presentations programme
speaker biographies outcome

The African part of GlobalSeilMap. net
was launched on 13th January 2009
in Mairebi. Read here the press
coverage www.africasoils.net

PROPERTIES

3rd Global Workshop on Digital Soil Mapping
Santambar 10 - Octobar 3. 2008 « Lltah State Llnivearsity « | ooan LIT « UISA

SOF TWARE PUBLICATIOHS COHSORTIUM LIHKS COHTACTS

‘Fet there be no mistake abowt t :fgﬂiﬁfﬂﬂf& af this 1u'a’na’£1fﬁaiwa_;er:t '

Kofi Annan

'Sat'fm.::ldtlt'fng 15 o9e clf t.ﬁ.-zdt't'ifav: to the rﬁalﬂ'ﬁge af:u:tat’naﬁi’e ah'efqment '
Jeffrey Sachs

1 - -
17th February 2009

There is 2 need for accurate, up-to-date and spatially referenced soil
information. This need has been expressed by the modelling community. land
users, and pelicy and decision makers. This need coincides with @ enormous
leap in technologies that allow for accurately collecting and predicting soil
properties,

We have formed a consortium that aims to make a new digital soil map of the
world using state-of-the-art and emerging techneologies for soil mapping and
predicting scil properties at fine resolution. This new glebal scil map will be
supplemented by interpretation and functionality cptions that aim to assist
better decisions in a range of global issues like food preduction and hunger
eradication, climate change, and envirenmental degradation. This is an
inmitiative of the Digital Sail Mapping Werking Group of the International Union
of Soil Sciences ILUSS

In Movember 2008, an 518 million grant has been obtained frem the Bill &
Melinda Sates foundation and the Alliance for 2 Green Revoluticon in Africa
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Digital Soil Mapper

collection and
harmonisation methods

presentation and
visUalisation tools

|

mathematical and
statistical techniques

DATA
s0il ohservations

»

and covariates

MODELS
DS model
toolbox

L

pedological knowledge
s0il survey expertise

transformation
functions

DSk procucts

maps of soil type and validation protocol and

independent data

s0il properties

Digital Soil
Functional Maps

accuracy assessment of
DSk products
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Set of brightness values for a single
raster cell position in the
hyperspectral image.

Images acquired simultaneously in
many narrow, adjacent wavelength
bands.
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A plot of the brightness values
versus wavelength shows the
continuous spectrum for the
image cell, which can be used
to identify surface materials.
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= IS handicapped In the sense that the way in which
explanatory variables appear in the trend is highly

empirical, i.e. not reflecting the actual processes
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To do better justice to process knowledge we must take a
dynamic approach

f(state of system(t-1),

+ residual
external forces)

state of system (t) =

no matter how hard we try,
the model will always differ
from reality

spahaHy
dlstrlbuted"
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State-space approach has two main equations

State equation (assume linear model):

Z(t+1)=A(t) - Z(t)+ B(t)- U(t) +&(t),

= model error

Measurement equation: external forcing
Y(t)=C(t)- Z(t) + (),

measurement error
measurement
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Kalman filter algorithm: combine process knowledge

with information in measurements

Starting from state Z, at t=0, we have a time update:

and a measurement update:

2+ D=7 (t+ DK+ D (Y(t+ ) =C(t+ D2 (t+1)

where K(t+1) is the Kalman Gain, which determines how
much weight the measurement gets to correct the state

estimate. It can be computed alongside the updates, and so
can the associated variances
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Application of the space-time Kalman filter to mapping soll
redistribution in the Hepburn research site

Hepburn site about seven hectares in size, located
in southern Saskatchewan (Canada)

gentle slopes, maximum difference in elevation
three metres

agricultural landuse (crop-fallow production system)
tillage erosion main cause of soil redistribution

amount of soll flux per tillage event has a linear
relationship with slope angle (‘realistic’ assumption)
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Evolution of soll redistribution over 37

process model only

elevation erosion/sedimentation
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99 grid measurements of cumulative soil redistribution (sum
over 37 years)
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Scatter plot of measurements against process model
predictions
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The space-time Kalman filter adjusts the predicted soll

redistribution to the measurements
Before measurement update: After measurement update:
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Effect of

measurement
update
(‘interpolated
residual’)
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Scatter plot of measurements against updated model
predictions
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Before measurement update After measurement update
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ary and Conclusions

There 1s much that can be gained by including process knowledge In
spatial interpolation

Model of spatial variation underlying spatial interpolation:
variable = trend/explanatory part + stochastic residual

Ordinary kriging focuses entirely on the residual and exploits its
spatial autocorrelation

Regression kriging pays more attention to the explanatory part

Space-time Kalman filter represents real-world processes more
realistically by taking a dynamic approach, while taking process
model error into account and using measurements to correct the
model predictions

The advantage of exploiting process knowledge is not only that we
(potentially) get more accurate maps, but also that we get a better
understanding of how the real world works: that is what science is all
about, is It not?
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